ﺘﺼﺤﻴﺢ ﺍﻤﺘﺤﺎﻥ ﺍﻟﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ ﻴﻭﻟﻴﻭﺯ 06 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻻﻭل: (1ﺃ -ﻟﺩﻴﻨﺎ AB(0, −3,3) :ﻭ ) . AC(1, −1, 0ﺍﺫﻥ0.5 AB ∧ AC(3,3,3) : ﺏ -ﻟﺩﻴﻨﺎ AB ∧ AC :ﻤﺘﺠﻬﺔ ﻤﻨﻅﻤﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻭﻯ ) ( ABCﺍﺫﻥ : M (x, y, z) ∈ ( ABC) ⇔ AM .( AB ∧ AC) = 0 ⇔ 3.(x −1) + 3.( y − 2) + 3.(z + 2) = 0 ⇔ 3.(x + y + z −1) = 0 ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻭﻯ ) ( ABCﻫﻲ 0.5 x + y + z −1 = 0 : (2ﺃ -ﻤﺴﺎﻓﺔ ﺍﻟﻤﺭﻜﺯ ) Ω(1,1,1ﺍﻟﻰ ﺍﻟﻤﺴﺘﻭﻯ ) ( ABCﻫﻲd = 1+1+1−1 = 2 : 1² +1² +1² 3 ﺇﺫﻥ d = R :ﻭﻤﻨﻪ :ﺍﻟﻤﺴﺘﻭﻯ ) ( ABCﻤﻤﺎﺱ ﻟﻠﻔﻠﻜﺔ ) (Sﻓﻲ ﻨﻘﻁﺔ 0.5 . H⎧x =1+t⎪⎨ y = 1 + t ﻫﺫﻩ ﺍﻟﻨﻘﻁﺔ ﻫﻲ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻭﻯ ) ( ABCﻤﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (ΩHﺫﻭ ﺘﻤﺘﻴل ﺒﺭﺍﻤﺘﺭﻱ (t ∈ IR) :⎪⎩z = 1+ t ⎧x =1+t ⎪⎪ y = 1+ t ﺍﺫﻥ0.75 H (1 , 1 , 1) : ﻨﺠﺩ t = −2 : ⎨ ﺒﺤل ﺍﻟﻨﻅﻤﺔ : 333 3 ⎪ z = 1 + t ⎪⎩x + y + z −1 = 0 ﺏ -ﻟﺘﻜﻥ ) M (a, b, cﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ). ( ABC ⎪⎧a + b + c −1 = 0 ⎧a + b + c −1 = 0 ⎪⎩⎨(a −1)² + (b −1)² + (c −1)² ⎪ ﺃﻱ: ≥ 4 ﺇﺫﻥ: ≥ )⎩⎪⎨d (M , Ω 2 : ﻟﺩﻴﻨﺎ ﺇﺫﻥ 3 3 ⎧⎪a + b + c = 1 ﺃﻱ: ⎪⎧a + b + c = 1 ⎨⎩⎪a² 4 ⎨⎪⎩a² 4 + b² + c² − 2 + 3 ≥ 3 + b² + c² − 2(a + b + )c + 3 ≥ 3 ﻭﺒﺎﻟﺘﺎﻟﻲ0.75 a² + b² + c² ≥ 1 : 3 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ: vn+1 = un+2 − 1 .un+1 = (2 .un+1 − 1 .un ) − 1 .un+1 5 5 25 5 (1ﻟﻜل nﻤﻥ INﻟﺩﻴﻨﺎ: 1 1 1 1 = 5 .un+1 − 25 .un = 5 .(un+1 − .u ) 5n vn+1 = 1 ﺍﺫﻥ : 5 .vn 0.5 v0 = u1 − 1 .u0 =1 ﺍﻷﻭل: ﻭﺤﺩﻫﺎ =q 1 ) (vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ﻭﺒﺎﻟﺘﺎﻟﻲ: 5 5 0.25 ∈ ∀n IN : vn = (1)n ﺇﺫﻥ: 5 wn+1 = 5n+1.un+1 = 5n+1.(vn + 1 .un ) = 5n+1. 1 + 5n.un (2ﺃ -ﻟﻜل nﻤﻥ INﻟﺩﻴﻨﺎ : 5 5n ﺇﺫﻥ wn+1 = 5 + wn :ﻭﺒﺎﻟﺘﺎﻟﻲ (wn ) :ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ r = 5ﻭﺤﺩﻫﺎ ﺍﻷﻭل0.25 w0 = 0 : ∈ (∀n IN : un = wn ) ﺇﺫﻥ: 0.25 ﺏ -ﻟﺩﻴﻨﺎ(∀n ∈ IN : wn = 5.n) : 5nhttp://arabmaths.ift.fr
0.25 ∈ ∀n IN* : un = 5.n = n ﺃﻱ: 5n 5n−1 (3ﺃ -ﻟﻜل nﻤﻥ * INﻟﺩﻴﻨﺎ 5.n 0 :ﺇﺫﻥ 0.25 ∀n ∈ IN*: un+1 0 : un+1 − 2 .un ≤ 0 ﺇﺫﻥ: un+1 − 2 .un = n +1 − 2.n = 1− n ﻟﺩﻴﻨﺎ : ﻭﻟﻜل nﻤﻥ * IN 5 5 5n 5n 5n 0.5 ∈ ∀n IN * : 0 ≺ un+1 ≤ 2 .un ﻭﺒﺎﻟﺘﺎﻟﻲ: 5 0 ≺ u1 ≤ ( 2)0 ﺇﺫﻥ : ﺏ -ﻤﻥ ﺃﺠل n = 1 :ﻟﺩﻴﻨﺎu1 = 1 : 5 ﻟﻨﻔﺭﺽ ﺃﻥ ﺍﻟﺨﺎﺼﻴﺔ ﻤﺤﻘﻘﺔ ﻤﻥ ﺃﺠل * . n ∈ IN 0 ≺ un+1 ≤ ( 2 )n ﺇﺫﻥ: 0 ≺ un+1 ≤ 2 .un ≤ 2 .( 2)n−1 ﻟﺫﻥ: 0 ≺ un+1 ≤ 2 .un ﺃ( ﻟﺩﻴﻨﺎ ﺤﺴﺏ 5 5 55 5 ﺇﺫﻥ ﺍﻟﺨﺎﺼﻴﺔ ﻤﺤﻘﻘﺔ ﺒﺎﻟﻨﺴﺒﺔ ل n +1 : 0.5 ∀n ∈ IN * : 0 ≺ un+1 ≤ ( 2 )n ﻭﺒﺎﻟﺘﺎﻟﻲ: 5 ) (unﻤﺘﻘﺎﺭﺒﺔ lim ( 2)n−1 = 0ﺇﺫﻥ ﺤﺴﺏ ﻤﺼﺎﺩﻴﻕ ﺍﻟﺘﻘﺎﺭﺏ: ﺒﻤﺎ ﺃﻥ −1 ≺ 2 ≺ 1ﻓﺎﻥ : ∞5n→+ 5 0.25 lim un = 0 ﻭ: ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ: ﺇﺫﺍ ﺴﺤﺒﻨﺎ ﺒﻴﺩﻗﺔ ﺘﺨﻤل ﺍﻟﺭﻗﻡ 2ﻓﺈﻨﻨﺎ ﻨﺴﺤﺏ ﻜﺭﺘﻴﻥ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻜﻴﺱ U2ﺇﺫﻥ ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ 0ﺃﻭ ﺒﻴﺩﻗﺔ ﺃﻭ ﺒﻴﺩﻗﺘﻴﻥ ﻟﻭﻨﻬﺎ ﺃﺤﻤﺭ. ﻭ ﺇﺫﺍ ﺴﺤﺒﻨﺎ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 3ﻓﺈﻨﻨﺎ ﻨﺴﺤﺏ 3ﺒﻴﺩﻗﺎﺕ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻜﻴﺱ U2ﺇﺫﻥ ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ 0ﺃﻭ ﺒﻴﺩﻗﺔ ﺃﻭ ﺒﻴﺩﻗﺘﻴﻥ ﻟﻭﻨﻬﺎ ﺃﺤﻤﺭ. ﺇﺫﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺘﻲ ﻴﺄﺨﺫﻫﺎ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ Xﻫﻲ 0 :ﺃﻭ 1ﺃﻭ 2ﻭﻤﻨﻪ0.5 X (Ω) = {0,1, 2} :* ﺍﻟﺤﺩﺙ [ X = 0] :ﻫﻭ ﺍﻟﺤﺩﺙ \":ﻻ ﻨﺤﺼل ﻋﻠﻰ ﺃﻴﺔ ﻜﺭﺓ ﺤﻤﺭﺍﺀ\" ﺃﻱ ﻨﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 2ﻤﻥ ﺍﻟﻜﻴﺱ U1ﻭﻨﺴﺤﺏ ﺒﻴﺩﻗﺘﻴﻥ ﺒﻴﻀﺎﻭﻴﻥ ﻓﻲ ﺃﻥ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻜﻴﺱ U2ﺃﻭ ﻨﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 3ﻤﻥ ﺍﻟﻜﻴﺱ U1ﻭﻨﺴﺤﺏ 3 ﺒﻴﺩﻗﺎﺕ ﺒﻴﻀﺎﺀ ﻓﻲ ﺃﻥ ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻜﻴﺱ .U2 0.75 p[ X = ]= 0 3 . C32 + 2 . C33 = 3. 3 + 2. 1 = 11 ﺇﺫﻥ : 5 C52 5 C53 5 10 5 10 50* ﻟﻜﻲ ﻴﺘﺤﻘﻕ ﺍﻟﺤﺩﺙ [ X = 1] :ﻴﺠﺏ ﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 2ﻤﻥ U1ﻭﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺤﻤﺭﺍﺀ ﻭﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ ﻤﻥ U2 ﺃﻭ ﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 3ﻤﻥ U1ﻭﺴﺤﺏ )ﺒﻴﺩﻗﺔ ﺤﻤﺭﺍﺀ ﻭﺒﻴﺩﻗﺘﻴﻥ ﺒﻴﻀﺎﺀ ( ﻤﻥ U2ﺇﺫﻥ: 0.75 p[ X = ]= 1 3 . C31.C21 + 2 . C32 .C21 = 3. 6 + 2. 6 = 30 = 3 5 C52 5 C53 5 10 5 10 50 5ﻤﻥ U2ﺃﻭ * ﻟﻜﻲ ﻴﺘﺤﻘﻕ ﺍﻟﺤﺩﺙ [ X = 2] :ﻴﺠﺏ ﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 2ﻤﻥ U1ﻭﺴﺤﺏ ﺒﻴﺩﻗﺘﻴﻥ ﺤﻤﺭﺍﻭﻴﻥ ﺴﺤﺏ ﺒﻴﺩﻗﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 3ﻤﻥ U1ﻭﺴﺤﺏ ) ﺒﻴﺩﻗﺘﻴﻥ ﺤﻤﺭﺍﻭﻴﻥ ﻭﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ( ﻤﻥ U2ﺇﺫﻥ: 0.75 p[ X = = ]2 3 . C22 + 2 . C2 2 .C31 = 3. 1 + 2. 3 = 9 5 C52 5 C53 5 10 5 10 50 ﻭﺒﺎﻟﺘﺎﻟﻲ :ﺠﺩﻭل ﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ Xﻫﻭ : a ∈ X (Ω) 0 1 2 p[ X = a] 11 30 9 50 50 50
E( X ) = 0. 11 +1. 30 + 2. 9 = 48 = 24 (2ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻲ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ Xﻫﻭ : 50 50 50 50 25 ﺃﻱ0.25 E( X ) = 24 : 25 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ: (1ﻤﻤﻴﺯ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻭ0.25 ∆ = 4 − 4(1+ i) = −4i :ﺍﺫﻥ . ∆ == 2.(−2i) = 2.(1− i)² = ( 2 .(1− i))² :ﺇﺫﻥ ﺍﺤﺩ ﺍﻟﺠﺫﻭﺭ ﺍﻟﻤﺭﺒﻌﺔ ل ∆ ﻫﻭ )δ = 2.(1− i)( Im(z1 ) ﻷﻥ 0 : z2 = −2 + )2.(1− i ﻭ z1 = −2 − )2.(1− i ﻭﺍﻟﺤﻠﻭل ﻫﻲ : 2 20.25 z2 = −1+ 2− 2 .i 0.25ﻭ z1 = −1− 2+ 2 .i ﻭﺒﺎﻟﺘﺎﻟﻲ : 2 2 2 2 (2ﺃ -ﻟﺩﻴﻨﺎ − 2 + 2 .i = − cos(π ) + i sin(π ) = cos(π − π ) + i sin(π − π ) : 22 44 4 4 0.5 − 2+ 2 .i = (cos 3π ) + i (sin 3π ) = ⎡⎣⎢1, 3π ⎤ ﺍﺫﻥ: 2 2 4 4 4 ⎦⎥ ﺏ zM -ﻴﺭﻤﺯ ﻟﻠﺤﻕ ﺍﻟﻨﻘﻁﺔ . M zM1 − zA = −1− 2+ 2 .i +1 = − 2+ 2 .i = zB − zO ﻟﺩﻴﻨﺎ : 2 2 2 2 ﺇﺫﻥ 0.25 AM1 = OB :0.25 ] [M1M2 Aﻫﻲ ﻤﻨﺘﺼﻑ ﺍﻟﻘﻁﻌﺔ ﻓﺎﻥ : zM1 + zM2 = −2 = −1 = zA ﺒﻤﺎ ﺃﻥ : 2 2ﺝ -ﺒﻤﺎ ﺃﻥ AM1 = OB :ﻓﺎﻥ AOBM :ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻭﺒﻤﺎ ﺃﻥ OB = OA = 1 : ﻓﺎﻥ AOBM :ﻤﻌﻴﻥ0.5 . π ≡ )(e1, OM1) ≡ (e1, OB) + (OB, OM1 3π + 4 = 3π ] + π [2π ﻟﺩﻴﻨﺎ: 4 2 4 8 0.5 Argz1 ≡ 7π ] [2π : ﺍﺫﻥ ≡ ). (e1, OM1 7π ] [2π : ﺇﺫﻥ 8 8 ﻤﺴﺄﻟﺔ -I (1ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﻴﺯﺓ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ y \"− 2 y '+ y = 0 :ﻫﻲ r² − 2r +1 = 0 :ﻭﻫﻲ ﺘﻘﺒل ﺤﻼ ﻤﺯﺩﻭﺠﺎ r = 1: 0.25ﺇﺫﻥ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻫﻲ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﺏ y : x (ax + b)ex :ﺤﻴﺙ 0.5 . (a, b) ∈ IR² (2ﺃ -ﻟﺩﻴﻨﺎ y0 \"(x) = 0) :ﻭ ∀x ∈ IR : ( y0 '(x) = aﺇﺫﻥ: y0 ⇔ ∀x ∈ IR : y0 \"(x) − 2 y0 '(x) + y0 (x) = x −1ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ⇔ ∀x ∈ IR : −2a + ax + b = x −1 ⇔ ⎧a =1 ⎧a = 1 ⇔ ⎩⎨b − 2a = −1 ⎨⎩b = 1 ﺇﺫﻥ y0 : x x +1 :ﺤل ﺨﺎﺹ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ )0.25 . (E ﺏ -ﺍﻟﺤﻠﻭل ﺍﻟﻌﺎﻤﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻔﺎﻀﻠﻴﺔ ﻫﻲ ﺍﻟﺩﻭﺍل yﺍﻟﻤﻌﺭﻓﺔ ﺏ: y : x (ax + b)ex + x +1ﺤﻴﺙ0.25 (a, b) ∈ IR² : ∀x ∈ IR : ⎪⎧h(x) = (ax + b)ex + x +1 ﺝ -ﻟﺩﻴﻨﺎ : ⎨ b)ex +1 ⎩⎪h '(x) = (ax + a +
⇔ ⎧h(0) = 0 b+1= 0 ⇔ b = −1 −a ⇔ ⎧a = 1 ﺍﺫﻥ: ⇔ ⎩⎨h '(0) = 1 a +b+1 = =1⇔b ⎩⎨b = −1 ﻭﺒﺎﻟﺘﺎﻟﻲ 0.5 ∀x ∈ IR : h(x) = (x −1)ex + x +1 : (3ﺃ -ﻟﺩﻴﻨﺎ ∀x ∈ IR : g '(x) = ex + (x −1)ex +1 : ﺇﺫﻥ0.5 ∀x ∈ IR : g '(x) = xex +1 : ﺒﻤﺎ ﺃﻥ ∀x ∈[0, +∞[ : xex +1 0 :ﻓﺎﻥ gﺩﺍﻟﺔ ﺘﺯﺍﻴﺩﻴﺔ ﻗﻁﻌﺎ ﻋﻠﻰ [∞0.25 [0, + ﺏ -ﺒﻤﺎ ﺃﻥ gﺩﺍﻟﺔ ﺘﺯﺍﻴﺩﻴﺔ ﻗﻁﻌﺎ ﻋﻠﻰ [∞ [0, +ﻓﺎﻥ g(0) :ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺩﻨﻭﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ [∞[0, + ﺇﺫﻥ∀x ∈[0, +∞[ : g(x) ≥ g(0) : ﻭﺒﻤﺎ ﺃﻥ g(0) = 0 :ﻓﺎﻥ0.25 . ∀x ∈[0, +∞[ : g(x) ≥ 0 : (1 - IIﻟﻜل xﻤﻥ * IRﻟﺩﻴﻨﺎ * −x ∈ IRﻭ : −x x f )(−x = − xe− x = ex = − ex = − x . e2x − xex (e−x −1)² ex (ex −1)² (ex −1)² 1 (1 − e x ex e ( −1)² x )² ﺍﺫﻥ ∀x∈IR*: f (−x) = −f (x) :ﻭﺒﺎﻟﺘﺎﻟﻲ fﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ 0.5 05 lim = )f (x lim xex = lim x².ex = lim ex . e x 1 1)² = ∞+ ﺃ -ﻟﺩﻴﻨﺎ: (2 (ex −1)² x.(ex −1)² x − x→0+ x→0+ x→0+ x→0+ ( x ﺍﺫﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﻤﻌﺎﺩﻟﺔ x = 0ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻰ 0.25 ﻭ ∞lim ex = + ﻷﻥ lim ex −1 = 1 : xx→0+ xx→0+ 0.25 lim f )(x = lim x = lim x . (1 − 1 x )² = 0 ﺏ- ex.(1− e−x )² ex e− ∞x→+ ∞x→+ ∞x→+ ﻷﻥ lim ex = +∞ :ﻭ . lim (1− e−x )² = 1ﺍﺫﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﻤﻌﺎﺩﻟﺔ y = 0ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻰ 0.25 ∞x→+ ∞xx→+ (3ﺃ -ﻟﺩﻴﻨﺎ:∈ ∀x IR* : f )' x = (ex + xex )(ex −1)² − 2xe2x (ex )−1 = (ex −1)[(ex −1)(ex + xex ) − 2 xe2 x (ex −1)4 = e2x + xe2x − ex − xex − 2xe2x = ex. ex − xex − x −1 (ex −1)3 (ex −1)3 0.75 ∈ ∀x IR* : f )'(x = − ex. ).g(x ﺇﺫﻥ: (ex −1)3 ﺏ -ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0, +∞[ :ﻟﺩﻴﻨﺎ ex −1 0 :ﻭ ex 0ﻭ g(x) 0ﺇﺫﻥ f '(x) ≺ 0 :ﻭﺒﺎﻟﺘﺎﻟﻲ :ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﻫﻭ ﻜﺎﻟﺘﺎﻟﻲ0.5 : x0 ∞+)f’(x - ∞+)f(x 0 (4ﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ 0.5 : f
Cf 3 −dt −== (1∫ ∫3 1 − 1)dt [ln(t 1) ln t]3 : ﻟﺩﻴﻨﺎ-( ﺃ52 t(t −1) 2 t −1 t 2 = ⎡⎢⎣ln( t −t=1+)−⎤⎥⎦ 3 −ln(2) =ln(1 ) ln 2 ln 3 ln 2 = 2ln 2 − ln 3 0.5 2 32 x = ln t : ﺇﺫﻥt = ex : ﻨﻀﻊ-ﺏ f (x) = t.ln t ﻭdx = 1 dt ﻭ (t −1)² t ⎧x = 2=⇒ t ln 2 : ﻭﻟﺩﻴﻨﺎ ⎨ ln 3 ⎩ x = 3 ⇒= t ln 3 t.ln t .1 dt = 3 ln t dt : ﺇﺫﻥ f (x)dx = ∫ ∫ ∫0.5 ln2 (t −1)² t 2 (t −1)² ⎨⎪⎧⎪⎩⎪⎪uv('(tt))==t1−t−11 ﻭ ⎧u(t) = ln t ⎪ ⎨⎪⎩v 1 : ﻨﻀﻊ-( ﺃ6 '(t) = −1)² (t ∫ ∫3ln t dt = ⎡ − ln t ⎤3 − 3 −1 dt : ﺇﺫﻥ (t −1)² ⎢⎣ t −1 ⎥⎦ 2 2 t(t −1) 2 =+−− ln 3 + ln 2 2 ln 2 ln 3 2 ∫0.5 3 ln t dt = 3ln 2 − 3 ln 3 : ﺇﺫﻥ 2 (t −1)² 2 ln 3A = ∫ f (x)dx : ﺍﻟﻤﺴﺎﺤﺔ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻫﻲ:[ ﻓﺎﻥ2,3] ﻤﻭﺠﺒﺔ ﻭﻤﺘﺼﻠﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎلf ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ-ﺏln 2 0.5 A = 0.45 u.a ﺃﻱ. ﺒﻭﺤﺩﺓ ﺍﻟﻤﺴﺎﺤﺔA = 3ln 2 − 3 ln 3 : ﺇﺫﻥ ﺍﻟﻤﺴﺎﺤﺔ ﻫﻲ 2
ا ت ا آا ا ا دة :ا ت1 ا )ة( :ا م ا 2C :NS22 ا نا ا آ ر ) ا ورة ا د ( 2007ةا ز3 : اع7: ا +ا م ا را +ا ما لا ا ا ( ) ا ا ول 3 ) :ن( د ه: ) (o, i , j, kا ) (Sا ا ءا بإ x2 + y2 + z2 - 2x - 4y - 6z + 8 = 0و ا ى ) (Pا ي د ه . x – y + 2z + 1 = 0 : 1 وي . 6 (1ان آ ا ) (Sه ا ) Ω(1, 2,3أن 0,75 0,5 أن ا ى ) (Pس ). (S (2 0,75 )∆( ا ر Ωو ا دي ). (P (3أ -د را س ) (Pو). (S ب -د ث إ ا ت ω ا ا 3 ) :ن( ا ا ي ا د ا ي (3 – 2i )2 (1 0,5أ -أآ ℂا د z2 – 2(4 + i )z + 10 + 20i = 0 : ا اد ا ب- (2 1) (O,u,vا Aو Bو Cا أ ا ىا يا بإ ا ا ه a = 1 + 3i :و b = 7 – iو . c = 5 + 9i و ا او . أ -أن c − a = i : 0,5 1 b−a ب -ا أن ا ABCوي ا ا ا ( 2,5 ) : . ℝ −{−1} x ان x2 = x −1+ 1 : (1 0,5 (2 1 x+1 x+1 (3 1 أن . ∫2 x2 dx = ln 3 : 0 x +1 اء ،أن ∫2 x ln(x +1)dx = 3 ln 3 : ل 02
ا ا نا ا آ ر ات ا دة : 2 ) ا ورة ا د (2007 2C :NS22 ا )ة( ا م ا ا +ا م ا ع +ا م ا را ا ا ا ا ( 2,5 ): ت ا اد 0و 0و 0و -1و 1و 1و 1 يآ ا ت (. )ا ا و ن وا ث ت ا . ا ا: ت ا ا \". ا د 0ا اث ا : ا \". أ ادا أ \":A \":B ا م\". ا تا ثت \":C ع ا اد ا أن ا ل ا ث Cه 2 2,5ا ا ل آ ا AوC 7 . g(x) = e−x + x −1 : ℝ 9 ) :ن( (Iا ا ا د gا]. ]−∞,0 [∞[0, +و (1ا ) ℝ x g ‘(xا أن gا 0,75 0,5 (2أن ) ℝ x g(x) ≥ 0أن ( g(0) = 0ا أن . ℝ x e−x + x ≥ 1 0,5 f )(x = x x : ا xا (IIا ا ا د f 0,25 + e−x ). (o, i , j و ) (Cا ا ا f 1,5 0,75 ا ا fه ) ℝا ل ا ال . ( (2(I (1أن 0,5 ℝ* x أن f (x) = 1 : (2أ – 0,5 1 0,75 1+ xex 0,25 ب – أن lim f (x) = 0 :و lim f (x) = 1أول ه ه ا . 1 ∞x→+ ∞x→− 0,5 .ℝ x (1+ x)e−x أن : (3أ– 0,5 x + e−x 2 0,75 == )( )f '(x ول ات ا ا . f ب -ادرس إ رة )f ‘(x ) (Cا Oأ ا . (4أ -اآ د ا سأن ℝ x x − f (x) = xg(x) :ادرس إ رة ). ℝ x − f (x ب- g(x) +1 ) (Cو ا )∆( ا ي د ه . y = x : ج -ا ا ا .( 1 ≃ −0, 6 )∆( و) (Cا )) (o, i , j (5أ.ℕ n 1− e ا د ) (Unا ا (III (1 U0 = 1و ) Un+1 = f ( Un أن ℕ n 0 ≤ Un ≤ 1 (2 ل ا ال (4(IIب(. (3ا )ا أن ا )(Un د. أن ) (Unر
اﻟﺮﻳﺎﺿﻴﺎت اﻟﻤﺎدة : ﺗﺼﺡﻴﺢ اﻻﻣﺘﺡﺎن اﻟﻮﻃﻨﻲ اﻟﻤﻮﺣﺪ ﻟﻠﺒﻜﺎﻟﻮرﻳﺎ 3ﺳﺎﻋﺎت 7 ﻣﺪة اﻻﻧﺠﺎز : اﻟﺪورة اﻟﻌﺎدﻳﺔ 2007 اﻟﻤﻌﺎﻣﻞ : ﺷﻌﺒﺔ اﻟﻌﻠﻮم اﻟﺘﺠﺮﻳﺒﻴﺔ اﻟﺘﻤﺮﻳﻦ اﻷول : ( )JJG JJG JJG ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻔﻀﺎء Eاﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ : O ,i , j , k اﻟﻔﻠﻜﺔ (S ) : x 2 + y 2 + z 2 − 2x − 4y − 6z + 8 = 0 و اﻟﻤﺴﺘﻮى ( )P : x − y + 2z +1= 0 .1ﺑﻤﺎ أن :x 2 + y 2 + z 2 − 2x − 4y − 6z + 8 = 0 ⇔ x 2 − 2x 2+1−1+ y − 4y + 4 − 4 + z 2 − 6z + 9 − 9 + 8 = 0 ⇔ = (x −1)2 + ( y − 2)2 + (z − 3)2 2 6 ﻓﺈن (S ) :ﻓﻠﻜﺔ ﻣﺮآﺰهﺎ Ω 1,2,3وﺷﻌﺎﻋﻬﺎ ( ). R = 6 ﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ) ( )( ) ( ) ( ). (S P . d Ω, Pإذن 1− 2 + 2×3 +1 6 = .2ﻟﺪﻳﻨﺎ 6 = R : = = 12 + (−1)2 + 22 6JJG هﻮ اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﺎر ﻣﻦ اﻟﻨﻘﻄﺔ Ωواﻟﻌﻤﻮدي ﻋﻠﻰ اﻟﻤﺴﺘﻮى Pﻣﺘﺠﻬﺔ) ( ) ( ) (n .3أ -ﻟﺪﻳﻨﺎ 1, −1, 2 وﻟﺪﻳﻨﺎ ∆ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ اﻟﻤﺴﺘﻮى Pﻓﻬﻲ ﻣﻮﺟﻬﺔ ﻟﻠﻤﺴﺘﻘﻴﻢ ∆ ،وﻣﻨﻩ ﻧﺴﺘﻨﺘﺞ ﺗﻤﺜﻴﻼ ﺑﺎراﻣﺘﺮﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ ∆) ( ) ( ) ( ⎧x =1+t ⎪ ⎨ y = 2−t \∈ / t آﻤﺎ ﻳﻠﻲ : ⎩⎪z = 3+ 2t ب -ﻟﺘﻜﻦ ) ω (x , y ,zﻧﻘﻄﺔ ﺗﻤﺎس آﻞ ﻣﻦ Pو ) . (Sﻟﺪﻳﻨﺎ ω ∈ P :و ) . ω ∈(Sإذن ( ) ( ): ⎧x =1+t ⎪ و ، x − y + 2z +1= 0وﻣﻨﻩ ﻓﺈن : ⎨ y = 2−t \∈ / t ⎪⎩z = 3+ 2t 1+t − (2 −t ) + 2(3+ 2t ) +1= 0 ⇔ 6t + 6 = 0 ⇔ t = −1 ⎧x = 0 ⎪ ( ). ω 0,3,1 : ﻓﺈن وﺑﺎﻟﺘﺎﻟﻲ ، ⎨ y =3 وﻋﻠﻴﻩ ﻓﺈن : ⎪⎩z =1 اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ : .1أ -ﻟﺪﻳﻨﺎ ( ). 3− 2i 2 = 9 −12i − 4 = 5 −12i : ب -ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ ^ اﻟﻤﻌﺎدﻟﺔ ( ) ( ). E : z 2 − 2 4 + i z +10 + 20i = 0 : اﻟﻤﻤﻴﺰ اﻟﻤﺨﺘﺼﺮ اﻟﻤﻌﺎدﻟﺔ ) (Eهﻮ :( )∆′ = b′2 −ac = −(4 + i ) 2 −1×(10 + 20i ) =16 + 8i −1−10 − 20i = 5−12i = (3− 2i )2
z2 = 4+i − 3+ 2i =1+ 3i و = z1 4+i + 3− 2i =7−i إذن ﻟﻠﻤﻌﺎدﻟﺔ ) (Eﺣﻠﻴﻦ هﻤﺎ : 1 1 وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن ﻣﺠﻤﻮﻋﺔ ﺣﻠﻮل اﻟﻤﻌﺎدﻟﺔ ) (Eهﻲ . S = {1+ 3i , 7 − i } : JJG JJG اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ وﻣﺒﺎﺷﺮ O ,u ,v( ) ( )B P .2ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻌﻘﺪيAو ،ﻧﻌﺘﺒﺮ اﻟﻨﻘﻁ و Cاﻟﺘﻲ أﻟﺡﺎﻗﻬﺎ ﻋﻠﻰ اﻟﺘﻮاﻟﻲ هﻲ a =1+ 3i :و b = 7 − iو . c = 5 + 9i . c −a = ) (5+9i ) −(1+ 3i = 5+ 9i −1− 3i = 4 + 6i = i (6 − 4i ) = i أ -ﻟﺪﻳﻨﺎ : b −a ) (7 −i ) −(1+3i 7−i −1− 3i 6 − 4i 6− 4i . AB =AC و ﻣﻨﻩ ﻓﺈن : AC = c −a =i =1 .إذن : c −a = i ب -ﻟﺪﻳﻨﺎ : AB b −a b −a ( )JJJJG JJJJJG وﻟﺪﻳﻨﺎ : AB,AC ≡ arg ⎛ c − a ⎞ ⎡⎣2π ⎤ ⎝⎜ b − a ⎠⎟ ⎦ ≡ ) arg(i ⎦⎤ ⎣⎡2π ⎦⎤ ⎣⎡2π ( )JJJJG JJJJJG π 2 ≡ AB,AC A BCﻣﺜﻠﺚ ﻣﺘﺴﺎوي اﻟﺴﺎﻗﻴﻦ وﻗﺎﺋﻢ اﻟﺰاوﻳﺔ ﻓﻲ . A ﻓﺈن وﺑﺎﻟﺘﺎﻟﻲ . i = ⎡⎢1, π ⎤ ﻷن 2 ⎥ ⎣ ⎦ اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻟﺚ : .1ﻟﻴﻜﻦ ، x ∈\ − −1ﻟﺪﻳﻨﺎ { }: x2 = x 2 −1+1 = x 2 −1 + 1 = (x −1)(x )+1 + 1 = x −1+ 1x +1 x +1 x +1 +1 +1 +1 x x +1 x x 2 xx+21dx 2 ⎛ 1 ⎞ ⎡x 2 ⎤2 .2ﻟﺪﻳﻨﺎ : ∫ ∫.0 = 0 ⎜ x −1+ + ⎟ dx = ⎢ −x + ln x = ln 3 ⎝ x 1 ⎠ ⎣⎢ 2 ⎥+1 ⎦⎥0 . u (x ) = x 2 .إذن : .3ﻧﻀﻊ u ′(x ) = x : 2 v ′(x ) = (x +1)′ = 1 )v (x ) = ln (x +1 x +1 x +1ﻟﺪﻳﻨﺎ u :و vﻣﺘﺼﻠﺘﻴﻦ وﻗﺎﺑﻠﺘﻴﻦ ﻟﻼﺷﺘﻘﺎق ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤ ⎡⎣0, 2وﻟﺪﻳﻨﺎ u ′ :و v ′ﻣﺘﺼﻠﺘﻴﻦ ﻋﻠﻰ اﻟﻤﺠﺎل ⎡⎣. ⎦⎤0, 2 ﺣﺴﺐ ﺗﻘﻨﻴﺔ اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء ،ﻟﺪﻳﻨﺎ: 2 ln (x +1)dx = ⎡ x2 ln (x ∫+ 1)⎥⎤2 − 1 2 xx+21dx = = 2ln 3− 1 ln 3 3 ln 3 ⎢ 2 ⎥⎦0 2 0 2 2 ∫0 x ⎢⎣ اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ : ﻳﺡﺘﻮي آﻴﺲ ﻋﻠﻰ ﺳﺒﻊ ﺑﻴﺪﻗﺎت ) ﻻ ﻳﻤﻜﻦ اﻟﺘﻤﻴﻴﺰ ﺑﻴﻨﻬﺎ ﺑﺎﻟﻠﻤﺲ ( ﺗﺡﻤﻞ اﻷﻋﺪاد : ﻧﺴﺡﺐ ﻋﺸﻮاﺋﻴﺎ وﻓﻲ ﺁن واﺣﺪ ﺛﻼث ﺑﻴﺪﻗﺎت ﻣﻦ اﻟﻜﻴﺲ ،ﻧﻌﺘﺒﺮ اﻷﺣﺪاث اﻟﺘﺎﻟﻴﺔ : : Aﻻ ﺗﻮﺟﺪ أﻳﺔ ﺑﻴﺪﻗﺔ ﺗﺡﻤﻞ اﻟﻌﺪد 0ﻣﻦ ﺑﻴﻦ اﻟﺒﻴﺪﻗﺎت اﻟﺜﻼﺛﺔ اﻟﻤﺴﺡﻮﺑﺔ : Bﺳﺡﺐ ﺛﻼث ﺑﻴﺪﻗﺎت ﺗﺡﻤﻞ أﻋﺪادا ﻣﺨﺘﻠﻔﺔ ﻣﺜﻨﻰ ﻣﺜﻨﻰ :Cﻣﺠﻤﻮع اﻷﻋﺪاد اﻟﻤﺴﺠﻠﺔ ﻋﻠﻰ اﻟﺒﻴﺪﻗﺎت اﻟﺜﻼﺛﺔ اﻟﻤﺴﺡﻮﺑﺔ ﻣﻨﻌﺪم
اﺣﺘﻤﺎﻻت اﻷﺣﺪاث Aو Bو Cهﻲ : p (A ) = Card ) (A = C 3 = 4 Card )(Ω C 4 35 3 7 p (B ) = Card ) (B = C 1 ×C11 ×C 1 = 9 Card )(Ω 3 3 35 C 3 7 p (C ) = Card ( ) ( )( )C=C3 + C 1 ×C 1 ×C 1 = = 10 2 Card 3 3 1 3 7 Ω 35 C 3 7 ﻣﺴﺄﻟﺔ : .Iﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ gاﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ . ∀x ∈\ : g (x ) = e −x + x −1 : .1ﻟﻴﻜﻦ \∈ ، xﻟﺪﻳﻨﺎ . g ′(x ) = (e −x + x −1)′ = −e −x +1 : g ′(x ) = 0 ⇔ −e −x +1 = 0 ⇔ e −x =1 ⇔ −x = 0 ⇔ x =0x ≤ 0 ⇒ −x ≥ 0 x ≥ 0 ⇒ −x ≤ 0 ⇒ e −x ≥1 و ⇒ e −x ≤1 ⇒ −e −x +1≤ 0 ⇒ −e −x +1≥ 0 ⇒ g′(x )≤ 0 ⇒ g′(x )≥ 0 إذن g :ﺗﺰاﻳﺪﻳﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡∞ ⎡⎣0, +و ﺗﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤. ⎤⎦−∞,0 .2ﻟﺪﻳﻨﺎ . g 0 = e 0 + 0 −1 =1−1 = 0 :ﻟﻴﻜﻦ \∈ ، xﻟﺪﻳﻨﺎ gﺗﺰاﻳﺪﻳﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎡⎣∞ ⎡⎣0,+و ﺗﻨﺎﻗﺼﻴﺔ) ( ﻋﻠﻰ اﻟﻤﺠﺎل ⎤⎦ . ⎦⎤−∞,0إذن : )x ≤ 0 ⇒ g (x ) ≥ g (0 ) x ≥ 0 ⇒ g (x ) ≥ g (0و ⇒ g (x )≥ 0 ⇒ g (x )≥0 وﻣﻨﻩ ﻧﺴﺘﻨﺘﺞ أن . ∀x ∈\ : g (x ) ≥ 0 :أي .∀x ∈\ : e −x + x −1≥ 0 : ∀x ∈\ : e −x + x ≥1 وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن :( ) ( )JJG JJG.f x = x x fاﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ﻟﻠﻤﺘﻐﻴﺮ اﻟﺡﻘﻴﻘﻲ xاﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ : .IIﻟﺘﻜﻦ +e −xوﻟﻴﻜﻦ ) (Cاﻟﻤﻨﺡﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ fﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ . O ,i , j .1ﻟﻴﻜﻦ \∈ ، xﻟﺪﻳﻨﺎ ، x ∈Df ⇔ x +e −x ≠ 0 :وﺑﻤﺎ أن ، ∀x ∈\ : e −x + x ≥1ﻓﺈن : \ = Df . ∀x ∈\ : e −x + x ≠ 0إذن :( ). 1 x x 1 = 1 = xe = e −x x +1 = +e −x =f ) (x .2أ -ﻟﻴﻜﻦ *\ ∈ ، xﻟﺪﻳﻨﺎ : ex xex +1 xe x +1 xe x x1+ x xe x
. lim x 1 ∞= − و lim xe x = 0− ﻷن : ، lim f (x ) = lim 1 =0 ب- ex ∞x →− x →−∞ 1+ 1 ∞x →− ∞x →− xe x . lim x 1 =0 و lim xe x ∞= + ﻷن : ، lim f ( x ) = lim 1 =1 ex ∞x →+ 1 ∞x →+ ∞x →+ ∞x →+ 1+ xe xﻧﺴﺘﻨﺘﺞ ﻣﻤﺎ ﺳﺒﻖ أن اﻟﻤﻨﺡﻨﻰ ) (Cﻳﻘﺒﻞ ﻣﻘﺎرﺑﺎ أﻓﻘﻴﺎ ،ﺑﺠﻮار ∞ ، −ﻣﻌﺎدﻟﺘﻩ y = 0؛ وﻳﻘﺒﻞ ﻣﻘﺎرﺑﺎ أﻓﻘﻴﺎ ، ﺑﺠﻮار ∞ ، +ﻣﻌﺎدﻟﺘﻩ . y =1 .3أ -ﻟﻴﻜﻦ \ ∈ ، xﻟﺪﻳﻨﺎ : = ) f ′(x ⎛ x ⎞′ ⎠⎟ ⎝⎜ x +e −x ( ) ( )x ′ x +e −x − x x +e −x ′ = ( ).......... x +e −x 2 = .......... ( )x +e −x − x 1−e −x ( )x +e −x 2 = .......... x +e −x − x + xe −x ( )x +e −x 2 = ) f ′(x (x +1)e −x (x +e −x )2ب -إﺷﺎرة f ′ xﻋﻠﻰ \ هﻲ إﺷﺎرة ، x +1وﻣﻨﻩ ﻧﺴﺘﻨﺘﺞ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ fﻋﻠﻰ \ آﻤﺎ ﻳﻠﻲ( ) ( ): f )(−1 = −1 = 1 −1+e 1−e .4أ -ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس )∆( ﻟﻠﻤﻨﺡﻨﻰ ) (Cﻓﻲ اﻟﻨﻘﻄﺔ Oهﻲ ( )( ) ( ). y = f ′ 0 x − 0 + f 0 : . (∆) : y = x أي :ب -ﻟﻴﻜﻦ \∈ ، xﻟﺪﻳﻨﺎ ، g (x ) = e −x + x −1 :إذن ، g (x ) +1 = e −x + x :وﻣﻨﻩ ﻓﺈن :( )x − f(x ) = x − x =x ⎜⎛1− 1 ⎞ = x x +e −x −1 = ) xg (x +e −x +e −x ⎟ x +e −x g (x )+1 x ⎝ x ⎠
إذن :إﺷﺎرة f (x ) − xﻋﻠﻰ \ هﻲ إﺷﺎرة . x ﺟـ -ﺣﺴﺐ اﻟﺴﺆال اﻟﺴﺎﺑﻖ ،ﻟﺪﻳﻨﺎ : (C ) 9ﻳﻮﺟﺪ ﺗﺡﺖ اﻟﻤﺴﺘﻘﻴﻢ )∆( ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡∞. ⎣⎡0, +( ).⎦⎤⎤⎦ −∞, 0 ﻋﻠﻰ اﻟﻤﺠﺎل )∆( ﻓﻮق اﻟﻤﺴﺘﻘﻴﻢ ﻳﻮﺟﺪ )(C 9 JJG JJG .5إﻧﺸﺎء اﻟﻤﻨﺡﻨﻰ ) (Cواﻟﻤﺴﺘﻘﻴﻢ )∆( ﻓﻲ اﻟﻤﻌﻠﻢ : O ,i , j .IIIﻟﺘﻜﻦ `∈ un nاﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ( ):⎪⎧ n u0 =1 n ) ; `∈ n = +1⎩⎪⎨u f (u .1ﻣﻦ أﺟﻞ ، n = 0ﻟﺪﻳﻨﺎ ، u0 =1إذن . 0 ≤ u0 ≤1 :ﻟﻴﻜﻦ `∈ ، nﻧﻔﺘﺮض أن 0 ≤un ≤1وﻧﺒﻴﻦ أن . 0 ≤un+1 ≤1ﻟﺪﻳﻨﺎ 0 ≤un ≤1و fﺗﺰاﻳﺪﻳﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤ ، ⎣⎡0,1إذن ) f (0) ≤ f (un ) ≤ f (1وﺑﻤﺎ أن ) (Cﻳﻮﺟﺪ ﺗﺡﺖاﻟﻤﺴﺘﻘﻴﻢ )∆( ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤ ، ⎡⎣0,1ﻓﺈن . 0 ≤un+1 ≤ f (1) ≤1 ∀n ∈` : 0 ≤un ≤1 وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن : .2ﺣﺴﺐ اﻟﺴﺆال .4.IIب ،ﻟﺪﻳﻨﺎ .∀x ∈ ⎡⎣0,1⎤⎦ : x − f (x ) ≥ 0 :إذن .∀x ∈ ⎣⎡0,1⎤⎦ : f (x ) ≤ x : وﺑﻤﺎ أن ، ∀n ∈` : 0 ≤un ≤1 :ﻓﺈن ،∀n ∈` : f (un ) ≤un :∀n ∈` : un+1 ≤un وﻣﻨﻩ ﻓﺈن : وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن `∈ un nﻣﺘﺘﺎﻟﻴﺔ ﺗﻨﺎﻗﺼﻴﺔ ( ). .3ﺑﻤﺎ أن `∈ un nﻣﺘﺘﺎﻟﻴﺔ ﺗﻨﺎﻗﺼﻴﺔ وﻣﺼﻐﻮرة ﺑﺎﻟﻌﺪد 0ﻓﺈﻧﻬﺎ ﻣﺘﻘﺎرﺑﺔ .ﻟﺘﻜﻦ lﻧﻬﺎﻳﺘﻬﺎ( ).
ﻟﺪﻳﻨﺎ : f 9داﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎤⎦. ⎡⎣0,1 . ∀x ∈⎡⎣0,1⎦⎤ : 0 ≤ f (x ) ≤ x ≤1 9إذن ( ). f ⎣⎡0,1⎦⎤ ⊂ ⎣⎡0,1⎦⎤ : . ∀n ∈` : un ∈⎣⎡0,1⎤⎦ 9 un n∈` 9ﻣﺘﻘﺎرﺑﺔ ﻧﻬﺎﻳﺘﻬﺎ ( ). l إذن f l = l :و ⎦⎤( ). l ∈ ⎡⎣0,1. l =0 إذن : . ⎧x −f (x )>0 ⇔ x >0 ⎪⎪⎨x − f (x )<0 ⇔ ﺣﺴﺐ اﻟﺴﺆال .4.IIب ،ﻟﺪﻳﻨﺎ x < 0 : ⎪⎪⎩x − f (x ) = 0 ⇔ x = 0 . lim u n = 0 وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن : ∞n →+
ا ت ا آا 1 ا دة :ا ت 2 ا )ة( :ا م اC :RS22 ةا ا آر ا نا ز3 : ا راآ (2007 ) ا ورة ا 7: ع ا +ا م ا را +ا ما ا لا ا ا ( ) ا ا ول ) 3,5ن ( ﻨﻌﺘﺒﺭ ﻓﻲ ﺍﻝﻔﻀﺎﺀ ﺍﻝﻤﻨﺴﻭﺏ ﺍﻝﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﻤﻨﻅﻡ ) (o, i , j, kﺍﻝﻨﻘﻁ ) A(2, 0, −1ﻭ )B(2, 4, 2 1 ﻭ ) C(3,3, 3ﻭ ﺍﻝﻔﻠﻜﺔ ) (Sﺍﻝﺘﻲ ﻤﻌﺎﺩﻝﺘﻬﺎ ﺍﻝﺩﻴﻜﺎﺭﺘﻴﺔ ﻫﻲ x2 + y2 + z2 − 4x − 4 y − 8z + 20 = 0 : 0,75 ( 1ﺒﻴﻥ ﺍﻥ ﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ ) (Sﻫﻲ ﺍﻝﻨﻘﻁﺔ ) Ω(2, 2, 4ﻭﺃﻥ ﺸﻌﺎﻋﻬﺎ ﻴﺴﺎﻭﻱ 2 1 0,25 ( 2ﻝﻴﻜﻥ ) (Pﺍﻝﻤﺴﺘﻭﻯ ﺍﻝﻤﺎﺭ ﻤﻥ ﺍﻝﻨﻘﻁﺔ Aﻭ ﺍﻝﻌﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻝﻤﺴﺘﻘﻴﻡ ). (BC 0,5 ﺒﻴﻥ ﺃﻥ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) (Pﻫﻲ x − y + z −1 = 0 : ( 3ﺃ – ﺒﻴﻥ ﺃﻥ ﺍﻝﻤﺴﺘﻭﻯ ) (Pﻴﻘﻁﻊ ﺍﻝﻔﻠﻜﺔ ) (Sﻭﻓﻕ ﺩﺍﺌﺭﺓ ) (Γﺸﻌﺎﻋﻬﺎ ﻴﺴﺎﻭﻱ . 1 ﺏ – ﺤﺩﺩ ﺘﻤﺜﻴﻼ ﺒﺎﺭﺍﻤﺘﺭﻴﺎ ﻝﻠﻤﺴﺘﻘﻴﻡ )∆( ﺍﻝﻤﺎﺭ ﻤﻥ Ωﻭ ﺍﻝﻌﻤﻭﺩﻱ ﻋﻠﻰ ). (P ﺝ -ﺤﺩﺩ ﻤﺜﻠﻭﺙ ﺍﺤﺩﺍﺜﻴﺎﺕ ﺍﻝﻨﻘﻁﺔ ωﻤﺭﻜﺯ ﺍﻝﺩﺍﺌﺭﺓ ). (Γ ا ا ) 2,5ن ( ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ ﺜﻼﺙ ﺒﻴﺩﻗﺎﺕ ﺒﻴﻀﺎﺀ ﻭ ﺃﺭﺒﻊ ﺒﻴﺩﻗﺎﺕ ﺴﻭﺩﺍﺀ ) ﻻ ﻴﻤﻜﻥ ﺍﻝﺘﻤﻴﻴﺯ ﺒﻴﻥ ﺍﻝﺒﻴﺩ ﻗﺎﺕ ﺒﺎﻝﻠﻤﺱ(. 0,75 ﻨﺴﺤﺏ ﻋﺸﻭﺍﺌﻴﺎ ﻭﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﻤﻥ ﺍﻝﻜﻴﺱ . 0,75 ( 1ﻤﺎ ﻫﻭ ﺍﺤﺘﻤﺎل ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺒﻴﺩﻗﺘﻴﻥ ﺒﺎﻝﻀﺒﻁ ﻝﻭﻨﻬﻤﺄﺒﻴﺽ ؟ 1 ( 2ﻤﺎ ﻫﻭ ﺍﺤﺘﻤﺎل ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺜﻼﺙ ﺒﻴﺩﻗﺎﺕ ﻤﻥ ﻨﻔﺱ ﺍﻝﻠﻭﻥ ؟ 1 ( 3ﻤﺎ ﻫﻭ ﺍﺤﺘﻤﺎل ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ ﻋﻠﻰ ﺍﻷﻗل ؟ 0,5 0,5 ا ا )3ن( 1 .ℕ ﻤﻥ n ﻝﻜل un+1 = 1 (un − 4n )−1 ﻭ u0 =2 ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ﺍﻝﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ : ﻝﺘﻜﻥ ) (un 5 ﻨﻀﻊ vn = un + n −1ﻝﻜل nﻤﻥ . ℕ .1 ﻤﺘﺘﺎﻝﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ) (vn ( 1ﺒﻴﻥ ﺃﻥ 5 ( 2ﺃ – ﺍﺤﺴﺏ vnﺒﺩﻻﻝﺔ . n . lim un ﺜﻡ ﺍﺤﺴﺏ n ﺒﺩﻻﻝﺔ un ﺏ -ﺍﺴﺘﻨﺘﺞ ∞x→+ ( 3ﻨﻀﻊ Tn = v0 + v1 + .............. + vnﻭ Sn = u0 + u1 + ............. + unﺤﻴﺙ nﻋﻨﺼﺭ ﻤﻥ . ℕ .ℕ nﻤﻥ ﻝﻜل Sn = Tn − (n + 1)(n − )2 ﻭ ﺃﻥ Tn = 1 5 − 1 ﺒﻴﻥ ﺃﻥ : 2 4 5n Prof : MISSOURI mohamed
ا ا نا ا آ ر ات ا دة : ) ا ورةا راآ (2007 2 اع ا )ة( ا م ا ا +ا م 2 +ا م ا را اC :RS22z2 − ( 2 + 2)z + 2 + ﺍﻝﺘﻤﺭﻴﻥ ﺍﻝﺭﺍﺒﻊ ) 3ﻥ ( 0,25 (1ﺘﺤﻘﻕ ﻤﻥ ﺃﻥ . ( 2 + 2i)2 = −2 + 4 2i : 0,75 (2ﺤل ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻌﻘﺩﻴﺔ ℂﺍﻝﻤﻌﺎﺩﻝﺔ 2 − 2i = 0 : (3ﻨﻌﺘﺒﺭ ﺍﻝﻌﺩﺩﻴﻥ ﺍﻝﻌﻘﺩﻴﻴﻥ z1 = 1− iﻭ . z2 = 1+ 2 + i 0,5 1 ﺃ – ﺤﺩﺩ ﺍﻝﺸﻜل ﺍﻝﻤﺜﻠﺜﻲ ﻝﻠﻌﺩﺩ ﺍﻝﻌﻘﺩﻱ . z1 0,5 ﺏ – ﺒﻴﻥ ﺃﻥ z2 ) z1.z2 = 2z2 :ﻫﻭ ﻤﺭﺍﻓﻕ ﺍﻝﻌﺩﺩ . ( z2 ﺍﺴﺘﻨﺘﺞ ﺃﻥ arg(z1) + 2 arg(z2 ) ≡ 0[2π ] : ﺝ – ﺤﺩﺩ ﻋﻤﺩﺓ ﻝﻠﻌﺩﺩ . z2 ﻤﺴﺄﻝﺔ ) 8ﻥ(ﻝﺘﻜﻥ gﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ [∞ ]0, +ﺒﻤﺎ ﻴﻠﻲ . g(x) = x − 1 − 2 ln x : (I x gﻋﻠﻰ [∞. ]0, + ﻤﻥ [∞ ]0, +ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻤﻨﺤﻰ ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ x ﻝﻜل g )'(x = (x − 1) 2 ﺒﻴﻥ ﺃﻥ (1 1 x2 0,5 (2ﺒﻴﻥ ﺃﻥ g(x) ≤ 0ﻝﻜل xﻤﻥ ] ]0,1ﻭ ﺃﻥ g(x) ≥ 0ﻝﻜل xﻤﻥ [∞ )[1, +ﻻﺤﻅ ﺃﻥ . ( g(1) = 0 0,75 0,25 (IIﻨﻌﺘﺒﺭ ﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ fﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ [∞ ]0, +ﺒﻤﺎ ﻴﻠﻲ . f (x) = x + 1 − (ln x)2 − 2 : 0,5 x 10,5 ﻝﻴﻜﻥ ) (Cﺍﻝﻤﻨﺤﻨﻰ ﺍﻝﻤﻤﺜل ﻝﻠﺩﺍﻝﺔ fﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﻤﻨﻅﻡ ) . (o, i , j 1,5 = ( tﺜﻡ ﺍﺤﺴﺏ ). lim f (x x ﻴﻤﻜﻥ ﻭﻀﻊ ) (ln x)2 ﺃ – ﺒﻴﻥ ﺃﻥ (1 1 lim ∞x→+ ∞xx→+ 0,5 0,75 ﺏ – ﺘﺤﻘﻕ ﻤﻥ ﺃﻥ f (1) = f (x) :ﻝﻜل xﻤﻥ [∞. ]0, + 0,75 x ﺝ – ﺍﺤﺴﺏ ) ) lim f (xﻴﻤﻜﻥ ﻭﻀﻊ ( t = 1ﺜﻡ ﺃﻭل ﺍﻝﻨﺘﻴﺠﺔ ﻫﻨﺩﺴﻴﺎ . x x→0 x≻0ﺩ – ﺒﻴﻥ ﺃﻥ ) (Cﻴﻘﺒل ﻓﺭﻋﺎ ﺸﻠﺠﻤﻴﺎ ﺍﺘﺠﺎﻫﻪ ﺍﻝﻤﻘﺎﺭﺏ ﻫﻭ ﺍﻝﻤﺴﺘﻘﻴﻡ ﺍﻝﺫﻱ ﻤﻌﺎﺩﻝﺘﻪ ﻫﻲ . y = x : (2ﺒﻴﻥ ﺃﻥ f '(x) = g(x) :ﻝﻜل xﻤﻥ [∞ ، ]0, +ﺜﻡ ﻀﻊ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ . f x (3ﺃﻨﺸﺊ ﺍﻝﻤﻨﺤﻨﻰ ) (Cﻓﻲ ﺍﻝﻤﻌﻠﻡ ) . (o, i , j (4ﺃ -ﺒﻴﻥ ﺃﻥ ﺍﻝﺩﺍﻝﺔ G : x ln x − xﺩﺍﻝﺔ ﺃﺼﻠﻴﺔ ﻝﻠﺩﺍﻝﺔ g : x → ln xﻋﻠﻰ [∞. ]0, + ﺏ -ﺒﺎﺴﺘﻌﻤﺎل ﻤﻜﺎﻤﻠﺔ ﺒﺎﻷﺠﺯﺍﺀ ،ﺒﻴﻥ ﺃﻥ ∫. e (ln x)2dx = e − 2 : 1 ﺝ – ﺤﺩﺩ ﻤﺴﺎﺤﺔ ﺤﻴﺯ ﺍﻝﻤﺴﺘﻭﻯ ﺍﻝﻤﺤﺼﻭﺭ ) (Cﻭ ﻤﺤﻭﺭ ﺍﻷﻓﺎﺼﻴل ﻭ ﺍﻝﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻝﻠﺫﻴﻥ ﻤﻌﺎﺩﻝﺘﺎﻫﻤﺎ x = 1 :ﻭ . x = e
ﺍﻝﺸﻌﺏ :ﺍﻝﻌﻠﻭﻡ ﺍﻝﺘﺠﺭﻴﺒﻴﺔ ﺍﻷﺼﻴﻠﺔ ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﺍﻝﻌﻠﻭﻡ ﺍﻝﺘﺠﺭﻴﺒﻴﺔ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﻌﻠﻭﻡ ﺍﻝﺯﺭﺍﻋﻴﺔ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ2007 ا ول : اﻓﻲ ﺍﻝﻔﻀﺎﺀ ﺍﻝﻤﻨﺴﻭﺏ ﺇﻝﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﻤﻨﻅﻡ ) (o, i , j, kﻝﺩﻴﻨﺎ ﺍﻝﻨﻘﻁ ) A(2, 0, −1ﻭ )B(2, 4, 2ﻭ ) C(3,3, 3ﻭ ﺍﻝﻔﻠﻜﺔ ) (Sﺍﻝﺘﻲ ﻤﻌﺎﺩﻝﺘﻬﺎ ﺍﻝﺩﻴﻜﺎﺭﺘﻴﺔ ﻫﻲ x2 + y2 + z2 − 4x − 4y − 8z + 20 = 0 : 1 0,75 ( 1ﻨﺒﻴﻥ ﺍﻥ ﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ ) (Sﻫﻲ ﺍﻝﻨﻘﻁﺔ ) Ω(2, 2, 4ﺃﻥ ﺸﻌﺎﻋﻬﺎ ﻴﺴﺎﻭﻱ 2 1∀M (x, y, z) ∈ (S) ⇔ x2 + y2 + z2 − 4x − 4 y − 8z + 20 = 0 0,25⇔ (x2 − 4x) + ( y2 − 4 y) + (z2 − 8z) + 20 = 0 0,5⇔ (x2 − 4x + 4) − 4 + ( y2 − 4 y + 4) − 4 + (z2 − 8z + 16) − 16 + 20 = 0 ⇔ (x − 2)2 + ( y − 2)2 + (z − 4)2 = 22 ﺇﺫﻥ ﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ ) (Sﻫﻲ ﺍﻝﻨﻘﻁﺔ ) Ω(2, 2, 4ﻭ ﺸﻌﺎﻋﻬﺎ .R= 2 ( 2ﻨﺒﻴﻥ ﺃﻥ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) (Pﻫﻲ x − y + z −1 = 0 :ﻤﻌﺎﺩﻝﺔ ﺍﻝﻤﺴﺘﻭﻯ ) (Pﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل ax + by + cz + d = 0ﺤﻴﺙ ) n(a,b, cﻤﺘﺠﻬﺔ ﻤﻨﻅﻤﻴﺔ ﻋﻠﻴﻪ. ﻝﺩﻴﻨﺎ ) B(2, 4, 2ﻭ ) C(3,3, 3ﺇﺫﻥ )BC(1, −1,1 ﻝﺩﻴﻨﺎ ﺍﻝﻤﺴﺘﻭﻯ ) (Pﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻝﻤﺴﺘﻘﻴﻡ ) (BCﺇﺫﻥ ﺍﻝﻤﺘﺠﻬﺔ ) BC(1, −1,1ﻤﻨﻅﻤﻴﺔ ﻋﻠﻰ )(P ﻭﻤﻨﻪ ﻓﺎﻥ ﻤﻌﺎﺩﻝﺔ ) (Pﻫﻲ x − y + z + d = 0 ﻝﺩﻴﻨﺎ ﺍﻝﻤﺴﺘﻭﻯ ) (Pﻴﻤﺭ ﻤﻥ ﺍﻝﻨﻘﻁﺔ ) A(2, 0, −1ﺇﺫﻥ 2 − 0 + (−1) + d = 0ﺃﻱ d = −1 ﺇﺫﻥ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) (Pﻫﻲ . x − y + z −1 = 0 : ( 3ﺃ – ﻨﺒﻴﻥ ﺃﻥ ﺍﻝﻤﺴﺘﻭﻯ ) (Pﻴﻘﻁﻊ ﺍﻝﻔﻠﻜﺔ ) (Sﻭﻓﻕ ﺩﺍﺌﺭﺓ ) (Γﺸﻌﺎﻋﻬﺎ ﻴﺴﺎﻭﻱ .1ﻝﺩﻴﻨﺎ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) (Pﻫﻲ x − y + z −1 = 0 :ﻭﻤﺭﻜﺯ ﺍﻝﻔﻠﻜﺔ ) (Sﻫﻲ ﺍﻝﻨﻘﻁﺔ )Ω (2, 2, 4 ﻭﻝﺩﻴﻨﺎ R = 2 ﻝﺩﻴﻨﺎ d (Ω, (P)) = 2 − 2 + 4 −1 = 3 = 3 12 + (−1)2 +12 3ﺒﻤﺎ ﺃﻥ d (Ω, (P)) ≺ Rﺇﺫﻥ ﺍﻝﻤﺴﺘﻭﻯ ) (Pﻴﻘﻁﻊ ﺍﻝﻔﻠﻜﺔ ) (Sﻭﻓﻕ ﺩﺍﺌﺭﺓ ) (Γﺸﻌﺎﻋﻬﺎ rﺤﻴﺙ : r = R2 − d 2 = 22 − 32 = 4 − 3 = 1 ﺏ -ﻨﺤﺩﺩ ﺘﻤﺜﻴﻼ ﺒﺎﺭﺍ ﻤﺘﺭﻴﺎ ﻝﻠﻤﺴﺘﻘﻴﻡ )∆( ﺍﻝﻤﺎﺭ ﻤﻥ Ωﻭ ﺍﻝﻌﻤﻭﺩﻱ ﻋﻠﻰ ). (Pﻝﺩﻴﻨﺎ ﻤﻌﺎﺩﻝﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻝﻠﻤﺴﺘﻭﻯ ) (Pﻫﻲ x − y + z −1 = 0 :ﺇﺫﻥ ) n(1, −1,1ﻤﺘﺠﻬﺔ ﻤﻨﻅﻤﻴﺔ ﻋﻠﻴﻪ. ﻝﺩﻴﻨﺎ ﺍﻝﻤﺴﺘﻘﻴﻡ )∆( ﻋﻤﻭﺩﻱ ﻋﻠﻰ ) (Pﺇﺫﻥ ) n(1, −1,1ﻤﻭﺠﻬﺔ ﻝﻠﻤﺴﺘﻘﻴﻡ )∆( .ﺇﺫﻥ ﺍﻝﺘﻤﺜﻴل ﺍﻝﺒﺎراﻤﺘﺭﻱ ﻝﻠﻤﺴﺘﻘﻴﻡ )∆( ﺍﻝﻤﺎﺭ ﻤﻥ ﺍﻝﻨﻘﻁﺔ ) Ω (2, 2, 4ﻭ ﺍﻝﻤﻭﺠﻪ ﺒﺎﻝﻤﺘﺠﻬﺔ ) n(1, −1,1ﻫﻭ:x = 2 + t y = 2 − tz = 4 + t ﺝ -ﻨﺤﺩﺩ ﻤﺜﻠﻭﺙ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻝﻨﻘﻁﺔ ωﻤﺭﻜﺯ ﺍﻝﺩﺍﺌﺭﺓ ). (Γ ωﻤﺭﻜﺯ ﺍﻝﺩﺍﺌﺭﺓ ) (Γﻫﻲ ﺘﻘﺎﻁﻊ )∆( ﻭ ). (P)∆( ∈ ωو ){ω} = (∆) ∩ (P) ⇔ ω ∈ (P x = 2 + t ⇔ (1) : وx − y + z −1 = 0 (2) : y=2-t z = 4 + t (2 + t) − (2 − t)(2 + t) − (2 − t) + (4 + t) −1 = 0 ض )(1) (2 : t = −1
ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ2007 ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺇﺫﻥ ).ω(1,3,3 ﻨﻌﻭﺽ ﻗﻴﻤﺔ t = -1ﻓﻲ ) (2ﻨﺤﺼل ﻋﻠﻰ x = 2 + )(−1 = 1 y = 2 − )(−1 = 3 z = 4 + (−1) = 3 ا: ا ﻴﺤﺘﻭﻱ ﻜﻴﺱ ﻋﻠﻰ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﺒﻴﻀﺎﺀ ﻭ ﺃﺭﺒﻊ ﺒﻴﺩ ﻗﺎﺕ ﺴﻭﺩﺍﺀ ) ﻻ ﻴﻤﻜﻥ ﺍﻝﺘﻤﻴﻴﺯ ﺒﻴﻥ ﺍﻝﺒﻴﺩ ﻗﺎﺕ ﺒﺎﻝﻠﻤﺱ(. ﻨﺴﺤﺏ ﻋﺸﻭﺍﺌﻴﺎ ﻭﻓﻲ ﺁﻥ ﻭﺍﺤﺩ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﻤﻥ ﺍﻝﻜﻴﺱ . ﻝﺩﻴﻨﺎ card (Ω) = C73 = 35 (1ﺍﻝﺤﺩﺙ \" Aﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺒﻴﺩﻗﺘﻴﻥ ﺒﺎﻝﻀﺒﻁ ﻝﻭﻨﻬﻤﺎ ﺃﺒﻴﺽ \"ﺃﻱ ) ( B, B, N 0,75 0,75 ﺇﺫﻥ p( A) = card ( A) = 12 ﻝﺩﻴﻨﺎ card ( A) = C32 ⋅C41 = 12 card (Ω) 35 1 (2ﺍﻝﺤﺩﺙ \" Bﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺜﻼﺙ ﺒﻴﺩ ﻗﺎﺕ ﻤﻥ ﻨﻔﺱ ﺍﻝﻠﻭﻥ \".ﺍﻱ ) ( N , N, Nأو )( B, B, B 1 ﺇﺫﻥ P(B) = card (B) = 5 = 1 card (B) = C33 + C43 = 1 + 4 = 5 0,5 card (Ω) 35 7 0,5 (3ﺍﻝﺤﺩﺙ \" Cﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ ﻋﻠﻰ ﺍﻷﻗل \" ﺍﻝﺤﺩﺙ ﺍﻝﻤﻀﺎﺩ \" Cﻋﺩﻡ ﺍﻝﺤﺼﻭل ﻋﻠﻰ ﺃﻴﺔ ﺒﻴﺩﻗﺔ ﺒﻴﻀﺎﺀ \" ﻴﻌﻨﻲ )ﺍﻝﺒﻴﺩ ﻗﺎﺕ ﺍﻝﺜﻼﺙ ﺍﻝﻤﺴﺤﻭﺒﺔ ﺴﻭﺩﺍﺀ( ﺇﺫﻥ : )P(C) = card (C =4 : ﺇﺫﻥ card (C) = C43 =4 ﻝﺩﻴﻨﺎ )card (Ω 35 )p(C) = 1 − p(C =1− 4 35 = 31 35 ا: ا .ℕ ﻤﻥ n ﻝﻜل un+1 = 1 (un − 4n )−1 ﻭ u0 =2 ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ﺍﻝﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ : ﻝﺘﻜﻥ ) (un 5 ﻨﻀﻊ vn = un + n −1ﻝﻜل nﻤﻥ . ℕ .1 ﻤﺘﺘﺎﻝﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ) (vn ( 1ﻨﺒﻴﻥ ﺃﻥ 5 ∀n ∈ ℕ: vn+1 = un+1 + (n +1) −1 = 1 (un − 4n )−1 + n 5 = 1 (un − 4n −1 + )5n 5 = 1 (un + n )−1 5 = 1 vn 5 =q 1 ﺃﺴﺎﺴﻬﺎ ﻫﻨﺩﺴﻴﺔ ﻤﺘﺘﺎﻝﻴﺔ ) (vn ﺍﺩﻥ 5 ( 2ﺃ – ﻨﺤﺴﺏ vnﺒﺩﻻﻝﺔ . nvn = 1 n ﺃﻱ vn = v0 ⋅ qn v0 = u0 + 0 −1 = 2 −1 = 1ﺇﺫﻥ ﻭﺤﺩﻫﺎ ﺍﻷﻭل q=1 ﻤﺘﺘﺎﻝﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ) (vn ﻝﺩﻴﻨﺎ 5 5
2007ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ . lim un ﺤﺴﺎﺏ ﺜﻡ n ﺒﺩﻻﻝﺔ un ﺍﺴﺘﻨﺘﺎﺝ -ﺏ x→+∞ un = 1 n − n +1 ﻓﺎﻥ ﻭﻤﻨﻪ . un = vn − n +1 ﺇﺫﻥ vn = un + n −1 ﻝﺩﻴﻨﺎ 0,5 5 lim un = −∞ ﺇﺫﻥlim (−n +1) = −∞ ﻝﺩﻴﻨﺎ ﻭ lim 1 n =0 ﺇﺫﻥ−1 ≺ 1 ≺ 1 ﻝﺩﻴﻨﺎ x→+∞ 5 5x→+∞ x→+∞ Sn = u0 + u1 + ............. + un ﻭTn = v0 + v1 + .............. + vn (3 Tn = 1 5 − 1 : ﺃﻥ ﻨﺒﻴﻥ 1 4 5n 0,25 Tn = v0 + v1 + .............. + vn = v0 ⋅ 1 − qn+1 1− q 1 − 1 n+1 5 = 1 ⋅ 1− 1 5 = 5 − 1 n+1 4 1 5 = 1 − 5 1 n+1 4 5 5 = 1 −5⋅ 1 4 5 5n+1 = 1 − 1 4 5 5n Sn = Tn − (n +1)(n − 2) ﻨﺒﻥ ﺃﻥ 2 : ﺍﺫﻥun = vn − n +1 ﻝﺩﻴﻨﺎSn = u0 + u1 + ............. + un= (v0 − (−1)) + (v1 − 0) + (v2 −1) + ................ + (vn − (n −1) )= (v0 + v1 + .............. + vn ) − ((−1) + 0 +1 + 2 + ............. + (n −1) )= Tn − ( (−1) + (n − 1) ) ( n + 1) 2= Tn − ( n + 1) ( n − 2 ) 2 : اا ا ( 2 + 2i)2 = −2 + 4 2i : ( ﻨﺘﺤﻘﻕ ﻤﻥ ﺃﻥ1( 2 + 2i)2 = 2 2 ⋅ 2i + (2i)2 2 +2 = 2 + 4 2i − 4 = −2 + 4 2i
ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ2007 (2ﻨﺤل ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻝﻌﻘﺩﻴﺔ ℂﺍﻝﻤﻌﺎﺩﻝﺔ z2 − ( 2 + 2)z + 2 + 2 − 2i = 0 : 0,75 ﻝﺩﻴﻨﺎ ﻤﻤﻴﺯ ﺍﻝﻤﻌﺎﺩﻝﺔ ﻫﻭ ( ) ( )∆ = − 2 − 2− 2+2 4 2+ 2i = 2 + 4 2 + 4 − 8 − 4 2 + 4 2i = −2 + 4 2i = ( 2 + 2i)2( ) ( )2 + 2 + 2 + 2i 2 + 2 − 2 + 2iا د ه z1 = 2 = 1− i :و z2 = 2 = 2 +1+ 2i إذن (3ﻝﺩﻴﻨﺎ ﺍﻝﻌﺩﺩﻴﻥ ﺍﻝﻌﻘﺩﻴﻴﻥ z1 = 1− iﻭ . z2 = 1+ 2 + i ﺃ – ﻨﺤﺩﺩ ﺍﻝﺸﻜل ﺍﻝﻤﺜﻠﺜﻲ ﻝﻠﻌﺩﺩ ﺍﻝﻌﻘﺩﻱ . z1 z1 = 1− i = 2إذن := z1 = 1− i 2− 2 i = 2 π + i sin π = 2 cos − π + i sin − π 0,5 2 2 2 cos 4 4 4 4 1 ﺏ – ﻨﺒﻴﻥ ﺃﻥ z2 ) z1.z2 = 2z2 :ﻫﻭ ﻤﺭﺍﻓﻕ ﺍﻝﻌﺩﺩ . ( z2 0,5 ﻝﺩﻴﻨﺎ : 1( )z1 ⋅ z2 = (1− i) 1+ 2 + i=1+ 2 +i −i −i 2 +1=2+ 2 −i 2( )= 2 2 +1− i = 2z2 ا ج arg(z1) + 2 arg(z2 ) ≡ 0[2π ] : z1.z2 = 2z2ﺍﺫﻥ arg ( z1.z2 ) ≡ arg 2z2 [2π ] :ﺃﻱ ] ( ) ( )arg(z1) + arg(z2) ≡ arg 2 + arg ( z2 )[2πو أن ] arg ( z2 ) ≡ − arg ( z2 )[2πو ] arg 2 ≡ 0[2πن ] ( )arg(z1) + 2 arg(z2 ) ≡ 0[2πarg ( z2 ) ≡ − π [ 2π ] ﺇﺫﻥ arg ( z1 ) ≡ − π [ 2π ] ﻭ ﺝ – ﻨﺤﺩﺩ ﻋﻤﺩﺓ ﻝﻠﻌﺩﺩ z2 8 4 ﻝﺩﻴﻨﺎ ] arg(z1) + 2 arg(z2 ) ≡ 0[2π : (Iﻝﺩﻴﻨﺎ gﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ [∞ ]0, +ﺒﻤﺎ ﻴﻠﻲ . g(x) = x − 1 − 2 ln x : x[∞. ]0, + gﻋﻠﻰ ﻤﻥ [∞ ]0, +ﺜﻡ ﻨﺴﺘﻨﺘﺞ ﻤﻨﺤﻰ ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ ﻝﻜل x g )'( x = (x − 1) 2 (1ﻨﺒﻴﻥ ﺃﻥ x2
ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ2007 ∀x ∈ ]0, +∞[ : )g '(x =1+ 1 − 2 ln x x2 =1+ 1 ⋅− 2 1 x2 x = x2 +1− 2x x2 = ( x − 1)2 x2 ( x −1)2 ≥ 0ﻭ . x2 ≻ 0 ﻝﻜل xﻤﻥ [∞]0, + ا ل [∞]0, + نا ا gا إذن ∀x ∈ ]0, +∞[ : g '( x) ≥ 0و ا ل ] ]0,1إذن ا ا gﺘﺯﺍﻴﺩﻴﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل [∞ ]0, +و (2 )∀x ∈ ]0,1] ⇒ 0 ≺ x ≤ 1⇒ g(x) ≤ g(1 أن g(1) = 0ن x g(x) ≤ 0ا ل ]]0,1 0,5 0,75 ا ا gﺘﺯﺍﻴﺩﻴﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل [∞ [1, +ﺇﺫﻥ )∀x ∈[1, +∞[ ⇒ 1 ≤ x ⇒ g(1) ≤ g(x 0,25 ﺒﻤﺎ ﺃﻥ g(1) = 0ن x g(x) ≥ 0ا ل [∞[1, + (IIﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ fﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ [∞ ]0, +ﺒﻤﺎ ﻴﻠﻲ f (x) = x + 1 − (ln x)2 − 2 : x = ( tﺜﻡ ﻨﺤﺴﺏ )lim f (x x ) ﻴﻤﻜﻥ ﻭﻀﻊ (ln x)2 ﺃ – ﻨﺒﻴﻥ ﺃﻥ (1 lim ∞x→+ ∞xx→+ ﻨﻀﻊ t = xﺇﺫﻥ x = t2ﻋﻨﺩﻤﺎ ∞ x → +ﻓﺎﻥ ∞t → + = ( )(ln x)2 ln t2 2 (2ln t )2 2 x t2 = t2 = 4 ln t ﻝﺩﻴﻨﺎ t (ln x)2 = lim 4 ln t 2 =0 lim ln tإذن =0 t ∞tt →+ lim ∞t →+ ∞xx→+ f )(x = x + 1 − (ln x)2 −2 = 1 − (ln x)2 − 2 x x 1+ x2 x x lim f ∞( x) = + ﺇﺫﻥ lim 1 و=0 (ln x)2 =0 و lim 2 =0 ﻝﺩﻴﻨﺎ xx→+∞ 2 ∞x→+ lim ∞xx→+ ∞xx→+ ب – ﻨﺘﺤﻘﻕ ﻤﻥ ﺃﻥ f (1) = f (x) :ﻝﻜل xﻤﻥ [∞. ]0, + x ﻝﻜل xﻤﻥ [∞ ]0, +ﻝﺩﻴﻨﺎf 1 = 1 + 1 − ln 1 2 −2 x x 1 x x = 1 + x − (− ln x)2 − 2 x = 1 + x − (ln x)2 − 2 x )= f (x
ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ2007 ج – ﻨﺤﺴﺏ )lim f (x 0,5 0,5 x→0 1,5 x≻0lim f )(x = lim f 1 = lim f )(t = ∞+ ∞ t → +ﻭ ﻤﻨﻪ ﻓﺎﻥ x → 0+ﻓﺎﻥ ﺇﺫﻥ ﻋﻨﺩﻤﺎ t=1 ﻨﻀﻊ x xx→0 x→0 ∞t →+x≻0 x≻0 ﺇﺫﻥ ﺍﻝﻤﻨﺤﻨﻰ ) (Cﻴﻘﺒل ﻤﻘﺎﺭﺒﺎ ﺭﺃﺴﻲ ﻤﻌﺎﺩﻝﺘﻪ x = 0 ﺩ – -ﻨﺒﻴﻥ ﺃﻥ ) (Cﻴﻘﺒل ﻓﺭﻋﺎ ﺸﻠﺠﻤﻴﺎ ﺍﺘﺠﺎﻫﻪ ﺍﻝﻤﻘﺎﺭﺏ ﻫﻭ ﺍﻝﻤﺴﺘﻘﻴﻡ ﺍﻝﺫﻱ ﻤﻌﺎﺩﻝﺘﻪ ﻫﻲ y = x : 1 (ln x)2 2 )(x 1 x2 x ﻭ=1 ﻝﺩﻴﻨﺎ ∞lim f ( x) = + lim f = lim + − x − ∞x→+ ∞x→+ ∞x→+∞ lim f ( x) − x = lim 1 − (ln x)2 − 2 = −ﺇﺫﻥ ) (Cﻴﻘﺒل ﻓﺭﻋﺎ ﺸﻠﺠﻤﻴﺎ ﺍﺘﺠﺎﻫﻪ ﺍﻝﻤﻘﺎﺭﺏ ﻫﻭ ﺍﻝﻤﺴﺘﻘﻴﻡ ﺍﻝﺫﻱ ﻤﻌﺎﺩﻝﺘﻪ ∞x→+ ∞xx→+ ﻫﻲ y = x : (2ﺒﻴﻥ ﺃﻥ f '(x) = g(x) :ﻝﻜل xﻤﻥ [∞]0, + x f )'(x =1− 1 − 2 ( ln x ) ( ln ')x x2 =1− 1 − 2 ( ln ⋅)x 1 x2 x = 1 x − 1 − 2 ln x x x )= g(x x ﺇﺸﺎﺭﺓ ) f '( xﻫﻲ ﺇﺸﺎﺭﺓ )g ( x ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ fx0 1 ∞+f '(x) - φ +∞f ( x) + ∞+ 0 (3ا 1
ﺘﺼﺤﻴﺢ ﻤﻭﻀﻭﻉ ﺍﻻﻤﺘﺤﺎﻥ ﺍﻝﻭﻁﻨﻲ ﺍﻝﻤﻭﺤﺩ ﻝﻠﺒﺎﻜﺎﻝﻭﺭﻴﺎ ﻤﺎﺩﺓ ﺍﻝﺭﻴﺎﻀﻴﺎﺕ ﺍﻝﺩﻭﺭﺓ ﺍﻻﺴﺘﺩﺭﺍﻜﻴﺔ2007 0,5 0,75 ( 4ﺃ -ﻨﺒﻴﻥ ﺃﻥ ﺍﻝﺩﺍﻝﺔ G : x ln x − xﺩﺍﻝﺔ ﺃﺼﻠﻴﺔ ﻝﻠﺩﺍﻝﺔ g : x → ln xﻋﻠﻰ [∞]0, + 0,75 ﻝﺩﻴﻨﺎ ∀x ∈ ]0, +∞[ : G '( x) = x 'ln x + x (ln x) '−1 = ln x + x ⋅ 1 −1 x = ln x +1−1 = ln x ﺇﺫﻥ ﺍﻝﺩﺍﻝﺔ Gﺩﺍﻝﺔ ﺃﺼﻠﻴﺔ ﻝﻠﺩﺍﻝﺔ .g ∫e 1 x)2dx = e−2 : ﺃﻥ ﻨﺒﻴﻥ ، ﺒﺎﻷﺠﺯﺍﺀ ﻤﻜﺎﻤﻠﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺏ- (ln (' x ) = 2 ln x u ( x ) = ( ln x )2 u x ﺇﺫﻥ ﻨﻀﻊ v ( x) = x v '( x) = 1 ﺇﺫﻥ 2 e e 2 ln x ⋅ x dx 1 1x x) dx∫ ∫e 1(ln = x (ln x)2 − x (ln e e =∫ x)2 1 − 2 x dx ln 1 = x ( ln x)2 e − 2[x ln x − ]x e 1 1 ))( )= e(ln e)2 −1(ln1)2 − 2((e ln e − e) − (1ln1−1 =e−2ﺝ – ﻤﺴﺎﺤﺔ ﺤﻴﺯ ﺍﻝﻤﺴﺘﻭﻯ ﺍﻝﻤﺤﺼﻭﺭ ) (Cﻭ ﻤﺤﻭﺭ ﺍﻷﻓﺎﺼﻴل ﻭ ﺍﻝﻤﺴﺘﻘﻴﻤﻴﻥ ﺍﻝﻠﺫﻴﻥ ﻤﻌﺎﺩﻝﺘﺎﻫﻤﺎ x = 1 :ﻭ x = e ﻝﺩﻴﻨﺎ fﺩﺍﻝﺔ ﻤﻭﺠﺒﺔ ﻭ ﻤﺘﺼﻠﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل ] [1, eﺇﺫﻥ ﺍﻝﻤﺴﺎﺤﺔ ﺍﻝﻤﻁﻠﻭﺒﺔ ﻫﻲ = e f ( x) dx e 1 1 x 2 1 = ∫ ∫A x + − (ln x)2 − dx =∫ ∫ e x + 1 − dx − e (ln x)2 dx 1 x 2 1 = x2 + ln x e )− (e − 2 − 2x 2 1 = e2 + ln e − 2e − 1 2 2 + ln1 − 2 − e + 2 = e2 + 1 − 2e − 1 + 2 − e + 2 22 = e2 − 3e + 9 22 ﺇﺫﻥ A = e2 − 3 e + 9ﺒﻭﺤﺩﺓ ﻗﻴﺎﺱ ﺍﻝﻤﺴﺎﺤﺔ 22
))a[†„J)r„J)ÉK[T†¤J)\[nT )KŠ‚„Kj†R)’RcXT)‡„t)Kc„K‚R)’KV„J ))2008 )Kc„K‚R„„)’aKu„J)‘ca„J ))KŠ‚„j†R)UKX„‚T„J)‡„u„J)’Rul ))C)…¦J)Éhhhhhhhhhhhhhhhhhhhhc†T„J ( )JG JJG JJGﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب ﻹﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ وﻣﺒﺎﺷﺮ O ,i , j , kاﻟﻨﻘﻄﺘﻴﻦ ) A (0, −1,1و )B (1, −1,0 . x 2 + y 2 + z 2 − 2x − 4z + 2 = 0 واﻟﻔﻠﻜﺔ ) (Sاﻟﺘﻲ ﻣﻌﺎدﻟﺘﻬﺎ : .1ﻟﺪیﻨﺎ . x 2 + y 2 + z 2 − 2x − 4z + 2 = 0 ⇔ (x −1)2 + y 2 + (z − 2)2 = 32 :إذن ) (Sﻓﻠﻜﺔ ﻣﺮآﺰهﺎ ) Ω (1,0, 2وﺷﻌﺎﻋﻬﺎ . R = 3وﻟﺪیﻨﺎ ، 02 + (−1)2 +12 − 2× 0 − 4×1+ 2 = 0 :إذن ) . A ∈(SJJJG JJJJG −1 −1 JG 0 1 JG 0 1 JJG JG JG JJG ⎜⎜⎛ OJJJAJG ⎞0 JJJJJG ⎞ ⎛1 i 0 j −1 −1 k i j k ⎟⎟−1 ⎜ ⎟⎟−1OA ∧OB = 1 − + = + + ،وﻣﻨﻪ ﻓﺈن : و OB ⎜ .2ﻟﺪیﻨﺎ : 01 ⎝⎜1JJJ⎟⎠JG ⎠⎟ ⎝⎜ 0 . JJJJG )(1,1,1 وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن : ∧OB OA JJJJG )∧OJJJBJG(1,1,1 ﺕﻜﺘﺐ ﻋﻠﻰ ﺷﻜﻞ ﻣﺘﺠﻬﺔ ﻣﻨﻈﻤﻴﺔ ﻋﻠﻰ اﻟﻤﺴﺘﻮى ) . (OA Bإذن ﻣﻌﺎدﻟﺔ اﻟﻤﺴﺘﻮى ) (OA B OA ﻟﺪیﻨﺎ : .3 ، x + y + z +d = 0وﺑﻤﺎ أن ) ، O ∈(OABﻓﺈن x + y + z = 0هﻲ ﻣﻌﺎدﻟﺔ دیﻜﺎرﺕﻴﺔ ﻟﻠﻤﺴﺘﻮى ) . (OAB ( ).d Ω,(OAB ) = 1+ 0 + 2 = 3 = 3 = R ﻟﻨﺤﺴﺐ ﻣﺴﺎﻗﺔ اﻟﻨﻘﻄﺔ Aﻋﻦ اﻟﻤﺴﺘﻮى ) : (OA B 12 +12 +12 3 وﻋﻠﻴﻪ ﻓﺈن اﻟﻤﺴﺘﻮى ) (OABﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ) (Sﻓﻲ اﻟﻨﻘﻄﺔ Aﻋﻠﻰ اﻋﺘﺒﺎر أن ) A ∈(Sو ) . A ∈(OAB ))C)hhhhhhhhhhhhhhhhhhhhKV„J)Éc†T„J .1ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ ^ اﻟﻤﻌﺎدﻟﺔ . z 2 − 6z + 34 = 0 :ﻣﻤﻴﺰ هﺬﻩ اﻟﻤﻌﺎدﻟﺔ هﻮ . ∆ = (−3)2 −1× 34 = 9 − 34 = −25 = (5i )2 : وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن ﻟﻠﻤﻌﺎدﻟﺔ اﻟﺴﺎﺑﻘﺔ ﺡﻠﻴﻦ ﻋﻘﺪیﻴﻦ ﻣﺘﺮاﻓﻘﻴﻦ هﻤﺎ :z = −b ′ −i −∆′ = − (−3) − 5i = 3− 5i و z = −b ′ +i −∆′ = −(−3) + 5i = 3+ 5i a a 2 1 1 1 وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن ﻣﺠﻤﻮﻋﺔ ﺡﻠﻮل اﻟﻤﻌﺎدﻟﺔ هﻲ { }.S = 3 − 5i , 3 + 5i : ( )JJG JJGاﻟﺘﻮاﻟﻲ ﻋﻠﻰ أﻟﺤﺎﻗﻬﺎ اﻟﺘﻲ C و B و A اﻟﻨﻘﻂ ﻧﻌﺘﺒﺮ ، O ,e1,e2 .2ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻌﻘﺪي اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ وﻣﺒﺎﺷﺮJG a = 3+ 5iو b = 3− 5iو . c = 7 + 3iﻟﺘﻜﻦ اﻟﻨﻘﻄﺔ ) M ′(z ′ﺻﻮرة اﻟﻨﻘﻄﺔ ) M (zﺑﺎﻻزاﺡﺔ Tذات اﻟﻤﺘﺠﻬﺔ uاﻟﺘﻲ ( )JJJJJJG JG JG ﻟﺤﻘﻬﺎ . 4 − 2i M ′ =T (M ) ⇔ MM ′ = u ⇔ z ′ = z + aff u ⇔ z ′ = z + 4 − 2i أ -ﻟﺪیﻨﺎ : وﺑﻤﺎ أن ، a + 4 − 2i = 3 + 5i + 4 − 2i = 7 + 3i = c :ﻓﺈن C =T (A ) :أي Cهﻲ ﺻﻮرة Aﺑﺎﻻزاﺡﺔ . T ( )JJJG JJJG ب -ﻟﺪیﻨﺎ . b −c = 3 − 5i − 7 − 3i = −4 − 8i = 2i (−4 + 2i ) = 2i : CA ,CB a −c 3 + 5i − 7 − 3i −4 + 2i −4 + 2i ≡ arg ⎛ b −c ⎞ ⎦⎤ ⎡⎣2π b −c ⎣⎢⎡2, π ⎤ ⎜⎝ a −c ⎟⎠ a −c 2 ⎦⎥ : إذن . = 2i = : ﺝـ -ﻟﺪیﻨﺎ ( )JJJG JJJG π 2 ⎤⎦ ⎡⎣2π ≡ CA ,CB وﻣﻨﻪ ﻓﺈن ABCﻣﺜﻠﺚ ﻗﺎﺋﻢ اﻟﺰاویﺔ ﻓﻲ Cوﻟﺪیﻨﺎ . CB = b −c = 2 :إذن . BC = 2A C : CA a −c
)) )))C)Whhhhhhhhhhhhhhhhhhhh„KV„J)Éc†T„J یﺤﺘﻮي ﺻﻨﺪوق ﻋﻠﻰ ﺳﺖ آﺮات ﺡﻤﺮاء وﺙﻼث آﺮات ﺧﻀﺮاء ) ﻻ یﻤﻜﻦ اﻟﺘﻤﻴﻴﺰ ﺑﻴﻨﻬﺎ ﺑﺎﻟﻠﻤﺲ (. C p : .1ﻧﺴﺤﺐ ﻋﺸﻮاﺋﻴﺎ وﻓﻲ א ) اﻟﺘﺮﺕﻴﺐ ﻏﻴﺮ ﻣﻬﻢ ( ﺙﻼث آﺮات ﻣﻦ اﻟﺼﻨﺪوق .ﺕﺜﺒﻴﺖ اﻟﺼﻨﻒ :א n . C 2 ×C 1 = = 15×3 15 أ -اﺡﺘﻤﺎل اﻟﺤﺼﻮل ﻋﻠﻰ آﺮﺕﻴﻦ ﺡﻤﺮاویﻦ وآﺮة ﺧﻀﺮاء RRVهﻮ : 6 3 84 28 C 3 9 اﺡﺘﻤﺎل اﻟﺤﺼﻮل ﻋﻠﻰ آﺮة ﺧﻀﺮاء واﺡﺪة ﻋﻠﻰ اﻷﻗﻞ RRVأو RV Vأو V V Vهﻮ : ب -ﻃﺮیﻘﺔ : 1 . C 62C 1 +C 61C 2 + C 3 = = 15×3+ 6×3+1 16 3 3 3 84 21 C 3 9 ﻧﻀﻊ اﻟﺤﺪث : Aاﻟﺤﺼﻮل ﻋﻠﻰ آﺮة ﺧﻀﺮاء واﺡﺪة ﻋﻠﻰ اﻷﻗﻞ . ﻃﺮیﻘﺔ : 2 اﻟﺤﺪث اﻟﻤﻀﺎد ﻟﻠﺤﺪث Aهﻮ :A :اﻟﺤﺼﻮل ﻋﻠﻰ ﺙﻼث آﺮات ﺡﻤﺮاء . - RRR - ( ). p (A ) =1− p A = 1 − C 3 =1− 20 = 64 = 16 ﻟﺪیﻨﺎ : C 6 84 84 21 3 9 .2ﻧﺴﺤﺐ ﻋﺸﻮاﺋﻴﺎ ) اﻟﺘﺮﺕﻴﺐ ﻣﻬﻢ واﻟﺘﻜﺮار ﻏﻴﺮ وارد ( ﺙﻼث آﺮات ﻣﻦ اﻟﺼﻨﺪوق. . A p : ﺕﺜﺒﻴﺖ اﻟﺼﻨﻒ :אא n . A63 = 120 = 5 اﺡﺘﻤﺎل اﻟﺤﺼﻮل ﻋﻠﻰ ﺙﻼث آﺮات ﺡﻤﺮاء هﻮ : A93 504 21 ))C)vhhhhhhhhhhhhhhhhhhhhRJc„J)Éc†T„J ))C)…¦J)•iX„J ﻟﺘﻜﻦ gاﻟﺪاﻟﺔ اﻟﻌﺪدیﺔ اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎡⎣∞ ⎤⎦0, +ﺑﻤﺎ یﻠﻲ . g (x ) = x − 2 ln x : . g ′(x =) (x − 2ln x )′ =1− 2 = x −2 ﻟﻴﻜﻦ ⎣⎡∞ ، x ∈ ⎦⎤0, +ﻟﺪیﻨﺎ : .1أ- x x ⎡⎣∞ . ∀x ∈⎦⎤0, +إذن إﺷﺎرة ) g ′(xﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡∞ ⎤⎦0, +هﻲ إﺷﺎرة . x − 2 : ب -ﻧﻌﻠﻢ أن g ′(x ) = x − 2 : x وﻟﺪیﻨﺎ x ∈⎤⎦0, 2⎤⎦ ⇒ x ≤ 2 ⇒ x − 2 ≤ 0 :و . x ∈ ⎣⎡2, +∞⎣⎡ ⇒ x ≥ 2 ⇒ x − 2 ≥ 0إذن : gﺕﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎤⎦ ⎤⎦0, 2وﺕﺰایﺪیﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡∞ . ⎣⎡2, +ﺧﻼﺻﺔ :
.2ﺑﻤﺎ أن ، e > 2 ⇒1> ln 2 ⇒1− ln 2 > 0 :ﻓﺈن . g (2) = 2(1− ln 2) > 0 : وﻟﺪیﻨﺎ g (2) = 2 1− ln 2 :ﻗﻴﻤﺔ دﻧﻮیﺔ ﻣﻄﻠﻘﺔ ﻟﻠﺪاﻟﺔ gﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡∞ ⎤⎦0, +ﻋﻨﺪ اﻟﻌﺪد . 2وﻣﻨﻪ ﻓﺈ ن( ): ∀x ∈⎤⎦0,+∞⎣⎡ : g (x ) ≥ g (2) > 0 ))C)KV„J)•iX„J ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدیﺔ fاﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎡⎣∞ ⎤⎦0, +ﺑﻤﺎ یﻠﻲ . f (x ) = x − (ln x )2 : .1ﻟﺪیﻨﺎ ، lim f (x ) = lim x − (ln x )2 = −∞ :ﻷن . lim ln x = −∞ : x →0 x →0 x →0 x >0 x >0 x >0 اﻟﻤﻨﺤﻨﻰ ) (Cیﻘﺒﻞ ﻣﻘﺎرﺑﺎ ﻋﻤﻮدیﺎ ﻣﻌﺎدﻟﺘﻪ . x = 0 .2أ -ﻧﻀﻊ . t = x :إذن . x → +∞ :وﺡﻴﺚ أن ، lim lnt = 0ﻓﺈن : t →+∞ t ∞t →+ ( ) ( )limln x2 ⎞2 ⎛ ln t 2 ⎞2 ⎞2 x ⎟ ⎜ t ⎟ ⎟ ∞x →+ = ⎛ ln x ⎠ = ⎝⎜⎜ ⎟⎟⎠ = ⎛ ×2 lnt ⎠ = lim ⎜ x t lim lim ⎜ t 0 ⎝ ⎝ ∞x →+ ∞→+ ∞t →+( ). limln x 2 (x ) = lim x − (ln x )2 = lim x ⎛ − ( ln x )2 ⎞ ∞+ ب -ﻟﺪیﻨﺎ : ∞x →+ x ∞x →+ ، lim fﻷن = 0 : ∞x →+ ⎜1 =⎟ ∞x →+ ⎜⎝ x ⎠⎟ . lim f = ) (x lim ⎛ (ln x )2 ⎞ = 1 وﻟﺪیﻨﺎ : ⎟ ⎜1− x →+∞ x ⎝⎜ ∞x →+ ⎠⎟ x ، lim fوﺡﺴﺐ اﻟﺴﺆال اﻟﺴﺎﺑﻖ ،ﻓﺈن اﻟﻤﻨﺤﻨﻰ (x )−x = lim x − (ln x )2 − x = lim − (ln x )2 = ∞− ﻟﺪیﻨﺎ : ﺝـ- ∞x →+ ∞x →+ ∞x →+ ) (Cیﻘﺒﻞ ﻓﺮﻋﺎ ﺷﻠﺠﻤﻴﺎ ﺑﺠﻮار ∞ +اﺕﺠﺎهﻪ اﻟﻤﺴﺘﻘﻴﻢ )∆( اﻟﺬي ﻣﻌﺎدﻟﺘﻪ . y = x :د -ﻟﺪیﻨﺎ . ∀x ∈⎦⎤0, +∞⎣⎡ : f (x ) − x = − (ln x )2 ≤ 0 :إذن اﻟﻤﻨﺤﻨﻰ ) (Cیﻮﺝﺪ ﺕﺤﺖ اﻟﻤﺴﺘﻘﻴﻢ )∆( .) ( ).f ′(x ) = x − (ln x )2 ′ =1− 2ln′(x )ln x =1− 2ln x = x − 2ln x = g (x .3أ -ﻟﻴﻜﻦ ⎣⎡∞ ، x ∈⎦⎤0, +ﻟﺪیﻨﺎ : xx xوﺡﺴﺐ إﺷﺎرة ) g (xﻓﻲ اﻟﺠﺰء اﻷول ،ﻟﺪیﻨﺎ .∀x ∈⎤⎦0, +∞⎡⎣ : f ′(x ) > 0 :إذن fﺕﺰایﺪیﺔ ﻋﻠﻰ ⎡⎣∞. ⎦⎤0, + ب -ﺝﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ : f ﺝـ -ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ﻟﻠﻤﻨﺤﻨﻰ ) (Cﻓﻲ اﻟﻨﻘﻄﺔ اﻟﺘﻲ أﻓﺼﻮﻟﻬﺎ 1هﻲ . y = f ′(1)(x −1) + f (1) ⇔ y = x : .4ﻟﺪیﻨﺎ f :ﻣﺘﺼﻠﺔ وﺕﺰایﺪیﺔ ﻗﻄﻌﺎ ﻋﻠﻰ اﻟﻤﺠﺎل ⎡⎣∞ . ⎤⎦0, +إذن f :ﺕﻘﺒﻞ داﻟﺔ ﻋﻜﺴﻴﺔ f −1ﻣﻌﺮﻓﺔ ﻣﻦ اﻟﻤﺠﺎل Jﺡﻴﺚ :
⎡ ⎤) ( ( ⎢) \ J = fﻧﺤﻮ اﻟﻤﺠﺎل ⎡⎣∞ ، I = ⎦⎤0, +وﺑﻤﺎ أن ، 0∈Jﻓﺈن ⎣⎡∞⎦⎤0, + = ⎥lim f (x ), lim f x = ⎦⎤−∞, ⎣⎡∞+ = ⎦⎥ x →0 ∞x →+ ⎢⎣ x >0 اﻟﻤﻌﺎدﻟﺔ f (x ) = 0ﺕﻘﺒﻞ ﺡﻼ وﺡﻴﺪا αﻓﻲ اﻟﻤﺠﺎل ⎣⎡∞. I = ⎦⎤0, + (. (ln 2)2 < 1 ) fﻷﻧﻪ ﺡﺴﺐ اﻟﻤﻌﻄﻴﺎت ⎛ 1 ⎞ = 1 − (ln 2)2 > 0 و f ⎛1 ⎞ = 1 =−1 1−e < 0 : أن وﺑﻤﺎ 2 ⎜ 2 ⎟ 2 ⎜ ⎟ e e ⎝ ⎠ ⎝ e ⎠ ﻓﺈﻧﻪ ﺡﺴﺐ ﻣﺒﺮهﻨﺔ اﻟﻘﻴﻢ اﻟﻮﺳﻴﻄﻴﺔ ،ﻟﺪیﻨﺎ . 1 < α < 1 : e2 I (e,e −1) .α ≈ 0,4948664145ﻧﻘﻄﺔ اﻧﻌﻄﺎف ﻟﻠﻤﻨﺤﻨﻰ ) .e ≈ 2,7 . (C .5إﻧﺸﺎء اﻟﻤﻨﺤﻨﻰ ) : (C .6أ -ﻟﺪیﻨﺎ .∀x ∈⎤⎦0, +∞⎡⎣ : H ′(x ) = (x ln x − x )′ = x ′ln x + xln′x −1 = ln x :إذن H : x 6 x ln x − x : هﻲ داﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ ln : x 6 ln xﻋﻠﻰ اﻟﻤﺠﺎل ⎡⎣∞ ، ⎤⎦0, +وﻟﺪیﻨﺎ : e ln ( x )dx = ⎣⎡H (x )⎤⎦1e =H (e ) − H = )(1) = 0 − (−1 1 ∫1 ب -ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺝﺰاء ،ﻟﺪیﻨﺎ : e ln ( x )2 dx =∫ e ′(x )ln (x )dx = ⎣⎡H (x )ln (x e ∫− e (x ) ln ′ ( x )dx∫1 H )⎦⎤1 H 1 1 = H (e )ln (e )− H (1)ln (1) − e x ln x −x dx x ∫1 = ∫− e ( ln ( x ) −1)dx = ∫− e ln ( x )dx + (e = )−1 e −2 1 1
-ﺡﺴﺐ اﻟﺴﺆال أﻋﻼﻩ -ﺝـ -ﻣﺴﺎﺡﺔ اﻟﺤﻴﺰ اﻟﻤﺴﺘﻮي اﻟﻤﺤﺼﻮر ﺑﻴﻦ اﻟﻤﻨﺤﻨﻰ ) (Cواﻟﻤﺴﺘﻘﻴﻢ ∆ واﻟﻤﺴﺘﻘﻴﻤﻴﻦ اﻟﻤﻌﺮﻓﻴﻦ ﺑﺎﻟﻤﻌﺎدﻟﺘﻴﻦ x =1و x = eهﻲ ( ):A =e f (x )−x dx = e ( x −f (x ))dx = e (ln x 2 = e −2 )≈ 0,7(u.a. ∫1 ∫1 ∫1 ) dx ))C)W„KV„J)•iX„J ⎧⎪ n u0 = 2 n ) ; `∈ n ﻧﻌﺘﺒﺮ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدیﺔ `∈ un nاﻟﻤﻌﺮﻓﺔ آﻤﺎ یﻠﻲ ( ): = +1 f ⎪⎩⎨u (u .1ﻟﻨﺒﻴﻦ ﺑﺎﻟﺘﺮﺝﻊ أن . ∀n ∈` : 1≤un ≤ 2 : 9ﻣﻦ أﺝﻞ ، n = 0ﻟﺪیﻨﺎ ، u0 = 2 :إذن . 1≤ u0 ≤ 2 : 9ﻟﻴﻜﻦ `∈ . n ﻧﻔﺘﺮض أن .1 ≤ un ≤ 2 : ﻟﻨﺒﻴﻦ أن : 1 ≤ un+1 ≤ 2 :ﻧﻌﻠﻢ أن fﺕﺰایﺪیﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎣⎡∞ . ⎤⎦0, +إذن 1≤un ≤ 2 ⇒ f (1) ≤ f (un ) ≤ f (2) ⇒1≤un+1 ≤ 2 :ﻷن . f (2) − 2 = −(ln 2)2 ≤ 0 ⇒ f (2) ≤ 2 : 9وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن . ∀n ∈` : 1≤un ≤ 2 : .2ﻟﻴﻜﻦ `∈ . nﻟﺪیﻨﺎ . un+1 −un = f (un ) −un = − ln (un ) 2 ≤ 0 :إذن (un )n∈` :ﻣﺘﺘﺎﻟﻴﺔ ﺕﻨﺎﻗﺼﻴﺔ( ). .3ﺑﻤﺎ أن `∈ (un )nﻣﺘﺘﺎﻟﻴﺔ ﺕﻨﺎﻗﺼﻴﺔ وﻣﺼﻐﻮرة ﺑﺎﻟﻌﺪد ، 1ﻓﺈﻧﻬﺎ ﻣﺘﻘﺎرﺑﺔ .وﻟﺪیﻨﺎ : fداﻟﺔ ﻣﺘﺼﻠﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤ . ⎣⎡1, 2 9 9 ، fﻷن ( ) . f (2) ≤ 2 : ( ) ( )⎡⎣1,2⎤⎦ = ⎣⎡f 2 ⎤ ⊂ ⎦⎤⎡⎣1, 2 fداﻟﺔ ﻣﺘﺼﻠﺔ وﺕﺰایﺪیﺔ ﻗﻄﻌﺎ ﻋﻠﻰ اﻟﻤﺠﺎل ⎦⎤ . ⎣⎡1, 2إذن : 1 ,f ⎦ . u0 = 2∈ ⎡⎣1, 2⎤⎦ 9 (un )n∈` 9ﻣﺘﺘﺎﻟﻴﺔ ﻣﺘﻘﺎرﺑﺔ ﻧﻬﺎیﺘﻬﺎ . l ﺡﺴﺐ ﻣﺼﺎدیﻖ اﻟﺘﻘﺎرب ،ﻟﺪیﻨﺎ f l = l :و ⎤⎦( ). l ∈ ⎣⎡1, 2وﻟﺪیﻨﺎ . f l = l ⇔ l − ln (l ) 2 = l ⇔ ln (l ) = 0 ⇔ l =1 :وﺑﺎﻟﺘﺎﻟﻲ ﻓﺈن ( ). nl→im+∞un =1 ( ): ))“hhhhhhhhhhhhhhhhhhŠTJﻣﺴﺎﺡﺔ اﻟﺤﻴﺰ اﻟﻤﺴﺘﻮي اﻟﻤﺤﺼﻮر ﺑﻴﻦ اﻟﻤﻨﺤﻨﻰ ) (Cواﻟﻤﺴﺘﻘﻴﻢ ∆ واﻟﻤﺴﺘﻘﻴﻤﻴﻦ اﻟﻤﻌﺮﻓﻴﻦ ﺑﺎﻟﻤﻌﺎدﻟﺘﻴﻦ x =1و x = eﺑﺎﺳﺘﻌﻤﺎل ( )Maple 7;> f:=x->x-(ln(x))^2 f := x → x − ln( x )2;))> A:=Int(abs('f'(x)-x),x=1..exp(1))=int(abs(f(x)-x),x=1..exp(1 e A := ⎮⌠⌡ −f( x ) + x dx = e − 2 1;)> A:=evalf(rhs(A),20 A := .7182818284590452354
ﺕﻤﺜﻴﻞ اﻟﺤﺪود اﻟﺴﺘﺔ اﻷوﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدیﺔ `∈ (un )nﻋﻠﻰ ﻣﺤﻮر اﻷﻓﺎﺻﻴﻞ ﺑﺎﺳﺘﻌﻤﺎل : Archimède II
Search