א א – אªא א 2007 . : د رة . ∑ → = m a→G : Fext :• G a→G t2 t1 ∑ → ∆t = t2 – t1 ) : Fext .(A → → B .4.3.1 FB/A FA/B . . . : 10 10 B → A → B : → FB/A→ A → FB/A = 0 FA/B FA/B + : . →v1 : (2•G : .1.2 : .1.1.2 a→moy a→moy∆→v v→2 : 11 →v2 )« » .( - v→1 .2.1.2 : ) v→1 ( 11 – . →v2 v2 = v1 = v : . →amoy . ∆→v = →v2 – v→1 ∆v→•• . →amoy = ـــ∆ـvــ→ـ : • ∆t • • « a→n : » • 12 – . : r v•• ( ) ∆θ زاو عا ∆t : 12 ∆→r = →r2 – r→1 QP «» →r →v . . v→2 ^ ^ v→2 = v→1 + ∆v→: v2 = v1 = v : ABC ∆→v X r→2∆→r • Q→ ⊕ → |→ـــ∆ـvـ→ــ∆ـ|ـ = |ـــr ـ|ـ: . ∆→r ∆θ • v1 C vr O v→2 ∆v B ABC OPQ ∆θ ∆θ v→1 r→1 • P A 101 b^
א א ªא – א א 2007 |ـــ→vـــ∆ـ| = ــ2ــvـ : |∆→r| = v.∆t : ||∆→v رة ||∆→rدـــvــ : ∆t r ـــ→vـــ∆ـ r ∆t = (1) ... ــ2ــvـ = an : →aG = lim : r ∆t → 0 W b : .3.1.2 T = 24 h : ”“ ” “T: ( 2πr :ــrــπــ2ـ = ) T v rــ2ـــπــT 2 = 4 :ــrــπــ2ـ = v )(1 .v an :T T ⊕ →v (2) ... : : .2.2 ^ .1.2.2 ^• v : → → ــ2ــvـ = an – ( 13 )r r ∑Fn an • → •→ → ^(C) : (: ) )(n ∑Fn » ∑ Fn→v an ∑Fn ـ2ــvــــv→ (3) ... ∑ Fn = m : r « → an • : 13 . ): (3) (2 (4) ... ∑ Fn ـrــ2ــπـــ4ـــ×ــــ=m T2 : .2.2.2 . . – . ( 14 ) .. • . W (. ) : 14 . )(m W . )(M →→ a ( ) ) Fg . ( • – . ( 15 r . m(n ) X 102 )M : 15
א – א אªא א 2007 د رة ( (n) : ) (5) ... Fg = ــGـــmـــــMـــــ : r2 G = 6,67 × 10-11 N.m2.kg-2 : (S.I) G: : ــGــــmـــM = ــــــmــــvــ2 ـ: (5) (3) r2 r T = ـ2ــπــr ــ: ܶ ൌ 2πට య : vorb ݒ୭୰ୠ ൌ ටୋ ୋ : - ܶ ൌ 2πට య ݒ୭୰ୠ ൌ ටୋ : ୋ .( ) MS : .( ) r - : ܶ ൌ 2ߨට య ൌ 2ߨ ටሺୖା௭ሻయ ݒ୭୰ୠ ൌ ටୋ ൌ ටୖୋା௭ : ீெ ୋ .( .( ) MT : z (RT ≈ 6400 km) ) r = RT + z . . RT : :- Q : .3.2 : .1.3.2 •P •F [X 2b F•’ A ( 16 – ) • • . F’ F . 2a . 2a 2b [\ X (F ) . (Aphélie) A (Périhélie) P : .2.3.2 •B•A S BA (16 – ) • : 16 . DCC• CSD CSD ASB D• .. ASB 103
א א ªא – א א 2007 د رة : .3.3.2 ( ) P a: K = ــ2ــــTـ : T 2 = Ka3 : a3 K:→ Z v→A A . .4.3.2vP → : 17 : K :ـ2ــvـــــF = m.an = m v→A vP r ــ2ـــπــ4ــ = K ـ3ــrــ2ــπــ4ـ = ⇐ T 2 = K r3 : m: GM GM . : M m K ( MS :ــ2ـــπــ4ــ = ) KS . GMS ( . MT ــ2ـــπــ4ــ = ) KT GMT F = ـــmــ2ــπـــ4 : = v2 ـ2ــrــ2ــπــ4ـ : :ــrــــπـــ2ـ = T Kr2 T2 v FK ــــMــــmـ F = G ⇐ =F ـــmــ2ــπـــ4 = ــــMــــmــــGـ2ـــπــ4ـ = ـــــMـــmــــGـ r2 Kr2 4π2r2 r2 (3 : .1.3 : )( . ( ... ) : ) (. : 18 f . – ( 18 ) . : • • t (s) 0,08 0,12 0,16 0,20 0,28 0,32 0,58 0,66 0,80 1,00 1,20 1,40v (m/s) v (m/s) 0,35 0,70 0,92 1,08 1,30 1,45 1,86 1,90 1,94 2,05 2,00 2,00 19 – . v = f (t) :2,0 vL : :1,0 )t (s . . . τ :0,0 0,4 0,8 1,2 0 v = f (t) : 19 104
א – א אªא א 2007 د رة . vL = 2,0 m.s-1 : • • . :τ () τ = 0,32 s : .τ« !! = = » ( ) : → : 20 ! : .1.1.3 GP . g → ( 20 – : ^ g P→ _\ →g → : ) ^ ^[ : g ( ) : → →g P→ = m.g→ →g :m :ρ ∗ Pr ( →g :V ∗ ( → . (km) : Pa ) :S ^ : →π « » G• → 21 – . Pa → ) π→= P→r – P→a = – ρ.V. g→ : Pr : 21 (m3) ( ( kg.m-3 ) ) (m/s2 N/kg) :g ∗ . : () . . : . f=kv : :∗ f = k' v2 : : ∗ → . v→ → :f f b ] : .2.1.3 S ^ : →π ــO : ( ) → g→ 22 – . f→: π→= – ρ V g→ : P = m :_ \^ : G • (m) (Oz : ) ^ : » →→ (1) ... → + →π + → m a→G P = m.g P f= : :« (Oz) z (2) ... P – π – f = m aG P = mg aG = ـdـــv ــ: ⊕ π = – ρair V g dt : 22 105
א – א אªא א 2007 د رة : (2) m ـdـــv = ــmg – ρVg – f dt :f . ـdـــv ــ+ ــk ـــv = (1 – ـρــV) ـــg :y' + ay = b : f = kv : ∗ : dt m m : ba vL = ــg( ـــρ – ρair)V f = k'v2 : ∗ k y' + ay2 = b : ݒൌ ට୩ᇱ ሺρ െ ρୟ୧୰ሻV . ρ : ∗ () .( 5)5τ: ∗ ( ... ) : ∗.τ « : .2.3 ① ^ ^ →⊕ : .1.2.3 ② » : 23 :« » : 24 . 24 ⓐ – . )PP ( ←^ ⓐ 24 ⓑ – . ⓑ ←^ .« » :ⓐⓑ () : .2.2.3 :∗ P→ ( → . ) f ( ) →π a→G = g→ ⇐ mg→= ma→G ⇐ P→ = ma→G : 106
O א א – אªא א 2007 د رة 0 • G0 . ( ) 0,1 z 0,3 g→ ←^ 0,5 :( ) ∗ aW H → 0,7 () k→ →→ → 0,9 • G5 →j (Oz) ( O , i , j , k ) 1,1 iO 25 – . →g y →aG = g→H ←^ →→ → →g (0,0, –g) : () (∆) : : ax(t) = 0 } x ( O , i , j , k ):^ 1,3 a→G (t) { az(t) = – g : 25 ay(t) = 0 1,5 Oxyz g→ (Oz) (0,0, –g) «» 1,7 • G9 : 26 az(t) 26 – » 27 – . « . ⊕z (Oz) G : aG = ـdــvــG ــ: ∗az (m.s-2) ^ t (s) ـdــvـــz – =ـg ـdــvـــy = ـ0 ـdــvـــx = ـ0 dt : v→G dt dt 0 ↓ b : dt az = - g = Cte : .3.2.3 ↓ -g → v→G (t) OG (t) : 27 . az = f(t) →→ → O (O,i,j,k) . ( ) t0 = 0 : t0 v0 = 0 : ( ) (*) → → x (t0) = 0 t=0 → → vx (t0) = v0x = 0 OG(t0) = OG0 y (t0) = 0 vG (t0) = v0 vy (t0) = v0y = 0vG (m.s-1) z (t0) = 0 vz (t0) = v0z = 0 : :∗ vx (t) = Cte ـdــvـــx = ـ0 dt → vy (t) = Cte ـdــvـــy = ـ0 dt vG (t) 0 t (s) vz (t) = – gt + Cte ـdــvـــz – = ـg dt : 28 : (*) (. ) vG = f(t) vz (t) = - gt + Cte = - gt vy (t) = Cte = 0 vx (t) = Cte = 0 : → (t) { vx(t) = 0 ; vy(t) = 0 ; vz(t) = – gt } vG . 28 – ||v→G (t)|| = vG (t) = gt : : vG = f(t) 107
א – א אªא א 2007 « :» د رة x(t) → → v→G (t) = ـdـــOـــGــــ OG z(t) y(t) : ∗ z (m) t (s) vdz(tt) vy(t) vx(t) : v→G »0 ∗ → ـ1 ــgt2 } z 2 ) OG (t) { x(t) = 0 ; y(t) = 0 ; z(t) = – : : ( 29 – ) z = f(t) « : : 29 v→0 ( 30 – ) z = f(t) ( ) ( → x (t) = 0 →vG (t) vx (t) = 0 vy (t) = 0 OG(t) y (t) = 0 ـ1 ــgt2 vz (t) = – gt + v0 z (t) = – 2 : 30 + v0t→v0 → ) k ∗ .( : (4 : .1.4 .1.1.4 G5 G6 G7 :( ) G4 G8 v→0 G3 G9 « » ( 31 – ) G2 G10 . v→G (t0) = v→0 v→0 ( O , →i , →j , k→) t0 = 0G1 G11 ( )α ( xOz ) . 32 –G0 G12 : : 31 → x (t0) = 0 v→G → vx (t0) = v0x = v0 cos α OG0 y (t0) = 0 vy (t0) = v0y = 0 (t0) = v0 vz (t0) = v0z = v0 sin α z (t0) = 0 z v0 sin αv0z : :∗ →v0 v0 cos α vx (t) = Cte ـdــvـــx = ـ0 vy (t) = Cte dt→ α v0x x ← ( ) → → ـdــvـــy = ـ0k vG (t) aG (t) dt ـdــvـــz – = ـgO → dt i : 32 vz (t) = – gt + Cte( xOz ) . t0 = 0 : ( xOz ) (**) ... vG (t) { vx(t) = v0 cos α ; vy(t) = 0 ; vz(t) = – gt + v0 sin α } 108
v0 sin α vx (m.s-1) … (1) א – א אªא א 2007 vz (m.s-1) … (2) د رة . 33 – : : ∗v0 cos ① : (**) α 0 ② t (s) : 33 → x (t) = v0t cos α + Cte v→G (t) vx (t) = v0 cos α C– tـ1eــ vy (t) = 0 vz(t) vx(t) OG(t) y (t) = 2 z (t) = gt2 + v0t sin α + Cte vz (t) = – gt + v0 sin α x (m) … (1) . t0 = 0 z (m) … (2) : ① x (t) = v0t cos α0 ② → y (t) = 0 ـ1ــ gt2 + v0t sin α t (s) z (t) = – 2 : 34 OG(t) z(t) x(t) : y (t) = 0 : ( xOz ) v→0 : (34 – )① (Ox) ∗ ∗ (34 – )② (Oz) : ∗ t z (t) x (t) z = f(x) : (xOz)z (m) t = ــــــxــــــــ gt2v+0 cos α ⇐ x (t) = v0t cos α →v0 •S ^ z (t) = – ـ1ــ v0t sin α : ] •P x (m) 2 α → 35 – z(x) = – ـــــــــg ـــــــــــx2 + x tg α : 2v02 cos2 α P0 «» x : 35 . (35 – ) z(x) : :∗ v→G .(S: ) : S (1) ... zS = ـvــ0ــ2ـــsــiـnـــ2ـــαـــ tS = ـــvــ0ـــsــiــnـــα ⇐ ـــــvz (tS) = – gtS + v0 sin α = 0 : . vz = 0 : 2g g : z (t) = – ـ1ــgt2 + v0t sin α : 2 O 35 – . (Ox) P . z = zP = 0 x = xP P (2) ... xP = ـvــ0ــ2ـــsــiـnــــ2ـــαــ : g (3) ... ـــzــSـ = ـــ1 ــtg α : (2) (1) : zS xP xP 4 109
→ ) –א א אªא א 2007 i x 36 – . G2 : د رة Sb G1 → m2 (B) : .( j A m1 .2.1.4 m1 (A) g→ B m2 . y : 36 . (B A) : . → → 37 – . (B) (A) RN T1 (B) (A) G2 G1 G1 • → ) → T2 .( G2 • P1 g→ : → : 37 ∑ → = m a→G ⇒ m1g→+ R→N + T→1 = m1 a→ : (A) P2 Fext ∑ → = m a→G ⇒ m2g→+ T→2 = m2 a→ : (B) → → Fext i, j) : ( (1) ... T1 = m1 a ؛m1g – RN = 0 : (A) (2) ... m2g – T2 = m2 a : (B) m2g – m1 a = m2 a : (2) (1) T1 = T2 : a = ــــــــmــــ2 ــــــــg : m1 + m2 .3.1.4 x' : G m (S) S 38 – .α ) • ( → f .x α . ^ : 38 : 39 – G P→ + R→N + f→= m a→:⊕ y→ x'x : ( 39 – ) RN → →f (1) ... Px – f = m a : [ ] (x'x) – Px • G – (2) ... RN – Py = 0 : (x'x) (y'y) Px = P sinα = mg sinα : α α→ a = g sinα – ــfـــ → Py m : (1) P y' : ) : 39 f=0: ( (1 a = g sinα : z (m) g→ RN = Py = P cosα = mg cosα : (2) (2 →v0 (m) •S ^ : .2.4 •P x (m) (+ : → ] α ): P 0 : 40 110
א – א אªא א 2007 Epp = mgz : Ec = ـ1ــ mv2 : د رة ) Em = ـ1 ــmv2 + mgz ⇐ E = Ec + Epp : 2 ( +) (+ 2 g v→0 :E (J) (40 – ) m ) .( α Em = Ec + Epp .( ) Epp :( = ـ1ــ ) z=0 →2 Ec (1) ... E0 = Ec0 + Epp0 mv02 :( . )O z = zS v→S → :( . )S0 = vxS i + vzS j E (J) vzS = 0 vxS = v0x = v0 cosα : Em = Ec + Epp ـ1ــ t (s) (2) ... ES = EcS + EppS = 2 mv02 cos2α + mgzS : : 41 (1) E0 = ES : ـ1ــ ـ1ــmv02 cos2α + mgzS : (2) : mv02 = 22 ـvــ0ــ2ـــsــiـnـــ2ـــαـــ zS = 2g : Epp ( +) zS . Ec t (s) . |Wm| : : 42 E0 - |Wm| = ES :0 .•A u→AB → → : (5 •FA/B mA FB/A B : .1.5 mB→ ـmــــAـــ.ــmــــBــ → = - → ( ) AB2 .FA/B = - G uAB FB/A (XIX)•A u→AB •B → : : .2.5 qA → qB FA/B ( 43 – ) F'A/B •A u→AB •B . qB : → ــqـــAـــ.ــqـــBـــ u→AB = - → AB2FA/B = k F'B/A : 43 . «» . 1914 :( – ) ( –) . . . : ( –) ( 44 – ) 111
א – א אªא א 2007 () د رة () . () S «» : ( BOHR) « M.Planck : » 1900 (Hγ) ( E = h.ν )(Hα) S (Hβ) S (Hδ) [ ( 45 – .« » ) 1905 ( [^ )^ » : 44 : . « c = 3 × 108 m/s 1913 «» ( –– ) ــλـ.ــ En :c Ep . ∆E = Ep – Em = ν= Em 46 – h.ν ( )ν ∆E = Ep – Em = h.ν . : 45 (– ) . 1955 – 1879 () ( –) MNO P . ( 47 – ) L ( E∞ = 0 ) «» ) [K ( « En < 0 : »6 543 2 1 ] [ . ∆E : [ FW : 1905 : 46 « ( quanta ) » `[ ∆EEn = - ـ1ـــ3ــ,ـ6ـــ (eV) ∆E = h.ν : ν n2 0 (n=∞) . 1926 ( photons )- 0,38 H+ + e- : b ^\b (n=6) : (n=5)- 0,54 (n=4) ( 46 – )- 0,85 1913 :- 1,51 (n=3) . () : .n=1,2,3,… : n- 3,40 ( Hα ; Hβ ; Hγ ; Hδ ) [ ^ (n=2) « » n=1 . E1 < E2 < E3 < … < E∞ = 0 : : 47 H- 13,6 ^ ^^ (n=1) 112
א – א אªא א 2007 د رة : ( . 276 : –1 )①: α = 10° P = 600 N .1 .. . α( ) . . . . 30° .2 . : R→N R→T = →0 : .1 . P = 600 N : P→ ∗ : R→ ∗ → → = : → R RN f . : ∗ y → + → + → →0 : → P RN f= RN → x' : f → : → ^ → Rx = 0 f fx = -f → Px = P sinα Px • G Ry = RN = R : fy = 0 0→Py = - P cosα ⊕ R P x → → α α → + → ^ P + RN → Py f= ⊕ x P sinα – f + 0 = 0 … (1)A y P y' - P cosα + 0 + RN = 0 … (2) : (2) (1) → x' f = 104 N ⇐ f = P sinα = 600 × sin10° = 104 N R RN = 591 N ⇐ RN = P cosα = 600 × cos10° = 591 N : .2 → (1) ... ∑ F→ = P→ + R→ = m a→ : Px • (x'x) θ → : () → ax = a (1) a ay = 0 Py (2) (2) ... ∑ Fx = mg sinθ + 0 = ma : → (3) ... ∑ Fy = - mg sinθ + R = 0 P y' a = g sinθ : a = 4,9 m/s2 ⇐ a = 9,8 × sin30° = 4,9 m/s2 . z R = P cosθ : (3) •h = 10,0 m G R = 519,6 N ⇐ R = 600 × cos30° = 519,6 N . S • r = 3,50 m ( . 277 : –2 ) ②: •r B O• . • . . .A . G . g = 9,8 N.kg-1 M = 400 kg 113
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117