ﺍﻟﺘﻤﺎﺭﻴﻥ MNP /1ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ . P ﺍﻨﻘل ﻭ ﺍﺘﻤﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: PM *= cos…/ PN *= cos… = sin…/ MN MN PM = …. */ PN *= …. / PN PM RST /2ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ .R ﺍﻨﻘل ﻭ ﺍﺘﻤﻡ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ ﺏ .Tan , Sin , Cos */ﺍﺫﺍ ﻋﻠﻤﻨﺎ ﻁﻭل RT , RSﻨﺴﺘﻁﻴﻊ ﺤﺴﺎ ...ﺍﻟﺯﺍﻭﻴﺔ ˆS ﻭﺍﻟﺯﺍﻭﻴﺔ ˆT */ﻟﻤﻌﺭﻓﺔ ﻁﻭل RSﻭ RTﻨﺤﺴﺏ ...ﺍﻟﺯﺍﻭﻴﺔ ˆ Sﻭ ﺍﻟﺯﺍﻭﻴﺔ ˆ. T * /ﺍﺫﺍ ﻋﻠﻤﻨﺎ ﺍﻟﻁﻭﻟﻴﻥ STﻭ RTﻨﺤﺴﺏ ...ﺍﻟﺯﺍﻭﻴﺔ ˆ Sﺍﻟﺯﺍﻭﻴﺔ ˆ. T ﻟـ: 1 ﺍﻟﻤﺩﻭﺭ ﺃﻭ /3ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﺃﻋﻁ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺘﺎﻤﺔ 1000 Tan 45° , Sin 40° , Cos 35° Tan 90° , Cos 50° , Sin 65° /4ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﺃﻋﻁ ﻓﻲ ﻜل ﺍﻟﺤﺎﻟﺔ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ ﺍﻟﻭﺤﺩﺓ ﺒﺎﻟﺩﺭﺠﺎﺕ ﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﺯﺍﻭﻴﺔ ˆ. ATan = ˆA 5 */ Sin = ˆA 0.9 */ Cos ˆA = 1 */ 3 3 MNP/5ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Mﺤﻴﺙ Nˆ = 72°:ﻭ MP = 6.3 cm 1 ﺜﻡ ﺃﻋﻁ ﻤﺩﻭﺭﻩ ﺇﻟﻰ NP ﺃﺤﺴﺏ . 100 ABC/6ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Aﺤﻴﺙ Bˆ = 68° :ﻭ BC = 5.3 cm . 1 ﺇﻟﻰ ﻤﺩﻭﺭﻩ ﺃﻋﻁ ﺜﻡ AC ﺃﺤﺴﺏ 100
UNE /7ﻤﺜﻠﺙ ﻗﺎﺌﻡ Uﻓﻲ ﺤﻴﺙ Nˆ = 20°:ﻭ UN = 4.5cm . 1 ﺇﻟﻰ ﻤﺩﻭﺭﻩ ﺃﻋﻁ ﺜﻡ EU ﺃﺤﺴﺏ 100 ABC /8ﻤﺜﻠﺙ ﻗﺎﺌﻡ Aﻓﻲ ﺤﻴﺙ BC= 11.5cm , AC = 7.8 cm : ˆB ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ 1 ﺃﻋﻁ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ 10 RST /9ﻤﺜﻠﺙ ﻗﺎﺌﻡ Tﻓﻲ ﺤﻴﺙRS = 7.5 cm , RT = 4.7 cm :ﺍﻟﻭﺤﺩﺓ. 1 ﻤﺩﻭﺭﻩ ﺃﻋﻁ ﺜﻡ ﺃﺤﺴﺏ ˆR ﺇﻟﻰ 100 EFG /10ﻤﺜﻠﺙ ﻗﺎﺌﻡ Eﻓﻲ ﺤﻴﺙEF = 5 cm , EG = 3.5 cm : . 1 ˆ Gﺇﻟﻰ ﺃﻋﻁ ﻤﺩﻭﺭ ﻗﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ 10 ABC /11ﻤﺜﻠﺙ ،ﺍﻻﺭﺘﻔﺎﻉ ] [HAﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﻀﻠﻊ ] [BCﺤﻴﺙ:AH = 4.9cm , BH = 1.4cm , CH = 2cm 1ﺃﺤﺴﺏ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ 10ﻟﻘﻴﺱ ﺯﺍﻭﻴﺔ ﻤﻥ ﺯﻭﺍﻴﺎ ﺍﻟﻤﺜﻠﺙ .ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺔ Cos2 x + Sun2 x= 1 : = Cos 3 /12ﻋﻠﻤﺎ ﺃﻥ : 5 -ﺃﺤﺴﺏ Sin xﻭ .Tan x = Sin 8 ﺃﻥ: ﻋﻠﻤﺎ /13 17 -ﺃﺤﺴﺏ Cos xﻭ .Tan xTan x = 5 ﻭ = Sin x 5 /14ﻋﻠﻤﺎ ﺃﻥ : 12 13 -ﺃﺤﺴﺏ .Cos x -ﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ﺍﻟﻌﻼﻗﺔ Cos2 x + Sin2 x = 1 :
AB = 10ﻭ = BH ABC /15ﻤﺜﻠﺙ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﺭﺃﺴﻪ ﺍﻷﺴﺎﺴﻲ .A * [BH]-ﻭ ] [CKﺍﻻﺭﺘﻔﺎﻋﻴﻥ ﺍﻟﻤﺘﻌﻠﻘﻴﻥ ﺒﺎﻟﻀﻠﻌﻴﻥ] [ACﻭ ] ،[ABﺤﻴﺙ 6ﻭ .AK = 8 * -ﺃﻋﻁ ﺍﻟﻘﻴﻤﺔ ﻋﻠﻰ ﺸﻜل ﻜﺴﺭ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻟـ: ˆ. Cos Aˆ , Sin Aˆ ,Tan A
ﺍﻟﻤﺴﺎﺌل /16ﺍﻨﻜﺴﺎﺭ ﺍﻟﻀﻭﺀ:ﻴﻨﺤﺭﻑ ﺸﻌﺎﻉ ﻀﻭﺌﻲ ﻋﻨﺩﻤﺎ ﻴﻨﺘﻘل ﻤﻥ ﺍﻟﻬﻭﺍﺀ ﺇﻟﻰ ﺍﻟﻤﺎﺀ.ﺍﻟﺯﺍﻭﻴﺔ ˆ iﺘﺴﻤﻰ )ﺯﺍﻭﻴﺔ ﺍﻟﻭﺭﻭﺩ( ﻭﺍﻟﺯﺍﻭﻴﺔˆ rﺘﺴﻤﻰ )ﺯﺍﻭﻴﺔ ﺍﻻﻨﻜﺴﺎﺭ( ﺍﻟﻤﻭﻀﺤﺔ ﻓﻲ ﺍﻟﺸﻜل= ˆSin r 3 Sin ﺤﻴﺙiˆ : 4ﺃ ( ﺃﺤﺴﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺍﻟﻰ ﺍﻟﻭﺤﺩﺓ ﻟـ ˆ rﻋﻠﻤﺎ ﺃﻥ . iˆ =35°ﺏ( ﺃﺤﺴﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺍﻟﻰ ﺍﻟﻭﺤﺩﺓ ﻟـ ˆ iﻋﻠﻤﺎ ﺃﻥ . rˆ =45° /17ﺇﺭﺘﻔﺎﻉ ﻋﻤـﻭﺩﻟﺤﺴﺎﺏ ﺍﺭﺘﻔﺎﻉ hﻟﻌﻤﻭﺩ ﻗﻤﻨﺎ ﺒﺎﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ : a = 58.5 , b = 35.1 ﻭ AB = 18.7mﺃ ( ﻓﻲ ﺍﻟﻤﺜﻠﺙ AHSﻭ BHSﻋﺒﺭﻋﻥ AHﻭ BHﺒﺩﻻﻟﺔ . hﺏ( ﺍﺴﺘﻨﺘﺞ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺍﻟﻰ ﺍﻟﻭﺤﺩﺓ ﻟـ .h /18ﻁﻭل ﻭﺘﺭ ﻓﻲ ﺩﺍﺌﺭﺓ.ﺍﻟﻨﻘﻁ Aﻭ bﻴﻨﺘﻤﻴﺎﻥ ﺍﻟﻰ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ θﻨﺼﻑ ﻗﻁﺭﻫﺎ 8cm ﻭAθˆB =40° ﺃ ( ﺃﻨﺸﺊ ﺍﻟﺸﻜل ﻭﺍﺭﺴﻡ ﺍﻻﺭﺘﻔﺎﻉ ] [OHﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﻀﻠﻊ ].[AB ﺏ( ﺃﺤﺴﺏ ﻗﻴﻤﺔ ، AB 1 ﺜﻡ ﺃﻋﻁ ﻗﻴﻤﺘﻬﺎ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺇﻟﻰ . 10
ﺤل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭ ﺍﻟﻤﺴﺎﺌل ﺇﺘﻤﺎﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ: ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل: */PN = Cos ˆN ˆ= sin MMN PM = Cos ˆM */ MN PM = Tang ˆN */ PN PN = Tang ˆM */ PM ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ RST :ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ .R ﺇﺘﻤﺎﻡ ﺍﻟﺠﻤل ﺒـ Tang , Sin , Cos : * /ﺇﺫﺍ ﻋﻠﻤﻨﺎ ﻁﻭل RSﻭ RTﻨﺤﺴﺏ Tangﺍﻟﺯﺍﻭﻴﺔ ˆ Sﻭ Tangﺍﻟﺯﺍﻭﻴﺔ ˆ.T * /ﺒﻤﻌﺭﻓﺔ ﻁﻭل RSﻭ STﻨﺤﺴﺏ Cosﺍﻟﺯﺍﻭﻴﺔ ˆ Sﻭ Sinﺍﻟﺯﺍﻭﻴﺔ ˆ. T* /ﺇﺫﺍ ﻋﻠﻤﻨﺎ ﺍﻟﻁﻭل STﻭ RTﻨﺤﺴﺏ Sinﺍﻟﺯﺍﻭﻴﺔ ˆ Sﻭ Cosﺍﻟﺯﺍﻭﻴﺔ ˆ. T ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ :ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻨﺠﺩ:Tang 45°= 1, Sin 40°= 0.6428, Cos 35°= 0.8192Tang 90°= , Cos 50°= 0.6428, Sin 65°= 0.9063 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ :ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻨﺠﺩ: Aˆ =71° ﻤﻌﻨﺎﻩ: Cos ˆA 1 =3 Sin Aˆ = 0.9ﻤﻌﻨﺎﻩ Aˆ =71° : ﻤﻌﻨﺎﻩAˆ = 59° : Tang ˆA = 5 3
1 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺨﺎﻤﺱ :ﺤﺴﺎﺏ NPﺒﺎﻟﺘﺩﻭﻴﺭ ﺇﻟﻰ : 100= NP 6.3 MP ﺃﻱ ˆSin N = MP ﻟﺩﻴﻨﺎ ˆ NP = SinNﻭ ﻤﻨﻪ Sin72° NP ﻭ ﺒﺎﻟﺘﺎﻟﻲ .NP = 6.62 cm : 1 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺩﺱ :ﺤﺴﺎﺏ ACﺒﺎﻟﺘﺩﻭﻴﺭ ﺇﻟﻰ : 100 AC = BC x Sinﻭ ﻤﻨﻪ ﺃﻱ ˆB ˆSin B = AC ﻟﺩﻴﻨﺎ BC ﻭ ﺒﺎﻟﺘﺎﻟﻲ .AC = 4.91 cm : AC = 5.3 x Sin 68 : 1 ﺒﺎﻟﺘﺩﻭﻴﺭ ﺇﻟﻰ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻊ :ﺤﺴﺎﺏ EU 100 EU = UN x Tangﻭ ﻤﻨﻪ ﺃﻱ ˆN ˆTang N = EU ﻟﺩﻴﻨﺎ UN EU = 5 x Tang 20°ﻭ ﺒﺎﻟﺘﺎﻟﻲ EU = 1.82 cm : : ˆB ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ 1 ﺇﻋﻁﺎﺀ ﺍﻟﻤﺩﻭﺭ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻤﻥ: ﺇﻟﻰ 10ﻭﻤﻨﻪ Bˆ = 42.5° = ˆSin B 4.7 ﺃﻱ = ˆSin B AC ﻟﺩﻴﻨﺎ: 7.5 BC : ˆR ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ 1 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺘﺎﺴﻊ: ﺇﻋﻁﺎﺀ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ 100ﻭﻤﻨﻪ Rˆ = 42.5° = ˆSin R 4.7 ﺃﻱ ˆSin R = TR ﻟﺩﻴﻨﺎ: 7.5 RS : ˆG ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ 1 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻌﺎﺸﺭ: ﺇﻋﻁﺎﺀ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ 10ﻭﻤﻨﻪ Gˆ = 55°,.. ˆSin G = 5 ﺃﻱ ˆSin G = EF ﻟﺩﻴﻨﺎ: 3.5 EG
: ﺍﻟﺘﻤﺭﻴﻥ ﺍﺤﺩ ﻋﺸﺭ Â = 180°-……- …… ; : ﻟﺩﻴﻨﺎ Â = 180°- Bˆ - Gˆ A ≈ : ﻭﻤﻨﻪ : 12 ﺍﻟﺘﻤﺭﻴﻥ Cos2 x + Sin2 x = 1 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺔ : ﻟﺩﻴﻨﺎ Sin2 x = 1 - Cos2 x sin ²x = 1− 5 ² = 1 − 95 : ﺃﻱ 5 25 sin ²x 16 25 sin = 4 : ﺃﻱ 5 4Tang = 4 < Tangx = 5 , Tangx = sin x ﻟﺩﻴﻨﺎ 3 3 cos x 5
اﻟﺤﺴﺎب اﻟﺤﺮﻓﻲ اﻟﻜﻔﺎءات اﻟﻤﺴﺘﻬﺪﻓﺔ: */ﻤﻌﺭﻓﺔ ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ ﻭﺘﻭﻅﻴﻔﻬﺎ ﻓﻲ ﺍﻟﺤﺴﺎﺏ ﺍﻟﻤﺘﻤﻌﻥ ﻓﻴﻪ ﻭ ﻓﻲ ﺍﻟﻨﺸﺭ ﻭﺍﻟﺘﺤﻠﻴل. */ﻨﺸﺭ ﺃﻭ ﺘﺤﻠﻴل ﻋﺒﺎﺭﺍﺕ ﺠﺒﺭﻴﺔ ﺒﺴﻴﻁﺔ. * /ﺤل ﻤﻌﺎﺩﻻﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﺤل \"ﻤﻌﺎﺩﻟﺔ ﺠﺩﺍﺀ\". */ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ ﺠﺒﺭﻴﺎ. * /ﺘﻔﺴﻴﺭ ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ ﺒﻴﺎﻨﻴﺎ. * /ﺤل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ ﻭ ﺘﻤﺜﻴل ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭﻟﻬﺎ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ.* /ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﻤﻌﺎﺩﻻﺕ ﺃﻭ ﻤﺘﺭﺍﺠﺤﺎﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ ﺃﻭ ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ.ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺍﻟﺩﺭﺱ
ﺍﻟﺩﺭﺱ .1ﺍﻟﻨـﺸــﺭ: ﺘﻌﺭﻴﻑ: ﻨﺸﺭ ﺠﺩﺍﺀ :ﻫﻭ ﺘﺤﻭﻴﻠﻪ ﺇﻟﻰ ﻤﺠﻤﻭﻉ ﺃﻭ ﺇﻟﻰ ﻓﺭﻕ. ﺨﻭﺍﺹ: ,a , b, c, d , kﺃﻋﺩﺍﺩ k (a + b) = ka +kb.K ( a – b) = ka – kb.( a + b )( c + d ) = ac + ad + bc + bd . ﺃﻤﺜﻠﺔ :ﺃﻨﺸﺭ ﻭ ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:A = 3 ( 2 + 5X ) =3 × 2 + 3 × 5X = 6 + 5X.)B = ( X + 4 )( X + 3) = (X × X)+(X× 3) + (4 × X) + (4 × 3= X2 + 3X + 4X +12 ﺘﺒﺴﻴﻁ ﺍﻟﻌﺒﺎﺭﺓ 3X+4X :B = X2 + 7X + 12.
( a + b )2 = a2 + 2 ab + b2 .2ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ: ﺍﻟﺤﺩ 2 abﻫﻭ ﻀﻌﻑ ﺍﻟﺠﺩﺍﺀ ﻟـ aﻭ b *ﻤﺭﺒﻊ ﻤﺠﻤﻭﻉ :A = ( x + 3)2 ﻤﺜﺎل: ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ Aﺤﻴﺙ : = x2 + 2(x × 3) + 32 * ﻤﺭﺒﻊ ﻓﺭﻕ:A = x2 + 6x + 9. ﻤﺜﺎل: ( a + b )2 = a2 + 2ab +b2 ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ Aﺤﻴﺙ : A = ( x – 4 )2 *ﺠﺩﺍﺀ ﻤﺠﻤﻭﻉ ﻭﻓﺭﻕ: = x2 – 2 (4 × x) + 42 A = x2 – 8x + 16. ( a + b)( a – b ) = a2 – b2. ﻤﺜﺎل :ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ Aﺤﻴﺙ :)A = ( x + 2 )( x – 2 = x2 – (2)2A = x2 – 4.
.3ﺍﻟﺘﺤﻠﻴل : ﺘﻌﺭﻴﻑ: ﺘﺤﻠﻴل ﻤﺠﻤﻭﻉ ﺃﻭ ﻓﺭﻕ ﻫﻭ ﺘﺤﻭﻴﻠﻪ ﺇﻟﻰ ﺠﺩﺍﺀ ﺃﻭ ﻓﺭﻕ. ﻜﻲ ﻨﺘﻤﻜﻥ ﻤﻥ ﺘﺤﻠﻴل ،ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ، ﻓﺈﻥ ﻟﻡ ﻴﻅﻬﺭ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ ﺠﺭﺏ ﺇﺤﺩﻯ ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ. ﺨـﻭﺍﺹ: Ka + kb = k ( a + b ).Ka – kb = k ( a – b ).a2 + 2ab +b2 = ( a + b )2a2 - 2ab +b2 = ( a - b )2 .a2 - b2 = ( a + b ) ( a – b ). ﺃﻤﺜﻠﺔ :ﺤﻠل ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:A = 4x + 12 =4x + 4× 3A = 4 ( x + 3 ).B = (x + 2)(2x +1) – (x +2 ) x)= ( x + 2 )( 2x +1 – xB = ( x + 2 ) ( x + 1 ).ﻻ ﻴﻅﻬﺭ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ ﻨﻭﻅﻑ C = x2 + 16x + 64ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ C =x2 + 2(8x) 82C = ( x + 8 )2. (a+b)2=a2 +2ab +b2D = x2 – 9D = x2 –3a2)D =(x – 3)(x +3
.4ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ : ﺍﻟﺨﻭﺍﺹ: A , B , Cﺃﻋﺩﺍﺩ.* ﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ X ﻴﻤﻜﻥ ﺘﺤﻭﻴﻠﻬﺎ ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺸﻜلAX = B=X B * ﺇﺫﺍ ﻜﺎﻥ A ≠ 0ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ AX=Bﻫﻭ A ﻁﺭﻴﻘﺔ ﺍﻟﺤل: ﻟﺘﺤﻭﻴل ﻤﻌﺎﺩﻟﺔ ﺇﻟﻰ ﺍﻟﺸﻜل AX = Bﻨﺠﻤﻊ ﻭﺤﻴﺩﺍﺕ ﺍﻟﺤﺩ ﺍﻟﺘﻲ ﺘﺸﻤل Xﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ﻟﻠﻤﺴﺎﻭﺍﺓ ﻭ ﻭﺤﻴﺩﺍﺕ ﺍﻟﺤﺩ ﺍﻷﺨﺭﻯ ﻋﻠﻰ ﻴﻤﻴﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ . ﻤﺜﺎل) : (1ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ5X + 2 = 2X + 3 : ﻨﻁﺭﺡ – 2ﻤﻥ ﻁﺭﻓﻲ ﺍﻟﻤﺴﺎﻭﺍﺓ5X+2-2 = 2X+3-2 : ﻨﻁﺭﺡ 2Xﻤﻥ ﻁﺭﻓﻲ ﺍﻟﻤﺴﺎﻭﺍﺓ5X=2X+1 : 5X-2X=2X-2X+1 3X = 1 1 × = 3X 1 × 1 : 1 ﻓﻲ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻁﺭﻓﻲ ﻨﻀﺭﺏ 3 3 3 =X 1 3 = Xﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺩﺩﻴﺔ ﻟﻠﻤﺠﻬﻭل Xﺍﻟﺘﻲ ﻤﻥ ﺍﺠﻠﻬﺎ ﺘﺘﺤﻘﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ . 1 3 ﻤﺜﺎل): (2 5 X = 4 : ﺍﻟﻤﻌﺎﺩﻟﺔ ﺤل 3 ﻨﻀﺭﺏ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻲ ﻤﻘﻠﻭﺏ 3 × 5 =X 3 × 4 5 3 5 X = 12 5 5 × 12 =4 ﻨﺘﺤﻘﻕ: 3 5
ﻫﻭ ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ . 12 ﻨﺴﺘﻨﺘﺞ ﺃﻥ: 5 1. 4ﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺸﻜل : (ax + b)(cx + d)=0 ﺨﻭﺍﺹ: ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥa;b: ﺇﺫﺍ ﻜﺎﻥ : a × b = 0ﻓﺈﻥ a=0 :ﺃﻭ b=0 ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ (ax + b)(cx + d) = 0ﻫﻤﺎ ﺤﻠﻭل ﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ax + b = 0ﻭ cx + d = 0 ﻤﺜﺎل: ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ(2x – 7)(-8x – 9) = 0 : * ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ2x-7 = 0 : =x 7 ﺃﻱ 2x = 7 2 * ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ-8x-9 = 0 : =x 9 -8x = 9ﺃﻱ −8. 9 ﻭ 7 ﻫﻤﺎ: ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ(2x-7)(-8x-9) = 0 : ﻭ ﻤﻨﻪ: −8 2 .5ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ: ﻤﺜﺎل3x + 2y = -1 …(1)… : …)4x + y = 2 …(2 ﺇﻨﻬﺎ ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ ﺠﺒﺭﻴﻴﻥ Yﻭ x ﻤﻥ ﺍﺠل x = 1ﻭ y =-2ﺍﻟﻤﺴﺎﻭﺘﻴﻥ) (1ﻭ ) (2ﻤﺤﻘﻘﺘﺎﻥ ...(1)... 3x1 + 2(-2) = 3-4 = -1 ...(2)... 4x1 + (-2) = 4-2 = 2 * ﻨﻘﻭل ﺍﻥ ﺍﻟﺜﻨﺎﺌﻴﺔ) (-2 ، 1ﻟﻴﺴﺕ ﺤﻼ ﻟﻠﺠﻤﻠﺔ. * ﺒﻴﻨﻤﺎ ﺍﻟﺜﻨﺎﺌﻴﺔ ) (1 ،-2ﺤﻼ ﻟﻠﺠﻤﻠﺔ. ﻤﻼﺤﻅﺔ :ﻓﻲ ﺜﻨﺎﺌﻴﺔ ﻋﺩﺩﻴﺔ ﺍﻟﺘﺭﺘﻴﺏ ﻫﺎﻡ.
1. 5ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ: • ﻁﺭﻕ ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ: -ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺘﻌﻭﻴﺽ:ﺘﻬﺩﻑ ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺘﻌﻭﻴﺽ ﺇﻟﻰ ﺍﺴﺘﺨﺭﺍﺝ ﺃﺤﺩ ﺍﻟﻤﺠﻬﻭﻟﻴﻥ ﻤﻥ ﺇﺤﺩﻯ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺜﻡ ﺍﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻷﺨﺭﻯ. ﻤﺜﺎل :ﺤل ﺍﻟﺠﻤﻠﺔ ﺍﻵﺘﻴﺔ : …)3x + 2y = -1 …(1 …)4x + y = 2 …(2 ﺍﻟﻤﻌﺎﺩﻟﺔ...(2)...ﻤﺜﻼ ﺘﺴﻤﺢ ﺒﻜﺘﺎﺒﺔ y = 2-4x : ﻨﻌﻭﺽ y = 2-4xﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ...(1)...ﻓﻨﺠﺩ: 3x + 2(2-4x) = -1 3x + 4-8x = -1 -5x = -5ﺃﻱx = 1 : ﻨﻌﻭﺽ x = 1ﻓﻲ y = 2-4x ﻨﺠﺩy = 2-4× 1 : y = 2-4 Y = -2 -ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺠﻤﻊ: ﺘﻬﺩﻑ ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺠﻤﻊ ﺇﻟﻰ ﺠﻌل ﻤﻌﺎﻤﻠﻲ ﺱ ﺃﻭ ﻉ ﻤﺘﻌﺎﻜﺴﻴﻥ ﺜﻡ ﺘﺠﻤﻊ ﻁﺭﻑ ﻤﻊ ﻁﺭﻑ ﻤﺜﺎل :ﻨﺘﻌﺎﻤل ﻤﻊ ﻨﻔﺱ ﺍﻟﺠﻤﻠﺔ : …)1 × 3x+2y = -1 …(1 )(-2) × 4x+y = 2 …(2 …)3x+2y = -1 …(‘1 …)-8x-2y = -4 …(‘2 3x-8x+2y-2y = -1-4
Search