Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول سنة رابعة متوسط

دروس مادة الرياضيات للفصل الاول سنة رابعة متوسط

Published by DZteacher, 2015-09-24 21:19:57

Description: دروس مادة الرياضيات للفصل الاول سنة رابعة متوسط

Search

Read the Text Version

‫ﺍﻟﺘﻤﺎﺭﻴﻥ‬ ‫‪ MNP /1‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪. P‬‬ ‫ﺍﻨﻘل ﻭ ﺍﺘﻤﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪PM‬‬ ‫*‪= cos…/‬‬ ‫‪PN‬‬ ‫*‪= cos… = sin…/‬‬ ‫‪MN‬‬ ‫‪MN‬‬ ‫‪PM‬‬ ‫‪= ….‬‬ ‫*‪/‬‬ ‫‪PN‬‬ ‫*‪= …. /‬‬ ‫‪PN‬‬ ‫‪PM‬‬ ‫‪ RST /2‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪.R‬‬ ‫ﺍﻨﻘل ﻭ ﺍﺘﻤﻡ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ ﺏ ‪.Tan , Sin , Cos‬‬ ‫*‪/‬ﺍﺫﺍ ﻋﻠﻤﻨﺎ ﻁﻭل ‪ RT , RS‬ﻨﺴﺘﻁﻴﻊ ﺤﺴﺎ‪ ...‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪S‬‬ ‫ﻭﺍﻟﺯﺍﻭﻴﺔ ˆ‪T‬‬ ‫*‪/‬ﻟﻤﻌﺭﻓﺔ ﻁﻭل‪ RS‬ﻭ ‪ RT‬ﻨﺤﺴﺏ ‪ ...‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪ S‬ﻭ ﺍﻟﺯﺍﻭﻴﺔ ˆ‪. T‬‬ ‫*‪ /‬ﺍﺫﺍ ﻋﻠﻤﻨﺎ ﺍﻟﻁﻭﻟﻴﻥ ‪ ST‬ﻭ‪ RT‬ﻨﺤﺴﺏ ‪ ...‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪ S‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪. T‬‬ ‫ﻟـ‪:‬‬ ‫‪1‬‬ ‫ﺍﻟﻤﺩﻭﺭ‬ ‫ﺃﻭ‬ ‫‪/3‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﺃﻋﻁ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺘﺎﻤﺔ‬ ‫‪1000‬‬ ‫‪Tan 45° , Sin 40° , Cos 35°‬‬ ‫‪Tan 90° , Cos 50° , Sin 65°‬‬‫‪ /4‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﺃﻋﻁ ﻓﻲ ﻜل ﺍﻟﺤﺎﻟﺔ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ ﺍﻟﻭﺤﺩﺓ ﺒﺎﻟﺩﺭﺠﺎﺕ ﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﺯﺍﻭﻴﺔ ˆ‪. A‬‬‫‪Tan‬‬ ‫= ˆ‪A‬‬ ‫‪5‬‬ ‫*‪/‬‬ ‫‪Sin‬‬ ‫= ˆ‪A‬‬ ‫‪0.9‬‬ ‫*‪/‬‬ ‫‪Cos‬‬ ‫ˆ‪A‬‬ ‫=‬ ‫‪1‬‬ ‫*‪/‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪ MNP/5‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪ M‬ﺤﻴﺙ‪ Nˆ = 72°:‬ﻭ ‪MP = 6.3 cm‬‬ ‫‪1‬‬ ‫ﺜﻡ ﺃﻋﻁ ﻤﺩﻭﺭﻩ ﺇﻟﻰ‬ ‫‪NP‬‬ ‫ﺃﺤﺴﺏ‬ ‫‪. 100‬‬ ‫‪ ABC/6‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪ A‬ﺤﻴﺙ ‪ Bˆ = 68° :‬ﻭ ‪BC = 5.3 cm‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫ﺇﻟﻰ‬ ‫ﻤﺩﻭﺭﻩ‬ ‫ﺃﻋﻁ‬ ‫ﺜﻡ‬ ‫‪AC‬‬ ‫ﺃﺤﺴﺏ‬ ‫‪100‬‬

‫‪ UNE /7‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ‪ U‬ﻓﻲ ﺤﻴﺙ‪ Nˆ = 20°:‬ﻭ ‪UN = 4.5cm‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫ﺇﻟﻰ‬ ‫ﻤﺩﻭﺭﻩ‬ ‫ﺃﻋﻁ‬ ‫ﺜﻡ‬ ‫‪EU‬‬ ‫ﺃﺤﺴﺏ‬ ‫‪100‬‬‫‪ ABC /8‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ‪ A‬ﻓﻲ ﺤﻴﺙ ‪BC= 11.5cm , AC = 7.8 cm :‬‬ ‫ˆ‪B‬‬ ‫ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ‬ ‫‪1‬‬ ‫ﺃﻋﻁ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ ‪10‬‬‫‪ RST /9‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ‪ T‬ﻓﻲ ﺤﻴﺙ‪RS = 7.5 cm , RT = 4.7 cm :‬‬‫ﺍﻟﻭﺤﺩﺓ‪.‬‬ ‫‪1‬‬ ‫ﻤﺩﻭﺭﻩ‬ ‫ﺃﻋﻁ‬ ‫ﺜﻡ‬ ‫ﺃﺤﺴﺏ ˆ‪R‬‬ ‫ﺇﻟﻰ ‪100‬‬‫‪ EFG /10‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ‪ E‬ﻓﻲ ﺤﻴﺙ‪EF = 5 cm , EG = 3.5 cm :‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫ˆ‪ G‬ﺇﻟﻰ‬ ‫ﺃﻋﻁ ﻤﺩﻭﺭ ﻗﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ‬ ‫‪10‬‬‫‪ ABC /11‬ﻤﺜﻠﺙ ‪ ،‬ﺍﻻﺭﺘﻔﺎﻉ ]‪ [HA‬ﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﻀﻠﻊ ]‪ [BC‬ﺤﻴﺙ‪:‬‬‫‪AH = 4.9cm , BH = 1.4cm , CH = 2cm‬‬ ‫‪1‬‬‫ﺃﺤﺴﺏ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ ‪ 10‬ﻟﻘﻴﺱ ﺯﺍﻭﻴﺔ ﻤﻥ ﺯﻭﺍﻴﺎ ﺍﻟﻤﺜﻠﺙ ‪.‬‬‫ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺔ ‪Cos2 x + Sun2 x= 1 :‬‬ ‫= ‪Cos‬‬ ‫‪3‬‬ ‫‪ /12‬ﻋﻠﻤﺎ ﺃﻥ ‪:‬‬ ‫‪5‬‬ ‫‪ -‬ﺃﺤﺴﺏ ‪ Sin x‬ﻭ ‪.Tan x‬‬ ‫= ‪Sin‬‬ ‫‪8‬‬ ‫ﺃﻥ‪:‬‬ ‫ﻋﻠﻤﺎ‬ ‫‪/13‬‬ ‫‪17‬‬ ‫‪ -‬ﺃﺤﺴﺏ ‪ Cos x‬ﻭ ‪.Tan x‬‬‫‪Tan‬‬ ‫‪x‬‬ ‫=‬ ‫‪5‬‬ ‫ﻭ‬ ‫= ‪Sin x‬‬ ‫‪5‬‬ ‫‪ /14‬ﻋﻠﻤﺎ ﺃﻥ ‪:‬‬ ‫‪12‬‬ ‫‪13‬‬ ‫‪ -‬ﺃﺤﺴﺏ ‪.Cos x‬‬‫‪ -‬ﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ﺍﻟﻌﻼﻗﺔ ‪Cos2 x + Sin2 x = 1 :‬‬

‫‪ AB = 10‬ﻭ = ‪BH‬‬ ‫‪ ABC /15‬ﻤﺜﻠﺙ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﺭﺃﺴﻪ ﺍﻷﺴﺎﺴﻲ ‪.A‬‬ ‫*‪ [BH]-‬ﻭ ]‪ [CK‬ﺍﻻﺭﺘﻔﺎﻋﻴﻥ ﺍﻟﻤﺘﻌﻠﻘﻴﻥ ﺒﺎﻟﻀﻠﻌﻴﻥ]‪ [AC‬ﻭ ]‪ ،[AB‬ﺤﻴﺙ‬ ‫‪ 6‬ﻭ ‪.AK = 8‬‬ ‫*‪ -‬ﺃﻋﻁ ﺍﻟﻘﻴﻤﺔ ﻋﻠﻰ ﺸﻜل ﻜﺴﺭ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻟـ‪:‬‬ ‫ˆ‪. Cos Aˆ , Sin Aˆ ,Tan A‬‬

‫ﺍﻟﻤﺴﺎﺌل‬ ‫‪ /16‬ﺍﻨﻜﺴﺎﺭ ﺍﻟﻀﻭﺀ‪:‬‬‫ﻴﻨﺤﺭﻑ ﺸﻌﺎﻉ ﻀﻭﺌﻲ ﻋﻨﺩﻤﺎ ﻴﻨﺘﻘل ﻤﻥ ﺍﻟﻬﻭﺍﺀ ﺇﻟﻰ ﺍﻟﻤﺎﺀ‪.‬‬‫ﺍﻟﺯﺍﻭﻴﺔ ˆ‪ i‬ﺘﺴﻤﻰ )ﺯﺍﻭﻴﺔ ﺍﻟﻭﺭﻭﺩ( ﻭﺍﻟﺯﺍﻭﻴﺔ‬‫ˆ‪ r‬ﺘﺴﻤﻰ )ﺯﺍﻭﻴﺔ ﺍﻻﻨﻜﺴﺎﺭ( ﺍﻟﻤﻭﻀﺤﺔ ﻓﻲ ﺍﻟﺸﻜل‬‫= ˆ‪Sin r‬‬ ‫‪3‬‬ ‫‪Sin‬‬ ‫ﺤﻴﺙ‪iˆ :‬‬ ‫‪4‬‬‫ﺃ ( ﺃﺤﺴﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺍﻟﻰ ﺍﻟﻭﺤﺩﺓ‬ ‫ﻟـ ˆ‪ r‬ﻋﻠﻤﺎ ﺃﻥ ‪. iˆ =35°‬‬‫ﺏ( ﺃﺤﺴﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺍﻟﻰ ﺍﻟﻭﺤﺩﺓ‬ ‫ﻟـ ˆ‪ i‬ﻋﻠﻤﺎ ﺃﻥ ‪. rˆ =45°‬‬ ‫‪ /17‬ﺇﺭﺘﻔﺎﻉ ﻋﻤـﻭﺩ‬‫ﻟﺤﺴﺎﺏ ﺍﺭﺘﻔﺎﻉ ‪ h‬ﻟﻌﻤﻭﺩ ﻗﻤﻨﺎ ﺒﺎﻟﻘﻴﺎﺴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪a = 58.5 , b = 35.1‬‬ ‫ﻭ ‪AB = 18.7m‬‬‫ﺃ ( ﻓﻲ ﺍﻟﻤﺜﻠﺙ ‪ AHS‬ﻭ ‪BHS‬‬‫ﻋﺒﺭﻋﻥ ‪ AH‬ﻭ ‪ BH‬ﺒﺩﻻﻟﺔ ‪. h‬‬‫ﺏ( ﺍﺴﺘﻨﺘﺞ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺍﻟﻰ ﺍﻟﻭﺤﺩﺓ ﻟـ ‪.h‬‬ ‫‪ /18‬ﻁﻭل ﻭﺘﺭ ﻓﻲ ﺩﺍﺌﺭﺓ‪.‬‬‫ﺍﻟﻨﻘﻁ ‪ A‬ﻭ ‪b‬ﻴﻨﺘﻤﻴﺎﻥ ﺍﻟﻰ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ‪ θ‬ﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪8cm‬‬ ‫ﻭ‪AθˆB =40°‬‬ ‫ﺃ ( ﺃﻨﺸﺊ ﺍﻟﺸﻜل ﻭﺍﺭﺴﻡ ﺍﻻﺭﺘﻔﺎﻉ‬ ‫]‪ [OH‬ﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﻀﻠﻊ ]‪.[AB‬‬ ‫ﺏ( ﺃﺤﺴﺏ ﻗﻴﻤﺔ ‪، AB‬‬ ‫‪1‬‬ ‫ﺜﻡ ﺃﻋﻁ ﻗﻴﻤﺘﻬﺎ ﺍﻟﺘﻘﺭﻴﺒﻴﺔ ﺇﻟﻰ ‪. 10‬‬

‫ﺤل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭ ﺍﻟﻤﺴﺎﺌل‬ ‫ﺇﺘﻤﺎﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل‪:‬‬ ‫*‪/‬‬‫‪PN‬‬ ‫‪= Cos‬‬ ‫ˆ‪N‬‬ ‫ˆ‪= sin M‬‬‫‪MN‬‬ ‫‪PM‬‬ ‫‪= Cos‬‬ ‫ˆ‪M‬‬ ‫*‪/‬‬ ‫‪MN‬‬ ‫‪PM‬‬ ‫‪= Tang‬‬ ‫ˆ‪N‬‬ ‫*‪/‬‬ ‫‪PN‬‬ ‫‪PN‬‬ ‫‪= Tang‬‬ ‫ˆ‪M‬‬ ‫*‪/‬‬ ‫‪PM‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ‪ RST :‬ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪.R‬‬ ‫ﺇﺘﻤﺎﻡ ﺍﻟﺠﻤل ﺒـ ‪Tang , Sin , Cos :‬‬ ‫*‪ /‬ﺇﺫﺍ ﻋﻠﻤﻨﺎ ﻁﻭل ‪ RS‬ﻭ ‪ RT‬ﻨﺤﺴﺏ‬ ‫‪Tang‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪ S‬ﻭ ‪ Tang‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪.T‬‬ ‫*‪ /‬ﺒﻤﻌﺭﻓﺔ ﻁﻭل‪ RS‬ﻭ ‪ ST‬ﻨﺤﺴﺏ‬ ‫‪ Cos‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪ S‬ﻭ ‪ Sin‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪. T‬‬‫*‪ /‬ﺇﺫﺍ ﻋﻠﻤﻨﺎ ﺍﻟﻁﻭل ‪ ST‬ﻭ ‪ RT‬ﻨﺤﺴﺏ ‪ Sin‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪ S‬ﻭ‪ Cos‬ﺍﻟﺯﺍﻭﻴﺔ ˆ‪. T‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ‪ :‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻨﺠﺩ‪:‬‬‫‪Tang 45°= 1, Sin 40°= 0.6428, Cos 35°= 0.8192‬‬‫‪Tang 90°= , Cos 50°= 0.6428, Sin 65°= 0.9063‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ‪ :‬ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻨﺠﺩ‪:‬‬ ‫‪Aˆ =71°‬‬ ‫ﻤﻌﻨﺎﻩ‪:‬‬ ‫‪Cos‬‬ ‫ˆ‪A‬‬ ‫‪1‬‬ ‫‪=3‬‬ ‫‪ Sin Aˆ = 0.9‬ﻤﻌﻨﺎﻩ ‪Aˆ =71° :‬‬ ‫ﻤﻌﻨﺎﻩ‪Aˆ = 59° :‬‬ ‫‪Tang‬‬ ‫ˆ‪A‬‬ ‫=‬ ‫‪5‬‬ ‫‪3‬‬

‫‪1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺨﺎﻤﺱ‪ :‬ﺤﺴﺎﺏ ‪ NP‬ﺒﺎﻟﺘﺩﻭﻴﺭ ﺇﻟﻰ ‪: 100‬‬‫= ‪NP‬‬ ‫‪6.3 MP‬‬ ‫ﺃﻱ‬ ‫ˆ‪Sin N‬‬ ‫=‬ ‫‪MP‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫ˆ‪ NP = SinN‬ﻭ ﻤﻨﻪ ‪Sin72°‬‬ ‫‪NP‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪.NP = 6.62 cm :‬‬ ‫‪1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺩﺱ‪ :‬ﺤﺴﺎﺏ ‪ AC‬ﺒﺎﻟﺘﺩﻭﻴﺭ ﺇﻟﻰ ‪: 100‬‬ ‫‪ AC = BC x Sin‬ﻭ ﻤﻨﻪ‬ ‫ﺃﻱ ˆ‪B‬‬ ‫ˆ‪Sin B‬‬ ‫=‬ ‫‪AC‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪BC‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪.AC = 4.91 cm :‬‬ ‫‪AC = 5.3 x Sin 68‬‬ ‫‪:‬‬ ‫‪1‬‬ ‫ﺒﺎﻟﺘﺩﻭﻴﺭ ﺇﻟﻰ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻊ‪ :‬ﺤﺴﺎﺏ ‪EU‬‬ ‫‪100‬‬‫‪ EU = UN x Tang‬ﻭ ﻤﻨﻪ‬ ‫ﺃﻱ ˆ‪N‬‬ ‫ˆ‪Tang N‬‬ ‫=‬ ‫‪EU‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪UN‬‬ ‫‪ EU = 5 x Tang 20°‬ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪EU = 1.82 cm :‬‬ ‫‪:‬‬ ‫ˆ‪B‬‬ ‫ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ‬ ‫‪1‬‬ ‫ﺇﻋﻁﺎﺀ ﺍﻟﻤﺩﻭﺭ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻤﻥ‪:‬‬ ‫ﺇﻟﻰ ‪10‬‬‫ﻭﻤﻨﻪ ‪Bˆ = 42.5°‬‬ ‫= ˆ‪Sin B‬‬ ‫‪4.7‬‬ ‫ﺃﻱ‬ ‫= ˆ‪Sin B‬‬ ‫‪AC‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪7.5‬‬ ‫‪BC‬‬ ‫‪:‬‬ ‫ˆ‪R‬‬ ‫ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ‬ ‫‪1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺘﺎﺴﻊ‪:‬‬ ‫ﺇﻋﻁﺎﺀ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ ‪100‬‬‫ﻭﻤﻨﻪ ‪Rˆ = 42.5°‬‬ ‫= ˆ‪Sin R‬‬ ‫‪4.7‬‬ ‫ﺃﻱ‬ ‫ˆ‪Sin R‬‬ ‫=‬ ‫‪TR‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪7.5‬‬ ‫‪RS‬‬ ‫‪:‬‬ ‫ˆ‪G‬‬ ‫ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ‬ ‫‪1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻌﺎﺸﺭ‪:‬‬ ‫ﺇﻋﻁﺎﺀ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ ‪10‬‬‫ﻭﻤﻨﻪ ‪Gˆ = 55°,..‬‬ ‫ˆ‪Sin G‬‬ ‫=‬ ‫‪5‬‬ ‫ﺃﻱ‬ ‫ˆ‪Sin G‬‬ ‫=‬ ‫‪EF‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪3.5‬‬ ‫‪EG‬‬

: ‫ﺍﻟﺘﻤﺭﻴﻥ ﺍﺤﺩ ﻋﺸﺭ‬ Â = 180°-……- …… ; : ‫ﻟﺩﻴﻨﺎ‬ Â = 180°- Bˆ - Gˆ A ≈ : ‫ﻭﻤﻨﻪ‬ : 12 ‫ﺍﻟﺘﻤﺭﻴﻥ‬ Cos2 x + Sin2 x = 1 ‫ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺔ‬ : ‫ﻟﺩﻴﻨﺎ‬ Sin2 x = 1 - Cos2 x sin ²x = 1−  5 ² = 1 − 95 : ‫ﺃﻱ‬  5  25 sin ²x 16 25 sin = 4 : ‫ﺃﻱ‬ 5 4Tang = 4 < Tangx = 5 , Tangx = sin x ‫ﻟﺩﻴﻨﺎ‬ 3 3 cos x 5

‫اﻟﺤﺴﺎب اﻟﺤﺮﻓﻲ‬ ‫اﻟﻜﻔﺎءات اﻟﻤﺴﺘﻬﺪﻓﺔ‪:‬‬ ‫*‪/‬ﻤﻌﺭﻓﺔ ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ ﻭﺘﻭﻅﻴﻔﻬﺎ ﻓﻲ ﺍﻟﺤﺴﺎﺏ‬ ‫ﺍﻟﻤﺘﻤﻌﻥ ﻓﻴﻪ ﻭ ﻓﻲ ﺍﻟﻨﺸﺭ ﻭﺍﻟﺘﺤﻠﻴل‪.‬‬ ‫*‪/‬ﻨﺸﺭ ﺃﻭ ﺘﺤﻠﻴل ﻋﺒﺎﺭﺍﺕ ﺠﺒﺭﻴﺔ ﺒﺴﻴﻁﺔ‪.‬‬ ‫*‪ /‬ﺤل ﻤﻌﺎﺩﻻﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﺤل \"ﻤﻌﺎﺩﻟﺔ ﺠﺩﺍﺀ\"‪.‬‬ ‫*‪/‬ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ‬ ‫ﺠﺒﺭﻴﺎ‪.‬‬ ‫*‪ /‬ﺘﻔﺴﻴﺭ ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ‬ ‫ﺒﻤﺠﻬﻭﻟﻴﻥ ﺒﻴﺎﻨﻴﺎ‪.‬‬ ‫*‪ /‬ﺤل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ ﻭ ﺘﻤﺜﻴل ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭﻟﻬﺎ ﻋﻠﻰ‬ ‫ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ‪.‬‬‫*‪ /‬ﺤل ﻤﺸﻜﻼﺕ ﺒﺘﻭﻅﻴﻑ ﻤﻌﺎﺩﻻﺕ ﺃﻭ ﻤﺘﺭﺍﺠﺤﺎﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ ﺃﻭ‬ ‫ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ‪.‬‬‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬ ‫ﺍﻟﺩﺭﺱ‬

‫ﺍﻟﺩﺭﺱ‬ ‫‪ .1‬ﺍﻟﻨـﺸــﺭ‪:‬‬ ‫ﺘﻌﺭﻴﻑ‪:‬‬ ‫ﻨﺸﺭ ﺠﺩﺍﺀ ‪ :‬ﻫﻭ ﺘﺤﻭﻴﻠﻪ ﺇﻟﻰ ﻤﺠﻤﻭﻉ ﺃﻭ ﺇﻟﻰ ﻓﺭﻕ‪.‬‬ ‫ﺨﻭﺍﺹ‪:‬‬ ‫‪ ,a , b, c, d , k‬ﺃﻋﺩﺍﺩ‬ ‫‪k (a + b) = ka +kb.‬‬‫‪K ( a – b) = ka – kb.‬‬‫‪( a + b )( c + d ) = ac + ad + bc + bd .‬‬ ‫ﺃﻤﺜﻠﺔ‪ :‬ﺃﻨﺸﺭ ﻭ ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬‫‪A = 3 ( 2 + 5X ) =3 × 2 + 3 × 5X = 6 + 5X.‬‬‫)‪B = ( X + 4 )( X + 3) = (X × X)+(X× 3) + (4 × X) + (4 × 3‬‬‫‪= X2 + 3X + 4X +12‬‬ ‫ﺘﺒﺴﻴﻁ ﺍﻟﻌﺒﺎﺭﺓ ‪3X+4X :‬‬‫‪B = X2 + 7X + 12.‬‬

‫‪( a + b )2 = a2 + 2 ab + b2‬‬ ‫‪ .2‬ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ‪:‬‬ ‫ﺍﻟﺤﺩ ‪ 2 ab‬ﻫﻭ ﻀﻌﻑ ﺍﻟﺠﺩﺍﺀ ﻟـ ‪ a‬ﻭ ‪b‬‬ ‫*ﻤﺭﺒﻊ ﻤﺠﻤﻭﻉ ‪:‬‬‫‪A = ( x + 3)2‬‬ ‫ﻤﺜﺎل‪:‬‬ ‫ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ ‪ A‬ﺤﻴﺙ ‪:‬‬ ‫‪= x2 + 2(x × 3) + 32‬‬ ‫* ﻤﺭﺒﻊ ﻓﺭﻕ‪:‬‬‫‪A = x2 + 6x + 9.‬‬ ‫ﻤﺜﺎل‪:‬‬ ‫‪( a + b )2 = a2 + 2ab +b2‬‬ ‫ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ ‪ A‬ﺤﻴﺙ ‪:‬‬ ‫‪A = ( x – 4 )2‬‬ ‫*ﺠﺩﺍﺀ ﻤﺠﻤﻭﻉ ﻭﻓﺭﻕ‪:‬‬ ‫‪= x2 – 2 (4 × x) + 42‬‬ ‫‪A = x2 – 8x + 16.‬‬ ‫‪( a + b)( a – b ) = a2 – b2.‬‬ ‫ﻤﺜﺎل‪ :‬ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ ‪ A‬ﺤﻴﺙ ‪:‬‬‫)‪A = ( x + 2 )( x – 2‬‬ ‫‪= x2 – (2)2‬‬‫‪A = x2 – 4.‬‬

‫‪ .3‬ﺍﻟﺘﺤﻠﻴل ‪:‬‬ ‫ﺘﻌﺭﻴﻑ‪:‬‬ ‫ﺘﺤﻠﻴل ﻤﺠﻤﻭﻉ ﺃﻭ ﻓﺭﻕ ﻫﻭ ﺘﺤﻭﻴﻠﻪ ﺇﻟﻰ ﺠﺩﺍﺀ ﺃﻭ ﻓﺭﻕ‪.‬‬ ‫ﻜﻲ ﻨﺘﻤﻜﻥ ﻤﻥ ﺘﺤﻠﻴل ‪ ،‬ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ‪،‬‬ ‫ﻓﺈﻥ ﻟﻡ ﻴﻅﻬﺭ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ ﺠﺭﺏ ﺇﺤﺩﻯ ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ‪.‬‬ ‫ﺨـﻭﺍﺹ‪:‬‬ ‫‪Ka + kb = k ( a + b ).‬‬‫‪Ka – kb = k ( a – b ).‬‬‫‪a2 + 2ab +b2 = ( a + b )2‬‬‫‪a2 - 2ab +b2 = ( a - b )2 .‬‬‫‪a2 - b2 = ( a + b ) ( a – b ).‬‬ ‫ﺃﻤﺜﻠﺔ‪ :‬ﺤﻠل ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬‫‪A = 4x + 12 =4x + 4× 3‬‬‫‪A = 4 ( x + 3 ).‬‬‫‪B = (x + 2)(2x +1) – (x +2 ) x‬‬‫)‪= ( x + 2 )( 2x +1 – x‬‬‫‪B = ( x + 2 ) ( x + 1 ).‬‬‫ﻻ ﻴﻅﻬﺭ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ ﻨﻭﻅﻑ ‪C = x2 + 16x + 64‬‬‫ﺍﻟﻤﺘﻁﺎﺒﻘﺎﺕ ﺍﻟﺸﻬﻴﺭﺓ ‪C =x2 + 2(8x) 82‬‬‫‪C = ( x + 8 )2.‬‬ ‫‪(a+b)2=a2 +2ab +b2‬‬‫‪D = x2 – 9‬‬‫‪D = x2 –3a2‬‬‫)‪D =(x – 3)(x +3‬‬

‫‪ .4‬ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ ‪:‬‬ ‫ﺍﻟﺨﻭﺍﺹ‪:‬‬ ‫‪ A , B , C‬ﺃﻋﺩﺍﺩ‪.‬‬‫* ﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭل ﻭﺍﺤﺩ ‪X‬‬ ‫ﻴﻤﻜﻥ ﺘﺤﻭﻴﻠﻬﺎ ﺇﻟﻰ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺸﻜل‪AX = B‬‬‫=‪X‬‬ ‫‪B‬‬ ‫* ﺇﺫﺍ ﻜﺎﻥ ‪ A ≠ 0‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ AX=B‬ﻫﻭ‬ ‫‪A‬‬ ‫ﻁﺭﻴﻘﺔ ﺍﻟﺤل‪:‬‬ ‫ﻟﺘﺤﻭﻴل ﻤﻌﺎﺩﻟﺔ ﺇﻟﻰ ﺍﻟﺸﻜل ‪ AX = B‬ﻨﺠﻤﻊ‬ ‫ﻭﺤﻴﺩﺍﺕ ﺍﻟﺤﺩ ﺍﻟﺘﻲ ﺘﺸﻤل ‪ X‬ﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ﻟﻠﻤﺴﺎﻭﺍﺓ‬ ‫ﻭ ﻭﺤﻴﺩﺍﺕ ﺍﻟﺤﺩ ﺍﻷﺨﺭﻯ ﻋﻠﻰ ﻴﻤﻴﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ‪.‬‬ ‫ﻤﺜﺎل)‪ : (1‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‪5X + 2 = 2X + 3 :‬‬ ‫ﻨﻁﺭﺡ –‪ 2‬ﻤﻥ ﻁﺭﻓﻲ ﺍﻟﻤﺴﺎﻭﺍﺓ‪5X+2-2 = 2X+3-2 :‬‬ ‫ﻨﻁﺭﺡ ‪ 2X‬ﻤﻥ ﻁﺭﻓﻲ ﺍﻟﻤﺴﺎﻭﺍﺓ‪5X=2X+1 :‬‬ ‫‪5X-2X=2X-2X+1‬‬ ‫‪3X = 1‬‬ ‫‪1‬‬ ‫×‬ ‫= ‪3X‬‬ ‫‪1‬‬ ‫×‬ ‫‪1‬‬ ‫‪:‬‬ ‫‪1‬‬ ‫ﻓﻲ‬ ‫ﺍﻟﻤﺴﺎﻭﺍﺓ‬ ‫ﻁﺭﻓﻲ‬ ‫ﻨﻀﺭﺏ‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫=‪X‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫= ‪ X‬ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﺩﺩﻴﺔ ﻟﻠﻤﺠﻬﻭل ‪ X‬ﺍﻟﺘﻲ ﻤﻥ ﺍﺠﻠﻬﺎ ﺘﺘﺤﻘﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪.‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫ﻤﺜﺎل)‪: (2‬‬ ‫‪5‬‬ ‫‪X‬‬ ‫=‬ ‫‪4‬‬ ‫‪:‬‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ‬ ‫ﺤل‬ ‫‪3‬‬ ‫ﻨﻀﺭﺏ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻲ ﻤﻘﻠﻭﺏ‬ ‫‪3‬‬ ‫×‬ ‫‪5‬‬ ‫=‪X‬‬ ‫‪3‬‬ ‫×‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫‪5‬‬ ‫‪X‬‬ ‫=‬ ‫‪12‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫×‬ ‫‪12‬‬ ‫‪=4‬‬ ‫ﻨﺘﺤﻘﻕ‪:‬‬ ‫‪3‬‬ ‫‪5‬‬

‫ﻫﻭ ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ ‪.‬‬ ‫‪12‬‬ ‫ﻨﺴﺘﻨﺘﺞ ﺃﻥ‪:‬‬ ‫‪5‬‬ ‫‪ 1. 4‬ﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺸﻜل ‪: (ax + b)(cx + d)=0‬‬ ‫ﺨﻭﺍﺹ‪:‬‬ ‫ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩﺍﻥ‪a;b:‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ‪ : a × b = 0‬ﻓﺈﻥ‪ a=0 :‬ﺃﻭ ‪b=0‬‬ ‫ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ (ax + b)(cx + d) = 0‬ﻫﻤﺎ ﺤﻠﻭل ﻜل ﻤﻥ‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ‪ ax + b = 0‬ﻭ ‪cx + d = 0‬‬ ‫ﻤﺜﺎل‪:‬‬ ‫ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‪(2x – 7)(-8x – 9) = 0 :‬‬ ‫* ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‪2x-7 = 0 :‬‬ ‫=‪x‬‬ ‫‪7‬‬ ‫ﺃﻱ‬ ‫‪2x = 7‬‬ ‫‪2‬‬ ‫* ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‪-8x-9 = 0 :‬‬ ‫=‪x‬‬ ‫‪9‬‬ ‫‪ -8x = 9‬ﺃﻱ‬ ‫‪−8‬‬‫‪.‬‬ ‫‪9‬‬ ‫ﻭ‬ ‫‪7‬‬ ‫ﻫﻤﺎ‪:‬‬ ‫ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ‪(2x-7)(-8x-9) = 0 :‬‬ ‫ﻭ ﻤﻨﻪ‪:‬‬ ‫‪−8‬‬ ‫‪2‬‬ ‫‪ .5‬ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ‪:‬‬ ‫ﻤﺜﺎل‪3x + 2y = -1 …(1)… :‬‬ ‫…)‪4x + y = 2 …(2‬‬ ‫ﺇﻨﻬﺎ ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ ﺠﺒﺭﻴﻴﻥ ‪ Y‬ﻭ ‪x‬‬ ‫ﻤﻥ ﺍﺠل ‪ x = 1‬ﻭ ‪ y =-2‬ﺍﻟﻤﺴﺎﻭﺘﻴﻥ)‪ (1‬ﻭ )‪ (2‬ﻤﺤﻘﻘﺘﺎﻥ‬ ‫‪...(1)... 3x1 + 2(-2) = 3-4 = -1‬‬ ‫‪...(2)... 4x1 + (-2) = 4-2 = 2‬‬ ‫* ﻨﻘﻭل ﺍﻥ ﺍﻟﺜﻨﺎﺌﻴﺔ)‪ (-2 ، 1‬ﻟﻴﺴﺕ ﺤﻼ ﻟﻠﺠﻤﻠﺔ‪.‬‬ ‫* ﺒﻴﻨﻤﺎ ﺍﻟﺜﻨﺎﺌﻴﺔ )‪ (1 ،-2‬ﺤﻼ ﻟﻠﺠﻤﻠﺔ‪.‬‬ ‫ﻤﻼﺤﻅﺔ‪ :‬ﻓﻲ ﺜﻨﺎﺌﻴﺔ ﻋﺩﺩﻴﺔ ﺍﻟﺘﺭﺘﻴﺏ ﻫﺎﻡ‪.‬‬

‫‪ 1. 5‬ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ‪:‬‬ ‫• ﻁﺭﻕ ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ‪:‬‬ ‫‪ -‬ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺘﻌﻭﻴﺽ‪:‬‬‫ﺘﻬﺩﻑ ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺘﻌﻭﻴﺽ ﺇﻟﻰ ﺍﺴﺘﺨﺭﺍﺝ ﺃﺤﺩ ﺍﻟﻤﺠﻬﻭﻟﻴﻥ ﻤﻥ ﺇﺤﺩﻯ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺜﻡ‬ ‫ﺍﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻷﺨﺭﻯ‪.‬‬ ‫ﻤﺜﺎل ‪ :‬ﺤل ﺍﻟﺠﻤﻠﺔ ﺍﻵﺘﻴﺔ ‪:‬‬ ‫…)‪3x + 2y = -1 …(1‬‬ ‫…)‪4x + y = 2 …(2‬‬ ‫ﺍﻟﻤﻌﺎﺩﻟﺔ‪...(2)...‬ﻤﺜﻼ ﺘﺴﻤﺢ ﺒﻜﺘﺎﺒﺔ ‪y = 2-4x :‬‬ ‫ﻨﻌﻭﺽ ‪ y = 2-4x‬ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ‪...(1)...‬ﻓﻨﺠﺩ‪:‬‬ ‫‪3x + 2(2-4x) = -1‬‬ ‫‪3x + 4-8x = -1‬‬ ‫‪ -5x = -5‬ﺃﻱ‪x = 1 :‬‬ ‫ﻨﻌﻭﺽ ‪ x = 1‬ﻓﻲ ‪y = 2-4x‬‬ ‫ﻨﺠﺩ‪y = 2-4× 1 :‬‬ ‫‪y = 2-4‬‬ ‫‪Y = -2‬‬ ‫‪ -‬ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺠﻤﻊ‪:‬‬ ‫ﺘﻬﺩﻑ ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﺠﻤﻊ ﺇﻟﻰ ﺠﻌل ﻤﻌﺎﻤﻠﻲ ﺱ ﺃﻭ ﻉ ﻤﺘﻌﺎﻜﺴﻴﻥ ﺜﻡ ﺘﺠﻤﻊ ﻁﺭﻑ ﻤﻊ ﻁﺭﻑ‬ ‫ﻤﺜﺎل ‪ :‬ﻨﺘﻌﺎﻤل ﻤﻊ ﻨﻔﺱ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫…)‪1 × 3x+2y = -1 …(1‬‬ ‫)‪(-2) × 4x+y = 2 …(2‬‬ ‫…)‪3x+2y = -1 …(‘1‬‬ ‫…)‪-8x-2y = -4 …(‘2‬‬ ‫‪3x-8x+2y-2y = -1-4‬‬






Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook