गिणत क ा ७ नेपाल सरकार िश ा ,िव ान तथा िवधी म ालय पा म िवकास के सानोिठिम, भ पुर
ul0ft sIff & k|sfzs gk] fn ;/sf/ lzIff, lj1fg tyf k|ljlw dGqfno kf7o\\ jm| d ljsf; sG] b| ;fgf]l7dL, eStk/'
k|sfzs g]kfn ;/sf/ lzIff, lj1fg tyf k|ljlw dGqfno kf7\\oj|md ljsf; sG] b| ;fgfl] 7dL, eStk/' © ;jf{lwsf/ kf7o\\ jm| d ljsf; s]Gb| o; kf7o\\ k':ts;DaGwL ;Dk0\" f{ clwsf/ kf7o\\ jm| d ljsf; sG] b| ;fgf]l7dL, eStk/' df lglxt /xs] f] 5 . kf7o\\ jm| d ljsf; s]Gb|sf] lnlvt :jLsl[ tlagf Jofkfl/s k|ofh] gsf nflu o;sf] k/' } jf cf+lzs efu x'ax' k|sfzg ug,{ kl/jtg{ u//] k|sfzg ug,{ s'g} ljBt' Lo ;fwg jf cGo k|ljlwaf6 /]s8{ ug{ / kl| tlnlk lgsfNg kfOg] 5}g . ky| d ;+:s/0f M lj=;=+ @)&! kl/dflht{ bf];|f] ;+:s/0f M lj=;+ @)&^ d'b0| fM hgs lzIff ;fduL| s]Gb| ln= ;fgf]l7dL, eStk'/ . dN\" o ?= kf7\\ok:' ts;DaGwL kf7sx¿sf sg' } klg k|sf/sf ;´¬ fjx¿ ePdf kf7o\\ j|md ljsf; s]Gb,| ;dGjo tyf k|sfzg zfvfdf k7fOlbg'xg' cg'/fw] 5 . kf7sx¿af6 cfpg] ;¬´fjx¿nfO{ s]Gb| xflb{s :jfut ub5{ . tkfOn“ ] lsg]sf] kf7\\ok':tsdf sg' } ql' 6 ePdf glhssf] ljt/saf6 pSt k':ts ;f6g\\ ;Sgx' 'g] 5 .
xfd|f] egfO lzIffnfO{ p2]Zod\"ns, Jofjxfl/s / ;d;fdlos agfpg kf7\\oj|md ljsf; sG] b|n] ljBfno txsf kf7\\oj|mdtyf kf7o\\ k':ts ljsf; tyf kl/dfhg{ ug{] sfo{nfO{ lg/Gt/tf lbFb} cfPsf] 5 . ljBfyL{df /fi6k« d|] , /fli6o« tf kl| tsf] ;dk0{ f / nfs] tflGqs k4ltnfO{ cfTd;ft\\ ug]{ efjgfsf] ljsf; u/fO{ gl} tsjfg,\\ cgz' fl;t, :jfjnDaL tyf l;hg{ zLn eO{ ;dfjz] L ;dfh lgdf0{ fdf ofu] bfg lbg ;Sg] Ifdtf ljsf; xg' cfjZos 5 .pgLx¿df eflifs tyf ul0ftLo l;ksf ;fy} lj1fg, ;r\" gf tyf ;~rf/ kl| jlw, jftfj/0f, :jf:Yo tyf hg;ªV\\ of;DaGwL cfwf/et\" 1fg tyf hLjgfk] ofu] L l;ksf] ljsf; xg' h?/L 5 . To;} u/L ljBfyL{x¿df snf tyf ;f}Gbo{ kl| tsf] cg'/fu / dfgjLo dN\" o dfGotf, cfbz{ tyf j}lzi6o\\ x¿k|ltsf] ;rt] tf ;lxt ltgsf] ;/+ If0f, ;+jw{g ug{] efjgfsf] ljsf; cfjZos 5 . ;dtf d\"ns ;dfhsf] lgdf0{ fdf ;xofu] k'¥ofpg pgLx¿df ljleGg hfthflt, lnªu\\ , efiff, wd{, ;:+ s[lt / Ifq] nufotsf ljljwtfx¿sf] ;Ddfg ug{] / dfgj clwsf/ tyf ;dflhs d\"No dfGotf k|lt ;r]t eO{ lhDd]jf/L jxg ug{] efjgfsf] ljsf; u/fpg' cfjZos 5 . plNnlvt cfjZostfnfO{ bl[ i6ut u/L cfwf/e\"t lzIff kf7\\ojm| d -sIff ^–*_, @)^( nfO{ d\"n cfwf/dfgL lzIff;DaGwL ljleGg cfof]usf ;'emfj, lzIfs, ljBfyL{ tyf cleefjsnufot lzIff;u“ ;Da4 ljleGg JolSt ;lDdlnt ufi] 7L / cGt/lj|mofsf lgisif{ / ljleGg ljBfnodf k/LIf0f u/L k|fKt k[i7kf]if0f ;d]tnfO{ ;d]6L of] kf7\\ok':ts tof/ kfl/Psf] xf] . kf7o\\ k:' tsnfO{ o; :j¿kdf Nofpg] sfod{ f kf7o\\ jm| d ljsf; sG] bs| f sfo{sf/L lgbz]{ s lbjfs/ 9'ª\\u]n tyf 8f= dLgaxfb'/ >]i7, 8f= n]vgfy zdf{, 8f= afns[i0f /l~ht, 808kfl0f zdf{, x]d/fh kf]v/]n, j}s'07 vgfn, j?0f j}B, ljho aflgof, uf]df >]i7, hLj/fh cfrfo{, /dz] k;| fb cj:yL, /fhG] b| b]jsf]6f / dg} f clwsf/Lsf] ljzi] f of]ubfg /x]sf] 5 . o;sf] efiff ;Dkfbg xl/k;| fb lg/fn} f, snf ;Dkfbg >Lxl/ >i] 7 tyf n]cfp6 l8hfOg ho/fd sO' s“ ]naf6 ePsf] xf] . kf7o\\ k:' tsnfO{ cWofjlws tyf kl/dfh{g u/L ks| flzt ug{ sfo{df o; sG] bs| f dxflgb]{zs 8f= n]vgfy kf}8]n, >L u0f]zk|;fb e66\\ /fO{ / >L lrgfs'df/L lg/fn} fsf] ofu] bfg /x]sf] 5 . o; kf7\\ok':tssf] ljsf; tyf kl/dfh{g sfod{ f ;+nUg ;ak} l| t kf7\\ojm| d ljsf; sG] b| wGojfb ks| 6 ub{5 . kf7o\\ k':tsnfO{ lzIf0f l;sfOsf] dxŒjk\"0f{ ;fwgsf ¿kdf lnOG5 . o; kf7o\\ k':tssf] k|of]uaf6 kf7o\\ jm| dåf/f nlIft ;Ifdtf xfl;n ug{ ljBfyL{nfO{ ;xofu] k'Ug] ck]Iff ul/Psf] 5 . kf7\\ok':tsnfO{ ;s];Dd lj|mofsnfkd'vL / ?lrs/ agfpg] k|oTg ul/Psf] 5 . o; kf7o\\ k:' tsnfO{ ce}m kl/ist[ kfg{sf nflu lzIfs, ljBfyL{, cleefjs, al' 4hLjL Pjd\\ ;Dk\"0f{ kf7sx¿sf] ;d]t dxŒjk\"0f{ el\" dsf /xg] x'“bf ;Da4 ;a}sf] /rgfTds ;e' mfjsf nflu kf7o\\ jm| d ljsf; s]Gb| xflbs{ cg'/fw] ub{5 . g]kfn ;/sf/ lzIff, lj1fg tyf k|ljlw dGqfno lj= ;+= @)&^ kf7\\ojm| d ljsf; sG] b|
ljifo;\"rL ki[ 7 ;ª\\Vof PsfO zLif{s 1 15 1= /]vf / sf]0f 33 2= lqeh' , rte' '{h / axe' 'h 37 3= ;d¿ktf / cg'¿ktf 40 4= jQ[ 46 5= 7f;] cfsl[ t 53 6= lgb]{zfª\\s 65 7= kl/ldlt / Ifq] kmn 75 8= :yfgfGt/0f 84 9= ;dldlt / 6;] n;] g 89 10= lbzfl:ylt / :s]n 8O« ª 105 11= ;dx\" 121 12= k\"0f{ ;ªV\\ of 133 13= k\"0ff{ª\\s 138 14= cfg'kflts ;ª\\Vof 139 15= cgfgk' flts ;ª\\Vof 144 16= leGg / bzdnj 152 17= cg'kft, ;dfg'kft / k|ltzt 156 18= gfkmf / gf]S;fg 160 19= P]lss lgod 164 20= ;fwf/0f Aofh 178 21= tYofªs\\ zf:q 197 22= aLhLo cleJo~hs 203 23= 3ftfªs\\ 221 24= ;dLs/0f, c;dfgtf / n]vflrq pQ/dfnf
PPssffOO 11 /]vf / sf0] f (Line and Angle) 1.1. sDkf;sf] ko| fu] åf/f sf0] fx¿sf] /rgf (Construction of Angles using Compass) xfdLn] 30°, 60°, 90° / 45° sf sf0] fx¿sf] /rgf ug{ cluNnf] sIffdf l;ls;s]sf 5f} “ . oxf“ yk sx] L sf0] fx¿sf] /rgf ug{ l;Sg] 5f“} . 1. 120° sf] sf]0fsf] /rgf sf0] f /rgf ug]{ tl/sf 1. Pp6f /v] fv08 PQ lvr . 2. laGb' P df sDkf;sf] dbtn] sg' } rfk lvr . 3. laGb' P df 60° sf] sf0] f xg' ] u/L laGb' A af6 lrx\\g D nufpm . 4. laGb' D af6 kml] / pxL 60° sf] Pp6f rfk lnO{ sf6 / lrxg\\ E nufpm . 5. ca laGb' P / E hf8] L F ;Dd nDAofpm . ctM ∠FPQ = 120° cfjZos sf0] f tof/ eof] . 2. 135° sf] sf0] fsf] /rgf ul0ft, sIff – & sg' s'g sf0] f hf8] d] f 135° xG' 5, xfn] f < oxf“ 135° = 90° + 45° xG' 5 . sf0] f /rgf ug{] tl/sf 1. Pp6f /]vfv08 AB lvr / X ;Dd nDAofpm . 2. laGb' A df 90° sf] sf0] f /rgf u/ . AB df 90° x'g] /v] fnfO{ AC gfds/0f u/ . ca ∠CAB = 90° eof] . 3. ca laGb' D / E af6 ∠XAC = 90° nfO{ ;dlåefhg ug{ ∠XAC sf] cws{ AG lvr . ∠GAC = ∠XAG = 45° xG' 5, s;/L < gfk]/ x]/ . 4. oxf“ ∠GAB = ∠CAB + ∠GAC = 90° + 45° = 135° 5 . ctM cfjZos ∠GAB = 135° sf0] f tof/ eof ] . 1
3. 75° sf] sf0] fsf] /rgf T 75° sf] sf]0fsf] /rgf ug]{ tl/sf af/d] f 5nkmn u/f“ } . 60° + 15° = 75° xG' 5 . sf0] f /rgf ug]{ tl/sf 1. Pp6f /v] fv08 MN lvr . 2. laGb' M df ∠QMN = 90° sf] sf]0f agfpm . T af6 M df 60° sf0] f aGg] u/L laGb' O sf6 . 3. ca ∠QMO = 90° - 60° = 30° xG' 5 . To;}n] ∠QMO sf] cws{ lvr]df ∠OMN sf] cf;Gg sf0] f 15° sf] aGg] 5 4. ∠RMO sf] cws{ MS lvr . ctM cfjZos ∠SMN = 75° sf] sf0] f tof/ eof] . 4. 105° sf] sf0] fsf] /rgf 105° = 90° + 15° x'G5 . To;n} ] 90° sf] sf0] fdf yk 15° sf] sf]0f /rgf u/d] f 105° sf] sf]0f aG5 . sf0] f /rgf ug{] tl/sf 1. laGb' M df ∠QMN = 90° / ∠TMN = 120° sf] sf0] f /rgf u/ . ∠QMT = 120° - 90° = 30° xG' 5 . 2. ca laGb' P / R af6 ∠TMQ = 30° nfO{ ;dlåefhg ug{ cws{ MS lvr . 3. ca ∠QMT sf] cws{ MS lvr . hxf“ ∠SMQ = ∠PMS = 15° xG' 5 . o;/L ∠SMN = ∠QMN + ∠QMS = 90° + 15° = 105° rflxPsf] sf0] f tof/ eof] . 2 ul0ft, sIff – &
cEof; 1.1 1. ?n/ / sDkf;sf] ;xfotfn] lgDgfg;' f/sf gfk ePsf sf0] fx¿ lvr M -s_ 60° -v_ 30° -u_ 90° -3_ 45° -ª_ 120° -r_ 135° -5_ 75° -h_ 105° N 2. lgDgfg';f/sf sf]0fx¿ lvr M -s_ laGb' A df 120° B -v_ laGb' N df 135° M A -u_ laGb' Y df 75° -3_ laGb' R df 45° X PQ R Y 3. sDkf;sf] ;xfotfn] 75° sf] sf]0f lvrL To;nfO{ cfwf u/ . Tof] cfwf sf]0f slt l8u|Lsf] aGof,] gfk/] x/] . 4. sDkf;sf] ;xfotfn] Pp6f 30° sf] sf]0f lvrL To;nfO{ cfwf u/ . gfk]/ x/] slt l8u|Lsf] sf0] f aGof] < 5. Pp6f /]vfv08 MN sf] laGb' M df 120° / laGb' N df 30° sf] sf]0f agfpm . sf0] fx¿ agfpg] /v] fv08 sfl6Psf] laGb'nfO{ O gfd bp] m . ∠MON gfk / slt l8u|Lsf] sf]0f eof,] nv] . 6. s'g} Pp6f /]vfv08 PQ lvrL jm| dzM laGbx' ¿ P / Q df 75° / 30° sf sf]0fx¿ agfpm . sf0] fx¿ agfpg] /v] fv08 sfl6Psf] laGbn' fO{ R gfd bp] m . ∠PRQ gfk / slt l8uL| sf] eof] nv] . 3 ul0ft, sIff – &
1.2 sDkf;sf] ko| fu] af6 a/fa/ sf]0fsf] /rgf (Construction of Equal Angle Using Compass) pbfx/0f 1 sg' } Pp6f sf]0f a/fa/sf] csf]{ sf0] fsf] /rgf u/ . dfgf}“ Pp6f sf]0f ∠MNO lbOPsf] 5 . /rgf ug'{kg{] M ∠MNO a/fa/ gfksf] csf{] sf]0f /rgf ug{' 5 . /rgf ug{] tl/sf 1. /]vfv08 AB lvr . 2. laGb' N af6 NO / MN df j|mdzM X / Y df sf6g\\ ] u/L s'g} gfksf] rfk XY lvr . 3. r/0f 2 s} rfk lnP/ laGb' A af6 AB nfO{ C df sf6g\\ ] u/L Pp6f cln nfdf] rfk lvr . 4. sDkf;sf] l;of] laGb' X df c8\\ofP/ sDkf;sf] kl] G;nn] Y df 5'g] u/L gfk]/ rfk XY sf] nDafO a/fa/sf] rfk np] m . 5. r/0f 4 s} rfksf] nDafO a/fa/sf] rfkn] laGb' C df sDkf;sf] l;of] /fvL klxnf] rfknfO{ laGb' D df sf6g\\ ] u/L csf]{ rfk lvr . 6. laGb' AD eO{ hfg] /]vf AE lvr . 7. ∠MNO / ∠EAB gfk/] x]/ . a/fa/ eP ePgg\\, t'ngf u//] x]/ . o;/L rflxPsf] ∠MNO a/fa/sf] ∠EAB tof/ eof] . dflysf lrqdf ∠MNO = ∠EAB slt xG' 5 gfk]/ x/] . cEof; 1.2 1. tnsf sf0] fx¿ / laGb'x¿nfO{ sfkLdf 6]«l;ª u/ . lbOPsf laGb'x¿df a/fa/ sf0] fx¿sf] / rgf u/L b]vfpm M -s_ -v_ P X S Y ZA R 4 Q ul0ft, sIff – &
-u_ -3_ F G MO P H E N -ª_ C -r_ S D V A B U T 2. sg' } 2 cf6] f km/s km/s gfksf sf]0fx¿ /rgf u/L ltgLx¿sf] gfk a/fa/sf] sf]0f sDkf;sf] ko| fu] u/L /rgf u/ . 3. sg' } lglZrt gfk a/fa/sf] sf]0f ∠ABC lvr . ca ∠ABC = ∠XYZ agfP/ bv] fpm . bj' } sf]0f gfk]/ x]/ . s] ∠ABC = ∠XYZ eof] < cfkm\\ gf] / ;fyLsf] /rgf tn' gf u/L x/] . 4. dfly kZ| g g=+ 1 df lbOP h:t} u/L 5 cf]6f k|Zgx¿ cfkm“} n] agfP/ /rgf u/ . 5. Pp6f 60° sf] sf0] f lvr / Tof] sf]0f;“u a/fa/ xg' ] sf0] fsf] /rgf u/ . 5 ul0ft, sIff – &
1.3 sf0] fsf hf8] fx¿sf] kl/ro (Introduction to Pair of Angles) 1. cf;Gg sf]0fx¿ (Adjacent Angles) lbOPsf] lrqdf, zLif{laGb' A df slt cf6] f /]vfv08x¿ 5g\\ < D C tL s'g s'g x'g \\ . zLif{laGb' A df slt cf]6f sf]0f ag]sf 5g\\ < A B tL s'g sg' x'g\\ < gfd nv] . ∠DAC / ∠CAB df s] s] s/' fx¿ ;femf 5g\\ < ;u“ s} f] lrqdf zLifl{ aGb' A af6 hfg] /]vfv08x¿ AB, AC, AD / AE 5g \\ . bO' { cf]6f sf]0fx¿ ∠DAC / ∠CAB df zLif{laGb' E A / eh' f AC b'j}df ;femf 5g \\ . To;n} ] ∠DAC / ∠CAB cf;Gg sf]0fx¿ x'g \\ . cGo 2 hf8] L cf;Gg sf]0fx¿sf] gfd nv] . sfkLdf dflysf] lrq ;f//] yk 2 cf6] f /]vfv08x¿ zLif{laGb' A af6 tfg . gof“ ags] f cGo 4 hf]8L cf;Gg sf0] fsf] gfd nv] . ca s] ltdLn] cf;Gg sf0] fsf] kl/efiff lbg ;S5f} < cfkm“} nV] g sf]l;; u/ . cfkm\\ gf] nv] fOnfO{ ;fyL;“u 5nkmn u/L lgisifn{ fO{ tnsf] kl/efiff;u“ tn' gf u/L x]/ . zLifl{ jGb' Pp6} eO{ ;femf eh' fsf] b'jl} t/ k/s] f bO' {cf]6f sf]0fx¿nfO{ cf;Gg sf]0fx¿ elgG5 . @= zLiff{ledv' sf]0fx¿ (Vertically Opposite Angles) lbOPsf] lrqdf M /v] fx¿ AB / XY sg' laGbd' f sfl6Psf 5g\\ < hDdf slt cf6] f sf0] fx¿ ag]sf 5g\\ < ∠AOY sf] ljk/Lt lbzflt/sf] sf]0f sg' xf] < To:t} ∠XOB sf] ljk/Lt lbzfsf] sf]0f sg' xf] < ∠AOX sf] ljk/Lt lbzfsf] sf0] f s'g xf] < ∠AOX / ∠YOB zLiff{ledv' sf0] fx¿ xg' \\ < X O A B o;/L /v] fx¿ AB / XY laGb' O df sf6\\bf ag]sf cgf;Gg sf0] fsf hf]8Lx¿ ∠AOX / ∠YOB zLiff{led'v sf]0fx¿ x'g\\ . To:t} ∠AOY / ∠XOB klg zLiffl{ ed'v sf0] fx¿ xg' \\ . zLiffl{ ed'v sf]0fnfO{ ljk/Lt zLifs{ f0] f klg elgG5 . Y 6 ul0ft, sIff – &
s] ltdLn] ca zLiffl{ ed'v sf]0fsf] kl/efiff atfpg ;S5f} < cfk“}m nV] g] sfl] ;; u/ . cfkm\\ gf] nv] fOnfO{ tnsf] kl/efiff;u“ tn' gf u/]/ x]/ . bO' c{ f]6f l;wf /]vfx¿ cfk;df sfl6b“ f ag]sf -ljk/Ltlt/sf_ cgf;Gg sf]0fx¿nfO{ zLiffl{ ed'v sf0] fx¿ elgG5 . 3. ;dk\"/s sf0] fx¿ (Complementry Angles) lrqdf b]vfP h:t} laGb' 0 df Pp6f 90° sf] sf0] f agfpm . ∠AOB sf] efhs OC lvr . ∠AOC / ∠COB gfk . slt slt l8uL| sf eP < lrqdf ∠AOC = 65° / ∠COB = 25° 5g\\ < oxf“ ∠AOC + ∠COB = 65° + 25° = 90° 5 . ∠AOC / ∠COB sf] of]ukmn -hf]8_ a/fa/ 90° jf Ps ;dsf0] f 5 . o:tf sf]0fx¿ ∠AOC / ∠COB ;dk\"/s sf0] fx¿ x'g \\ . olb x° / y° ;dk/\" s sf]0f x'g\\ eg] x° + y° = 90° xG' 5 . ca s] ltdL ;dk\"/s sf]0fx¿sf] kl/efiff nV] g ;S5f} < olb b'O{cf6] f sf]0fx¿sf] ofu] kmn Ps ;dsf]0f jf 90° 5 eg] To:tf sf]0fx¿nfO{ Ps csfs{ f ;dk/\" s sf0] f elgG5 . 4. kl/k\"/s sf0] fx¿ (Supplementary Angles) lrqdf lbOP h:t} Pp6f l;wfsf]0f ∠AOB /rgf u/ . ∠AOB = 180° nfO{ /]vfv08 OC n] b'O{ efu nufpm . ∠COB / ∠AOC gfk/] x]/ . slt slt l8u|Lsf eP, n]v . s] ∠COB + ∠COA = 180° x'G5 < lrqdf ∠COB = 105° / ∠COA = 75° 5 . ∠COB + ∠COA = 105° + 75° = 180° x'G5 . oxf“ ∠COB / ∠COA sf] ofu] kmn -hf]8_ a/fa/ 180° 5 . To;}n] ∠COB / ∠COA kl/k\"/s sf0] fx¿ x'g \\ . lrqdf x° + y° = 180° -;/n sf0] f_ 5 . x° y° To;n} ] x° / y° kl/k\"/s 5g \\ . 7 ul0ft, sIff – &
s] dflysf] 5nkmnsf cfwf/df kl/k\"/s sf0] fsf] kl/efiff nV] g ;S5f} < nV] g] sf]l;; u/ . olb b'Oc{ f6] f sf0] fx¿sf] ofu] kmn b'O{ ;dsf]0f jf 180° x'G5 eg] tL b'O{ sf]0fx¿nfO{ kl/k\"/s sf]0f elgG5 . 5. 5]bsn] /v] fx¿;“u agfpg] sf0] fx¿ (Angles made by a Transversal with the Lines) -s_ 5]bs (Transversal) lbOPsf] lrqdf, /v] fx¿ MN / OP nfO{ s'g /]vfn] sf6]sf] 5 < lrqdf MN / OP bO' { cf6] f /]vfx¿nfO{ Pp6f /]vf QR n] j|mdzM S / T df sf6s] f 5g\\ . oxf“ /]vf QR 5]bs xf ] . b'O{ jf b'Oe{ Gbf a9L /v] fx¿nfO{ sf6/] hfg] /v] fnfO{ 5]bs elgG5 . -v_ aflx/L / leqL sf0] fx¿ (Exterior and Interior Angles) dflysf] lrqdf hDdf sltcf6] f sf0] fx¿ ag]sf 5g\\ < kT| os] sf] gfd n]v . lrqdf aflx/L sf0] fx¿ sg' s'g xf]nfg\\ < lrqdf leqL sf]0fx¿ sg' s'g xf]nfg\\ < /v] fx¿ MN / OP eGbf aflx/ k/]sf sf0] fx¿ aflx/L sf]0fx¿ xg' \\ . Pp6f aflx/L sf]0f ∠MSQ cyjf a xf] . To:t} cGo 3 cf6] f aflx/L sf]0fx¿ s'g sg' xfn] fg\\ < lrqdf /v] fx¿ MN / OP sf] lardf -leq_ k/]sf sf0] fx¿ leqL sf]0fx¿ xg' \\ . lrqdf Pp6f leqL sf0] f ∠MSR cyjf c xf] . lrqdf ca yk slt cf6] f leqL sf]0fx¿ 5g\\ < ltgLx¿sf] s'g s'g sf0] f xf]nfg\\ < lrqdf sf0] fx¿ a, b, g / h aflx/L sf0] fx¿ xg' \\ . To:t} sf0] fx¿ c, d, e / f leqL sf0] fx¿ xg' \\ . -u_ PsfGt/ sf0] fx¿ (Alternate Angles) dflysf] lrqdf ∠MST / ∠STP cyft{ \\ c / f s:tf sf0] fx¿ xfn] fg\\ < sf]0fx¿ c / f 5]bssf] b'jl} t/ k/s] f leqL cgf;Gg sf0] fx¿ xg' \\ . oxf“ sf]0fx¿ c / f nfO{ PsfGt/ sf]0f elgG5 . To:t} csf{] hf]8L PsfGt/ sf]0fx¿ n]v . s] ca PsfGt/ sf]0fsf] kl/efiff atfpg ;S5f} < nV] g] ko| f; u/ . 8 ul0ft, sIff – &
bO' c{ f6] f /]vfx¿nfO{ Pp6f 5s] bn] sf6b\\ f 5]bssf] bj' }lt/ k/s] f leqL cgf;Gg sf0] fx¿nfO{ PsfGt/ sf]0f elgG5 . -3_ ;ª\\ut sf]0fx¿ (Correspoinding angles) dflysf] lrqdf ∠QSN / ∠STP cyf{t\\ b / f s:tf sf0] fx¿ xf]nfg\\ < b / f 5b] s QR sf] Ps}lt/ ags] f Pp6f aflx/L / Pp6f leqL sf0] fx¿ x'g \\ . o:tf sf0] fx¿nfO{ ;ª\\ut sf0] f elgG5 . To:t} csf]{ hf8] L ;ª\\ut sf0] fx¿ nv] . hDdf slt hf8] L ;ªu\\ t sf0] fx¿ ag]sf 5g\\ < gfd n]v . s] ca ;ªu\\ t sf0] fsf] kl/efiff n]Vg ;S5f} < n]Vg] sfl] ;; u/ . b'Oc{ f]6f /v] fx¿nfO{ s'g} 5b] sn] sf6b\\ f Tof] 5]bssf] Psl} t/ k/s] f Pp6f aflx/L / Pp6f leqL cgf;Gg sf]0fx¿sf] hf8] LnfO{ ;ª\\ut sf0] fx¿ elgG5 . -ª_ j|mdfut leqL sf]0fx¿ (Co-interior angles) dflysf] lrqdf sf]0fx¿ d / f cyf{t\\ ∠NST / ∠PTS s:tf sf0] fx¿ xfn] fg\\ < sf0] fx¿ d / f 5]bssf] Psl} t/ k/]sf b'j} leqL sf0] fx¿ xg' \\ . o:tf sf0] fx¿nfO{ jm| dfut leqL sf]0fx¿ elgG5 . lrqdf csf]{ hf8] L j|mdfut leqL sf0] fx¿ kQf nufP/ n]v . s] ca jm| dfut leqL sf0] fx¿sf] kl/efiff atfpg ;S5f} < k|of; u/ . bO' {cf6] f /]vfx¿nfO{ s'g} 5]bsn] sf6b\\ f 5b] ssf] Ps}lt/ ags] f leqL sf0] fx¿sf] hf]8LnfO{ j|mdfut leqL sf0] fx¿ elgG5 . cEof; 1.3 1. /]vfx¿ AB / XY nfO{ 5]bs PQ n] sf6b\\ f ag]sf sf0] fx¿nfO{ lrqdf bv] fOPsf] 5 M -s_ 4/4 cf6] f leqL / aflx/L sf0] fx¿sf] gfd nv] < -v_ 2 hf8] f PsfGt/ sf0] fx¿sf] gfd n]v . -u_ 2 hf8] f j|mdfut leqL sf0] fx¿sf] gfd n]v . -3_ 4 hf]8f ;ª\\ut sf0] fx¿sf] gfd n]v . -ª_ 2 hf8] f zLiff{led'v sf0] fx¿sf] gfd n]v . -r_ 2 hf]8f cf;Gg sf]0fx¿sf] gfd nv] . -5_ 2 hf8] f kl/k\"/s sf0] fx¿sf] gfd n]v . 9 ul0ft, sIff – &
2. dfly lrqdf lbP h:t} u/L bO' c{ f6] f /v] fnfO{ Pp6f 5b] sn] sf6L gfds/0f u/ / tn lbOPsf sf]0fx¿sf] gfd nv] M -s_ zLiff{led'v sf]0fx¿ -v_ kl/k\"/s sf0] fx¿ -u_ cf;Gg sf]0fx¿ -3_ aflx/L sf]0fx¿ -ª_ PsfGt/ sf]0fx¿ -r_ ;ªu\\ t sf]0fx¿ -5_ jm| dfut leqL sf0] fx¿ -h_ ;dk\"/s sf0] fx¿ 3. lbOPsf] lrqaf6 4 hf8] f ;dk\"/s sf0] fx¿ kQf nufO{ ltgLx¿sf] gfd nv] . 4. lbOPsf] lrqdf ;ªs\\ t] ul/Psf] sf0] f DGF ;u“ lgDgadfl] hd x'g] sf]0fx¿sf] gfd nv] M -s_ cf;Gg sf]0f 2 cf6] f -v_ zLiffl{ edv' sf]0f 1 cf]6f -u_ kl/k/\" s sf0] f 2 cf]6f -3_ PsfGt/ sf0] f 1 cf]6f -ª_ ;ªu\\ t sf]0f 1 cf6] f -r_ jm| dfut leqL sf0] f 1 cf]6f 5. tnsf k|To]s lrq sfkLdf ;f/ . gfdfª\\sg u/ . ca ;ª\\s]t ul/Psf sf]0fx¿df lgDgfg;' f/ xg' ] sf]0fsf hf8] fx¿sf] gfd n]v M -s_ PsfGt/ sf]0fx¿ -v_ ;ªu\\ t sf]0fx¿ -u_ j|mdfut leqL sf0] fx¿ 6. PsfGt/ sf]0fsf] lrq;lxt kl/efiff n]v . 7. b'Oc{ f6] f /v] fnfO{ Pp6f 5]bsn] sf6\\bf aGg] ;Defljt sf]0fx¿sf] pbfx/0f;lxt kl/efiff n]v . 10 ul0ft, sIff – &
1.4 sf0] fx¿sf] k/LIf0f (Verification of Angles) tn lbOPsf ljleGg sf0] fx¿sf] k/LIf0fsf ljm| ofsnfk cWoog / 5nkmn u/ . cfk\"mn] klg ;f] cg;' f/ nV] g] / ug{] k|of; u/ . k/LIf0f 1 tYo M bO' {cf]6f /]vfv08x¿ cfk;df sf6b\\ f ag]sf zLiffl{ ed'v sf0] fx¿ a/fa/ xG' 5g \\ . tnsf k|Tos] lrqx¿df b'Oc{ f6] f /v] fv08x¿ AB / XY cfk;df O laGb'df sfl6Psf 5g \\ . ca k|f6] \\ofS6/sf] ;xfotfn] zLiffl{ ed'v sf]0fx¿sf hf]8f ∠AOX / ∠BOY tyf ∠AOY / ∠XOB gfk/] tnsf] tflnsfdf e/ . A A Y A X Y X Y O O O B B X lrq g= 1 B lrq g= 2 lrq g= 3 lrq g= zLiff{led'v sf]0f / sf]0fsf] gfk kl/0ffd ∠AOX ∠BOY ∠AOY ∠XOB 1. 2. 3. dflysf tLgcf]6} lrqx¿df sf]0fx¿ ∠AOX / ∠BOY lar s:tf] ;DaGw kfof} < To:t} ∠AOY / ∠XOB lar s:tf] ;DaGw kfof} < ca dflysf] k/LIf0faf6 s] lgisif{ lgsfNg ;S5f} < nv] . k|fKt lgisif{nfO{ tnsf] lgisif;{ u“ tn' gf u/L x]/ . lgisif{ M b'O{cf]6f /v] fv08x¿ cfk;df sf6b\\ f ags] f zLiff{ledv' sf]0fx¿ a/fa/ x'G5g\\ . k/LIf0f 2 tYo M ;/n /]vfsf] s'g} laGb'df Psl} t/ /xs] f sf]0fx¿sf] ofu] kmn 180° x'G5 . k|ofu] 1: sfuh k6o\\ fP/ ul/g] k/LIf0f (Verification by Paper Folding) P M O 1. Pp6f cfotsf/ sfuhsf] 6'j|mf np] m . lrqdf lbP h:t} u/L N MN MNOP gfds/0f u/ . 2. lrqdf lbP h:t} u/L nDafOlt/sf] efu ;dfP/ k6\\ofpm . P O k6o\\ fOPsf] 7fp“nfO{ uf9f agfpm . QP 3. k6o\\ fpb“ f ePsf] 7fp“nfO{ :sn] n] /v] f lvr . /v] fn] lsgf/df RO 5f]Psf] laGb'nfO{ jm| dzM Q / R gfds/0f u/ . M N 11 ul0ft, sIff – &
4. ca lrqcg;' f/ ∠MQR + ∠RQP = ∠MQP = Ps l;wf sf]0f 180° -l;ªu\\ f] 6j' m]| tYocg';f/_ ca dflysf] k/LIf0faf6 s] lgisif{ lgsfNg ;S5f} < n]v / ;fyL;“u 5nkmn u/ . lgisifn{ fO{ tnsf] lgisif{;“u tn' gf u/L x/] . lgisif{ M ;/n /]vfsf] s'g} laGb'df Ps}lt/ ags] f sf0] fx¿sf] ofu] kmn b'O{ ;dsf]0f xG' 5 . k|of]u 2: sf]0f gfk]/ ul/g] k/LIf0f (Verification by Measuring Angles) 1. lrqdf Pp6f l;wf/v] f XY sf] sg' } laGb' O af6 hfg] u/L csf]{ /]vf OZ lvlrPsf] 5 . o:tf 3 cf]6f km/s km/s lrq lvlrPsf 5g\\ . ZZ Z X OY XO YX O Y lrq g= 1 lrq g= 2 lrq g= 3 2. k|To]s lrqx¿df ∠XOZ / ∠ZOY gfk/] tnsf] tflnsfdf e/ M lrq g= sf]0fx¿ / ltgsf] gfk kl/0ffd ∠XOZ ∠ZOY ∠XOZ + ∠ZOY 1 2 3 dflysf kT| o]s lrqx¿df ∠XOZ + ∠ZOY slt eof], n]v . ∠XOZ / ∠ZOY sf] ;DaGw s:tf] kfof} < dflysf] ko| f]usf cfwf/df s] lgisif{ lgsfNg ;S5f} . lgisif{ n]v]/ sIffdf 5nkmn u/ . k|fKt lgisif{nfO{ tnsf] lgisif;{ u“ tn' gf u/L x/] M lgisif{ M ;/n /v] fsf] sg' } laGbd' f Psl} t/ /xs] f ;a} sf0] fx¿sf] ofu] kmn bO' { ;dsf0] f jf 180° xG' 5 . k/LIf0f 3 tYo M sg' } laGb'sf] jl/kl/ Ps kl/j|md0fdf ags] f sf]0fx¿sf] ofu] kmn 360° x'G5 . lrq g+= 1 lrq g+= 2 lrq g+= 3 12 ul0ft, sIff – &
1. lrqdf laGb' O sf] jl/kl/ ag]sf sf0] fx¿ ∠AOB, ∠BOC / ∠COA 5g\\ . 2. tnsf] tflnsfdf kT| o]s lrqsf ∠AOB, ∠BOC / ∠COA gfk / tflnsf k/' f u/ . lrq sf0] fx¿ / sf]0fsf gfk ∠AOB ∠BOC ∠COA ∠AOB + ∠BOC + ∠COA 1 2 3 3. s] dfly ;a} lrqdf ∠AOB + ∠BOC + ∠COA = 360° 5 < 4. dflysf ljm| ofsnfx¿af6 s] lgisif{ lgsfNg ;S5f} < nv] . lgisif{nfO{ sIffdf 5nkmn u/ . lgisif{nfO{ tnsf] lgisif;{ “u tn' gf u/L x]/ M lgisif{ M s'g} laGb'sf] jl/kl/ Ps kl/jm| d0fdf ags] f sf0] fx¿sf] ofu] kmn 360° xG' 5 . pbfx/0f 1 lrqdf x, y / a sf] dfg kQf nufpm . ;dfwfg oxf,“ x + 135° = 180° (;/n sf]0f = 180° xg' ] ePsfn_] cyjf x = 180° - 135° = 45° To:t} a = x = 45° -zLiffl{ edv' sf0] fx¿ a/fa/ xg' ] ePsfn_] clg, y = ∠POS = 135° -zLiffl{ ed'v sf0] fx¿ ePsfn]_ ctM x = 45°, y = 135° / a = 45° xG' 5 . pbfx/0f 2 lrqdf x sf] dfg kQf nufO{ 4 cf6] } sf]0fsf] gfk klg nv] . ;dfwfg oxf,“ 2x + 4x + 3x + x = ∠XOY -l;ªu\\ f] 6j' m]| tYocg';f/_ cyjf 10x = 180° (∠XOY = 180°, ;/n sf0] f ePsfn_] cyjf, x= 180°= 18° 10 ca, ∠AOX = 2x = 2 x 18° = 36° ∠AOB = 4x = 4 x 18° = 72° ∠BOC = 3x = 3 x 18° = 54° / ∠COY = x = 18° x'G5 . 13 ul0ft, sIff – &
pbfx/0f 3 lbOPsf] lrqsf cfwf/df a sf] dfg kQf nufpm M ;dfwfg oxf“, a + 30° + 35° + 25° + 45° + 120° = 360° -lsgls laGb' O df ags] f Ps k\"/f kl/jm| d0fsf sf]0fx¿sf] of]ukmn 360° xG' 5 ._ cyjf, a + 255° = 360° cyjf, a = 360° - 255° = 105° t;y{ a sf] dfg 105° x'G5 . cEof; 1.4 1. tnsf lrqx¿df x, y, z / a sf] dfg kQf nufpm M -s_ -v_ -u_ -3_ 2. lgDglnlvt tYox¿ k|ofu] ePsf Ps Pscf]6f ;d:of agfO{ ;dfwfg u/ M -s_ zLiff{led'v sf]0fx¿ a/fa/ x'G5g\\ . -v_ ;/n /v] fsf] sg' } laGb'df Ps}lt/ /xs] f sf]0fx¿sf] ofu] 180° x'G5 . -u_ sg' } laGbs' f] jl/kl/ Ps kl/jm| d0fdf ags] f sf]0fx¿sf] ofu] kmn 360° xG' 5 . 14 ul0ft, sIff – &
PsfO 2 lqeh' , rt'e{'h / axe' 'h (Triangle, Quadrilateral and Polygon) 2.1 lqeh' sf] /rgf (Construction of a Triangle) 1. bO' c{ f6] f eh' fsf] gfk / ltgLx¿larsf] sf]0f lbP/ lqeh' sf] /rgf pbfx/0f 1 Pp6f lqeh' PMN /rgf u/ . h;df MN = 5cm, MP = 4cm / ∠PMN= 45° 5 . ;dfwfg /rgf ug{] tl/sf 1= ;j{k|yd MN=5cm sf] Pp6f /v] fv08 lvr . 2= laGb' M df ∠OMN = 45° sf] sf0] f lvr . 3= sDkf;sf] ;xof]un] MP = 4cm x'g] u/L sf6 . 4= ca P / N hf]8 . ca cfjZos lqe'h PMN tof/ eof] . 2. sg' } Pp6f e'hfsf] gfk / To;df ag]sf b'Oc{ f6] f sf0] f lbP/ lqeh' sf] /rgf pbfx/0f 2 Pp6f lqeh' XYZ sf] /rgf u/ . hxf“ ∠X = 45°, ∠Y = 30°, / XY = 6 cm 5 . ;dfwfg /rgf ug]{ tl/sf 1= XY = 6cm ePsf] Pp6f /]vfv08 lvr . 2= laGb' X df ∠X = 45° sf] sf]0f lvr . 3. laGb' Y df ∠Y = 30° sf] sf0] f lvr . o;/L ∠X / ∠Y sf]0f lvRbf sf]0f agfpg] /]vfx¿n] laGb' Z df sf6\\5 . ca, cfjZos lqe'h XYZ tof/ eof ] . 15 ul0ft, sIff – &
3. tLgcf6] f e'hfsf] gfk lbP/ lqeh' sf] /rgf pbfx/0f 3 Pp6f lqeh' EFG sf] /rgf u/ h;df EF = 5cm, FG = 4cm / EG = 4cm 5 . ;dfwfg /rgf ug{] tl/sf 1. EF = 5cm sf] /v] fv08 lvr . 2. laGb' E af6 4cm / laGb' F af6 4cm sf] rfk lnP/ b'j} rfk sf6]/ aGg] laGb' G kQf nufpm . 3. E / G tyf F / G hf]8 . ca, cfjZos lqeh' EFG tof/ eof ] . cEof; 2.1 1. tnsf k|To]s cj:yfdf ∆ABC sf] /rgf u/ M -s_ AB = 6cm, BC = 4cm / ∠B = 135° -v_ BC = AC = 5.5cm / ∠C = 45° -u_ AB = 3.5cm, AC=4cm / ∠A = 45° 2. tnsf kT| o]s cj:yfdf ∆XYZ sf] /rgf u/ M -s_ YZ = 5cm, ∠Y = 60° / ∠Z = 30° -v_ XZ = 4.5cm, ∠X = 105° / ∠Z = 45° -u_ XY = 5.3cm, ∠X = 60° / ∠Y = 90° 3= tnsf kT| os] cj:yfdf ∆QRS sf] /rgf u/ M -s_ QR = 4cm, RS = 5cm, / QS = 6cm -v_ QS = 5.5cm, QR = 5.5cm, / RS = 5.5cm -u_ RS = 4.5cm, QR = 7cm / QS = 6.5cm 4. tnsf kT| o]s cj:yfdf ∆EFG sf] /rgf u/ M -s_ EF = FG = 4.5cm / ∠EFG = 90° -v_ EF = 5cm, FG = 6cm / EG = 6.3cm 5. lgDgfg;' f/sf cj:yfdf Ps Pscf]6f lqeh' x¿ /rgf ug{] ;d:of agfpm÷vfh] / /rgf u/ M 1. b'O{cf6] f eh' fsf] gfk / tL e'hfn] agfpg] sf0] fsf] gfk lbPdf 2. s'g} Pp6f e'hfsf] gfk / To;df ags] f bO' {cf]6f sf0] fsf] gfk lbPdf 3. tLgcf6] } e'hfsf] gfk lbPdf 16 ul0ft, sIff – &
2.2 cfot, ju{, ;dfgfGt/ rt'e{'h / ;dafx' rt'e'h{ sf u0' fx¿sf] vf]hL 1. ;dfgfGt/ rt'e'{hsf u'0fx¿sf] vfh] L A D tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M -s_ lrqdf bv] fOPsf] rte' 'h{ ABCD Pp6f ;dfgfGt/ rt'e'{h xf] . s;/L < -v_ ;dfgfGt/ rte' h{' eg]sf] s] xf] < kl/efiff n]v . B C -u_ ;dfgfGt/ rte' h'{ sf s] s] u0' fx¿ xg' ;Snfg\\ < ;fyL;u“ 5nkmn u/ . ;Dd'v eh' fx¿ ;dfgfGt/ ePsf] rt'e{'hnfO{ ;dfgfGt/ rte' h{' (Parallelogram) elgG5 . ca dflysf] ;dfgfGt/ rte' h{' sf] kl/efiff / ljm| ofsnfksf cfwf/df ;dfgfGt/ rte' h{' sf lgDgfg;' f/ sf u'0fx¿sf] vfh] L ug{] k|of; u/ . -lrq agfP/ tyf sfuh k6\\ofP/_ ;dfgfGt/ rte' '{hsf u'0f cyjf ljz]iftfx¿ 1. ;a} ;dfgfGt/ rte' {h' sf ;Ddv' sf]0fx¿ a/fa/ xG' 5g \\ . 2. ;a} ;dfgfGt/ rt'e'h{ sf ;Dd'v e'hfx¿ a/fa/ xG' 5g\\ . 3. ;a} ;dfgfGt/ rt'e{'hsf ljs0fx{ ¿ k/:k/ ;dlåefhg xG' 5g \\ . dflysf ;dfgfGt/ rt'e{h' sf u0' fx¿sf] k/LIf0fnfO{ tn j|mdzM k|:tt' ul/Psf] 5 . k/LIf0f 1. ;dfgfGt/ rte' h{' sf ;Ddv' sf0] fx¿ a/fa/ xG' 5g\\ . tnsf k|Tos] ;dfgfGt/ rt'e{'h ABCD sf ;Ddv' sf]0fx¿ gfk / tn lbOPsf] tflnsf e/ M A DA DA D B C B CB C lrq g= 1 lrq g= 2 lrq g= 3 lrq g= ;Ddv' sf0] fx¿sf] gfk ;Ddv' sf0] fx¿sf] gfk kl/0ffd ∠ABC ∠ADC ∠BAD ∠BCD 1. 2. 3. dflysf] tflnsfaf6 s] lgisif{ lgsfNg ;S5f} < n]v . cfk\\mgf] lgisif{nfO{ ;fyL;“u 5nkmn u/ . lgisif{ M ;dfgfGt/ rt'e'h{ sf ;Ddv' sf]0fx¿ a/fa/ xG' 5g \\ . 17 ul0ft, sIff – &
k/LIf0f 2. ;dfgfGt/ rte' h{' sf ;Ddv' eh' fx¿ a/fa/ xG' 5g\\ . tnsf k|Tos] ;dfgfGt/ rt'e'h{ ABCD sf ;Ddv' e'hfx¿ gfk / tflnsf e/ M A DA DA D B C B CB C lrq g= 1 lrq g= 2 lrq g= 3 lrq g+= ;Ddv' eh' fx¿sf] gfk ;Dd'v eh' fx¿sf] gfk kl/0ffd AB DC AD BC 1. 2. 3. dflysf] tflnsfaf6 s] lgisif{ lgsfNg ;S5f} < nv] . cfkm\\ gf] lgisif{nfO{ ;fyL;u“ 5nkmn u/ . lgisif{ M ;dfgfGt/ rt'eh{' sf ;Dd'v eh' fx¿ a/fa/ xG' 5g \\ . k/LIf0f 3. ;dfgfGt/ rt'e{h' sf ljs0f{x¿ k/:k/ ;dlåefhg xG' 5g\\ . tnsf k|To]s ;dfgfGt/ rte' {h' x¿ ABCD sf ljs0fx{ ¿sf efux¿ gfk / tflnsfdf e/ M A DA DA D O OO B B C C B C lrq g=+ 2 lrq g=+ 3 lrq g=+ 1 lrq g+= ljs0f{ BD sf efux¿ / gfk ljs0f{ AC sf efux¿ / gfk kl/0ffd BO OD AO OC 1. 2. 3. dflysf] tflnsfsf] cfwf/df s] lgisif{ lgsfNg ;S5f } < cfkm\\ gf] lgisifn{ fO{ ;fyL;u“ 5nkmn u/ . lgisif{ M ;dfgfGt/ rt'e{h' sf ljs0fx{ ¿ k/:k/ ;dlåefhg x'G5g\\ . gf6] M lzIfs;“u ;Nnfx u/L sfuh k6\\ofpg] ljlwaf6 ;dfgfGt/ rte' 'h{ sf u0' fx¿sf] vf]hL ug{] cEof; u/ . 18 ul0ft, sIff – &
2. cfotsf u0' fx¿sf] vfh] L tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M lrqdf EFGH Pp6f cfot xf ] . s;/L < 5nkmn u/ . -s_ cfot egs] f] s] xf] < kl/efiff n]v . -v_ s'g} Pp6f cfot agfO{ To;sf] gfds/0f u/ . -u_ cfotsf s] s] u0' fx¿ x'g ;Snfg\\ < ;fyL;“u 5nkmn u/ . olb ;dfgfGt/ rte' h{' sf] Pp6f sf0] f 900 sf] 5 eg] To; ;dfgfGt/ rte' h{' nfO{ cfot (Rectangle) elgG5 . cfotdf ;dfgfGt/ rte' {h' sf ;a} u'0fx¿ x'G5g\\ . ;fy} ljs0fx{ ¿ cfk;df a/fa/ x'G5g\\ . ca dflysf] cfotsf] kl/efiff / lj|mofsnfksf cfwf/df cfotsf lgDgfg';f/sf u'0fx¿sf] vfh] L ug]{ ko| f; u/ . -lrq agfP/ tyf sfuh k6o\\ fP/_ cfotsf u0' f jf ljzi] ftfx¿ 1. ;a} cfotsf ;Ddv' sf0] fx¿ a/fa/ x'G5g\\ . 2. ;a} cfotsf ;Ddv' e'hfx¿ a/fa/ xG' 5g\\ . 3. ;a} cfotsf ljs0fx{ ¿ k/:k/ ;dlåefhg x'G5g \\ . 4. cfotsf ljs0fx{ ¿ cfk;df a/fa/ xG' 5g\\ . 5. cfotsf] kT| os] sf]0f 90° x'G5 . dflysf cfotsf 1, 2 / 3 gDa/sf ljzi] ftfx¿nfO{ ;dfgfGt/ rte' h'{ sf u'0fx¿sf] k/LIf0fsf cfwf/df vfh] L÷k/LIf0f u/]/ lzIfsnfO{ bv] fpm . dflysf cfotsf u0' fx¿dWo] 3 / 4 sf u0' fx¿sf] k/LIf0fnfO{ tn jm| dzM k:| tt' ul/Psf] 5 . 4. cfotsf ljs0fx{ ¿ cfk;df a/fa/ x'G5g \\ . tnsf lrqx¿df cfotsf bj' } ljs0fx{ ¿ EG / FH gfk]/ tnsf] tflnsfdf e/ M E HEH E H oo o F G lrq g= 1 FG FG lrq g= 2 lrq g= 3 lrq g= ljs0fx{ ¿sf] gfk kl/0ffd EG FH 1. 2. 3. 19 ul0ft, sIff – &
dflysf] tflnsfaf6 s] lgisif{ lgsfNg ;S5f} < n]v . cfk\\mgf] lgisifn{ fO{ ;fyL;“u 5nkmn u/ . lgisif{ M cfotsf ljs0fx{ ¿ cfk;df a/fa/ xG' 5g \\ . gf6] M lzIfssf] ;xfotfdf sfuh k6\\ofpg] ljlwaf6 cfotsf u'0fx¿sf] vf]hL ug{] cEof; u/ . 3. ju{ (Square) sf u'0fx¿sf] vfh] L tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M AD -s_ lbOPsf] lrqdf ABCD Pp6f ju{ xf,] s;/L < O -v_ ju{ egs] f] s] xf] < kl/efiff n]v . -u_ sg' } Pp6f ju{ agfO{ To;sf] gfds/0f u/ . C -3_ jus{ f s] s] u0' fx¿ x'g ;Snfg\\ < ;fyL;u“ 5nkmn u/ . B cf;Gg eh' fx¿ a/fa/ ePsf] cfotnfO{ ju{ (Square) elgG5 . jud{ f ;dfgfGt/ rte' h{' / cfotsf ;a} u0' fx¿ xG' 5g \\ . ca dflysf] ju{sf] kl/efiff / cfotsf u'0fx¿sf] vf]hL ug{] lj|mofsnfksf cfwf/df ju{sf lgDgfg';f/sf u'0fx¿sf] vfh] L ug]{ ko| f; u/ . -lrq agfP/ tyf sfuh k6o\\ fP/_ jus{ f ;DefJo u'0f tyf ljz]iftfx¿ 1. ju{sf ;Dd'v e'hfx¿ a/fa/ xG' 5g \\ . 2. jus{ f bj' } ljs0f{x¿ cfk;df a/fa/ x'G5g \\ . 3. ju{sf ljs0fx{ ¿ k/:k/ ;dsf]0f xg' ] u/L ;dlåefhg x'G5g\\ . 4. jus{ f kT| o]s ljs0f{n] zLifs{ f]0fnfO{ cfwf u5{ . dflysf jus{ f 1 / 2 gDa/sf u0' f tyf ljz]iftfx¿nfO{ ;dfgfGt/ rt'eh{' / cfotsf u0' fx¿sf cfwf/df vf]hL÷k/LIf0f u/]/ lzIfsnfO{ bv] fpm . 3. ;a} jus{ f ljs0f{x¿ k/:k/ ;dsf0] f x'g] u/L ;dlåefhg x'G5g\\ . lbOPsf k|To]s ju{ ABCD sf lgDg efux¿ gfk/] tnsf] tflnsfdf e/ . -k|Tos] lrqsf nflu tflnsfdf lbOP h:t} 5'6\\6f 5'6\\6} tLg tLgcf]6f tflnsf agfpm ._ A DA A D D O OO B C BC B C 20 lrq g= 1 lrq g= 2 lrq g= 3 ul0ft, sIff – &
lrq ljs0f{ AC / BD sf efux¿sf] gfk ljs0fn{ ] agfPsf sf0] fx¿sf] gfk kl/0ffd AO OC BO OD ∠AOB ∠AOD ∠DOC ∠ COB 1. 2. 3. dflysf tflnsfaf6 s] lgisif{ lgsfNg ;S5f} < nv] / sIffdf 5nkmn u/ . dflysf] k|Tos] ju{ ABCD df ljs0fx{ ¿n] agfPsf sf]0fx¿ ∠AOB = ∠AOD = ∠DOC = ∠COB = 90° = Ps ;dsf]0f 5g\\ . To;}u/L ljs0f{ AC sf efu AO = OC tyf ljs0f{ BD sf efu BO = OD 5g\\ . ca, dflysf] tflnsf / 5nkmnsf cfwf/df s] lgisif{ lgsfNg ;S5f} < nv] / sIffdf 5nkmn u/ . lgisif{ M ju{sf ljs0f{x¿ k/:k/ ;dsf]0f xg' ] u/L ;dlåefhg xG' 5g\\ . 4. jus{ f kT| os] ljs0fn{ ] zLif{sf]0fnfO{ cfwf u5g{ \\ . tn lbOPsf k|To]s ju{ ABCD sf sf]0fx¿ gfkL tnsf] tflnsf e/ M -k|To]s lrqsf nflu 56' \\6f 5'66\\ } tflnsfdf lbOP h:t} tLg tLgcf]6f tflnsf agfpm ._ A DA A D D OO O BC BC B C lrq g= 1 lrq g= 2 lrq g= 3 lrq g+= 1 sf nflu M zLif{sf]0fsf ;xfos sf0] fx¿sf] gfk kl/0ffd zLifs{ f]0fsf] gfk ∠BAD = ...... ∠BAO = ...... ∠OAD = ...... ∠ADC = ...... ∠ADO = ...... ∠ODC = ...... ∠DCB = ...... ∠DCO = ...... ∠OCB = ...... ∠ABC = ...... ∠ABO = ...... ∠OBC = ...... dflysf] tflnsfsf cfwf/df s] lgisif{ lgsfNg ;S5f} < nv] . cfk\\mgf] lgisif{sf af/d] f sIffdf 5nkmn u/ . dflysf] ju{ ABCD df zLif{sf0] fx¿ ∠BAD nfO{ ljs0f{ AC n] cfwf u/s] f] 5 . zLif{sf]0f ∠ADC nfO{ ljs0f{ BD n] cfwf u/]sf] 5 . zLif{sf]0f ∠DCB nfO{ ljs0f{ AC n] cfwf u/s] f] 5 / zLif{sf0] f ∠ABC nfO{ ljs0f{n] BD cfwf u/]sf] 5 . 21 ul0ft, sIff – &
ca, ltdf| ] lgisifn{ fO{ tnsf] lgisif;{ “u t'ngf u/]/ x]/ . lgisif{ M jus{ f kT| os] ljs0fn{ ] zLif{sf0] fnfO{ cfwf u5g{ \\ . gf6] M lzIfs;“u ;Nnfx u/L sfuh k6\\ofpg] ljlwaf6 jus{ f u'0fx¿sf] vfh] L ug]{ cEof; u/ . 2.4 ;dafx' rt'e{'h (Rhombus) sf u0' fx¿sf] vf]hL tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M -s_ ;dafx' rte' h{' egs] f] s] xf] < -v_ s'g} Pp6f ;dafx' rt'e{'h agfO{ To;sf] gfds/0f u/ . -u_ ;dafx' rt'e'{hsf u0' fx¿ s] s] x'g ;Snfg\\ < ;fyL;“u 5nkmn u/ . cf;Gg eh' fx¿ a/fa/ ePsf] ;dfgfGt/ rt'eh'{ nfO{ ;dafx' rte' h'{ (Rhombus) elgG5 . ;dafx' rt'eh'{ df ;dfgfGt/ rte' {'hsf ;a} u0' fx¿ x'G5g\\ . ca dflysf] ;dafx' rt'e'{hsf] kl/efiff / dfly ;dfgfGt/ rte' h{' , cfot / ju{sf u0' fx¿sf] vf]hL ug{] ljm| ofsnfksf cfwf/df ;dafx' rt'eh'{ sf lgDgfg';f/sf u0' fx¿sf] vf]hL ug]{ ko| f; u/ . -lrq agfP/ tyf sfuh k6o\\ fP/_ ;dafx' rt'eh{' sf u0' f tyf ljz]iftfx¿ 1. ;dafx' rt'e'{hsf ;Ddv' e'hfx¿ a/fa/ x'G5g\\ . 2. ;dafx' rt'e{h' sf ;Dd'v sf0] fx¿ a/fa/ x'G5g\\ . 3. ;dafx' rte' h{' sf ljs0f{x¿ k/:k/ ;dsf]0f xg' ] u/L ;dlåefhg x'G5g \\ . 4. ;dafx' rt'eh{' sf k|To]s ljs0f{n] zLifs{ f0] fnfO{ cfwf u5{ . dflysf ;dafx' rte' '{hsf 1 / 2 gDa/sf u0' f tyf ljzi] ftfx¿nfO{ ;dfgfGt/ rt'e'h{ u'0fx¿sf] k/LIf0fsf cfwf/df vfh] L÷k/LIf0f u/]/ lzIfsnfO{ bv] fpm . 3. ;dafx' rte' {h' sf ljs0fx{ ¿ k/:k/ ;dsf0] f x'g] u/L ;dlåefhg x'G5g \\ . tn lbOPsf kT| os] ;dafx' rt'eh'{ ABCD sf lgDg efux¿ gfk/] tnsf] tflnsf e/ M AD A A D O O D O B CB C C B 22 lrq g= 3 lrq g= 1 lrq g= 2 ul0ft, sIff – &
lrq ljs0f{ AC / BD sf efux¿sf] gfk ljs0fn{ ] agfPsf sf0] fx¿sf] gfk kl/0ffd AO OC BO OD ∠AOB ∠AOD ∠DOC ∠COB 1. 2. 3. dflysf tflnsfaf6 s] lgisif{ lgsfNg ;S5f} < n]v / sIffdf 5nkmn u/ . lgisif{ M ;dafx' rte' 'h{ sf ljs0fx{ ¿ k/:k/ ;dsf]0f x'g] u/L ;dlåefhg xG' 5g\\ . 4. ;dafx' rt'e{h' sf kT| os] ljs0fn{ ] zLif{sf0] fnfO{ cfwf u5{g\\ . tn lbOPsf kT| os] ;dafx' rte' h{' ABCD sf lgDgfg;' f/sf sf0] fx¿ gfkL tnsf] tflnsf e/ M -kT| o]s lrqsf nflu 5'6\\6f5'66\\ } tflnsfdf lbOP h:t} tLg tLgcf6] f tflnsf agfpm ._ A DA A D D O OO B CB C B C lrq g= 1 lrq g= 2 lrq g= 3 lrq g= 1 sf nflu zLif{sf]0fsf] gfk zLifs{ f]0fsf ;xfos sf0] fx¿sf] gfk kl/0ffd ∠BAD = ...... ∠BAO = ...... ∠OAD = ...... ∠ADC = ...... ∠ADO = ...... ∠ODC = ...... ∠DCB = ...... ∠DCO = ...... ∠OCB = ...... ∠ABC = ...... ∠ABO = ...... ∠OBC = ...... dflysf] tflnsfsf cfwf/df s] lgisif{ lgsfNg ;S5f} < nv] . cfkm\\ gf] lgisifn{ fO{ sIffdf 5nkmn u/ . dflysf] ;dafx' rt'e{'h ABCD df zLif{sf0] fx¿ ∠BAD nfO{ ljs0f{ AC n] cfwf u/s] f] 5 . zLifs{ f]0f ∠ADC nfO{ ljs0f{ BD n] cfwf u/]sf] 5 . zLifs{ f]0f ∠DCB nfO{ ljs0f{ AC n] cfwf u/s] f] 5 / zLif{sf]0f ∠ABC nfO{ ljs0f{ BD n] cfwf u/s] f] 5 . ca, ltdf| ] lgisif{nfO{ tnsf] lgisif;{ “u t'ngf u/]/ x]/ . lgisif{ M ;dafx' rt'e{'hsf k|To]s ljs0f{n] zLifs{ f0] fnfO{ cfwf u5g{ \\ . gf]6 M lzIfssf] ;xof]udf sfuh k6\\ofpg] ljlwaf6 ;dafx' rte' {'hsf u'0fx¿sf] vf]hL ug{] cEof; u/ . 23 ul0ft, sIff – &
cEof; 2.2 1. tnsf egfO ;To 5g\\ jf 5}gg,\\ 56' o\\ fpm M -s_ ;dfgfGt/ rt'e'h{ sf ;Ddv' eh' fx¿ a/fa/ xG' 5g\\ . -v_ cfotsf ;a} u0' fx¿ ;dfgfGt/ rt'e{'hdf klg x'G5g\\ . -u_ ju{sf ;a} u0' fx¿ cfotdf klg xG' 5g\\ . -3_ ;dafx' rt'e'h{ sf ;a} u'0fx¿ cfotsf u'0f;u“ ldN5g \\ . 2. ;dfgfGt/ rt'e'{hsf sg' sg' u'0fx¿ cfot;“u ldN5g\\ < pbfx/0f;lxt lrq agfP/ bv] fpm . 3. ;dafx' rt'e{'h / ju{sf u'0fx¿df s] km/s 5 < lrq / pbfx/0f;lxt kl' i6 u/ . 4. tnsf] tflnsfdf kT| o]s rt'eh'{ sf u0' fx¿sf] ;r\" L tof/ kf/ . k|Tos] sf ;dfg / c;dfg u0' fx¿ 5'6\\ofP/ n]v M jm| =;= ;dfg÷c;dfg u'0f ;dfgfGt/ rte' 'h{ cfot ju{ ;dafx' rte' '{h 1. ;dfg u'0f 2. c;dfg u'0f 5. 4cm Pp6f e'hf ePsf] ju{ agfO{ o;sf sg' } b'O{cf]6f u'0fx¿sf] vf]hL u/L bv] fpm . 6. Pp6f eh' fsf] gfk 4.5cm ePsf] Pp6f ;dafx' rt'e'{h agfO{ To;sf s'g} b'Oc{ f6] f u'0fx¿sf] vfh] L u/L bv] fpm . 24 ul0ft, sIff – &
2.3 rt'eh'{ sf] /rgf (Construction of Quadrilateral) 1. cf;Gg eh' f / ltgLx¿larsf] sf]0f lbP/ ;dfgfGt/ rte' {hsf] /rgf pbfx/0f 1 cf;Gg eh' fx¿sf] gfk j|mdzM 6cm / 5.4cm tyf ltgLx¿larsf] sf0] f 120° ePsf] ;dfgfGt/ rt'e'{hsf] /rgf u/ . ;dfwfg 1. Pp6f PQ = 6cm ePsf] /v] fv08 lvr . 2. laGb' P df sDkf;sf] ;xfotfn] 120° sf] sf0] f lvr . 3. 120° sf] sf0] f agfpg] /v] fdf P af6 5.4cm sf6]/ laGb' R kQf nufpm . 4. R af6 6cm / Q af6 5.4cm rfk lnO{ cfk;df sf6/] laGb' S kQf nufpm . 5. Q / S tyf R / S hf8] . ca cfjZos ;dfgfGt/ rt'e'{h PQSR tof/ eof ] . 2. cf;Gg e'hfx¿sf] gfk lbP/ cfotsf] /rgf pbfx/0f 2 Pp6f cfot EFGH lvr, h;df EF = 4.5cm / EH = 2cm 5 . P ;dfwfg M /rgf ug{] tl/sf 1. ;j{k|yd cfwf/ /v] f EF = 4.5cm lvr . 2. sDkf; / ?n/sf ;xfotfn] laGb' E df 90° sf] sf0] f lvr . 3. laGb' E df 90° sf]0f agfpg] /v] fdf 2cm gfk/] laGb' H kQf nufpm . 4. laGb' H af6 4.5cm sf] rfk F af6 2cm sf] rfk lnO{ cfk;df sf6/] laGb' G kQf nufpm . 5. laGb' G / H tyf F / G hf8] . ca, cfjZos cfot EFGH tof/ eof ] . 25 ul0ft, sIff – &
3. eh' f / sf0] fsf] gfk lbP/ ;dafx' rte' '{hsf] /rgf pbfx/0f 3 ;d:of M eh' fx¿ 4.5cm / cf;Gg eh' fx¿n] agfPsf] Pp6f sf0] f 45° ePsf] Pp6f ;dafx' rte' h{' sf] /rgf u/ . ;dfwfg M /rgf ug]{ tl/sf 1. ;jk{ y| d s'g} cfwf/ /] vf QR = 4.5 cm xg' ] u/L Pp6f /v] fv08 lvr . 2. laGb' Q df sDkf; / ?n/ sf] k|of]u u/L 45° sf] sf0] f /rgf u/ . 3. laGb' Q sf] 45° sf]0f agfpg] /]vdf 4.5cm gfk/] laGb' T kQf nufpm . 4. laGb' R / T af6 4.5cm s} rfkx¿ lnP/ cfk;df sf6/] laGb' S kQf nufpm . 5. T / S tyf S / R hf8] . ca cfjZos ;dafx' rte' '{h QRST tof/ eof] . cEof; 2.3 1. tnsf k|Tos] cj:yfdf ;dfgfGt/ rte' '{h EFGH sf] /rgf u/ M -s_ EF = 4cm, EH = 5cm / ∠E = 60° -v_ HG = 6cm, FG = 6.5cm / ∠G = 45° 2. s'g} b'O{ cf;Gg eh' fx¿larsf] sf0] f lgDgfg';f/ ePsf] ;dfgfGt/ rte' h'{ /rgf ug{] ;d:of agfpm . k|To]s ;d:ofaf6 ;dfgfGt/ rt'eh'{ sf] /rgf u/ . -s_ 75° -v_ 30° -u_ 105° -3_ 135° -ª_ 15° 3. tnsf k|Tos] cj:yfdf sDkf;sf] ko| f]u u/L cfotsf] /rgf u/ M -s_ cf;Gg eh' fx¿ 6cm / 5cm -v_ cf;Gg eh' fx¿ 4.8cm / 3.2cm 4. cf;Gg e'hfx¿sf] gfk lbOPsf s'g} 2 cf]6f cfotsf] /rgf ug]{ ;d:of agfpm . ;fc] g;' f/sf cfotsf] /rgf u/ . 5. tnsf k|Tos] cj:yfdf sDkf; / ?n/sf] ko| fu] u/L ;dafx' rt'e{'hsf] /rgf u/ M -s_ k|Tos] e'hfx¿ 5cm / cf;Gg eh' fx¿n] agfPsf] sf]0f 60° 26 ul0ft, sIff – &
-v_ k|Tos] e'hfx¿ 4.5cm / cf;Gg eh' fx¿n] agfPsf] sf]0f 105° -u_ k|Tos] e'hfx¿ 6.4cm / cf;Gg eh' fx¿n] agfPsf] sf0] f 135° 6. cf;Gg e'hfx¿n] agfPsf] sf]0f lgDgfg;' f/ ePsf km/s km/s ;dafx' rt'e'{hsf /rgf ug]{ 4 cf]6f ;d:of agfpm . k|To]s ;d:ofaf6 ;dafx' rt'e{'hsf] /rgf u/ M -s_ 90° -v_ 120° -u_ 75° -3_ 15° 7. dfly kZ| g g+= 1 b]lv 6 ;Dd lbOP h:t} u/L Ps Ps cf]6f yk ;d:of agfpm÷vf]h . cfk}“mn] ;dfwfg u/ . ;fyL;u“ cfk;df ;f6]/ ;dfwfg u/ . cfk\\mgf] / ;fyLsf] ;dfwfgnfO{ t'ngf u/]/ x/] / 5nkmn u/ . 27 ul0ft, sIff – &
2.4 lgoldt ax'e'h (Regular Polygon) 1. ax'e'hsf leqL / aflx/L sf]0fx¿ tn lbOPsf ax'e'h;DaGwL wf/0ffx¿ tyf lj|mofsnfkdf 5nkmn u/ M -s_ axe' 'h egs] f] s] xf] < n]v . -v_ s'g} tLgcf6] f axe' h' sf] lrq nv] /] b]vfpm . -u_ lgoldt ax'eh' / ;fdfGo axe' 'hdf s] km/s 5 < -3_ s:tf] axe' 'hnfO{ lgoldt ax'eh' elgG5 < -ª_ s'g} bO' c{ f6] f lgoldt / clgoldt ax'e'hsf] lrq sf]//] bv] fpm . tLg jf tLgeGbf a9L eh' fx¿n] ags] f] ;/n aGb ;dtnLo cfsl[ tnfO{ axe' h' (Polygon) elgG5 . axe' h' sf ;a} eh' fx¿ a/fa/ 5g\\ / leqL sf0] fx¿ klg a/fa/ 5g\\ eg] To:tf] ax'eh' nfO{ lgoldt ax'eh' (Regular polygon) elgG5 . lgoldt axe' 'hsf pbfx/0f ;dafx' lqe'h, ju{ cflb x'g\\ . tnsf lrqx¿df kT| o]s ax'eh' x¿sf Pp6f eh' fnfO{ Psftkm{ laGb' Y ;Dd nDAofp“bf ags] f sf0] fx¿nfO{ 5fof kf//] 56' \\ofOPsf] 5 . lrqsf cfwf/df tnsf kZ| gx¿sf] hjfkm bp] m M 1. tnsf lrqx¿ s] s]sf x'g\\ < gfd nv] . 2. lqeh' ABC sf] leqL sf0] f / aflx/L sf]0fsf] gfd n]v . hDdf sltcf]6f leqL sf0] f 5g\\ < 3. lrq 3 sf] HIJKL s]sf] lrq xf] < o;sf leqL / aflx/L sf]0fsf] gfd nv] . lrq g= 1 lrq g= 2 lrq g= 3 lrq g= 4 dflysf lrqx¿ j|mdzM lqe'h, rte' {'h, k~re'h, if8e\\ h' sf lrqx¿ xg' \\ . lrq 3 sf] lrq HIJKL k~re'h xf ] . o;df 5 cf]6f sf0] f / 5 cf6] f eh' fx¿ 5g \\ . o;sf leqL sf]0fx¿ ∠IHL, ∠HLK, ∠LKJ, ∠KJI / ∠JIH 5g \\ . o; k~re'h HIJKL sf] Pp6f eh' f IJ nfO{ laGb' Y ;Dd nDAofpb“ f ag]sf] kjy k~re'h HIJKL sf] aflx/L sf]0f xf] . ax'e'hsf e'hfx¿n] leqk6\\l6 agfPsf sf]0fx¿nfO{ leqL sf]0fx¿ (Interior Angles) elgG5 . s'g} klg axe' 'hsf] Pp6f e'hfnfO{ nDAofpb“ f aflx/k6l\\ 6 ag]sf] sf]0fnfO{ aflx/L sf]0f (Exterior Angles) elgG5 . 4. dflysf k|To]s lrqdf leqL / aflx/L sf0] f 56' \\ofP/ nv] L sIffdf 5nkmn u/ . 5. dflysf k|To]s lrqsf e'hfx¿ j|mdzM BA, ED, IH / NM nfO{ nDAofP/ laGb' X ;Dd k'¥ofpm . ca aGg] k|Tos] lrqsf leqL / aflx/L sf0] fx¿ 56' o\\ fP/ nv] . 28 ul0ft, sIff – &
2. ax'eh' sf leqL sf]0fx¿ / ltgLx¿sf] gfk tn lbOPsf lrqx¿ / tflnsf cEof; k'l:tsfdf ;f/ . k|To]s lrqdf lbP h:t} ljs0fx{ ¿ /rgf u/ / tflnsfdf e/ M j|m;= axe' h' sf] gfd eh' fsf] lqe'hsf] ;ªV\\ of leqL sf0] fsf] hf]8 ;ªV\\ of 1. lqeh' 3 1 = 3 -2 180° = 180° x ( 3 - 2) 4 2 = 4 - 2 360° = 180° x (4 - 2) (Triangle) 5 3 = 5 - 2 540° = 180° x (5-2) n-2 180° x (n-2) 2. rte' '{h (Quadri lateral) k~re'h 3. (Pentagon) 4. if8\\e'h (Hexagon) 5. ;Kteh' (Heptagon) 6. ci6e'h (Octagon) 7. n ............. -s_ dflysf] lrqdf rte' 'h{ DEFG nfO{ ljs0f{ DF n] sltcf]6f lqeh' df ljefhg u/s] f] 5 < -v_ rt'e{ 'h DEFG sf leqL sf]0fx¿sf] of]ukmn slt x'G5 < s;/L < -u_ lrqdf k~reh' HIJKL df slt cf6] f lqeh' x¿ 5g\\ < -3_ k~reh' HIJKL sf leqL sf0] fx¿sf] ofu] kmn slt xG' 5 < 29 ul0ft, sIff – &
-ª_ dflysf 5nkmnsf cfwf/df s] lgisif{ lgsfNg ;S5f} < n]v . -r_ s] ltd|f] lgisif{ tn lbOPsf] lgisif;{ “u ldN5 < t'ngf u/]/ x]/ . 1. rt'e{ h' sf leqL sf0] fx¿sf] ofu] kmn = 2 x -lqeh' sf] leqL sf0] fsf] ofu] kmn_ = 2 x 180° = 360° 2. k~reh' sf] leqL sf0] fx¿sf] ofu] kmn = 3 x -lqeh' sf leqL sf]0fsf] of]ukmn_ = 3 x 180° = 540° -5_ s] dflys} tl/sfaf6 cGo ax'e'hx¿, if8e\\ 'h, ;Kte'h, ci6eh' sf leqL sf0] fx¿sf] ofu] kmn lgsfNg ;S5f} < ko| f; u/L x]/ . -h_ dflysf ljm| ofsnfksf cfwf/df s] lgisif{ lgsfNg ;S5f} < n]v . lgisif{ M axe' h' sf leqL sf0] fx¿sf] ofu] kmn = 180° x -eh' fx¿sf] ;ªV\\ of - 2) = 180° x (n - 2) xG' 5 . 3. lgoldt axe' 'hx¿sf] leqL sf]0fsf] gfk xfdLn] sg' } klg ax'eh' sf] leqL sf0] fsf] ofu] kmn = 180° x (n - 2) x'G5 eGg] s/' f kQf nufPsf 5f“ } . ca xfdL lgoldt axe' 'hsf] kT| os] leqL sf0] f kTtf nufpg] ko| f; u/f“} . -s_ olb lgoldt axe' h' sf] e'hfsf] ;ª\\Vof = n 5 eg] lgoldt ax'e'hsf] leqL sf]0fsf] of]ukmn = 180° x (n - 2) xG' 5 . -v_ k|Tos] ax'eh' df eh' f / sf0] fsf] ;ªV\\ of a/fa/ xG' 5g \\ . To;}n] n cf6] f eh' f ePsf] lgoldt ax'eh' df n cf]6f leqL sf0] fx¿ xG' 5g \\ . To;}n] n e'hf ePsf] lgoldt ax'e'hsf] k|Tos] leqL sf0] f = leqL sf]0fsf] ofu] x'G5 . eh' fx¿sf] ;ª\\Vof ctM olb lgoldt ax'eh' sf] kT| os] leqL sf]0f x / eh' fx¿sf] ;ªV\\ of n 5 eg], kT| os] leqL sf]0f xG' 5 . tnsf] pbfx/0f cWoog u/L 5nkmn u/ . cfkm\" n] klg pbfx/0fsf ;d:of ;dfwfg ug{] ko| f; u/ . pbfx/0f 1 lgoldt k~reh' sf] leqL sf]0fsf] dfg lgsfn . ;dfwfg oxf“ lgoldt k~re'hdf eh' fsf] ;ªV\\ of (n) = 5 leqL sf0] f (x) = ? ;\"qcg';f/, ax'eh' sf] leqLsf]0f cyjf t;y,{ lgoldt k~reh' sf] kT| o]s leqL sf]0fsf] dfg 108° xG' 5 . ul0ft, sIff – & 30
4. lgoldt axe' 'hsf] aflx/L sf]0fsf] gfk xfdLn] lgoldt ax'e'hsf] leqL sf]0fsf] gfk lgsfNg] tl/sf / ;\"q kQf nufof}“ . ca xfdL lgoldt ax'e'hsf] aflx/L sf]0f kQf nufpg] tl/sf / o;sf] ;q\" kTtf nufpg] ko| f; u/f “} . ;u“ s} f] lrq Pp6f lgoldt axe' h' sf] lrq xf ] . o;df eh' f GF nfO{ laGb' P ;Dd nDAofpb“ f aGg] aflx/L sf]0f ∠PFE = y dfgf“} . To:t} y sf] cf;Gg sf]0f ∠GFE = x dfgf }“ . ca, x + y = ∠GFP -l;ªu\\ f] 6j' |m] tYo_ cyjf, x + y = 180° -∠GFP ;/n sf]0f ePsfn_] cyjf, y= 180 - x = 180 dflysf] lj|mofsnfkaf6 s] lgisif{ lgsfNg ;S5f} < n]v . lgisif{ M lgoldt axe' h' sf] aflx/L sf0] f xG' 5, hxf“ n = axe' h' sf eh' fx¿sf] ;ªV\\ of 5 . tnsf] pbfx/0f cWoog u/L 5nkmn u/ . cfkm\" n] klg pbfx/0fsf ;d:of ;dfwfg ug{] ko| f; u/ . pbfx/0f 2 lgoldt if8e\\ h' sf] aflx/L sf]0f kTtf nufpm . ;dfwfg oxf“, lgoldt if8e\\ 'hsf] eh' fsf] ;ªV\\ of (n) = 6 aflx/L sf]0f (y)= ? ;q' fg';f/, lgoldt axe' 'hsf] aflx/L sf0] f=( y) 3=60° 3=60° 60° n6 t;y{, lgoldt if8\\eh' sf] aflx/L sf]0f = 60° xG' 5 . cEof; 2.4 1. tn lbOPsf lgoldt ax'e'hsf] leqL sf0] fsf] ;q\" ko| fu] u/L gfk kQf nufpm M -s_ lqeh' (Triangle) -v_ rte' h'{ (Quadrilateral) -u_ k~reh' (Pentagon) -3_ if8\\e'h (Hexagon) -ª_ ci6e'h (Octagon) -r_ gjeh' (Nonagon) -5_ bze'h (Decagon) -h_ åfbzeh' (Dodecagon) 2. tn lbOPsf kT| o]s lgoldt ax'e'hsf] aflx/L sf]0fsf] ;q\" k|ofu] u/L gfk kQf nufpm M -s_ lqeh' (Triangle) -v_ rt'eh{' (Quadrilateral) -u_ k~reh' (Pentagon) 31 ul0ft, sIff – &
-3_ if8\\eh' (Hexagon) -ª_ ci6eh' (Octagon) -r_ gjeh' (Nonagon) -5_ bzeh' (Decagon) -h_ åfbze'h (Dodecagon) 3. tn lbOPsf axe' 'hx¿df X sf] dfg kQf nufpm M -s_ A B -v_ A -u_ U T 58° CS -3_ 30° 100° D Px 100° A 100° C Dx C 80° 85° 30° x QA BR E T B D 80° D -ª_ A -r_ P E E 83° D 80° 145° x BE A 52° x CS B 25° x 60° C DF F Q B 70° E -5_ Q C -h_ A R D E 75° D BD -em_ A 110° x F C 143° B F 145° 75° P 138° x C E GC x 145° AB H G 4. lqe'h XYZ sf] Pp6f eh' f YZ nfO{ P ;Dd nDAofOPsf] 5 . -s_ ∠XZP + ∠XZY = ? -v_ ∠XZP = ? -u_ ∠X + ∠Y = ? -3_ ∠XYZ = ? -ª_ ∠YXZ = ? -r_ s] ∠X / ∠Y sf] of]ukmn;“u ∠XZP sf] gfk a/fa/ 5 < -5_ -r_ sf cfwf/df s] lgisif{ lgsfNg ;S5f} < nv] . Q -h_ olb e'hf ZX nfO{ R ;Dd nDAofOof] eg] ∠RXY s'g s'g sf]0fsf] ofu] kmn;u“ a/fa/ xG' 5 . -em_ e'hf XY nfO{ Q ;Dd nDAofpb“ f ∠YXZ + ∠XZY s'g sf0] f;u“ a/fa/ xG' 5 < 32 ul0ft, sIff – &
PsfO 3 ;d¿ktf / cg¿' ktf (Similarity and Congruency) 3.1 ;d¿k / cg¿' k cfs[ltsf] kl/ro (Introduction of Similar and Congruent Figures) 1. ;d¿k cfs[ltx¿ (Similar Figures) tnsf lj|mofsnfkx¿ cWoog u/L 5nkmn u/ M -s_ lbOPsf hf8] L lrqx¿ cWoog u/ . s] ;dfgtf 5 < nv] / ;fyL;u“ 5nkmn u/ . -v_ lbOPsf kT| os] hf8] L lrqx¿ -6]l« ;ª kk] /sf] ;xfotfn_] sfkLdf agfpm . -u_ Pp6f 7'nf] lrqnfO{ csf{] hf]8L lrq;“u lrq g=+ 3.1 X vK6o\\ fpm -dfly /fv_ / tn' gf u/L x/] . A CY -3_ lgisifn{ fO{ nv] / ;fyL;u“ 5nkmn u/ . lbOPsf lrqx¿df k|To]s hf]8L lrqx¿ B lrq g+= 3.2 Z L p:t} cfsf/sf 5g \\ . t/ b'j} hf]8L lrqx¿ HI ;fgf 7n' f tyf km/s km/s gfksf 5g \\ . o:tf lrqx¿nfO{ ;d¿k lrq jf ;d¿k cfsl[ tx¿ elgG5 . pbfx/0f 1 E lrq 3.1 df b'Oc{ f]6f kftsf cfs[ltx¿ 5g \\ . oL F GJ K lrqx¿ p:t} cfsf/sf 5g\\ . t/ logLx¿ Ps csf{df ;fgf 7n' f cyft{ \\ cfsf/df km/s 5g \\ . lrq g=+ 3.3 -ª_ To:t} lrq 3.2, 3.3 / 3.4 sf kT| o]s hf]8L lrqx¿df s] s] ;dfgtf / s] s] km/s 5g\\ < n]v / ;fyL;u“ 5nkmn u/ . -r_ dflysf ;Dk\"0f{ lj|mofsnfkx¿sf cfwf/df ;d¿k cfsl[ tsf] kl/efiff nv] . cfkmn\" ] n] lrq g=+ 3.4 vs] f] kl/efiffnfO{ ;fyL ;dx\" tyf sIffdf 5nkmn u/ . s] ltdLn] 5nkmn u/L nv] s] f] kl/efiff tnsf] kl/efiff;u“ ldN5 < tn' gf u/L x/] . p:t} cfsf/ t/ km/s gfk ePsf cfs[ltx¿nfO{ ;d¿k cfs[ltx¿ elgG5 . 33 ul0ft, sIff – &
2. cg¿' k cfsl[ tx¿ (Congruent Figures) tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M -s_ lbOPsf hf8] L lrqx¿ cWoog u/ . s] s] s/' fdf ;dfgtf 5 < n]v / ;fyL;“u 5nkmn u/ . -v_ lbOPsf k|Tos] hf]8L lrqx¿nfO{ sfkLdf A X agfpm . -6«]l;ª kk] /sf] ;xfotfn]_ cfkm\" n] B agfPsf tL k|To]s hf]8L lrq sf6 cyjf CY Z kmf6] f]skL u/ . Pp6f lrqdfly csf]{ hf8] L E lrq /fv / tn' gf u/L x]/ . lgisifn{ fO{ lrq g+= 3.5 sfkLdf nv] / ;fyL;u“ 5nkmn u/ . HI K lbOPsf lrqx¿df kT| os] hf8] L lrqx¿ p:t} cfsf/sf 5g\\ . To:t} k|Tos] hf]8L lrqx¿ gfkdf klg a/fa/ 5g \\ . o:tf lrqx¿nfO{ cg'¿k cfs[lt -congruent figures_ elgG5 . pbfx/0f 2 F GJ L dflysf] lrq 3.5 df b'j} lqeh' x¿sf cfsl[ tx¿ lrq -h_ xb] f{ p:t} cfsf/sf 5g \\ . To:t} u/L bj' } lrqnfO{ lrq g+= 3.6 Ps cfk;df vK6fO{ bfh“ /] xb] f{ laGb' A dfly laGb' X, laGb' B dfly laGb' Y / laGb' C dfly laGb' Z /x]sf xG' 5g\\ . To;}u/L lqe'h ABC sf /v] fx¿ lqe'h XYZ ;u“ jm| dzM a/fa/ xG' 5g\\ . h:t}M AB = XY, BC = YZ / CA = ZX . -u_ To:t} u/L lrqx¿ 3.6 / 3.7 sf kT| os] lrq g+= 3.7 hf]8L lrqx¿df s] s] s'/fx¿df ;dfgtf 5 < nv] / ;fyL;“u 5nkmn u/ . -3_ dflysf ;Dk0\" f{ ljm| ofsnfkx¿sf cfwf/df cg'¿k cfsl[ tsf] kl/efiff n]v . cfkmn\" ] nv] ]sf] kl/efiffnfO{ sIffdf 5nkmn u/ . s] ltdLn] nv] ]sf] 5nkmnaf6 k|fKt u/s] f] kl/efiff tnsf] kl/efiff;u“ ldN5 < tn' gf u//] x]/ . p:t} cfsf/ / pxL gfk ePsf lrqx¿nfO{ cg¿' k cfsl[ t -congruent figures_ elgG5 . 34 ul0ft, sIff – &
cEof; 3.1 Y -s_ tnsf lrqx¿df sg' sg' ;d¿k cfs[ltx¿ x'g\\ < 1. -c_ A B -cf_ X Y 2. -c_ -cf_ 3. -c_ -cf_ ul0ft, sIff – & 4. -c_ -cf_ 5. -c_ -cf_ 6. -c_ -cf_ 7. -c_ -cf_ -v_ tnsf s'g s'g cg'¿k cfs[lt xg' \\ < 1. -c_ A B -cf_ X 2. -c_ -cf_ 3. -c_ -cf_ 4. -c_ -cf_ 35
5. -c_ -cf_ 6. -c_ -cf_ 7. -c_ -cf_ 8. -c_ -cf_ -u_ dflysf lrqx¿sf cfwf/df ;d¿k / cg'¿k lrqx¿ 5'6\\ofP/ lrq;lxt ltgsf] j0f{g u/ . -3_ tn lbOPcg;' f/ lrq sf]/ . tL lrqx¿ ;d¿k jf cg¿' k s] xg' \\, 56' \\ofpm . 1. b'O{cf6] f ju{x¿ Pp6f 4cm / csf{] 3cm eh' f ePsf ] 2. bO' c{ f]6f ;deh' lqe'hx¿ Pp6f 3cm / csf]{ 5cm e'hf ePsf ] -ª_ rf/ rf/cf]6f ;d¿k / cg'¿k cfs[ltx¿ lvr]/ bv] fpm . -r_ tnsf egfOx¿dWo] l7s / al] 7s 5'6\\ofpm M 1. ;a} jux{ ¿ cg¿' k xG' 5g \\ . 2. ;a} jux{ ¿ ;d¿k x'G5g\\ . 3. ;a} ;de'h lqe'hx¿ ;d¿k x'G5g\\ . 4. ;a} ;deh' lqe'hx¿ cg¿' k x'G5g \\ . 5. 3.5cm e'hf ePsf lqeh' x¿ cfk;df cg¿' k xG' 5g \\ . 6. 3cm e'hf ePsf] ;dlåjfx' lqeh' / 4cm eh' f ePsf] ;dafx' lqe'h cg'¿k xG' 5g\\ . -5_ ltdf| ] 3/, ;d'bfodf kfOg] sg' } 5 cf]6f cg¿' k / ;d¿k cfs[ltx¿sf] gfd n]v . 36 ul0ft, sIff – &
PsfO 4 j[Q (Circle) 4.1 j[Q / o;sf ljleGg efux¿ (Circle and its Different Parts) 1. jQ[ sf] kl/ro (Introduction of Circle) tnsf lj|mofsnfkx¿ ubf{ ss] f] lrq aGnf < 5nkmn u/ . Pp6f l;Ssf lnP/ aflx/L 3]/f 6«;] ubf{ Pp6f r'/f lnP/ aflx/L 3]/f 6«;] ubf{ Pp6f sfutLnfO{ sf6]/ jl/kl/sf] 3]/fn] s:tf] cfsf/ b]vfp5“ < A Pp6f k]lG;n sDkf;n] Ps kmGsf] nufO{ lrq agfpb“ f C O o;/L aGg] cfsl[ tx¿nfO{ j[Q (circle) elgG5 . B bfof“sf] lrqdf OA, OB / OC sf] gfk np] m / tnsf] tflnsf e/ M j|m=;=+ /]vfv08sf] gfk s] OA = OB = OC eof] < dflysf] lrqdf OA = OB = OC =1cm 5 . o;/L aGg] lrq ABC jQ[ 1. OA = ......... (circle) xf] . j[Qsf] aflx/L 3]/f ABC s]Gb|laGb' O bl] v a/fa/ b/' Ldf 2. OB = ......... 3. OC = ......... kb{5 . o;nfO{ ;ª\\st] df ABC n] hgfOG5 . s¬g} Pp6f lglZrt laGb¬af6 a/fa/ b/' Ldf kg{] laGbx' ¿sf] laGbk' ynfO{ j[Q (circle) elgG5 . @= j[Qsf ljleGg efux¿ (Different Parts of a Circle) tnsf ljm| ofsnfk u/ / ;fyL;“u 5nkmn u/ 6]andf Pp6f 7'nf] cfsf/sf] sfuh /fv . tn lbOP h:t} u/L b'O{ v08 agfpm . v08 1 v08 2 sfuhsf] Pp6f v08sf] lardf kg]{ u/L tn sfuhsf] csf]{ v08sf] lar efudf lrq g+= 4.2 lrq g=+ 4.1 bv] fP h:t} u/L ylDkgdf wfufn] df bv] fP h:t} sDkf;sf] l;ofn] fO{ sg' } Ps 7fpd“ f afw“ /] uf8 . wfufsf] csf]{ 5]p l;;fsnddf c8o\\ fP/ l;;fsnd ePsf] rR' rf] 3d' fpb“ } hfpm . af“w]/ l;;fsndnfO{ 8f]/Ln] tlGsg] u/L jl/kl/ 3d' fpm . lrq g=+ 4.1 lrq g+= 4.2 37 ul0ft, sIff – &
tnsf k|Zgx¿sf af/]df ;fyL;“u 5nkmn u/ M 1. dflysf] lrq g+ 4.1 / 4.2 df s] s] ;dfgtf / s] s] km/s 5g\\ < 2. dfly k|Zg g+= 1 cg';f/ ags] f bj' } lrqnfO{ s] elgG5 < 3. pSt lrqdf ylDkg ufl8Psf] 7fp“ jf sDkf;sf] l;of] cl8Psf] 7fpn“ fO{ s] elgG5 < ca tnsf] lrq / ljifo j:t' cWoog u/L jQ[ sf efux¿ lrg kl/lw 1. j[Qsf] s]Gb|laGb' (Centre) If]qs sg' ] klg j[Qsf] kl/lwsf] a/fa/ b'/Ldf kg{] jQ[ leqsf] laGb'nfO{ jQ[ sf] s]Gb|laGb' elgG5 . lrqdf ) jQ[ sf] s]Gbl| aGb' xf ] . 2. jQ[ sf] cwJ{ of; (Radius) lrq g=+ 4.3 j[Qsf] s]Gb|laGb'af6 kl/lw;Dd lvlrPsf] /]vfv08nfO{ To; j[Qsf] cw{Jof; (radius) elgG5 . lbOPsf] j[Qdf OA, OC / OE ;a} cwJ{ of;x¿ xg' \\ . 3. j[Qsf] kl/lw (Circumference) j[Qsf] jl/kl/sf] 3]/fnfO{ j[Qsf] kl/lw (circumference) elgG5 . lbOPsf] j[Qdf laGbx' ¿ E, D, C, B / A hfl] 8Psf] jQ[ fsf/ 3/] f jQ[ sf] kl/lw xf] . 4. jQ[ sf] hLjf (Chord) jQ[ sf] kl/lwsf sg' } bO' { laGbx' ¿ hf8] g\\ ] /v] fv08nfO{ To; jQ[ sf] hLjf (chord) elgG5 . lbOPsf] jQ[ df DC Pp6f hLjf xf] . 5. jQ[ sf] Jof; (Diameter) jQ[ sf] s]Gbl| aGb' eP/ hfg] hLjfnfO{ To; jQ[ sf] Jof; (diameter) elgG5 . lbOPsf] j[Qsf] lrqdf EB Pp6f Jof; xf ] . 6. j[Qsf] Ifq] s (Sector) b'Oc{ f]6f cw{Jof;sf] lardf k/]sf] If]qnfO{ To; j[Qsf] Ifq] s (sector) elgG5 . lbOPsf] jQ[ sf] lrqdf 5fof k/]sf] efu BOC Pp6f If]qs xf] . 7. cwj{ Q[ (Semi-circle) jQ[ sf] l7s cfwf efunfO{ cw{jQ[ (semi-circle) elgG5 . lrqdf EDCB n] 3l] /Psf] jQ[ sf] efu cw{jQ[ xf] . dflysf j[Qsf efux¿sf] kl/rosf cfwf/df lrq g+ 4.1 / 4.2 df sG] bl| aGb,' cw{Jof;, kl/lw, hLjf, Jof;, Ifq] s / cwj{ [Q agfP/ b]vfpm . 38 ul0ft, sIff – &
cEof; 4.1 1. ltdf| ] jl/kl/ ePsf j:t'x¿dWo] jQ[ sf] cfsf/ cfpg] sg' } 5 cf]6f j:t'x¿sf] gfd n]v . 2. tnsf lrqx¿df j[Qsf ljleGg efux¿ 56' o\\ fP/ bv] fpm M -s_ -v_ M Q XY AO B OP C N 3. cwJ{ of; egs] f] s] xf], lrq agfP/ b]vfpm . 4. jQ[ sf] cwJ{ of; / Jof;df s] km/s 5, lrq;lxt km/s 56' \\ofpm / logLx¿larsf] ;DaGw kTtf nufpm . 5. hLjf egs] f] s] xf], hLjf / Jof;df s] km/s 5, lrq;lxt pNnv] u/ . 6. s] ;a} hLjf Jof; xg' ;S5g\\, lsg < 7. Pp6f jQ[ sf] lrq agfO{ j[Qsf ljleGg efux¿ 5'6\\ofP/ b]vfpm . 39 ul0ft, sIff – &
PsfO 5 7f]; cfj[mlt (Solid Figure) 5.1 66] f« x]8«g, cS6fx8] g« , ;fn] L / a]ngfsf vf]jm| f gdg' fx¿ (Skeleton models of Tetrahedron, Octahedron, Cone & Cylinder) 1. 66] f« x]8g« / o;sf] gdg' f lbOPsf] HofldtLo cfs[lt 6]6«fx8] «gsf] xf] . 66] «fx8] g« Pp6f lgoldt HofldtLo 7f;] cfs[lt xf] . o;sf k|Tos] ;txx¿ ;dafx' lqe'haf6 ags] f xG' 5g\\ . o;df hDdf 4 cf]6f ;txx¿ xG' 5g \\ . o;sf 4 cf]6f zLif{laGb' / 6 cf6] f lsgf/f xG' 5g \\ . tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ -s_ tnsf] 6]6f« x]8g« sf] hfnL / gd'gf cWoog u/L 5nkmn u/ M hfnL gd'gf -v_ 66] f« x8] g« sf gd'gfsf cfwf/df tnsf kZ| gx¿df 5nkmn u/ . 1. 66] f« x]8g« lgoldt 7f]; j:t' jf clgoldt 7f;] j:t' sg' xf] < 2. 66] f« x]8«gsf kT| os] ;txsf lsgf/f gfk / gfd nv] . s] ;a} lsgf/f a/fa/ 5g \\ < 3. 66] «fx8] g« sf kT| o]s ;txsf cfsf/ s:tf xG' 5g\\ < s] kT| os] ;tx ;dafx' lqeh' cfsf/sf 5g\\ < 4. o:tf ;txx¿ sltcf]6f 5g\\ < -u_ dflysf] hfnL agfpm jf 6l]« ;ª u/ . o;af6 6]6f« x]8g« agfpg] cEof; u/ . -3_ h;' vfg] kfOk jf cGo :yfgLo ;fdu|L ko| fu] u/L 66] «fx]8g« agfO{ sIffdf 5nkmn u/L kb| z{g u/ . 2= cS6fx]8g« / o;sf gdg' fx¿ (Octahedran and its Skeleton Models) lbOPsf] HofldtLo lrq cS6fx]8g« xf] . cS6fx8] «g Pp6f lgoldt 7f]; j:t' xf] . o;sf kT| o]s ;txx¿ ;dafx' lqeh' af6 ags] f xG' 5g \\ . o;df hDdf 8 cf6] f ;txx¿ x'G5g \\ . o;df 6 cf6] f zLif{laGb' / 12 cf]6f lsgf/f xG' 5g \\ . gf]6 M 66] f« x]8g« , cS6fx8] g« , 3g, if8\\eh' cflb h;' vfg] kfOksf ;fy} dl;gf] lgufnf], 5j\\ fnL, af;“ sf n6\\7Lsf 6j' m| f cflb :yfgLo ;fdu|Lx¿af6 klg agfpg ;lsG5 . 40 ul0ft, sIff – &
tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ -s_ Pp6f cS6fx]8«gsf] vf]j|mf] gd'gf jf sfuhsf] gd'gf np] m÷;ªs\\ ng u/ / sIffdf 5nkmn u/ . 1. cS6fx8] «g lgoldt 7f]; j:t' jf clgoldt 7f]; j:t' sg' xf] < 2. cS6fx]8«gsf k|To]s ;txsf lsgf/f gfk / gfk nv] . s] ;a} lsgf/f a/fa/ 5g\\ < 3. cS6fx8] g« sf k|Tos] ;tx (faces) s:tf cfsf/sf 5g\\ < s] k|Tos] ;tx ;dafx' lqe'h cfsf/sf 5g\\ < 4. o:tf ;txx¿ sltcf]6f 5g\\ < 5. cS6fx8] «gdf sltcf6] f zLif{laGb' / lsgf/f 5g\\ < dflysf lj|mofsnfkaf6 s] lgisif{ lgsfNg ;S5f}, nv] . -v_ tnsf] cS6fx]8«gsf] hfnL / gd'gf cWoog u/L 5nkmn u/ M hfnL gd'gf -u_ dflysf] hfnL agfpm . 6l]« ;ª u/ . o;af6 cS6fx8] «g agfO{ sIffdf k|:tt' u/L 5nkmn u/ . -3_ h;' vfg] kfOk, 5j\\ fnL jf cGo :yfgLo ;fduL| ko| f]u u/L cS6fx]8«g agfO{ sIffdf kb| zg{ u/L 5nkmn u/ . 3. lgoldt axe' 'hsf sx] L dxŒjk\"0f{ tYox¿ lgoldt axe' h' x¿sf s]xL ljzi] ftfx¿ tn lbOPsf 5g,\\ cWoog u/L 5nkmn u/ . -s_ lgoldt axe' h' sf ;a} ;tx jf df]x8f (faces) cg'¿k x'G5g \\ . -v_ lgoldt ax'eh' sf s'g} bO' c{ f]6f ;txx¿ hf]8\\g] /v] fv08nfO{ lsgf/f (edge) elgG5 . -u_ lgoldt ax'e'hsf 3 jf 3 eGbf a9L lsgf/f ldn/] Pp6f zLif{laGb' (vertex) ag]sf] x'G5 . 41 ul0ft, sIff – &
-3_ 66] f« x]8«g, x]S;fx]8«g / cS6fx]8«gsf gdg' fx¿ n]pm / tnsf] tflnsfdf lbOPsf tYox¿ tn' gf u/L x]/ M jm| =;+= lgoldt axe' 'h zLifl{ jGb ' lsgf/f ;tx ;txsf] cfsl[ t V, E / F (Regular Polyhedran) (Vertices (V) Edges (E) Faces (F) Figure of Face sf] ;DaGw 1. 66] «fx]8«g 4 6 4 ;dafx' lqeh' 4 - 6 + 4 =2 2. xS] ;fx8] g« -if8\\dv' f_ 3. cS6fx8] g« 8 12 6 ju{ 8 - 12 + 6 = 2 6 12 8 lqeh' 6 -12 + 8 = 2 4. sg' } klg lgoldt axe' h' V E F V-E+F=2 dflysf] tflnsfaf6 s] lgisif{ lgsfNg ;lsPnf < 5nkmn u/ / nv] . 4. ;f]nL / o;sf] gdg' f (Cone and its Skeleton Models) tnsf lj|mofsnfk cWoog u/L 5nkmn u/ M -s_ dflysf k|To]s cfs[lt s:tf cfsf/sf 5g\\ < -v_ k|To]s cfsl[ tsf cfwf/x¿ s] cfsf/sf 5g\\ < -u_ k|Tos] cfsl[ tsf] ;tx s:tf] cfsf/sf] 5 < dflysf lrqx¿ ;a} ;f]nL (cone) sf lrqx¿ xg' \\ . ;f]nLsf cfwf/x¿ j[Qfsf/ x'G5g\\ . o;sf] ;tx jjm| ¿kdf /xs] f] x'G5 . t/ jjm| ;tx csf]{k6\\l6 Pp6f laGb'df ldns] f] x'G5 . -3_ dfly h:t} ;f]nL cfsf/sf sg' } bO' { j:tx' ¿ hDdf u/ . o;sf ;tx / cfwf/sf af/]df 5nkmn u/ . ;f]nLsf s]xL ljz]iftfx¿ ul0ft, sIff – & 1. ;f]nL Pp6f 7f;] cfsl[ t xf ] . 2. o;sf] cfwf/ j[Qfsf/ x'G5 . 3. o;sf] ;tx jjm| ¿kdf /x]sf] xG' 5 . 4. t/ jjm| ;tx Pp6f laGbd' f ldn]sf] x'G5 . 42
-ª_ dflysf] 5nkmnsf cfwf/df ;fn] Lsf] kl/efiff n]v / sIffdf 5nkmn u/ . s] ltdf| ] kl/ efiff tnsf] kl/efiff;u“ ldN5 < tn' gf u/ . ;fn] L (cone) Pp6f 7f;] cfsl[ t xf], h;sf cfwf/ jQ[ fsf/ eO{ ;tx jjm| ¿kdf /x]sf] x'G5 t/ jjm| ;tx Pp6f laGb'df ldn]sf xG' 5g\\ . -r_ ;fn] Lsf] lgdf0{ f tnsf r/0fx¿sf cfwf/df Pp6f ;fn] Lsf] lgdf{0f u/ M 1. lrq g+= 5.1 df h:t} u/L sg' } jQ[ sf6 . To;df s'g} If]qs AOB lrxg\\ nufpm . lrq g=+ 5.1 lrq g+= 5.2 lrq g=+ 5.3 lrq g=+ 5.4 2. Ifq] s AOB nfO{ lrq g=+ 5.2 df h:t} u/L j[Qfsf/ sf6/] x6fpm . 3. lrq g+= 5.4 df h:t} u/L OA / OB nfO{ hf8] f }“ . 4. ss] f] lrq aGof,] n]v . 5. an] gf / o;sf gdg' fx¿ (Cylinder and its skeleton models) 43 ul0ft, sIff – &
tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ -s_ kT| o]s cfsl[ tx¿ cWoog u/L / tnsf kZ| gsf] pQ/ vfh] . 1. dfly lbPsf j:tx' ¿ s:tf cfsf/sf 5g\\ < 2. oL j:t'x¿sf cfwf/ s:tf cfsf/sf 5g\\ < dflysf j:tx' ¿ a]ngf cfsf/sf 5g \\ . logLx¿sf cfwf/x¿ j[Qfsf/ 5g \\ . -v_ dfly lbOP h:t} an] gf cfsf/sf j:tx' ¿sf pbfx/0f lbg ;S5f } < nv] /] 5nkmn u/ . -u_ sg' } 5 cf6] f an] gfsf/ j:t'x¿ ;ª\\sng u/ . ltgLx¿sf ;tx / cfwf/sf af/]df sIffdf 5nkmn u/ . -3_ dflysf lj|mofsnfksf cfwf/df a]ngf jf a]ngfsf/ j:t'sf u'0fx¿ kTtf nufpm . tL tYox¿af/] ;fyL;u“ 5nkmn u/ . a]ngf jf an] gfsf/ j:t'sf u'0fx¿ 1. a]ngf Ps 7f;] j:t' xf] . 2. o;sf] cfwf/ jQ[ fsf/ xG' 5 . 3. o;sf] ;tx jjm| xG' 5 . 4. a]ngfsf cfsf/sf j:t'x¿nfO{ a]ngfsf/ j:t' elgG5 . 5. an] gfsf cfwf/x¿ cfk;df ;dfgfGt/ x'G5g\\ . -ª_ dfly plNnlvt tYox¿sf cfwf/df a]ngf jf a]ngfsf/ j:t'sf] kl/efiff n]v . cfk\\mgf] kl/efiffnfO{ ;fyL;u“ 5nkmn u/ . s] ltd|f] kl/efiff tnsf] kl/efiff;u“ ldN5 < tn' gf u/L x/] . cfwf/x¿ j[Qfsf/ / ;dfgfGt/ eO{ ;tx jj|m ;txsf ¿kdf /xs] f 7f;] j:tx' ¿nfO{ a]ngf jf an] gfsf/ j:t' elgG5 . cyjf a]ngf Pp6f 7f;] j:t' xf,] h;sf cfwf/x¿ j[Qfsf/ / ;dfgfGt/ tyf ;tx jjm| ;txsf ¿kdf /x]sf xG' 5g \\ . -r_ an] gfsf] vfj] |mf gdg' fsf] lgdf{0f P SP S PS PS Q RQ R QR QR Pp6f cfotfsf/ sfuhsf] kfgf n]pm . To;nfO{ lbOPsf lrq tyf gd'gf lgdf{0fsf r/0fcg;' f/ agfp“b} hfpm M cfotfsf/ sfuhnfO{ pq} b'O{cf6] f j[Qx¿sf] kl/lwdf kg]{ u/L a]/f} “ . 44 ul0ft, sIff – &
sfuhsf wf/x¿nfO{ cfk;df l;wf x'g] u/L 6f;“ f “} . ca s]sf] cfsf/ aG5 x]/f“} / 5nkmn u/f}“ . ca ags] f] cfsl[ t an] gf xf] . an] gf tof/ eof ] . s] o; an] gfsf cfwf/x¿ ;dfgfGt/ 5g\\ < 5nkmn u/ . cEof; 5.1 1. 6]6«fx]8«gsf] kl/ro bp] m . 2. cS6fx8] g« sf] kl/ro b]pm . 3. 6]6f« x]8«gsf] hfnL, gdg' f / vfj] m| f] gdg' fsf] lrq agfpm . 4. cS6fx8] g« sf] hfnL, gd'gf / vfj] m| f] gd'gfsf] lrq agfpm . 5. lgoldt axe' 'hsf sg' } tLgcf6] f tYox¿ pNnv] u/ . 6. 66] «fx8] «g, x]S;fx8] g« -if8\\dv' _, 3g / cS6fx]8«gsf tYox¿nfO{ tnsf] tflnsfdf e/ M j|m=;= lgoldt axe' 'h zLif{laGb' ;ªV\\ of lsgf/fsf] ;ªV\\ of ;txsf] ;ª\\Vof ;txsf] cfsl[ t (Regular polygon) Number of Number of Number of Figure of Vertices (V) Edges (E) Faces (F) Surface 1. 3g (Cube) 2. if8d\\ 'vf (Hexahedron) 3. 66] f« x8] g« (Tetrahedron) 4. cS6fx8] «g (Octahedron) 7. ;fn] Lsf] pbfx/0f;lxt kl/ro b]pm . gdg' f lrq klg agfpm . 8. an] gfsf] pbfx/0f;lxt kl/ro bp] m . gdg' f lrq klg agfpm . 45 ul0ft, sIff – &
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235