Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 1. Modül Fonksiyonlar

AYT Matematik Ders İşleyiş Modülleri 1. Modül Fonksiyonlar

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-24 01:25:18

Description: AYT Matematik Ders İşleyiş Modülleri 1. Modül Fonksiyonlar

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- %J[HJ–(SBGJL5BTBSŽN *4#//P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ   ÷MFUJöJN       &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*   JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ ÜNİVERSİTEYE HAZIRLIK 1. MODÜL MATEMATİK - 2 FONKSİYONLAR Alt bölümlerin Fonksiyonlar KARMA TEST - 1 Karma Testler EDĜOñNODUñQñL©HULU Modülün sonunda 1. yy 4. f : [ - R) Z [ - R JMFUBOŽNMŽ tüm alt bölümleri –2 f ( x ) = x2 + 6x +GPOLTJZPOVWFSJMJZPS L©HUHQNDUPDWHVWOHU ³ Fonksiyon Kavramı - I t 2 y = g(x) 2x  G-1 Y  GPOLTJZPOVOVO LVSBMŽ BöBôŽEBLJMFSJO ³ Fonksiyon Türleri t 10 1 –1 IBOHJTJEJS x y = f(x) A) x + 5 + 3 B) x + 5 - 3 C) - x + 5 - 3 ³ Parçalı Fonksiyon ve Fonksiyonlarla İşlemler t 18  õFLJMEF HSBGJLMFSJ WFSJMFO G WF H GPOLTJZPOMBSŽ D) - x + 5 + 3 E) x - 5 - 3 JÀJO BöBôŽEBLJMFSEFO IBOHJTJ LFTJOMJLMF EPôSV- ³ Fonksiyonlarda Görüntü t 22 EVS A) ( gof ) ( 3 ) < 0 B) ( fog ) ( 1 ) < 0 ³ Doğrusal Fonksiyonların Grafikleri t 27 C) ( fof ) ( 0 ) > 0 D) ( gog ) ( -1 ) < 0 6ñQñIð©LðĜOH\\LĜ E) ( fog ) ( 2 ) < 0 ³ Mutlak Değer Fonksiyonu ve Grafikleri t 32 %XE¸O¾PGHNL¸UQHN VRUXODUñQ©¸]¾POHULQH ·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr DNñOOñWDKWDX\\JXODPDVñQGDQ XODĜDELOLUVLQL] ³ Bileşke ve Ters Fonksiyon t 41 '0/,4÷:0/,\"73\".** \\HUDOñU Fonksiyon ÖRNEK 2 2. 1-WFËSUFOGWFHGPOLTJZPOMBSŽJ¿JO  5. f ( x ) = 3x + 7 GPOLTJZPOVWFSJMJZPS 4x - 3 ³ Fonksiyonların DTAöNnIMüşümleri t 57 fB f ( x ) = g ( 2x + FõJUMJóJWFSJMJZPS  \"WF#CPõLÐNFEFOGBSLMŽJLJLÐNFPMNBLÐ[F- A  #VOBHÌSF  1(f4o4fo4fo2. .4. f4) (423) LBÀUŽS SF\"LÐNFTJOJOIFSCJSFMFNBOŽOŽ#LÐNFTJOJO #VOB HÌSF  G-1 Y   GPOLTJZPOVOVO FöJUJ BöBôŽ- 2011 tane ·1 EBLJMFSEFOIBOHJTJEJS ³ Tek ve Çift FonksiyoCJnS WlFa ZrBMOtŽ[ 68CJS FMFNBOŽOB FõMFZFO JMJõLJZF \" ·a EBO#ZFUBOŽNMŽGPOLTJZPOEFOJS ·b ·2 A) g–1( 2x + 2 ) g–1 ^ x h - 2 A) 2 B) 5 C) 13 D) 4 E) 19 <HQL1HVLO6RUXODU ·c ·3 B)  'POLTJZPOMBSHFOFMMJLMFG H IHJCJTFNCPMMFSMF ·d ·4 25 2 2 ³ Karma TestlHeËrTUFSJtMJS 73 ·5 õFLJMEFWFSJMFOGGPOLTJZPOVOVOUBOŽN HÌSÑOUÑWF C) g–1 f x - 2 p D) 2g–1( x ) + 2 <(1m1(6m/6258/$5 2 Fonksiyonlar ³ Yeni NesÖilRSNEoKru1lar t 81 EFôFSLÑNFMFSJOJMJTUFCJÀJNJOEFZB[BMŽN ¦Ì[ÑN E) g–1^ 1x.h+ 2\"OLBSBhEB UBLTJMFSJO UBLTJNFUSF B¿ŽMŽõ ÐDSFUJ  5- \"öBôŽEBLJ7FOOöFNBMBSŽJMFWFSJMFOJGBEFMFSEFOIBO- GGPOLTJZPOVOVOUBOŽNLÐNFTJ \"= {B C D E} 2 EJS)FSLNTPOVOEB5-ÐDSFUBMŽONBLUBEŽS 3. ôFLJMEFLJ HËSTFMEF CJS DJTJN CFMMJ CJS ZÐLTFLMJLUFO GGPOLTJZPOVOVOEFóFSLÐNFTJ #= {    } ZVLBSŽEPóSVBUŽMŽZPS HJMFSJGPOLTJZPOEVS GGPOLTJZPOVOVOHËSÐOUÐLÐNFTJ G \" = {   } f g h 2Ö. ?RNEK 3  \"OLBSBhEBUBLTJZFCJOFOCJSLJöJOJOHJEJMFONF- AB AB AB ·a ·1 ·a ·1 ·a ·1 TBGF JMF ÌEFEJôJ ÑDSFU BSBTŽOEBLJ JMJöLJZJ JGBEF 0RG¾O¾QJHQHOLQGH\\RUXP ·b ·2 ·b ·2 ·b ·2 \\DSPDDQDOL]HWPHYE 1. ? 2. ? · c ·3 ·c 1 ·3 · c · 3 1. ? FEFOGPOLTJZPOVOHSBGJôJBöBôŽEBLJMFSEFOIBO- EHFHULOHUL¸O©HQNXUJXOX VRUXODUD\\HUYHULOPLĜWLU HJTJEJS $\\UñFDPRG¾OVRQXQGD a) b) c) G\"\"3 G Y =Y - 1 ve A = { -    }PMEVôVOB 3. gYöCsJSteNrmBMeŽOkBüMzŽõerGeJZBfU(ŽOxŽ)G= Yx 2BA-Z)O4ŽxN+BM1ŽyO0(TTLBfo)UŽnõkGsJZiyBoUŽnOuŽ 6. Z=G Y EPôSVTBMCJSGPOLTJZPOPMNBLÑ[FSF  HÌSF B) y (TL) ( fof ) ( x ) = 9x - 4 44 UBOŽNMŽZPS I. G \"  HÌSÑOUÑ LÑNFTJOJCVMVOV[ 3 3 PMEVôVOBHÌSF G  BöBôŽEBLJMFSEFOIBOHJTJOF II. GLÑNFTJOJTŽSBMŽJLJMJMFSI»MJOEFZB[ŽOŽ[  #VNBMŽOTBUŽöŽOEBOFOB[LBÀMJSBL»SFEJMJS FöJUPMBCJMJS x (km) x (km) O1 A) 3 B) 15 C) 9 O 211 E) 6 C) -9 D) 9 E) 11 D) A) -13 B) -11 42 4 $OW%¸O¾P7HVWOHUL C) y (TL) D) y (TL) TEST - 1 Her alt bölümün 4 5 U TBOJZF TPOSB DJTNJO ZFSEFO ZÐLTFLMJóJOJ WFSFO VRQXQGDRE¸O¾POHLOJLOL 3 4 denklem h_ t i = 30 + 3t - t2 PMNBLUBEŽS WHVWOHU\\HUDOñU 3 5BOŽN %FôFS (ÌSÑOUÑ',PÑONLTFJZMFPSOJ,BWSBNŽ ÖRNEK 4 x (km) 3 73 x (km)4. B 5. C 6#. AVOBHÌSF DJTNJOU=TBOJZFWFU= 3. sani- TANIM 1. D 2. B 3. B 1 O 12 3 O  #JS \" LÐNFTJOEFO1.# L\"ÐöNBFôTŽJEOBFL UJBMFOSŽENFMŽOGIGPBOOLH-JTJ ; A ;\"öZBFô CŽEJSBUGBPOOŽLNTJW- FEFôF4S.LÑNf :FRMFSAJWRFSJvMFeOgJGB: ERFAMFSREFO E) y (TL) ZFMFSBSBTŽOEBLJPSUBMBNBEFôJöJNIŽ[ŽLBÀNTO TJZPOV G \" A # JMF HËZTPUOFESJMVJSS \" LÐNFTJOF UB- x + 4 Ia)BCO)HGJyMF=;SJZGP5O2L TGJ ZYP O=CF2xMxJS+U+JS31fri(lixy)o=r. -3x - 7 ve g ( x ) = -x +GPOLTJZPOMBSŽWF- 5 EJS x+2 4 \"OŽNEBLOÐ\"NFZTBJ UB#OLŽNÐNMŽFCTJSJOAGPF)OyELFT=ôJZFPxSO-3BLÑ1LNŽTFBTDJBE\"BFO)EJySB= xH2-34Z3 H Y = 4 - xf2( A ) = {2, -1, 5} A) 0 B) 1 C) 4 D) 5 E) 2 UBOŽNMŽGPOLTJZPOEFOJS PMEVôVOB HÌSF  H \"  BöBôŽEBLJMFSEFO IBOHJTJ- 3 33 GGPOLTJZPOV\"LÐNFTJOEFOBMŽOBDO)CyJS=Y1FM-FN5Bx-2 xE-JS1 C 3 OŽOŽ#LÐNFTJOEFLJCJSZFMFNBOŽJMFFõMJZPSJTF E) cy)= x2 +1 x (km) O 12 H43+ Z3 I Y = WDPDPñ\\HQLQHVLOVRUXODUGDQ YFMFNBOŽOŽOGBMUŽOEBLJHËSÐOUÐTÐZFMFNBOŽEŽS A) { 2, 3, 4 } B) { 3, 4, 5 } C) { -3, 0, 5 } EFOJS#VEVSVNZ=G Y CJ¿JNJOEFHËTUFSJMJS D) { -2, -1, 3 } E) { -2, 2, 4 }  G\"A B PMNBLÐ[FSFUBOŽNLÐNFTJOEFLJFMF- ROXĜDQWHVWOHUEXOXQXU NBOMBSŽO G GPOLTJZPOV BMUŽOEBLJ HËSÐOUÐMFSJOJO PMVõUVSEVóV LÐNFZF CV GPOLTJZPOVO HÌSÑOUÑ LÑNFTJEFOJSWFG \" JMFHËTUFSJMJS(ËSÐOUÐLÐ- NFTJPSUBLË[FMMJLZËOUFNJJMF I G \" = {G Y Y! A }PMBSBLJGBEFFEJMJS 2. :BLŽUEFQPTVOEBMJUSF - CFO[JOJCVMVOBOWF 4. \"öBôŽEBLJMFSEFOLBÀUBOFTJEBJNBEPôSVEVS IFS  LN EF - CFO[JO UÑLFUFO CJS PUPNPCJ- I. ( fof )( x ) =YJTFGCJSJNGPOLTJZPOEVS 1. f 2 3. I. {–1, 0, 8, 24}, II. {(-1, 0), (0, -1), (3, 8), (5, 24)} 4. f ve g MJOHJEJMFOYLNZPMBLBSöŽMŽLEFQPTVOEBLBMBO 2. f^ x h = 2x - 6 - - x2 + 2x + 48 CFO[JONJLUBSŽOŽJGBEFFEFOGPOLTJZPOBöBôŽEB- ** GPH Y =G Y JTFHCJSJNGPOLTJZPOEVS 5. f: A = ( -1, 3 ] A R, LJMFSEFOIBOHJTJEJS  GPOLTJZPOVOVOUBOŽNLÑNFTJOEFLBÀUBOFUBN f ( x ) = x2 - 4x *** GPH Y =H Y JTFGCJSJNGPOLTJZPOEVS TBZŽCVMVOVS  GPOLTJZPOVOVO HÌSÑOUÑ LÑNFTJ BöBôŽEBLJMFS- A) f_ x i = 60 - x B) f_ x i = 60 - x *7 HPG Y = GPH Y JTFGPHCJSJNGPOLTJZPOEVS A) 4 B) 5 C) 6 D) 7 E) 8 EFOIBOHJTJEJS 20 100 7 GPH Y =H Y JTFHCJSJNGPOLTJZPOEVS C) f_ x i = 60 - x D) f ( x ) = 60 + 100x 5 A) ( -4, 5 ) B) [ -4, 5 ] C) [ -4, -3 ) E) f ( x ) = 60 – 5x \"  #  $  %  &  D) [ -4, 3 ] E) [ -4, 5 ) 1. D 2. A 81 3. D 4. B 3. f : A A R, f_ x i = 6x - x2 + x - 2 6. f (x) = x2 - 6x + 9 - x2 - 12x + 36 x-4  GPOLTJZPOVOVO HÌSÑOUÑ LÑNFTJOEF LBÀ UBOF UBNTBZŽWBSEŽS  GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- A) 5 B) 7 C) 9 LJMFSEFOIBOHJTJEJS D) 11 E) 12 A) [ 0, 6 ] B) ( 0, 6 ) - { 2 } C) [ 0, 6 ) D) ( 0, 6 ] E) [ 0, 6 ] - { 4 } 1. D 2. C 3. E 5 4. B 5. E 6. B

ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, MATEMATİK - 2 1. MODÜL FONKSİYONLAR ³ Fonksiyon Kavramı t 2 ³ Fonksiyon Türleri t 10 ³ Parçalı Fonksiyon ve Fonksiyonlarla İşlemler t 18 ³ Fonksiyonlarda Görüntü t 22 ³ Doğrusal Fonksiyonların Grafikleri t 27 ³ Mutlak Değer Fonksiyonu ve Grafikleri t 32 ³ Bileşke ve Ters Fonksiyon t 41 ³ Fonksiyonların Dönüşümleri t 57 ³ Tek ve Çift Fonksiyonlar t 68 ³ Karma Testler t 73 ³ Yeni Nesil Sorular t 81 1. ? 2. ? 1 1. ? 2. ?

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr '0/,4÷:0/,\"73\".* Fonksiyon ÖRNEK 2 TANIM fB A  \"WF#CPõLÐNFEFOGBSLMŽJLJLÐNFPMNBLÐ[F- SF\"LÐNFTJOJOIFSCJSFMFNBOŽOŽ#LÐNFTJOJO ·1 CJS WF ZBMOŽ[ CJS FMFNBOŽOB FõMFZFO JMJõLJZF \" ·a EBO#ZFUBOŽNMŽGPOLTJZPOEFOJS ·b ·2 ·c ·3  'POLTJZPOMBSHFOFMMJLMFG H IHJCJTFNCPMMFSMF ·d ·4 HËTUFSJMJS ·5 ÖRNEK 1 õFLJMEFWFSJMFOGGPOLTJZPOVOVOUBOŽN HÌSÑOUÑWF EFôFSLÑNFMFSJOJMJTUFCJÀJNJOEFZB[BMŽN \"öBôŽEBLJ7FOOöFNBMBSŽJMFWFSJMFOJGBEFMFSEFOIBO- ¦Ì[ÑN HJMFSJGPOLTJZPOEVS GGPOLTJZPOVOVOUBOŽNLÐNFTJ \"= {B C D E} f g h GGPOLTJZPOVOVOEFóFSLÐNFTJ #= {    } AB AB AB GGPOLTJZPOVOVOHËSÐOUÐLÐNFTJ G \" = {   } ·a ·1 ·a ·1 ·a ·1 ÖRNEK 3 ·b ·2 ·b ·2 ·b ·2 ·c ·3 ·c ·3 ·c ·3 a) b) c) G\"\"3 G Y =Y - 1 ve A = { -    }PMEVôVOB B  G \"LÑNFTJOEFLJIFSFMFNBOŽ#LÑNFTJOEFLJCJSWF HÌSF ZBMOŽ[CJSFMFNBOMBFöMFöUJSEJôJJÀJOGPOLTJZPOEVS I. G \"  HÌSÑOUÑ LÑNFTJOJCVMVOV[ II. GLÑNFTJOJTŽSBMŽJLJMJMFSI»MJOEFZB[ŽOŽ[ C  H  \" LÑNFTJOEFLJ D FMFNBOŽOŽ # LÑNFTJOEFLJ JLJ FMFNBOMBFöMFöUJSEJôJJÀJOGPOLTJZPOEFôJMEJS *G \" = { -1, 0, 8, 24 } D  I \"LÑNFTJOEFLJCFMFNBOŽOŽ#LÑNFTJOEFLJIFS- II. f = { ( -1, 0 ), ( 0, -1 ), ( 3, 8 ), ( 5, 24 ) } IBOHJ CJS FMFNBOMB FöMFöUJSNFEJôJ JÀJO GPOLTJZPO EFôJMEJS 5BOŽN %FôFS (ÌSÑOUÑ,ÑNFMFSJ ÖRNEK 4 TANIM \"öBôŽEBUBOŽNWFEFôFSLÑNFMFSJWFSJMFOJGBEFMFSEFO IBOHJMFSJGPOLTJZPOCFMJSUJS  #JS \" LÐNFTJOEFO # LÐNFTJOF UBOŽNMŽ G GPOL- a) G;Z2 G Y = x + 3 TJZPOV G \" A # JMF HËTUFSJMJS \" LÐNFTJOF UB- OŽNLÐNFTJ #LÐNFTJOFEFôFSLÑNFTJEFOJS 2x + 1 \"EBO\"ZBUBOŽNMŽCJSGPOLTJZPOBLŽTBDB\"EB C H3Z3 H Y = 3 4 - x2 UBOŽNMŽGPOLTJZPOEFOJS D H3+ Z3 I Y = x - 1 GGPOLTJZPOV\"LÐNFTJOEFOBMŽOBOCJSYFMFNB- x2 +1 OŽOŽ#LÐNFTJOEFLJCJSZFMFNBOŽJMFFõMJZPSJTF YFMFNBOŽOŽOGBMUŽOEBLJHËSÐOUÐTÐZFMFNBOŽEŽS a) r ` Z JÀJO x+3 ` 2EVSGGPOLTJZPO EFOJS#VEVSVNZ=G Y CJ¿JNJOEFHËTUFSJMJS 2x + 1  G\"A B PMNBLÐ[FSFUBOŽNLÐNFTJOEFLJFMF- NBOMBSŽO G GPOLTJZPOV BMUŽOEBLJ HËSÐOUÐMFSJOJO C  r ` 3 JÀJO 3 4 - x2 `3EŽSHGPOLTJZPO PMVõUVSEVóV LÐNFZF CV GPOLTJZPOVO HÌSÑOUÑ LÑNFTJEFOJSWFG \" JMFHËTUFSJMJS(ËSÐOUÐLÐ- D  r ` 3+ JÀJO x-1 NFTJPSUBLË[FMMJLZËOUFNJJMF \" 3EŽSIGPOLTJZPOEFôJMEJS x + 1 I G \" = {G Y Y! A }PMBSBLJGBEFFEJMJS 11 ²SOFôJOY= JÀJO x - 1 = - b R EJS 22 1. f 2 3. I. {–1, 0, 8, 24}, II. {(-1, 0), (0, -1), (3, 8), (5, 24)} 4. f ve g

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 %JLFZ%PôSV5FTUJ G\"\"# G Y =Y+G \" = [- ]PMEVóVOBHËSF 7$1,0%m/*m \"LÑNFTJOJCVMVOV[  #JS GPOLTJZPOVO HSBGJóJOEF EÐõFZ  EJLFZ EPó- -ãY+㉠-ãY㉠-ãYã SV UFTUJ LVMMBOŽMBSBL GPOLTJZPOVO Y FLTFOJ Ð[F- SJOEFUBOŽNMŽPMEVóVIFSCJSOPLUBEBOZFLTFOJ- OF QBSBMFM ¿J[JMFO EPóSVMBS  HSBGJóJ ZBMOŽ[DB CJS OPLUBEBLFTFS#VEPóSVMBS HSBGJóJCJSEFOGB[MB OPLUBEBLFTJZPSTBHSBGJLCJSGPOLTJZPOVOHSBGJ- óJEFóJMEJS ÖRNEK 6 ÖRNEK 9 G -    Z #  G Y  = Y - Y +  PMEVóVOB HËSF f \"öBôŽEB WFSJMFO HSBGJLMFSEFO IBOHJMFSJ GPOLTJZPO GPOLTJZPOVOVOHÌSÑOUÑLÑNFTJOJCVMVOV[ HSBGJôJEJS -3 <Y< 2 ‰ -4 <Y- 1 < 1 ‰ã Y- 1 )2 < 16 I. y V. y ã Y- 1 )2 +1 < 17 ‰ãY2 -Y+ 2 17 Ox Ox ÖRNEK 7 II. y VI. y Ox Ox G3- {  }Z R - { N } III. y G Y = f (x) - 1 GPOLTJZPOVUBOŽNMBOŽZPS Ox x+k VII. y #VOBHÌSF G  EFôFSJOJCVMVOV[ O G Y = - 1 UBOŽNLÑNFTJ3- { 2 }PMEVôVOEBO x x+k-1 Y= JÀJOY+ k - 1 =PMNBMŽEŽS 2 + k - 1 = 0 ‰ k = -1 IV. y VIII. y O 2x 3 -1 -1 G Y = ‰f ( 3) = =-1 O x-2 3-2 x ÖRNEK 8 ZFLTFOJOFQBSBMFMEPôSVMBSÀJ[JMEJôJOEF* ** *** *7WF7* OPMVHSBGJLMFSJCJSEFOGB[MBOPLUBEBLFTUJôJHÌSÑMÑS4B- A = { B C D E } #= {       }LÐNFMFSJWFSJMJZPS EFDF7 7** 7***OPMVHSBGJLMFSGPOLTJZPOCFMJSUJS G\"Z#GPOLTJZPOVJÀJOLBÀGBSLMŽG \" LÑNFTJPMVö- %m/*m UVSVMBCJMJS  \" WF # CPõ LÐNFEFO GBSLMŽ CJSFS LÐNF PMNBL a 6 k+ a 6 k + a 6 k+ a 6 k = 15 + 20 + 15 + 6 = 56 Ð[FSF T \" =NWFT # =OJTF\"LÐNFTJOEFO 4 3 2 1 #LÐNFTJOFUBOŽNMŽGPOLTJZPOTBZŽTŽONEJS 5. [–1, 2] 6. [1, 17) 7. –1 8. 56 3 9. 7 7** 7***

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 14 A = { B C D } ve B = {     }LÐNFMFSJWFSJMJZPS  G3A3 G Y =Y- 1 + #VOBHÌSFG B âPMBDBLöFLJMEF\"LÑNFTJOEFO# JTFG Y+ GPOLTJZPOVOVOG Y GPOLTJZPOVDJOTJO- LÑNFTJOFUBOŽNMŽLBÀGBSLMŽGGPOLTJZPOVZB[ŽMBCJMJS  deOFöJUJOJCVMVOV[ a !\"JÀJO#LÑNFTJOEFLJEFOGBSLMŽGBSLMŽFMFNBO- f (x) = x · 1 +2 G Y+1) = 3Y+1-1 + 2 EBOCJSJJMFGBSLMŽöFLJMEFC D!\"JÀJO#LÑNFTJOEF- = 3Y + 2 LJGBSLMŽFMFNBOEBOCJSJJMFFSGBSLMŽöFLJMEFFöMFOF- 3 CJMFDFôJHÌSÑMÑS =pG Y - 6 + 2 3 · 4 · 4 =GBSLMŽGGPOLTJZPOVZB[ŽMBCJMJS 3 =G Y - 4 f (x) - 2 = x · 1 3 3 3Y =pG Y -6 ÖRNEK 11 ÖRNEK 15 G3\"3 G Y+ =Y-GPOLTJZPOVWFSJMJZPS  G Y mG Ym =Y+WFG  = #VOBHÌSFG  LBÀUŽS PMEVôVOBHÌSF G  LBÀUŽS Y+ 1 = 3 ‰Y= 1 Y= 2 ‰ f ( 2 ) - f ( 1 ) = 2 · 2 + 5 Y= 1 ‰Y- 2 = 1 Y= 3 ‰ f ( 3 ) - f ( 2 ) = 2 · 3 + 5 ÖRNEK 12 + Y= 10 ‰ f ( 10 ) - f ( 9 ) = 2 · 10 + 5 f ( 10 ) - f ( 1 ) = 153 (FS¿FMTBZŽMBSEBUBOŽNMŽ f ( 10 ) = 157  G Y =Y +Y+WFH Y =Y+ GPOLTJZPOMBSŽWFSJMJZPS ÖRNEK 16 f ( 2k ) = H L   FöJUMJôJOJ TBôMBZBO L EFôFSMFSJOJ CV- MVOV[  G Y =YG Y+ WFG  = PMEVôVOBHÌSF G   LBÀUŽS ( 2k )2 + 2k + 1 = 3 · ( 3k ) + 3 4k2 - 7k - 2 = 0 Y= 2 ‰ f ( 2 ) = 2 · f(3) Y= 3 ‰ f ( 3 ) = 3 · f(4) 1 k = – ve k = 2 Y Y= 10 ‰ f ( 10 ) = 10 · f(11) f ( 2 ) = 2 · 3 · .... ·10 · f(11) 4 5 f(11) = ÖRNEK 13 10! G3Z3 G Y- =Y +Y+ 1 ÖRNEK 17 GPOLTJZPOVJÀJOG Y+ JGBEFTJOJOFöJUJOJCVMVOV[ G3A3 G Y +Y =Y +Y -YGPOLTJZPOVWFSJMJZPS YAY+ 2 ‰G Y+ 1 ) = Y+ 2 )2 + Y+ 2 ) + 1 #VOBHÌSF G  EFôFSJOJCVMVOV[ =Y2 +Y+11 G Y2 +Y = Y2 +Y 2 - Y2 +Y f ( 1 ) = 12 - 1 = 0 10. 48 11. 1 1 13. Y2 Y  4 14. G Y m 5 17. 0 12. - , 2 15. 157 16. 4 10!

'POLTJZPO,BWSBNŽ TEST - 1 1. \"öBôŽEBLJMFSEFO IBOHJTJ ; A ; ZF CJS GPOLTJ- 4. G3A3WFH3A R ZPOEVS G Y = -Y-WFH Y = -Y+GPOLTJZPOMBSŽWF- SJMJZPS \"  y = x - 1  #  y = x + 4  $  y = 5 3 x+2   G \" = { - } % Z= 1 -Y &  y = x2 - 4 PMEVôVOB HÌSF  H \"  BöBôŽEBLJMFSEFO IBOHJTJ- 4 EJS \" \\  ^ # \\  ^ $ \\-  ^ % \\- - ^ & \\-  ^ 2. f^ x h = 2x - 6 - - x2 + 2x + 48 5. G\"= - ] A3  GPOLTJZPOVOVOUBOŽNLÑNFTJOEFLBÀUBOFUBN G Y =Y -Y TBZŽCVMVOVS \"  #  $  %  &   GPOLTJZPOVOVO HÌSÑOUÑ LÑNFTJ BöBôŽEBLJMFS- EFOIBOHJTJEJS \"  -   # <- > $ <- - % <- > & <-  3. G\"A3 6x - x2 + x - 2 6. f (x) = x2 - 6x + 9 - x2 - 12x + 36 x-4 f_ x i =  GPOLTJZPOVOVO HÌSÑOUÑ LÑNFTJOEF LBÀ UBOF UBNTBZŽWBSEŽS  GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- \"  #  $  LJMFSEFOIBOHJTJEJS &  \" < > #    -\\^ $ <  %  %   > & < >-\\^ 1. D 2. C 3. E 5 4. B 5. E 6. B

TEST - 2 'POLTJZPO,BWSBNŽ 1. L!3J¿JO  f_ x i = x.3x ve f_ k + 2 i 4. 6f^ x h – [email protected]^ x h + x@ = 2f^ x h + 2x = 15  PMEVôVOBHÌSF LLBÀUŽS  PMEVôVOB HÌSF  G Y  BöBôŽEBLJMFSEFO IBOHJTJ f_ k i PMBCJMJS \"  #  $  %  &  \" Y- # -Y- $ Y+ % -Y+ & Y- 2. G Y +G Y+ =G Y+ PMNBLÐ[FSF 5. G YZ =G Y +G Z WFSJMJZPS G  =WFG  = G  =  PMEVôVOBHÌSF G  LBÀUŽS PMEVôVOBHÌSF G  EFôFSJLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  3. G Y =G Y +WFG  = 6. GGPOLTJZPOVrY Z! 3J¿JOG Y-Z =G Y -G Z   PMEVôVOBHÌSF  ff 1 pEFôFSJLBÀUŽS FõJUMJóJOJTBóMBNBLUBEŽS 4  G  =PMEVôVOBHÌSF G  LBÀUŽS \"  2  #  4  %  8  &  \"  #  $  %  &  3 3 3 $  1. C 2. D 3. \" 6 4. C 5. B 6. D

'POLTJZPO,BWSBNŽ TEST - 3 1. f _ x2 - x i = x4 - 2x3 + x2 + 4 I I I I4. B C! R ve B á b J¿JO GPOLTJZPOVWFSJMJZPS ff ax – b p = 50x50 + 49x49 + . . . + 2x2 + x  #VOBHÌSF G - LBÀUŽS bx – a \"  #  $  %  &   PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  2. G3- {} Z3  5. f_ 1– x i = 2x WFG L = -1 ff x + 2 p = x2 + 3 + 4 GPOLTJZPOVWFSJMNJõUJS 5-x x x2  PMEVôVOBHÌSF LLBÀUŽS  #VOBHÌSF G  LBÀUŽS \" - # - $  %  &  \" - # - $  %  &  3. G3- {} Z3  6. G3- {} Z3  f f x - 1 p = x3 - 1 - 7 f_ x i + 3ff 1 p = 1- 2x x x3 x PMEVôVOBHÌSF G  LBÀUŽS PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  \"  1  #  1  $  3  %  1  &  5 8 4 8 28 1. D 2. C 3. D 7 4. C 5. E 6. C

TEST - 4 'POLTJZPO,BWSBNŽ 1. G3A3CJSFCJSWFËSUFOGPOLTJZPOEVS 4. G3+ A R-UBOŽNMŽCJSGPOLTJZPOEVS f_ x i = 2.f–1 _ x i - 6 G Y   +G Y =Y+Y + PMEVôVOBHÌSF  GPG   EFôFSJLBÀUŽS PMEVôVOBHÌSF G  LBÀUŽS \" - # - $ - % - & - \" - # - $ - % - &  2. G\"A B = [ - ]GPOLTJZPOVWFSJMJZPS 5. G3A3 G Y =Y -Y+GPOLTJZPOVWFSJMJZPS A = - ]WFG \" = B G Y =Y-   GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- PMEVôVOBHÌSF #LÑNFTJBöBôŽEBLJMFSEFOIBO- LJMFSEFOIBOHJTJEJS HJTJEJS \" < > # <   $ <  \" < > # < > $ <- > % < > &    % <- > & <- > 3. f^xh = 1 – 1 6.  G Y =Y+ 1 x2  PMEVôVOBHÌSF G Y- GPOLTJZPOVOVO f d x n  GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- 2 LJMFSEFOIBOHJTJEJS UÑSÑOEFOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" 3- {} # 3- [ - ] fd x n fd x n f2 c x m \"  2  #  2  $  2 $ [ - ] %  -R  - {} 8 4 4  & [ - ] - {} f2c x m f3c x m %  2  &  2 8 4 1. E 2. B 3. E 8 4. \" 5. \" 6. D

'POLTJZPO,BWSBNŽ TEST - 5 1. G3Z3 G Y =Y +Y+ 4. Y y  PMEVôVOBHÌSF GGPOLTJZPOVOVOHÌSÑOUÑLÑNF- -1 1 TJBöBôŽEBLJMFSEFOIBOHJTJEJS -  \" < Þ  # < Þ  $ < Þ B % <- Þ  & <- Þ b  2. \"öBôŽEBLJMFSEFOIBOHJTJ\"EBO#ZFCJSGPOLTJ  ôFLJMEFCJSCJMHJTBZBSQSPHSBNŽOŽOFLSBOŽOEBCVMV- yon EFôJMEJS OBOUBCMPWFSJMNJõUJS#VUBCMPEBYJMFHËTUFSJMFOTÐ- UVOEBCJMHJTBZBSBHJSJMFOTBZŽZŽ ZJMFHËTUFSJMFOTÐ- UVOEBJTFPTBZŽOŽOTŽGŽSBPMBOV[BLMŽóŽHËTUFSJMNJõ- UJS  #VOBHÌSF B-COJOBMBCJMFDFôJFOCÑZÑLEFôFS LBÀUŽS A) B) C) \"  #  $  % - & m A BA BA B 5. \"öBôŽEBLJ HSBGJLMFSEFO IBOHJTJ CJS GPOLTJZPOB ait EFôJMEJS D) A B E) A B A) y B) y xx C) y D) y xx E) y 3. \"öBôŽEBLJMFSEFO IBOHJTJ CJS GPOLTJZPO EFôJM- x EJS 6. A = % x x = 2n - 1, n ! Z / f: A \" B ve \" R A3G Y = x + 2 f (x) = x + 1 x2 + 2 2 # N+ A 2G Y = 2  PMEVôVOB HÌSF  G \"  LÑNFTJ BöBôŽE BLJMFSEFO x IBOHJTJEJS $ R A3G Y = 3 x - 1 % Q+ A3G Y = 6 x & Q A2G Y = f 1 x \"  5FLTBZŽMBS # ¥JGUTBZŽMBS 3 p $ 1P[JUJGUFLTBZŽMBS % 1P[JUJG¿JGUTBZŽMBS  &  5BNTBZŽMBS 1. D 2. D 3. E 9 4. \" 5. C 6. E

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr '0/,4÷:0/5·3-&3÷ #JSF#JS'POLTJZPO ÖRNEK 3 A = {B C D E} ve B = {    }LÐNFMFSJWFSJMJZPS TANIM #VOBHÌSF G C =PMBDBLöFLJMEF\"LÑNFTJOEFO# G\"Z#GPOLTJZPOVIFSY1 Y `\"J¿JO LÑNFTJOFUBOŽNMŽLBÀGBSLMŽCJSFCJSGGPOLTJZPOVUB-  Y1áYJLFOG Y1 áG Y ZBEB OŽNMBOBCJMJS  G Y1 =G Y JLFOY1=YPMVZPSTBGGPOLTJZPOV CJSFCJS - GPOLTJZPOEVS a `\"JÀJOGBSLMŽEVSVN D`\"JÀJOGBSLMŽEVSVN ÖRNEK 1 d `\"JÀJOGBSLMŽEVSVN 4BZNBOŽOUFNFMJMLFTJHFSFôJ= 24 Af B G GPOLTJZPOV CJSF CJS Br r NJEJS Cr r Dr ²SUFO'POLTJZPO Er r r TANIM ¦Ì[ÑN \"WF#CPõLÐNFEFOGBSLMŽCJSFSLÐNFPMNBLÐ[FSF rB1 C `\"J¿JO B1áCJLFOG B1 áG C EJS  G\"Z#UBOŽNMBOBOGGPOLTJZPOVJ¿JOG \" = B G mGPOLTJZPOEVS EFóFSLÐNFTJOEFLJIFSFMFNBOBLBSõŽMŽLUBOŽN LÐNFTJOEFFOB[CJSFMFNBOWBSTB JTFGGPOLTJ- ÖRNEK 2 ZPOVOBÌSUFOGPOLTJZPOEFOJSGËSUFOGPOLTJ- ZPOJTFLŽTBDBGÌSUFOEJSEFOJS G  3 Z 3  G Y  = Y +   GPOLTJZPOVOVO CJSF CJS GPOLTJZPOPMVQPMNBEŽôŽOŽBSBöUŽSBMŽN  G \" á# %FóFSLÐNFTJOEFFOB[CJSFMFNBO B¿ŽLUBLBMŽZPSTB JTFGGPOLTJZPOVOBJÀJOFGPOL- siyonEFOJS ¦Ì[ÑN Y1 Y `3J¿JOG Y1 =G Y PMTVOG Y1 =G Y j ÖRNEK 4 x21 + 2 = x 2 + 2 & x21 = x22 & x1 = x2 ve x1 =-x2 \"öBôŽEBLJ öFNB JMF HÌTUFSJMNJö G  H WF I GPOLTJZPO- 2 MBSŽOŽOCJSFCJSWFÌSUFOZBEBJÀJOFPMNBEVSVNMBSŽ- OŽJODFMFZJOJ[ PMVS0IºMEFGGPOLTJZPOVCJSFCJSEFóJMEJS %m/*m A f BA g BA hB Br  T \" =N T # =OPMNBLÐ[FSF Cr r Br r Br r  \"EBO#ZFUBOŽNMBOBCJMFDFLCJSFCJSGPOLTJZPO Dr r Cr r Cr r TBZŽTŽ  P^ n, m h = n! N#OEJS r Dr r Dr ^ n - m h! I. II. III.  ±[FMPMBSBLO=NJTF1 O N =OPMVS G mWFÌSUFOGPOLTJZPO  ±SOFóJOFMFNBOMŽCJSLÐNFEFOFMFNBOMŽCJS H mWFÌSUFOEFôJM JÀJOFGPOLTJZPO LÐNFZFUBOŽNMBOBCJMFDFL-GPOLTJZPOTBZŽ- I mEFôJMÌSUFOGPOLTJZPO TŽ =EJS 10 3. 24 4. *CJSFCJSWFÌSUFO **CJSFCJSEFôJM JÀJOF ***CJSFCJSEFôJM ÌSUFO

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 4BCJU'POLTJZPO A = { - -   } ve B = { -    }LÐNF TANIM MFSJWFSJMJZPS G\"Z# G Y =Y2 -GPOLTJZPOVOVOUÑSÑOÑBSBö-  G  \" Z # GPOLTJZPOVOEB  \" LÐNFTJOJO CÐUÐO UŽSŽOŽ[ FMFNBOMBSŽ # LÐNFTJOJO ZBMOŽ[ CJS FMFNBOŽ JMF FõMFOJZPSTB G GPOLTJZPOVOB TBCJU GPOLTJZPO f = { ( -2, 3 ), ( -1, 0 ), ( 0, -1 ), ( 1, 0 ), ( 2, 3 ) } EFOJS mEFôJM JÀJOFGPOLTJZPO  #BõLBCJSEFZJõMF rY`\"J¿JO G Y =D D`3  JTFGTBCJUGPOLTJZPOEVS ÖRNEK 6  ±SOFóJOG3Z3 G Y =  JTF f^ 2 h = 5  G/Z/ G Y =Y+ CJSFCJSWFÌSUFOCJSGPOLTJ f^ 2019 h = 5  f^ x + 3 h = 5 PMVS ZPONVEVS  ±[FMPMBSBLD=TF¿JMJSTFG Y =õFLMJOEFLJ mWFJÀJOFGPOLTJZPO GGPOLTJZPOVOBTŽGŽSGPOLTJZPOVEFOJS ÖRNEK 7 A = { -  } ve B = {  }LÐNFMFSJWFSJMJZPS G\"Z# G Y =Y -Y+PMEVóVOBHËSF f fonk- TJZPOVTBCJUGPOLTJZPONVEVS ¦Ì[ÑN G - =G  =G  =PMEVóVOEBOGTBCJUGPOLTJZPOEVS :BUBZ%PôSV5FTUJ ÖRNEK 8 %m/*m  #JS GPOLTJZPOVOVO HSBGJóJOEF  GPOLTJZPOVO CJ- G\"Z# G Y = Q+ Y -RY+Q-R+ 1 SFCJSPMVQPMNBEŽóŽOŽBOMBNBLJ¿JOYFLTFOJOF QBSBMFMEPóSVMBS¿J[JMJS:BQŽMBOCVJõMFNF yatay TBCJUGPOLTJZPOPMEVôVOBHÌSF f ( 20 ) EFôFSJLBÀUŽS EPôSVUFTUJEFOJS  1BSBMFMEPóSVMBSHSBGJóJFO¿PLCJSOPLUBEBLFTJ- p+1=0 , -2q = 0 jG Y = 0 ZPSTBGPOLTJZPOCJSFCJSEJS p = -1 , q = 0 f(20) = 0 y y = x ÖRNEK 9 x G\"Z#  f (x) = 3x - k O 2x + 5  ôFLJMEF G  3 Z 3  G Y  = Y GPOLTJZPOVOVO GPOLTJZPOV TBCit fonksiyon oMEVôVOBHÌSF f ( 2) + k HSBGJóJWFSJMNJõUJSYFLTFOJOFQBSBMFM¿J[JMFOIFS UPQMBNŽLBÀUŽS  EPóSV Z = Y FóSJTJOJ EBJNB CJS OPLUBEB LFTUJ- óJOEFOGGPOLTJZPOVCJSFCJSEJS 3 = - k & k = - 15 & f^ x h = f^ 2 h = 3 25 2 2 f^ 2h+k = 3 15 =-6 - 22 5. CJSFCJSEFôJM JÀJOF 6. CJSFCJS JÀJOF 11 8. 0 9. –6

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr #JSJN²[EFö'POLTJZPO ÖRNEK 12 TANIM G  \" Z \" GPOLTJZPOVOEB r Y ` \" J¿JO G Y  = Y G3\"3  PMVZPSTB IFS FMFNBOŽOŽ LFOEJTJOF FõMJZPSTB  G Y = B+ b + Y + B- b + Y + B- Y+ b + G GPOLTJZPOVOB CJSJN GPOLTJZPO EFOJS WF I JMF GPOLTJZPOVEPôSVTBMGPOLTJZPOPMEVôVOBHÌSF  HËTUFSJMJS f ( 2a -C EFôFSJOJCVMVOV[ ÖRNEK 10 a +C+ 3 = 0 ve a -C+ 1 =PMNBMŽEŽSB= - C= -1 G Y = -Y+ 1 j f(2a -C = f(-3) =PMBSBLCVMVOVS  G;\"; G Y = B+ Y+ b - GPOLTJZPOV CJSJN GPOLTJZPO PMEVôVOB HÌSF  B + C ÖRNEK 13 UPQMBNŽLBÀUŽS G3\"3 CJSEPóSVTBMGPOLTJZPOPMNBLÐ[FSF G Y = I Y =YPMNBTŽJÀJOB+ 1 =WFC- 3 =PMNB- G - = G  =PMEVôVOBHÌSF G  EFôFSJOJCV- MŽEŽSB+C= 0 + 3 = 3 MVOV[ ÖRNEK 11 G Y =BY+CöFLMJOEFEJS f (-1) = 3 jB C N O L`3  f ( 1 ) = 7 j a +C= 7 j a = C= 5 jG Y =Y+ 5 G Y = N-O Y+N-OCJSJNGPOLTJZ PO  f ( 4 ) =PMBSBLCVMVOVS g (x) = n - mx TBCJUGPOLTJZPO ÖRNEK 14 x-k PMEVôVOBHÌSe, m + k JGBEFTJOJOEFôFSJLBÀUŽS G3\"3 CJSEPóSVTBMGPOLTJZPOPMNBLÐ[FSF G Y- +G Y+ =Y- n PMEVôVOBHÌSF G  EFôFSJOJCVMVOV[ GCJSJNGPOLTJZPOJTFN- n =WFN- 2n = 0, G Y =BY+CjG Y- 1) +G Y+ 2) =B Y- 1 ) +C+B Y+ 2) +C=Y- 2 ise HTBCJUGPOLTJZPOJTF -m n = PMNBMŽEŽS a = C= - G Y =Y- 2 j f(1) =PMBSBLCVMVOVS 1 -k m5 +k= PMBSBLCVMVOVS n 2 %PôSVTBM'POLTJZPO &öJU'POLTJZPOMBS TANIM TANIM  B C`3PMNBLÐ[FSF   G H\"Z#õFLMJOEFUBOŽNMBOBOGWFHGPOLTJ- ZPOMBSŽrY`\"J¿JOG Y =H Y PMVZPSTB GJMF  G3Z3 G Y =BY+CCJ¿JNJOEFLJGPOLTJZPO- HZFFöJUGPOLJTZPOMBSEFOJSWFG=HJMFHËTUF- MBSB EPôSVTBM GPOLTJZPO EFOJS G CJS EPóSVTBM SJMJS GPOLTJZPOJTFHSBGJóJCJSEPóSVEVS 10. 3 5 12 12. 10 13. 13 14. 0 11. 2

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 15 ÖRNEK 19 A = { } #= {  } G H\"\"#PMEVóVOBHË- A = {  }PMNBLÐ[FSF SF G Y =Y3 + WFH Y =Y2 +GPOLTJZPOMBSŽFöJU  G\"Z\" G  G   GPOLTJZPOMBSNŽEŽS öBSUŽOŽ TBôMBZBO LBÀ GBSLMŽ G  m GPOLTJZPOV UBOŽN- MBOBCJMJS ¦Ì[ÑN G  =H  WFG  =H  PMEVóVOEBOG=HEJS {(1, 2), (2,1 ), (3, 3)}, {(1, 3), (2,2), (3, 1)} ÖRNEK 16 {(1, 3), (2, 1), (3,2 )} G3\"3 G Y = B- Y + C+ Y -Y+DWF UBOFUBOŽNMBOBCJMJS H3\"3 H Y = B+ Y+ B+C Y + C-D Y+E GPOLTJZPOMBSŽWFSJMJZPS GWFHGPOLTJZPOMBSŽFöJUGPOLTJZPOMBSPMEVôVOBHÌSF  a +C+D+EJöMFNJOJOTPOVDVOVCVMVOV[ a - 2 = 2a + C+ 1 = a +C -3 =C-DWFD= d denk- ÖRNEK 20 MFNMFSJÀÌ[ÑMEÑôÑOEFB= - C= - D= d = -1 ve A = {YY=L Y# L` N }PMNBLÐ[FSF a +C+D+ d = -PMBSBLCVMVOVS G\"Z# G Y =-YGPOLTJZPOVUBOŽNMBOŽZPS ÖRNEK 17 GÌSUFOGPOLTJZPOPMEVôVOBHÌSF T # LBÀUŽS B C`3  f^ x h = 4x2 + bx + 4a - 2 G mWFÌSUFOPMEVôVOEBOT \" = s(B) =PMNBMŽEŽS ax2 + x + b + 1 GPOLTJZPOVTBCJUGPOLTJZPn oMEVôVOaHÌSF G B+C  EFôFSJLBÀUŽS 4 = b = 4a - 2 & a = b = 2 & f^ x h = 2 & f^ a + b h = 2 a 1 b+1 ÖRNEK 18 ÖRNEK 21 A = {    }PMNBLÐ[FSF B C D E`3PMNBLÐ[FSF  G BY +CY+D = D- Y + C- Y +DY+E rY1 Y `\"WFY1YJ¿JOG Y1 G Y PMBDBLõFLJMEF GPOLTJZPOVCJSJNGPOLTJZPOPMEVôVOBHÌSF G C+ d ) G\"Z\"GPOLTJZPOVUBOŽNMBOŽZPS EFôFSJLBÀUŽS #VOBHÌSF G  +G  UPQMBNŽOŽOEFôFSJLBÀUŽS BY2 +CY+D= D- Y3 + C- Y2 +DY+ d GCJSJNGPOLTJZPOPMNBMŽEŽSG  = 2 ve f ( 3 ) = 3 j a = C=D= d = 1 f(2) + f(3) = 2 + 3 = 5 jG C+ d ) = f ( 2 ) = 2 16. –9 17. 2 18. 2 13 19. 3 20. 26 21. 5

TEST - 6 'POLTJZPO5ÑSMFSJ 1. \"WF#CPõLÐNFEFOGBSLMŽLÐNFMFSPMNBLÐ[FSF  4. f (x) = 4 - x r \" EBO # ZF UBOŽNMBOBCJMFO GPOLTJZPOMBS FMF- cx + 1 NBOMŽEŽS  GPOLTJZPOVTBCJUGPOLsiyoOPMEVôVOBHÌSF  r # EFO \" ZB UBOŽNMBOBCJMFO GPOLTJZPOMBS FMF- D+G  LBÀUŽS  NBOMŽEŽS \"  15  #  $  3 CJMHJMFSJWFSJMJZPS 4 2 #VOB HÌSF  \" EBO # ZF UBOŽNMBOBCJMFO GPOLTJ- % - 9  & - ZPO TBZŽTŽ JMF # EFO \" ZB UBOŽNMBOBCJMFO TBCJU 4 GPOLTJZPOTBZŽTŽOŽOGBSLŽLBÀUŽS \"  #  $  %  &  2. \"WF#LÑNFMFSJJÀJOT \" æ=T # æ=PMEVôVOB 5. Gå3åZ3 G Y å= Nå+O Yå+åNå+Oå- HÌSF #EFO\"ZBUBOŽNMBOBCJMFOLBÀUBOFÌSUFO CJS JNGPOLTJZPOPMEVôVOBHÌSF Næ+OLBÀ- GPOLTJZPOWBSEŽS UŽS \"  #  $  %  &  \"  #  $  %  &  3. Gå3åZå3 6.  T \" å=WFT # å=   G Y å= B- Yå+å C+ Yå+åBå+åCå-  PMEVôVOB HÌSF  \"æ EBOæ # ZF LBÀ UBOF CJSF CJS GPOLTJZPOUBOŽNMBOBCJMJS  GPOLTJZPOVTBCJUGPOLTJZPOPMEVôVOBHÌSF  f^- 2h kaÀUŽS \"  #  $  %  &  \" - # -   $  %    &  1. C 2. B 3. \" 14 4. \" 5. B 6. D

'POLTJZPO5ÑSMFSJ TEST - 7 1. GCJSJNGPOLTJZPOPMNBLÑ[FSF 4. A = {     } #= {B C D E F} G Y- +H Y- =G Y+  LÐNFMFSJWFSJMJZPS PMEVôVOBHÌSF H  LBÀUŽS \" - # - $ - % - & -  \"EBO#ZFUBOŽNMBOBOLBÀUBOFTBCJUGPOLTJZPO WBSEŽS \"  #  $  %  &  ^ a - 2 hx2 + x - 4 5. f^ x h = ^ a2 - b2 hx2 + ^ a - 3 hx + a - b + 2 2. f(x) =  GPOLTJZPOVTBCJUCJSGPOLTJZPOPMEVôVOBHÌSF  G  LBÀPMBCJMJS 3x2 + 2x + b - 1 GPOLTJZPOVOVOTBCJUGPOLTJZPOPMNBTŽJÀJO a +CLBÀPMNBMŽEŽS \"  #  $  %  &  \" - # - 7  $ - % - 5  & - 22 3. G  GPOLTJZPOV SFFM TBZŽMBS LÐNFTJ Ð[FSJOEF UBOŽNMŽ 6. T \" =PMNBLÐ[FSF \"EBO#ZFUBOŽNMŽCJSFCJS WFEPóSVTBMGPOLTJZPOEVS GPOLTJZPOTBZŽTŽEJS   G  =WFG - = -  #VOBHÌSF \"EBO#ZFLBÀUBOFTBCJUGPOLTJZPO UBOŽNMBOBCJMJS PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  \" - #  $  %  &  1. D 2. B 3. D 15 4. \" 5. E 6. E

TEST - 8 'POLTJZPO5ÑSMFSJ 1. Y y 4. G\"Z# GYZY+ 11 H#Z$ HYZY+ 1 B CJ¿JNJOEF UBOŽNMBOBO G WF H GPOLTJZPOMBSŽ  CJSF CJS b WFËSUFOEJS D C = {3, 5, 7}PMEVôVOBHÌSF \"LÑNFTJBöBôŽEB- V Vm LJMFSEFOIBOHJTJEJS  :VLBSŽEBLJUBCMPZBHÌSF ZCBôŽNMŽEFôJöLFOJWF \" \\- - ^ # \\-  ^ $ \\-  ^ YCBôŽNTŽ[EFôJöLFOJBSBTŽOEBLJJMJöLJ y =NY+OPMEVôVOBHÌSF a +C+DLBÀUŽS % \\  ^ & \\  ^ \"  #  $  %  &  2. G\"Z [- R G Y =Y +Y+ 1 ÌSUFOGPOLTJZPOPMEVôVOBHÌSF FOHFOJö\"LÑ- 5. A = {   }LÐNFTJWFSJMJZPS NFTJBöBôŽEBLJMFSEFOIBOHJTJEJS G\"Z\"CJSFCJSWFËSUFOGPOLTJZPOV \" <- R  # < R  $  -R -  % 3 & 3- { -^ G= {     B-C     C-B  }  õFLMJOEFUBOŽNMBOŽZPS  #VOBHÌSF B+CLBÀUŽS \"  #  $  %  &  3. \"öBôŽEBLJMFSEFOIBOHJTJCJSFCJSGPOLTJZPOBBJU CJSHSBGJLPMBCJMJS A) y B) y Ox Ox C) y D) y Ox O x 6. A = {B C D E} ve B = {      }LÐNF- E) y x MFSJWFSJMJZPS O  \"EFO#ZFUBOŽNMŽCJSFCJSGPOLTJZPOMBSEBOLBÀ UBOFTJOJOHÌSÑOUÑLÑNFTJOEFWFFMFNBOMBSŽ CVMVOVS \"  #  $  %  &  1. \" 2. D 3. D 16 4. C 5. C 6. D

'POLTJZPO5ÑSMFSJ TEST - 9 1. T \" =WFT # =PMNBLÐ[FSF 4. ôFLJMEF\"EBO#ZFUBOŽNMBOBOGPOLTJZPOMBSŽOUÐSMF-  #EFO\"ZBLBÀUBOFJÀJOFGPOLTJZPOZB[ŽMBCJMJS SJLBSõŽMBSŽOEBHËTUFSJMNJõUJS \"  #  $  %  &  AB r\"MJ r\"MJOJOFWJ r7FMJ r7FMJOJOFWJ r$FN r$FNJOFWJ Fonksiyon 5ÑSÑ r \"MJOJO 7FMJOJO FWJOF  7F- #JSFCJSGPOLTJZPO MJOJO$FNJOFWJOF $FNJO \"MJOJOFWJOFHJUNFTJ r \"MJ 7FMJWF$FNJOCJSMJLUF 4BCJUGPOLTJZPO \"MJOJOFWJOFHJUNFTJ 2.  G Y = B- Y + B+C Y+ N-  r \"MJWF7FMJOJO\"MJOJOFWJOF ±SUFOGPOLTJZPO HJUNFTJ $FNJOLFOEJFWJ-  GPOLTJZPOVCJSJNGPOLTJZPOPMEVôVOBHÌSF  OFHJUNFTJ a -C+NLBÀUŽS r )FSLFTJO LFOEJ FWJOF HJU- ö¿JOFGPOLTJZPO NFTJ \"  #  $  %  &   #VOMBSEBOLBÀUBOFTJEPôSVEVS \"  #  $  %  &  5. ôFLJMEF Z=G Y EPóSVTBMGPOLTJZPOVWFSJMNJõUJS y 3. G\"Z#CJSFCJSWFËSUFOGPOLTJZPOEVS 6 G Y- =Y+WFSJMJZPS  x B = {  } PMEVôVOBHÌSF \"LÑNFTJOEFLJFMF- O NBOMBSŽOUPQMBNŽLBÀUŽS y = f(x) \" - # - $ - % - & -1 #VOBHÌSF G  +G  LBÀUŽS \"  #  $  %  &  1. D 2. B 3. \" 17 4. C 5. \"

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr 1\"3¦\"-*'0/,4÷:0/7&'0/,4÷:0/-\"3-\"÷õ-&.-&3 1BSÀBMŽ'POLTJZPOMBS ÖRNEK 3 TANIM G3\" R ve rY`3J¿JOG Y =G Y+ PMNBLÐ[FSF   5BOŽN LÐNFTJOJO BZSŽL BMU LÐNFMFSJOEF GBSLMŽ x + 1, 0# x<2 2# x<5 LVSBMMBSMB CFMJSMFOFO GPOLTJZPOMBSB QBSÀBMŽ UB- f (x) = * x2 - 1, OŽNMŽ GPOLTJZPOMBS ZB EB QBSÀBMŽ GPOLTJZPO- MBSEFOJS±SOFóJOB C D E!3PMNBLÐ[FSF GPOLTJZPOVUBOŽNMBOŽZPS #VOBHÌSF G  +G  UPQMBNŽOŽCVMBMŽN Z g (x), a # x <b ]] b#x#c f (x) = [ h (x), c<x#d ]] \\ r (x), f ( 100 ) = f ( 0 ) = 0 + 1 = 1 f ( 103 ) = f ( 3 ) = 32 - 1 = 8  CJ¿JNJOEF UBOŽNMBOBO G GPOLTJZPOVOB QBSÀB- & f ( 100 ) + f ( 103 ) = 1 + 8 = 9 MŽ GPOLTJZPO  H  I  S GPOLTJZPOMBSŽOB QBSÀBMŽ GPOLTJZPOVOVOEBMMBSŽEFOJSB C D EOPLUB- MBSŽGPOLTJZPOVOLSJUJLOPLUBMBSŽEŽS ÖRNEK 4 G3\" R ve rY`3PMNBLÐ[FSF ÖRNEK 1 Z 2x - 1, x <-2 ]] x2, 1, f_ x i = * x + 1, x ≥ 1 GPOLTJZPOVWFSJMJZPS f (x) = [ 3x + -2# x #2 ]] x>2 x + 2, x < 1 \\ #VOBHÌSF G  + f ( 1 ) + G  UPQMBNŽOŽCVMBMŽN CJÀJNJOEFUBOŽNMŽGGPOLTJZPOVJÀJO G - +G L =G   Y=JÀJOG Y =Y+ 2 & f ( 0 ) = 2 FöJUMJôJOJTBôMBZBOLBÀGBSLMŽLEFôFSJWBSEŽS Y=JÀJOG Y =Y+ 1 & f ( 1 ) = 2 Y=JÀJOG Y =Y+ 1 & f ( 2 ) = 3 f ( -4 ) = -9, f ( 5 ) = 16 & f ( k ) = 25 f(0) + f(1) + f(2) = 7 2k - 1= 25 & k = 13, 13 n (-3, -2) k2 = 25 & k = 5 v k = -5, 5 n [-2, 2] , -5 n [-2, 2] 3k + 1 = 25 & k = 8 ` (2, 3] PMEVôVOEBOLOJOTBEFDF UBOFEFôFSJWBSEŽS ÖRNEK 2 x<1 ÖRNEK 5 x$1 f (x) = * 2x - 2, x- 2, x < 50 4x - 1, f^ f^ x- x $ 50 f (x) = * 10 h h, GPOLTJZPOVOVOUBOŽNWFHÌSÑOUÑLÑNFTJOJCVMVOV[ 'POLTJZPOY<WFYäJÀJOUBOŽNMŽPMEVôVOEBOUBOŽN GPOLTJZPOVUBOŽNMBOŽZPS LÑNFTJSFFMTBZŽMBSEŽS #VOBHÌSF G  EFôFSJOJCVMBMŽN Y< 1 &YmWFYã 1 &Y- 1 ãPMEVôVOEBO f ( 200 ) = f ( f ( 190 ) ) = .... = f ( ...( f ( 40 ) ... ) HÌSÑOUÑLÑNFTJ -3, 0) , [3, 3 hEVS 17 tane 40 - 17 · 2 = 40 - 34 = 6 1. 7 2. 3  3, 0) , [3, 3) 18 3. 9 4. 1 5. 6

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, 'POLTJZPOMBSEB%ÌSU÷öMFN ÖRNEK 8 G= { -   -     } ve TANIM H= { -        }GPOLTJZPOMBSŽWFSJMJZPS A 3 3 #3 3 G\"\"3 H#\" R ve A + #áq #VOBHÌSFpG H+ 2, f · g ve f GPOLTJZPOMBSŽOŽCV- PMTVO g  G+H \"+ B \"3  G+H Y =G Y +H Y  MVOV[  G-H \"+ B \"3  G-H Y =G Y -H Y ¦Ì[ÑN  GpH \"+ B \"3  GpH Y =G Y pH Y pG= { -   -     } H+= { -        } f f p\"+ B \"3 f f p^ x h = f (x) GpH= { -     } ,H Y á g g g (x) f = { -     } g  D!3PMNBLÐ[FSF DpG Y =DpG Y ÖRNEK 9  öLJGPOLTJZPOVOUPQMBN GBSL ¿BSQŽNWFCËMÐN- MFSJOJOUBOŽNLÐNFTJ CVJLJGPOLTJZPOVOUBOŽN x - 1, x < 0 LÐNFMFSJOJOLFTJõJNJEJS  G;Z;  f_ x i = * x + 1, x ≥ 0 GPOLTJZPOVUBOŽNMBOŽZPS ÖRNEK 6 #VOBHÌSF T ;-G ;  LBÀUŽS G= { -        } ve H= { -        }GPOLTJZPOMBSŽWFSJMJZPS f ( Z ) = { ... , -3, -2, 1, 2, ...}PMEVôVOEBO Z - f ( Z ) = {-1, 0} j s (Z - f ( Z ) ) =EJS #VOBHÌSF G+ g ve f -HGPOLTJZPOMBSŽOŽCVMVOV[ f + g = { ( -1, 5 ), ( 1, 4 ) }, f - g = { ( -1, -1 ), ( 1, 2 ) } ÖRNEK 7 ÖRNEK 10 G H3\"3 G Y =Y-  G-H  Y =Y+ %PóBMTBZŽMBSLÐNFTJOEFUBOŽNMŽGGPOLTJZPOV 1 - 2x ; x < 20 PMEVôVOBHÌSF HGPOLTJZPOVOVCVMVOV[ f_ x i = * Y+ 2 =pG Y -pH Y Y+ 2 =p Y- 1 ) -pH Y f_ x - 10 i; x ≥ 20 õFLMJOEFUBOŽNMBOŽZPS x-4 #VOB HÌSF  G GPOLTJZPOVOVO HÌSÑOUÑ LÑNFTJOEFLJ H Y = FMFNBOMBSŽOUPQMBNŽLBÀUŽS 3 f ( N ) = {1, 3, 5, ... , 37} 1 + 3 + ... + 37 = 361 x- 4 19 9. 2 10. 361 6. G H{ ( –1, 5 ), ( 1, 4 ) }, GmH{ ( –1, 2 ), ( 1, –1 ) } 7. 3

TEST - 10 1BSÀBMŽ'POLTJZPOWF'POLTJZPOMBSMB÷öMFNMFS 1. f (x) = * mx - 2, x < 1 Z x2 , x / 0 ^ mod 3 h ]] 2mx + n, x ≥ 1 [  CJ¿JNJOEFCJSGGPOLT JZPOVUBOŽNMBOŽZPS 4. G3Z R f^ x h = ]] 3x - 1 , x / 1 ^ mod 3 h  G - = -WFG  = \\ x+1 , x / 2 ^ mod 3 h  PMEVôVOBHÌSF G  LBÀUŽS GPOLTJZPOVWFSJMJZPS  #VOBHÌSF G  - f ( 4 ) +G  JGBEFTJOJOEFôF- SJLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  2. 3HFS¿FMTBZŽMBSLÐNFTJÐ[FSJOEFUBOŽNMŽCJSGGPOL- 5. 3FFMTBZŽMBSEBUBOŽNMŽG Y WFH Y GPOLTJZPOMBSŽ  TJZPOV G Y =Y +Y H Y =Y +YPMBSBLUBOŽNMB- OŽZPS r rY` <  J¿JOf_ x i = * x2 - 1 0≤x<4 4 ≤ x < 10 2x – 1 , f^ x h > g^ x h 2x + 4 h^ x h = * x2 + 3 , f^ x h ≤ g^ x h r rY`3J¿JOG Y =G Y+ PMEVôVOBHÌSF I -1 ) +I   UPQMBNŽLBÀUŽS  Ì[FMMJLMFSJOJ TBôMBEŽôŽOB HÌSF  G   + f ( 66 ) \"  #  $  % - & - LBÀUŽS \"  #  $  %  &  Z 1 , x<0 ]] 6. f^ x h = [ 2 , x = 0 f (x) = * x + 5 x<0 ]] 3. \\ 3 , x>0 3 x -2 x≥0 GPOLTJZPOVUBOŽNMBOŽZPS õFLMJOEFUBOŽNMŽZ=G Y GPOLTJZPOVWFSJMJZPS G -Y +Y+ =G Y +Y-   G Y =EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS  FöJUMJôJOJTBôMBZBOLBÀUBOFYUBNTBZŽTŽWBSEŽS \"  #  $ - % - & - \"  #  $  %  &  1. \" 2. E 3. B 20 4. \" 5. C 6. C

1BSÀBMŽ'POLTJZPOWF'POLTJZPOMBSMB÷öMFNMFS TEST - 11 1. 6ZHVOLPõVMMBSEBUBOŽNMŽGWFHGPOLTJZPOMBSŽJ¿JO 4. G Y =Y-WFH Y =Y +GPOLTJZPOMBSŽWFSJ- G= { -   -     } MJZPS  H= { -   -        }  #VOBHÌSF  G+ g ) (- LBÀUŽS PMEVôVOBHÌSF G-HGPOLTJZPOVBöBôŽEBLJ- \" - # - $ - % - & -1 MFSEFOIBOHJTJEJS \" { -   -     } # { -     } $ { -     } % { -   -     } & { -   -     } 5. G3\" A 2. Gå= {        - } f^ x h = * 3x + 1 , x # 2 GPOLTJZPOVWFSJMJZPS  H= {  -       }GPOLTJZPOMBSŽWFSJMJZPS - 2x + 4 , x > 2 Gæ + H  GPOLTJZPOV BöBôŽE BLJMFSEFO IBOHJTJ- y =G Y ÌSUFOGPOLTJZPOPMEVôVOBHÌSF \"LÑ- EJS NFTJBöBôŽEBLJMFSEFOIBOHJTJEJS \" {        - } \"   Þ  # < Þ  $  mÞ  # {        - } $ {         } %  mÞ   &  mÞ > % {         } & {         } 3. G Y å=Yå+åWFH Y å=åYå+ 6. G3Z3 rY`3J¿JOG Y =G Y+ PMNBLÐ[F-  PMEVôVOB HÌSF  BöBôŽEBLJ OPLUBMBSEBO IBOHJTJ SF Gæ+æHGPOLTJZPOVOVOFMFN BOŽEŽS f_ x i = * x2 - 4 , 0 ≤ x < 4 \"     #  -   $   - 2x - 4 , 4 ≤ x < 10 %  - -  &     GPOLTJZPOVWFSJMJZPS  #VOB HÌSF  G   - G    JGBEFTJOJO FöJUJ LBÀUŽS \" - # - $ - % - & - 1. C 2. \" 3. B 21 4. D 5. E 6. E

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr '0/,4÷:0/-\"3%\"(²3·/5· %m/*m 'POLTJZPO(SBGJLMFSJOJO&LTFOMFSJ,FTUJôJ /PLUBMBS  #JS GPOLTJZPOVO HSBGJóJOEFO Y FLTFOJOF ¿J[J- MFOEJLEPóSVMBSŽOYFLTFOJOJLFTUJóJOPLUBMBSŽO %m/*m PMVõUVSEVóV LÐNF GPOLTJZPOVO UBOŽN LÐNF- TJ  HSBGJLUFO Z FLTFOJOF ¿J[JMFO EJL EPóSVMBSŽO  #JS G GPOLTJZPOVOVO Y FLTFOJOJ LFTUJóJ OPLUB- ZFLTFOJOJLFTUJóJOPLUBMBSŽOPMVõUVSEVóVLÐNF MBSCVMVOVSLFOZ=J¿JOG Y =EFOLMFNJOJO GPOLTJZPOVOVOHËSÐOUÐLÐNFTJEJS WBSTB LËLMFSJBSBõUŽSŽMŽS  G Y  =  EFOLMFNJOJO ¿Ë[ÐN LÐNFTJOJO FMF- NBOMBSŽOBGJOTŽGŽSMBSŽEFOJS ÖRNEK 1 y 5 x  (SBGJLYFLTFOJOJLFTNJZPSTBG Y =EFOLMF-  NJOJO HFSÀFL TBZŽMBSEB ÀÌ[ÑNÑ ZPLUVS EF- –6  OJS O m   Y=J¿JOZ=G  EFóFSJGPOLTJZPOVOZFLTF- OJOJLFTUJóJOPLUBEŽS –7 y (SBGJôJWFSJMFO'POLTJZPOVOUBOŽNWFHÌSÑOUÑLÑNF-  y = f(x) TJOJCVMVOV[ 5BOŽN,ÑNFTJ -6, 1 ] , ( 2, 5 ] x (ÌSÑOUÑ,ÑNFTJ[ -7, -1 ) , [ 3, 4 ) m  ÖRNEK 2  G GPOLTJZPOV Z FLTFOJOJ   Y FLTFOJOJ - WF  OPLUBMBSŽOEBLFTFS ôFLJMEFGGPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS  \"ZSŽDBGGPOLTJZPOVY=OPLUBTŽOEBYFLTFOJ- y OFUFóFUPMEVóVJ¿JOGGPOLTJZPOVOVOY=OPL-  UBTŽOEB¿JGULBULËLÐWBSEŽSEFOJS f  'POLTJZPOVOHFOFMEFOLMFNJ   Bá B` 3 O` ;+   Z=G Y =Bp Y+  Y- O –5 O  x m  5  õFLMJOEFJGBEFFEJMJS m #VOB HÌSF  G -5 )æ +æ f ( -2 )æ +æ f ( 0 )æ +æ f ( 3 )æ + f ( 5 ) top- MBNŽLBÀUŽS  f ( -5 ) = 0, f ( -2 ) = 4, f ( 0 ) = 2, f ( 3 ) = -1, f ( 5 ) = 2 f ( -5 ) + f ( -2 ) + f ( 0 ) + f ( 3 ) + f ( 5 ) = 7 1. 5BOŽN, m ] , (2, 5](ÌSÑOUÑ,[–7, –1) , [3, 4) 2. 7 22

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 3 ÖRNEK 4 ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y y  y = f(x)  m  x O y = f(x)  5 x – – O 7 õFLJMEF WFSJMFO Z = G Y  GPOLTJZPOV JÀJO  G Y  > 0 FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽMBSŽOŽOUPQMBNŽOŽCV- – MVOV[ – #VOBHÌSF  -4 <Y<JÀJOG Y >EŽS Y= -3, -2, -  UBNTBZŽMBSŽOŽOUPQMBNŽ-UJS I. G B =FõJUMJóJOJTBóMBZBOGBSLMŽBTBZŽMBSŽOŽOUPQMB- NŽLB¿UŽS 'POLTJZPOVO\"SUBOWF\"[BMBO0MEVôV\"SBMŽLMBS II. G D = -FõJUMJóJOJTBóMBZBOLB¿GBSLMŽDHFS¿FMTB- 7ANnM ZŽTŽWBSEŽS r Y1 Y ` [ B C] J¿JOY1 >YPMEVóVOEB III. G Y =LFõJUMJóJOJTBóMBZBOGBSLMŽYEFóFSJPMEVóV-  G Y1  > G Y  PMVZPSTB G GPOLTJZPOVOB [ B  C] OBHËSF LOJOEFóFSBSBMŽóŽOFEJS BSBMŽóŽOEBBSUBOGPOLTJZPOEVSEFOJS I. f ( a ) = 0 & a = -    GBSLMŽBTBZŽMBSŽ UPQMBNMB- SŽEJS rY1 Y ` [ B C] J¿JOY1 >YPMEVóVOEB  G Y1  < G Y  PMVZPSTB G GPOLTJZPOVOB [ B  C] II. y = -EPôSVTVZMBGGPOLTJZPOVOVOHSBGJôJGBSLMŽ OPLUBEBLFTJöJS BSBMŽóŽOEBB[BMBOGPOLTJZPOEVSEFOJS III. -2 < k < 4 'POLTJZPOVO1P[JUJGWFZB/FHBUJG%FôFSMFS ÖRNEK 5 \"MEŽôŽ\"SBMŽLMBS ôFLJMEFG Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS %m/*m y y F y = f(x) a bO c d x – O  x – 5 y = f(x)  ôFLJMEFLJGGPOLTJZPOV-Þ <Y<B C <Y<DWF #VOBHÌSF   E <Y<ÞBSBMŽLMBSŽOEBLJIFSYEFóFSJJ¿JOQP[JUJG i) G Y GPOLTJZPOVOVOB[BMBOPMEVôVCÌMHFMFS ii) G Y  GPOLTJZPOVOVO BSUBO PMEVôV CÌMHFMFS OF- EFóFSMFSBMNBLUBEŽS  GGPOLTJZPOVOVOQP[JUJGPMEVóVBSBMŽLMBSEBGPOL- EJS TJZPOVOHSBGJóJYFLTFOJOJOÐTUÐOEFEJS i) ( -3, - 2 ] , [ 2, 3 )  B <Y<CWFD <Y<EBSBMŽLMBSŽOEBJTFGGPOLTJ- ii) [ -2, 2 ] ZPOVIFSYEFóFSJJ¿JOOFHBUJGEFóFSMFSBMNBLUB- EŽSGGPOLTJZPOVOVOOFHBUJGPMEVóVBSBMŽLMBSEB  GPOLTJZPOHSBGJóJYFLTFOJOJOBMUŽOEBEŽS 3. I. 7 II. 4 III. mL 23 4. –5 5. i) ( –3, – 2 ] , [ 2, 3 ) ii) [ -2, 2 ]

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr 'POLTJZPOVO.BLTJNVNWF.JOJNVN%FôFSMFSJ 0SUBMBNB%FôJöJN)Ž[Ž TANIM %m/*m  GGPOLTJZPOVOEBG Y HËSÐOUÐMFSJOJOFOCÐZÐóÐ- y d OF G GPOLTJZPOVOVO NBLTJNVN EFóFSJ  CV EF- f(b) y = f(x) óFSJBMEŽóŽOPLUBZBJTFNBLTJNVNOPLUBTŽEF- OJS a f(b) – f(a)  GGPOLTJZPOVOEBG Y HËSÐOUÐMFSJOJOFOLпÐóÐ- f(a) x OFGGPOLTJZPOVOVONJOJNVNEFóFSJ CVEFóFSJ b–a BMEŽóŽOPLUBZBJTFNJOJNVNOPLUBTŽEFOJS ab ÖRNEK 6  Z=G Y GPOLTJZPOVOVO[ B C] BSBMŽóŽOEBLJPS- y UBMBNB EFóJõJN IŽ[Ž  Z EFóFSMFSJOEFLJ EFóJõJN NJLUBSŽOŽO Y EFóFSMFSJOEFLJ EFóJõJN NJLUBSŽOB 7 PSBOŽEŽS #V EVSVNEB GPOLTJZPOVO PSUBMBNB 5 y = f(x) EFóJõJNIŽ[Ž  B G B  WF C G C  OPLUBMBSŽO- EBOHF¿FOEPóSVOVO E FóJNJPMVS –5 5 x 6 f^ b h - f^ a h m  UBOa = m b-a –8  0SUBMBNB EFóJõJN IŽ[ŽOŽO JõBSFUJ  EFóJõJN ZË- [ - ]BSBMŽóŽOEBUBOŽNMŽGGPOLTJZPOVOVO OÐOÐHËTUFSJS0SUBMBNBEFóJõJNIŽ[ŽQP[JUJGJTF EFóJõJN BSUNB ZËOÐOEF  OFHBUJG JTF EFóJõJN a) .BLTJNVNWFNJOJNVNPMEVôVOPLUBMBSŽOŽ B[BMNBZËOÐOEFEFNFLUJS C  .BLTJNVNWFNJOJNVNEFôFSMFSJOJCVMVOV[ a) -3, 4 C  -8 ÖRNEK 8 ôFLJMEFZG Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y ÖRNEK 7 8 y = f(x) 5 6 0 x [ - ]BSBMŽóŽOEBUBOŽNMŽGGPOLTJZPOVOVOHSBGJóJõFLJM-  EFLJHJCJEJS – O y y = f(x) –6 x #VOBHÌSF BöBôŽEBWFSJMFOBSBMŽLMBSEBGPOLTJZPOVO – 6 PSUBMBNBEFôJöJNIŽ[ŽOŽCVMVOV[ a) [m ] C [ ] D [ ] #VOBHÌSF YG Y #FöJUTJ[MJôJOJTBôMBZBOYUBNTB- d) [m ] e) [ ] f) [m ] ZŽMBSŽLBÀUBOFEJS 3 C  3 3 3 f) 0 -3, -2, -    PMNBLÑ[FSFUBOFEJS a) – D  – d) e) 4 4 10 10 6. B m C  m 7. 7 3 33 3 24 8. a) - C D  - d) e) f) 0 4 4 10 10

'POLTJZPOMBSEB(ÌSÑOUÑ TEST - 12 1. y 4. y ôFLJMEFG Y  5 y = f(x) GPOLTJZPOVO VOHSBGJóJ WFSJMNJõUJS   x x m m O  #VOBHÌSFBöBôŽEBLJMFSE FOIBOHJTJEPôSVEVS \"  G3\" 3ËSUFOEJS m #  G3\"3CJSFCJSEJS $  GCJSJNGPOLTJZPOEVS  :VLBSŽEB HSBGJôJ WFSJMFO GPOLTJZPOVO UBOŽN WF %  G Y =EFOLMFNJOJO¿Ë[ÐNLÐNFTJFMFNBO- HÌSÑOUÑLÑNFTJBöBôŽEBLJMFSEFOIBOHJTJEJS MŽEŽS \" [ - ] ,å[   #  -  ,   & A = [ Þ JTFG \" = R $  -  ,åå[m   % [ -  , m   & [ -  , [ - ] 2. ôFLJMEFZ=G Y- GPOLTJZPOVOVOHSBGJóJWFSJMNJõ- 5. ôFLJMEFLJHSBGJLG\"\"#ËSUFOCJSGPOLTJZ POVOHSB- UJS GJóJEJS y y ZG Ym 5 – O  x m 6x 8 m  G N+ 1 ) =FöJUMJôJOJTBôMBZBONEFôFSMFSJOJO #VOBHÌSF \"-#LÑNFTJOEFLBÀUBOFUBNTBZŽ UPQMBNŽLBÀUŽS WBSE ŽS \" - # - $ - %  &  \"  #  $  %  &  3. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 6. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y y y = f(x)   m m O 6 x  m x f (x) m m O ≤0   <G[ -1 +G Y ]â x2 + 4  FöJUTJ[MJôJOJ TBôMBZBO GBSLMŽ Y UBN TBZŽMBSŽOŽO FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽMBSŽOŽO UPQMBNŽ LBÀUŽS UPQMBNŽLBÀUŽS \" - # - $ - %  &  \" - # - $ - %  &  1. C 2. B 3. B 25 4. D 5. C 6. \"

TEST - 13 ôFLJMEFLJHSBGJL 'POLTJZPOMBSEB(ÌSÑOUÑ A Z#ZFUBOŽNMŽ 1. y Z=G Y GPOLTJZPOV- 4. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS OVOHSBGJóJEJS  y x y = f(x)  O m x O    #VOB HÌSF  \"aG \"   LÑNFTJ BöBôŽEBLJMFSEFO  #VOBHÌSF  Y- G Y #FöJUTJ[MJôJOJTBôMB- IBOHJTJEJS ZBOYUBNTBZŽMBSŽOŽOUPQMBNŽLBÀUŽS \"  -RF , {  } #  -R  ={ } \" - # - $  %  &  $  -R  , {} %  -R  , {  }  &  -R  , { } 2. y 5. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y = f(x) y y=f(x) a m O x m   x O 5  ôFLJMEFWFSJMFOGGPOLTJZPOVOBCBóMŽPMBSBLHGPOL- [ 3, 5 ]BSBMŽôŽOEBPSUBMBNBEFôJöJNIŽ[ŽOŽOPMB- TJZPOVBõBóŽEBLJHJCJUBOŽNMBONŽõUŽS g (x) = * –1 , f (x) ≥ 0 CJMNFTJJÀJOBLBÀPMNBMŽEŽS –x , f (x) < 0 \"  #  $  %  &  #VOBHÌSF H -5 ) + g ( -2 ) + g ( 2 ) + g ( 3 ) top- MBNŽOŽOEFôFSJLBÀUŽS 6. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS \" - # - $ - %  &  y 6 y=f(x) 3. y  –5 O m O x m  7 x m m 5 y = f(x)  ôFLJMEF Z=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS  #VOB HÌSF  [ -4, 5 ] BSBMŽôŽOEBLJ EFôJöJN IŽ[Ž f (x) JMF[ -2, 0 ]BSBMŽôŽOEBLJEFôJöJNIŽ[ŽOŽOGBSLŽOŽO $0 NVUMBLEFôFSJLBÀUŽS x2 - 16 FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽMBSŽOŽO UPQMBNŽ LBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. D 2. D 3. D 26 4. E 5. C 6. B

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, %0ó364\"-'0/,4÷:0/-\"3*/(3\"'÷,-&3÷ %m/*m ÖRNEK 2 y ôFLJMEFEPóSVTBMGGPOL- y = f(x) TJZPOVOVO HSBGJóJ WFSJM-  B C`3WFG3Z3PMNBLÐ[FSF  –1 NJõUJS 2  G Y =BY+CGPOLTJZPOVOVOHSBGJóJEJLLPPS- #VOBHÌSF G  EFôF- EJOBUTJTUFNJOEFZ=BY+CEPóSVTVOVOHSBGJ- x SJOJCVMBMŽN óJOJCFMJSUJS#JSEPóSVOVOHSBGJóJOJEJLLPPSEJOBU O TJTUFNJOEF¿J[NFLJ¿JOCVEPóSVOVOHF¿UJóJFO B[OPLUBZBJIUJZB¿WBSEŽS G Y =BY+C f^ - 1 h = 0 & - a + b = 0 f^ x h = 2x + 2  %PMBZŽTŽZMBZ=BY+CEFOLMFNJOJTBóMBZBOFO B[UBOF Y Z TŽSBMŽJLJMJTJTF¿JMJQCVTŽSBMŽJLJ- 4 MJMFSEJLLPPSEJOBUTJTUFNJOEFJõBSFUMFOJSWFJõB- f^ 0 h = 2 & b = 2 & a = 2 f^ 2 h = 6 SFUMFOFOOPLUBMBSCJSEPóSVQBS¿BTŽPMVõUVSBDBL õFLJMEFCJSMFõUJSJMJQEPóSV¿J[JMJS ÖRNEK 3  ±SOFóJOG3Z3 G Y =Y+GPOLTJZPOV- OVOHSBGJóJOJ¿J[FMJN x 0 –1 y y = f(x) ôFLJMEF EPóSVTBM G GPOLTJZP- y = f(x) 10 3 x OVOVOHSBGJóJWFSJMNJõUJS y O #VOBHÌSF G B = 2f ( 2 - a ) f(x) = x + 1 1 FöJUMJôJOJ TBôMBZBO B EFôF- SJOJCVMBMŽN –1 1 x f ( 0 ) = 0, f ( 1 ) = 3 jG Y =Y f ( a ) = 2f ( 2 - a ) 4 3.a = 2. 3 ( 2 - a ) j a = 3 ÖRNEK 1 ÖRNEK 4 ôFLJMEF EPóSVTBM G GPOLTJZP- OVOVOHSBGJóJWFSJMNJõUJS 3FFMTBZŽMBSEBUBOŽNMŽGEPóSVTBMGPOLTJZPOVOEB y G - =WFG  = -UÐS 1 #VOB HÌSF  GPOLTJZPOVOVO LVSBMŽOŽ CVMVQ HSBGJôJOJ O2 ÀJ[FMJN y G Y =BY+C x GGPOLTJZPOVOVOHSBGJôJÑ[F- y = f(x) SJOEF FLTFOMFSF FöJU V[BL- 1 f ( -2 ) = 1 j -2a +C= 1 MŽLUBCVMVOBOOPLUBMBSŽUFT- –2 1x QJUFEFMJN f ( 1 ) = -3 j a +C= -3 –3 j f^ x h =- 4 x - 5 f ( 2 ) = 0 , f ( 0 ) = 1 jG Y = 2 - x 2 33 2 - x =Yj d 2 , 2 n 2 33 2-x = -Yj (-2, 2) 2 1. f^ x h = - 4 x - 5 27 2. 6 4 4. (–2, 2), d 2 , 2 n 33 3. 3 33

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 5 %m/*m ôFLJMEFTBCJUIŽ[MBSMBIBSFLFUFEFO\"WF#BSB¿MBSŽOŽO  Z=BY+CEPóSVTVOVOFóJNJBEŽS ZPMm[BNBOHSBGJóJWFSJMNJõUJS  B>JTFZ=G Y =BY+CGPOLTJZPOVBSUBO  B<JTFZ=G Y =BY+CGPOLTJZPOVB[BMBO- Yol (km) B EŽS 20 A 16 Zaman (saat) 1BSÀBMŽ5BOŽNMŽ'POLTJZPOMBSŽO(SBGJLMFSJ 0 24 TANIM #VOBHÌSF CVBSBÀMBSBSBTŽOEBLJNFTBGFLBÀŽODŽTB- Z g (x), x < x0 BUUFLNPMVS ] ] f (x) = [ h (x), x0 # x < x1 ] ] t (x), x $ x1 \"ZG Y =Y \\ B ZG Y =Y Y-Y= 30 jY= 5 bJ¿JNJOEFLJGPOLTJZPOMBSEŽS  Y Y1LSJUJLOPLUBMBSEŽS  ,SJUJLOPLUBTBZŽTŽTPOMVTBZŽEBZBEBTPOTV[ TBZŽEBPMBCJMJS ÖRNEK 6  (SBùL¿J[JMJSLFOLSJUJLOPLUBMBSBSBTŽBZSŽBZSŽ ¿J[JMJS ôFLJMEFLJ HSBGJLUF BZOŽ BOEB EJLJMFO \" WF # GJEBOMBSŽOŽO CPZMBSŽOEBLJBSUŽõHËTUFSJMNJõUJS y (Boy cm) A B ÖRNEK 7 k 30 x , x$0 f_ x i = * -x - 1 , x<0 10 x GPOLTJZPOVOVO HSBGJôJOJ ÀJ[FSFL HÌSÑOUÑ LÑNFTJOJ 02 Zaman (ay) CVMBMŽN #VOBHÌSF LBÀŽODŽBZEBCJULJMFSJOCPZMBSŽGBSLŽDN y (- ß PMVS x –1 y (Boy cm) –1 30 20 3x 5 Zaman (ay) 2 0 5. 5 6. 5 28 7. (–1, Þ)

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 8 ÖRNEK 11 Z -1 , x <-2 G3Z\"ZBUBOŽNMŽ ]] x + 1; x < 1 f_ x i = [ x + 1 , -2 # x # 2 ]] f_ x i = * \\ 3 , x>2 - 2x + 3; x ≥ 1 GPOLTJZPOVOVOHSBGJôJOJÀJ[FSFLCJSFCJSWFÌSUFOMJôJ- GPOLTJZPOVÌSUFOPMEVôVOBHÌSF FOHFOJö\"LÑNF- TJOJCVMBMŽN OJJODFMFZFMJN Y< 1 jY+ 1 < Yäj -Y+ãj\"= (-Þ, 2) y [-1, 3]EBÌSUFO 3 (-    EB CJSF –2 CJSEJS –1 2 x ÖRNEK 9 ÖRNEK 12 Z x2 - 1 ; x≠1 L`3PMNBLÐ[FSF G;Z; G Y =LY+L mWFËS- ]] ; x=1 UFOGPOLTJZPOVUBOŽNMBOŽZPS f_ x i = [ #VOBHÌSF G L OJOFOCÑZÑLEFôFSJLBÀUŽS ]] x-1 \\ 3 mWFÌSUFOPMNBTŽJÀJOFôJNJOWFZBmPMNBTŽHF- SFLJS GPOLTJZPOVOVOHSBGJôJOJÀJ[FMJN k = 1 jG Y =Y+ 1 j f ( k ) = f ( 1 ) = 2 k = -1 jG Y = -Y- 1 j f ( k ) = f(-1) = 0 ¦Ì[ÑN G L OŽOFOCÑZÑLEFôFSJEJS y y = f(x) 3 x 2 –1 1 ÖRNEK 10 y ÖRNEK 13 3 y ôFLJMEF Z = G Y  EPóSVTBM GPOLTJZPOV JMF FLTFOMFS BSB- y = f(x) y = g(x) TŽOEBLBMBOCËMHFZFUBOFLBSFZFSMFõUJSJMJZPS x x y O O 9 õFLJMEFWFSJMFOGWFHGPOLTJZPOMBSŽOŽOUBOŽNLÑNFMF- AC SJOJ HÌSÑOUÑ LÑNFMFSJOJ BSUBO  B[BMBO PMEVôV CÌMHF- FE MFSJCFMJSMFZFMJN 18 x O BD y = f(x) #VOBHÌSF LBSFMFSJOBMBOMBSŽUPQMBNŽLBÀCS2EJS f: T.K =3- {0}  g: T.K =3 x y = 1& y = f^ x h = 18 - x , C(a, a) ise a = 6 (,=3- {0}  + 3- {0}EBBSUBO (,= (-ß ] 18 9 2 -ß ]EBBSUBO [ ß B[BMBO E(6 + k, k) ise k = 4 j\"MBOMBSUPQMBNŽ+ 16 = 52 8. <m >UFÌSUFO  m  EFCJSFCJSEJS 29 11. (–Þ, 2) 12. 2 13. 52 10. f: TK =3- {0} (,=3- {0} ve g: T.K =3 (,= (-Þ, 3]

TEST - 14 %PôSVTBM'POLTJZPOMBSŽO(SBGJLMFSJ 1. ôFLJMEFG3Z3Z=G Y+ GPOLTJZPOVOVOHSB- 4. \"öBôŽEBLJ GPOLTJZPOMBSEBO LBÀ UBOFTJ  3 Z 3 GJóJWFSJMJZPS ÌSUFOEJS y I. y II. y y = f(x+1) 4 2 O2 x O x y –2 x III. y IV. O 3  G Y- 1 ) =PMEVôVOBHÌSF YEFôFSJLBÀUŽS x x O O \"  #  $ - % - & - V. y 2. y y = 2x 2 x O2 6 D C \"  #  $  %  &  B6 O x Ax I I ôFLJMEF AB =YCSEJS 5. ôFLJMEFZå=åG Y JOHSBGJóJWFSJMNJõUJS  GYZ i\"#$%EJLEËSUHFOJOJOBMBOŽuGPOLTJZPOVO y LVSBMŽ BöBôŽEBLJMFSEFOIBOHJTJEJS –3 8x O24 \" Y-Y #  –2x2 + 12x $ YmY 3 y = f(x) % Y -Y  G Y  $  FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽMBSŽ OŽOUPQMBNŽLBÀUŽS &  2x2 - 12x \"  #  $  %  &  5 3. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 6. ôFLJMEFG3Z3PMNBLÐ[FSF Z=G Y+ GPOL- y TJZPOV¿J[JMNJõUJS 4 y y = f(x) y = f(x+2) 3 1 –4 x –2 4 6x –5 –3 –2 O 1 2 3 –4 O –2 –3  #VOBHÌSF G G Y  =EFOLMFNJOJOÀÌ[ÑNLÑ- G Y- 1 ) = -FöJUMJôJOJTBôMBZBOYEFôFSMFSJOJO NFTJLBÀFMFNBOMŽEŽS UPQMBNŽLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. \" 2. B 3. E 30 4. B 5. E 6. E

%PôSVTBM'POLTJZPOMBSŽO(SBGJLMFSJ TEST - 15 1. 3FFMTBZŽMBSEBUBOŽNMŽ 3. ôFLJMEFZ=G Y WFZ=H Y GPOLTJZPOMBSŽOŽOHSB- f_ x i = * - x , x < 0 GJLMFSJWFSJMNJõUJS 2x + 2 , x ≥ 0 y y fonksiyPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- y = g(x) EJS y = f(x) 4 8 A) y B) y –2 x –2 x O O 2 2 x #VOBHÌSF Z=H Y GPOLTJZPOVOVOFöJUJBöBôŽ- x EBLJMFSEFOIBOHJTJEJS –1 O O C) y D) y \" Z=G Y  # Z=G Y  $ Z=G Y 2 2 % Z=G Y  & Z=G Y O x 1 x –1 O E) y x 2 O 4. ôFLJMEFZ=G Y EPóSVTBMGPOLTJZPOVOVOHSBGJóJWF- SJMNJõUJS y 2. f (x) = *–x + 1 , x ≥ 0 GPOLTJZPOVWFSJMJZPS 1 2 x O y = f(x) x , x<0 | |#VOBHÌSF H Y = G Y  +GPOLTJZPOVOVO HSBGJôJBöBôŽEBLJMFSEFOIBOHJTJPMBCJMJS A) y B) y  #VOBHÌSF  Y+ G Y >FöJUTJ[MJôJOJTBôMB- 3 ZBOLBÀGBSLMŽUBNTBZŽEFôFSJWBSEŽS 2 –2 O 2 \"  #  $  %  &  C) y x O2 x 3 D) y x 2 x 2 5. Y-Z+ 1 = O1 y 1  EPôSVTVÑ[FSJOEFCVMVOBO\"WF#OPLUBMBSŽOŽO E) O1 BQTJTMFSJ GBSLŽ  CS PMEVôVOB HÌSF  PSEJOBUMBSŽ GBSLŽOŽOQP[JUJGEFôFSJLBÀUŽS 2 \"  #  $  %  &  O2 x 1. \" 2. C 31 3. D 4. C 5. B

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr .65-\",%&ó&3'0/,4÷:0/67&(3\"'÷,-&3÷ TANIM ÖRNEK 1  G3Z3 Z=G Y GPOLTJZPOVWFSJMTJO y ôFLJMEFZ=G Y =Y - GPOLTJZPOVOVO HSBGJóJ * f_ x i , f_ x i $ 0 –2 O y = f(x) -f_ x i , f_ x i < 0 –4 y= f_ x i = WFSJMNJõUJS x  õFLMJOEF UBOŽNMBOBO GPOLTJZPOB f GPOLTJZPOV- 2 .VUMBLEFôFSGPOLTJZP- OVO NVUMBLEFôFSGPOLTJZPOVEFOJS OVOVO Ì[FMMJLMFSJOJ LVM-  G Y  =  EFOLMFNJOJ TBóMBZBO Y EFóFSMFSJ LSJUJL | |MBOBSBL Y2- 4 - 3 = 0 | |OPLUBMBSEŽS Z = G Y   GPOLTJZPOV LSJUJL OPLUBMB- EFOLMFNJOJOÀÌ[ÑNLÑ- SBHËSFEÐ[FOMFOFSFLQBS¿BMŽGPOLTJZPOBEËOÐõ- NFTJOJOFMFNBOTBZŽTŽ- UÐSÐMÐS %BIB TPOSB CV QBS¿BMŽ GPOLTJZPOB HËSF OŽCVMBMŽN GPOLTJZPOVOVOHSBGJóJ¿J[JMJS ]Y2- ] GPOLTJZPOV-  ±SOFóJO y OVOHSBGJôJJMFZ= 3 4 EPôSVTV  GBSLMŽ | | G Y  = Y - 1 + Y +   GPOLTJZPOVOV QBS¿BMŽ OPLUBEB  LFTJöUJôJO- 3 x EFO]Y2 - 4| = 3 veya GPOLTJZPOBEËOÐõUÐSÐQHSBGJóJOJ¿J[FMJN –2 O 2 ]Y2 - 4| - 3 = 0 denk- MFNJOJO ÀÌ[ÑN LÑ-  Y- 1=jY=LSJUJLOPLUBEŽS NFTJFMFNBOMŽEŽS  'POLTJZPOLJSJUJLOPLUBTŽOBHËSF EÐ[FOMFOJSTF x-1+x+2 ; x$1 f_ x i = * -x+1+x+2 ; x < 1 2x + 1 ; x H 1 f_ x i = * FMEFFEJMJS 3 ; x < 1 ÖRNEK 2  &MEFFEJMFOQBS¿BMŽGPOLTJZPOBHËSFHSBGJóJBõB- | | | | G Y = Y- + Y+ óŽEBLJHJCJPMVS y GPOLTJZPOVOVO HSBGJôJOJ ÀJ[FSFL BMBCJMFDFôJ FO LÑ- 3 y = f(x) ÀÑLEFôFSJCVMBMŽN – 1 y 'POLTJZPOVO HÌ- 2 x 5 SÑOUÑ LÑNFTJ [  ß  O1 BSBMŽôŽEŽS %PMBZŽTŽZ- –2 O 3 x MBBMBCJMFDFôJFOLÑ- ÀÑLEFôFSUJS ôJNEJEFG Y =Y-WF ÖRNEK 3 | | | | H Y = G Y  = Y- GPOLTJZPOMBSŽOHSBGJLMF- | | | | G Y = Y+ - Y- 1 SJOJ¿J[FSFLBSBMBSŽOEBLJJMJõLJZJGBSLFEFMJN GPOLTJZPOVOVOBMBCJMFDFôJLBÀGBSLMŽUBNTBZŽEFôF- SJWBSEŽS y y y = f(x) y = |f(x)| O2 x –2 2 O2 x  ôFLJMEFLJHSBGJLMFSEFOGBSLFEJMFDFóJÐ[FSF y 'POLTJZPOVOVO HÌSÑOUÑ 4 Z=G Y GPOLTJZPOVOVOYFLTFOJOJOBMUŽOEBLBMBO LÑNFTJ [-4, 4] BSBMŽôŽEŽS G –3 LŽTŽNMBSŽOŽOYFLTFOJOFHËSF ZBOTŽNBTŽBMŽOBSBL O1 JO BMBCJMFFôJ UBN TBZŽ EF- x ôFSMFSJUBOFEJS | |Z= G Y  GPOLTJZPOVOVOHSBGJóJFMEFFEJMFCJMJS –4 32 1. 4 2. 5 3. 9

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 ÖRNEK 7 x-4 -3 =k 3- x+3 f_ x i = EFOLMFNJOJO  GBSLMŽ LÌLÑ PMEVôVOB HÌSF  L OJO Ee- ôFSBSBMŽôŽOŽCVMVOV[ x2 - 4 GPOLTJZPOVOVO UBOŽN LÑNFTJOEF LBÀ GBSLMŽ UBN TB- y ZŽWBSEŽS 3 | | | |3 - Y+ 3 $ 0 j Y+ 3 # 3 j -3 #Y+ 3 # 3 j -6 #Y# 0 y=k Y4 -âj Y-  Y+ âjYâWFYâ-2 -6, -5, -4, -3, - PMNBLÑ[FSF UBNTBZŽWBSEŽS O1 x 7 (SBGJôJOZ=LEPôSVTVZMBGBSLMŽOPLUBEBLFTJöFCJMNF- TJJÀJO< k <PMNBMŽEŽS ÖRNEK 5 ÖRNEK 8 ôFLJMEFZ=G Y =Y +Y-GPOLTJZPOVOVOHSBGJóJWF- f_ x i = x - 2 - 4 SJMNJõUJS GPOLTJZPOVOVO HSBGJôJ JMF Y FLTFOJ BSBTŽOEB LBMBO LBQBMŽCÌMHFOJOBMBOŽLBÀCS2 EJS y y = f(x) O x y 8.4 –2 1 4 = 16 –2 O 2 #VOBHÌSF  g_ x i = x· f_ x i 2 x GPOLTJZPOVOVOHSBGJôJ- 6 f_ x i OJÀJ[FMJN. y x ÖRNEK 9 2 | | | | G Y = Y+ + Y- WFH Y = 1 GPOLTJZPOMBSŽOŽOHSBGJLMFSJOJOLFTJNOPLUBMBSŽOŽOBQ- –2 O 1 TJTMFSJUPQMBNŽLBÀUŽS 1 –2 ÖRNEK 6 y 4 + k + (-2 - k) = 2 2- x+3 6 G GPOLTJZPOVOVO HSB- GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJOJCVMBMŽN GJôJ | | | |2 - Y+ 3 $ 0 j Y+ 3 # 2 j -2 #Y+ 3 # 2 –2–k –2 O 4 4+k x 4+^-2h j -5 #Y# -1 = 1, 2 Y =  EPôSVTVOB HÌSF TJNFUSJLUJS %PMBZŽTŽZMB BQTJTMFS UPQMBNŽEJS 4. L 6. -5 #Y# –1 33 7. 6 8. 16 9. 2

TEST - 16 .VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ 1. G< - ] A3ZFUBOŽNMŽ 4. y | | G Y  Y- - 2  GPOLTJZPOVO HÌSÑOUÑ LÑNFTJ BöBôŽEBLJMFSEFO x IBOHJTJEJS O \" <- > # <- > $ < > –4 –2 % <- '  & < ' õFLJMEFLJHSBGJLBöBôŽEBLJMFSEFOIBOHJTJJMFJGB- EFFEJMFCJMJS | |\" Z= Y+ | |# Z= Y- | |$  Z- =Y | |% Z= Y - | | & Z= Y + 2. f (x) = * - 2x - 1, x ≤ 1 GPOLTJZPOVWFSJMJZPS - 3x + 6, x > 1 | |Z G Y  GPOLTJZPOVOVOHSBGJôJWFYekseniy- 5. f(x) = 1 MFTŽOŽSMBOBOLBQBMŽCÌMHFOJOBMBOŽLBÀCS2EJS a- x+1 \"  7  #  9  $  %  15  &  15 GPOLTJZPOVOVO FO HFOJö UBOŽN BSBMŽôŽ -4, 2 ) 4 4 42 PMEVôVOBHÌSF BLBÀUŽS \"  #  $  %  &  3. y = f (x) = 1 - x2 + x 6. f (x) = x + x - 2 x +1 x x-2  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS A) y B) y GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJsi- EJS 1 x 11 x A) y B) y –1 2 2 x 2 1 O1 O O 2 O2 –2 –2 C) y D) y 1 O 1 x C) y D) y O –1 x 2 x 2 –1 O2 O2 –2 –2 E) y Ox E) y 2 x –1 1 2 –1 O –2 1. \" 2. D 3. B 34 4. \" 5. C 6. B

.VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ TEST - 17 1. f_ x i = x - a - 4 4. 3FFMTBZŽMBSEBUBOŽNMŽ GPOLTJZPOVOVOHSBGJôJYFLTFOJOJJLJGBSLMŽOPL- | | | |G Y = Y- - Y+ tada LFTUJôJOFHÌSF BOŽOBMBCJMFDFôJLBÀGBSLMŽ UBNTBZŽEFôFSJWBSEŽS GPOLTJZPOVOVO BMBCJMFDFôJ LBÀ UBOF UBN TBZŽ EFôFSJWBSEŽS \"  #  $  %  &  \"  #  $  %  &  2. y 5. ôFLJMEFHSBGJLGGPOLTJZPOVOBBJUUJS O1 3 x y 3 3 2 –3 O3 x :VLBSŽEBLJ HSBGJL BöBôŽEBLJ GPOLTJZPOMBSE BO y = f(x) IBOHJTJOFBJUUJS ff x p = 2x2 - 4 | |\" Z=Y- Y- | |# Z=Y- Y - x | |$ Z=Y+ Y - | |% Z= Y- -Y EFOLMFNJOJ TBôMBZBO Y EFôFSMFSJOJO ÀBSQŽNŽ LBÀUŽS | | | | & Z Y - Y- \"  # - 2 3  $ 2 3 % -&  3. G3- {1} A3  f (x) = x2 - x x-1  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- | | | |6. G3A3 G Y  Y - Y- 1 + EJS GPOLTJZPOVO VOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- A) y B) y EJS –1 x 1 1 A) y B) y 3 O O1 x 3 –1 –1 O 14 O1 4 x x C) y D) y x C) y D) y –1 O 1 3 1 –1 x 3 x Ox O1 4 O –1 –1 1 E) y x E) y 1 3 O1 x O1 –1 1. C 2. \" 3. B 35 4. C 5. B 6. C

TEST - 18 .VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ 1. G3A3 G Y = x + 2 - 5 4. | |G3Z3 G Y = - Y+ + GPOLTJZPOVOVOFOCÑZÑLEFôFSJLBÀUŽS PMEVôVOBHÌSF G Y = 4 denkMFNJOJOÀÌ[ÑNLÑ- \"  #  $  %  &  NFTJOFEJS \" \\- ^ # \\- - ^ $ \\- -1 } % \\- ^ & \\- - - ^ y 5. YBSBMŽôŽOEB  2. y = f(x) G Y  x - x - 6 5 3 x GPOLTJZ POVBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS Oa b \"  # -Y+ $ Y- G Y | Y-B| + | Y- b | % Y- & Y+  GPOLTJZPOVOVOHSBGJóJZVLBSŽEBWFSJMNJõUJS #VOBHÌSF  a - b ifadeTJOJOEFôFSJLBÀUŽS a+b \" - 3  #  3 $  5 % - 5  & - 2 6. G3={} A3  55 3 33 x-2 f (x) = x-2 -x 3. Z| Y| -  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS JGBEFTJOJOHSBGJôJBöBôŽEBLJMFSEFOIBOHJT JEJS A) y B) y A) y B) y 3 x 3 x 2 –2 O x 1 –2 x –1 O 1 2 1 O2 O 12 C) y D) y C) y D) y O2 x O x 1 x 1 x –2 O 12 y –1 O 1 2 2 E) –2 E) y x 1 x 2 O 12 O 1. E 2. \" 3. D 36 4. C 5. D 6. \"

.VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ TEST - 19 | |1. Z= Y +Y I I I I4. G Y  Y- +Y +  HSBGJôJJMFZ=BEPôSVTVOVOEÌSUGBSLMŽOPLUBEB  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- LFTJöNFTJOJ TBôMBZBO B UBN TBZŽ EFôFSMFSJOJO EJS UPQMBNŽLBÀUŽS A) y B) y 5 5 \"  #  $  %  &  x O2 x O2 2. x2 - 1 C) y D) y f (x) = x 5 5 x2 - 1 O2 O2 GPOLTJZPOVOVO HSBGJôJ BöBôŽEBLJMFSEFO IBOHJTJ- x x EJS A) y B) y E) y 3 1 x 1 x O2 x 5 –1 O 1 O –1 –1 1 –1 C) y D) y 1 1x O x –1 1 O –1 –1 E) y O x –1 1 5. f (x) = x2 - x2 - 4x + 4 –1 GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS y A) y B) y 3. 2 2 O2 O2 2 –2 x x O1 x C) y D) y O2 õFLJMEFLJHSBGJLBöBôŽEBLJGPOLTJZPOMBSEBOIBO- 2 x x HJTJOFBJUPMBCJMJS 2 x I I\" Z Y- 1 +Y- 1 O I I I I# Z Y- 1 + Y + 1 I I I I$ Z Y + Y- -Y –2 I I% Z Y++ I YI I I& Z Y-+ IYI E) y O2 –2 1. \" 2. B 3. E 37 4. \" 5. B

TEST - 20 .VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ | | | |1. G Y = Y+ + Y- 3. f (x) = *–x + 1 , x ≥ 0 GPOLTJZPOVWFSJMJZPS GPOLTJZPOV QBSÀBMŽ GPOLTJZPO PMBSBL ZB[ŽMŽSTB x , x<0 BöBôŽEBLJGPOLTJZPOMBSEBOIBOHJTJFMEFFEJMJS | |#VOBHÌSF H Y = G Y  +GPOLTJZPOVOVO Z 2x x≥2 HSBGJôJBöBôŽEBLJMFSEFOIBOHJTJPMBCJMJS ] \"  f_ x i = [ 4 - 2 < x < 2 ] A) y B) y \\ - 2x x # –2 –2 2 3 Z 4 x≥2 O x ] -2≤x<2 2 #  f_ x i = [ 2x x O2 x < –2 ] - 4 C) y D) y \\ 3 2 Z 3x + 4 x≥2 2 ]] 1 $  f_ x i = [ x + 6 - 2 < x < 2 O1 x O1 ]] \\ - 3x + 2 x≤-2 x %  f_ x i = ( 2x x ≥ 0 E) y - 2x x < 0 2 Z x + 2 x>2 ] &  f_ x i = [ 4 ] -2≤ x≤ 2 O 12 x \\ - x - 2 x<-2 | |2.  G Y = | Y-| -  GPOLTJZPOV QBSÀBMŽ GPOLTJZPO PMBSBL ZB[ŽMŽSTB 4. G Y =Y+ | 1 - | Y| | BöBôŽEBLJGPOLTJZPOMBSEBOIBOHJTJFMEFFEJMJS  GPOLTJZPOVO HSBGJôJ BöBôŽEBLJMFSEFO IBOHJTJ- EJS Z x-5 x≥5 ] ] - 2≤ x<5 \"  f^ x h = [ 5 x ]] x-1 1≤ x < 2 A) y B) y \\ 1- x x<-1 1 1 Z ] x - 5 x≥5 O O f_ i ] 5 - x 2≤ x<5 – 1 1 x – 1 1 x [ 2 2 2 2 #  x = ] x + 1 - 1≤ x < 2 ] - x - 1 x<-1 \\ Z ] 5 - x x≥5 C) y D) y $  f_ x i = ] x – 5 2≤x<5 1 [ x –1 O ] -x - 1 - 1≤ x < 2 ] –1 O 1 x \\ x + 1 x < –1 –1 1 –1 2 Z ] 5 - x x≥5 %  f_ x i = ] x - 5 2≤x<5 E) y [ ] x + 1 - 1≤ x < 2 –1 1 ] \\ - x - 1 x<-1 O 1 Z x ] –1 x - 5 x≥5 2≤x<5 &  f_ x i = [ 5 - x x<2 ] \\ x + 1 1. \" 2. B 38 3. C 4. D

.VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ TEST - 21 1. y=x+ x–2 3. f (x) = x – x – 2 x2 - 4x + 4 GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSE FOIBOHJTJ- EJS fonkTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJsi- EJS A) y B) y A) y B) y O1 x 1 x 3 –2 O1 2 x 1 O2 x O –1 2 C) y D) y C) y D) y x 2 x O 3 –1 –1 O 1 O 12 –2 –1 O1 3 x E) x2 E) y –1 1 y O2 x 1 2 x O –1 4. G[ - ] Z3 G Y = | Y+| - | Y-|  GPOLTJZPOVOVOHSBGJôJJMFYFLTFOJBSBTŽOEBLB- MBOCÌMHFOJOBMBOŽLBÀCJSJNLBSFEJS \"  #  $  %  &  | |2. Z= | Y- 1| -Y | |5. Z= | Y+ 1 | -+ | Y|  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ-  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS EJS A) y B) y A) y B) y 1 1 1 x –1 O 1 x 3 –1 x O1 x –1 O 1 2 2 O1 2 3 2 2 –1 C) y D) y D) y C) y 1 x 1 1 1 O 11 x3 O 1 x 1O 2 O1 x 2 2 2 2 E) y x E) y x 1 1 O1 1 O1 2 1. C 2. D 39 3. C 4. E 5. B

TEST - 22 .VUMBL%FôFS'POLTJZPOVWF(SBGJLMFSJ 1. y 4. x - 2 x - 2 = 6 2  FöJUMJôJOEF Y JO BMBCJMFDFôJ EFôFSMFSJO UPQMBNŽ 3 x O LBÀUŽS –4 \"  40  #  28  $  %  38  &  33 3 õFLJMEFLJHSBGJLBöBôŽEBLJGPOLTJZPOMBSEBOIBO- HJTJOFBJUUJS | | | | | | | |\" Z= Y+ - Y - # Z= Y- + Y - | | | | | | | |$ Z= Y- - Y - % Z= Y+ - Y - | | | | & Z= Y- - Y 2. G Y = k - x - 4 5. Y<PMNBLÑ[FSF  GPOLTJZPOVOVO FO HFOJö UBOŽN LÑNFTJ [3, 5] | | G Y = Y- 1 + x + x - 1 BSBMŽôŽPMEVôVOBHÌSF LLBÀUŽS GPOLTJZPOVBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \" Y # -Y $ Y+  \"  #  $  %  &  % -Y &  | | | |3. G Y = Y + Y- 1  GPOLTJZPOVBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \" f (x) = * 2x - 1, x ≥ 1 2x + 1, x < 1 Z 2x - 1, x≥1 ]] # f (x) = [ 1 , 0 ≤ x < 1 ]] \\Z - 2x + 1, x<0 | |6.  G Y =- Y ]] 1 , ≥1 x GPOLTJZPOVOVOHSBGJôJJMFYFLTFOJZMFTŽOŽSMŽCÌM- HFOJOBMBOŽLBÀCS2EJS $ f (x) = [ 2x - 1, 0 ≤ x < 1 ]] \"  #  $  %  &  \\Z x -1 , x<0 ]] -1 , x>1 % f (x) = [ 2x - 1 , 0 ≤ x ≤ 1 ]] Z\\ 1 , x<0 ]] 3x - 1, x≥1 & f (x) = [ 2x - 1, 0 ≤ x < 1 ]] \\ x - 1, x<0 1. C 2. \" 3. B 40 4. B 5. B 6. \"

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, #÷-&õ,&7&5&34'0/,4÷:0/ TANIM ÖRNEK 1 G= {     -    }   \" # $CPõLÐNFEFOGBSLMŽCJSFSLÐNFPMNBL H= { -       - } Ð[FSF PMEVôVOBHÌSF HPGGPOLTJZPOVOVCVMVOV[  G  \" Z #    H  # Z $ GPOLTJZPOMBSŽ WFSJMTJO \" LÐNFTJOJO FMFNBOMBSŽOŽ G WF H GPOLTJZPOMB- gof = {(1, 1), (2, 4), (3, -2)} SŽZBSEŽNŽZMB$LÐNFTJOJOFMFNBOMBSŽJMFFõMFõ- UJSFO GPOLTJZPOB G JMF H GPOLTJZPOMBSŽOŽO CJ- ÖRNEK 2 MFöLFGPOLTJZPOVEFOJSWF HPG  Y õFLMJOEF HËTUFSJMJS#VSBEBGGPOLTJZPOVOVOEFóFSLÐNF- G H3Z R TJJMFHGPOLTJZPOVOVOUBOŽNLÐNFTJFõJUUJS G Y =Y+ H Y =Y - PMEVôVOB HÌSF  GPH  Y  WF HPG  Y  GPOLTJZPOMBSŽ-  HPGHCJMFõLFGEJZFPLVOVS OŽOLVSBMMBSŽOŽCVMVOV[  HPG\"Z$ HPG Y =H[G Y ]UJS Af B g C xyz (gof)(x) = z GPH Y =G H Y =G Y2 - 2) = Y2- 2) + 1 =Y2- 3 HPG Y =H G Y =H Y+ 1) = Y+ 1)2 - 2 =Y2 +Y- 1 #JSÌSOFLJMFBÀŽLMBZBMŽN %m/*m A = {-   } #= {  } ve C = {-  }  'POLTJZPOMBSEB CJMFõLF JõMFNJOJO EFóJõNF LÐNFMFSJJ¿JO Ë[FMMJóJ ZPLUVS :BOJ IFSIBOHJ JLJ G WF H GPOLTJ-  G\"Z# G Y =Y ve ZPOVJ¿JOGPH=HPGPMNBL[PSVOEBEFóJMEJS  H#Z$ H Y =Y-GPOLTJZPOMBSŽJ¿JOHPG  #JSGGPOLTJZPOVOVOCJSJNGPOLTJZPOJMFCJMFõLF- GPOLTJZPOVOVõFNBJMFHËTUFSJQLVSBMŽOŽCVMBMŽN TJZJOFGGPOLTJZPOVEVS A f B gC   GPI = IPG=G –1 0 –1 01 0 ÖRNEK 3 14 3 2 G H3Z R  G Y =Y+ H Y =Y- gof C PMEVôVOBHÌSF  GPH L =FöJUMJôJOJTBôMBZBOLEF- A ôFSJOJCVMBMŽN –1 –1 f(g(k)) = 7 j f(k - 3) = 7 j 2(k - 3) + 1 = 7 j k = 6 00 13 2  HPG \"Z$  HPG Y =H G Y   f_ x i = x2 4 & g_ x2 i = x2 - 1CVMVOVS g_ x i = x - 1 41 1. {(1, 1), (2, 4), (3, –2)} 2. Y2m Y2 Ym3. 6

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 4 ÖRNEK 7 G H3Z R 5BOŽNMŽPMEVôVEFôFSMFSJÀJOG Y- 2 ) =Y+ 5 ve G Y =Y+OGPOLTJZPOVWFSJMJZPS gf 3x + 4 p = x - 4  GPG Y =NY+ 2 PMEVôVOBHÌSF N+OUPQMBNŽOŽCVMBMŽN PMEVôVOBHÌSF  HPG   OFEJS GPG Y =NY+ 8 jG Y+ n) = Y+ n) + n =Y+ 4n =NY+ 8 jN= 9 , n = 2 jN+ n = 11 g ( f ( 1 ) ) = g ( 14 ) = 4 ÖRNEK 5 ÖRNEK 8 ôFLJMEFHFS¿FLTBZŽMBSEBUBOŽNMŽGWFHGPOLTJZPOMBSŽOŽO 1 - x, x ≥ 0  HSBGJLMFSJWFSJMNJõUJS f ( x ) = * x2, x < 0 PMEVóVOBHËSF y y I. GPGPG   JGBEFTJOFZFFöJUUJS  y = f(x) II. ( fofof ) ( - JGBEFTJOFZFFöJUUJS  2 1 x I. f ( f ( f ( 5 ) ) ) + f ( f ( -4) ) = f ( 16 ) = -15 O y = g(x) II. f ( f ( f ( -3 ) ) ) = f ( f ( 9 ) ) = f ( -8 ) = 64 Ox –1 –2 #VOBHÌSF  ÖRNEK 9 GPH - + GPH - ++ GPH  + GPH  G Y =Y+ g (x) = * x2 , x ≥ 2 UPQMBNŽOŽCVMBMŽN x+2, x < 2 ( fog )(-100) = f ( g (-100) ) = f ( 1 ) = 2 ( fog )(-99) = f ( g (-99) ) = f ( 1 ) = 2 GPOLTJZPOMBSŽWFSJMJZPS\"öBôŽEBLJMFSJCVMVOV[ h ( fog )(-1) = f ( g (-1) ) = f ( 1 ) = 2 I. HPG    II. GPH   ( fog )(0) = f ( g (0) ) = f ( 0 ) = 0 ( fog )(1) = f ( g (1) ) = f ( -1 ) = -2 I. g ( f ( 1 ) ) = g ( 5 ) = 25 ( fog )(100) = f ( g (-100) ) = f ( -1 ) = -2 II. f ( g ( 1) ) = f ( 3 ) = 9 5PQMBNEŽS ÖRNEK 10 ÖRNEK 6 GEPôSVTBMGPOLTJZPOPMNBLÑ[FSF  G H3Z3  GPH Y =H Y -H Y +GPOLTJZP-  GPG Y =Y+ OVWFSJMJZPS PMEVôVOBHÌSF G  OJOBMBCJMFDFôJEFôFSMFSJCVMBMŽN #VOBHÌSF G  EFôFSJOJCVMBMŽN G Y =BY+Cj GPG Y =G G Y  =B BY+C +C G H Y  = [H Y ]2 - 2.[H Y ]+ 2 jG Y =Y2 -Y+ 2 j a2Y+BC+C=Y+ 6 a = 2 jC= 6 jC= 2 jG Y =Y+ 2 j f ( 2 ) = 6 f(3) = 9 - 6 + 2 = 5 a = -2 j -C= 6 jC= -6 jG Y = -Y- 6 j f ( 2 ) = -10 4. 11 5. 0 6. 5 42 7. 4 8. –15, 64 9. 25, 9 10. 6, –10

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 11 5FST'POLTJZPO 3x - 1 , x / 0 (mod 2) TANIM f (x) = * x2 + 1 , x / 1(mod 2)  G\"Z#CJSFCJSWFËSUFOGPOLTJZPOVWFSJMTJO  Y`\"J¿JOG Y =ZJLFOG-1 Z =YPMVZPSTBG-1  g (x) = * x + 1 , x tek say› 2x + 3 , x çift say› # LÐNFTJOEFO \" LÐNFTJOF UBOŽNMŽ CJS GPOLTJ- ZPOEVS#VEVSVNBõBóŽEBLJHJCJHËTUFSJMFCJMJS GPOLTJZPOMBSŽWFSJMJZPS\"öBôŽEBLJMFSJCVMVOV[ AB I. GPH    II. HPG     f III. HPH  m  *7 HPG    xy I. f ( g ( 5 ) ) = f ( 6 ) = 17 II. g ( f ( 7 ) ) = g ( 50 ) = 103 AB III. g ( g ( -1 ) ) = g ( 0 ) = *7H G   = g (11) = 12 x=f–1(y) y = f(x) ÖRNEK 12 f–1 | |G3Z3 G Y = Y- PMEVóVOBHËSF ( f o f )(k)= 5 r GJMFG-1GPOLTJZPOMBSŽOŽOHSBGJLMFSJ  Z=Y B¿ŽPSUBZ EPóSVTVOBHËSFTJNFUSJLUJS FöJUMJôJOJTBôMBZBOLEFôFSMFSJOJCVMBMŽN r G-1 -1 =G r GPG-1 =G-1PG= I ICJSJNGPOLTJZPO  | |k - 3| - 3| = 5 j |k - 3| - 3= 5 v | |k - 3 - 3 = -5 |k - 3| = 8 |k - 3| = -2 k = -5, 11 q ÖRNEK 14 %m/*m A = {-  } #= {-   }LÐNFMFSJJ¿JO G\"Z# G Y =Y GPOLTJZPOVOVJODFMFZFMJN  'POLTJZPOMBSEB CJMFõLF JõMFNJOJO CJSMFõNF Ë[FMMJóJWBSEŽS#VË[FMMJL ¦Ì[ÑN Af  GP HPI = GPH PI B  PMBSBLJGBEFFEJMJS –1 –1 00 11 2 ÖRNEK 13 f–1 A B G H I3Z3  –1 G Y = H Y =Y - I Y =Y-Y+ 1 –1 0 0 1 GPOLTJZPOMBSŽJÀJO[ GPH PI]  EFôFSJOJCVMBMŽN 1 2 GPH PI=GP HPI j [ GPH PI](17) =G  HPI   = 3 ôFNBEBOHËSÐMEÐóÐÐ[FSF GGPOLTJZPOVCJSFCJSEJS GBLBU ËSUFO EFóJMEJS %PMBZŽTŽZMB G-1  JO UBOŽN LÐ- NFTJOEFB¿ŽLUBFMFNBOLBMBDBLUŽS#VOBHËSF G-1 CJSGPOLTJZPOEFóJMEJS#BõLBCJSEFZJõMFGGPOLTJZP- OVOVOUFSTJZPLUVS 11. 17, 103, 3, 12 12. –5, 11 13. 3 43

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 15 ÖRNEK 17 A = {-  } #= { }LÐNFMFSJJ¿JO \"öBôŽEBUBOŽNWFEFôFSLÑNFMFSJWFSJMFOGPOLTJZPO- I\"Z# I Y =Y GPOLTJZPOVOVJODFMFZFMJN MBSEBOIBOHJTJZBEBIBOHJMFSJOJOUFSTJWBSEŽS ¦Ì[ÑN B B h–1 A I. G/Z/ G Y =Y+ 1 h II. G;Z; G Y =Y- 0 0 –1 III. G;Z/ G Y =Y + 1 A 1 1 0 *7 G3Z3 G Y =Y - 1 7 G3+ Z R+ G Y =Y +Y+ –1 7* G;Z;+G Y =Y -Y+ 0 1 4BEFDF**CJSFCJSWFÌSUFOPMEVôVOEBOUFSTJWBSEŽS ôFNBEBO HËSÐMEÐóÐ Ð[FSF I GPOLTJZPOV ËSUFOEJS %m/*m GBLBUCJSFCJSEFóJMEJS%PMBZŽTŽZMBI-1UBOŽNLÐNF- TJOJO CJS FMFNBOŽOŽ CJSEFO GB[MB FMFNBOMB FõMFZF-  #JSGPOLTJZPOVOUFSTJOJOFõMFõUJSNFLVSBMŽOŽCVM- DFLUJS#VOBHËSF I-1CJSGPOLTJZPOEFóJMEJS#Bõ- NBLJ¿JOBõBóŽEBLJBEŽNMBSJ[MFOFCJMJS LBCJSEFZJõMFIGPOLTJZPOVOVOUFSTJZPLUVS r Z=G Y LVSBMŽOEBYZFSJOFZ ZZFSJOFYZB- GWFIGPOLTJZPOMBSŽCJSMJLUFEÐõÐOÐMEÐóÐOEFGPOL- [ŽMŽS TJZPOVO UFSTJOEFO CBITFEFCJMNFL J¿JO TBEFDF CJ- SFCJSMJóJOWFZBTBEFDFËSUFOMJóJOZFUFSMJHFMNFEJóJ  r &MEFFEJMFOFõJUMJLUFZZBMOŽ[CŽSBLŽMŽS GPOLTJZPOVOVO IFN CJSF CJS IFN EF ËSUFO PMNBTŽ r 4POFõJUMJLUF ZZFSJOFG-1 Y ZB[ŽMŽS HFSFLUJóJGBSLFEJMJS  G3Z3 G Y =Y+ GPOLTJZPOVOVOUFSTJ- ÖRNEK 16 OJOFõMFõUJSNFLVSBMŽOŽCVMBMŽN G  3  Z  3  BöBôŽEB HSBGJôJ WFSJMFO GPOLTJZPOMBSEBO  Z=G Y =Y+ 1 jY=Z+ 1 j y = x - 1 IBOHJMFSJOJOUFSTJWBSEŽS 2 I. y II. y ZZFSJOFG-1 Y ZB[ŽMŽSTB f–1_ x i = x - 1 PMVS 2 x xO III. y IV. y xO x ÖRNEK 18 VI. y O G3- {1} Z R - {}  V. y f_ x i = 2x + 1 x-1 GPOLTJZPOVOVOUFSTJOJOFöMFöUJSNFLVSBMŽOŽCVMVOV[ Ox x O y= 2x + 1 &x= 2y + 1 & y = –1 ^ x h = x+1 x-1 y-1 f x-2 ***WF7*CJSFCJSWFÌSUFOPMEVôVOEBOUFSTJWBSEŽS 16. *** 7* 44 17. II 18. f–1 ^ x h = x + 1 x-2

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m ÖRNEK 21 G3- {B} Z R - { b }  f_ x i = 2x - 5  6ZHVO UBOŽN BSBMŽLMBSŽOEB WFSJMFO BõBóŽEBLJ x-2 GPOLTJZPOMBSJ¿JO PMEVôVOBHÌSF (1fo44fo2. .4.4o3f)_ 3 iEFôFSJOJCVMVOV[ r G Y =BY+ b j f–1_ x i = x - b 2019 tan e a r G Y =BYj f–1_ x i = x f = f -1PMEVôVOEBOG  = 1 a r f_ x i = ax + b & f–1_ x i = - dx + b cx + d cx - a r f_ x i = ax + b & f–1_ x i = cx - b ca ÖRNEK 19 ÖRNEK 22 G -Þ ] Z [ Þ  G Y =Y -Y+ G3- {B} Z R - {b}  f_ x i = x + 3 PMEVôVOBHÌSF f-1 Y JCVMVOV[ x+4 y = Y- 2)2 + 3 jY= (y - 2)2 + 3 jY- 3 = (y - 2)2 CJSFCJSWFÌSUFn fonksJZPOPMEVôVOBHÌSF B+CUPQ- MBNŽOŽCVMVOV[ j x-3= y-2 & x - 3 = - y + 2 & –1 ^ x h = 2 - x-3 f Y+ 4 = 0 jY= -4 = a, f-1 Y = - 4x + 3 Y- 1 = 0 x-1 ÖRNEK 23 jY= 1 =Cj a +C= -4 + 1 = -3 G3Z3 G Y = Y+  -PMNBLÐ[FSF  f-1( - EFôFSJOJCVMVOV[ Y+ 1)3 - 2 = -10 j Y+ 1)3 = - 8 jY+ 1= -2 jY= - 3 ÖRNEK 20 ÖRNEK 24 GUBOŽNMŽPMEVóVBSBMŽLUBCJSFCJSWFËSUFOCJSGPOLTJZPOPM- 5BOŽNMŽPMEVôVBSBMŽLUB NBLÐ[FSF ff x - 1 p = x2 + 1 3 x2 + 2 f_ x i = kx + 12 WFG Y =G-1 Y 3x - 4 PMEVôVOBHÌSF ff 1 pEFôFSJOJCVMVOV[ 3 PMEVôVOBHÌSF G L EFôFSJOJCVMVOV[ kx + 12 = 4x + 12 & k = 4, f^ x h = 4x + 12 3x - 4 3x - k 3x - 4 f^ k h = f^ 4 h = 7 2 x-1 1 2 2 +1 5 = &x=2& = 33 22 + 2 6 19. –3 7 45 21. 1 22. 2 - x - 3 23. –3 5 20. 24. 6 2

·/÷7&34÷5&:&)\";*3-*, 1. MODÜL '0/,4÷:0/-\"3 www.aydinyayinlari.com.tr %m/*m ÖRNEK 28  6ZHVOLPõVMMBSEBUBOŽNMŽG HWFIGPOLTJZPOMB- GWFH3Z3UBOŽNMŽ CJSFCJSWFËSUFOGPOLTJZPOMBSPM- SŽJ¿JO NBLÐ[FSF r GPH -1 =H-1 PG-1 r GPHPI -1 =I-1 PH-1 PG-1 (fog) –1 (x) = x WF G-1PI  Y =Y r GPH=IjG=IPH-1WFH=G-1 PIPMVS 4 ÖRNEK 25 PMEVôVOBHÌSF  h (x) EFôFSJOJCVMVOV[ G3Z3  f_ x i = 2x + 1  H Y =Y+ g–1 (x) 3 ( f-1PI  Y =YjG Y =I Y PMEVôVOBHÌSF  f o g-1 )-1  EFôFSJOJCVMVOV[ ^ fog h–1 ^ x h = x & ^ fog h^ x h = 4x, a x \" g–1 ^ x h k ( fog-1 )-1 = gof-1PMEVôVOEBOH G-1( 3 ) ) = g ( 4 ) = 14 4 –1 = –1 ^ x h & f^ x h = 4.g–1 ^ x h f1(g44(g2 4(4x3))) 4.g I h^ x h f^ x h –1 ^ x h & == 4.g =4 g–1 ^ x h g–1 ^ x h g–1 ^ x h ÖRNEK 26 5BOŽNMŽPMEVôVEFôFSMFSJÀJO  G Y =Y+WF GPH  Y =Y- 1 PMEVôVOBHÌSF H Y JCVMVOV[ -1 ^ x h = x-3 & –1 og) = g PMEVôVOEBO ÖRNEK 29 4 f >f o (f ôFLJMEFZ=G Y- GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y I g^ x h = d x - 3 no ^ 6x - 1 h = 3x - 2 42 ÖRNEK 27 2 y = f(2x – 1) x 5BOŽNMŽPMEVôVEFôFSMFSJÀJO  –4 –2 1 f (1 - x) = 4x - 1 WF G-1PH  Y- =Y+ O 3 3 –3 PMEVô VOBHÌSF H Y JCVMVOV[ #VOBHÌSF G–1( -3 ) +G  LBÀUŽS ( f-1PH  Y-1 ) =Y+ 3 jH Y- 1 ) =G Y+ 3 ), Y= 3 j f ( 5 ) = 2 dx\" x+1 n Y= -4 j f ( -9 ) = -3 j f-1(-3) = -9 2 f ( 5 ) + f-1( -3 ) = 2 - 9 = -7 - 4x - 13 H Y =G Y+ 4 ) = , 3 GGPOLTJZPOVOEBYZ -Y- 3) 25. 14 3x - 2 - 4x - 13 46 28. 4 29. –7 26. 27. 2 3

www.aydinyayinlari.com.tr '0/,4÷:0/-\"3 1. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 30 ÖRNEK 32 ôFLJMEFGGPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS ôFLJMEFZ=G Y+ GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y y 5 3 y = f(x+1) 4 x 3 –2 O 2 –1 1 4 1 x –1 O 1 2 3 4 #VOBHÌSF G-1 G-1 B+  =FöJUMJôJOJTBôMBZBO #VOB HÌSF  GPG  Y - 2 ) =   EFOLMFNJOJO LÌLMFS BEFôFSJLBÀUŽS UPQMBNŽLBÀUŽS f-1(f-1(3a + 1)) = 4 j f-1(3a + 1) = f(4) = 0 G G Y- 2 ) ) = 3 jG Y- 2) = 0 j 3a + 1 = f(0) = 4 j a = 1 f ( 5 ) = f ( 2 ) = f(-1) =PMEVôVOEBOYEFôFSMFSJUPQMBNŽ 741 + + =4 333 ÖRNEK 31 ÖRNEK 33 G Y CJSJODJEFSFDFEFOCJSGPOLTJZPOEVS ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y h(x) y 4 3 y = f(x) g(x) –2 O 3 x –2 5 –3 x O 3 –5 f(x) õFLJMEFWFSJMFOMFSFHÌSF #VOBHÌSF (1fo44fo2. .4.4o3f)_ 5 iEFôFSJLBÀUŽS G-1PIPH-1  - + GPH    2019 tan e UPQMBNŽOŽOEFôFSJLBÀUŽS GJOJÀJOEFôFSMFSJZB[ŽMŽSTB 0: ;, 3;,;-;2< , :0;, 3;,;-;2<, . . .öFLMJO- EFUFLSBSFUUJôJHÌSÑMÑS÷TUFOJMFOEFôFS-2 EJS ( f-1PIPH-1 )(-5) = f-1 I H-1 ( -5 ) ) ) = f-1 I    = f-1 ( 4 ) = 0 32 (fog)(0) = f ( ( g ( 0 ) ) = f(-5) = 3 32 32 0+ = 33 30. 1 32 47 32. 4 33. –2 31. 3

TEST - 23 #JMFöLFWF5FST'POLTJZPO 1. Z=G Y TBCJUGPOLTJZPOEVS 4. G3åZå3 GPG  Y å=Yå-   GPG   = PMEVôVOB HÌSF  G   BöBôŽEBLJMFSEFO IBOHJTJ PMEVôVOBHÌSF  GPGPG   EFôFSJLBÀUŽS PMBCJMJS \" - # - $ - %  &  \"  #  $  %  &  5. R Z3ZFUBOŽNMŽ  G1 Y =Y G Y = x G Y = x  GO Y = x 2 3 n 2. f (x) = * 2x + 1 x > 1 GPOLTJZPOMBSŽJ¿JO 3x x ≤ 1 x 720 Z ax x>2 G1PGPPGO  Y = ]] g (x) = [ 1 x+1 ]] 2 x≤2 PMEVôVOBHÌSF OLBÀUŽS \\ \"  #  $  %  &   GPOLTJZPOMBSŽWFSJMJZPS   HPG   å= PMEVôVOBHÌSF BLBÀUŽS \" - # - $  %  &  6. ôFLJMEFGWFHGPOLTJZPOMBSŽOŽOHSBGJLMFSJWFSJMNJõUJS y y = f(x) y 4 y = g(x) 2 2 –1 2x –1 x O O 3. f (x) = x - 3 WF GPG  N = - N GPH  Y- = PMEVôVOBHÌSF YLBÀUŽS  2 PMEVôVOBHÌSF G N LBÀUŽS  &  \"  1  #  $  3  %  &  2 2 \" -  # -  $  %  1. E 2. E 3. B 48 4. \" 5. D 6. \"


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook