Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore 11. Sınıf Matematik Modülleri 1. Modül Trigonometri

11. Sınıf Matematik Modülleri 1. Modül Trigonometri

Published by Nesibe Aydın Eğitim Kurumları, 2019-09-03 03:35:06

Description: 11. Sınıf Matematik Modülleri 1. Modül Trigonometri

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- :BZŽO&EJUÌSÑ  &TSB:·,4&-)BLBO\"ó$\" %J[HJ–(SBGJL5BTBSŽN  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ *4#//P   :BZŽODŽ4FSUJGJLB/P   #BTŽN:FSJ  &SUFN#BTŽN:BZŽO-UEõUJr ÷MFUJöJN  \":%*/:\":*/-\"3*   JOGP!BZEJOZBZJOMBSJDPNUS   5FMr   'BLT 0533 051 86 17   aydinyayinlari  aydinyayinlari * www.aydinyayinlari.com.tr %¸O¾P.DSDáñ11.SINIF KARMA TEST - 1 Trigonometri Karma Testler 11. SINIF 1. MODÜL 1. x + N-O Z = n - 4. ²MÀÑTÑ - 59π SBEZBOPMBOBÀŽOŽOFTBTÌMÀÑTÑ Modülün sonunda 5 Alt bölümlerin  EFOLMFNJCJSJNÀFNCFSCFMJSUUJôJOFHÌSF NO LBÀUŽS LBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &  TRİGONOMETRİ EDĜOñNODUñQñL©HULU 2. ôFLJMEFLJ\"OPLUBTŽCJSJN¿FNCFSÐ[FSJOEFEJS  y tüm alt bölümleri A L©HUHQNDUPDWHVWOHU ³ Yönlü Açılar t 2 y \\HUDOñU 1 a ³ Esas Ölçü Birim Çember t 9 1 x D CO x ³ Trigonometrik Fonksiyonlar–I t 13 A B –1 O –1 ³ Trigonometrik Fonksiyonlar–II t 20  \"OPLUBTŽOŽOZFLTFOJOFV[BLMŽôŽ 1 CJSJNPM- ôFLJMEFLJCJSJN¿FNCFSEF[AC] m [#%], ³ Trigonometrik Fonksiyonlar–III t 27 2 | | | |% ³ Kosinüs Teoremi t 47 ³ Sinüs Teo1r1e. SmINIiF t 501. MODÜL 53÷(0/0.&53÷ EVôVOB HÌSF  Y FLTFOJOF PMBO V[BLMŽôŽ LBÀ CJ- m ( BAC ) = aWF OC = $% EJS SJNEJS :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJLBÀUŽS <D]ñOñ6RUXODUñ 3 B) 1 C)   %    &  YAZILI SORULARIA) 1 A) 2 Trigonometri 7 6ñQñIð©LðĜOH\\LĜ B) 1  $  %  5 E) 7 2 5 www.aydinyayinlari.com.tr 1. 5BOŽNMŽPMEVôVBSBMŽLUB 4. 1 + 1 = 8 sin3x - cos3x 1 - cos x 1 + cos x ³ Trigonometrik Fonksiyonların Grafikleri t:²5/8-·\"¦*-\"3 tan x. cot x + sin x. cos x PMEVôVOBHÌSF UBOYJOQP[JUJGEFôFSJLBÀUŽS ÷MJöLJMJ,B[BOŽNMBS JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ ³ Ters Trigonometrik Fonksiyonlar t 6511.1.1.1 : :ËOMÐB¿ŽZŽB¿ŽLMBS 11.1.1.2 : \"¿ŽËM¿ÐCJSJNMFSJOJB¿ŽLMBZBSBLCJSCJSJJMFJMJõLJMFOEJSJS 1 1 1 + cos x + 1 - cos x 2NXO\\D]ñOñVñQDYODUñQGD += =8 ©ñNDELOHFHNVRUXODUñL©HULU 1 - cos x 1 + cos x ^ 1 + cos x h^ 1 - cos x h %XE¸O¾PGHNL¸UQHN VRUXODUñQ©¸]¾POHULQH 3. a =™hhh ^ sin x - cos x h.^ sin 2 + sin x. cos x + 2 x h ^ 1 + cos x h ^ 1 - cos x h DNñOOñWDKWDX\\JXODPDVñQGDQ x cos XODĜDELOLUVLQL] ³ Karma TTeAsNItMler t 72 ÖRNEK 2 b =™hhh 1ta4n4x2. c4o4t x3 + sin x. cos x sin x  2 PMEVôVOBHÌSF a 1 - cos a =™hhhPMN=BL1Ð-[cFoSsF x = 8  + x4a EFôFSJBöBôŽEBLJMFSEFOIBOH1JTJEJS  #BõMBOHŽ¿OPLUBMBSŽBZOŽPMBOJLJŽõŽOŽOCJSMFõJ- ^ sin x - cos x h.a 1 + sin x . cos x k bUPQMBNŽBöBôŽEBLJMFSEFO= a 1 + sin x . cos x k 3 \"öBôŽEBWFSJMFOBÀŽMBSEBOIBOHJMFSJQP[JUJGZÌOMÑBÀŽ- IBOHJTJEJS 2 2 2 1 sin x  ³ Yazılı SorulNaJOrFı tBÀŽ 77EFOJS #V ŽõŽOMBSB BÀŽOŽO LFOBSMBSŽ, MBSEŽS =8& = & sin x = ± 2 CBõMBOHŽ¿OPLUBTŽOBBÀŽOŽOLÌöFTJEFOJS \" ™hhh # ™hhh A) 7™hhh 114-4c2#os4 42x3™h8hh ³ Yeni Nesil Sorular t 79 #JSB¿ŽOŽOLFOBSMBSŽOEBOCJSJOJCBõMBOHŽ¿LFOB- AA $ ™hhh 2. AöB%ôŽ EB™WFSJMFhOBhhÀŽMBSŽO FTBT ÌMÀÑMFS$JO JCV™MV-hhh sin%2x ™4hhh SŽ EJóFSJOJCJUJNLFOBSŽPMBSBLBMEŽóŽNŽ[EBFMEF O FEJMFOB¿ŽZBZÌOMÑBÀŽEFOJS & ™OV[hhh C  163π & ™hhh A 13 O a) -™ 7 tan x = = D  - 72π 2k 33 ÖRNEK 1 B B E ™ I. II. 1. D 2. \" 53. $ 72 4. D &x B k \"õBóŽEBLJõFLJMEF[0\"JMF[01#ŽõŽOMBSŽ B¿ŽOŽOLFOBSMBSŽ- B C 3k EŽS0OPLUBTŽB¿ŽOŽOLËõFTJEJS A B B a) –3060° 360 b) 163 14 Ö –3240 –9 14 11 7 O 180° 23 III. 14 :BMOŽ[** c) –72 10 9 360  \"õBóŽEB0WF0NFSLF[MJEŽõUBOUFóFU¿FNCFSMF- <HQL1HVLO6RUXODU –80 –8 d) 2870 SJOPSUBLUFóFUJWFSJMNJõUJS 0RG¾O¾QJHQHOLQGH\\RUXP OA 8 2520 7 A \\DSPDDQDOL]HWPHYE #VOBHÌSF öFLJMEFLJBÀŽZŽTFNCPMMFHÌTUFSFMJN Ö EHFHULOHUL¸O©HQNXUJXOX $OW%¸O¾P7HVWOHUL <(3510° m1(6m/6258/$53 4 3 B Trigonometri VRUXODUD\\HUYHULOPLĜWLU 5 $\\UñFDPRG¾OVRQXQGD Her alt bölümün VRQXQGDRE¸O¾POHLOJLOL 33 a 3 WHVWOHU\\HUDOñU : OA , : OB = % TEST - 2 :ÌOMÑ\"ÀŽMBS 1. \"õBóŽEBLJõFLJMEFHÐOÐOJMLTBBUMFSJOEFLJBQBSUNB-O1 53.3 \"õBOó2ŽEBCJSPEBOŽOUBWBOŽOBõFLJMEFLJHJCJBTŽMBDBL AOB OŽOHËMHFTJJMFJMFSMFZFOTBBUMFSEFLJBQBSUNBOŽOHËM- MBNCBMBSHËTUFSJMNJõUJS 3. a =™hhh HFTJHËTUFSJMNJõUJS 1. m (WA) = 24° 55hhhWFm (WB) = 11°hhh 4. 3r + r - 5r AB 7$1,0%m/*m 4 2 12 b =™hhh | | | | 53° %37° 53° 37° 53° 37° 7$1,0%m/*m PMEVôVOB HÌSF  m^WAh + m^WBh EFôFS#JJBSöBB¿ôŽOŽEŽOBLËJM-¿ÐMNFTJ  B¿ŽOUPŽOQMLBPNMMBŽOSŽOBSEBFTSŽFODEFBLDJJOTJOEFOFöJUJLBÀUŽS  PMNBLÑ[FSF  a + b JGBEFTJOJOTPOVDVOVCV- \"01 = 4 BO2 = 4 3  CS WF m ( AO1O2 ) = a 23 PMEVôVOBHÌSF TJOaEFôFSJLBÀUŽS (+) MFSEFOIBOHJTJOFFöJUUJS B¿ŽLMŽóŽOCFMJSMFONFTJJMFZ\"B QŽMŽS™\" ¿ŽOŽOËM¿ÐTÐ#- ™ $ ™ Pozitif luOV[ # ™hOMFhÐhSJJGLBVEMMFBOFŽUMNŽSFLJ¿JOEFSFDFWFZBSBE%Z BOC™JSJN- Yön \"  ™hhh % ™hhh & ™ ab 43 4 $ ™h(–) hh sin a=N = EJS 44° 112' 34' ' Negatif a = & 22° 56' 17' ' 53 5 Yön & ™hhh  #JSUBN¿FNCFSZBZŽOŽOFõQBS¿BTŽOEBOCJ- 22 2 ,BCMPMBSBõBóŽEBLJHJCJLVMMBOŽMBDBLUŽS 18° 45' 174' ' SJOJHËSFONFSLF[B¿ŽTŽOŽOËM¿ÐTÐOFEFSFDF b = & 6° 15' 58' ' | |r AB =DNEJS 33 3 EFOJS WF ™ CJ¿JNJOEF HËTUFSJMJS #JS ¿FNCFSJO 2.gölgenin boyu ZBZËM¿ÐTЙPMVS%FSFDFOJO 1 JOFEB- 22° 56' 17'' r ,BCMPMBSJLJ¿FõJUUJS 60 \"¿ŽOŽOCJSLËõFTJFUSBGŽOEBCBõMBOHŽ¿LFOBSŽWF + 6° 15' 58'' 1.gölgenin boyu r :BUBZMB™MJLB¿ŽZBQBOLBCMPMBSLFOEJJ¿JOEF CJUJõ LFOBSŽ JLJ UÐSMÐ TF¿JMFCJMJS 4BBUJO EËONF LJLBEFOJS#VËM¿ÐhCJ¿JNJOEFHËTUFSJMJS%B- 29° 12' 15'' FõJUV[VOMVLUBWFNBWJSFOLUFEJS ZËOÐOÐOUFSTZËOÐOFEËOFOB¿ŽZBQP[JUJGZËO- (ÐOFõZÐLTFMEJL¿FBQBSUNBOŽOHËMHFTJOJOCPZVLŽ- MÐ TBBUJOEËONFZËOÐOEFEËOFOB¿ŽZBOFHB- LJLBOŽO 1 JOFTBOJZFEFOJS#VËM¿ÐhhCJ¿J- TBMNŽõUŽS\"QBSUNBOZBUBZMB™MJLB¿ŽPMVõUVSBDBL r :BUBZB ™ MJL B¿Ž ZBQBO LBCMPMBS LFOEJ J¿JOEF UJGZÌOMÑBÀŽEFOJS 60 FõJUV[VOMVLUBWFTBSŽSFOLUFEJS õFLJMEFEÐ[CJS[FNJOFZBQŽMNŽõUŽS NJOEFHËTUFSJMJS0IBMEF ™=h=hhEJS  4 1. TJOYmDPTY 9π 8π 3 r5 ,BCMPV[VOMVLMBSŽIFTBQMBOŽSLFO 2. B šC  7HDÌ MHF5OJOE CPZšV   HÌ7MH7FOJO CPZVOVO ÑÀ LB-4. 3  TJO™=DPT™=  3. šhhh sin a  DPT™=TJO™=   EFSFDFMJLBÀŽOŽOÌMÀÑTÑLBÀSBEZBOEŽS UŽ BQBSUNBOŽOCPZVNPMEVôVOBHÌSF   BMŽOBDBLUŽS sin b % 2 2. :BMOŽ[** 2π B) 4π C) 6π  %  7π E) 8π LBÀUŽS 1. AOB A) 5 5 55 5 2. 13π SBEZBOMŽLBÀŽOŽOÌMÀÑTÑLBÀEFSFDFEJS A) 2  #  $  3  %  5 7 3 3 2 3 E) 4 \"  #  $  %  &   #VOBHÌSF LVMMBOŽMBOTBSŽSFOLMJLBCMPMBSNBWJ SFOLMJLBCMPMBSEBOUPQMBNEBLBÀDNGB[MBEŽS 2. 4BBUUFLJIŽ[MBSŽLNWFLNPMBOJLJCJTJLMFUMJBSB- \"  #  $  %  &  WDPDPñ\\HQLQHVLOVRUXODUGDQ MBSŽOEBLJB¿Ž™PMBDBLõFLJMEFBZOŽOPLUBEBOBZOŽ ROXĜDQWHVWOHUEXOXQXU BOEBEPóSVTBMCJSZPMJ[MFZFSFLJMFSMJZPSMBS 4. \"õBóŽEBLJõFLJMEFHËTUFSJV¿VõVZBQBOEËSUV¿BóŽO PMVõUVSEVóVпHFOTFMCËMHFMFSHËSÐMNFLUFEJS )HQ/LVHOHULQH<¸QHOLN A 11. SINIF .0%·- 53÷(0/0.&53÷  :BSŽ¿BQŽ  CS PMBO EBJSFTFM CJS QJTUJO \" OPLUBwTŽwO-w.aydinyayinlari.com.tr )HQ/LVHVLP¾IUHGDWñQGD EBCVMVOBOJLJBSB¿BZOŽBOEBGBSLMŽZËOMFSEFIBSFLFU olup Anadolu Lisesi müfre- GDWñQGDROPD\\DQL©HULNYH 60° )(1/m6(/(5m1(<q1(/m. FEJZPSMBS#JSJODJBSÖB¿RNEKrC3SJ1LJODJBSB¿r CSHJU- BC UJLUFOTPOSBEVSVZPS D %m/*m 3. B Bir ABC üçgeninde A ABC üçgen % 60° m ( ABC ) = 68° A % = 52°  TBBUTPOSBBSBMBSŽOEBLJV[BLMŽLYLNPMVZPS%B- && m ( ACB ) IBTPOSBIŽ[MŽPMBO IŽ[ŽOŽ 1 ünFEÐõÐSÐZPS EJóF- #VпHFOTFMCËMHFMFSEFOA^ ABC h = 3A^ ADC hEJS OA 4 SJBZOŽIŽ[EBEFWBNFEFSFLTBBUEBIBJMFSMJZPS- A cC b | |68° 52° BC = 12 br MBSWFBSBMBSŽOEBLJV[BLMŽLZLNPMVZPS | | | |AB =LN  AC =LN m(B%AD) = 30°, O B 12 C  #VOBHÌSF Z-YLBÀLNEJS % CAD R \"  #  $  %  &  m ( ) = a  PMEVôVOB HÌSF  TJOa EFôFSJ LBÀ- ôFLJMEFLJ & EF m (WA) = 2r ,B m (WB) = raUÐS C :VLBSŽEBLJ WFSJMFSF HÌSF  \"#$ ÑÀHFOJOJO ÀFWSFM UŽS ABC  #VBSBÀMBSŽOEVSÀEFVNLMCBFSŽSOJOPJOLUTBŽMOBSŽS#MBWEFŽô$ŽBOMPBOLULBMBBÀ-ÖCSEJS 34 A) 1 B) 1 C) 1  3 E)  2 2 3 %  SŽJTFm ( % ) LBÀSBEZBOPMBCJMJS 2  :VLBSŽEBLJWFSJMFSFHÌSF m (XC)LBÀUŽS BOC a = sπinb(WB)E=) c = 2R π 2π a 3π= 2R 5π sπin (WA) %  sπin (XC) A) B) A  π π C) sCin) %  E) r A) B) 2 3 12 4 6 15 9 10 1. $ 2. $ 80 3. & 4. B 20 12 = 2R j3= 4 3 CS 3¥FWSFM¿FNCFSJOZBSŽ¿BQŽ 3 1. \" 2. \" 3. B 8 4. $ 2 3 h2 =Ö VRUXODUSHPEH]HPLQOH Ö3&=Ö^4B ÖRNEK 29 | |\"#$ÑÀHFOJOEFm (XB)=šWF \"$ =DNPMEV- ôVOBHÌSF \"#$ÑÀHFOJOJOÀFWSFMÀFNCFSJOJOZBSŽ- ÖRNEK 32 A YHULOPLĜWLU ÀBQŽLBÀDNEJS 12 46 b C a = 2R HB sin (XB) 4 = 2R & R = 4 >sin 30° 1 2 ÖRNEK 30 ôFLJMEF\"#$пHFOJWF¿FWSFM¿FNCFSJWFSJMNJõUJS ,FOBSV[VOMVLMBSŽCS CSWFCSPMBOÑÀHFOJO | | | | | |[AH] m [BC], AB = 6 br, AH = 4 br ve AC = 12 br ÀFWSFMÀFNCFSJOJOZBSŽÀBQŽLBÀCSEJS EJS 4 A 4 = 2R :VLBSŽEBLJWFSJMFSFHÌSF ÀFNCFSJOZBSŽÀBQŽLBÀCS a 4 EJS B1 15 sin a 4 12 D 1C = 2R = 2R 15 4 sin a 12 8 15 R= = 2R 4 15 6 3=CS 8 15 54  4 15

www.aydinyayinlari.com.tr 11. SINIF 11. SINIF 1. MODÜL TRİGONOMETRİ ³ Yönlü Açılar t 2 ³ Esas Ölçü - Birim Çember t 9 ³ Trigonometrik Fonksiyonlar–I t 13 ³ Trigonometrik Fonksiyonlar–II t 20 ³ Trigonometrik Fonksiyonlar–III t 27 ³ Kosinüs Teoremi t 47 ³ Sinüs Teoremi t 50 ³ Trigonometrik Fonksiyonların Grafikleri t 58 ³ Ters Trigonometrik Fonksiyonlar t 65 ³ Karma Testler t 72  ³ Yazılı Soruları t 77 ³ Yeni Nesil Sorular t 79 1

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr :²/-·\"¦*-\"3 ÷MJöLJMJ,B[BOŽNMBS 11.1.1.1 : :ËOMÐB¿ŽZŽB¿ŽLMBS 11.1.1.2 : \"¿ŽËM¿ÐCJSJNMFSJOJB¿ŽLMBZBSBLCJSCJSJJMFJMJõLJMFOEJSJS TANIM ÖRNEK 2  #BõMBOHŽ¿OPLUBMBSŽBZOŽPMBOJLJŽõŽOŽOCJSMFõJ- \"öBôŽEBWFSJMFOBÀŽMBSEBOIBOHJMFSJQP[JUJGZÌOMÑBÀŽ- NJOF BÀŽ EFOJS #V ŽõŽOMBSB BÀŽOŽO LFOBSMBSŽ, MBSEŽS CBõMBOHŽ¿OPLUBTŽOBBÀŽOŽOLÌöFTJEFOJS A A  #JSB¿ŽOŽOLFOBSMBSŽOEBOCJSJOJCBõMBOHŽ¿LFOB- O SŽ EJóFSJOJCJUJNLFOBSŽPMBSBLBMEŽóŽNŽ[EBFMEF O FEJMFOB¿ŽZBZÌOMÑBÀŽEFOJS B B I. ÖRNEK 1 II. \"õBóŽEBLJõFLJMEF[0\"JMF[0#ŽõŽOMBSŽ B¿ŽOŽOLFOBSMBSŽ- AB EŽS0OPLUBTŽB¿ŽOŽOLËõFTJEJS B O III. :BMOŽ[** OA #VOBHÌSF öFLJMEFLJBÀŽZŽTFNCPMMFHÌTUFSFMJN : OA , : OB = % 7$1,0%m/*m AOB #JS B¿ŽOŽO ËM¿ÐMNFTJ  B¿ŽOŽO LPMMBSŽ BSBTŽOEBLJ 7$1,0%m/*m (–) B¿ŽLMŽóŽOCFMJSMFONFTJJMFZBQŽMŽS\"¿ŽOŽOËM¿ÐTÐ- Negatif OÐJGBEFFUNFLJ¿JOEFSFDFWFZBSBEZBOCJSJN- (+) MFSJLVMMBOŽMŽS Pozitif Yön  #JSUBN¿FNCFSZBZŽOŽOFõQBS¿BTŽOEBOCJ- SJOJHËSFONFSLF[B¿ŽTŽOŽOËM¿ÐTÐOFEFSFDF Yön EFOJS WF ™ CJ¿JNJOEF HËTUFSJMJS #JS ¿FNCFSJO \"¿ŽOŽOCJSLËõFTJFUSBGŽOEBCBõMBOHŽ¿LFOBSŽWF ZBZËM¿ÐTЙPMVS CJUJõ LFOBSŽ JLJ UÐSMÐ TF¿JMFCJMJS 4BBUJO EËONF %FSFDFOJO 1 JOFEBLJLBEFOJS#VËM¿Ðh ZËOÐOÐOUFSTZËOÐOFEËOFOB¿ŽZBQP[JUJGZËO- MÐ TBBUJOEËONFZËOÐOEFEËOFOB¿ŽZBOFHB- 60 UJGZÌOMÑBÀŽEFOJS CJ¿JNJOEFHËTUFSJMJS %BLJLBOŽO 1 JOFTBOJZFEFOJS#VËM¿ÐhhCJ- 60 ¿JNJOEFHËTUFSJMJS ™=h=hhEJS % 2 2. :BMOŽ[** 1. AOB

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 3 ÖRNEK 7 m^ WA h =™h m^ WB h =™h ²MÀÑTÑ h PMBO BÀŽOŽO LBÀ EFSFDF WF LBÀ EBLJLB PMEVôVOVCVMVOV[ PMEVôVOBHÌSF  m^ WA h - m^ WB hJöMFNJOJOTPOVDVOV 4730 60 78° 50' CVMVOV[ 420 78 41° h 530 šh 480 – šh 50 8° 33' ÖRNEK 4 ÖRNEK 8 ™hhh MJLBÀŽOŽOLBÀTBOJZFPMEVôVOVCVMVOV[ m^ WA h =™hhh m^ WB h =™hhh š==hh 22' == 1320'' PMNBLÑ[FSF BöBôŽEBLJJGBEFMFSJOFöJUJOJCVMVOV[ hh+ 1320'' + 33'' =hh a) m^ WA h + m^ WB h C m^ WA h - m^ WB h ÖRNEK 5 a) šh + šh  TBOJZFMJL BÀŽOŽO  LBÀ EFSFDF  LBÀ EBLJLB WF šh LBÀTBOJZFPMEVôVOVCVMVOV[ 70° 04' C  š 87'  šh – šh šh 43000 3600 3400 60 3600 11° 300 56' 7000 400 ÖRNEK 9 3600 360 3400 40\" m^ WA h =™hhh m^ WB h =™hhh šh PMNBLÑ[FSF BöBôŽEBLJJGBEFMFSJOFöJUJOJCVMVOV[ ÖRNEK 6 m^ WA h m^ WB h a) C  m^ WA h =™h m^ WB h =™h PMEVôVOBHÌSF  m^ WA h + m^ WB hJöMFNJOJOTPOVDVOV 2 3 CVMVOV[ a) 19° 22' 30\" 18° 82' 30\" 32° 18' = 9° 41' 15\" + šh 222 šh C  27° 13' 21\" š 27° 12' 81\" = 9° 4' 27\" 333 3. šh 4. hh šhhh š 3 7. 8° 33' 8. B šhhhC šhhhB šhhhC šhhh

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 7$1,0%m/*m ÖRNEK 11 #JS¿FNCFSEFZBSŽ¿BQV[VOMVóVOBFõJUPMBOZB- \"öBôŽEBLJZBZÌMÀÑMFSJOJEFSFDFDJOTJOEFOZB[ŽOŽ[ ZŽHËSFONFSLF[B¿ŽOŽOËM¿ÐTÐOFSBEZBOEF- OJS a) Õ C 3π D 2π 2 3 A r br yay 1 radyan E 11π r V[VOMVóV 2 F 7π G 5π 6 3 O 1 radyan r ÕSCS yay x radyan r V[VOMVóV B SYÕS a) r =š 3 · 180° C  = 270° YÕ 2 · 180° D  = 120° 2  #VOBHËSF™=ÕSBEZBOEŽS 3 11· 180°  #JS B¿ŽOŽO ËM¿ÐTÐ EFSFDF UÐSÐOEFO % WF BZOŽ E  = 990° B¿ŽOŽOËM¿ÐTÐSBEZBOUÐSÐOEFO3PMNBLÐ[FSF 7 · 180° F  = 210° 2 DR = EJS 6 5 · 180° G  = 300° 180° r  3BEZBODJOTJOEFOWFSJMFOCJSB¿ŽEFSFDFZF¿FW- 3 SJMJSLFOr ZFSJOF™ZB[ŽMŽS 3BEZBO  π Õ 3π Õ ÖRNEK 12 22 %FSFDF ™ ™ ™ ™ ™ \"öBôŽEBWFSJMFOUBCMPMBSEBLJCPöMVLMBSŽEPMEVSVOV[ \"¿ŽOŽO 3BEZBO π π 2π 7π 11π Õ ÖlçüTÐ %FSFDF 6 334 6 ÖRNEK 10 \"öBôŽEBLJBÀŽÌMÀÑMFSJOJSBEZBODJOTJOEFOZB[ŽOŽ[ a) ™ C ™ D ™ \"¿ŽOŽO %FSFDF ™ ™ ™ ™ ™ ™ E ™ F ™ G ™ ±M¿ÐTÐ 3BEZBO g) ™ I ™ Ž ™ 30° R r 45° R r a) r 180° r 180° a) = ( R =  C  = (R= = = 30°, = = 60° 66 33 180° r 6 180° r 4 64 2r 2 · 180° 7r 7 · 180° = = 120°, = = 315° 60° R r 90° R r 33 44 D) = ( R =  E  = (R= 180° r 3 180° r 2 11r 11· 180° = = 330°, 2r = 2 · 180° = 360° 32 66 1 2 180° R 120° R G  180° = r ( R = r F  = ( R = 2r 180° r 3 C  3 30° R r 45° R r 31 = =R= = =R= 270° R 3r 300° R 5r 180° r 6 180° r 4 g) = ( R =  I  = (R= 3r 180° r 2 180° r 3 60° R r 135° R = =R= , = =R= 23 180° r 180° r 2 3 4 360° R 225° R 5r 340° R 17r Ž  = ( R = 2r = =R= , = =R= 180° r 180° r 4 180° r 9 π π π π 2π 3π 5π 11. B šC šD šE šF šG š 10. a) C  D  E  F  G ÖH  I  Ž Ö 6432 3 23 4 π π π 3π 5π 17π 12. š š š š š š       643 4 4 9

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 13 ÖRNEK 16 2 \"õBóŽEBLJõFLJMEF m ( % ) = ™h SBEZBOMŽLCJSBÀŽOŽOÌMÀÑTÑOÑOLBÀEFSFDFPMEV- ABD 5 % = ™hWFm ( % ) = ™hEJS ôVOVCVMVOV[ m ( ACD ) BDC D 2/5 A = D 180° r 2 · 180° D·r= 5 72° D= π BC :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  BÀŽTŽOŽO ÌMÀÑTÑ- BAC ÖRNEK 14 OÑCVMVOV[ \"öBôŽEBEFSFDFDJOTJOEFOWFSJMFOBÀŽÌMÀÑMFSJOJSBE- m^ A%BD h + ma A%CD k + ma B%AC k = ma B%DC kPMEVôVJÀJO ZBOB SBEZBODJOTJOEFOWFSJMFOBÀŽÌMÀÑMFSJOJEFSFDF- ZFEÌOÑöUÑSÑOÑ[ ma % k = ma % k – a m^ % h + ma % k k PMVS BAC BDC ABD ACD a) -™ C - 2π D - 5π E m™ šh 143° h 72'' 3 3 šh + šh - 330° R - 2.180° šh – šh a) 180° = π  C  = - 120° šh  šh 11π 3 R=- 135° R 6 E  - 180° = π - 5.180° D  = - 300° 3π R =- 3 4 ÖRNEK 15 ÖRNEK 17 #JS\"#$ÑÀHFOJOEFm^ WA h = r SBEZBO a =šhBÀŽTŽOŽOUÑNMFSWFCÑUÑOMFSBÀŽMBSŽOŽO 3 UPQMBNŽOŽ EFSFDF  EBLJLB WF TBOJZF DJOTJOEFO CVMV- OV[ m^ WB h = š h PMEVôVOB HÌSF  m^ WC h LBÀ EFSFDF- aBÀŽTŽOŽOUÑNMFSJš- a EJS aBÀŽTŽOŽOCÑUÑOMFSJš- a EŽS r 180° š h š- a + 180° - a = 270° - 2a EŽS = = 60° 180° 00 2a =p šh 33 + 132° 43' =šh 47° 17' 270° 72° 43' + š – šh šh 132° 43' 72° 14. a) - 11π C mšD mšE  - 3π  47° 17' šhhh17. šh 13. π 64

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 18 ÖRNEK 20 #JS\"#$%EÌSUHFOJOEF \"õBóŽEBLJõFLJMEFCJSEPóVNHÐOÐQBTUBTŽOŽO 1 TŽOŽO m (WA) = 2r SBEZBO m (WB) =™hWFm (XC) = 6 3 LFTJMJQ BMŽONBTŽOEBO TPOSB LBMBO QBS¿BTŽ HËTUFSJMNFL- PMEVôVOBHÌSF m (XD) EFôFSJOJEFSFDF EBLJLBWFTB- UFEJS OJZFDJOTJOEFOCVMVOV[ m^ XA h + m^ XB h + m^ XC h + m^ XD h = 360° m^ XA h =š m^ XB h =šh     –   – 120    18000 –  – 24  m^ XC h =šh 1BTUBOŽO ÐTU LŽTNŽ EBJSF õFLMJOEFEJS ,BMBO QBS¿BZŽ NFSLF[EFOFõJUEBJSFEJMJNMFSJPMBDBLõFLJMEFQBS¿BMBSB 120° š h hh BZŽSNBLJTUFZFO\"MQ:BóŽ[ IFSCJSEJMJNJONFSLF[B¿ŽTŽ- šh OŽhhPMBDBLõFLJMEFEJMJNMJZPS šh + šh + šhhh šh 1BTUBEB HÌSÑOFO NVN  EBJSFOJO NFSLF[JOEF PMEV- ôVOBHÌSF \"MQ:BôŽ[QBTUBZŽLBÀQBSÀBZBBZŽSŽS šh m^ XD h =šh ÖRNEK 19 A 108.000' ' = 108.000' ' = 30° 300° 3600 60° D 300° 300° = UBOF 30° 30° 30° 30° BC & EFm ( A%BD ) = 2m ( % ), [ BD ]B¿ŽPSUBZWF ABC BCA m^ % h =™hhhEJS BDA :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) OŽCVMVOV[ DBC A 3 a =šh 12' 84' ' 3a D 93° 13 ' 24 ' ' a= 3 a = 31šh 2a 2a =p šh 2a a =šh B C 18. šhhh šhhh  20. 10

:ÌOMÑ\"ÀŽMBS TEST - 1 1. TBOJZFMJLCJSBÀŽOŽOEFSFDFEBLJLBWFTB- 4. š h hh MJL CJS BÀŽOŽO 3  J BöBôŽEBLJMFSEFO 5 OJZFDJOTJOEFOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJ- IBOHJTJEJS EJS \" ™hhh # ™hh \" ™åhhh  # ™hhh $ ™hh  % ™hhh $ ™hhh % ™hhh & ™hhh & ™hhh 2. m (WA) =™hhWFm (WB) =™hhh  #JS\"#$ÑÀHFOJOJOJLJJÀBÀŽTŽOŽOÌMÀÑMFSJ PMEVôVOBHÌSF  m (XA) - m (XB)EFôFSJBöBôŽEBLJ- ™ŽŽŽWF™ŽŽŽ MFSEFOIBOHJTJEJS  PMEVôVOB HÌSF  ÑÀÑODÑ BÀŽTŽOŽO ÌMÀÑTÑ BöBôŽ- \" ™hhh  # ™hh EBLJMFSEFOIBOHJTJEJS $ ™hhh  % ™hh \" ™h # ™h  & ™hhh $ ™h % ™h  & ™h 3. #JS\"#$ÑÀHFOJOEF  TBOJZFMJLBÀŽOŽOUÑNMFSBÀŽTŽLBÀTBOJ- m (WA) = 90° ve m (WB) = 48°hhh ZFEJS PMEVôVOBHÌSF m (XC)BöBôŽEBLJMFSEFOIBOHJTJ- EJS \" ™hh # ™hh \"  #  $  $ ™hhh % ™hhh   %  &  & ™hhh 1. \" 2. $ 3. D 7 4. B D D

TEST - 2 :ÌOMÑ\"ÀŽMBS 1. m (WA) = 24° 55hhhWFm (WB) = 11°hhh 4. 3r + r - 5r PMEVôVOB HÌSF  m^WAh + m^WBh EFôFSJ BöBôŽEBLJ- 4 2 12 MFSEFOIBOHJTJOFFöJUUJS  UPQMBNŽOŽOEFSFDFDJOTJOEFOFöJUJLBÀUŽS \" ™ # ™ $ ™ \"  ™hhh # ™hhh  % ™ & ™ $  ™hhh % ™hhh & ™hhh  EFSFDFMJLBÀŽOŽOÌMÀÑTÑLBÀSBEZBOEŽS A) 2π B) 4π 6π D) 7π 8π 5 5 C) E) 2. 13π SBEZBOMŽLBÀŽOŽOÌMÀÑTÑLBÀEFSFDFEJS 5 55 3 \"  #  $  %  &  3. B  :BSŽ¿BQŽ  CS PMBO EBJSFTFM CJS QJTUJO \" OPLUBTŽO- EBCVMVOBOJLJBSB¿BZOŽBOEBGBSLMŽZËOMFSEFIBSFLFU FEJZPS#JSJODJBSB¿rCSJLJODJBSB¿r CSHJUUJL- UFOTPOSBEVSVZPS OA AC ôFLJMEFLJ & EFm (WA) = 2r , m (WB) = r UÐS ABC  #VBSBÀMBSŽOEVSEVLMBSŽOPLUBMBS#WF$OPLUBMB- 34  :VLBSŽEBLJWFSJMFSFHÌSF m (XC)LBÀUŽS SŽJTF m ( % ) LBÀSBEZBOPMBCJMJS BOC A) π B) π C) π D) π E) π A) π B) 2π C) 3π D) 5π E) r 20 12 15 9 10 2 3 4 6 1. \" 2. \" 3. B 8 4. $ & B

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF &4\"4²-¦·#÷3÷.¦&.#&3 ÷MJöLJMJ,B[BOŽNMBS 11.1.1.2 : \"¿ŽËM¿ÐCJSJNMFSJOJB¿ŽLMBZBSBLCJSCJSJJMFJMJõLJMFOEJSJS 7$1,0%m/*m ÖRNEK 3 L ` ; WF ™ # i < ™ PMNBL Ð[FSF  ËM¿ÐTÐ ²MÀÑTÑ 124π  SBEZBO PMBO BÀŽOŽO FTBT ÌMÀÑTÑ LBÀ i +Lp™PMBOB¿ŽOŽOFTBTÌMÀÑTÑ i EFSF- 3 DFEJS SBEZBOEŽS L ` ; WF  # i < r PMNBL Ð[FSF  ËM¿ÐTÐ i +LprPMBOB¿ŽOŽOFTBTÌMÀÑTÑ i SBEZBOEŽS Ö Ö \"¿ŽMBSŽOFTBTËM¿ÐMFSJOFHBUJGPMBNB[ – Ö 20 Ö 4r 3 ÖRNEK 1 \"öBôŽEBLJBÀŽMBSŽOFTBTÌMÀÑMFSJOJCVMVOV[ ÖRNEK 4 a) ™ C  ™ ²MÀÑTÑ - 49 r SBEZBOPMBOBÀŽOŽOFTBTÌMÀÑTÑLBÀ 6 D -™ E -™ SBEZBOEŽS B  š C  1340  -Ö 12Ö D  1-1420°2+43š  – 1080 3 – +Ö - 240° š Ö C  m  11r 6 – 1800 m 70° ÖRNEK 5 \"öBôŽEBWFSJMFOUBCMPEBLJCPöMVLMBSŽEPMEVSVOV[ ÖRNEK 2 \"¿ŽOŽO±M¿ÐTÐ ™ 45π - 47π -™ 43 ²MÀÑTÑ 21π  SBEZBO PMBO BÀŽOŽO FTBT ÌMÀÑTÑ LBÀ \"¿ŽOŽO&TBT 2 ±M¿ÐTÐ SBEZBOEŽS 45π 47π - \"ÀŽOŽO²MÀÑTÑ š 4 3 mš 300° Ö 4Ö r \"ÀŽOŽO&TBT 5π π 2 ²MÀÑTÑ 4 3 300° – Ö  Ö 1. B šC šD šE š r  4r 11r 5π π 2. 3. 4. š   š 36 2 43

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 9 &TBTÌMÀÑMFSJšPMBOGBSLMŽJLJOFHBUJGBÀŽOŽOFOCÑ- -šhMJLBÀŽOŽOFTBTÌMÀÑTÑOÑCVMVOV[ ZÑLEFôFSMFSJOJCVMVOV[ š= šh 22° +špL + mšh L= -JÀJOš-š= -338° L= -JÀJOš- 720° = -š šh ÖRNEK 7 ÖRNEK 10 &TBTÌMÀÑTÑ 2r PMBO  2π UFOGBSLMŽFOLÑÀÑLQP[J- ÷LJJÀBÀŽTŽOŽOÌMÀÑMFSJ  25r WFšBÀŽMBSŽOŽOFTBT 33 3 UJGBÀŽJMFFOCÑZÑLOFHBUJGBÀŽOŽOÌMÀÑMFSJOJCVMVOV[ ÌMÀÑMFSJBMŽOBSBLPMVöUVSVMBOCJSÑÀHFOJO ÑÀÑODÑJÀ BÀŽTŽLBÀSBEZBOEŽS 2r 8r 2r - 4r Ö Ö r   Ö+ = - 2r = j = 60° – 2880 8 33 33 – Ö 4 3 š Ö š+š+a = 180° r a =š= 4 ÖRNEK 8 \"öBôŽEBLJMFSEFO IBOHJTJOJO FTBT ÌMÀÑTÑ EJôFSMFSJO- EFOGBSLMŽEŽS a) 37r  C - 29r  ÖRNEK 11 3 3 D ™ :BOEBLJTBBUUBNZJHËTUFSJS-  E  r  F m™ LFO¿BMŽõUŽSŽMŽZPS  :FMLPWBO š JMFSMFEJôJOEF a) Ö Ö r = 60° C  -Ö Ö r TBBULBÀŽHÌTUFSJS 3 = 60° – Ö  – -Ö - 3 Ö Ö D     r 180° E  = = 60° 3000  –  7 33 – 2880 8 30° 120°  120° 120° =EBLJLB F  – m m 8.20 1440 š mšmš 7. 8π 4π 8. š 10 π /- šhhh 10. 11. 8.20 33 4

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF #JSJN¦FNCFS ÖRNEK 14 7$1,0%m/*m L`3+WF Af 1 , k pOPLUBTŽCJSJN¿FNCFSÐ[FSJOEFEJS 2 \"OBMJUJL EÐ[MFNEF NFSLF[J  CBõMBOHŽ¿ OPLUBTŽ WF ZBSŽ¿BQŽ  CJSJN PMBO ¿FNCFSF CJSJN ÀFN- #VOBHÌSF#   WF0   PMNBLÑ[FSF m ( % ) CFSEFOJS AOB y BÀŽTŽLBÀEFSFDFEJS 1 y A( 1 , :3 ) x2 + y2 = 1 L(x, y) 1 2 2 1 2 1 :3 f p +L2 = 1 2 2 x 60‚ Bx L= 3 ma % k =š O 1/2 AOB –1 O M1 2 –1 ÖRNEK 15  - Y Z CJSJN¿FNCFSÐ[FSJOEFCJSOPLUBPMNBL 22 Ð[FSF 0.-EJLпHFOJOEF #JSJN¿FNCFSÐ[FSJOEFLJAf , a pWFBf b, pOPL- 2 2 I I I I I I0.  + .-  = OL  j x +Z =PMVS UBMBSŽWFSJMJZPS a ` R+ C` R-PMNBLÑ[FSFLÌöFMFSJ\" #WFPSJKJO PMBOÑÀHFOJOBMBOŽLBÀCS2EJS ÖRNEK 12 2 2 2 2 2 p =1 & b=- 2 A f a , 1 pOPLUBTŽCJSJNÀFNCFSÑ[FSJOEFPMEVôVOB f p + 2 = 1 & a= , 2 +f 3 a b HÌSF BOŽOBMBCJMFDFôJEFôFSMFSJCVMVOV[ 22 22 B ( – :2 , :2 ) y A( :2 , :2 ) 2 2 2 2 ‚ ‚ x A^ AOB h = 1·1 O 2 a2 + d 1 2 2 82 2 & = ise a = \" 1 n =1 a = 3 93 2 ÖRNEK 13 ÖRNEK 16 ( a - Y + C+ Z = #JSJNÀFNCFSÑ[FSJOEFLJ Af - 3 , - 1 pWF 22 EFOLMFNJOJOCJSJNÀFNCFSCFMJSUNFTJJÀJOBpCLBÀPM- NBMŽEŽS B f 3 , - 1 pOPLUBMBSŽBSBTŽV[BLMŽLLBÀCSEJS 22 y  CSEJS x2 + y2 =PMNBMŽEŽS 30‚ 30‚ x 1 120‚ 1 a - 2 = C+ 1 = 1 A(– :3 , –1 ) B(:32 , –1 ) a =  C= 0 2 2 2 BpC= 3 · 0 = 0 22 13. 0 11 14. š 1  3 12. ±  2 3

TEST - 3 &TBT²MÀÑm#JSJN¦FNCFS 1. 38r 4. -šMJLBÀŽOŽOFTBTÌMÀÑTÑLBÀSBEZBOEŽS 3 A) r B) r C) 2r 5  3  SBEZBOMŽLBÀŽOŽOFTBTÌMÀÑTÑLBÀSBEZBOEŽS E) 11r A) r B) 2r  $ Õ D) 5r 6  3 6 D) 4r E) 5r 3 3 2. -EFSFDFMJLBÀŽOŽOFTBTÌMÀÑTÑLBÀSBEZBO-  - 21r EŽS 2 A) 5π B) 13π C) 4π D) 7π E) 8π  SBEZBOMŽLBÀŽOŽOFTBTÌMÀÑTÑLBÀSBEZBOEŽS 3 93 69 A) r B) r C) 3r D) 3r  & Õ   4 2 3. #JSJNÀFNCFSÑ[FSJOEF 5π SBEZBOMŽLZBZŽOCJ-  \"öBôŽEBLBSöŽMBSŽOEBFTBTÌMÀÑMFSJWFSJMFOBÀŽ- 6 MBSEBOLBÀUBOFTJEPôSVWFSJMNJöUJS UJö OPLUBTŽOŽO LPPSEJOBUMBSŽ BöBôŽEBLJMFSEFO IBOHJTJEJS * 197π $ 5π 88 A) f 3 , 1 p B) f 1 , 3 22 p  ** –4470° $ 7π 22 6 C) f - 3 , - 1 p D) f - 3 , 1 p  *** 25π $ 30° 22 22 6 E) f - 1 , 3  *7 - 26π $ π p 33 22 \"  #  $  %  &  1. B 2. B 3. D 12 4. D D D

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF 53÷(0/0.&53÷,'0/,4÷:0/-\"3* ÷MJöLJMJ,B[BOŽNMBS 11.1.2.1 : 5SJHPOPNFUSJLGPOLTJZPOMBSŽCJSJN¿FNCFSZBSEŽNŽZMBB¿ŽLMBS Kosinüs ve Sinüs Fonksiyonları 7$1,0%m/*m #FO[FS õFLJMEF \"     #     $ m    WF %  m OPLUBMBSŽJ¿JOVZHVOFõMFNFMFSZBQŽMŽS- y TBBõBóŽEBLJEFóFSMFSCVMVOVS B(0, 1) P(x, y) x ™ ™ ™ ™ ™ DPTY  y = sina 1 TJOY   m   a C(–1, 0) A(1, 0) x   m  O x = cosa D(0,–1) Trigonometrik Özdeşlikler  #JSJN ¿FNCFS Ð[FSJOEF [01 OŽO CJSJN ¿FNCFSJ %m/*m y LFTUJóJOPLUB1 Y Z WF[01OŽOYFLTFOJJMFZBQ- C B x = cosa UŽóŽQP[JUJGZËOMÐB¿ŽaPMTVO P(x, y) y = sina  1 Y Z OPLUBTŽOŽOBQTJTJOF aHFSÀFLTBZŽTŽOŽO M 1 NA x LPTJOÑTÑ EFOJS WF DPTa JMF HËTUFSJMJS a HFS¿FL a TBZŽTŽOŽ  DPTa ZB EËOÐõUÐSFO GPOLTJZPOB LPTJ- OÑTGPOLTJZPOVEFOJS O  1 Y Z OPLUBTŽOŽOPSEJOBUŽOB aHFSÀFLTBZŽTŽ- OŽOTJOÑTÑEFOJSWFTJOaJMFHËTUFSJMJSaHFS¿FL D TBZŽTŽOŽ  TJOa ZB EËOÐõUÐSFO GPOLTJZPOB TJOÑT GPOLTJZPOVEFOJS I I I I I I0. = PN =TJOaWF ON =DPTa  :VLBSŽEBLJ õFLJMEF 1 OPLUBTŽ ¿FNCFS Ð[FSJOEF WF¿FNCFSJOZBSŽ¿BQŽCJSJNPMEVóVJ¿JO1OPL-  PMEVóVOBHËSF 0/1EJLпHFOJOEF1JTBHPSUF- UBTŽOŽOIFNBQTJTJIFNEFPSEJOBUŽ aOŽOTJOÐTÐ PSFNJOEFO WF DPTJOÐTÐ  - EFO LпÐL ZB EB  EFO CÐZÐL PMBNB[ I I ION  + I NP  =  0IBMEFTJOÐTWFLPTJOÐTGPOLTJZPOMBSŽOŽO  DPTa ) + TJOa ) =  5BOŽNLÐNFTJ3  DPTa +TJOa =EJS  (ËSÐOUÐLÐNFTJ<m >EJS  :BOJr! `3J¿JO  m#DPTa #WFm#TJOa #  WFZB  DPT3Z<m >  TJO3Z<m >EJS 13

4*/*' 1. MODÜL 53÷(0/0.&53÷ www.aydinyayincilik.com.tr ÖRNEK 1 ÖRNEK 4 a =-TJOa \"öBôŽEBLJJöMFNMFSJTPOVÀMBOEŽSŽOŽ[ PMEVôVOBHÌSF BHFSÀFLTBZŽTŽOŽOBMBCJMFDFôJEFôFS- a) DPT™ TJO™ MFSJOLÑNFTJOJCVMVOV[ C cos r + sin 3r – cosr -ãTJOaã 22 -ãTJOaã D  cos 7r - 3 sin 5r + cos 3r - cos 0° ã- 3TJOaã& [ ] 22 E TJO™-DPT™ +TJO™DPT™ ÖRNEK 2 F cosf - 5r p - sinf - 3r p + sin^ –3r h  Y-DPTa + 1 = 22 2 a) -1 + ( -1 ) = -2 FöJUMJôJOEFYHFSÀFLTBZŽTŽOŽOBMBCJMFDFôJEFôFSMFSJO C  + ( -1 ) - ( -1 ) = 0 LÑNFTJOJCVMVOV[ D  - 3 ( 1 ) + ( -1 ) -1 = - E    - 3( -1)2 + ( -1 ) · ( -1 ) = 2 -3 + 1 = 0 1 F  - 1 - 0 = -1 2cosa – 12 3x =DPTa -  Y= 23 -ãDPTaã& -ãDPTaã ÖRNEK 5 5 13 0 # a #ÖPMNBLÑ[FSF – ãDPTa – ã DPTa = 4 5 2 22 PMEVôVOBHÌSF TJOa EFôFSMFSJOJCVMVOV[ 2 cos a – 1 5 21 –# # 632 51 TJO2a +DPT2a = 1 – #x# TJO2a + d 4 2 62 n =- 5 1 G 5 =1 , 62 TJO2a = 9 EJS 25 ÖRNEK 3 33 TJOa = WFZBTJOa = – PMVS a =TJOY-DPTZ+ PMEVôVOBHÌSF BHFSÀFLTBZŽTŽOŽOBMBCJMFDFôJEFôFS- 55 MFSJOLÑNFTJOJCVMVOV[ ÖRNEK 6 -ãTJOYã -ãDPTZã \" -   OPLUBTŽiBÀŽTŽOŽOCJUJöLFOBSŽOŽOCJSJN ÀFNCFSJ LFTUJôJ OPLUB PMEVôVOB HÌSF  TJOi EFôFSJ- -ãTJOYã -ãDPTZã OJCVMVOV[ -ãTJOYã y  TJOi  A(–0,6, 0,8) 1 1 + -ãDPTZã 0,8 -ãTJOY+DPTZã –1 0,6 -ãTJOY+DPTZ+ã –1 a [ - ] 1. [ ] 2. = - 5 , 1 G 3. [m ] 14 33   62 4. B m C D  E  F m  WFZB – 55

www.aydinyayincilik.com.tr 53÷(0/0.&53÷ 1. MODÜL 4*/*' ÖRNEK 7 ôFLJMEFLJ CJSJN ¿FN- ÖRNEK 9 CFS Ð[FSJOEF NPEFM- y MFONJõ CJS SBEBS TJT- 5BOŽNMŽPMEVLMBSŽBSBMŽLMBSEBBöBôŽEBLJJGBEFMFSJOFO UFNJ HËSÐMNFLUFEJS TBEFCJÀJNMFSJOJCVMVOV[ x 3BEBSEB HËSÐOFO a) 1 - sin2 i V¿BóŽO SPUBTŽOŽO CJ- SJN ¿FNCFS Ð[FSJO- 1 + cos i EFLJ OPLUBTŽOŽO PSEJ- 2 6 44co7s 4i48 sin2 i cos i + 1– sin2 i 1 a) – = OBUŽ 4 PMEVóVOBHË- 1 1+ cos i 1+ cos i 5 ( 1+ cos i) SF VÀBôŽOSPUBTŽOŽOYFLTFOJJMFZBQUŽôŽBÀŽOŽOLPTJ- cos i ^ 1+ cos i h OÑTÑOÑCVMVOV[ = = cos i ^ 1+ cos i h 2 + d 4 2 3 j x= x n =1 55 ÖRNEK 8 C  sin3 i - cos3 i (1 + sin i cos i) (sin i - cos i) 5BOŽNMŽ PMEVôV BSBMŽLMBSEB BöBôŽEBLJ JGBEFMFSJO FO TBEFCJÀJNMFSJOJCVMVOV[ 6 4 4 4 4 4 4 4471 4 4 4 4 4 4 448 2 2 sin2 i a sin i - cos i k^ i + sin i. cos i + i h a) sin cos 1+ cos i C  ^ 1 + sin i. cos i ha sin i - cos i k 1 + sin i. cos i =1 1 + sin i. cos i B  TJO2i +DPT2 i = 1  TJO2 i = 1 -DPT2 i 1 – 2 i ^ 1– cos i h^ 1+ cos i h D  2 - 3 + cos2 x 2 + sin x cos = j 1 -DPTi 1+ cos i ^ 1+ cos i h C  1 + 1 3 + ^ 1– sinx h  1+ sin i 1- sin i 2– =2– 4 – sin x 2 + sin x 2 + sin x D  2 – ^ 2 – sin x h^ 2 + sin x h = 2 – 2 + sin x C  1 1 1– sin i + 1+ sin i 2 ^ 2 + sin x h += = = sin x 1 + sin i 1 - sin i 2 2 (1- sin i) ^ 1+ sin i h 1– sin i cos i D  cos i - cos i E  1+ sin x – cos2 x 1 - sin i 1 + sin i 1+ sin x cos i cos i D  - 1– sin i 1 + sin i (1+ sin i) ^ 1 - sin i h 2 cos i + cos i sin i – cos i + cos i sin i 6 44si7n 4x48 = 1– cos2x + sin x sin x^ sin x + 1 h E  = = sin x 1– sin2 i 1+ sin x ^ 1+ sin x h 2 cos i sin i 2 sin i == cos2 i cos i 3 8. a) mDPTi 2 2sini  B DPTi C  D TJOY E TJOY 7. C  D  5 cos2 i cosi

11. SINIF .0%·- 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 11 y C 5BOŽNMŽPMEVLMBSŽBSBMŽLMBSEBBöBôŽEBLJJGBEFMFSJOFO A TBEFCJÀJNMFSJOJCVMVOV[ B a) sin4 x + cos2 x . sin2 x - sin2 x 20° x a) = sin4x - sin2x +DPT2x · sin2x O = sin2x ( sin2x - 1) +DPT2x · sin2x -DPT2x | |:VLBSŽEBLJCJSJNÀFNCFSEF BC OVCVMVOV[ = -sin2YDPT2x+DPT2x · sin2x =0 y b) 3 ( cos4 x + sin4 x ) - 2 ( cos6 x + sin6 x ) = 1 sin70° 20° 1 1 | BC | = 1 - sin70° –1 70° b) =DPT4x + 3sin4x -  DPT2x)3 + ( sin2x)3) ÖRNEK 12 = DPT4x + 3sin4x -  DPT2x + sin2Y  DPT4x-sin2x + sin4x)) #JSJNÀFNCFSÑ[FSJOEFLJ\" DPTš TJOš WF # DPTš TJOš OPLUBMBSŽBSBTŽV[BLMŽôŽCVMVOV[ 1 =DPT4x + 3sin4x -DPT4x +DPT2x + 2 sin2x - 2sin4x y =DPT4x + sin4x +DPT2x · sin2x 1 = DPT2x + sin2x )2 A 1 1 50° ]\"#]= 2 CSEJS –1 40° 1 1 B –1 c) 1– cos4 x + sin4 x cos2 x - 1 ÖRNEK 13 + 4 4 #JSJNÀFNCFSÑ[FSJOEFLJ\" -DPTš -TJOš WF c) 1 sin x – cos x # DPTš -TJOš OPLUBMBSŽOŽWF0   OPLUBTŽOŽ 2 % cos x – 1 AOB LÌöFLBCVMFEFO\"#$ÑÀHFOJOEFm ( ) LBÀEFSF- 2 2 6 4 4 4471 4 4 448 DFEJS 2 2 1+ ^ sin x – cos h^ sin + x h x cos = 2 y cos x – 1 2 6 44si7n 4x48 1– cos2x + sin2x 2 O 30° 50° x 100° 2 sin x = = = –2 100° 2 2 AB cos – 1 – sin x 10. a) 0 b) 1 c) –2 16 11. 1–sin70° 12. 2 13. 100°

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF %m/*m ÖRNEK 16 #JSJN ¿FNCFSJO IFSIBOHJ CJS CËMHFTJOEFLJ B¿ŽOŽO 3π < a < 2πPMEVôVOBHÌSF LPTJOÐTWFTJOÐTÐOÐOJõBSFUJ CVCËMHFEFLJCJSOPL- 2 UBOŽOBQTJTWFPSEJOBUŽOŽOJõBSFUJJMFBZOŽEŽS y 2 sin a + 3 cos a cos – 1 cos + sin a cos a sin + sin + JGBEFTJOJOFöJUJOJCVMVOV[ –1 II I 1x - 2 sin a 3 cos a IV + cos – O cos + sin a sin – III sin – cos a -2 + 3 = 1 –1 ÖRNEK 14 \"öBôŽEBLJUSJHPOPNFUSJLEFôFSMFSJOJöBSFUMFSJOJCVMV- OV[ a) DPT™ C TJO™ D DPT™ E DPTf - 7r p ÖRNEK 17 6 F DPTc - r m #JS\"#$ÑÀHFOJOJOJÀBÀŽMBSŽa b iPMNBLÑ[FSF BöB- 5 G TJOc 3r m ôŽEBLJJGBEFMFSJOLBÀUBOFTJEPôSVPMBCJMJS 7 * TJOaDPTb g) DPTf - 135r p ** TJOaTJObTJOi 4 I TJO – *** TJOaDPTi = *7 DPTa +TJOi a) - C - D + E - F + G + g) + I - * b >šJTF TJOaDPTb < 0  DPTb >PMVS *EPôSVPMBCJMJS ÖRNEK 15 ** a bWFišJMFšBSBTŽOEBQP[JUJGPMEVôVJÀJO LFTJOEPôSVEVS  BDPT CTJOWFDDPT PMEVôVOBHÌSF B CWFDOJOJöBSFUMFSJOJCVMVOV[ *** i =šJTFEPôSVPMBCJMJS *7 DPTa <PMVQDPTa +TJOi <PMBCJMJS D 3 540 a =DPT& 180 = r & r =   šB= - C=TJO& D 5 900 =   šC= - = r& 180 r D 7 1260 D=DPT& 180 = r & r =   šD= + 14. B mC mD  E mF  G  H  I m B C D 17 1 17. 4

TEST - 4 5SJHPOPNFUSJL'POLTJZPOMBS* sin (18r) 4. cosf - 703r p 1. 3 EFôFSJLBÀUŽS sin 18°  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \"  #  $ - A) - # - 1  $  D) 1  &  2 2 D) 1  sin 18° & DPU™ 2.  DPTY-TJOZ  sin A - sin B + cos A - cos B cos A + cos B sin A + sin B  JGBEFTJOJOFOCÑZÑLEFôFSJLBÀUŽS JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  %  &  # - 1  $  2 \" m %  &  3. sin 205r + cos 2550° + tan^ - 26π h  sin a = 2x - 1 3 7 UPQMBNŽOŽOTPOVDVLBÀUŽS PMEVôVOB HÌSF  Y JO FO CÑZÑL UBN TBZŽ EFôFSJ LBÀUŽS \"  #  C) 3 D)  E) 2 3 A) - # - $  %  &  2 1. \" 2. \" 3. D 18 4. D $ &

5SJHPOPNFUSJL'POLTJZPOMBS* TEST - 5 1. 4 - cosf x + 5r p 4. 5BOŽNMŽPMEVôVBSBMŽLUB 6 - cos i - 1 - sin i - 1  JGBEFTJOJ FO CÑZÑL ZBQBO  Y EFôFSMFSJOJO FTBT cos i - 1 - sin i - 1 JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS ÌMÀÑTÑLBÀSBEZBOEŽS r r r r r A) - #  $  A) B) C) D) E) % DPTi & TJOi  5    2. 9 + 7 sin2 i - cos2 i  3π < x < 2πPMEVóVOBHËSF 5 sin2 i + 3 cos2 i - 1 2 JGBEFTJOJOFöJUJLBÀUŽS sin2x - cos2 x - sin x - 1 cos x JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS A) - #  $  %  &  A) - # - $ - %  &  3. 5BOŽNMŽPMEVôVBSBMŽLUB  5BOŽNMŽPMEVôVBSBMŽLUB sin3x + cos3x + sin3x - cos3x cos2 i + cos i – sin2 i 1+ sin i 1- cos i sin x + cos x sin x - cos x  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS JGBEFTJOJOEFôFSJLBÀUŽS A) -TJOi B) -DPTi $  A) 1 #  $ - %  &  % TJOi & DPTi 2 1. \" 2. D 3. B  4. \" B \"

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 53÷(0/0.&53÷,'0/,4÷:0/-\"3** ÷MJöLJMJ,B[BOŽNMBS 11.1.2.1 : 5SJHPOPNFUSJLGPOLTJZPOMBSŽCJSJN¿FNCFSZBSEŽNŽZMBB¿ŽLMBS Tanjant Fonksiyonu Kotanjant Fonksiyonu 7$1,0%m/*m 7$1,0%m/*m y y 1 cota y=1 1 T(1, tan a) K(cota,1) P P tana –1 a 1 x –1 a 1 x O O –1 –1 x=1 [01OŽOZ=EPóSVTVOVLFTUJóJ,OPLUBTŽOŽO  #JSJN ¿FNCFS Ð[FSJOEF [01 OŽO CJSJN ¿FNCF- SJ LFTUJóJ OPLUB 1 Y  Z  WF [01 OŽO Y FLTFOJ JMF BQTJTJOF a BÀŽTŽOŽO LPUBOKBOUŽ EFOJS WF DPUa CJ¿JNJOEFHËTUFSJMJS ZBQUŽóŽQP[JUJGZËOMÐB¿ŽaPMTVO  %FOLMFNJZ=PMBOEPóSVZBLPUBOKBOUFLTF- [01OŽOY=EPóSVTVOVLFTUJóJ5OPLUBTŽOŽO OJEFOJS PSEJOBUŽOB aBÀŽTŽOŽOUBOKBOUŽEFOJSWFUBOaCJ-  Y FLTFOJ JMF LPUBOKBOU FLTFOJ QBSBMFM PMEVóVO- ¿JNJOEFHËTUFSJMJS EBO a =WFZBa =ÕPMEVóVOEB [01JMF  %FOLMFNJ Y =  PMBO EPóSVZB UBOKBOU FLTFOJ EFOJS Z=EPóSVTVLFTJõNF[#VSBEBO  ZFLTFOJJMFUBOKBOUFLTFOJQBSBMFMPMEVóVOEBO  DPUš=DPU=UBOŽNTŽ[ a = π WFZBa = 3π PMEVóVOEB[01JMF DPUš=DPUÖ=UBOŽNTŽ[PMVS 22  5BOŽNLÐNFTJ 3- {LÕL` Z }PMBOWFUBOŽN x =EPóSVTVLFTJõNF[#VSBEBO LÐNFTJOEFLJIFSCJSBSFFMTBZŽTŽOŽDPUaZBFõ- tan 90° = tan π =UBOŽNTŽ[ MFZFOGPOLTJZPOBLPUBOKBOUGPOLTJZPOVEFOJS :BOJ 2 tan 270° = tan 3π =UBOŽNTŽ[PMVS  DPU3- {LÖL` Z } Z R UBOŽNMŽEŽS 2  5BOKBOU WF LPUBOKBOUŽO UBOŽNŽOEBO BõBóŽEBLJ  5BOŽNLÐNFTJR - ' π + kπ, k ! Z 1PMBOWFUB- UBCMPZVPMVõUVSBCJMJSJ[ 2 x ™ ™ ™ ™ ™ OŽNLÐNFTJOEFLJIFSCJSaHFS¿FLTBZŽTŽOŽUBOa ZBFõMFZFOGPOLTJZPOBUBOKBOUGPOLTJZPOVEF- UBOY  UBOŽNTŽ[  UBOŽNTŽ[  OJS:BOJ DPUY UBOŽNTŽ[  UBOŽNTŽ[  UBOŽNTŽ[ tan: R – ' π + kπ, k ! Z 1 \" R 2  UBOŽNMŽEŽS 20

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF %m/*m ÖRNEK 1 tan a = sin a ve cot a = cos a \"öBôŽEBLJJöMFNMFSJOTPOVDVOVCVMVOV[ cos a sin a a) DPU™+UBO™ C DPUc 3r m +UBO -Õ -DPUf - 7r p y 22 B cota 123 M y=1 D DPTf - 5r p -TJOf - 3r p +UBO -Õ  P L sina K tana x 22 1 E DPUc r m -UBOÕ-UBO™+DPTÕ a  C O cosa N A a) 0 + 0 = 0 D C  + 0 + 0 = 0 x=1 D  + (- 1) + 0 = -1 E  - 0 - 0 - 1 = -1 O&NK ` O&AL PMEVóVOEBO ON = NK & cos a = sin a ÖRNEK 2 1 tan a OA AL 3 cos a - sin a = 1 2 sin a + 5 cos a 2 & tan a = sin a olur. PMEVôVOBHÌSF UBOaEFôFSJOJCVMVOV[ cos a 3cosa - sina 1 & + & PMEVóVOEBO = OPK OBM 2sina + 5cosa 2 OP = PK & sin a = cos a DPTa -TJOa =TJOa +DPTa 1 cot a  DPTa =TJOa OB BM 1 & cot a = cos a PMVS  UBOa = sin a 4  #VJLJFõJUMJLUFOZBSBSMBOBSBLDPTaáWF TJOaáPMNBLÐ[FSF tan a. cot a = 1 ÖRNEK 3  FõJUMJóJFMEFFEJMJS tan i + cot i = 3 2  #VOBHËSF PMEVôVOBHÌSF UBn2 i +DPU2 iEFôFSJOJCVMVOV[ tan a = 1 , cot a = 1 cot a tan a f tani + 1 2 32 p =f p tani 2 tan2 i + 2 · tani · 1 + 1 9 = 14 4 4 2 4ta4n4i3 tan2 i 4 2 UBO2 i +DPU2 i = 9 - 2 4 UBO2 i +DPU2 i = 1 4 21 1. B C D mE m 1 1 2. 3. 44

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 4 %m/*m coseca y sina  UBOi +DPUi = C N PMEVôVOBHÌSF UBOi +DPUiUPQMBNŽOŽOQP[JUJGEFôF- B x SJOJCVMVOV[ LP UBOi +DPUi =LPMTVO& UBOi +DPUi)2 =L2 1i UBO2i +UBOiDPUi +DPU2i =L2 a iM 2 O cosa K A UBO2i +DPU2i )2 = L2 - 2 )2 seca UBO4i +DPU4i +UBO2i DPU2i = L2 - 2 )2 D 22 4 = L2 - 2 )2 & L2 - 2 =WFZBL2 - 2 = -2 & ` & PMEVóVOEBO OKP OPM & L2 =WFZBL2 = 0 & L= \" WFZBL= 0 & L= 2 OK = OP & cos a = 1 OP OM 1 sec a Sekant ve Kosekant Fonksiyonları & sec a = 1 olur. cos a 7$1,0%m/*m & + & PMEVóVOEBO y OLP OPN K B OL = OP & sin a = 1 1 cosec a L OP ON aM C OA x & coseca = 1 PMVS sina D #JSJN ¿FNCFS Ð[FSJOEF % = a  PMNBL m ( MOL ) Ð[FSF -OPLUBTŽOEBLJUFóFUJOYFLTFOJOJLFTUJóJ ÖRNEK 5 OPLUBOŽOBQTJTJOFaB¿ŽTŽOŽOTFLBOUŽEFOJSWF sin i + cosec i = 5 2 TFDaJMFHËTUFSJMJS PMEVôVOBHÌSF TJO2 i +DPTFD2 iEFôFSJOJCVMVOV[  -OPLUBTŽOEBLJUFóFUJOZFLTFOJOJLFTUJóJOPLUB- OŽO PSEJOBUŽOB  a B¿ŽTŽOŽO LPTFLBOUŽ EFOJS WF DPTFDaJMFHËTUFSJMJS  #WF%OPLUBMBSŽOEBTFLBOUEFóFSMFSJUBOŽNTŽ[ sini + 15 = PMBDBóŽOEBOTFLBOUGPOLTJZPOVOVO sini 2 5BOŽNLÑNFTJ R – ' π + kπ : k ! Z 1 2 1 2 52 f sini + p =f p (ÌSÑOUÑLÑNFTJ3- ( -  PMVS sini 2 2 1 1 25 sin i + 2 · sini · + = \" WF $ OPLUBMBSŽOEB LPTFLBOU EFóFSMFSJ UB- 14 4 4 2 4s4in4i3 sin2 i 4 OŽNTŽ[PMBDBóŽOEBOLPTFLBOUGPOLTJZPOVOVO 2 5BOŽNLÑNFTJ3-\\LÕL! Z } sin2 i + cosec2 i = 25 - 2 = 17 44 (ÌSÑOUÑLÑNFTJ3- ( -  PMVS 4. 2 22 17  4

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 6 ÖRNEK 8 y 5BOŽNMŽ PMEVôV BSBMŽLMBSEB BöBôŽEBLJ JGBEFMFSJO FO A TBEFCJÀJNMFSJOJCVMVOV[ a) UBOi    C cot i. sec i 2 1 + cot i B sin2 i 6 4 4471 4 448 x 2 2 a) + 1= sin i + cos i = 1 =TFD2i 2 i cos2 i cos2 i cos cosi 1 1 1 sin2 i = sini · sini &· C  sini cosi = :VLBSŽEBLJ CJSJN ÀFNCFSEF \"   DPTFDš  WF \"# 2 64 4 4471 4 4 448 sini 1 ÀFNCFSF UFôFU PMEVôVOB HÌSF # OPLUBTŽOŽO LPPSEJ- sin2 i + cos2 i OBUMBSŽOŽCVMVOV[ cos i 1+ sin2 i sin2 i y 1442443 D  TJOiTFDiDPUi E 1 + tan i A sin i + cos i cosec 22° 1 x # TFDš  1242°243B 1 cosi sec22° D  sini · · = 1 cosi sini sini cosi + sini 1 1+ cosi = = seci cosi sini + cosi cosi E  = sini + cosi ÖRNEK 7 F 1 + 1 G sec x - cos x cosec x - sin x  < a < r WFDPTFDa = 3 22  x-2 1 + tan i 1 + cot i PMEVôVOBHÌSF YJOUBNTBZŽEFôFSMFSJOJCVMVOV[ 22 1 1 cos i sin i + =+ 2 13 , x-2 2 22 22 = sin a = F  1 + sin i cos i 1+ 1s4in44i2+ c4os44i3 1s4in44i2+ c4os44i3 sin a x - 2 3 2 cos i 2 1 1 sin i x-2 22 = sin i + cos i = 1 0 <TJOa < 1 & 0 < 3 <1 1- cos2x 2 6 44si7n 4x48 1 cos x - cos x 2 &0<x-2<3 cos x sin x 1- cos x = =· & 2 < x <& x =WFCVMVOVS 1 - sin x 2 cos x 2 sin x G  1- sin x 114-4 2sin44x3 sin x 2 cos x 3 sin x 3 = = tan x 3 cos x # TFDš  7. WF 23 8. a) TFD2 i C TJOi D 1 E TFDi F  G UBO3 x

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 9 %m/*m 5BOŽNMŽPMEVLMBSŽBSBMŽLMBSEBBöBôŽEBLJJGBEFMFSJOFO #JSJN¿FNCFSJOIFSIBOHJCJSCËMHFTJOEFLJB¿ŽOŽO TBEFCJÀJNMFSJOJCVMVOV[ UBOKBOUWFLPUBOKBOUŽOŽOJõBSFUJPCËMHFEFLJTJOÐT a) sin i. cos i WFLPTJOÐTGPOLTJZPOMBSŽOŽOJõBSFUMFSJOJOPSBOŽOB FõJUUJS (1 - sin i) tan i a) sini · cosi 2 tan – y tan + cot – 1 cot + ^ 1- sini h · sini cos i cosi = 1- sini 2 ^ 1- sini h^ 1+ sini h –1 II I x IV 1 1- sin i = = 1+ sini tan + O cot + III tan – 1- sini ^ 1- sini h cot – –1 C cosec2 i. sec2 i #JSJN ¿FNCFSJO IFSIBOHJ CJS CËMHFTJOEFLJ B¿Ž- cot2 i + tan2 i + 2 OŽOTFLBOUŽLPTJOÐTJMFLPTFLBOUŽTJOÐTJMFBZOŽ JõBSFUMJEJS 11 1 · sin2 i cos2 i 2 i · cos 2 i C  = sin cos2 i 2 i sin i cos i 2 f+p sin + +2 cos i sin i sin2 i cos2 i ÖRNEK 10 11 \"öBôŽEBLJUSJHPOPNFUSJLEFôFSMFSJOJöBSFUMFSJOJCVMV- OV[ sin2 i cos2 i 2 i cos 2 i sin = =1 J 644471 4 448 N 12 K sin2 i + cos2 i O dn K O cos i sin i KO L cos i · sin i P a) DPTFD™ C UBO™ D  TFD™ E DPUf 5r p D mDPUi DPTFDi F UBOf - 135r p 6 4 G DPUc - r m  D  1 - cos2 i + 1 a) + C + D + E - F + G - 2 i sin2 i sin 2 6 4 44si7n 4i 448 sin2 i - cos2 i + 1 sin2 i + sin2 i = =2 sin2 i sin2 i B  TJOi C  D  24 10. B  C  D  E mF  G m

5SJHPOPNFUSJL'POLTJZPOMBS** TEST - 6 1. ãYã r PMEVôVOBHÌSF  4. sin x + 2 cos x = 3 PMEVôVOBHÌSF  4 cos x - 2 sin x 2 1- tan x 1+1 5 cot x tan x UPQMBNŽLBÀUŽS  JGBEFTJOJOEFôFSJIBOHJBSBMŽLUBCVMVOVS A) >0, 1 H B) >- 1 , 0 h A) - 65 B) - 1 C) 1 D) 63  &  3 5 88 8 8 C) >0, 1 H D) >- 1 , 0H 5 3 E) >- 1 , 1 H 55  5BOŽNMŽPMEVôVBSBMŽLUB TJOY DPTFDY-TJOY  2. 5BOŽNMŽPMEVôVBSBMŽLUB  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS cosec i - sin i . tan2 i \" DPTY # TJOY $ DPTx sec i - cos i % -TJOY & +DPTY  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS \" TFDi # TJOi $ DPTi % UBOi & DPUi 3. sin x + cos x = 5  5BOŽNMŽPMEVôVBSBMŽLUB sin x - cos x 4 cos2 i + 1 - sin2 i 1 + sin i sec i 1 - cos i PMEVôVOBHÌSF UBOYLBÀUŽS  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS A) 9 B) 9 C) 5 %  &  A) -TJOi B) -DPTi $ UBOi 4 2 % TJOi & DPTi 1. $ 2. & 3. D  4. \" $ \"

TEST - 7 5SJHPOPNFUSJL'POLTJZPOMBS** 1. UBOY+DPUY=PMEVôVOBHÌSF  4.  DPT™ sin 7r UBOÕ sec 29r  DPU™   UBOx +DPUx 9 18  JGBEFTJOJOEFôFSJLBÀUŽS  JGBEFMFSJOEFOLBÀUBOFTJQP[JUJGUJS \"  #  $  %  &  \"  #  $  %  &    DPT™ TJO™ UBO™ DPU™ 2. 5BOŽNMŽPMEVôVBSBMŽLUB  EFôFSMFSJOJOJöBSFUMFSJTŽSBTŽZMBBöBôŽEBLJMFSEFO IBOHJTJEJS cosec2 i - sec2 i tan2 i - cot2 i A) ( –, –, –, – ) B) ( –, –, –, + ) JGBEFTJOJOEFôFSJLBÀUŽS C) ( –, –, +, – ) D) ( –, +, –, – ) A) - # - $  %  &  E) ( +, –, –, – ) 3.  TFD x +=UBOY  TJO™ UBO™ TFD™ DPTFD™ PMEVôVOB HÌSF  UBOY EFôFSJ BöBôŽEBLJMFSEFO  EFôFSMFSJOJOJöBSFUMFSJTŽSBTŽZMBBöBôŽEBLJMFSEFO IBOHJTJEJS IBOHJTJEJS A) ( +, –, –, – ) B) ( +, –, +, – ) \"  #  $  %  &  C) ( +, +, –, – ) D) ( +, –, –, + ) E) ( –, –, +, + ) 1. $ 2. B 3. B  4. B \" \"

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF 53÷(0/0.&53÷,'0/,4÷:0/-\"3*** ÷MJöLJMJ,B[BOŽNMBS 11.1.2.1 : 5SJHPOPNFUSJLGPOLTJZPOMBSŽCJSJN¿FNCFSZBSEŽNŽZMBB¿ŽLMBS %JL·ÀHFOEF%BS\"ÀŽMBSŽO5SJHPOPNFUSJL ÖRNEK 1 0SBOMBSŽ 0 < a < π PMNBLÑ[FSF  TANIM 2 y sin a = 5 L 13 K PMEVôVOB HÌSF  DPTa  UBOa WF DPUa EFôFSMFSJOJ CV- MVOV[ P x A 12 1 cos a = a 13 O cosa P1 A K1 L1 5 tan a = 13k 5k 12 ™a™JTFaEBSB¿ŽEŽS a 12 C aB¿ŽTŽOŽOCJUJõLPMV¿FNCFSJ1OPLUBTŽOEBLFTTJO 12k cot a = 5 B I I r OP =DPTa I I r PP =TJOa I I r OP =EJS & + &  B¿Ž-B¿ŽCFO[FSMJóJ PMEVóVOEBO OPP OKK 11 OP OP1 1 = cos a =& OK OK1 OK OK1 ÖRNEK 2 OK1 0 < a < π PMNBLÑ[FSF  & cosa = 2 OK  UBOa = Komflu dik kenar›n uzunlu€u PMEVôVOBHÌSF TJOa DPTaÀBSQŽNŽOŽOEFôFSJOJCVMV- & cos a = OV[ Hipotenüsün uzunlu€u A 2 sin a =  PMVS#FO[FSõFLJMEFTJOa UBOa DPUaPSBOMBSŽ EBUBOŽNMBOŽS r cos a = Komflu dik kenar›n uzunlu€u 5 Hipotenüsün uzunlu€u 5k 1 cos a = r sin a = Karfl› dik kenar›n uzunlu€u 2k 5 Hipotenüsün uzunlu€u a 2 Karfl› dik kenar›n uzunlu€u C k sin a. cos a = Komflu dik kenar›n uzunlu€u B5 r tan a = r cot a = Komflu dik kenar›n uzunlu€u Karfl› dik kenar›n uzunlu€u 27 12 5 12 2 1. cos a =  tan a =  cot a = 2. 13 12 5 5

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 3 ÖRNEK 5 DPTš=BPMEVôVOBHÌSF D 8C sin 24° 68 tan 66° + cot 66° 6 JGBEFTJOJOBDJOTJOEFOFöJUJOJCVMVOV[ A 2 A 8 E 18 i 66° 10 B a 1 – a2 sin 24° = 1 - 1 B tan 66° = a \"#$%ZBNVL [DC] // [AB], maA%BCk = i  1 - a2 I I I I I I I IBC = CD =DN  AB =DNWF AD =DNEJS 1 - a 24° a cot 66° = a :VLBSŽEBLJWFSJMFSFHÌSF TJOiEFôFSJOJCVMVOV[ C 1 - a2 1 - a2 3 = 63 sin i = = a 1 - a2 a 1 - 2 10 5 + a + 5 a 1 - a2 2 a 1-a ^ a h a 1 - a2 k = 1 - a2 = 1 - a2 .a 1 - 2 = a^ 1 - 2 h = a - 3 a a a  + 1 -  a a a 1 - a2 ÖRNEK 6 A b ÖRNEK 4 c A Ba C & 2 3 cm2 A#$EJLпHFOJOEF  A^ ABC h = 17 17 sin (WA) . sin (XC) = 3 UÐS 15 4 a | |:VLBSŽEBLJWFSJMFSFHÌSF  \"$ LBÀDNEJS B3D 5 E 13 8 C I I I I\"#$пHFO maA%DCk = a  AB = AC =DN sin XA. sin XC = 3 ac 3 I I I IBD =DNWF DC =DNEJS j ·= 4 bb 4 :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJOJCVMVOV[ a.c 3 = EJS b 4 \" \"#$ = a.c = 2 3 jBD= 4 3 PMVS 2 15 4@3 3 43 3 tan a = = 3 ac &= = 5 2 4 2 4 jC2 jC b b 3. BmB3 4. 3 28 3  4 5

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 7 ÖRNEK 10 A \"#$пHFO A \"#$ÑÀHFOJOEF x BDPT( XC ) DDPT( WA ) 5 I IAB DN H 7h I IAC DN JGBEFTJOJOFöJUJOJ I IBC DN cb CVMVOV[ b–x tan XC = 5 tan WB xC 6 Ba C mæY B :VLBSŽEBLJWFSJMFSFHÌSF  cos XB EFôFSJOJCVMVOV[ a.>cos XC + c.>cos XA .. tan XC = 5 tan XB & h = 5· h b-x x x 6-x a · + c · =C- x + x =C ac - x =Yj x = 1 j cos XB = 5 7 ÖRNEK 8 ÖRNEK 11 D [ AB ] m [ BC ] [ DC ] m [ BC ] A \"#$EJLпHFO 6=x 3 3 a [ AB ] m [ AC ] B 4 8 I IDC =CS [ AH ] m [ BC ] . 55 10 I IC b I IAB =CS AB =CS B2 I IBH =CS I IAD =CS C H :VLBSŽEBLJWFSJMFSFHÌSF TJOaEFôFSJOJCVMVOV[ A :VLBSŽEBLJ WFSJMFSF HÌSF % EFôFSJOJ CVMV- tan ( BAD ) 1 OV[ 21 a + b =š  sin a = = 3 42 tan ( B%AD ) = 6 = 3 2 84 4 ÖRNEK 9 ÖRNEK 12  I I I I\"#$пHFOJOEF  AB = AC , tan(WA) = 3 WF #JS\"#$пHFOJOEFm (WB) = 45°, m (XC) = 60°WF 4 I I I IAC =CSPMEVôVOBHÌSF \"# LBÀCJSJNEJS I IAB = 4 10 br PMEVôVOBHÌSF  #$ LBÀCJSJNEJS A tan XA = 3 A x2 = ^ 3 3 h2 + ^ 3 3 h2 4 x2 = 54 4k ]\"#]=L= 4 10 45° 30° x= 3 6 x 5k 33 6 H k= 4 10 3k 5 k 4 10 BC = 10 k = 10 · 45° 5 B 33 60° C 10 k B D 3C j]#$]=CS 5 1 8  10. C 3 12. 3 6 7. 8. 11. 4 7 2

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 13 ÖRNEK 16 H G ôFLJMEFLJ EJL- A EËSUHFOMFS QSJ[- cosa F NBTŽOEB E 10 | |10 AB =CS 5 D | |C BC =CS B H1 C A x=13 | |5 GC =CS 12 % B m ( DHB ) = a \"#$EJLпHFOJOEF [ AB > m [ AC >, [ AH > m [ BC > PMEVôVOBHÌSF UBOaEFôFSJLBÀUŽS I IBC =CSEJS 2 + 122 = x2 j x = 13 I I:VLBSŽEBLJWFSJMFSFHÌSF  \") nun aDJOTJOEFOFöJ- 13 UJOJCVMVOV[ tan a = 10 & AC ACB ÖRNEK 14 EF cos a = 1 A \"#$JLJ[LFOBSпHFO ]\"$]=DPTa a I AB I = I AC I =CS & EF sin a = AH & AH = sin a. cos a AHC cos a 5 K I IBC =CS [$,] m [AB] % = a m ( BCK ) b H 4C ÖRNEK 17 B4 8 A :VLBSŽEBLJWFSJMFSFHÌSF TJOaEFôFSJOJCVMVOV[ i/2 cb 4 a + b =š TJOa = 5 i i/2 B aC b D ÖRNEK 15 | |\"#$WF\"#%EJLпHFO m (WB) = 90°, AC =DCS | | | | | |BC =BCS  AC = CD =CCS m(A%CB) = i sin x - cos x = 1 3 :VLBSŽEBLJWFSJMFSFHÌSF  cot i EFôFSJOJOB C DUÑ- 2 PMEVôVOBHÌSF UBOY+DPUYEFôFSJOJCVMVOV[ SÑOEFOFöJUJOJCVMVOV[ TJOY-DPTY 2 = 1 3 22 1 1s4in444x 2+ c4o4s44x3 - 2 sin x. cos x = 9 1 1 i a+b PMVS 1 - = 2 sin x. cos x cot = 2 c 9 4 64 4 4471 4 4 448 = sin x. cos x 9 22 sin x cos x sin x + cos x 9 += = cos x sin x 1s4in4x2. co4s4x3 4 ^ sin x h ^ cos x h 4 9 13 4 9 30 TJOaDPTa a+b 13. 14.  17. c 10 5 4

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 18 ²[FM\"ÀŽMBSŽO5SJHPOPNFUSJL0SBOMBSŽ \"õBóŽEBEJLEËSUHFOõFLMJOEFLJJLJGBSLMŽNBEEFEFOZBQŽM- %m/*m NŽõQMBUGPSNB0OPLUBTŽOEBCVMVOBOCJSBUŽDŽUBSBGŽOEBO BUŽõ ZBQŽMNBLUBEŽS #JSJODJ BUŽõUB : OPLUBTŽ  JLJODJ BUŽõUB šOJO5SJHPOPNFUSJL0SBOMBSŽ YOPLUBTŽWVSVMNVõUVS A %JLLFOBSV[VOMVL- GF 45° 2 MBSŽ  CS PMBO JLJ[- LFOBS EJL пHFOJ 1 JODFMFZFMJN O 4 Y1 a + b = 90° 45° D Cy B 1C 3 ax B E I I I I I IAB = BC =CSj AC = 2 br EJS A Y2  \"#$EJLпHFOJOEF | |O YYCJSEJLпHFO m ( E%Y2Y1 ) = a, AD =NFUSF  sin 45° = AB = 1 = 2 | | | |BE =NFUSFPMEVôVOBHÌSF Y1 Y2 LBÀNFUSFEJS AC 2 2 cos 45° = BC = 1 = 2 4 AC 2 2 cos a = y & y = 4 sec a tan 45° = AB = 1 = 1 BC 1 3 sin a = x & x = 3 cosec a cot 45° = BC = 1 = 1 AB 1 x + y =TFDa +DPTFDa šWFšOJO5SJHPOPNFUSJL0SBOMBSŽ A ÖRNEK 19 2x H xC 30° 30° 22 D 3 ya 60° 60° B1 H 1C a #JSLFOBSŽOŽOV[VOMVóVCSPMBOFõLFOBSпHF- ab OJJODFMFZFMJN A 2x E xB I I I I I IAB = AC = BC =CSPMNBLÐ[FSF I I I I I IAH = 3 br WF BH = HC =CSPMVS \"#$%EJLEËSUHFO m ( % ) = % = a WF BCE m ( AED ) | BE | = | AE | EJS  \")$EJLпHFOJOEF TJO™= 3 = cos 30° :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJLBÀUŽS 2 a + b =š x1  DPT™= 1 =TJO™ y2 = 2x.x = 2 y = 2 x & tan a = 2x 2  UBO™=  =DPU™ 3  DPU™= = tan 30° 3 18. TFDa DPTFDa 1 31  2

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr %m/*m 0° 30° š š š ÖRNEK 22   TJO 1 3 sin2 5π + sin2 π + cot 2π cot 3π 22  12 12 7 14 3 1 JöMFNJOJOTPOVDVOVCVMVOV[ 22 π 5π 2π 3π sin = cos WF cot = tan DPT  12 12 7 14 2 5π 2 5π 3π 3π sin + cos + tan . cot = 2 144414242 4 4441423 14441442 4441443 UBO    UBOŽNTŽ[ 11   DPU UBOŽNTŽ[      5PQMBNMBSŽ™PMBOJLJB¿ŽEBOCJSJOJOTJOÐTÐEJ- ÖRNEK 23 óFSJOJOLPTJOÐTÐOF CJSJOJOUBOKBOUŽEJóFSJOJOLP- UBOKBOUŽOBFõJUUJS A 30° 15° 62 6 43 ÖRNEK 20 60a° 45° C  TJO™+TJO™+TJO™++TJO™ B 23 D JöMFNJOJOTPOVDVOVCVMVOV[ TJOš=DPTš \"#$CJSEJLпHFO [AB] m [BC], % = a, m ( ADB ) TJOš=DPTš | |%= =6 2 CSWFsin a = 3 EJS m ( DAC ) 15°, AC h 2 TJOš=DPTš | |:VLBSŽEBLJWFSJMFSFHÌSF \"% LBÀCSEJS TJO2 1 +TJO2 3° + .... +DPT2 3° +DPT2 1° 2 + 2 = 1 _ 3 b sin a = JTFa =š sin 1° cos 1° b b 2 22 bb j 22 + 1 = 45 ]\"%]= 4 3 CS ` 2 2 sin 3° + cos 3° = 1 h 2 + 2 = 1 b b sin 43° cos 43° 21 b sin 45° = bb a 2 ÖRNEK 21 ÖRNEK 24 tan 45°  UBOYUBOY= cos 45° + sin 60° LPöVMVOV TBôMBZBO FO LÑÀÑL QP[JUJG Y BÀŽTŽOŽ CVMV- JGBEFTJOJOEFôFSJOJCVMVOV[ OV[ H1 1 tan 45° 1 tan 5x = = >cos 45° + >sin 60° 3+ 2 tan x 2 UBOY=DPUY 23 x +Y=š Y=š 22 x =š 2 2.^ 3 - 2 h = =2 3-2 2 3-2 3+ 2 45 32 22. 2 23. 4 3 24. š 20. 21. 2 3 - 2 2 2

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 25 ±M¿ÐMFSJÕ÷aPMBOB¿ŽMBSŽOUSJHPOPNFUSJLPSBO- MBSŽOŽOaB¿ŽTŽOŽOUSJHPOPNFUSJLPSBOMBSŽDJOTJO- 18x =ÖPMEVôVOBHÌSF  EFOFõJUJ tan 4x. tan 5x - 3 TJO Õ- a ) = -TJOa TJO( 2Õ+ a ) =TJOa 2 + cos26x + cos23x DPT Õ- a ) =DPTa DPT( 2Õ+ a ) =DPTa JGBEFTJOJOEFôFSJLBÀUŽS UBO Õ- a ) = -UBOa UBO( 2Õ+ a ) =UBOa DPU Õ- a ) = -DPUa DPU( 2Õ+ a ) =DPUa UBOY=DPUY DPTY=TJOY 64 4471 4 448 cot 5x. tan 5x - 3 -2 = 22 3 2 + 1s4in4434x 2+ c4o4s434x3 1  ±M¿ÐMFSJ Õ- a WF -a PMBOB¿ŽMBSŽOFTBTËM- ÖRNEK 26 ¿ÐMFSJBZOŽPMEVóVJ¿JO 0 < a < π PMNBLÑ[FSF   TJO -a ) = -TJOa 2  DPT -a ) =DPTa  UBO -a ) = -UBOa 2 sind π + a n - cosd π - a n = 3  DPU -a ) = -DPUaPMVS 6 32 ±M¿ÐMFSJ c π ± a m WF f 3π ± a p PMBO B¿ŽMBSŽO PMEVôVOBHÌSF aBÀŽTŽLBÀSBEZBOEŽS 22 sind π + a n = cosd π - a n USJHPOPNFUSJL PSBOMBSŽOŽO a B¿ŽTŽOŽO USJHPOP- 63 NFUSJLPSBOMBSŽDJOTJOEFOFõJUJ 2 sind π + a n - sind π + a n = 3 sinc π - a mDPTa sinc π + a mDPTa 6 62 2 2 sind π + a n = 3π cosc π - a mTJOa cosc π + a mmTJOa = sin 2 2 6 23 tanc π - a mDPUa tanc π + a mmDPUa π 2 2 a= cotc π - a mUBOa cotc π + a mmUBOa 6 2 2 #JS \"ÀŽOŽO 5SJHPOPNFUSJL %FôFSMFSJOJO %BS \"ÀŽ $JOTJOEFO:B[ŽMNBTŽ %m/*m 3π 3π sinf - a p = -DPTa sinf + a p = -DPTa ±M¿ÐMFSJÕ÷aPMBOB¿ŽMBSŽOUSJHPOPNFUSJLPSBO- MBSŽOŽOaB¿ŽTŽOŽOUSJHPOPNFUSJLPSBOMBSŽDJOTJO- 2 2 EFOFõJUJ cosf 3π - a p = -TJOa cosf 3π + a p =TJOa TJO Õ- a ) =TJOa TJO Õ+ a ) = -TJOa 2 2 DPT Õ- a ) = -DPTa DPT Õ+ a ) = -DPTa UBO Õ- a ) = -UBOa UBO Õ+ a ) =UBOa tanf 3π - a p =DPUa tanf 3π + a p = -DPUa DPU Õ- a ) = -DPUa DPU Õ+ a ) =DPUa 2 2 cotf 3π - a p =UBOa cotf 3π + a p = -UBOa 2 2 2 π 33  -  3 6

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 27 ÖRNEK 29 \"öBôŽEBLJCPöMVLMBSŽVZHVOöFLJMEFEPMEVSVOV[ D 18 C \"#$%ZBNVL a. 5PQMBNMBSŽ™PMBOB¿ŽMBSŽOTJOÐTMFSJ UBOKBOU- a 6 14 <\"#><$%> MBSŽFõJUUJS 12 maA%DCk = a 6 C a + b =™jTJOa = 180°–a | |AD =CS | DC | =CS   DPTa = A 18 32 14 B | |BC =CS | |AB =CS   UBOa =   DPUa =PMVS :VLBSŽEBLJWFSJMFSFHÌSF DPTaEFôFSJLBÀUŽS B  ,PTJOÑTMFSJOFmLPUBOKBOUMBSŽOB cos^ 180° - a h = 6 C  TJO a) =TJO š- b) =TJOb 14  DPT a) =DPT š- b) = -DPTb 3 -3 UBO a) =UBO š- b) = -UBOb - cos a = & cos a = DPU a) =DPU š- b) = -DPUb 77 ÖRNEK 30 \"öBôŽEBLJJGBEFMFSJOFOTBEFIBMMFSJOJCVMVOV[ ÖRNEK 28 a) sinc r - x m C cosc r + x m 2 2 \"öBôŽEBLJJGBEFMFSJOFOTBEFCJÀJNMFSJOJCVMVOV[ a. sin 50°. tan 70° D sinc r + 2x m  E cosc r - 3x m 2 2 sin 310°. cot 160° C. sin 28°. cot 36° F  tanc r - 4x m  G cotc5x + rm 2 2 sin 152°. cot 144° cos^ 2π - a h. sin^ 7π - a h. cotf 11π - a p g)TJO Õ+ a ) I DPT ÕmB 2 K UBO Õ+B   L DPU Õmi ) D l) sinc 2r - x m N cosf 3r + i p tan^ 3π + a h. cos^ 7π + a h. sin^ 11π + a h 2 2 P DPT Õ+ x ) n) UBO ÕmY   S cotf 3r + 2i p sin 50° . tan 70° cos 40° . tan 70° Q tanf 3r - 2i p 2 a) = 2 sin 310° . cot 160° ^ - sin 50° h^ – cot 20° h sin 50° . cot 20° DPTY  -TJOY =1 sin 50° . cot 20° sin 28° . cot 36° sin 28° . cot 36° C  = = - 1 sin 152° . cot 144° sin 28° .^ - cot 36° h DPTY  TJOY cos^ 2π - a h. sin^ 7π - a h. cotd 11π - a n DPUY  -UBOY 2 -TJOB  -DPTB D  tan^ 3π + a h. cos^ 7π + a h. sin^ 11π + a h UBOB  -DPUi 6 4 44co7s a4 44 8 6 44s7in a44 8 6 4 44ta7n a4 44 8 x i cos^ 2π - a h. sin^ π - a h. cotd 3π - a n - sin - cos 2 =1 2 2 1ta4n4^2π +4 3h. 1c4os4–4^c2oπs+4a 3h. 1s4in4^2π +4a4 3h -UBOY  DPTY tan a a4 4a4 – sin a DPUi -UBOi 27. B ,PTJOÑTMFSJOFmLPUBOKBOUMBSŽOBC TJObmDPTbmUBObmDPUb 34 - 3 28. B C mD  7

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 31 ÖRNEK 33 \"öBôŽEBLJÌ[EFöMJLMFSEFOEPôSVPMBOMBSJÀJOCPöLV- ôFLJMEF UFOJT PZOBZBO CJS TQPSDVOVO WVSEVóV UPQ ZFS UVMBSB% ZBOMŽöPMBOMBSJÀJO:ZB[ŽOŽ[ EÐ[MFNJJMF™MJLB¿ŽZBQŽZPS a. TJO Õ- a ) =TJOB B C DPT Õ- a ) = -DPTa 32° D tanf 19π + a p =DPUa YA 2 5PQ ZFSF ¿BSQUŽLUBO TPOSB ™ TBQBSBL [\"# ZPMVOV J[- E cotf a – 7π p = -UBOa MJZPS 2 TJOš=YPMEVôVOBHÌSF  ( Y%AB )BÀŽTŽOŽOLPTJOÑT EFôFSJOJYDJOTJOEFOCVMVOV[ Y  TJO Ö- a) = -TJOB D  DPT Ö-a) =DPT Ö- a) = -DPTa DPTš=DPT š+ 32°) = -TJOš= - x Y tand 19π + a n = tand 3π + a n = - cot a 22 D cotd a - 7π n = cotd π + a n = - tan a 22 ÖRNEK 32 ÖRNEK 34 \"öBôŽEBLJUBCMPZVVZHVOöFLJMEFEPMEVSBMŽN  DPT™= x PMEVôVOBHÌSF TJOšEFôFSJOJOYDJOTJOEFOFöJUJ- OJCVMVOV[ TJOš=TJO š+š =TJOš DPTš=DPT š+š = -TJOš= -x ¦Ì[ÑN ÖRNEK 35 EFSFDF 120° š š 210° š 240° 300° #JS\"#$пHFOJOJOJ¿B¿ŽMBSŽ WA , WB ve XC EJS 2π 3π 5π 7π 5π 4π 5π #VOBHÌSF SBEZBO 3 4 6 3 4 3 3 tan WA · tan WB + XC 22 DPT 1 2 332 1 1 - - --- - 2 JGBEFTJOJOFöJUJOJCVMVOV[ 2 2 222 2 \"+ B +$= 180° 3 2 1 1 2 33 B +$= 180°-\" 2 2 - --- B + C 180° - A TJO 2 2 22 = 2 22 UBO - 3 1 1  3 -3 tand A n. tand 90° - A n - - 3 1 22 DPU - 3 AA tan · cot = 1 3 - - 3 3  11 22 - 33 31. :%:%  33. mY 34. mY1

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 36 ÖRNEK 39 x + y = π PMEVôVOBHÌSF  C :BOEBLJ ZBSŽN ¿FN- 2 CFSEF[AB]¿BQUŽS UBO Y+Z  JGBEFTJOJOFöJUJOJCVMVOV[ 10 45° D \"#$пHFO 45° 135° | |AB =CS tan (3^>x +π y h + y) = tand 3· π +yn | |A B CD =CS 2 | |DB =CS 2 :VLBSŽEBLJ WFSJMFSF HÌSF  cota B%DA k EFôFSJOJ CVMV- tand 3π + y n = - cot y OV[ 2 ÖRNEK 37 ]\"$]2 + 242 =2 ]\"$]= 10 0 < a < π WF tanf 3π - a p = 3 PMEVôVOBHÌSF  DPUš= -1 2 24 cosecd π + a n. cot_ π - a i 2 JGBEFTJOJOFöJUJOJCVMVOV[ tand 3π - a n = cot a = 3 ÖRNEK 40 2 4 DPTFD d π \"õBóŽEBCJSIBWBTBIBTŽOŽOMB[FSŽõŽOMBSŽZMBË[EFõLBSF- A 2 + a n. cot^ π - a h MFSFCËMÐONÐõCJSLFTJUJWFSJMNJõUJS#VMB[FSŽõŽOMBSŽOEBO CJSJEEJS\"WF#OPLUBMBSŽOEBCVMVOBOV¿BLMBSEPóSVTBM 1 ·^ - cot a h CJSSPUBJ[MFZFSFL$OPLUBTŽOBHFMJZPSMBS 5k π a sind + a n B 4k 1 4 44co22s a4 443 C 3k B 1 ·d - 3 n = - 5 34 4 5 A 180°–a ÖRNEK 38 b 4k 3k d1 cosf 3π + x p 180°–a b  < x <ÕWF 2 = - 3 cotd x - π n 2 2k C 3k 2 \"EBOIBSFLFUFEFOVÀBôŽOE1ŽöŽOŽJMFZBQUŽôŽQP[JUJG ZÌOMÑBÀŽaWF#EFOIBSFLFUFEFOVÀBôŽOE1ŽöŽOŽJMF PMEVôVOBHÌSF YJOBMBCJMFDFôJEFôFSMFSJCVMVOV[ ZBQUŽôŽQP[JUJGZÌOMÑBÀŽbPMEVôVOBHÌSF  UBOaUBOb 6 4 44s7in x4 448 EFôFSJLBÀUŽS cosd 3π + x n -3 2 -3 j - cos x = = cotd x - π n 2 2 4 14442 42443 UBOb = – tan x 3 3 3 cos x = UBOa = - 2 2 x =š Y= 330° d 4 n.d - 3 n = - 2 EJS 32 mDPUZ 5 38. šš  m40. m 37. – 4

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 41 5SJHPOPNFUSJL 'POLTJZPOMBSŽO \"ÀŽ %FôFSMFSJOF (ÌSF4ŽSBMBONBTŽ #JS\"#$пHFOJOEF m (WA) > 90°, A ( ABC ) =CSWF %m/*m | |AB =CSPMEVôVOBHÌSF cot XA + cot XB EFôFSJOJCV- 7FSJMFO B¿ŽMBSŽO USJHPOPNFUSJL EFóFSJ EBS B¿Ž MVOV[ DJOTJOEFOCVMVOVS h=12C h.8 5SJHPOPNFUSJL EFóFSMFS BSBTŽOEBLJ CÐZÐLMÐL  DxA = 48 LпÐLMÐLJMJõLJTJOJOCFMJSMFOFCJMNFTJJ¿JOUSJHPOP- NFUSJLEFóFSMFSCJSJN¿FNCFSEFFLTFOMFSFUBõŽ- 2 OŽS I= 12 cot XA + cot%B .. 2 x x+8 8 2 -+ == 8 B 12 12 12 3 3 ÖRNEK 42 ÖRNEK 43 \"OBMJUJL EÐ[MFNEF \"     WF #     OPLUBMBSŽOEB CV- \"öBôŽEBLJ TBZŽMBSŽ LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBZŽ- MVOBOJLJLBSŽODBEPóSVTBMCJSZPMJ[MFZFSFL$  L OPL- OŽ[ UBTŽOEBCVMVõVZPS a) x =TJO™ Z=TJO™ [=TJO™ 0   PMNBLÐ[FSF CVLBSŽODBMBSŽOZFLTFOJJMFPMVõ- C x =TJO™ Z=TJO™ [=TJO™ UVSEVLMBSŽB¿ŽMBSBSBTŽOEB m % = 2m ( % )CBóŽO- ( OCB ) OCA D x =TJO™ Z=DPT™ [=UBO™ UŽTŽWBSEŽS E  x =TJO™ Z=UBO™ [=DPU™ #VOBHÌSF  tan ( % ) EFôFSJOJCVMVOV[ F  x =TJO™ Z=TJO™ [= -TJO™ BAC B  [=TJOš=TJOš ÷ÀBÀŽPSUBZUFPSFNJOEFO x < y <[ OC BC C  Z=TJOš= -TJOš  [=TJOš= -TJOš = & 5 OC = 3 OA olur. < < y <[< x OA AB D  Z=DPTš=TJOš 3k 5k x <[< y y L 2 + 82 = L  E  Y=TJOš=TJOš C L= 2 y =UBOš= -UBOš aa  [=DPUš=UBOš> 1 3k tan ( % ) = - 6 =-2 BAC y < x <[ 3 F  Y=TJOš= -TJOš 5k y =TJOš= -TJOš  [= -TJOš= -TJOš x < y <[ 35x A(3, 0) B(8, 0) 2 42. m 37 43. a) YZ[ C Z[Y D Y[Z E ZY[ F YZ[ 41. 3

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 44 ÖRNEK 46 \"öBôŽEBLJFöJUMJLMFSJOLBÀUBOFTJEPôSVEVS aWFbEBSBÀŽPMNBLÑ[FSF * DPT™<TJO™ TJOa >TJOb ** UBO™<DPU™ PMEVôVOB HÌSF  BöBôŽEBLJMFSEFO IBOHJMFSJ EBJNB EPôSVEVS *** DPT™<TJO™ * DPUb >DPUa **DPTa >DPTb *7 DPT™>TJO™ *** UBOa >DPUb *7DPTa >DPUb 7 UBO™>DPT™ 7 UBOa >UBOb * TJOš<TJOš ** UBOš<UBOš y *** -TJOš< -TJOš *7 DPTš> -TJOš cotb 7 UBOš> -DPTš cota a tanb b tana cosa cosb x ÖRNEK 45 *%PôSV **:BOMŽö ***#JMFNFZJ[ *7#JMFNFZJ[ 7%PôSV Õ < a < b < 3π PMNBLÐ[FSF ÖRNEK 47 2 a =TFD™ BöBôŽEBLJMFSEFOIBOHJMFSJEPôSVEVS * TJOa >TJOb  C=DPTFD™ ** DPTb >DPTa *** UBOa >UBOb  D=DPU™ *7 DPUb >DPUa 7 TJOa >UBOb y  E=UBO™ cota PMEVôVOB HÌSF  B  C  D  E BSBTŽOEBLJ TŽSBMBNBZŽ CV- cotb MVOV[ cosa a = sec 1° = 11 cosb tanb = sina cos 1° sin 89° sinb tana 1 b = cosec 1° = x sin 1° D=UBOš E=UBOš 1 >TJOš>TJOš 11 1< < sin 89° sin 1° * %PôSV **%PôSV ***:BOMŽö *7:BOMŽö UBO44° <UBOš= 1 7 <sin– a > <ta+n b ZBOMŽö C> a >E>D 44. * ** 38 * 7 47. CBED

5SJHPOPNFUSJL'POLTJZPOMBS*** TEST - 8 1. \"öBôŽEBLJMFSEFOIBOHJTJ ZBOMŽöUŽS 4. TFD™=BPMEVóVOBHËSF A) TJO™=DPT™  TJOš  EFôFSJ BöBôŽEBLJMFSEFO IBOHJTJOF FöJU- B) UBO™=DPU™ UJS C) TFD™=DPTFD™ D) DPT™+DPT™= A) -a B) 1 C) a D) a & B E) UBO™DPU™= a 2. tan 10° + cos 20°    TJOY-DPTY = cot 80° sin 70° PMEVôVOBHÌSF UBOYEFôFSJLBÀUŽS JöMFNJOJOTPOVDVLBÀUŽS A) 1 B) 2 C) 4 D) - 3 E) - 3 \"  #  $  1 D)  E)  3 3 3 42 2  3. r < x < 3r WFUBOY-=  r < x < 3r ve tan x = 1 PMEVôVOBHÌSF  2 22 PMEVôVOBHÌSF DPTYEFôFSJLBÀUŽS sin x + cos x sin x - cos x A) - 3 B) - 4 C) - 3 5 5 4 JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS E) - 3 D) - 3 2 4 A) - B) - $  %  &  1. & 2. B 3. \"  4. B & \"

TEST - 9 5SJHPOPNFUSJL'POLTJZPOMBS*** 1.  G Y =DPTY+DPTY+DPTY 4. \"#$ÑÀHFOJOEF  PMEVôVOBHÌSF  fc π mEFôFSJLBÀUŽS | |cos(WB) = 3 , cos(XC) = - 3 WF AC =DN 6 25 3 3 3 | |PMEVôVOBHÌSF \"# LBÀDNEJS A) B) + 1 C) - 1 2 2 2 3-1 \"  #  $  D) E) 3 + 1 D) 8 3 E) 10 3 2 2 2. \"#$ÑÀHFOJOEF  UBO™B | |tan(WA) = 12 , tan(WB) = 1WF BC =CS PMEVôVOB HÌSF  UBOš  EFôFSJ BöBôŽEBLJMFS- 5 EFOIBOHJTJOFFöJUUJS | |PMEVôVOBHÌSF \"$ LBÀCSEJS \"  #  $ 12 2 %  & 13 2 \"  # B $  1 a E) - 1 D) -a a 3. A x  24x =ÖPMEVôVOBHÌSF  BH C sin 7x. cos 9x cos 5x. sin 3x  JöMFNJOJOTPOVDVLBÀUŽS | | \"#$пHFOJOEF[AH] m [BC], AH =CS \"  #  C) 3 | |BC =CSWF tan(WB) = 3 tan(XC)EŽS 2 | |:VLBSŽEBLJWFSJMFSFHÌSF \"$ = x LBÀCJSJNEJS 5 D) E)  \"  #  $  %  &   2 1. & 2. & 3. B 40 4. B & B

5SJHPOPNFUSJL'POLTJZPOMBS*** TEST - 10 1. D C \"#$%LBSF 4. 0NFSLF[MJ¿FNCFSEF |AB| |= AE | % = 5 EJS cot ( AOB ) O 12 AB AE B  :VLBSŽEBLJ WFSJMFSF HÌSF cot ( O%AB )  EFôFSJ LBÀUŽS  :VLBSŽEBLJWFSJMFSFHÌSF  tan ( % ) LBÀUŽS CDE \"  #  $  1 D) 1 E) 2 \"  #  $  %  2 E) 1 2 33 3 3 2. A \"#$EJLпHFO 3 [ AB ] m [ BC ] H [ BH ] m [ AC ] | |AB =CS  a + i =™WFsin (2a + 3i) = 5 e | |BC =CS 13 B4 C % PMEVôVOBHÌSF UBOiEFôFSJLBÀPMBCJMJS m ( HBC ) = i :VLBSŽEBLJWFSJMFSFHÌSF UBOiLBÀUŽS A) 5 B) 5 C) 12 D) 12 E) 13 13 12 13 5 5 22 32 22 A) B) C) 5 8 3 3 E) 4 D) 3 5 3.  ôFLJMEFLJ0\"#EJLпHFOJOEF\"   EJS T y 12 A(1, 2) P 8A O B [15 0NFSLF[MJZBSŽN¿FNCFSF5OPLUBTŽOEBUF- x OB óFUUJS m ( A%BO ) = a PMEVôVOBHÌSF UBOaLBÀUŽS | | | |PT =DN  PA =DNWFm(T%PB) = aEŽS :VLBSŽEBLJWFSJMFSFHÌSF TJOaEFôFSJLBÀUŽS 1 3 2 5 12 A) 3 B) 2 C) 2 D) 1 E) 1 A) B) C) D) E) 4 5 3 3 2 2 2 3 13 13 41 1. \" 2. & 3. D 4. D D &

TEST - 11 5SJHPOPNFUSJL'POLTJZPOMBS*** 1. A :BOEBLJõFLJMEF 4. DPT -™  <\"#>m<#$> EFôFSJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS D <#%>m<\"$> | |AB =CS 3 1  % A) B) C) m ( BCA ) = i 2 2  E) - 3 B C D) - 1 2 2 | |:VLBSŽEBLJWFSJMFSFHÌSF %$ BöBôŽEBLJMFSEFO IBOHJTJEJS A) sin i B) cot i C) tan i cot i sin i cos i D) cos i  & TJOi tan i A   TJO -™  2.  EFôFSJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS cb \" DPT™ # -DPT™ $ TJO™ D) -TJO™ & -TJO™ 30° a 40° B C  õFLJMEFWFSJMFOMFSFHÌSF  cos 20° PSBOŽÑÀHFOJO cos 50° LFOBSMBSŽDJOTJOEFOBöBôŽEBLJMFSEFOIBOHJTJOF FöJUUJS c a a2 4b2 4c2 A) B) C) D) E) a c bc ac ab  \"öBôŽEBLJMFSEFOIBOHJTJDPTc x - r mEFôFSJOF 2 FöJUEFôJMEJS \" TJOY # -TJO Õ+ x ) 3. \"öBôŽEBLJMFSEFO IBOHJTJOJO EFôFSJ EJôFSMFSJO- C) - cosf 3r - x p D) cosc r + x m 2 2 EFOGBSLMŽEŽS \" DPT # TJO -  $ -DPT E) cosc r - x m 2 % DPT -  & TJO - 1. D 2. B 3. & 42 4. & \" D

5SJHPOPNFUSJL'POLTJZPOMBS*** TEST - 12 1. TJO™+TJO -™ +DPT™ 4. \"öBôŽEBLJMFSEFO LBÀ UBOFTJ DPTš EFôFSJOF  UPQMBNŽBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS FöJUEFôJMEJS r -TJO™ A) - 1 B) - 3 C) 1 r DPT™ 2 2 2 r TJO™  r TJO™ D) 3 r DPT -™  E) 2 \"  #  $  %  &  2. sin 5° . cos 5° . tan 5°  \"öBôŽEBLJMFSEFOLBÀUBOFTJZBOMŽöUŽS sin 85° . cos 95° . tan 175° r sinc π - a m = - cos^ π + a h 2  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS r DPT Õ+ a ) =DPT Õ- a ) \" DPU™ # TFD™ $  r tanf 3π + a p = tan^ π – a h %  2 & - r cot^ π – a h = tanf 3π + a p 2 r sinf 3π - a p = sin^ π + a h 2 \"  #  $  %  &  3. \"öBôŽEBLJMFSEFO IBOHJTJ DPT -š  EFôFSJOF cos^ 489π h + sinf – 9π p - tan^ –15π h FöJUEFôJMEJS  2 \" DPT™ # -DPT™ $ -DPT™ cotf 21π p 4 % TJO™ & -DPT™ JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  C) - % - & - 1. $ 2. $ 3. & 43 4. B B $

TEST - 13 5SJHPOPNFUSJL'POLTJZPOMBS*** 1. \"õBóŽEBË[EFõLBSFMFSEFOPMVõBOõFLJMWFSJMNJõUJS 4. A \"#$пHFO  H [AB] m [BC] [BH] m [AC] a AH = 2 b HC 3 BC  :VLBSŽEBLJWFSJMFSFHÌSF cos ( % ) EFôFSJLBÀ- ACB  #VOBHÌSF UBOa +UBObEFôFSJLBÀUŽS UŽS A) 1  #  $  1  %  &  5 A) 15 B) 15 C) 10 D) 10 E) 6 2 4 2 7 5 5 75 2. DPT™+DPT™+DPT™++DPT™  B [AC>¿BQ JöMFNJOJOTPOVDVLBÀUŽS C 0NFSLF[ O I IA BC =CS \"  #  31 $  D) 33  &  I IAB =CS 2 2 D :VLBSŽEBLJWFSJMFSFHÌSF  tan aB%DCk EFôFSJLBÀ- UŽS 5 5 C) 12 13 E) 12 A) B) 5 D) 12 13 5 13 3. π < x < πPMNBLÑ[FSF 2 sin2x – cos2x = 2 cos x 3  PMEVôVOBHÌSF DPTYEFôFSJLBÀUŽS   DPU ™+ a ) =C 3 10 2 10 10 PMEVôVOBHÌSF DPU š-B EFôFSJOJOCUÑSÑO- A) - B) - C) - EFOFöJUJOFEJS 10 10 10 A) - 1 $  1  % C &  b b b 2 35 2 10 B) -C D) - E) - 5 5 1. D 2. B 3. \" 44 4. B \" $

5SJHPOPNFUSJL'POLTJZPOMBS*** TEST - 14 1. UBOY-DPUY=PMEVôVOBHÌSF  4.  UBO Y+ UBO Y- = tan3 x  EFOLMFNJOJ TBôMBZBO FO LÑÀÑL Y EBS BÀŽTŽ LBÀ 1- tan6 x EFSFDFEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  A) - 1 B) - 1 C) - 1 18 21 24 D) - 1 E) - 1 30 36  < x < π WF 1 – 1 = –3 2 cos x – 1 cos x + 1 2. a +C=šPMEVôVOBHÌSF PMEVôVOBHÌSF UBOYEFôFSJLBÀUŽS UBO B+C UBO B+C  C)   A) 2 3 B)  D)  2  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS E) A) - #  $ UBOC 3 % DPUB & -UBOBDPUC 3. cot x = 1 PMEVôVOBHÌSF   BJMFCEBSBÀŽMBS a + b = π WF 2 5 tan2 x - sin2 x TJO B+C = - 1 cot2 x - cos2 x 3  JöMFNJOJOTPOVDVLBÀUŽS  PMEVôVOBHÌSF  tanc π + b mEFôFSJLBÀUŽS 2 \"  #  $  D) 1 E) 1 A)   B) 3 2  $  16 64 D) –2 2 E) - 3 2 1. & 2. & 3. \"  4. \" D D

TEST - 15 5SJHPOPNFUSJL'POLTJZPOMBS*** 1. x =DPT™ 4. r < x < y < 3r PMNBLÐ[FSF  Z=TJO™ 2  BöBôŽEBLJMFSEFOLBÀUBOFTJEPôSVEVS   [=DPT™  PMEVôVOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBO- r DPTY<DPTZ HJTJEPôSVEVS r TJOY<TJOZ r UBOY<UBOZ A) x <Z<[ # Y<[<Z $ Z< x <[ r DPUY<DPUZ r TFDY<TFDZ % Z<[<Y & [<Z< x r DPTFDY<DPTFDZ \"  #  $  %  &  2. a =UBO™ C=UBO™ D=UBO™  \"öBôŽEBLJMFSEFOIBOHJTJFOCÑZÑLUÑS PMEVôVOBHÌSF B C DBSBTŽOEBLJTŽSBMBNBBöB- ôŽEBLJMFSEFOIBOHJTJEJS \" C< a <D  # C<D< a C) a <C<D \" DPT™ # TJO™ $ DPU™ D) a <D<C & D<C< a % UBO™ & TJO™ 3. a =TJO™ C=DPT™   0 < a <šPMNBLÑ[FSF D=UBO™ E=DPU™ a = cosd π – a n 2  PMEVôVOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBO- HJTJEPôSVEVS b = sind π + a n 2 D=DPU a +Õ A) a <C<D<E  # D<E< a <C  PMEVôVOBHÌSF B C DBSBTŽOEBLJTŽSBMBNBBöB- ôŽEBLJMFSEFOIBOHJTJEJS $ D<E<C<B  % E<D< a <C A) a <C<D # B<D<C $ D< a <C & E<D<C< a % D<C<B & C< a <D 1. \" 2. \" 3. D  4. B $ \"

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ,04÷/·47&4÷/·45&03&.-&3÷ ÷MJöLJMJ,B[BOŽNMBS 11.1.2.2 : ,PTJOÐTUFPSFNJZMFJMHJMJQSPCMFNMFSJ¿Ë[FS 11.1.2.3 : 4JOÐTUFPSFNJZMFJMHJMJQSPCMFNMFSJ¿Ë[FS ,PTJOÑT5FPSFNJ ÖRNEK 1 m63$7 A \"#$пHFO A x 23 2 13 | |AB = 2 3 CS B 10 | |AC = 2 13 CS H b | |C BC =CS c–x hc PMEVôVOBHÌSF m ( WB )LBÀEFSFDFEJS B aC ^ 2 13 h2 = ^ 2 3 h2 + ^ 10 h2 - 2.2 3 .10. cos XB  \"#$пHFOJOEFB =C +D -CDPT WA FõJUMJ- = 12 + 100 - 40 2 cos XB óJOF,PTJOÑT5FPSFNJBEŽWFSJMJS 40. 3 cos XB = 60  :VLBSŽEBLJ\"#$пHFOJOJO $LFOBSŽOBBJUZÐL- TFLMJóJIDPMTVO 3  \")$ WF #)$ EJL пHFOMFSJOEF 1JTBHPS UFPSF- 60 3 3 NJOEFOGBZEBMBOBSBL cos b = = =  #= 30° 40 3 2 3 2  ID) =C- xn  ID) = a- D- x )o 2  CVMVOVS ÖRNEK 2 n WFoEFOLMFNMFSJCJSMJLUF¿Ë[ÐMEÐóÐOEF A  C - x = a - D- x )FMEFFEJMJS x3  #VSBEBO 60° 2 C a -D +DY- x =C - x B a =C+D -DYpCVMVOVS | |\"#$пHFOJOEFm (WB) = 60°, AC =  CSWF | |BC =CSEJS  \")$EJLпHFOJOEF | |:VLBSŽEBLJWFSJMFSFHÌSF \"# =YLBÀCJSJNEJS cos WA = x & x = b cos WA b #VEFóFSp EFOLMFNJOEFZFSJOFZB[ŽMŽSJTF a2=C2 +D2 -CDDPT X\" FMEFFEJMJS ,PTJOÑTUFPSFNJOEFO ^ 3 h2 = 2 + 2 - 2.2.x. cos 60° 2 x %m/*m 0 = x2 - 2x + 1  C = a +D -BDcos WB 0 = (x - 1)2 Z x =EJS D = a +C -BCcos XC 47 1. 30° 2. 1

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 3 ÖRNEK 6 A x \"#$пHFO A 8 ABC üçHFO 2 5 <%&>m<#$> 2 D D | |BD =CS | |AD =CS | |DA =CS 4 | |BD =CS 3x | |BE =CS | |C BE =CS | |C EC =CS a a B3 E B 4 E3 | |EC =CS | |AC =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"$ LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  %& =YLBÀCJSJNEJS ,PTJOÑTUFPSFNJOEFOY2 =2 + 82 -DPTa \"#$ÑÀHFOJOEFLPTJOÑTUFPSFNJOEFO =2+ 72 -DPTa 2 3  x2 = 28 j x = 2 7 x2 = 100 - 8 · DPTa = 10 1 4 cos a = ÖRNEK 4 7 D 12 C \"#$%QBSBMFMLFOBS #%&ÑÀHFOJOEFLPTJOÑTUFPSFNJZB[BSTBL 120° x x2 = 32 + 42-DPTa 6 4 m ( A%DC ) = 120° x2= - 2.3.4 1 E F | |AE =CS 7 4 120° 2 A x = 151 & x = 151 G 77 | |DE =CS ÖRNEK 7 B | |CF =CS | | | |DC =CSPMEVôVOBHÌSF  &' =YLBÀCJSJNEJS A ôFLJMEF &'(ÑÀHFOJOEFLPTJOÑTUFPSFNJOJZB[BSTBL 10 | |AC =CS x2 = 122+ 22 -DPTš | |BC =CS x C 5 D | |CD =CS a | |CE =CS a x2= 144 + 4 - 2.2.12. d - 1 n 12 7 2 B 6 x2 = 172 x = 2 43 E ÖRNEK 5 | |DE =CSWF[ AE ] a[ BD ] = { C }EJS \"#$ÑÀHFOJOJOLFOBSV[VOMVLMBSŽBSBTŽOEB | |#VOBHÌSF  \"# = x LBÀCJSJNEJS  D = a +C -BC \"#$WF$%&ÑÀHFOMFSJOEFLPTJOÑTUFPSFNJZB[ŽMŽSTB CBôŽOUŽTŽPMEVôVOBHÌSF m ( WC )LBÀEFSFDFEJS 72 =2 +2 -DPTa ,PTJOÑTUFPSFNJOEFOD2 = a2 +C2 -BCDPT X$ 1 a2 +C2 -BCDPT X$ = a2+C2 -BC 2 ab . cos XC = ab 12 =DPTa jDPTa = cos XC = 1 j XC = 60°EJS 5 2 x2 = 102+ 122 -DPTa x2= 100 + 144 - 2.10 . 12 . 1 5 x2 = 244 - 48 j x2=j x = 14 3. 2 7 4. 2 43  48 151 7 14  7


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook