Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 5. Modül Trigonometri

AYT Matematik Ders İşleyiş Modülleri 5. Modül Trigonometri

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-24 01:33:36

Description: AYT Matematik Ders İşleyiş Modülleri 5. Modül Trigonometri

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- %J[HJ–(SBGJL5BTBSŽN *4#//P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ   ÷MFUJöJN       &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*   JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * ÜNwİVwwE.aRydiSnyaİyTinlEariY.coEm.tHr AZIRLIK ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ MATEMATİK - 2 5. MODÜL Alt bölümlerin Karma TestlerTrigonometri EDĜOñNODUñQñL©HULU KARMA TEST - 4 TRİGONOMETRİ 1. 0 # x #ÖPMNBLÑ[FSF 4. arccosf 1 p = arc cotf 12 - 4x p cos x + 2 sin π x2 + 1 9 6 =1 ³ Dik Üçgende Trigonometrik Oranlar t 2 cos 5π - sin 3π FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS 32 A) 3 B) 2 C) 3 D) 7 E) 4 Modülün sonunda  PMEVôVOBHÌSF YLBÀUŽS 22 tüm alt bölümleri L©HUHQNDUPDWHVWOHU ³ Trigonometrik Fonksiyonlar t 11 π π 5π 2π 5π A) B) C) D) E) 6 3 12 3 6 ³ Trigonometrik Fonksiyonların Grafikleri t 35 ³ Ters Trigonometrik Fonksiyonlar t 46 6ñQñIð©LðĜOH\\LĜ 2. C ³ Kosinüs ve Sinüs Teoremleri t 52 5. %JLLPPSEJOBUTJTUFNJOEFWFSJMFOBõBóŽEBLJHSBGJL y ·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ x y = a +CTJO DY GPOLTJZPOVOBBJUUJS ³ Toplam - Fark Formülleri t 63 Dy %÷,·¦(&/%&53÷(0/0.&53÷,03\"/-\"3 www.aydinyayinlari.com.tr 2 Formü%mll/e*rmi t ÖRNEK 2 AB O Õ x \\HUDOñU Bir ABC üçgeninde [ BA ] m [ CA ], m ( A%BC ) = a ve ABDC dörtgeninde, [AC] m [CD], [CD] m [DB] –2 ABC dik tan a = 3 olarak veriliyor. ³ İki Kat Açı 74 % I I[ CB ] m[ AB ], m(B%CD) = a, AC = x br, BAC ) 4 üçgeninde m( = a olsun. ·ÀHFOJO[ BC ]LFOBSŽOŽOV[VOMVôVCJSJNPMEVôVOB %XE¸O¾PGHNL¸UQHN  #VOBHÌSF B+ b +DUPQMBNŽLBÀUŽS HÌSF \"#$ÑÀHFOJOJOÀFWSFTJLBÀCJSJNEJS VRUXODUñQ©¸]¾POHULQH A I ICD = y br dir. ³ Trigonometrik Denklemlaer t,PNõV%JL,FOBS 82 \"  #  $  %  &  Hipotenüs  #VOBHÌSF ZOJOYWFa DJOTJOEFOFöJUJBöB- <HQL1HVLO6RUXODU<(1m1(6m/6258/$5 ôŽEBLJMFSEFOIBOHJTJEJS ³ Karma Testler t 91 A) x.sina B) x.cosa C) x.tana ³ Yeni Nesil SoruBlar t 101,BSõŽ%JL,FOBS C D) x.sin2! TrigonomeEtr)i x sin 2a 2 | |A B = c br DNñOOñWDKWDX\\JXODPDVñQGDQ 6. 3. EôFLJMEFLJHJCJCJSCJMBSEPNBTBTŽOEB9OPLUBTŽO- | |AC = b br 1. (Ë[IJ[BTŽWFZFSEÐ[MFNJBSBTŽNPMBOCJSCBT- 3. LAFUCPMDV¿FNCFSTFWJZFTJ NZÐLTFLMJóJOEFPMBO EBOBUŽõBIB[ŽSMBOBOCJSPZVODVCFZB[UPQV\"WF | |BC = a br olmak üzere, QPUBZB™MJLB¿ŽZMBBUŽõZBQŽZPS O #OPLUBMBSŽBSBDTŽOEBCJSZFSF¿BSQUŽSBSBLLŽSNŽ[ŽUP- B Q4VWCVSNBxZB¿BMŽõBDBLUŽS A 20 0RG¾O¾QJHQHOLQGH\\RUXP \\DSPDDQDOL]HWPHYE ,BSõŽ%JL,FOBS a ÖRNEK 3 XODĜDELOLUVLQL] O 1m A 5m B 3m EHFHULOHUL¸O©HQNXUJXOX sina = = B F VRUXODUD\\HUYHULOPLĜWLU Hipotenüs 1 b G F a ôFkildeki dikdört- 35° % cosa = ,PNõV%JL,FOBS = c C genler QSJ[NBTŽ x 3,5 m 2m 3m 1,8 m 15 ôFLJMEFLJ0NFSLF[MJçemberde, [EF] m [AD], Hipotenüs b için, C H E | |EF = 15 br % A 7 | |BE = 7 br AD1,F5 B I I'UFóFUOPLUBTŽ m ,BSõŽ%JL,FOBS a % ( )m= x , AO = 20 cm, 2,7 m tana = = 0NFSLF[MJ¿FNCFSJOZBSŽ¿BQŽDN m ( BAC ) = A ,PNõV%JL,FOBS c 3 24 I IBC = 4 cm dir. X cota = ,PNõV%JL,FOBS = c | |AB = 24 br ve m(H%GB) = a PMEVôVOBHÌSF UBOa sin 2A = dir. ,BSõŽ%JL,FOBS a 2  #VOBHÌSF ÀFNCFSJMFCBTLFUCPMDVB#SVBOTŽBOHEÌBLSFJ UBOYL BÀUŽS#VOB HÌSF  PZVODV \" OPLUBTŽOEBO LBÀ NFUSF deôFSJLBÀUŽS I I#VOBHÌSF  BC =YLZBBÀUBDZNVE[JBSLMŽLZBLMBöŽLLBÀNFUSFEJS  V[BôBCFZB[UPQVÀBSQUŽSŽSTBLŽSNŽ[ŽUPQVWVSB- $OW%¸O¾P7HVWOHUL A) 4 5 CC)J2MJS D) 7 E) 3 B) 1 Hipotenüs b Her alt bölümün seca = = = VRQXQGDRE¸O¾POHLOJLOL $( tan 35°=% PMBSB&L BMŽOŽ[ 33 3 \"  #  cosa ,PNõV%JL,FOBS c A) 5  #  5  $  %  25  &  25 TEST - 1 Hipotenüs b Dik Üçgende Trigonometrik Oranlar 2. E \"3 .C  #   $  94%   &   3 4 78 6. A coseca = 1 = = 1. B 4. A 5. A sina ,BSõŽ%JL,FOBS a 1. A B ÖARBNCEDK ka4re 4. H G ôFLJMEFLJLÐQUF E C ÖRNEK 1 3|DE| = |DC|A ABx Cy dik üçgen m ( D%HB ) = x $\\UñFDPRG¾OVRQXQGD a [ AB ] m [ AC ]F WDPDPñ\\HQLQHVLOVRUXODUGDQ % = a CA % = y ROXĜDQWHVWOHUEXOXQXU m ( AED ) m ( BHF ) 0 < i < π ve sin i = 3 m ( % ) = i [ AH ] m [ BC ] 25 BE3C olEVôVOB göre; UBOi , cosi ve cot iEFôFSMFSJOJCV- | |%AB = 3 birim 4. \"SBMBSŽOEB  NFUSF PMBO JLJ HË[MFNDJ õFLJMEF- LJ HJCJ \" WF # OPLUBMBSŽOEB EVSNBLUBEŽS #V TŽSB- MVOVz. ai | |BH = 1 birim 2. - ¿VCVóV  N WF  N HFOJõMJóJOEFLJ CJSCJSJOF EJL EBÐTUMFSJOEFOHF¿FOCJSV¿BóŽ\"OPLUBTŽOEBLJHË[- ZPMMBSEBOPMVõBOLBOBMBõFLJMEFLJHJCJLBOBMEVWBSŽ MFNDJ™MJLCJSB¿ŽZMB #OPLUBTŽOEBLJHË[MFNDJJTF %E C B 1H m ( % ) =Ba JMFiEFSFDFMJLB¿ŽPMVõUVSBDBLõFLJMEFZFSMFõUJSJMNJõ- ™MJLCJSB¿ŽZMBHË[MFNMFNFLUFEJS ACB UJS  :VLBSŽEBLJ WFSJMFSF HÌSF  UB:OVaLB+SŽEtBaLnJiWFStJMoFpSF- HÌSF TJOa LBÀUŽS tan x PSBOŽLBÀUŽS 3m  :VLBSŽEBLJWFSJMFSFHÌSF  MBNŽOŽOTPOVDVLBÀUŽS cot y A) 3 B) 7 C) 4 D) 9 E) 5 A) 1 B) 1 C) 2 D) 66 WHVWOHU\\HUDOñU 22 E) 2 23 2. H KG ôFLJMEFLJLÐQUF 5. A i 3 44 108 5 x L 1. tan i = , cos i = , cot i = 2 1 4m 4 53 | | | |HK = 3 KG2. 5 3. 4. 3 40° 35° % 3 A B C % H 1000 m DAK ) m( = x 12  #VOBHÌSF -ÀVCVôVOVOV[VOMVôVOVi cinsin- EFOWFSFOJGBEFBöBôŽEBLJMFSEFOIBOHJTJEJS F y  #VOB HÌSF  VÀBôŽO ZFSEFO ZÑLTFLMJôJ ZBLMBöŽL Ex BC LBÀNFUSFEJS (tan40° = 0,84 ve tan35°=  \"  TJOi +DPTi #  DPTi +TJOi A) 4200  #  4300  $  4450 11 11 11 AB \"#$пHFOJOEF [ CH ] m [ AB ] m ( % ) = x $  TFDi +DPTFDi %  DPTFDi +TFDi BAC &  4600 11 :VLBSŽEBLJWFSJMFSFHÌSF TJOYLBÀUŽS m ( % ) = y UBOZ=   tan x = 8  & UBOi +DPUi  %  4500  HCB 11 3 B) 4 C) 4 15 A) 5 41 | |BH =CSEJS 5  :VLBSŽEBLJWFSJMFSFHÌSF  | AC | kaç birimEJS 1. C 2. C 101 3. E 4. A 5 6 A) 15 B) 20 C) 25 D) 32 E) 34 D) E) 41 41 3. % E C ABCD kare 6. A \"#$CJSпHFO F B [ FE ] m [ GE ] |AB| = |AC| x |AF| = 2|DF| % G m ( BAC ) = i |DE| = |EC| cos i = 5 % 13 m ( EGC ) = x m ( A%CB ) = a a AB C  :VLBSŽEBLJWFSJMFSFHÌSF DPUYLBÀUŽS  :VLBSŽEBLJWFSJMFSFHÌSF UBOa kaçUŽS A) 2 B) 3 C) 3 D) 4 E) 5 A) 2 B) 3 C) 5 D) 3 E) 4 3 4 2 3 4 3 4 12 2 3 1. D 2. D 3. C 6 4. B 5. E 6. D

ÜNwİVwwE.aRydiSnyaİyTinlEariY.coEm.tHr AZIRLIK ·/÷7&34÷5&:&)\";*3-*, MATEMATİK - 2 5. MODÜL TRİGONOMETRİ ³ Dik Üçgende Trigonometrik Oranlar t 2 ³ Trigonometrik Fonksiyonlar t 11 ³ Trigonometrik Fonksiyonların Grafikleri t 35 ³ Ters Trigonometrik Fonksiyonlar t 46 ³ Kosinüs ve Sinüs Teoremleri t 52 ³ Toplam - Fark Formülleri t 63 ³ İki Kat Açı Formülleri t 74 ³ Trigonometrik Denklemler t 82 ³ Karma Testler t 91 ³ Yeni Nesil Sorular t 101 1

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr %÷,·¦(&/%&53÷(0/0.&53÷,03\"/-\"3 %m/*m ÖRNEK 2 ABC dik üçgeninde % = a olsun. Bir ABC üçgeninde [ BA ] m [ CA ], m( % = a ve m ( BAC ) ABC ) A tan a = 3 olarak veriliyor. 4 ,PNõV%JL,FOBS a Hipotenüs ·ÀHFOJO[ BC ]LFOBSŽOŽOV[VOMVôVCJSJNPMEVôVOB HÌSF \"#$ÑÀHFOJOJOÀFWSFTJLBÀCJSJNEJS B C B | BC | = 5k =CSWF ,BSõŽ%JL,FOBS a Ç ( ABC ) =LPMEVôVOEBO 4k | |A B = c br 5k 9 A 3k k = JÀJO 5 | |AC = b br 9 108 Ç ( ABC ) = 12· = br olur. C 55 | |BC = a br olmak üzere, sina = ,BSõŽ%JL,FOBS = a ÖRNEK 3 Hipotenüs b G F ,PNõV%JL,FOBS c ôFkildeki dikdört- cosa = = a b % C genler QSJ[NBTŽ Hipotenüs 15 15 için, ,BSõŽ%JL,FOBS a H 25 E | |EF = 15 br tana = = 7 24 7 | |BE = 7 br ,PNõV%JL,FOBS c B A ,PNõV%JL,FOBS c | |AB = 24 br ve % = a PMEVôVOBHÌSF UBOa m ( HGB ) cota = = deôFSJLBÀUŽS ,BSõŽ%JL,FOBS a seca = 1 = Hipotenüs = b \"#)ÑÀHFOJOEF - 24 -Ì[FMÑÀHFOJOEFO cosa ,PNõV%JL,FOBS c |HB| =CSCVMVOVS HB 25 5 tan a = = = olur. 1 Hipotenüs b GH 15 3 coseca = = = sina ,BSõŽ%JL,FOBS a ÖRNEK 1 ÖRNEK 4 ABC dik üçgen 0 < i < π ve sin i = 3 A [ AB ] m [ AC ] 25 ab 3 [ AH ] m [ BC ] olEVôVOB göre; UBOi , cosi ve cot iEFôFSMFSJOJCV- MVOVz. B 1H | |AB = 3 birim a | |BH = 1 birim C % m ( ACB ) = a A 34 :VLBSŽEBLJWFSJMFSFHÌSF TJOa LBÀUŽS tan i = , cos i = , 45 i4 cot i = % 3 HAC BÀŽTŽOŽOÌMÀÑTÑOÑbPMBSBLBEMBOEŽSEŽôŽNŽ[EB 4k 5k % a + b =šPMVS#VEVSVNEB BAC BÀŽTŽOŽOÌMÀÑTÑOÑO B 3k C šPMNBTŽJÀJO % BÀŽTŽOŽOÌMÀÑTÑEFa olur. BAH 1 #)\"EJLÑÀHFOJOEFO  sin a = olur. 3 3 44 2 108 5 1 1. tan i = , cos i = , cot i = 2. 3. 4. 4 53 5 3 3

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 ÖRNEK 7 A FB A ABC üçgeninde k \"#$%LBSF cb | |AB = c br a [ EF ] m [&%] x x–a | |AC = b br Ba E |BE| = |EC| | |BC = a br k5 b m ( B%EF ) = a % k m ( ABC ) = a ve C % = i m ( ACB ) a % 2k C olmak üzere, c.cosa  CDPTi  UPQMBNŽOŽO EFôFSJOJ CVMVOV[ :VLBSŽEBLJWFSJMFSFHÌSF cosa TJOaWFUBOaEFôFS- MFSJOJCVMVOV[ x x-a PMEVôVOEBO cos a = & cos i = c b %  TŽOŽO ÌMÀÑTÑOÑ b PMBSBL BEMBOEŽSEŽôŽNŽ[EB  %$& x ^a-xh DEC c. cos a + b. cos i = c· c + b· b ÑÀHFOJOEF % OJOEFÌMÀÑTÑa olur. = x +B- x =BPMVS CDE |#&| = |&$| = L PMTVO #V EVSVNEB | DC | = 2k olur. %&$ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO|%&| = k 5 ol- ÖRNEK 8 EVôVOEBO  cos a = 21 1 , sin a = ve tan a = 55 2 A ABC ikizkenar üçgen PMBSBLCVMVOVS a | AB | = | AC | = 15 br H 15. | BC | = 6 5 br Eb % b m ( HBC ) = a a b [ BH ] m [ AC ] B 35 ÖRNEK 6 D 35 C A :VLBSŽEBLJWFSJMFSFHÌSF TJOaOŽOEFôFSJLBÀUŽS 2k % . ÷LJ[LFOBS ÑÀHFOEF \" LÌöFTJOEFO [BC] LFOBSŽOB JOEJSJMFO 4k ZÑLTFLMJL [BC] LFOBSŽOŽ JLJ Fö QBSÀBZB BZŽSŽS a BÀŽTŽOŽO ak E UÑNMFSJOJbPMBSBLBEMBOEŽSEŽôŽNŽ[EB  D%AC OŽOÌMÀÑTÑEF 35 5 aPMVS%\"$ÑÀHFOJOEFO sin a = = CVMVOVS 15 5 3k 3 3k 30° 6k 60° ÖRNEK 9 B C A 2k % 2k E kB \"#$%EJLEËSUHFO a | | | |\"#$ FõLFOBS пHFO  m(BDC) = a ve 2 \"% = %$ % % m ( DCE ) = a dir. | | | | | |2k 2 EB = AE = \"% :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS . a dir. |AD| = 2k ve |DC| =LPMTVO\"#$FöLFOBSÑÀHFOJOEF C [AC]LFOBSŽOBBJU[#&]ZÑLTFLMJôJÀJ[JMEJôJOEF[AC]öF- :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS LJMEFLJHJCJJLJFöQBSÀBZBBZSŽMŽS [AB] // [DC]PMEVôVOEBO  m ( % ) = % olur. #&$ ÑÀHFOJ š– š– š PMEVôVOEBO CV EVSVNEB DCE m ( CEB ) |&$|= 3k ve |#&| = 3k 3 olur. %&#ÑÀHFOJOEFOUBOa = 3 3 PMBSBLCVMVOVS $#&ÑÀHFOJOEFOUBOa =PMBSBLCVMVOVS 2 11 6. 3 3 3 5 2 5. cos a = , sin a = , tan a = B8. 5 52 5

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 13 A ABC dik üçgen % 4C x 2 [#%] m [ AC ] 8 % E | |\"% = 2 br h % = a a m ( ABD ) b a y B 16 B C . 4A | |:VLBSŽEBLJWFSJMFSFHÌSF  BC OJOa cJOTJOEFOEFôF- \"#$%EJLZBNVL [%$] // [ AB ], [%\"] m [ AB ] SJOJWFSFOJGBEFZJCVMVOV[ | | | |[ AC ] m [%#], %$ = 4 br ve AB = 16 br dir. 2 :VLBSŽEBLJ WFSJMFSF HÌSF  UBOY  DPUZ JGBEFTJOJO EF- \"#%ÑÀHFOJOEFO tan a = WF#%$ÑÀHFOJOEFO ôFSJOJCVMVOV[ h h 2h 2 sin a = olur.  UBOa  TJOa = · = BC h BC BC [AC] // [DF] PMBDBL öFLJMEF [DF] ÀJ[JMJS '%# EJL ÑÀHFOJO- 2 cot a de; ²LMJU UFPSFNJOEFO 4.16 = | DA |2 j | DA | =  CS EJS olur. BC = = 2· PMBSBLCVMVOVS tan a. sin a sin a 8 \"%$ ÑÀHFOJOEFO tan x = = 2  WF \"%# ÑÀHFOJOEFO ÖRNEK 11 4 [&\"õFLJMEFLJZBSŽN¿FNCFSF#OPLUBTŽOEBUFóFUWF 16 cot y = = 2 PMBSBLCVMVOVS 8 #VEVSVNEBUBOY+ coty = 4 olur. | | | |&% = %$ dir. %m/*m A B x A a 60° a 2x ax 2a E 2a % OC a % 30° m ( BCE ) = x PMEVôVOBHÌSF DPTYJOEFôFSJOFEJS B a3 C 0NFSLF[JOEFO#OPLUBTŽOBÀJ[JMFOZBSŽÀBQUFôFUFCVOPL- 30° - 60° -™EJLпHFOJOEF™MJLB¿ŽOŽOLBS- õŽTŽOEBLJLFOBSŽOV[VOMVóVIJQPUFOÐTV[VOMVóVOVO UBEBEJLUJS#VEVSVNEB|&%|= 2 | DO | = 2 | OC | =BPMTVO ZBSŽTŽOB FõJUUJS ™ MJL B¿ŽOŽO LBSõŽTŽOEBLJ LFOBSŽO V[VOMVóVIJQPUFOÐTV[VOMVóVOVOZBSŽTŽOŽO 3 ka- 1 UŽOBFõJUUJS &#0EJLÑÀHFOJOEFO cos 2x = PMBSBLCVMVOVS 3 ÖRNEK 12 a ÖRNEK 14 3 sin60° + tan30° a JGBEFTJOJOEFôFSJLBÀUŽS 4. 3 3 53 :VLBSŽEBWFSJMFOöFLJMFöLBSFEFOPMVöUVôVOBHÌSF  += cotaEFôFSJOJCVMVOV[ 23 6 4 cot a = olur. 3 2 cot a 1 4 4 13. 4 53  11. 12. 14. sin a 3 3 6

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 15 ÖRNEK 17 \"õBóŽEB[FNJOFEJLCJSõFLJMEFEVSBOBóB¿FOUFQFTJO- \"öBôŽEBLJUBCMPZVEPMEVSVOV[ EFLJ$OPLUBTŽOEBO[FNJOEFLJ\"WF#OPLUBMBSŽOBJLJIB- MBUJMFCBóMBONŽõUŽS \"ÀŽ š š š 'POLTJZPO 3 C 12 2 Sol 1 sin 2 2 2 4Bó 3 30° 60° 32 1 3 cos 22 Halat 1 Halat 2 1 tan 1 3 60° % 30° cot 3 1 A B [ AC ] m [ BC ] ve m ( % ) = 30° PMEVôVOBHÌSF BôBÀ ÖRNEK 18 ABC Tavan//////////////////////////////////////////// JMFIBMBUBSBTŽOEBLJBÀŽOŽOUBOKBOUŽLBÀUŽS 3 10 m 45° 10 tan 30° = 52 3 52 %m/*m x=? A 2m 45° zemin a 6[VOMVôVNWFZFSEFOZÑLTFLMJôJNPMBOZVLB- SŽEBLJTBSLBÀöFLJMEFLJHJCJšMJLTBMŽOŽNZBQUŽôŽOEB C TBSLBDŽOZFSEFOZÑLTFLMJôJLBÀNPMVS a2 x = (12 - 5 2 NEJS 45° a ÖRNEK 19 B #JSJNÀFNCFSÑ[FSJOEFZFSBMBOBöBôŽEBLJOPLUBMBSŽO 45° - 45° -™EJLпHFOJOEF™MJLB¿ŽMBSŽOLBS- CFMJSUUJôJNFSLF[BÀŽMBSŽCVMVOV[ õŽMBSŽOEBLJ LFOBS V[VOMVóVOVO 2  LBUŽ IJQPUFOÐT V[VOMVóVOBFõJUUJS J A f 1 , - 1 p JJ B f - 1 , 1 p 22 22 JJJ C f - 1 , - 1 p JW D f 1 , 1 p 22 22 ÖRNEK 16 y /PLUB .FSLF[\"ÀŽ 1 sin45°+ cos45° + tan45° - cot45° BD Dd 1 1 n & JGBEFTJOJOEFôFSJOJCVMVOV[ , KD ZBZŽOŽHÌSFOšMJL –1 45° 45° 22 45° 45° 1 x2 2 QP[JUJGZÌOMÑBÀŽ + +1-1= 2 CA -1 1 ) yBZŽOŽ HÌSFO 22 –1 KDB B( , ) 2 2 1šMJLQP[JUJGZÌOMÑBÀŽ -1 -1 ) KDC  ZBZŽOŽ HÌSFO C( , ) šMJLQP[JUJGZÌOMÑBÀŽ 22 Ad 1 , -1 n ) KDA  ZBZŽOŽ HÌSFO 2 2 šMJLQP[JUJGZÌOMÑBÀŽ 3 16. 2 5 18. 12 - 5 2 J š JJ š JJJ š JW š 15. 3

TEST - 1 %JL·ÀHFOEF5SJHPOPNFUSJL0SBOMBS 1. A B \"#$%LBSF 4. H G ôFLJMEFLJLÐQUF xy F m ( D%HB ) = x | | | |3 %& = %$ E % m ( B%HF ) = y m ( AED ) = a % m ( BEC ) = i % C ai C AB %E  :VLBSŽEBLJ WFSJMFSF HÌSF  UBOa + UBOi  UPQ  :VLBSŽEBLJWFSJMFSFHÌSF  tan x PSBOŽLBÀUŽS MBNŽOŽOTPOVDVLBÀUŽS cot y A) 3 B) 7  $  %  9 E) 5 A) 1 B) 1 $  66 22 %  E) 2 23 2. H KG ôFLJMEFLJLÐQUF 5. A % |HK| = 3|KG| x C m ( D%AK ) = x H 12 Ex F y BC AB ABC üçgeninde, [ CH ] m [ AB ], % = x m ( BAC ) :VLBSŽEBLJWFSJMFSFHÌSF TJOYLBÀUŽS % = y, tany = 0,75, tan x = 8 m ( HCB ) , 3 B) 4 C) 4 15 A) 5 41 | |BH = 12 br dir. 5 %  5 6  :VLBSŽEBLJWFSJMFSFHÌSF  | AC | LBÀCJSJNEJS 41 E) 41 \"  #  $  %  &  3. % E C \"#$%LBSF 6. A ABC bir üçgen F [ FE ] m [ GE ] B |AB| = |AC| |AF| = 2|%'| % = i | | | |x m ( BAC ) G %& = EC cos i = 5 % 13 m ( EGC ) = x a % = a C m ( ACB ) AB  :VLBSŽEBLJWFSJMFSFHÌSF DPUYLBÀUŽS  :VLBSŽEBLJWFSJMFSFgörF UBOaLBÀUŽS 2 3 C) 3  %  4 5 A) 2 B) 3 C) 5  %  3 E) 4 A) B) 23 E) 3 4 12 2 3 3 4 4 1. D 2. D 3. C 6 4. B 5. & 6. D

%JL·ÀHFOEF5SJHPOPNFUSJL0SBOMBS TEST - 2 1. y 4. % 12 C K A(4, 6) x 15 a x a O B A 27 B %JLLPPSEJOBUTJTUFNJOEF OAB dik üçgen, | |\"#$%ZBNVóVOEB [%$] // [ AB ], %C = 12 br | | | |CB = 15 br, AB = 27 br, m(D%AB) = a , [ OA ] m [ AB ], A ( 4, 6 ) ve % = a EŽS m ( KOA ) tan a = 3 tür. 4  :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS | | :VLBSŽEBLJWFSJMFSFHÌSF AD = xLBÀCJSJNEJS A) 1 B) 2 C) 4  %  &  3 2 3 5 2 \"  #  $  %  &  2. A ABC dik üçgen % 2C m (WB) = 90° 5. x [\"%]B¿ŽPSUBZ H | |#% = 3 br B3 % | |%$ = 5 br A 18 B 5C % m ( ACB ) = a \"#$%EJLZBNVóVOEB [%$] // [ AB ], [ AC ] m [%#],  :VLBSŽEBLJWFSJMFSFHÌSF cosaLBÀUŽS | | | |AB % = 18 br, %$ = 2 br ve m ( DCA ) = x tir. 3 B) 4 3  :VLBSŽEBLJWFSJMFSFHÌSF TFDYDPTFDYÀBSQŽNŽ A) 5 C) LBÀUŽS 5 7 %  5 13 A) 3 B) 7 C) 10  %  10 E) 10 8 E) 10 10 37 8 3. A 6. A ABC bir üçgen 12 m( % = a BAC ) m ( A%CB ) = i x tan a = 2 B7 H C tan i = 3 BC ABC üçgeninde, [ BA ] m [ CA ], [ AH ] m [ BC ], :VLBSŽEBLJWFSJMFSFHÌSF  BC PSBOŽLBÀUŽS | | | |% = 7 br AB m ( ABC ) = x, AC = 12 br ve BH dir. :VLBSŽEBLJWFSJMFSFHÌSF TJOYLBÀUŽS 22 2 32 A) B) C) 3 3 2 A) 2 B) 3 C) 4  %  5 E) 7 %  2 6 3 4 56 8 2 E) 3 1. B 2. B 3. B  4. & 5. C 6. A

TEST - 3 %JL·ÀHFOEF5SJHPOPNFUSJL0SBOMBS 1. % ABC üçgen 4. C ôFLJMEFLJ0 2 [%#] m[ BC ] A 16 merkezli çemberde A x |AE| = |EC| B [ AB ] çap 4 | | | |AB = 2 \"% = 4 br | |E 17 O | |AO = 17 br B BC = 6 br | |CB = 16 br m ( B%DE ) = a % = x 6C m ( ABC )  :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS 15 A) - 8 B) - 15 C) - 15  %  8 E) 1 1 C) 1  %  2 3 A) B) 23 E) 15 17 8 15 8 4 3 4 5. A 2 2. % C \"#$%EJLEËSUHFO BH _ C 30 [%#]LËõFHFO E ABC üçgen, [ AB ] m [ AC ], [AH] m [BC], m % = a | |\"% = 30 br (BCA) x | |AB = 40 br A 40 | | | |B %& = 4 EB | |AB = 2 br m ( E%AB ) = x | | :VLBSŽEBLJWFSJMFSFHÌSF  CH BöBôŽEBLJMFSEFO IBOHJTJOFFöJUUJS  :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS A) 2sina - 1 B) 2cot!. cosa A) 3 B) 5 C) 3  %  5 E) 9 C) 2tana . seca  % TFDa . cosa 16 16 88 16 E) 2tana . sina 3. % C \"#$%JLJ[LFOBS 6. % C \"#$%LBSF yamuk H H x [%)] m [ CE ] [%$] // [ AB ] x EB = 4 A |\"%| = |CB| AB 5 [ AC ] m [%#] % = x m ( ADH ) B% m ( CAB ) = x AE B :VLBSŽEBLJWFSJMFSF göre, UBOYLBÀUŽS  :VLBSŽEBLJWFSJMFSFHÌSF DPUYLBÀUŽS A) 2 B) 3  $  %  3 E) 4 A) 3 B) 4 $  %  4 E) 5 3 4 2 3 4 5 3 4 1. & 2. A 3. C 8 4. & 5. B 6. B

%JL·ÀHFOEF5SJHPOPNFUSJL0SBOMBS TEST - 4 1. A 4. \"õBóŽEBLJ EJLEËSUHFO CJ¿JNJOEFLJ CJMBSEP NBTBTŽ- OŽO\"LËõFTJOEFCVMVOBOUPQõFLJMEFLJZPMVJ[MFZF- SFL % OPLUBTŽOEB CVMVOBO EFMJóF FO B[ ZPM BMBSBL HJSNJõUJS PB D B %C | | | | | |ABC üçgen, \"% = #% = %$ , m(A%BC) = a, m ( A%CB ) = i ve tana = 2 dir.  :VLBSŽEBLJWFSJMFSFHÌSF cotiLBÀUŽS AC A) 1 B) 3  $  %  &   5PQVO EFMJóF HJSFSLFO J[MFEJóJ ZPMVO EÐõFZ CBOUMB 2 2 | |ZBQUŽóŽFOTPOB¿ŽOŽOUBOKBOUŽ 3 ve AP = 4 cm dir. 4 | | #VOBgöre, AC LBÀDNEJS 2. 1FOBMUŽOPLUBTŽOŽOLBMFZFV[BLMŽóŽN LBMFOJOHF- \"  #  $  %  &  OJõMJóJN LBMFOJOTBóWFTPMZÐLTFLMJóJJTFNEJS A a  1FOBMUŽZŽ LVMMBOBO PZVODV UPQV \" OPLUBTŽOB 5. %FOHFEFLJõFLMJOTBóWFTPMLFGFMFSJOFTŽSBTŽJMFTB- WVSEVôVOBHÌSF öFLJMEFPMVöBOaBÀŽTŽOŽOUBO- KBOUŽLBÀUŽS  1FOBMUŽOPLUBTŽLBMFZJPSUBMŽZPS dece X ve sadece Y cisimleri konarak terazinin ön- DFTBóWFTPOSBTPMLFGFMFSJOJOZFSFUFNBTFUNFMF- SJTBóMBOŽZPS9DJTNJLPOVMEVóVOEBEÐ[MFNMFa° lik B¿Ž :DJTNJLPOVMEVóVOEBEÐ[MFNMFb°MJLB¿ŽPMVõ- NBLUBEŽS XY A) 3 B) 5 C) 6 193 193 193 %  7 E) 8 6m 4m 2m 193 193 3. Mert 10 metrelik bir merdiven ile yerden 6 metre  #VOBHÌSF DPTa +TJObUPQMBNŽLBÀUŽS (0 < a < π , 0 < b < π ) ZÐLTFLMJLUFLJEÐ[CJSEVWBSB¿ŽLNBLJTUJZPS 22  %VWBSŽOÑTUÑOFÀŽLBSLFOLVMMBOEŽôŽNFSEJWFOJO 3+4 2 42 2 BZBôŽ JMF ZFS EÑ[MFNJ BSBTŽOEBLJ BÀŽOŽO TJOÑTÑ A) B) C) FOB[LBÀPMNBMŽEŽS 6 6 6 A) 2 3 C) 4  %  5 E) 7  %  3 + 2 3 5 B) 56 8 66 E) 5 6 1. D 2. C 3. B  4. & 5. A

TEST - 5 %JL·ÀHFOEF5SJHPOPNFUSJL0SBOMBS 1. \"õBóŽEB™MJLLBMLŽõB¿ŽTŽJMFIBWBMBOBOCJSV¿BL 3. \"õBóŽEBLJLBSFQJSBNJUJOZBOZÐ[ÐOÐOUBCBOEÐ[MF- HËTUFSJMNJõUJS NJJMFZBQUŽóŽB¿Ž™UJS B T Uçak C A yer B 30° A  #VOBHÌSF VÀBôŽOZFSEFOGFFUZÑLTFLMJôF EF ÀŽLBOBLBEBSZBUBZEBBMEŽôŽZPMLBÀNEJS  CD GFFU, 30,5 cm) | | 1JSBNJEJODJTJNZÑLTFLMJôJ 5& =CSPMEVôV- OBHÌSF ZBOZÑ[ZÑLTFLMJôJLBÀCJSJNEJS A) 610 3 305 C) 610 A) 5 B) 5 3 C) 5 2 B) E) 305  %  & 10 2 13  % 305 3 2. #PZVNPMBOBóB¿õFLJMEFLJHJCJHËWEFTJOEFOLŽ- 4.  N ZÐLTFLMJLUF V¿BO LVõ  N ZÐLTFLMJóJOEFLJ SŽMŽZPSWFHËWEFOJOCJSLŽTNŽZFSJMF™MJLB¿ŽZBQB- BóBDŽO ÐTUÐOEFLJ ZVWBTŽOB HJSNFL J¿JO EJLFZ FL- DBLõFLJMEFZFSFEÐõÐZPS TFOMF™MJLB¿ŽZBQBDBLõFLJMEFJOJõFHF¿JZPS 30 m 45° 30 m 50 m yer 30°  #VOBHÌSF CVLVöZVWBTŽOBHJSNFLJÀJOZBUBZ- Yer EBFOB[LBÀNFUSFZPMBMNŽöUŽS  #VOB HÌSF  HÌWEFOJO BZBLUB EVSBO LŽTNŽ LBÀ A) 10 B) 20 C) 10 2 NFUSFEJS  % 20 2 E) 30 \"  #  $  %  &  1. D 2. A  3. & 4. B

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, :ÌOMÑ\"ÀŽ 53÷(0/0.&53÷,'0/,4÷:0/-\"3 TANIM CJUJõLFOBSŽ y B B OA (+) yön 1° A x  %FSFDFOJO 1 ineEBLJLBdenir. Bu ölçü 1' O CBõMBOHŽ¿LFOBSŽ 60  ,FOBSMBSŽOEBO CJSJ CBöMBOHŽÀ  EJóFSJ CJUJö ke- biçiminde gösterilir%BLJLBOŽO 1 ine TBOJ- OBSŽPMBSBLLBCVMFEJMFOB¿ŽZBZÌOMÑBÀŽdenir. 60 :ËOMÐB¿ŽMBSEBCBõMBOHŽ¿LFOBSŽTBCJU CJUJõLF- OBSŽIBSFLFUMJEJS ye denir. Bu ölçü 1\" biçiminde gösterilir.  #JUJõLFOBSŽTBBUJOEËONFZËOÐOÐOUFSTZËOÐO- š=h=olur. EFIBSFLFUFEFOB¿ŽMBSBQP[JUJGZÌOMÑBÀŽ denir.  #JSB¿ŽOŽOËM¿ÐTÐBEFSFDFCEBLJLBDTBOJZF :VLBSŽEBLJ\"0#B¿ŽTŽQP[JUJGZËOMÐB¿ŽEŽS ise bu y a° + b' + c\" veya a° b' c\" biçiminde gösterilir. O CBõMBOHŽ¿LFOBSŽ x ÖRNEK 1 A CJUJõLFOBSŽ ²MÀÑTÑšhhhPMBOBÀŽZŽTBOJZFDJOTJOEFOZB[Ž- (–) yön OŽ[ B ++ 12 = #JUJõ LFOBSŽ TBBUJO EËONF ZËOÐZMF BZOŽ ZËOEF IBSFLFUFEFOB¿ŽMBSBOFHBUJGZÌOMÑBÀŽ denir.Yu- LBSŽEBLJ\"0#B¿ŽTŽOFHBUJGZËOMÐB¿ŽEŽS \"À޲MÀÑ#JSJNMFSJ ÖRNEK 2 7$1,0%m/*m TBOJZFMJLBÀŽÌMÀÑTÑOÑEFSFDF EBLJLBWFTBOJ- ZFDJOTJOEFOZB[ŽOŽ[  #JS B¿ŽOŽO ËM¿ÐMNFTJ B¿ŽOŽO LPMMBSŽ BSBTŽOEBLJ B¿ŽLMŽóŽOCFMJSMFONFTJJMFZBQŽMŽS\"¿ŽOŽOËM¿ÐTÐ- 20180 3600 OÐJGBEFFUNFLJ¿JOderece veya SBEZBO birim- 18000 5° MFSJLVMMBOŽMŽS 2180 60 #JSUBN¿FNCFSZBZŽOŽOFõQBS¿BZBCËMÐO- 2160 36' NFTJZMFFMEFFEJMFOWFIFSCJSZBZŽHËSFONFS- LF[B¿ŽOŽOËM¿ÐTÐOF1 derece denir. Bu ölçü 1° 20'' biçiminde gösterilir. Bu durumda bir çemberin yay ölçüsü 360° olur. hh=šhhh 11 1.  2. šhhh

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 3 ÖRNEK 4 m (WA) = 18° 36' 08'' \"öBôŽEB WFSJMFO BÀŽ ÌMÀÑMFSJOJO SBEZBO DJOTJOEFO m (WB) = 32° 20' 12'' FöJUMFSJOJCVMVOV[ BÀŽÌMÀÑMFSJOFHÌSFBöBôŽEBLJJöMFNMFSJZBQŽOŽ[ B 60° C  90° c) -120° B m (WA) + m (WB) C m (WB) - m (WA) 60. π π  C  90· ππ B  =  = m (WA) m (WB) 180° 2 c) d) 180 3 2 4 c) - 120. π - 2π = 180° 3 a) 18° 36' 08'' b) 32° 20' 12'' ÖRNEK 5 + 32° 20' 12'' – 18° 36' 08'' 50° 56' 20'' 13° 44' 04'' \"öBôŽEB WFSJMFO BÀŽ ÌMÀÑMFSJOJO EFSFDF DJOTJOEFO d) 32° 20' 12''= 8° 5' 3'' FöJUMFSJOJCVMVOV[ 4 c) 18° 36' 08'' = 9° 18' 04'' B π C  2π c) - 7π 2 5 3 4 3BEZBO π 180° 2π 180° B  · = 36°  C  · = 120° %m/*m 5 π 3 π  #JS ¿FNCFSEF ZBSŽ¿BQ V[VOMVóVOB FõJU ZBZŽO 7π 180° = - 315° V[VOMVóVOVHËSFONFSLF[B¿ŽOŽOËM¿ÐTÐOF c) - · SBEZBOdenir ve bu ölçü 1R ile gösterilir. 4 π A &TBT²MÀÑ r %m/*m r O SBEZBO B Yandaki O merkezli r a çember üzerinde A B Oa WF#OPLUBMBSŽOŽCJS- A MFõUJSFO ZBZŽ HËSFO b NFSLF[B¿ŽOŽOËM¿Ð- SCJSJNZBZV[VOMVóV  SBEZBO sü a olmak üzere ÕSCJSJNZBZV[VOMVóV  YSBEZBO çember üzerinde A SYÕS j YÕ OPLUBTŽOEBO QP[JUJG ZËOEF JMFSMFZFO CJS LJõJ   UVSVO BSEŽOEBO # OPLUBTŽOEB EVSEVóVOEB CV  #JS B¿ŽOŽO EFSFDF DJOTJOEFO ËM¿ÐTÐ %  SBEZBO LJõJOJOLB¿EFSFDFZFSEFóJõUJSEJóJ cinsinden ölçüsü R olmak üzere, b = a + 3™GPSNÐMÐJMFCVMVOVS ™  Õ UVSTBZŽTŽ DR  ôFLJMEFHËSÐMEÐóÐHJCJ\"OPLUBTŽOEBOIBSFLF- te CBõMBZBOLJõJUVSVOBSEŽOEBO#OPLUBTŽ- %Õ3™ OBWBSNŽõWF¿FNCFSÐ[FSJOEF!B¿ŽTŽLBEBS ZFSEFóJõJLMJóJZBQNŽõUŽS#V!B¿ŽTŽ bB¿ŽTŽ- D = R & D = R elde edilir. OŽOFTBTËM¿ÐTÐEÐS 360° 2π 180° π  #V PSBOUŽ  EFSFDF JMF SBEZBOŽ CJrbirJOF EËOÐõ- b = a +™FõJUMJóJOEFa, bOŽO™JMF UÐSNFLJ¿JOLVMMBOŽMŽS CËMÐNÐOEFOFMEFFEJMFOLBMBOEŽS  3. B š'''C šhhhD šhhhE šhhh 12 ππ 2π 4. B  C c) - 5. B šC šD mš 32 3

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, TANIM #JSJN¦FNCFS TANIM k ` Z için; y a ` [0°, 360°) olmak üzere, b = a + k.360° ise (0,1) !B¿ŽTŽOB bBÀŽTŽOŽOFTBTÌMÀÑTÑ denir. (–1,0) (1,0) x i ` [ Õ PMNBLÐ[FSF ËM¿ÐTÐi +LÕPMBO O B¿ŽOŽOFTBTËM¿ÐTÐiSBEZBOEŽS  \"¿ŽMBSŽOFTBTËM¿ÐMFSJOFHBUJGPMBNB[ ÖRNEK 6 (0,–1) \"öBôŽEB WFSJMFO BÀŽMBSŽO FTBT ÌMÀÑMFSJOJ EFSFDF DJO-  .FSLF[J PSJKJO  ZBSŽ¿BQ V[VOMVóu 1 birim olan TJOEFOCVMVOV[ çembere CJSJN ÀFNCFS ya da USJHPOPNFUSJL ÀFNCFSdenir. { ( x, y ) : x2 + y2 = 1, x `R , y `R } kümesi birim çemberi belirtir. B 1280° C -790° B š=š+š C -š= -š+š ÖRNEK 8 &TBTÌMÀÑš  &TBTÌMÀÑš 1 Af , kp 2 OPLUBTŽCJSJNÀFNCFSÑ[FSJOEFPMEVôVOBHÌSF LOJO BMBDBôŽEFôFSMFSJCVMVOV[ d 1 2 + 2 = 1 j k2 = 3 n k 24 3 j k=± 2 ÖRNEK 7 \"öBôŽEB WFSJMFO BÀŽMBSŽO FTBT ÌMÀÑMFSJOJ SBEZBO DJO- ÖRNEK 9 TJOEFOCVMVOV[ #JSJNÀFNCFSJOÑ[FSJOEFLJCJSOPLUB B Õ C Õ Af 3, 1 p 22 c) 28π d) - 32π 5 7 olduôVOBHÌSF \"OPLUBTŽOŽOUBOŽNMBEŽôŽNFSLF[BÀŽ- OŽOÌMÀ ÑTÑLBÀEFSFDFEJS B Ö=Ö+Ö   &TBTÌMÀÑÖ y C Ö=Ö+   &TBTÌMÀÑ 28π 8π 8π A 3, 1 c) = 2.2π +   &TBTÌMÀÑ 22 55 5 10π 32π 10π  &TBTÌMÀÑ 11 d) - = - 3.2π + 77 7 30° 2 x O3 B 2 % = 30° EJS m ( BOA ) 6. B šC š B ÖC D  8π 10π 13 3 d) 8. ± 57 š 2

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 10 %m/*m ÜÀLÌöFTJEFCJSJNÀFNCFSÑ[FSJOEFPMBOCJSEJLüçge- 1 - sin2 a = cos2 ! OJOEJLLFOBSMBSŽOEBOCJSJOJOV[VOMVôV 6 CJSJNPM- 1 - sin2 a = ( 1 - sin!) ( 1 + sin!) 1 - cos2 a = sin2 ! 5 1 - cos2 a = ( 1 - cos!) ( 1 + cos!) EVôVOBHÌSF EJôFSEJLLFOBSV[VOMVôVLBÀCJSJNEJS  y d 6 2 AC 2 = 2 ÖRNEK 11 A 5 n+ 2 G x <ÖPMNBLÑ[FSF cos x = 3 6 AC 2 = 64 5 5 25 PMEVôVOBHÌSF TJOYEFôFSMFSJOJCVMVOV[ B1 1 x 8 C AC = 5 cos2x +TJO2x = 1 4JOÑTWF,PTJOÑT'POLTJZPOMBSŽ d 3 2 + 2 = 1 5 n sin x TANIM jTJO2x = 16 25 y 4 1 j sin x = ± P(x,y) = P(cosa TJOa) 5 1 TJOa –1 a1 x ÖRNEK 12 O cosa H #JSJNÀFNCFSEFš š šWFšMJLBÀŽMBSŽOTJ- OÑTWFLPTJOÑTEFôFSMFSJOJCVMVOV[ –1 y 90° (0, 1) #JSJN¿FNCFSÐ[FSJOEF1 Y Z OPLUBTŽWFSJMTJO š š š š #VOPLUBZŽPSJKJOMFCJSMFõUJSFO[01OŽOYFLTFOJ 180° (1, 0) cos  -1  1 JMFZBQUŽóŽQP[JUJGZËOMÐB¿ŽOŽOËM¿ÐTÐa olsun. (–1, 0) O 0° x TJO 1  -1   1 OPLUBTŽOŽO BQTJTJOF a BÀŽTŽOŽO LPTJOÑTÑ 360° EFOJSWFCVJGBEFcosa ile gösterilir. x = cosa olur. 270° (0, –1)  1OPLUBTŽOŽOPSEJOBUŽOBaBÀŽTŽOŽOTJOÑTÑ de- OJSWFCVJGBEFTJOa ile gösterilir. y =TJOa olur. ÖRNEK 13 Buna göre x eksenine LPTJOÑTFLTFOJ, y ekse- nine TJOÑTFLTFOJ denir. x `3PMNBLÑ[FSF  1OPLUBTŽCJSJN¿FNCFSÐ[FSJOEFCVMVOEVóVO- 8 + cos2x - 3 EBOBQTJTWFPSEJOBUEFóFSMFSJ-1 den küçük, 1 3 - sin x den büyük olamaz. Buna göre JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ -âTJOaâ -âDPTaâPMVS  :VLBSŽEBLJ CJSJN ¿FNCFSEF 1 OPLUBTŽOEBO JO- 8 + cos2x -3= 8 + cos 2 - 9 + 3 sin x EJSJMFOEJLNFOJOBZBóŽ)PMNBLÐ[FSF10)EJL x пHFOJOEF1JTBHPSUFPSFNJVZHVMBOEŽóŽOEB 3 - sin x 3 - sin x cos2a +TJO2a = 1  Ë[EFõMJóJFMEFFEJMJS 22 cos x - 1 + 3 sin x - sin x + 3 sin x == 3 - sin x 3 - sin x sin x^ 3 - sin x h = = sin x ^ 3 - sin x h 8 14 4 13. TJOY  11. ± 5 5

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 14 ÖRNEK 17 TJOYâ Y`3PMNBLÑ[FSF t `3PMNBLÑ[FSF 1 - sin x - cos2x 2cosx + 3t - 2 = 0 sin x - 1 PMEVôVOBHÌSF UOJOBMBCJMFDFôJUBNTBZŽEFôFSMFSJ- JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ OJCVMVOV[ 2 2cosx = 2 - 3t 6 44si7n 4x48 2 - 3t 2 sin2x - sin x 1 - cos - sin x = cosx = x 2 sin x - 1 sin x - 1 -1 # cosx # 1 sin x^ sin x - 1 h -1 # 2 - 3t #1 ZJGBEFZJJMFHFOJöMFUFMJN = = sin x ZJGBEeEFOÀŽLBSBMŽN 2 sin x - 1 -2 # 2 - 3t # 2 -4 # -3t # Z JGBEFZJ-FCÌMFMJN ÖRNEK 15 4 # t # x `3PMNBLÑ[FSF sin4 x + sin2 x.cos2 x - sin2 x + 1 3 JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ #VEVSVNEBU=WFZBU= 1 olur. 22 2 2 ÖRNEK 18 sin x (1s4in44x 2+ c4o4s4x3) - sin x + 1 a = 3sinx - 4cosy + 2 PMEVôVOBHÌSF BHFSÀFMTBZŽTŽOŽOEFôFSBSBMŽôŽOŽCV- 1 MVOV[ = sJO2x -TJO2x + 1 = 1 - 3 ≤ 3 sin x ≤ 3 ZJGBEFMFSJUBSBGUBSBGBUPQMBZBMŽN 4 - 4 ≤ - 4 cos y ≤ 4 ÖRNEK 16 -#TJOY- 4cosy # Z JGBEFZFFLMFZFMJN sin x = 2t + 1 -5 #TJOY-4cosy + 2 # 4 0I»MEFBOŽOEFôFSBSBMŽôŽ[- ]CVMVOVS PMEVôVOBHÌSF UOJOFOCÑZÑLUBNTBZŽEFôFSJLBÀ- UŽS -1 #TJOY# 1 -1 # 2t + 1 ≤1 ZJGBEFZJJMFHFOJöMFUFMJN ZJGBEFEFOÀŽLBSBMŽN 4 %m/*m -4 # 2t + 1 # 4 y = acosx + bsinx olmak üzere, ZOJOFOCÐZÐLEFóeri = a2 + b2 -5 # 2t # 3 ZJGBEFZJZFCÌMFMJN ZOJOFOLпÐLEFóFSJ= - a2 + b2 dir. 53 - GtG 22 #VEVSVNEBUOJOFOCÑZÑLUBNTBZŽEFôFSJPMVS 14. TJOY 15. 1 16. 1 15 WF 18. <m >

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 19 5BOKBOUWF,PUBOKBOU'POLTJZPOMBSŽ TANIM \"öBôŽEBLJJGBEFMFSJOFOCÑZÑLWFFOLÑÀÑLEFôFSMF- SJOJCVMVOV[ B 3sinx + 4cosx C 5cosx - 12sinx y x=1 1 c) 2sinx - cosx d) sinx - cosx T(1, UBOa) P TJOa UBOa a1 B NBY 3 2 + 2 = 5 , NJO - 2 + 2 = - 5 x 4 3 4 –1 O cosa H A C NBY 2 + ^ - 12 h2 = 13 , NJO- 2 + ^ - 12 h2 = - 13 UBOKBOU FLTFOJ 5 5 c) NBY 2 + ^ - 1 h2 = 5 , NJO - 2 + ^ - 1 h2 = - 5 –1 2 2 d) NBY 2 + ^ -1 h2 = 2 , NJO - 2 + ^ -1 h2 = - 2  #JSJN ¿FNCFS Ð[FSJOEF 1 OPLUBTŽ WFSJMTJO #V 1 1 OPLUBZŽ PSJKJOMF CJSMFõUJSFO [01 OŽO Y FLTFOJ JMF ZBQUŽóŽQP[JUJGZËOMÐB¿ŽOŽOËM¿ÐTÐa olsun.  \"   OPLUBTŽOEBCJSJN çembere teóFUPMBO x =EPóSVTVOBUBOKBOUFLTFOJ denir. ÖRNEK 20  \"01 B¿ŽTŽOŽO CJUJõ LFOBSŽOŽO UBOKBOU FLTFOJOJ LFTUJóJ5OPLUBTŽOŽOPSEJOBUŽOBaBÀŽTŽOŽOUBO- msinx + 4cosx KBOUŽEFOJSWFCVJGBEFUBOa ile gösterilir. JGBEFTJOJOFOCÑZÑLEFôFSJPME VôVOBHÌSF NOJO BMBCJMFDFôJEFôFSMFSJCVMVO V[ | |TA = tana olur. 2 + 2 = 5  :VLBSŽEBLJ õFLJMEF 0PH ve OTA benzer üç- genlerdir. m 4  #FO[FSMJLCBóŽOUŽMBSŽZB[ŽMEŽóŽOEB N2 + 42 = 52 PH OH N2 =jN= ±3 = olur. TA OA Buradan sin a = cos a & tan a = sin a tan a 1 cos a ÖRNEK 21 elde edilir. A = sinx + acosx ÖRNEK 22 PMNBLÑ[FSF \"OŽOBMBCJMFDFôJGBSLMŽUBNTBZŽEFôF- A = 1 + tan2x SJPMEVôVOBHÌSF BOŽOBMBDBôŽFOCÑZÑLWFFOLÑÀÑL FöJUMJôJOJ TBôMBZBO \" HFSÀFM TBZŽMBSŽOŽO EFôFS BSBMŽ- EFôFSMFSJCVMVOV[ ôŽOŽCVMVOV[ A =TJOY+BDPTYJTF -ß<UBOY<ß #UBO2x <ß - 2 + 1 # A # 2 + 1 EJS 1 #UBO2x + 1 <ß a a 2 \"OŽOBMBCJMFDFôJGBSLMŽEFôFSWBSTBCVUBNTBZŽMBS 1 # tan x + 1 <ß -3, -2, -    PMBCJMJS 1 # A <ß 0I»MEF 22 a +1=3&a =8 j a = ± 2 2 EJS B  m C  m D  5 , - 5 , d) 2 , - 2 16 22. < ß ±3 21. ± 2 2

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, TANIM ÖRNEK 23 y 0 < x < r PMNBLÑ[FSF 2 LPUBOKBOUFLTFOJ 1 B cota y=1 H a K(cota,1) sin x - cos x = 1 sin x + cos x 2 cosa P PMEVôVOBHÌSF  tan x + cot x PSBOŽLBÀUŽS TJOa tan x - cot x –1 O a Ax 1 7FSJMFOFöJUMJLUFJÀMFS-EŽöMBSÀBSQŽNŽZBQŽMŽSTB –1 TJOY+ cosx =TJOY- 2cosx j 3 cosx =TJOY 3 cos x sin x 1 j cos x = jUBOY= 3 j cot x = olur. cos x 3  #JSJN ¿FNCFS Ð[FSJOEF 1 OPLUBTŽ WFSJMTJO #V 3+ 1 OPLUBZŽ PSJKJOMF CJSMFõUJSFO [01 OŽO Y FLTFOJ JMF 0I»MEF tan x + cot x = 3 5 = CVMVOVS ZBQUŽóŽQP[JUJGZËOMÐB¿ŽOŽOËM¿ÐTÐa olsun. tan x - cot x 3 - 1 4  #   OPLUBTŽOda birim¿FNCFSFUFóFUPMBO y =EPóSVTVOBLPUBOKBOUFLTFOJdenir. 3  \"01B¿ŽTŽOŽOCJUJõLFOBSŽOŽOLPUBOKBOUFLTFOJ- ÖRNEK 24 OJLFTUJóJ,OPLUBTŽOŽOBQTJTJOFaBÀŽTŽOŽOLP- UBOKBOUŽEFOJSWFCVJGBEFcota ile gösterilir. 5BOŽNMŽPMEVôVBSBMŽLUB cot x + sin x | |BK = cota olur. 1 + cos x  :VLBSŽEBLJ õFLJMEF 01) WF 0,# CFO[FS п- JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ HFOMFSEJS#FO[FSMJLCBóŽOUŽMBSŽZB[ŽMEŽóŽOEB  cos x + sin x PH OH = olur. sin x 1 + cos x KB OB Buradan cos a = sin a & cot a = cos a (1 + cos x) (sin x) cot a 1 sin a 6 4 4 471 4 448 cos x + 2 + sin 2 1 + cos x 1 = cos x x = elde edilir. sin x^ 1 + cos x h sin x^ 1 + cos x h sin x %m/*m ÖRNEK 25 aOŽOVZHVOUBOŽNBSBMŽóŽOEB 5BOŽNMŽPMEVôVBSBMŽLUB sin i. cos i ^ 1 - sin i h. tan i JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ tana . cota = 1 olur. /PUDPT2i = 1 -TJO2i = (1 -TJOi) (1 +TJOi)  #FO[FSõFLJMEF  sin i. cos i sin i . cos i. cos i 2 i ^ 1 - sin i h. sin i == cos cos i sin i .^ 1 - sin i h 1 - sin i tan a = 1 veya cot a = 1 olur. ^ 1 - sin i h^ 1 + sin i h cot a tan a = = 1 +TJOi ^ 1 - sin i h  5 1 25.  TJOi 23. 24. 4 sin x

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 26 4FLBOUWF,PTFLBOU'POLTJZPOMBSŽ 5BOŽNMŽPMEVôVBSBMŽLUB TANIM y sin a - sin a M –1 1 1 - cos a 1 + cos a coseca N JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ 1 K sin a - sin a TJOa TJOa 1 - cos a 1 + cos a a1 L x O cosa H (1 + cos a) (1 - cos a) seca sin a + sin a. cos a - sin a + sin a. cos a = ^ 1 - cos a h^ 1 + cos a h 2 sin a. cos a 2 sin a. cos a 2 cos a –1 = = = = 2 cot a 1 - cos2 a 2 sin a a % sin m ( HOK ) = a olmak üzere birim çember üze- SJOEFLJ,OPLUBTŽOEBO¿J[JMFOUFóFUJOYFLTFOJ- ÖRNEK 27 OJLFTUJóJ-OPLUBTŽOŽOBQTJTJOFaBÀŽTŽOŽOTF- LBOUŽEFOJSWFCVJGBEFseca ile gösterilir. tani + coti = 7 3 | |0- = seca olur. PMEVôVOBHÌSF  UBO2 i + cot2 i deôFSJLBÀUŽS  ,OPLUBTŽOEBO¿J[JMFOUFóFUJOZFLTFOJOJLFTUJóJ .OPLUBTŽOŽOPSEJOBUŽOBaBÀŽTŽOŽOLPTFLBOUŽ ^ tan i + cot i h2 = d 7 2 EFOJSWFCVJGBEF coseca ile gösterilir. 3 n | |OM = coseca olur. UBO2i + 2 = 49  :VLBSŽEBLJ CJSJN ¿FNCFSEF ,0) JMF -0, п- 9 21ta4n4i2. c4o4t i3 + cot i % % 1 m ( HKO ) m ( OLK ) UBO2i + 2 + cot2i = 49 genlerinde = olur. Buna gö- 9 SF,0)JMF-0,пHFOMFSJCFO[FSÐçgenler olur. #FO[FSMJLPSBOŽZB[ŽMEŽóŽOEB UBO2i + cot2i = 49 31 -2= 99 ÖRNEK 28 OH = OK & cos a = 1 1 sec a tan4 i + cot4 i = 3 OK OL PMEVôVOBHÌSF UBOi + cotiUPQMBNŽOŽOQP[JUJGEFôF- & sec a = 1 elde edilir. SJLBÀUŽS cos a UBOi + coti =\"PMTVO  \"ZOŽ õFLJMEF ,0/ JMe MOK üçgenlerinin ben- UBOi + coti)2= A2 [FSMJóJOEFO cosec a = 1 elde edilir. UBO2i + 2 + cot2i = A2 sin a UBO2i + cot2i = A2 - 2 UBO2i + cot2i)2 = (A2 - 2)2 %m/*m UBO4 i + 2 + cot4i = (A2 - 2)2 secaOŽOEFóFSBSBMŽóŽ  -Þ, -1] b [1, +Þ WF UBO4i + cot4i = (A2 - 2)2 - 2 = 3 coseca OŽOEFóFSBSBMŽóŽ -Þ, -1] b [1, +Þ PMB- (A2 - 2)2 = 5 A2 - 2 = 5 WFZB\"2 - 2 = - 5 SBLJGBEFFEJMJS A2 = 2 + 5 WFZB\"2 = 2 - 5 <j q A = ± 2 + 5 WF\"OŽOQP[JUJGEFôFSJ A = 2 + 5 CVMVOVS 26. 2cota 31 28. 2 + 5 18  9

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 29 ÖRNEK 32 5BOŽNMŽPMEVôVBSBMŽLMBSJÀJOBöBôŽEBLJJGBEFMFSJOFO 5BOŽNMŽPMEVôVBSBMŽLUB  TBEFI»MJOJCVMVOV[ 2sec2 x - 5 = 5tanx B 1 + tan2 x C 1 + cot2 x PMEVôVOBHÌSF UBOYEFôFSMFSJOJCVMVOV[ B 1 + 2 = 2 x + 2 = 1 = 2 /PU ÌSOFôJOBNBEEFTJOFCBLŽOŽ[ sin x cos sin x sec x 2sec2x - 5 =UBOY 2 (1 +UBO2x) - 5 =UBOY 22 2 UBO2x -UBOY- 3 =j UBOY+ 1  UBOY- 3) = cos x cos x cos x 1 C 1 + 2 = sin2x + cos2x 1 2 tan x = - WFZBUBOY=PMBSBLCVMVOVS = = cosec x cos x 2 2 22 sin x sin x sin x ÖRNEK 30 %m/*m sin x + cos x = 3 Ölçüsü a PMBO CJS B¿ŽOŽO IFSIBOHJ CJS USJHPOPNFU- 4 SJL EFóFSJOJO JõBSFUJOJ CFMJSMFNFL J¿JO CV B¿ŽOŽO CJ- UJNLFOBSŽOŽOCJSJN¿FNCFSJLFTUJóJOPLUBOŽOLPPSEJ- PMEVôVOB HÌSF  TFDY  DPTFDY UPQMBNŽOŽO EFôFSJOJ OBUMBSŽOBCBLŽMŽS#VOPLUBOŽOBQTJTJOJOJõBSFUJDPTa CVMVOV[ OŽO PSEJOBUŽOŽOJõBSFUJTJOaOŽOJõBSFUJEJS y ^ sin x + cos x h2 = d 3 2 4 n cos – cos + TJO + TJO 1 UBOm #ËMHF #ËMHF UBO cot – (–, +) O (+, +) cot + sin2x + 2sin.cosx + cos2x = 9 cos – 16 TJO – #ËMHF #ËMHF x UBO (–, –) (+, –) 9 cot + cos + 1 +TJOYDPTY= TJO – UBO – 16 cot – 9 -7 7 2. sin x. cos x = - 1 = jTJOYDPTY= - olur. 16 16 32 :VLBSŽEBLJõFLJMEFCJSOPLUBOŽOLPPSEJOBUMBSŽOŽOEP- MBZŽTŽZMB CV OPLUBOŽO LBSõŽMŽLMŽ HFMEJóJ NFSLF[ B¿Ž- 11 OŽO USJHPOPNFUSJL PSBOMBSŽOŽO CËMHFMFSF HËSF IBOHJ sec x + cosec x = sin x + cos x JõBSFUMFSJBMBDBóŽHËTUFSJMNJõUJS 3 cos x + sin x 4 - 24 = = = CVMVOVS sin x. cos x 7 7 - 32 ÖRNEK 31 ÖRNEK 33 5BOŽNMŽPMEVôVBSBMŽLUB π < x < πPMNBLÑ[FSF 1 - sin x + cos x 2 cos x 1 - sin x sin x = 3 JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ 5 PMEVôVOB HÌSF  UBOY  DPUY WF DPTY EFôFSMFSJOJ IF- TBQMBZŽOŽ[ 6 4 4 471 4 448 π 22 < x < π   BSBMŽôŽ  CÌMHFZJ HÌTUFSJS UBO  Dot ve cos CV 1 - sin x cos x 1 - 2 sin x + sin x + cos x cos x += 2 1 - sin x cos x^ 1 - sin x h CÌMHFEF-EJS (1 - sin x) (cos x) %PMBZŽTŽZMBDPT2x +TJO2x = 1 jDPTY- 4 PMVS#VOBHÌ- 5 2 - 2 sin x 2^ 1 - sin x h 2 34 4 = cos x^ 1 - sin x h = cos x^ 1 - sin x h = cos x = 2 sec x re, tan x = - , cot x = - ve cos x = - olur. 43 5 B TFD2YC DPTFD2x  - 24  1 34 4 31. 2secx 32. - ve 3 33. UBOY -  DPUY -  DPTY - 7 2 43 5

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 34 %m/*m y \"öBôŽEBLJJGBEFMFSJOJöBSFUMFSJOJCVMVOV[ –1 1 $ TJOa,cosa) B cos100°, sin210°, tan320°, cot250° D TJOa DPTšjCÌMHF - TJOšjCÌMHF -) UBOšjCÌMHF -  DPUšjCÌMHF +) 1 cosa TJOa A(cosa TJOa) a 90°–a 1 1x a B O cosa C sin70°, cos170°, tan280°, cot220° –1 %% TJOšjCÌMHF +  DPTšjCÌMHF -) m ( AOB ) = a ve m ( COB ) = 90° - a olsun. UBOšjCÌMHF -  DPUšjCÌMHF +) Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF c) sin300°, cot150°, tan140°, cot190° cos^ 90° - a h = sin a sin^ 90° - a h = cos a tan^ 90° - a h = cot a cot^ 90° - a h = tan a TJOšjCÌMHF -  DPUšjCÌMHF -) UBOšjCÌMHF -  DPUšjCÌMHF +) olur. d) cotf 17π p, cosf - 7π p, sinc - π m, cosf - 45π p aOŽOCJSJNJSBEZBOPMNBLÐ[FSF 6 36 4 cosc π - a m = sin a sinc π - a m = cos a cotd 17π n jCÌMHF -) 2 2 6 tanc π - a m = cot a cotc π - a m = tan a cosd - 7π n j 4.CÌMHF +) 2 2 3 olur. sind - π n jCÌMHF -) 6 %m/*m cosd - 45π njCÌMHF -) y 4 1 e) sec10°, cosec110° C(–cosa TJOa) A(cosa TJOa) TFDšjCÌMHF  DPTFDšjCÌMHF 1 180°–a 1 TJOa G sin 100° . cos 150° TJOa tan 210° . cot 300° –1 a a 1 x D cosa O cosa B TJOšjCÌMHF +  DPTšjCÌMHF -) UBOšjCÌMHF +  DPUšjCÌMHF -) –1 +. - %% m ( AOB ) = a ve m ( COB ) = 180° - a olsun. =+ Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF +. - cos^ 180° - a h = - cos a sin^ 180° - a h = sin a tan^ 180° - a h = - tan a cot^ 180° - a h = - cot a olur. aOŽOCJSJNJSBEZBOPMNBLÐ[FSF cos^ π - a h = - cos a sin^ π - a h = sin a tan^ π - a h = - tan a cot^ π - a h = - cot a olur. 34. B m m m  C  m m  D m m m  E m  m m  e) +, + G

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ .0%·- ·/÷7&34÷5&:&)\";*3-*, %m/*m %m/*m y y 1 $ mTJOa,cosa) 1 TJOa D 1 1cosaA(cosa TJOa) 270°–a A(cosa TJOa) a90°+a TJOa 1 cosa –1 TJOa–1 a 1 x a1 x O cosa B a O cosa B 1 TJOa D $ mTJOa,–cosa) –1 –1 %% %% m ( AOB ) = a ve m ( COB ) = 90° + a m ( AOB ) = m ( COD ) = aPMTVO Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF cos^ 90° + a h = - sin a sin^ 90° + a h = cos a cos^ 270° - a h = - sin a sin^ 270° - a h = - cos a tan^ 90° + a h = - cot a cot^ 90° + a h = - tan a tan^ 270° - a h = cot a cot^ 270° - a h = tan a  PMVS aOŽOCJSJNJSBEZBOPMNBLÐ[FSF  PMVS aOŽOCJSJNJSBEZBOPMNBLÐ[FSF cosc π + a m = - sin a sinc π + a m = cos a 2 2 3π 3π cosf - a p = - sin a sinf - a p = - cos a tanc π + a m = - cot a cotc π + a m = - tan a 2 2 2 2 PMVS 3π 3π tanf - a p = cot a cotf - a p = tan a 2 2 PMVS %m/*m %m/*m y y 1 1 180°+a 1 A(cosa TJOa) A(cosa TJOa) 1 TJOa –1 D cosa TJOa a TJOa TJOa a1 x –1 aa cosa 1 x O cosa B B O 1 360°–a 1 C(–cosa mTJOa) C(cosa mTJOa) –1 –1 %% % = % = a PMTVO m ( AOB ) = m ( BOC ) = aPMTVO m ( AOB ) m ( DOC ) Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF cos^ 360° - a h = cos a sin^ 360° - a h = - sin a tan^ 360° - a h = - tan a cot^ 360° - a h = - cot a cos^ 180° + a h = - cos a sin^ 180° + a h = - sin a tan^ 180° + a h = tan a cot^ 180° + a h = cot a  PMVS aOŽOCJSJNJSBEZBOPMNBLÐ[FSF PMVS aOŽOCJSJNJSBEZBOPMNBLÐ[FSF  cos^ π + a h = - cos a sin^ π + a h = - sin a cos^ 2π - a h = cosa sin^ 2π - a h = - sin a tan^ π + a h = tan a cot^ π + a h = cot a tan^ 2π - a h = - tan a cot^ 2π - a h = - cot a PMVS PMVS 21

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr %m/*m ÖRNEK 35 y \"öBôŽEBLJ JGBEFMFSJO EPôSV ZB EB ZBOMŽö PMEVLMBSŽOŽ 1 CVMVOV[ A(cosa TJOa) B sin150° = sin30° C cos210° = -cos60° 270°+acosa 1 TJOa –1 a1 x c) tan330° = -cot30° d) cot120° = -tan30° O a cosa B e) sinf 3π - i p = - cos i G tan ( i -Õ = coti 1 2 D TJOa $ TJOa,–cosa) –1 B TJO š-š = +TJOš % m( % = % ) = a olsun. C DPT š+š = -DPTš : AOB ) m ( DOC Buna göre, aOŽOCJSJNJEFSFDFPMNBLÐ[FSF D UBO š+š = -DPUš : cos^ 270° + a h = sin a sin^ 270° + a h = - cos a E DPU š+š = -UBOš % tan^ 270° + a h = - cot a cot^ 270° + a h = - tan a e) sind 3π - i n = -cosi (D) 2 olur. G UBO i -Ö =UBOi (Y) aOŽOCJSJNJSBEZBOPMNBLÐ[FSF cosf 3π + a p = sin a sinf 3π + a p = - cos a ÖRNEK 36 2 2 \"öBôŽEBLJJöMFNMFSJOTBZŽTBMTPOVÀMBSŽOŽCVMVOV[ tanf 3π + a p = - cot a cotf 3π + a p = - tan a B cos120° + tan300° - sin210° + cot120° 2 2 C cos300° - sin150° + tan240° + cot150° olur. B -DPTš-UBOš+TJOš-DPUš 1 1 3 -4 3 - - 3+ - = 2 23 3 %m/*m C DPTš-TJOš+UBOš-DPUš 11 y - + 3- 3=0 1 22 A(cosa TJOa) –1 360°–a acosa 1TJOa TJOa x ÖRNEK 37 O π < i < 3π ve sin i = - 1 –a B 23 C(cosa mTJOa) PMEVôVOBHÌSF  UBOi + cot) LBÀUŽS –1 A  CÌMHFEF UBOKBOU WF LPUBO- %% i KBOUQP[JUJGPMEVôVOEBO m ( AOB ) = m ( BOC ) = a olsun. Buna göre, 22 3 UBOi + coti = 1 +2 2 cos ( -!) = cosa sin ( -!) = -sina 22 tan ( -!) = -tana cot ( -!) = -cota B1 92 = C4 olur. 22 35. B %C :D :E %F %G : 36. B -4 3 C   92 34

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 38 ÖRNEK 41 #JSJNLBSFMFSEFOPMVöBO ZBOEBLJ öFLJMEF UBOY 3r YÖPMEVôVOBHÌSF AA EFôFSJOJCVMVOV[ 2 180°–x x sin2x + cos2x - tan x . cos x 180°–x JöMFNJOJOTPOVDVOFEJS BB CC |TJOY| + | cosx | - |UBOY|. cosx jCÌMHFEF -+ - TJOY< cosx >     UBOY<EŽS = -TJOY+ cosx +UBOYDPTY \"#$ÑÀHFOJOEFO 4 sin x 4 = -TJOY+ cosx + cos x · cos x UBO š- x ) = -UBOY= jUBOY= - 3 3 = -TJOY+ cosx +TJOY= cosx ÖRNEK 42 A 10 B ÖRNEK 39 x 5 12 12 16i =ÖPMEVôVOBHÌSF  sin 6i. sin 3i x 180°–x 13 cos 5i. cos 2i 10 JGBEFTJOJOFöJUJOJCVMVOV[ D E 23 C π | |\"#$%ZBNVóVOEB [ AB ] // [%$], AB = 10 br, 8i = PMEVôVOEBO TJOi = cos2i ve | | | | | |BC = 5 br, \"% = 12 br, %$ = 23 br, m(D%AB) = x 2 tir. TJOi = cos5i olur. :VLBSŽEBLJWFSJMFSFHÌSF UBOYEFôFSJOJCVMVOV[ sin 6i. sin 3i =1 [ AD ] // [#&]PMBDBLöFLJMEF[#&]OŽÀJ[FMJN cos 5i. cos 2i 5 Bu dVSVNEBUBO š- x ) = -UBOY= 12    UBOY= -5 olur. 12 ÖRNEK 40 ÖRNEK 43 12i =ÖPMEVôVOBHÌSF a + b = 60° cos 3i. tan 7i. sin 5i PMEVôVOBHÌSF TJO a + 4b JGBEFTJOJOFOTBEFIB- sin 7i. cos 9i. tan 5i MJOJCVMVOV[ JGBEFTJOJOFöJUJOJCVMVOV[ 3a + 3b =š =TJO a + 3b + b ) =TJO š+ b ) 12i =ÖPMEVôVOEBO DPTi = -cos3i = -TJOb UBOi = -UBOi TJOi =TJOiEŽS#VEVSVNEBDFWBQPMVS 23 4 5 43. mTJOb 41. - 42. - 38. cosx 1 1 3 12

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 44 5SJHPOPNFUSJL 'POLTJZPOMBSŽO \"ÀŽ %FôFSMFSJOF (ÌSF4ŽSBMBONBTŽ #JS\"#$ÑÀHFOJJÀJO sin^ A + B h + sin C %m/*m cos^ A + B h - cos C  7FSJMFO B¿ŽMBS CJSJN ¿FNCFSJO IBOHJ CËMHFTJO- JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ EFPMVSTBPMTVOCVB¿ŽMBSŽOUSJHPOPNFUSJLEFóF- SJEBSB¿ŽDJOTJOEFOJGBEFFEJMJS A + B + C =šj A + B =š- C  7FSJMFOB¿ŽMBSŽOUSJHPOPNFUSJLEFóFSMFSJBSBTŽO- sin^ 180° - C h + sin C da büyüklük-LпÐLMÐL JMJõLJTJOJO CFMJSMFOFCJM- NFTJJ¿JOUSJHPOPNFUSJLEFóFSMFSEJLFZFLTFOMF- cos^ 180° - C h - cos C SF TJOÐT  UBOKBOU  WFZB ZBUBZ FLTFOMFSF LPTJ- OÐT LPUBOKBOU UBõŽOŽS sin C + sin C 2 sin C = = = - tan C  CËMHFEFLJB¿ŽMBSŽOCÐZÐLMÐLMFSJBSUUŽL¿BTJOÐT - cos C - cos C - 2 cos C EFóFSMFSJBSUBS LPTJOÐTEFóFSMFSJB[BMŽS ÖRNEK 45  CËMHFEFLJCJSB¿ŽOŽOUBOKBOUEFóFSJTJOÐTEF- óFSJOEFOEBJNBCÐZÐLUÐS #JS\"#$ÑÀHFOJJÀJO ÖRNEK 47 tanf A + B p - cot C 22 \"öBôŽEBWFSJMFO JGBEFMFSJCÑZÑLUFOLÑÀÑôFTŽSBMBZŽ- OŽ[ sinf A + B p + cos C B sin40°, cos40°, cot40° 22 C sin20°, cos50°, tan60°, cot10° JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ B  TJOš TJOš UBOšWFUBOš>TJOš>TJOš DPUš>DPTš>TJOšEJS A + B + C =š  A+B+C = 90°JTF C  TJOš TJOš UBOš UBOšWF 2  UBOš>UBOš>TJOš>TJOšPMEVôVOEBO  DPUš>UBOš>DPTš>TJOšEJS A+B C = 90° - olur. 22 tand 90° - C n - cot C CC 22 cot - cot 2 2 sind 90° - C n + cos C = =0 22 CC cos + cos 22 ÖRNEK 46 ÖRNEK 48 TJOš=YPMNBLÑzere, π <a<i<π cos2 50° + sin 130° . cos 220° 2 tan 240° JLFOBöBôŽEBLJMFSEFOIBOHJMFSJEBJNBEPôSVEVS JGBEFTJOJOEFôFSJOJCVMVOV[ I. cosi > sina II. tani < tana III. cosi > cos!  IV. sini > sina sin240° + cos 40° .^ - cos 40° h #JSJNÀFNCFSÑ[FSJOEFBÀŽMBSJöBSFUMFOFDFLZBQŽMBCJMF- DFôJHJCJEFôFSWFSFSFLEFZBQŽMBCJMJS tan 60° i =šWFa =šPMTVO DPTš>TJOš j -DPTš>TJOš : sin240° - cos240° sin 2 40° - a 1 - 2 k UBOš<UBOš j -UBOš< -UBOš jUBOš>UBOš : sin 40° DPTš>DPTš j -DPTš> -DPTš == jDPTš<DPTš : TJOš>TJOš j TJOš>TJOš : 33 2 sin240° - 1 2 == 2x - 1 33 44. mUBO$ 45. 46. ^ 2 - 1 h / 3 24 B DPUšDPTšTJOš48. Y, Y, Y, Y 2x C DPUšUBOšDPTšTJOš

5SJHPOPNFUSJL'POLTJZPOMBS TEST - 6 1. Ölçüsü 236425ŽŽPMBOBÀŽOŽOÌMÀÑTÑBöBôŽEBLJ- 5. šMJLBÀŽOŽOFTBTÌMÀÑTÑLBÀEFSFDFEJS MFSEFOIBOHJTJOFFöJUUJS \"  #  $  %  &  A) 65° 41Ž24ŽŽ B) 65° 42Ž25ŽŽ C) 65° 39Ž24ŽŽ % ™Ž25ŽŽ E) 65° 40Ž24ŽŽ 2. A = 36° 45Ž27ŽŽ ve B = 43° 37Ž 55ŽŽ PMEVôVOBHÌSF \"+#UPQMBNŽBöBôŽEBLJMFSEFO 6. -šMJLBÀŽOŽOFTBTÌMÀÑTÑLBÀEFSFDFEJS IBOHJTJOFFöJUUJS \"  #  $  %  &  A) 117° 3Ž48ŽŽ B) 117° 8Ž49ŽŽ C) 117° 13Ž19ŽŽ % ™Ž29ŽŽ E) 116° 43Ž29ŽŽ 3. ²MÀÑTÑŽŽ PMBOBÀŽOŽOÌMÀÑTÑBöBôŽEBLJMFS-  šMJLBÀŽOŽOFTBTÌMÀÑTÑLBÀSBEZBOEŽS EFOIBOHJTJOFFöJUUJS A) π B) 2π C) 4π  %  8π E) 10π 9 9 A) 2° 43Ž23ŽŽ B) 2° 44Ž23ŽŽ C) 2° 44Ž 43ŽŽ 99 9  % ™Ž43ŽŽ E) 2° 45Ž23ŽŽ 4. #JS\"#$ÑÀHFOJOEF 8. Ölçüsü 31Õ  SBEZBO PMBO BÀŽOŽO FTBT ÌMÀÑTÑ m (WA) = 63° 39Ž 47ŽŽ , m (WB) = 54° 48Ž 51ŽŽ 4 LBÀSBEZBOEŽS PMEVôVOBHÌSF m ( XC )BöBôŽEBLJMFSEFOIBOHJTJ- EJS A) 3π B) 5π C) 7π  %  9π E) 5π 4 4 4 88 A) 60° 32Ž 24ŽŽ B) 60° 31Ž 24ŽŽ C) 61° 32Ž 22ŽŽ % ™Ž 22ŽŽ E) 62° 31Ž 22ŽŽ 1. D 2. B 3. B 4. D 25 5. & 6. D & 8. C

TEST - 7 5SJHPOPNFUSJL'POLTJZPOMBS 1. Ölçüsü - 46π SBEZBOPMBOBÀŽOŽOFTBTÌMÀÑTÑ 5. 2 sin x + 3t = 2 9 5 LBÀSBEZBOEŽS FöJUMJôJOEFUOJOBMBCJMFDFôJUBNTBZŽEFôFSMFSJ A) 11π B) 8π C) 7π  %  5π E) 5π UPQMBNŽLBÀUŽS 99 9 98 \"  #  $  %  &  2. \"öBôŽEBLJMFSEFO IBOHJTJOJO FTBT ÌMÀÑTÑ š 6. sin243° , cos317° , tan124° , cot191° EJS  JGBEFMFSJOJO JöBSFUMFSJ TŽSBTŽZMB BöBôŽEBLJMFSEFO IBOHJTJEJS A) 4200° B) -3400° 21π C) 6 A) -, -, -, + B) -, +, -, - C) -, +, -, +  % - 13π E) -300°  % -, +, +, + E) +, +, -, + 3 3. A ABC bir üçgen x <\"%>B¿ŽPSUBZ  cos257° , sin312° , tan227° , cot158° BD m ( % ) = 7π BAC 15  TBZŽMBSŽOŽO JöBSFUMFSJ TŽSBTŽZMB BöBôŽEBLJMFSEFO IBOHJTJEJS % = 2730' m ( ABC ) C A) -, -, -, - B) -, +, +, - C) -, -, +, + %  % -, -, +, - E) +, - + -  :VLBSŽEBLJWFSJMFSFHÌSF m ( ADC ) = x LBÀEFSF- DFEJS \"   #   $   %   &   4. I. 3780° = 180° 8. 11π 13π sin , cos 75 II. -2520° = 120° 21π , cot f 162π p tan III. - 49π = 5π 57 33 TBZŽMBSŽOŽO JöBSFUMFSJ TŽSBTŽZMB BöBôŽEBLJMFSEFO IV. 127π = 3π IBOHJTJEJS 77 A) -, -, -, - B) -, -, +, - C) -, +, -, - :VLBSŽEBLJFöJUMJLMFSEFOLBÀUBOFTJEPôSVEVS \"  #  $  %  &   % -, -, +, + E) +, -, -, - 1. B 2. D 3. A 4. B 26 5. A 6. C D 8. D

5SJHPOPNFUSJL'POLTJZPOMBS TEST - 8 1. 7 5. cosec x - sin x Afx, - p 4 1 + cos x  JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS OPLUBTŽCJSJNÀFNCFSÑ[FSJOEFPMEVô VOBHÌSF Y JO BMBCJMFDFôJ OFHBUJG EFôFS BöBôŽEBLJMFSEFO A) tanx B) cotx C) secx & TJOY IBOHJTJEJS A) - 1 B) - 1 C) - 3  % -1 E) - 5  % DPTFDY 4 2 4 4 2. A = -3 + 2sin ( x - 4 ) (1 + sin x) . (tan x - sec x)  PMEVôVOBHÌSF \"OŽOBMBCJMFDFôJLBÀGBSLMŽUBN 6. TBZŽEFôFSJWBSEŽS sin x JGBEFTJOJOFöJUJBöBôŽE BLJMFSEFOIBOHJTJEJS A) -tanx B) tanx C) -cotx \"  #  $  %  &   % DPUY & -cosec 3. N`;PMNBLÑ[FSF  1 + tan2x + cosec2x 3sinx + 2m - 8 = 0 cosec2x  PMEVôVOBHÌSF NOJOBMBCJMFDFôJLBÀGBSLMŽEF- JGBEFTJOJOFöJUJBöBôŽE BLJleSEFOIBOHJTJEJS ôFSWBSEŽS A) tan2 x B) cot2 x C) sec2 x  % DPTFD2 x E) sin2 x \"  #  $  %  &  4. 2 sin2 270° + 3 cos180° - tan360° 8. tan x - cot x JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS cosec x - 1 A) -5 B) -3 C) - %  &  JGBEFTJOJOFöJUJBöBôŽEBLJMFSd FOIBOHJTJEJS A) -secx B) secx C) -cosecx  % DPTFDY & -tanx 1. C 2. D 3. B 4. C  5. B 6. C C 8. A

TEST - 9 5SJHPOPNFUSJL'POLTJZPOMBS 1. tan4 x + 2sec2 x - sec4 x 5. 1 - sin2 x - sin x  JGBEFTJOJOFöJUJBöBôŽEBL JMFSEFOIBOHJTJEJS sin3 x. cot x (1 - cos2 x) . tan x JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) -1 B) 0 C) 1  % TJOY & DPTY A) –1 B) 0 C) 1  % TFDY & DPTFDY 2. 2 cos x - 3 sin x = 2 6. sin2 x 4 cos x + 3 sin x sin2 x + cos x - 1 PMEVôVOB HÌSF  DPUY BöBôŽEBLJMFSEFO IBOHJTJ- JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS EJS A) - 3 B) - 2 C) 2  %  3 A) secx B) cosecx C) 1 + secx 2 E) 1 33 2  % + cosecx E) 1 - cosecx 3. sin2 x - 1  UBOY- cotx = 3 PMEVôVOBHÌSF  1 - sin2 x (1 + cos2 x) 2 tan2 x + 1 tan2x JGBEFTJOJOFöJUJBöBôŽEBLJMFSJOIBOHJTJEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) -tan2 x B) -cot2 x C) -sec2 x A) 1 5 C) 9  %  13 E) 17 4 B) 4 44  % -cosec2 x E) cot2 x 4 4. sin2 x - (sin x - cos x) . (sin x + cos x) 8. secx + cosx = 3 1 - tan2 x PMEVôVOB HÌSF   TFDY - DPTY  JGBEFTJOJO FöJUJ JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS BöBôŽEBLJMFSEFOIBOHJTJPMBCJMJS A) 5 B) 3 C) 5  %  3 E) 7 A) -1 B) 0 C) 1 28 5. B 6. C & 8. C  % UBOY & DPUY 1. C 2. A 3. C 4. C

5SJHPOPNFUSJL'POLTJZPOMBS TEST - 10 (1 - cot x) . (1 + cot x) . sin2x 5. sinx - cosx = 2 1. 3  PMEVôVOBHÌSF UBOY+DPUYUPQMBNŽLBÀUŽS sin x - cos x  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) 13 B) 18  $  %  21 E) 23 5 5 55 A) sinx + cosx B) sinx - cosx C) -1  % DPTY & DPTY- sinx 2. 5sinx = 7 - 5cosx 6. sin x - 2 cos x = 3 PMEVôVOBHÌSF TJOYDPTYJGBE FTJOJOFöJUJBöB- sin x + cos x 4 ôŽEBLJMFSEFOIBOHJTJEJS PMEVôVOBHÌSF UBOYLBÀUŽS A) 24 18 C) 12  %  9 8 \"  #  $  %  &  25 B) E) 25 25 25 25 3. sec x + cosec x - cos x  0 < x < 3π , cos x = 3 tan x + cot x 25 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS PMEVôVOBHÌSF TJOYLBÀUŽS A) cosx B) -cosx C) sinx A) - 3 B) - 4 C) - 3  %  4 4 5 5 43 E) 5  % -sinx E) 0 4. sin2 x. cot x. cosec x. cos x 8. π < x < 3π , tan x = 1 22 3 sec x. cos2 x PMEVôVOBHÌSF cPTYTJOYÀBSQŽNŽLBÀUŽS JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) cosx B) cos2 x C) sin2 x A) - 1 B) - 3 C) 1 10 10 10 %  3  % TJOY E) 1 10 E) 1 1. A 2. C 3. C 4. A  5. B 6. A & 8. D

TEST - 11 5SJHPOPNFUSJL'POLTJZPOMBS 1. TJOš=BPMEVôVOBHÌSF  5. bCJSEBSBÀŽPMNBLÑ[FSF cos 250° . sin 340° 3 sin (b - 5π ) - sin (- b) - 2 cosc π + b m sin 160° . sin 200° 2 JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS % - 1 E) 1 A) 0 B) -4sinb C) 4sinb 2 A) -1 B) -B $ B  % TJOb E) 6sinb 2. \"öBôŽEBLJMFSEFO IBOHJTJOJO EFôFSJ FO CÑZÑL- 6. \"öBôŽEBLJMFSEFOIBOHJTJDPTšZFFöJUEFôJM UÑS EJS A) sin20° B) cos40° C) sin60° A) sin200° B) cos110° C) sin340°  % DPT™ & TJO™  % -cos70° E) cos290° 3. YCJSEBSBÀŽPMNBLÑ[FSF  I. -tan40° II. -cot50° IV. cot310° cot f x - 17π p III. tan320° VI. -cot40° 2 V. cot130° cos f x - 7π p + cos f 19π - x p  :VLBSŽEBLJMFSEFOLBÀUBOFTJUBOšZFFöJUUJS 22  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) secx B) 2secx sec x \"  #  $  %  &  C)  % DPTFDY 2 E) cosec x 2 4. iCJSEBSBÀŽPMNBLÑ[FSF sin 340° + cot (- 240° ) + cos 290° sin (11π - i) - cosf 5π - i p + tanf 7π + i p 8. 22 tan 30° JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) - 3 3 C) -1 3 B) 3 A) -coti B) coti C) -tani  %  E) 3  % UBOi E) -seci 1. A 2. & 3. C 4. A  5. A 6. & & 8. C

5SJHPOPNFUSJL'POLTJZPOMBS TEST - 12 tan (- 45° ) 5. x = sin27° , y = cos73° 1. z = tan46° , k = cot200° sin 150° - cos 120° PMEVôVOBHÌSF BöBôŽEBLJTŽSBMBNBMBSEBOIBO- JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS HJTJEPôSVEVS A) -2 B) - $  %  &  A) y < x < k < z B) y < x < z < k C) x < y < k <[ % Y< y < z < k E) y < z < x < k 2. cot105° . cot120° . cot135° . cot150° . cot165° 6. a = cos109° , b = cos123° ÀBSQŽNŽOŽOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS c = cos305° , d = cos216° A) - 3 B) 3 C) - %  & -2 PMEVôVOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBO- 88 HJTJEPôSVEVS A) a < b < d < c B) c < a < b < d C) a < d < b <D % E< b < a < c E) d < b < c < a 3. tan 20° . tan 21° . tan 22° . . . tan 70°  3π < a < b < 2πPMNBLÑ[FSF  cot 10° . cot 11° . cot 12° . . . cot 80° 2  JöMFNJOJOTPO VDVBöBôŽEBLJMFSEFOIBOHJTJEJS 2 3 I. cosa > cosb II. sina > sinb A) C) B) 1 III. tana < tanb IV. cota < cotb 2 3 %  3 E) 2 V. coseca > cosecb  FöJUTJ[MJLMFSJOEFOLBÀUBOFTJEPôSVEVS \"  #  $  %  &  4. cot ( 570° ) + tan ( -660° ) 8. 3sin ( x - 20°) + 4cos ( y - 10°)  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS C) - 2 3  JGBEFTJOJOBMBCJMFD FôJFOCÑZÑLEFôFSLBÀUŽS 3 A) - 2 3 B) 0 E) 2 3 \"  #  $  %  &  51   %  1. B 2. C 3. B 4. & 31 5. B 6. D B 8. D

TEST - 13 5SJHPOPNFUSJL'POLTJZPOMBS A 4. A ABC bir dik üçgen 1. [ #%] m [AC] D | |D AC = 10 birim 8C E % = a a m ( BAC ) B2 F % = b m ( ACD ) \"NFSLF[MJ¿FZSFLEBJSF 'OPLUBTŽOEB[ BC ] ye te- BC | | | |óFU [ AB ] m [ AC ], BF = 2 br, CF = 8 br cota + cotb = 5 % | |:VLBSŽEBLJWFSJMFSFHÌSF  BD LBÀCJSJNEJS m ( ABC ) = a EŽS \"  #  $  %  &   :VLBSŽEBLJWFSJMFSFHÌSF DPUaLBÀUŽS 5. A ABC ikizkenar üçgen A) 1 B) 2 C) 1  %  1 E) 1 248 D B | | | |AB = AC = 10 cm [ AB ] m [$%] % = a m ( DCB ) 2. A F B \"#$%EJLEËSUHFO | |a BC = 12 cm dir. C 1 [ EF ] m [ FC ] Ea |AE| = |FB| m ( D%EF ) = a  :VLBSŽEBLJWFSJMFSFHÌSF DPTaLBÀUŽS D | |C EF = 1 birim A) 2 B) 3 C) 4  %  3 E) 1 3 4 55 | |:VLBSŽEBLJWFSJMFSFHÌSF BC BöBôŽEBLJMFSEFO 6. ôFLJMEFCJSLËõFTJCJSJN¿FNCFSÐ[FSJOEFPMBO\"#0 IBOHJTJOFFöJUUJS EJLпHFOJWFSJMNJõUJS y A) sina B) cosa C) -sina 1  % DPTa E) tana A 3. \"õBóŽEBLJõFLJMË[EFõLBSFEFOPMVõNVõUVS C a x –1 B O [AB], x eksenine dik ve m ( A%OB ) = aEŽS ab BC PSBOŽBöBôŽEBLJMFSEFOIBO- #VOBHÌSF  AB HJTJOFFöJUUJS #VOBHÌSF DPUaUBObLBÀUŽS A) coseca - cota B) seca - tana A) -4 B) -2 C) - %  C) tana - cota % TJOa - cosa &  E) seca - coseca 1. C 2. C 3. B 32 4. A 5. C 6. A

5SJHPOPNFUSJL'POLTJZPOMBS TEST - 14 1. y 4. Y=ÖPMEVôVOBHÌSF C cot 4x + sin2 3x + sin2 2x a tan x  JGBEFTJOJOEFôFSJLBÀUŽS E B A) -2 B) - $  %  &  x O DA ôFLJMEF[ AC ], O merkezli birim çembere B nokta- TŽOEBUFóFU [OB ] m [AC ] ve m ( % ) = a EŽS ACD  #VOB HÌSF  \"0$ ÑÀHFOJOJO BMBOŽ BöBôŽEBLJMFS- EFOIBOHJTJOFFöJUUJS A) sin a - 1 B) cos a + sin a 2 2 C) tan a %  cot a + tan a 2 2 E) sin a - cos a 5. TJOš=BPMEVôVOBHÌSF  2 2 cos 280° + sin 350° sec 80°  JGBEFTJOJO B DJOTJOEFO EFôFSJ BöBôŽEBLJMFSEFO IBOHJTJEJS A) a2 B) 1  $ B %  1 E) 1 a2 a 2. tanx - cotx = 2 PMEVôVOBHÌSF UBO3 x - cot3 YJGBEFTJOJOEFôF- SJLBÀUŽS \"  #  $  %  &  3. x + y = π PMEVôVOBHÌSF  6. a ve iEBSBÀŽPMNBLÑ[FSF 4 tana < tani tan ( 4x + 5y ) PMEVôVOB HÌSF  BöBôŽEBLJMFSEFO IBOHJTJ EBJNB EPôSVEVS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) tan ( 90° + x ) B) tan ( 90° + y ) A) sina > sini B) cosa < cosi C) -UBOZ % UBOY C) cota > coti % TJOa > cosi E) tany E) cota < tani 1. D 2. A 3. & 33 4. & 5. A 6. C

TEST - 15 5SJHPOPNFUSJL'POLTJZPOMBS 1. k `/+PMNBLÑ[FSF 4. YHFOJöBÀŽPMNBLÑ[FSF 175π = 2π .k + , 1 - cos x . 1 + cos x 9 1 + sin x 1 - sin x  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  PMEVôVOBHÌSF LùJGBEFTJOJOFOLÑÀÑLQP[J- UJGEFôFSJLBÀUŽS A) sinx B) cotx C) -tanx \" Õ # Õ $ Õ % Õ & Õ  % -secx E) -cotx 2. \"öBôŽEBLJMFSEFOIBOHJTJCJSJNÀFNCFSÑ[FSJO- 5. YEBSBÀŽPMNBLÑ[FSF EFZFSBMBOCJSOPLUBEŽS 1 # cosecx # 2  LPöVMVOV TBôMBZBO Y BÀŽMBSŽOŽO EFSFDF PMBSBL A) f - 5 , 12 p B) ( 1, -1 ) 13 13 LBÀUBOFUBNTBZŽEFôFSJWBSEŽS % f 3 , 1 p \"  #  $  %  &  44 C) ( tan15°, cot75° ) E) ( sin30°, cos60° ) 3. sec x - cosec x 6. \"#$% B 1 + tan x 1 + cot x A paralelkenar JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS x m (XC) = y D m (XD) = x y tan x = 5 8 C A) 0 B) 1 C) 1 :VLBSŽEBLJWFSJMFSFHÌSF DPUZLBÀUŽS  % UBOY 2 & DPUY A) 3 B) 5 C) - 3  % - 8 E) 1 8 8 85 1. B 2. A 3. A 34 4. C 5. B 6. D

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, 53÷(0/0.&53÷,'0/,4÷:0/-\"3*/(3\"'÷,-&3÷ 1FSJZPUWF1FSJZPEJL'POLTJZPO ÖRNEK 4 %m/*m G\"Z B ve rx ` A için, G Y+ 7) =G Y PMBSBLUBOŽNMBOŽZPS  G Y  GPOLTJZPOVOVO UBOŽN LÐNFTJOEFLJ IFS Y G  = -WFG  = 2 PMEVôVOBHÌSF  FMFNBOŽJ¿JOG Y =G Y+5 FõJUMJóJOJTBóMBZBO G  +G - UPQMBNŽOŽOEFôFSJOJCVMVOV[ T ` R+WBSTBGGPOLTJZPOVOBQFSJZPEJLGPOLTJ- ZPO FOLпÐL5TBZŽTŽOBCVGPOLTJZPOVOQF- G Y+ =G Y PMEVôVOEBOGGPOLTJZPOVOVOQFSJZPEV SJZPEV denir. EJS#VEVSVNEB G  =G  = ... =G  = -1 ve  1FSJZPU 5 BZOŽEFóFSMFSJOUFLSBSFUUJóJFOLÐ- G  =G -5 ) = ... =G -33) =PMBSBLCVMVOVS ¿ÐLBSBMŽLUŽS G  +G -33 ) = 2 ( -1 ) + 2 =PMVS ÖRNEK 1 x `;PMNBLÑ[FSF G Y = \"x in 3 ile bölümünden kalan\" öFLMJOEFUBOŽNMB- OBOGPOLTJZPOVOVOQFSJZPEVOVCVMVOV[ G Y =G Y+5 PMBDBLöFLMEFLJFOLÑÀÑL5` R+EFôF- ÖRNEK 5 SJUÑS G  =    G  = 1 \"õBóŽEBWFSJMFOEËONFEPMBCŽOZFSEFOZÐLTFLMJóJNWF G  =    G  = 2 ZBSŽ¿BQŽNEJS G  =    G  = PMEVôVOEBOGPOLTJZPOVOQFSJZPEVUÑS A ÖRNEK 2 10 m R+ Z3PMNBLÑ[FSF 2m  G Y = x2 + 2 GPOLTJZPOVOVOQFSJZPEJLPMVQPMNBEŽôŽOŽCVMVOV[ 'POLTJZPOUBOŽNMŽPMEVôVBSBMŽLUBEBJNBBSUBOPMEVôV JÀJOQFSJZPEJLEFôJMEJS ÖRNEK 3 #VEÌONFEPMBQCJSUVSVOVTBOJZFEFUBNBNMBEŽ- ôŽOB HÌSF  \" OPLUBTŽOŽO ZFSEFO ZÑLTFLMJôJOJO  N GGPOLTJZPOVOVOQFSJZPEVPMEVôVOBHÌSF  PMEVôV IFSIBOHJ JLJ BO JÀJO CV TÑSFMFSJO GBSLŽ FO B[ g ( x ) =G Y+ 1 ) - 3 LBÀTBOJZFEJS GPOLTJZPOVOVOQFSJZPEVOVCVMVOV[ \" OPLUBTŽOŽO ZFSEFO ZÑLTFLMJôJOJONPMEV- Tg =HGPOLTJZPOVOVOQFSJZPEV A A ôVBO ZFSEÑ[MFNJOFQB- 12 m 12 m SBMFMPMBOÀBQŽOJLJVDVO- EB PMEVôV [BNBOEŽS #V TG =GGPOLTJZPOVOVOQFSJZPEVPMNBLÑ[FSF EVSVN \" OPLUBTŽOŽO ZB- T SŽNUVSBUUŽôŽ[BNBOHFS- Tg = 3 ÀFLMFöJS 0 ZÑ[EFO TÑSF G = GBSLŽFOB[TOPMVS 2 2 1. 3 2. 1FSJZPEJLEFôJMEJS 3 35 4.  5.  3. 2

·/÷7&34÷5&:&)\";*3-*, .0%·- 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 4JOÑTWF,PTJOÑT'POLTJZPOMBSŽOŽO1FSJZPUMBSŽ %m/*m Y  π Õ 3π Õ 5π Õ 7π Õ  2222 TJOY  1  -1  1  -1    :VLBSŽEBLJUBCMPEBTJOÐTGPOLTJZPOVJ¿JO[ Õ], [Õ Õ] BSBMŽLMBSŽOEB 0, 1, 0, -1, 0EFóFSMFSJUFLSBSFUNFL- UFEJS#VSBEBOTJOY=TJO Y+Õ =TJO Y+Õ ==TJO Y+LÕ PMEVóVHËSÐMÐSrY` R, k ` Z+PMNBL Ð[FSFTJO Y+LÕ =TJOYPMEVóVOEBOTJOÐTGPOLTJZPOVOVOQFSJZPEVFOLпÐLL` Z+J¿JO5=ÕPMVS Y  π Õ 3π Õ 5π Õ 7π Õ  DPTY 1 2222  -1  1  -1  1   :VLBSŽEBLJUBCMPEBLPTJOÐTGPOLTJZPOVJ¿JO[ Õ], [Õ Õ] BSBMŽLMBSŽOEB1, 0, -1, 0, 1EFóFSMFSJOJOUFLSBS- MBOEŽóŽHËSÐMNFLUFEJS#VSBEBOrY` R, k ` Z+J¿JODPT Y+LÕ =DPTYPMEVóVOEBOLPTJOÐTGPOLTJZPOVOVO QFSJZPEVFOLпÐLL` Z+J¿JOT =ÖPMVS %m/*m ÖRNEK 6 y \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO QFSJZPUMBSŽOŽ CVMV- 1 OV[ a) G Y =TJO Y+  P b) f^ x h = 3 cosf 3x + 1 p Õ a 1 5 x c) f^ x h = 2 sin2f x - 1 p –1 a O 7 E f^ x h = 1 - 3 cos3f 2x + 1 p –1 4 :VLBSŽEBLJ CJSJN ¿FNCFSEF HËSÐMEÐóÐ HJCJ a F  G Y =TJOY+DPTY B¿ŽTŽOBÕWFÕOJOLBUMBSŽFLMFOEJóJOEFTJOÐT WFLPTJOÐTEFóFSMFSJEFóJõNF[ f) G Y =TJO  TJOa =TJO a +LÕ 2π 2π 2π 10π a) T = = b) =  DPTa =DPT a +LÕ 33 33 %m/*m 5 L B C`3WFLáPMNBLÐ[FSF π  2π G Y =LTJOO BY+C c) = 7π  E  = 4π  H Y =LDPTO BY+C GPOLTJZPOMBSŽOEB 1 2  OUFLEPóBMTBZŽJTF T = 2π 7 4 a  O¿JGUEPóBMTBZŽJTF T = π  Oá F TJO2 x +DPT2 x = PMEVôVOEBOQFSJZPEVZPLUVS a G G Y TBCJUGPOLJTZPOPMEVôVJÀJOQFSJZPEVZPLUVS  PMBSBLCVMVOVS 2π 10π 6. a) b) D ÖE ÖF QFSJZPEVZPLUVS 36 33 G QFSJZPEVZPLUVS

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ .0%·- ·/÷7&34÷5&:&)\";*3-*, 5BOKBOUWF,PUBOKBOU'POLTJZPOMBSŽOŽO1FSJZPUMBSŽ %m/*m 0 π Õ 3π Õ 5π Õ 7π Õ ... ... x 22 22 tanx 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0  :VLBSŽEBLJUBCMPEBUBOKBOUGPOLTJZPOVJ¿JO[ Õ], [Õ Õ], [Õ Õ] BSBMŽLMBSŽOEB UBOŽNTŽ[ õFLMJOEFUFL- SBSFEFOTPOV¿MBSFMEFFEJMJS#VSBEBOUBOY= ( x +Õ = ... = tan ( x +LÕ PMEVóVHËSÐMÐSr x ` R, k ` Z+J¿JO tan ( x +LÕ =UBOYPMEVóVOEBOUBOKBOUGPOLTJZPOVOVOQFSJZPEVFOLпÐLL` Z+J¿JO5=ÕPMVS x 0 π Õ 3π Õ 5π Õ 7π Õ ... 22 22 DPUY 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 ...  :VLBSŽEBLJUBCMPEBLPUBOKBOUGPOLTJZPOVJ¿JO[ Õ], [Õ Õ], [Õ Õ] BSBMŽLMBSŽOEB UBOŽNTŽ[  UBOŽNTŽ[ õFLMJOEFUFLSBSFEFOTPOV¿MBSFMEFFEJMJS#VSBEBODPUBOY=DPU Y+Õ =DPU Y+Õ = ... =DPU Y+LÕ PM- EVóVHËSÐMÐSr x ` R, k ` Z+J¿JOUBO Y+LÕ =UBOYPMEVóVOEBOUBOKBOUGPOLTJZPOVOVOQFSJZPEVFOLпÐL k ` Z+J¿JO5=ÕPMVS ÖRNEK 7 %m/*m \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO QFSJZPUMBSŽOŽ CVMV-  #JSEFO GB[MB USJHPOPNFUSJL GPOLTJZPOVOVO UPQ- OV[ MBNŽOŽOWFZBGBSLŽOŽOQFSJZPEVCVGPOLTJZPOMB- SŽOQFSJZPUMBSŽOŽO0,&,hJOFFõJUUJS a) G Y = tan ( 2x -  b) H Y DPU ÕY-  I Y =G Y ÷H Y JTF c) I Y = tan2 ÕY-   d) U Y =DPU3 ( 3x -Õ TI Y =0,&, 5G Y , TH Y  PMBSBLCVMVOVS e) h^ x h = 2 tan2f πx - 3 p - 1 ÖRNEK 8 4  G Y =DPT2 c x + 40° m + tan3 ( x -™ f) s^ x h = 3 cot3f 2x - 1 p + 5 2 5 GPOLTJZPOVOVOFTBTQFSJZPEVOVCVMVOV[ ππ π DPT2 d x + 40° nŽOFTBTQFSJZPEV T = π = 2π a) = b) = 1 2 11 22 π 2 π ππ tan3 ^ x - 10° hVOFTBTQFSJZPEV c) = 1 d) = π π 33 T = = π JTF π π 5π 21 e) = 4 f) = Tf(x) =0,&, 51, T2) =0,&, Ö Ö =ÖPMVS. π 22 4 5 7. a) π π 5π 37 8. Ö b) 1 c) 1 d) e) 4 f) 2 32

·/÷7&34÷5&:&)\";*3-*, .0%·- 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 4JOÑT'POLTJZPOVOVO(SBGJôJ %m/*m x -Õ - 3π -Õ - π 0 π Õ 3π Õ 22 0 22 sinx 0 1 0 -1 1 0 -1 0  5BCMPEBPMVõUVSVMBO Y TJOY OPLUBMBSŽBOBMJUJLEÐ[MFNEFJõBSFUMFOFSFLBSEŽõŽLOPLUBMBSBVZHVOCJSõFLJMEFCJS- MFõUJSJMEJóJOEFTJOYGPOLTJZPOVOVOHSBGJóJBõBóŽEBLJHJCJ¿J[JMJS y 1 Õ mÕ – Õ OÕ Õ 2x 2 2 Õ mÕ –1  :VLBSŽEBLJHSBGJóJOPSJKJOFHËSFTJNFUSJLPMEVóVHËSÐMNFLUFEJS0SJKJOFHËSFTJNFUSJLGPOLTJZPOMBSUFLGPOLTJZPO- EVSGGPOLTJZPOVOVOUBOŽNLÐNFTJOEFLJIFSYEFóFSJJ¿JO   G -x ) = -G Y JTFGUFLUJS G -x ) =G Y JTFG¿JGUUJS  #VSBEBUBOŽNHFSFóJTJO -x ) = -TJOYPMEVóVOEBOTJOYGPOLTJZPOVUFLGPOLTJZPOEVS ÖRNEK 9 ÖRNEK 10 \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- OJ[ OJ[ B y = sin ( 2x ) B y = -sin ( 3x ) C y = sin ( 2x ) + 1 C y = -sin ( 3x ) + 1 D y = 2sin ( sin2x ) + 1 D y = -2sin ( sin3x ) + 1 ¦Ì[ÑN ¦Ì[ÑN y y y = 2sin(2x) + 1 y = –2sin(3x) +1 3 3 2 1 2 1 –3 –2 –1 1 2 3 x –1 4 –4 –3 –2 –1 O 12 34 x –2 y = sin2x –1 y = sin(2x) + 1 y = –sin(3x) –3 –2 y = –sin(3x) +1 38

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ .0%·- ·/÷7&34÷5&:&)\";*3-*, ,PTJOÑT'POLTJZPOVOVO(SBGJôJ %m/*m r x ` R DPT Y+LÕ =DPTYPMEVóVOEBODPTYGPOLTJZPOVOVOQFSJZPEVÕPMVS#VGPOLTJZPOVOHSBGJóJ[ Õ] ¿J[JMJS(SBGJL[-Õ -Õ] [-Õ ] [ Õ] [Õ Õ]BSBMŽLMBSŽOEBUFLSBSFEFS[ Õ]CJSLB¿EFóFSTF¿JMEJ- óJOEFBõBóŽEBLJUBCMPPMVõVS x -Õ - 3π -Õ - π 0 π Õ 3π Õ 22 1 22 cosx 1 0 -1 0 0 -1 0 1  5BCMPEBPMVõUVSVMBO Y DPTY OPLUBMBSŽBOBMJUJLEÐ[MFNEFJõBSFUMFOFSFLBSEŽõŽLOPLUBMBSVZHVOCJSõFLJMEFCJS- MFõUJSJMEJóJOEFDPTYGPOLTJZPOVOVOHSBGJóJBõBóŽEBLJHJCJ¿J[JMJS y 1 mÕ Õx Õ Õ mÕ – Õ –Õ O Õ 2 2 2 2 –1  :VLBSŽEBLJHSBGJóJOZFLTFOJOFHËSFTJNFUSJLPMEVóVHËSÐMNFLUFEJS  ,PTJOÐTGPOLTJZPOVOVOHSBGJóJZFLTFOJOFHËSFTJNFUSJLPMEVóVOEBOLPTJOÐTGPOLTJZPOV¿JGUGPOLTJZPOEVS%P- MBZŽTŽZMBDPT -x ) =DPTYPMVS ÖRNEK 11 ÖRNEK 12 \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- OJ[ OJ[ B y = cos ( 3x ) B y = -cos ( 2x ) C  y = cos ( 3x ) - 1 C  y = -cos ( 2x ) - 1 D y = 2cos ( 3x ) - 1 D y = -2cos ( 2x ) - 1 ¦Ì[ÑN ¦Ì[ÑN y y y = –2cos(2x)–1 3 1 y = cos3x 2 O x 1 –4 –3 –2 –1 1 23 –1 –4 –3 –2 –1 O 1 2 3 4 x –2 –1 y = cos(2x)+1 y = –cos2x –2 y = 2cos(3x)–1 y = cos(3x)–2 39

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 5BOKBOU'POLTJZPOVOVO(SBGJôJ %m/*m r x ` R, tan ( x +LÕ =UBOYPMEVóVOEBOUBOYGPOLTJZPOVOVOQFSJZPEVÕPMVS#VZÐ[EFOUBOKBOUGPOLTJZPOV- OVOHSBGJóJ;- π , 0 m , f π , 3π p gibi arBMŽLMBSEBUFLSBSFEFS 2 22 x 0 π Õ 3π Õ 5π Õ 7π Õ ... ... 22 22 tanx 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 y –Õ Õ Õ 2 x mÕ OÕ Õ 22   (SBGJLUFOUBOYGPOLTJZPOVOVO L+ 1 ) . π ( k `; B¿ŽËM¿ÐMFSJJ¿JOUBOŽNTŽ[PMEVóVOBEJLLBUFEJOJ[ 2  UBOYGPOLTJZPOVPSJKJOFHËSFTJNFUSJLPMEVóVOEBOUFLGPOLTJZPOEur.  UBOYGPOLTJZPOVOVOQFSJZPEVÕEJS#VQFSJZPEBLBSõŽMŽLHFMFOBSBMŽLc - π , π m dir. 22 ÖRNEK 13 ÖRNEK 14 \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- OJ[ OJ[ B y = tan ( 2x ) B y = -tan ( 2x ) C y = 3tan ( 2x ) C y = -3tan ( 2x ) ¦Ì[ÑN ¦Ì[ÑN y –3 –2 y –3 –2 3 2 3 2 1 1 2 –1 O 1 3 x –1 2 –2 x –1 O 1 3 –3 –1 –2 –3 y = –tan2x y = –3tan(2x) y = tan2x y = 3tan(2x)

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ,PUBOKBOU'POLTJZPOVOVO(SBüôJ %m/*m r x ` R, cot ( x +LÕ =DPUYPMEVóVOEBOLPUBOKBOUGPOLTJZPOVOVOQFSJZPEVÕPMVS#VZÐ[EFOLPUBOKBOUGPOL- TJZPOVOVOHSBGJóJ( -Õ    Õ HJCJBSBMŽLMBSEBUFLSBSFEFS x 0 π Õ 3π Õ 5π Õ 7π Õ ... ... 22 22 cotx 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 5BOŽNTŽ[ 0 y mÕ – Õ O Õ Õ Õ Õ x 2 2 2  (SBGJLUFUBOYGPOLTJZPOVOVO L+ 1 ) ( k `; B¿ŽËM¿ÐMFSJDPUYGPOLTJZPOVOVOUBOŽNTŽ[PMEVóVOBEJLLBUFEJOJ[  DPUYGPOLTJZPOVPSJKJOFHËSFTJNFUSJLPMEVóVOEBOUFLGPOLTJZPOEur.  DPUYGPOLTJZPOVOVOQFSJZPEVÕEJS#VQFSJZPEBLBSõŽMŽLHFMFOBSBMŽL  Õ EJS ÖRNEK 15 ÖRNEK 16 \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- \"öBôŽEB WFSJMFO GPOLTJZPOMBSŽO HSBGJLMFSJOJ JODFMFZJ- OJ[ OJ[ B y = cot ( 2x ) B y = -cot ( 2x ) C y = 3cot ( 2x ) C y = -3cot ( 2x ) ¦Ì[ÑN ¦Ì[ÑN y y 3 3 2 2 1 1 –2 1 –3 –1 2 –3 –1 O 2 3 x x –1 –2 O 1 3 –2 –1 –3 –2 –3 y = 3cot(2x) y = cot2x y = –3cot(2x) y = –cot2x 41

TEST - 16 5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ 1.  G Y = 2cos3x + 1 5. G Y = 2cos3x -\"PMNBLÑ[FSF  GPOLTJZPOVOVO FTBT QFSJZPEV BöBôŽEBLJMFSEFO f^ x h =- 4 IBOHJTJEJS 7 π π C) 2π  % Õ & Õ EFOLMFNJOJO CJS LÌLÑ Y1 JTF ff x1 + 4π p  LBÀ- A) B) 3 UŽS 3 2 3 A) - 16 B) - 3 C) - 8 21 7 7  % - 8 E) - 4 21 7 2. 6ZHVOUBOŽNBSBMŽôŽOEB G Y = tan5x . cos5x - 1  GPOLTJZPOVOVO FTBT QFSJZPEV BöBôŽEBLJMFSEFO 6. cos2x = cos2x -TJO2YPMNBLÑ[FSF IBOHJTJEJS G Y = 3cos2x - sin2x - 1 $  π \" Õ # Õ 5  GPOLTJZPOVOVOFTBTQFSJZPEVLBÀUŽS %  2π E) - 2π A) π B) π  $ Õ %  3π  & Õ 5 5 4 2 2 3. f^ x h = 2 + tanc x + 1 m   G B = cot ( x + 3 ) + tan ( 2a - 1 ) 3  GPOLTJZPOVOVOFTBTQFSJZPEVLBÀUŽS  GPOLTJZPOVOVO QFSJZPEV BöBôŽEBLJMFSEFO IBO- A) 3π  # Õ $ Õ HJTJPMBCJMJS 2 \" Õ # Õ $ Õ % Õ & Õ %  π 2 E) Yoktur. 4. 6ZHVOUBOŽNBSBMŽôŽOEB 8. 6ZHVOUBOŽNBSBMŽôŽOEBWFSJMFOGGPOLTJZPOVOEB G Y = tanx.cotx + 1 k ≠ 1 PMNBLÑ[FSF 2  GPOLTJZPOVOVOQFSJZPEVJMFJMHJMJBöBôŽEBLJCJM- f^ k h = 2k - 1 HJMFSEFOIBOHJTJEPôSVEVS tan3^ πk - 1 h \" :PLUVS # Õ $ Õ  %  π 3π  GPOLTJZPOVOVOFTBTQFSJZPEVLBÀUŽS 2 E) \" Õ #  1  $ Õ2 %  & -Õ 2 π 1. C 2. D 3. D 4. A 42 5. & 6. C D 8. D

5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ TEST - 17 1. y 3. y 3 1 Õ Õ 1 O 2 4 Õx O Õ 4 Õ 4 –1 –1 Õ x 12 Õ –3  :VLBSŽEBLJ öFLJMEF WFSJMFO HSBGJL BöBôŽEBLJ  :VLBSŽEBLJHSBGJLZ=BTJO CY +DGPOLTJZPOV- GPOLTJZPOMBSEBOIBOHJTJOFBJUPMBCJMJS OBBJUJTFB+C+DLBÀUŽS A) 1 + 2sinx B) 2 + sinx C) 1 +TJOY % + 2sin2x \"  #  $  % -3 E) -5 E) 2 + sin2x 2. y 4. G Y TJOY  a  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS A) y B) y 5 5 1 3 2 Õ O Õ 4 bx x 4 x Õ Õ Õ ÕÕ Õ ÕÕ Õ –1 12 6 3 12 6 3 2 –2 –1 C) y D) y 2 6 Õ  :VLBSŽEBWFSJMFOHSBGJL 4 2 Õ –1 Õx x 3 4  G Y = 1 + 2sinx ÕÕ Õ 12 6 3 GPOLTJZPOVOBBJUJTFB+CLBÀUŽS –1 A) 2 + 7π B) 2 + 3π C) 3 + 6π E) y 6 2 5 5 %  5 + 3π E) 3c 1 + π m 2 x 22 2 Õ 4 ÕÕ Õ 12 6 3 –1  1. D 2. & 43 3. B 4. &

TEST - 18 5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ 1. y 3. y 1 1 Õ Õ Õ ÕÕ O 2 Õ2 x O 6 32 Õ x Õ 3 –1 –1 –3 –3  :VLBSŽEBLJ öFLJMEF WFSJMFO HSBGJL BöBôŽEBLJ  :VLBSŽEBLJHSBGJLZ=BDPT CY +DGPOLTJZPOV- GPOLTJZPOMBSEBOIBOHJTJOFBJUPMBCJMJS OBBJUJTFB+C+DLBÀUŽS A) cos2x - 1 B) 2cosx - 1 \"  #  $  %  &  C) 2cos2x - % DPTY- 2 E) cos2x - 2 4. G Y = -2 + 4cos2x 2. y GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS 2 A) y Õ B) y b 2 4 4 Õ x Õ Õx 2 2 x Õ aÕ Õ –6 –2 12 O Õ 42 C) y D) y 4 2  :VLBSŽEBWFSJMFOHSBGJLZ= cos2x +GPOLTJZPOVOB Õ Õx Õ Õx aittir. 2 2 –4 –6  #VOBHÌSF B+CLBÀUŽS A) 1 + 3π B) 1 + 2π C) 3 + 4π E) y Õx 4 23 23 Õ  %  3 + 3π E) 3 + 3π 2 44 24 –2 –6 1. B 2. A 44 3. C 4. D

5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ 3. TEST - 19 1. y y Õ Õ Õ 1 mÕ O Õ x 44 4x O  :VLBSŽEBWFSJMFOHSBGJLBöBôŽEBLJGPOLTJZPOMBS-  :VLBSŽEBWFSJMFOHSBGJLZ= tan ( ax ) +CGPOLTJZPOV- na aittir. EBOIBOHJTJOFBJUPMBCJMJS A) y = tanx B) y = tan x + π  #VOB HÌSF  B  C  TŽSBMŽ JLJMJTJ BöBôŽEBLJMFSEFO 4 IBOHJTJEJS C) y = tanc x + π m %  y = cot x + π 1 B) f - 1 , 1 p 4 4 A) f , 1 p 2 E) y = cotc x + π m 2 4 C) f 1 , - 1 p % f - 1 , - 1 p 2 2 1 E) f 1 , p 2 2. y 4. y 2 O Õ Õx OÕ Õ x 2 6 Õ 3 3 Õ 2 :VLBSŽEBWFSJMFOHSBGJLZ=DPUBYGPOLTJZPOVOBBJU-  :VLBSŽEBLJ GPOLTJZPO HSBGJôJ BöBôŽEBLJMFSEFO tir. IBOHJTJOFBJUUJS  #VOBHÌSF BLBÀUŽS A) cot ( 2x + 3 ) B) cot ( 3x ) + 2 A) -2 B) - $  %  &  C) tan ( 2x +  % UBO Y + 3 E) tan x + 3 1. C 2. & 45 3. A 4. B

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 5&3453÷(0/0.&53÷,'0/,4÷:0/-\"3 %m/*m ÖRNEK 1 G\"Z#UBOŽNMŽCJSGGPOLTJZPOVOUFSTJOJOGPOL- \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ TJZPOPMBCJMNFTJJ¿JOCVGPOLTJZPOVOCJSFCJSWF ËSUFOPMNBTŽHFSFLJS B arcsin 1 C arcsin ( -1 ) 2  TJOY  DPTY WF UBOY GPOLTJZPOMBSŽOŽO HSBGJLMFSJ 3 d) arcsin 0 ZBUBZEPóSVUFTUJOFUBCJUVUVMEVóVOEBCVGPOL- c) arcsinf - p TJZPOMBSŽO CJSF CJS PMNBEŽLMBSŽ HËSÐMÐS %PMBZŽ- TŽZMBNFWDVUUBOŽNLÐNFMFSJOEFCVGPOLTJZPO- 2 MBSŽOUFSTGPOLTJZPOMBSŽZPLUVS 1 1π  #VGPOLTJZPOMBSŽOUBOŽNLÐNFMFSJOJOCJSFCJSWF B  arcsin = x j = sin x & x = ËSUFO PMBO BMU LÐNFMFSJOEFO CJSJ UBOŽN LÐNFTJ PMBSBL TF¿JMEJóJOEF GPOLTJZPOMBSŽO CV LÐNFEF 2 26 UFSTGPOLTJZPOMBSŽIFTBQMBOBCJMJS C BSDTJO-1 = x π j - 1 = sin x & x = - 2 c) arcsinf - 3 p=x & - 3π = sin x & x = - 22 3 E BSDTJOi = x j i =TJOYj x = G Y TJOY'POLTJZPOVOVO5FSTJ ÖRNEK 2 %m/*m cosf arcsin 5 p 13  TJOY GPOLTJZPOVOVO UBOŽN LÐNFTJ ;- π , π E 22 EFôFSJOJCVMVOV[ PMBSBLBMŽOEŽóŽnda bVBSBMŽLUBGPOLTJZPOCJSFCJS A 55 ve örten olur. x arcsin = x & sin x = 12 13 13 B 13 \"#$ÑÀHFOJOEFO  5 y cos x = 12 olur. 1 13 –Õ sinx C 2 x mÕ O Õ Õ 2 –1  ôFLJMEF WFSJMFO TJOY HSBGJóJOEF HËSÐMEÐóÐ HJCJ ÖRNEK 3 GPOLTJZPO;- π , π E bire bir ve örtendir. 22 \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ TJOYGPOLTJZonu f : ;- π , π E \" 6- 1,1@, 22 B) sinf arcsin 1 p C 5π p 2 arcsinf sin  G Y =TJOYPMBSBLUBOŽNMBOEŽóŽOEB 3 f–1 : 6- 1, 1@ \" ;- π , π E G-1( x ) = arcsinx 22 G–1PG Y =GPG-1(x) =YPMEVôVOEBO  GPOLTJZPOVOB TJOÑT GPOLTJZPOVOVO UFST B  sin= arcsind 1 nG = 1 olur. GPOLTJZPOV denir. 22 olur. y = arcsinx l x = siny olur. C  arc sin= sin 5π G = 5π 33 π ππ 12 1 5π 46 1. B  C  - c) - E  2. 3. B  C  6 23 13 2 3

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 H Y DPTY'POLTJZPOVOVO5FSTJ tanf arcsin 1 + arcsinf - 1 p p %m/*m 2  DPTYGPOLTJZPOVOVOUBOŽNLÐNFTJ[ Õ] olarak JGBEFTJOJOEFôFSJOJCVMVOV[ BMŽOEŽóŽOEBCVBSBMŽLUBGPOLTJZPOCJSFCJSWFËS- tendir. y π 1 BSDTJO= x jTJOY= 1 j x = cosx 2 Õ BSDTJOd - 1 n = x jTJOY= - 1 π 2 Õ j x =- Õ 2x 2 26 –Õ O tand π - π n = cot π = 3 2 26 6 –1  ôFLJMEFWFSJMFODPTYHSBGJóJOEFHËSÐMEÐóÐHJCJ GPOLTJZPO[ Õ]BSBMŽóŽOEBCJSFCJSWFËSUFOEJS ÖRNEK 5  DPTYGPOLTJZPOVH[ Õ] Z [-1, 1], arcsinf 3 - t p g ( x) =DPTYPMBSBLUBOŽNMBOEŽóŽOEB 2 g-1: [-1, 1] Z [ Õ], g-1 ( x ) =BSDDPTYGPOL- JGBEFTJSFFMTBZŽJTFUOJOBMBCJMFDFôJFOHFOJöEFôFS BSBMŽôŽOŽCVMVOV[ TJZPOVOB DPTY GPOLTJZPOVOVO UFST GPOLTJZPOV denir. y = arccosx l x = cosy olur. ÖRNEK 7 \"SDTJOY GPOLTJZPOVOVO UBOŽN LÑNFTJ BZOŽ [BNBOEB \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ TJOYGPOLTJZPOVOVOHÌSÑOUÑLÑNFTJPMVQ[-1, 1]BSB- B arccos 1 C arccosf - 1 p 2 2 MŽôŽOEBZFSBMŽS c) arccos0 d) arccos1 -1 # 3-t #1 2 -2 # 3 - t # 2 -5 # -t # -1 1#t#5 1 1 π B  arccos = x j cos = j x = 2 2 3 2π C  arccosd - 1 n = x j cos x = - 1 j x = 22 3 π D BSDDPT= x j cosx = j x = 2 ÖRNEK 6 E BSDDPT= x j cosx = 1 j x =  G Y = 2sinx - 1 PMEVôVOBHÌSF G-1 Y JCVMVOV[ ÖRNEK 8 6ZHVOUBOŽNBSBMŽôŽOEBUBO BSDDPTY JGBEFTJOJOFöJ- UJOJCVMVOV[ y =TJOY- 1 j y + 1 =TJOY y+1 y+1 A BSDDPTY=BjDPTB= x = sin x j arcsinf p=x a \"#$ÑÀHFOJOEFO 22 x1 G-1(x) =BSDTJOd x + 1 n 1 - x2 2 tan a = x olur. B 1 – x2 C 4. 3 5. [1, 5] 6. ZBSDTJOd x + 1 n  π 2π π 1 - x2 2 B  C  c) E 8. x 332

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr I Y UBOY'POLTJZPOVOVO5FSTJ ÖRNEK 10 %m/*m arctanf tan 7π pJGBEFTJOJOEFôFSJOJCVMVOV[ 4  I Y =UBOYGPOLTJZPOVc - π , π mBSBMŽóŽOEB 22 GPG-1(x) =G-1PG Y =YPMEVôVOEBO arctand tan 7π n = 7π PMBSBLCVMVOVS bire bir ve örtendir. y 44 ÖRNEK 11 –Õ O Õ Õ Õ x tan^ a + b h = tan a + tan b PMEVôVOBHÌSF 2 22 1 - tan a. tan b arctan 1 + arctan 1 JGBEFTJOJOEFôFSJOJCVMVOV[ 32  :VLBSŽEBWFSJMFOUBOYHSBGJóJOEFHËSÐMEÐóÐHJCJ 11 arctan = a & tan a = GPOksiyon c - π , π m aralŽóŽOEBCJSFCJSWFËS- 33 tendir. 22 11 arctan = b & tan b = 22  #V BSBMŽLUB UBOY GPOLTJZPOVOVO UFST GPOLTJZP- tan^ a + b h = tan a + tan b PMEVôVOEBO OVWBSEŽSUBOYGPOLTJZPOVIc - π , π m Z R, 1 - tan a. tan b 22 11 I( x ) = tanYPMBSBLUBOŽNMBOEŽóŽOda +  I-1 : R Z c - π , π m I-1( x ) =BSDUBOYGPOL- tan^ a + b h = 3 2π = 1 jB+C= olur. 22 11 4 siyonuna tanYGPOLTJZPOVOVOUFSTGPOLTJZPOV 1- · denir. 32 y =BSDUBOYl x =UBOZolur. ÖRNEK 12 sinf arctanf 1 p + 3π pJGBEFTJOJOEFôFSJOJCVMVOV[ 22 ÖRNEK 9 A 11 arctan = a & tan a = \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ a 22 5 sind 3π 2 + a n = - cos a = - 2 25 B arctan1 C arctan^ - 3 h B1 olur. c) arctan^ 3 h C d) arctanf - 3 ÖRNEK 13 p 3 6ZHVOUBOŽNBSBMŽôŽOEB arctanx = 2a -Õ B BSDUBO= x jUBOY= 1 π C BSDUBO - 3 = x j tan x = - 3 j x= PMEVôVOBHÌSF YJOEFôFSBSBMŽôŽOŽCVMVOV[ D BSDUBO 3 = x j tan 3 = x 4 BSDUBOY= 2a -Ö π x =UBO a -Ö j x = -UBO Ö- 2a) x =UBOa j x ` (-ß, ß) olur. j x =- 3 π j x= 3 d) arctanf - 3 p = x j tan x = - 3π j x =- 3 36 π ππ π 48 7π π2 13. mß ß B  C  - c) d) -  11. 12. - 4 45 4 33 6


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook