Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore TYT AYT Geometri Ders İşleyiş Modülleri 3. Modül Çokgenler ve Dörtgenler

TYT AYT Geometri Ders İşleyiş Modülleri 3. Modül Çokgenler ve Dörtgenler

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-21 02:12:53

Description: TYT AYT Geometri Ders İşleyiş Modülleri 3. Modül Çokgenler ve Dörtgenler

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- :BZŽO&EJUÌSÑ #JMJNTFM÷ODFMFNF  ÷MIBO#&:\";5\"õ %J[HJ–(SBGJL5BTBSŽN *4#//P  .VTUBGB:·$& :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ ÷MFUJöJN          &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*  JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr %¸O¾P.DSDáñ·/÷7&34÷5&:&)\";*3-*, ÜNİVERSİTEYE HAZIRLIK 3. MODÜL GEOMETRİ Alt bölümlerin Karma Testler ÇOKGENLER VE DÖRTGENLER EDĜOñNODUñQñL©HULU Çokgenler - Dörtgenler KARMA TEST - 4 1. D ³ Çokgenler t 2 C 4. D C G ³ Dörtgenler t 10 F Modülün sonunda tüm alt bölümleri A3 E 2B A EB L©HUHQNDUPDWHVWOHU \\HUDOñU ³ Yamuk t 18 \"#$% CJS FõLFOBS EËSUHFO  [DB] LËõFHFO  [DE] ABCD paralelkenar, m ( % ) = 90° DEG | | | |B¿ŽPSUBZ, AE = 3 br, EB = 2 br % % :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCS2 dir? EDF FDG | | | |mak ma k, = AE = EB ³ Paralelkenar t 34 | | | | | | | | | |EF = 3 br, BG = GC , ED + DG = 16 br A) 35 B) 25 2 80 2 C) :VLBSŽEBLJ WFSJMFSF HÌSF \" \"#$%  LBÀ CJSJN- 9 karedir? ³ Eşkenar Dörtgen t 48 6ñQñIð©LðĜOH\\LĜ D) 50 100 2 ³ Dikdörtgen t 55 E) www.aydinyayinlari.com.tr ·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER 9 A) 40 B) 48 C) 56 D) 64 E) 72 ³ Kare t 67 ÇOKGENLER 2. ôFLJMEFLJ\"#$%EJLEËSUHFOJFõUVóMBEBOPMVõVZPS ÖRNEK 1 DC TANIM ³ Deltoid t 80  ,FOBS TBZŽTŽ FO B[ п PMBO LBQBMŽ HFPNFUSJL OLFOBSMŽCJSLPOWFLTÀPLHFOJOCJSLÌöFTJOEFOLÌ- 5. D 10 C õFLJMMFSF çokgen EFOJS¥PLHFOMFSLFOBSTBZŽ- öFHFO ÀJ[JMFCJMJZPSTB  CV ÀPLHFOJO LÌöFHFO TBZŽTŽ LBÀUŽS %XE¸O¾PGHNL¸UQHN MBSŽOBHËSFBEMBOEŽSŽMŽSMBS¶¿HFO EËSUHFO CFõ- VRUXODUñQ©¸]¾POHULQH 6 ³ Karma TestleHFrOHtJCJ 86 n - 3 =j n =PMVS AB  ¥PLHFOJOJ¿CËMHFTJOEFBMŽOBOIFSIBOHJJLJOPL- ,ÌöFHFOTBZŽTŽ= n.^ n - 3 h 9.6 Çevre ( ABCD ) = 92 br dir. <HQL1HVLO6RUXODU = = 27 EJS A EB ³ Yeni Nesil Sorular t 94UBZŽCJSMFõUJSFOEPóSVQBS¿BTŽ ¿PLHFOJOJ¿JOEF 22 0RG¾O¾QJHQHOLQGH\\RUXP LBMŽZPSTBCV¿PLHFOEŽöCÑLFZ LPOWFLT ÀPL- \\DSPDDQDOL]HWPHYE genPMBSBLBEMBOEŽSŽMŽS,POWFLTPMNBZBO¿PL-  :VLBSŽEBLJ WFSJMFSF HÌSF  Fö EJLEÌSUHFOMFSEFO <(1m1(6m/6258/$5ôFLJMEF[DC] ZBSŽN¿FNCFSJO¿BQŽ  EHFHULOHUL¸O©HQNXUJXOX biSJOJOÀFWSFTJLBÀCJSJNÇEoJkSgenler - Dörtgenler VRUXODUD\\HUYHULOPLĜWLU $\\UñFDPRG¾OVRQXQGD HFOJTFJÀCÑLFZ LPOLBW ¿PLHFOõFLMJOEFBE- | | | |1C.) WDPDPñ\\HQLQHVLOVRUXODUGDQ MBOEŽSŽMŽS DNñOOñWDKWDX\\JXODPDVñQGDQ A) 24 B) 28 3\"2MQFSEDÐ)[3H6ÐOBMEUŽH) F4O0õFLMJOEFLJNBTBAOBŽOCD¿FpWaSFraTlJeOlJk enar, 3D.C = 10 br, AD = 6 br ROXĜDQWHVWOHUEXOXQXU 3. D \"#$%EJLZBNVóVCFMJSUJMFOZËOEF\"#LFOBSŽUBCB- IFTBQMBNBLJ¿JOCJSCJSJOFEJLUBIUBZ#ŽVõOFLBJMHEÌFLSFJ H\"J-  \"#$% LBOÀBCEJSFJNóFLDBFSLFECJ¿SJNEFEËOEÐSÐMÐZPS bi birbirine çiviliyor. ÖRNEK 2 C ABCD kareA A) 40 B) 45 C) 48 D) 50B E) 54 C B 1 ,ÌöFHFO TBZŽTŽ  LFOBS TBZŽTŽOŽO  LBUŽ PMBO ÀPLHF- |EF| = |BF| XODĜDELOLUVLQL]OJO CJSLÌöFTJOEFOLBÀLÌöFHFOÀJ[JMFCJMJS K ¦PLHFOJOLFOBSTBZŽTŽOPMTVO E Konveks çokgen Konkav çokgen n^ n - 3 h F 6. ,FOBSCV[VOMVLMBSŽCSWFCSPMBOCJSEJLEËSUHFO = 5n CJ¿JNJOEFLJCJSLBóŽUIFSIBOHJCJSLËõFHFOJOEFOCÐ- D 2 A n - 3 = 10 A FB LÐMFSFL JLJZF LBUMBOŽZPS WF UFL LBU LBMBO LŽTŽNMBS n =UÑS | | | | | |L LFTJMJZPSWFLBóŽUUFLSBSB¿ŽMCŽZDPS=CS  AD =CSWF AB = 16 br ol- #JSLÌöFEFOÀJ[JMFOLÌöFHFOTBZŽTŽ :VLBSŽEBLJWFSJMFSFHÌSF  m ( A%DF ) kaç derece- %ŽöCÑLFZ ,POWFLT ¦PLHFOJO²[FMMJLMFSJ n - 3 =EVS  0MVöBOöFLMJOBMBOŽLBÀCEJVSJôNVLOBBSFHEÌJSSF $OPLUBTŽJMFZBNVôVOEÌOEÑSÑM- NFTJTPOVDVPMVöBO$OJOCVMVOEVôVZFOJOPL- 9 #VOEBO TPOSB ÀPLHFO EFOJMEJôJOEF EŽõCÑLFZ $OW%¸O¾P7HVWOHUL dir? E D 75 C) 7UB7BSBDTŽ)OE7B9LJVE[B)LM8ŽL1LBÀCJSJNEJS ÀPLHFOBOMBõŽMNBMŽEŽS A) Her alt bölümün B) 38 22 2 A) 10 B) 15 C) 2'0,LBDMB)TŽ3O0ŽOCPEZV) 40CS ,-LBMBTŽOŽOCPZ2VCSWF A) 20 2 B) 12 5 C) 8 10 7$1,0%m/*m TEST - 31 -$LBMBTŽOŽOCPZVCSEJS  #JS ¿PLHFOJO BSEŽõŽL, PBMSNFBZBO IFSIBOHJ JLJ LË- %m/*m \"#$%LBSF 1. E 2. C 3#.VDOBHÌSF NBTBOŽOÀFWS8F9TJLBÀCJSJNEJS 4. D 5. C 6. A D) 10 6 E) 24 õFTJOJCJSMFõUJSFO1E.PóSVDQBS¿BTŽOBLÌöFHFCO de- m (C%EB) = m (C%BE) OJS \"#$%LBSF A1 4. A2 C A) 42 B) 45 C) 48 D) 51 E) 58 4. ôFLJM * EF WFSJMFO \"#$% QBSBMFMLFOBSŽ õFLMJOEFLJ % # &EPóSVTBM 1 E LVNBõQBS¿BTŽ[BD] boyunca kesiliyor. A BA B A1 A2 |DB| = |CE| D2 * LËõFHFO // A5 2. \"õBóŽEB WFSJMFO EJLEËSUHFOMFS õFLJMEFLJ HJCJ LFTJM- NJõUJS // A3 * 3 LËõFHFO An A3 DC DB ôFLJM* AB A4 E  OLFOBSMŽ¿PLHFOJOCJSLAËõFTJOEFOHF¿FOLËõBF- VRQXQGDRE¸O¾POHLOJLOL ** WHVWOHU\\HUDOñU **   :VLBSŽEBLJ WFSJMFSF HÌSF m (C%ED) LBÀHB EFZŽFOSSMŽFSFSD¿FP-LHFOJ O-: VULBBOSFŽEÐB¿LHJFWOFTSJFMFMSCFËHMHÌFSZFF m (D%EB)LBÀEFSFDFEJS OLFOBSMŽCJS¿PLHFOJOCJSLËõFTJOEFO O-  DC UBOFLËõFHFO¿J[JMJS EJS  #VOFEFOMFJ¿B¿ŽMBSŽO\"ŽO ËM¿ ÐMFSJUP#Q MBN Ž  $  %  &    OLFOBSMŽCJS¿PLHFOJ\"O UPQMBNLË#õ FHFOTBZ$ŽT Ž  %  &O - šEJS  %BIBTPOSB*QBS¿B\"OPLUBTŽ$OPLUBTŽOB%OPL- n^ n - 3 h  O LFOBSMŽ CJS ¿PLHFOJO EŽõ B¿ŽMBSŽOŽO ËM¿ÐMFSJ UBTŽ#OPLUBTŽOBLBSõŽMŽLHFMFDFLõFLJMEFEJLJMJQ UBOFEJS *** &#%$EËSUHFOJôFLJM**EFLJHJCJFMEFFEJMJZPS UPQMBNŽšEJS 2 B 2. \"#$%LBSF \"#(FõLFOBSпHFOWF\"(&'FõLFOBS EËSUHFOEJS  D C \"#$%LBSF 2 1. 27 2. 10 $ & 'EPóSVTBM E C m ( B%AE ) = %  :VLBSŽEBLJ WFSJMFSF HÌSF  DJTJNMFSJO ÀFWSFMFSJ DC D m ( ECB ) OBTŽMEFôJöJS G F I II III ôFLJM** E F AB A) \"[BMŽS Artar Artar B) \"[BMŽS %FóJõNF[ Artar E C) Artar %FóJõNF[ Artar | | | |% D) Artar Artar \"[BMŽS E) Artar Artar Artar m ( DCA ) = 120°, DC = 10 br, BC = 6 br AB % | | :VLBSŽEBLJWFSJMFSFHÌSF  BD kaç birimdir? CEB %  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( ) LBÀ EFSFDF- EFD  :VLBSŽEBLJWFSJMFSFHÌSF  m ( )  LBÀEFSFDF- EJS A) 12 B) 14 C) 15 D) 16 E) 18 EJS \"   #  $   %  &  1. D 2. D 95 3. A 4. B \"   #  $   %  &   3. A B \"#$%LBSF  D C \"#$%LBSF D F \" ' $ & EPóSVTBM K \" . , $ C EPóSVTBM |CE| = |AD| |DE| = |EF| L % = 28° M m ( KBC ) 28° % m ( LBA ) = 17° E 17° AB  :VLBSŽEBLJ WFSJMFSF HÌSF  m (A%FD) LBÀ EFSFDF- EJS  :VLBSŽEBLJWFSJMFSFHÌSF  m ( % ) LBÀEFSFDF- KLB EJS \"   #   $   \"  #  $   %  &     %   &   1. D 2. \" 3. \"  4. C B D

ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, GEOMETRİ 3. MODÜL ÇOKGENLER VE DÖRTGENLER ³ Çokgenler t 2 ³ Dörtgenler t 10 ³ Yamuk t 18 ³ Paralelkenar t 34 ³ Eşkenar Dörtgen t 48 ³ Dikdörtgen t 55 ³ Kare t 67 ³ Deltoid t 80 ³ Karma Testler t 86 ³ Yeni Nesil Sorular t 94 1

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÇOKGENLER TANIM ÖRNEK 1  ,FOBS TBZŽTŽ FO B[ п PMBO LBQBMŽ HFPNFUSJL OLFOBSMŽCJSLPOWFLTÀPLHFOJOCJSLÌöFTJOEFOLÌ- õFLJMMFSF çokgen EFOJS¥PLHFOMFSLFOBSTBZŽ- öFHFO ÀJ[JMFCJMJZPSTB  CV ÀPLHFOJO LÌöFHFO TBZŽTŽ MBSŽOBHËSFBEMBOEŽSŽMŽSMBS¶¿HFO EËSUHFO CFõ- LBÀUŽS HFOHJCJ n - 3 =j n =PMVS  ¥PLHFOJOJ¿CËMHFTJOEFBMŽOBOIFSIBOHJJLJOPL- UBZŽ CJSMFõUJSFO EPóSV QBS¿BTŽ  ¿PLHFOJO J¿JOEF ,ÌöFHFOTBZŽTŽ= n.^ n - 3 h 9.6 LBMŽZPSTBCV¿PLHFOEŽöCÑLFZ LPOWFLT ÀPL- = = 27 EJS genPMBSBLBEMBOEŽSŽMŽS,POWFLTPMNBZBO¿PL- 22 HFOJTFJÀCÑLFZ LPOLBW ¿PLHFOõFLMJOEFBE- MBOEŽSŽMŽS Konveks çokgen Konkav çokgen ÖRNEK 2 %ŽöCÑLFZ ,POWFLT ¦PLHFOJO²[FMMJLMFSJ ,ÌöFHFO TBZŽTŽ  LFOBS TBZŽTŽOŽO  LBUŽ PMBO ÀPLHF- OJO CJSLÌöFTJOEFOLBÀLÌöFHFOÀJ[JMFCJMJS 9 #VOEBO TPOSB ÀPLHFO EFOJMEJôJOEF EŽõCÑLFZ ÀPLHFOBOMBõŽMNBMŽEŽS ¦PLHFOJOLFOBSTBZŽTŽOPMTVO n^ n - 3 h = 5n 2 n - 3 = 10 n =UÑS #JSLÌöFEFOÀJ[JMFOLÌöFHFOTBZŽTŽ n - 3 =EVS 7$1,0%m/*m %m/*m  #JS ¿PLHFOJO BSEŽõŽL PMNBZBO IFSIBOHJ JLJ LË- A5 A1 A2 õFTJOJCJSMFõUJSFOEPóSVQBS¿BTŽOBLÌöFHFO de- 1 OJS 2 3 A3 A1 A2 LËõFHFO A3 LËõFHFO An  OLFOBSMŽCJS¿PLHFOJOCJSLËõFTJOEFO O-  A4 UBOFLËõFHFO¿J[JMJS  OLFOBSMŽ¿PLHFOJOCJSLËõFTJOEFOHF¿FOLËõF-  OLFOBSMŽCJS¿PLHFOJOUPQMBNLËõFHFOTBZŽTŽ HFOMFS¿PLHFOJ O- UBOFпHFOTFMCËMHFZF n^ n - 3 h BZŽSŽS UBOFEJS 2  #VOFEFOMFJ¿B¿ŽMBSŽOŽOËM¿ÐMFSJUPQMBNŽ  O- šEJS  O LFOBSMŽ CJS ¿PLHFOJO EŽõ B¿ŽMBSŽOŽO ËM¿ÐMFSJ UPQMBNŽšEJS 2 1. 27 2. 10

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 3 %Ñ[HÑO¦PLHFO 7$1,0%m/*m ÷À BÀŽMBSŽOŽO ÌMÀÑMFSJ  PSUBL GBSLŽ š PMBO CJS ÌSÑOUÑ  5ÐNLFOBSV[VOMVLMBSŽWFB¿ŽMBSŽOŽOËM¿ÐMFSJFõJU PMVöUVSBOBMUŽHFOJOFOCÑZÑLEŽöBÀŽTŽOŽOÌMÀÑTÑLBÀ PMBO¿PLHFOFEÑ[HÑOÀPLHFOEFOJS EFSFDFEJS  A1 ¦PLHFOJOFOLÑÀÑLJÀBÀŽTŽOŽOÌMÀÑTÑYšPMTVO O- š= - š=šEJS A2 Y+ Y+š + Y+š + Y+š + Y+š + Y+š =š Y+š=š A3 A8 Y=š Y=šEJS A4 A7 &OCÑZÑLEŽöBÀŽ=š-š A5 A6 =šCVMVOVS  OLFOBSMŽEÐ[HÐO¿PLHFOJOCJSEŽõB¿ŽTŽOŽOËM¿Ð- TÐ 360° EJS n  OLFOBSMŽCJSEÐ[HÐO¿PLHFOJOCJSJ¿B¿ŽTŽOŽOËM- ¿ÐTÐ180° - 360° n ÖRNEK 4 ÖRNEK 5 ÷LJÀPLHFOJOLFOBSTBZŽMBSŽOŽOPSBOŽWFLÌöFHFOTB- #JS JÀ BÀŽTŽOŽO ÌMÀÑTÑ CJS EŽö BÀŽTŽOŽO ÌMÀÑTÑOÑO  ZŽMBSŽPSBOŽPMEVôVOBHÌSF CVÀPLHFOMFSJOJÀBÀŽ- LBUŽOBFöJUPMBOEÑ[HÑOÀPLHFOLBÀLFOBSMŽEŽS MBSŽOŽOÌMÀÑMFSJUPQMBNŽLBÀEFSFDFEJS %Ñ[HÑOÀPLHFOJOCJSEŽöBÀŽTŽOŽOÌMÀÑTÑašPMTVO 0IBMEFJÀBÀŽTŽOŽOÌMÀÑTÑašPMVS aš+ aš=šj aš=š 360° n = & n = 18 CVMVOVS 20° ¦PLHFOMFSEFOCJSJOJOLÌöFHFOTBZŽTŽOJTFEJôFSJOJOO ÖRNEK 6 EJS,ÌöFHFOTBZŽMBSŽPSBOŽJTF D \"#$%&EÐ[HÐO 3n.^ 3n - 3 h 9.^ n - 1 h CFõHFO 2 = 18 & n-3 = 18 n.^ n - 3 h E C \"#'FõLFOBSпHFO 2 F 36°   j n - 1 = 2n - 60°   j n =PMVS // 48° 36° 60° A // B // // ¦PLHFOMFSJOJÀBÀŽMBSŽOŽOÌMÀÑMFSJUPQMBNŽ O- š+ O- š=š+š=š CVMVOVS :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS  FAC %Ñ[HÑOCFöHFOEF m (XB) = 108°EJS\"#$JLJ[LFOBSÑÀ- HFOJOEF m ( C%AB ) = 36°PMVS \"'#FöLFOBSÑÀFOJOEF m ( F%AC ) = 60° - 36° =šPMVS 3. 4. š 3  24

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 7 ÖRNEK 9 ,FOBS TBZŽMBSŽ UPQMBNŽ  PMBO JLJ EÑ[HÑO ÀPLHFOJO B C \"#$%&EÐ[HÐOCFõHFO EŽö BÀŽMBSŽOŽO ÌMÀÑMFSJ PSBOŽ  PMEVôVOB HÌSF  LFOBS 54° 54° TBZŽTŽB[PMBOÀPLHFOJOLBÀLÌöFTJWBSEŽS |EF| = |DF| 72° |BG| = |CG| G ¦PLHFOMFSJOLFOBSTBZŽMBSŽNWFOPMTVO AD // %ŽöBÀŽMBSŽOŽOÌMÀÑMFSJPSBOŽJTF 360° 360° n // F : = 5 & = 5 & n = 5m olur. mn m E N+ n =jN= :VLBSŽEBLJWFSJMFSFHÌSF m ( B%GC )LBÀEFSFDFEJS jN=CVMVOVS N=PMEVôVJÀJOLÌöFTJWBSEŽS [#'] #BÀŽTŽOŽOBÀŽPSUBZŽPMBDBôŽOEBO % m ( CBF ) = 54° EJS ÖRNEK 8 #($JLJ[LFOBSÑÀHFOJOEF m ( % ) = 180° - ^ 54° + 54° h = 72° CVMVOVS BGC B C \"#$%&EÐ[HÐO aa aa ¿PLHFO A D [BM]WF[CM]B¿ŽPSUBZ %m/*m 40° % m( BMC ) = 40° AB M :VLBSŽEBLJWFSJMFSFHÌSF EÑ[HÑOÀPLHFOLBÀLFOBS- F C MŽEŽS 2a +š=šj a =šEJS #JSJÀBÀŽa =š CJSEŽöBÀŽ š-š=šEJS ED ,FOBSTBZŽTŽ= 360° = 9 CVMVOVS.  \"#$%&' EÐ[HÐO BMUŽHFO JTF [ AD ] TJNFUSJ FL- 40° | | | |seOJWF AD = AB EJS %m/*m ÖRNEK 10 B C A 12 B // \"#$%&'EÐ[HÐO F // BMUŽHFO D | |5k F C AB =CS A |BK| = 5 |EK| kK ED E | |:VLBSŽEBLJWFSJMFSFHÌSF  EK LBÀCJSJNEJS \"#$%&EÐ[HÐOCFõHFOJOEF[ AF ]OŽOB¿ŽPSUBZ  L= 12.2 j k =CSCVMVOVS LFOBSPSUBZ WF ZÐLTFLMJL PMEVóV EVSVNMBSŽOEBO FOB[CJSJCJMJOJSTFEJóFSMFSJTËZMFOFCJMJS 7. 3 9 4 9. 72 10. 4

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m ÖRNEK 13 \"#$%&'EÐ[HÐO ¿PLHFO A2 A3 K A4 [FK] a [AK] = {K} 36° A1 m ( F%KA ) = 36° A5 2a + 36° M An D aaC  OLFOBSMŽCJSEÐ[HÐO¿PLHFOEF ¿FWSFM¿FNCFS ¿J[JMEJóJ [BNBO CÐUÐO LJSJõMFS FõJU PMBDBóŽOEBO aa IFSCJSZBZŽOËM¿ÐTÐ 360° EJS EB n FA ÖRNEK 11 :VLBSŽEBLJWFSJMFSFHÌSF CVÀPLHFOLBÀLFOBSMŽEŽS CD \"#$%&'  EÐ[HÐO #JSEŽöBÀŽOŽOÌMÀÑTÑaPMTVO.%$ÑÀHFOJOEF  a + a + a +š =š B a G 22,5° a E ¿PLHFO 157,5° a a =š % 360° F m( BGF ) = 157, 5° = 36° j n =CVMVOVS A n . ÖRNEK 14 :VLBSŽEBLJWFSJMFSFHÌSF ÀPLHFOLBÀLFOBSMŽEŽS C 20 40 B :BOEB  CJS FWJO CBOZPTV- OVO [FNJOJOEF CVMVOBO ¦FNCFSÌ[FMMJôJOEFO šBÀŽTŽHÌSEÑôÑZBZMBSŽOUPQ- 20 3 EÐ[HÐOBMUŽHFOõFLMJOEFLJ MBNMBSŽOŽOZBSŽTŽEŽS D GBZBOTMBS HËTUFSJMNJõUJS 3a )FSCJSGBZBOTŽOCJSLFOBS 40 3 30° V[VOMVóVDNEJS = 22, 5° & a = 15° 2 360° n = 15° j n =CVMVOVS 40 3 ÖRNEK 12 A #JSLºóŽEB\"#$%&'EÐ[HÐOBMUŽHFOJOJ¿J[JOJ[%BIBTPO- :VLBSŽEBLJWFSJMFSFHÌSF \"JMF#OPLUBMBSŽBSBTŽOBÀF- LJMFOHFSHJOUFMJOV[VOMVôVLBÀTBOUJNFUSFEJS ra [ AD ]EPóSVQBS¿BTŽOŽ¿J[JQ [ AD ]Ð[FSJOEF(OPLUB- C 60 B sŽBMŽOŽ[ 30° % 20 3 1JTBHPSUFPSFNJOEFO  60° 40 3 Y2 = ^ 100 3 h2 +2 m ( AGF ) = 45°WF FG = 4 6 br PMEVôVOBHÌSF çJ[- Y2 = D EJôJOJ[EÑ[HÑOBMUŽHFOJOÀFWSFTJLBÀCJSJNEJS x = 40 21 DNCVMVOVS A B '()ÑÀHFOJOEF  8 60° 4 | |') = 4 3 CS 43 H C \"')ÑÀHFOJOEF 30° | |\"' =CS x F 45° 45° G ¦ \"#$%&' ==CS 80 3 CVMVOVS 46 ED A 11. 24 12.   13. 10 14. 40 21

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 15 ÖRNEK 17 AF B ABCDE EÐ[HÐOCFõHFO A B \"#$%&EÐ[HÐO [ DF ] m [AB ] CFõHFO |DG | |= GC| // | |EH =CS G \" & 'EPóSVTBM E8 H C 54° // |BG| = |GC| 4k Gk E 54° | | | |C EF = EH 3k 3k k D D | |FG =CS H | |:VLBSŽEBLJWFSJMFSFHÌSF  () LBÀCJSJNEJS F &%(ÑÀHFOJOEFJÀBÀŽPSUBZUFPSFNJOEFO | |:VLBSŽEBLJWFSJMFSFHÌSF  ') LBÀCJSJNEJS 4k 3k j |)(| =CSCVMVOVS &'(ÑÀHFOJOEFEŽöBÀŽPSUBZUFPSFNJOEFO  = 8 HG k HG 1 HG = &= j |)(| = CSEJS 3k GF 3 24 |')| = 24 -=CSCVMVOVS ÖRNEK 18 ÖRNEK 16 %Ð[HÐO BMUŽHFO õFLMJOEFLJ LVNBõ QBS¿BTŽ LFOBSMBSŽOŽO пUFCJSJOEFOOPLUBMBSBMŽOBSBLCFMJSUJMFOZËOMFSEFLBUJ[- AB A#$%&'EÐ[HÐOBMUŽHFO MFSJ CJSCJSJOF QBSBMFM PMBDBL õFLJMEF LBUMBOBSBL ôFLJM ** EFLJLVNBõQBS¿BTŽFMEFFEJMJZPS [ BG ] m[GH] 6 [GH] m [HE] AB G 15 | |C K MK M 30 EH =CS F 3 F CF C P | |BG =CS . H | |AF =CS NP NP 3 ED ôFLJM** x ôFLJM* ED | |:VLBSŽEBLJWFSJMFSFHÌSF  () LBÀCJSJNEJS #BöMBOHŽÀUBLJ LVNBö QBSÀBTŽOŽO CJS LFOBSŽ  N PM- EVôVOB HÌSF  õFLJM ** EF LVNBöŽO NBWJ HÌSÑOFO | BE | = 2 |\"#| ==CSEJS CÌMHFTJOJOBMBOŽLBÀNFUSFLBSFEJS [BP] m [PE]PMBDBLöFLJMEF[GP]WF[PE]OŽÀJ[FMJN A 12 B ^ 12 + 16 h.2 3 4 A^ ABMK h = | PE | = |()| =YCS 4 23 16 M | PG | = |&)| =CSPMVS1#&EJLÑÀHFOJOEF  K2 12 8 2 8 = 28 3 Y2 + 92= 302 j x = 3 91 CSCVMVOVS C 60° 12 2 8 F A^ ABCDEF h = f 12 3 p.6 8 P 4 4 N D = 216 3 4 E 12 5BSBMŽBMBO= 216 3 - 112 3 = 104 3 m2 CVMVOVS   3 91  17.  104 3

¦PLHFOMFS TEST - 1 1. ,ÌöFHFOTBZŽTŽLFOBSTBZŽTŽOŽOLBUŽPMBOEŽö-  D CÑLFZ ÀPLHFOJO JÀ BÀŽMBSŽOŽO ÌMÀÑMFSJ UPQMBNŽ C LBÀEFSFDFEJS E A  #  $  B &   %  F 2. ™EFOLпÐLJ¿B¿ŽTŽPMNBZBOCJSBMUŽHFOJO пJ¿ A H B¿ŽTŽOŽOËM¿ÐMFSJUPQMBNŽ™EJS G  #VOBHÌSF EJôFSÑÀBÀŽZBLPNöVPMBOEŽöBÀŽ- [ AG ]EŽõŽOEBEJóFSLFOBSV[VOMVLMBSŽFõJUPMBOZFEJ- MBSEBOFOLÑÀÑôÑFOB[LBÀEFSFDFPMBCJMJS  | |HFOEF AG =CS\" # $ % & 'WF(OPLUBMBSŽ )OPLUBTŽOBFõJUV[BLMŽLUBEŽS  #VOBHÌSF ZFEJHFOJOBMBOŽLBÀCJSJNLBSFEJS \"  #  $  %  &  \"  #  $  %  &  3. #JS¿PLHFOJOEËSUJ¿B¿ŽTŽOŽOËM¿ÐMFSJFõJUPMVQ EJóFS  #JSLFOBSŽOŽOV[VOMVóVNPMBOõFLJMEFLJ J¿B¿ŽMBSŽOŽOËM¿ÐMFSJUPQMBNŽ™EJS \"#$%&'( EÐ[HÐO ZFEJHFO õFLMJOEFLJ CJS VDV LB- ZBOŽO ( LËõFTJOF TBCJUMFOFO  N V[VOMVóVOEBLJ  #VOB HÌSF  FöJU JÀ BÀŽMBSEBO IFS CJSJ FO B[ LBÀ JQ\"INFUUBSBGŽOEBOLBZBOŽOFUSBGŽOBTBBUZËOÐOEF EFSFDFEJS EËOEÐSÐMFSFLHFSHJOCJSõFLJMEFTBSŽMŽODBJQJOEJóFS VDVOVOHFMEJóJTPOOPLUB,PMVZPS \"  #  $  %  &  AB C G 4. #JSLPOWFLT¿PLHFOJOLFOBSTBZŽTŽLBUŽOB¿ŽLBSŽ- FD MŽSTBJ¿B¿ŽMBSŽOŽOËM¿ÐMFSJUPQMBNŽ 4 LBUŽLBEBSBSU- E 3 #JSVDV'OPLUBTŽOBTBCJUMFOFONV[VOMVóVOEB- NBLUBEŽS LJCBõLBCJSJQJ)BTBOLBZBOŽOLFOBSMBSŽOBTBBUZË- OÐOÐO UFSTJOF HFSHJO CJS õFLJMEF TBSŽODB JQJO EJóFS  #VOBHÌSF CVÀPLHFOLBÀLFOBSMŽEŽS VDVOVOHFMEJóJTPOOPLUB.PMVZPS  #VOB HÌSF  , OPLUBTŽ JMF . OPLUBTŽ BSBTŽOEBLJ V[BLMŽLLBÀNFUSFEJS \"  #  $  %  &  \"  #  $  %  &  1. D 2. B 3. B 4. $ 7 \" B

TEST - 2 4. ¦PLHFOMFS D 1. \"#$%&'EÐ[HÐOBMUŽHFOJOJOLFOBSMBSŽOBEŽõUBOLB- SFMFSZBQŽõUŽSŽMNŽõ LBSFMFSJOLËõFMFSJEPóSVQBS¿BMB- SŽJMFCJSMFõUJSJMFSFLCJSTÐTMFNFZBQŽMNŽõUŽS E FK C A B AB F C \"#$%&EÐ[HÐOCFõHFO \"#'FõLFOBSпHFOEJS :VLBSŽEBLJWFSJMFSFHÌSF m ( B%FK )LBÀEFSFDFEJS E D \"  #  $  %  &   #VOBHÌSF * 4ÐTMFNFTPOVDVPMVõBOõFLJMEÐ[HÐO  POJLJHFOEJS  D ** 0MVõBOпHFOMFSFõLFOBSпHFOEJS G E *** 4ÐTMFNF TPOVDV PMVõBO õFLMJO BMBOŽ  EÐ[HÐO C BMUŽHFOJOBMBOŽOŽOLBUŽEŽS  ZBSHŽMBSŽOEBOIBOHJMFSJEPôSVEVS \" :BMOŽ[* # :BMOŽ[** $ * ** F AB   % * *** & * ** *** 2. \"#$%&EÐ[HÐOCFõHFO \"#(WF#$'FõLFOBSп- HFOEJS C D  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- B E GFB 135° A F EJS \"  #  $  %  &   D E \" # $ % % &WF'CJSEÐ[HÐO¿PLHFOJOBSEŽõŽL C F B LËõFMFSJ m ( % ) = 135°EJS G ABF A H :VLBSŽEBLJ WFSJMFSF HÌSF  CV EÑ[HÑO ÀPLHFOJO LFOBSTBZŽTŽLBÀUŽS \"  #  $  %  &  3. #JSLFOBSŽCJSJNPMBOFöLFOBSÑÀHFOJOJÀJOF \" # $ % & ' (WF)LFOBSMŽCJSEÐ[HÐO¿PL- HFOJOBSEŽõŽLLËõFMFSJEJS ÀJ[JMFCJMFDFL FO CÑZÑL BMBOMŽ EÑ[HÑO BMUŽHFOJO ÀFWSFTJLBÀCJSJNEJS  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- ACG \"  #  $  %  &  EJS \"  #  $  %  &  1. $ 2. D 3. D  4. E B E

¦PLHFOMFS 3. A TEST - 3 1. ôFLJMEF\"#$%&EÐ[HÐOCFõHFOJõFLMJOEFLJCJSCËM- H 6 B4 C D HF WFSJMNJõUJS #V CFõHFOJO \" LËõFTJOEF \"MJ  # LË- õFTJOEF #ÐõSB  $ LËõFTJOEF $FSFO  % LËõFTJOEF E %FSFO &LËõFTJOEF&NSF J¿CËMHFTJOEFLJ'OPLUB- TŽOEBJTF'BSVLPUVSNBLUBEŽS A B GF E F \"#&'()EÐ[HÐOBMUŽHFO\" # $EPóSVTBM C D | | | |BC =CS  AB =CS  :VLBSŽEBLJWFSJMFSFHÌSF  DE PSBOŽLBÀUŽS BD A) 1 B) 3 C) 2 D) 5 E) 3 22 \"MJ  'BSVL  &NSF WF %FSFOhJO FWMFSJOJO CFMJSMFEJóJ 4. ôFLJM*EFLJLBSUPOEÐ[HÐOCFõHFOõFLMJOEFEJS,BS- EËSUHFOTFM CËMHFOJO BMBOŽ , PMTVO \"MJ  %FSFO WF UPO[BD]LËõFHFOJCPZVODBLFTJMFSFLFMEFFEJMFOп- $FSFOhJOFWMFSJOJOCFMJSMFEJóJпHFOTFMCËMHFOJOBMB- OŽ.PMTVO HFO LBSUPO CJSFS LFOBSMBSŽ ¿BLŽõBDBL õFLJMEF EJóFS  #VOBHÌSF ,WF.CÌMHFMFSJOJOCÑZÑLMÑôÑJMF LBSUPOBôFLJM**EFLJHJCJZBQŽõUŽSŽMŽZPS JMHJMJBöBôŽEBLJMFSEFOIBOHJTJTÌZMFOFCJMJS A) K > M A B) K = M C) K < M BE D) ,â. ôFLJM* E) 7FSJMFOCJMHJMFSZFUFSMJEFóJMEJS C D 2. E A E FD B ôFLJM** G D A BC C #$%&'EÐ[HÐOCFõHFO [ CA ] a [ DA ] = {A} |BG| = |FG|  õFLJM * EFLJ \" OPLUBTŽOŽO [$%] LFOBSŽOB PMBO V[BLMŽôŽ  CS  õFLJM ** EFLJ [\"&] WF [BD] EPôSV  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- DAC QBSÀBMBSŽBSBTŽOEBLJV[BLMŽLCSPMEVôVOBHÌ- EJS SF  ** öFLJMEF % OPLUBTŽOŽO [$&] LFOBSŽOB PMBO V[BLMŽôŽLBÀCJSJNEJS \"  #  $  %  &  \"  #  $  %  &  1. \" 2. $ 9 3. E 4. $

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr DÖRTGENLER TANIM ÖRNEK 1  )FSIBOHJ пÐ EPóSVTBM PMNBZBO EËSU OPLUBZŽ A B \"#$%EËSUHFO CJSMFõUJSFOEPóSVQBS¿BMBSŽOŽOCJSMFõJNJOFEÌSU- 60° 140° genEFOJS E [ DE ]WF[ CE ] B¿ŽPSUBZ m ( D%AB ) = 60° TANIM % = 140° m ( ABC ) A B D C // /% // :VLBSŽEBLJWFSJMFSFHÌSF m ( DEC )LBÀEFSFDFEJS EF m ( % ) = 60° + 140° = 100° DEC / 2 DC \" # $WF%OPLUBMBSŽEËSUHFOJOLËõFMFSJ B%AD  %m/*m % % % B¿ŽMBSŽOBEËSUHFOJnJÀBÀŽMBSŽ A B ABC, BCD, CDA [ AB ]  [ AD ]  [ BC ] WF [ CD ] EPóSV QBS¿BMBSŽ E F EÌSUHFOJOLFOBSMBSŽ  ,PNõVPMNBZBOJLJLFOBSŽOPSUBOPLUBMBSŽOŽCJS- DC MFõUJSFOEPóSVQBS¿BTŽOBEËSUHFOJOPSUBUBCBOŽ EFOJS [EF]PSUBUBCBOEŽS  \"#$%EËSUHFOJOEF[\"'WF[EC]B¿ŽPSUBZPMNBL Ð[FSF %% % m ( ABC ) - m ( ADC ) m ( CEF ) = EJS 2 %m/*m ÖRNEK 2 A B A B \"#$%EËSUHFO 170° E [\"'WF[ CE ] F B¿ŽPSUBZ 70° E % = 70° m ( ADC ) DC % = 170° m ( ABC )  \"#$% EËSUHFOJOEF [AE]  WF [BE] B¿ŽPSUBZ PM- DC NBLÐ[FSF :VLBSŽEBLJWFSJMFSFHÌSF m ( C%EF )LBÀEFSFDFEJS m ( A%EB ) = m ( % ) + m ( % ) % 170° - 70° BCD CDA m ( CEF ) EJS = = 50°CVMVOVS 2 2 10 1. 100 2.

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 3 ÖRNEK 5 A B E \"#%$EËSUHFO A 5B \"#$%EËSUHFO 68 [ CE ]WF[DE] DC [ BD ] m [ AC ] B¿ŽPSUBZ | |AB =CS | |AD =CS % = 40° | |BC =CS m ( CED ) C DF :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) + m ( % )  UPQMB- CAB ABD NŽLBÀEFSFDFEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  %$ LBÀCJSJNEJS 100° % + % ) = 260° 2 +2 =2 + |%$|2 80° m ( CAB ) m ( ABD |%$|2 =j |%$| = 5 3 CSCVMVOVS AB CVMVOVS E 40° C DF ÖRNEK 6 A B \"#$%EËSUHFO aa 160° ÖRNEK 4 [ AF ]WF[ CE ] B¿ŽPSUBZ A B \"#$%EËSUHFO m % ) = 160° ( ABC E % ( ADC ) 70° [ AD ] m [ BD ] 60° 8 m = 40° |AD| = |DC| 40° 5 a+40° b | |EC =CS D b [BD]B¿ŽPSUBZ | |EF =CS F xC D C m ( D%AB ) = 70° | |:VLBSŽEBLJWFSJMFSFHÌSF  '$ LBÀCJSJNEJS :VLBSŽEBLJWFSJMFSFHÌSF m ( % LBÀEFSFDFEJS 2a + 2b + 200 =š BDC) a + b =š A B \"#, WF $%, JLJ[LFOBS Y2 =2 +2 -DPTš DPTUFPSFNJ 70° 20° ÑÀHFO 1 20° =+- 50° % = 50° 2 m ( BDC ) Y2 = 49 jY=CVMVOVS D 40° 70° C 70° %m/*m K %m/*m AB E A B a E DC  \"#$%EËSUHFOJOEF[AC]WF[BD]LËõFHFO DC % = a m ( DEC ) [ BD ] m [ AC ]JTF A (ABCD) = 1 . BD . AC . sin aEŽS | | | | | | | |AB 2 + DC 2 = AD 2 + BC 2 EJS 2 3.  4.  11  5 3 7

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 7 %m/*m A B H E A 4 B 5 E5 D a4 F 38 C G 54 D C \"#$%EËSUHFOJOEF & ' (WF)LFOBSMBSŽOPS- UBOPLUBMBSŽJTF ABCD EËSUHFO [ DB ] a [ AC ] = { E }  &'()QBSBMFMLFOBSEŽS | | | | | | | | | |DE = EB = DC =CS  AE =CS  EC =CS [ BD ] m [ AC ]JTF&'()EJLEËSUHFOEJS :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS | | | |BD = AC JTF&'()FõLFOBSEËSUHFOEJS %LÌöFTJOEFO[\"$]ZFEJLNFJOFMJN 3 | | | |[ BD ] m [ AC ]WF BD = AC JTF&'()LBSFEJS sin a = PMVS A ( ABCD ) =\" &'() EŽS 5 13 2 A (ABCD) = 12.10. = 36 br CVMVOVS. 25 && && A^ AEF h + A^ HCG h = A^ FDG h + A^ EBH hEJS %m/*m A B mSPAT S1 S2 \"õBóŽEB CJS EËSUHFOJO LFOBSMBSŽOŽO PSUB OPLUB- S4 E MBSŽOŽO CJSMFõUJSJMNFTJ JMF PMVõUVSVMBO EËSUHFOJO S3 CJSQBSBMFMLFOBSPMEVóVJTQBUMBONŽõUŽS B DC E A  \"#$%EËSUHFOJOEF [ AC ] a [ BD ] = {E}PMNBL H Ð[FSF S143 = S24EJS F ÖRNEK 8 B \"#$%EËSUHFO C A G A [ AC ] a [ BD ] = { E } D 4 E && | | | | | | | |AE = EB WF BH = HC PMEVóVOEBO\"#$ A^ AED h = 2.A^ BEC h 2A пHFOJOEF[ EH ] // [ AC ]EJS 8 | | | | | | | |AF = FD WF DG = GC PMEVóVOEBO\"%$ DC пHFOJOEF[ FG ] // [ AC ]EJS A^ & h = 2.A^ & h =CS2PMEVôVOBHÌSF A^ & h  #VEVSVNEB[ EH ] //[ FG ]PMVS DEC AEB BEC | | | | | | | |AE = EB WF AF = FD PMEVóVOEBO\"#% LBÀCJSJNLBSFEJS пHFOJOEF[EF ] // [ BD ]EJS A^ & h =\"PMTVO A ( A&ED ) = 2A PMVS BEC | | | | | | | |DG = GC  WF HC = BH  PMEVóVOEBO \"\"=j\"2 =j\"=CS2EJS [ GH ] // [ BD ]EJS & =CS2CVMVOVS  #VEVSVNEB [ GH ] // [ EF ]PMVS A^ BEC h  4POPMBSBL [ GH ] // [ EF ]WF[ EH ] // [ FG ]PMEV- óVOEBO&'()QBSBMFMLFOBSEŽS 7.  4 12

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 9 // G // B ÖRNEK 11 \"#$%EËSUHFO ba 2a A D [ AE ] // [ CD ] FH A 2b [ AB ] m [ BC ] A | |AB =CS ab C B A | |BC =CS // B E D EC C \"#$%EËSUHFO (WF&CVMVOEVLMBSŽLFOBSMBSŽOPSUBOPL- :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#&%  LBÀ CJSJNLBSF- EJS | | | | | | | | | | | |UBMBSŽ  AH = HC  DF = FB  AD + BC =CS \"&%WF\"&$ÑÀHFOMFSJOJOZÑLTFLMJLMFSJFöJUWFIFSJLJÑÀ- :VLBSŽEBLJ WFSJMFSF HÌSF  &'() EÌSUHFOJOJO ÀFWSFTJ LBÀCJSJNEJS HFOJOUBCBOŽ|\"&|LFOBSŽPMEVôVOEBO \"#$ÑÀHFOJOEF[(']PSUBUBCBOPMEVôVOEBO|('| =CJTF && |\"%| =CEJS A^ AED h = A^ AEC hEJS #%$ÑÀHFOJOEF['&]PSUBUBCBOPMEVôVOEBO|'&| =BJTF |#$| =BEŽSC+B=CS & \" \"#&% =\"+ B +$= A^ ABC h ¦FWSF ('&) =B+C =CSCVMVOVS A (ABED) = 4.10 = 20CS2CVMVOVS 2 ÖRNEK 10 ÖRNEK 12 A FB \"#$%EËSUHFO E A //E // |AE| = |ED| 10 A 6 B // |DG| = |GC| B A H |AF| = |FB| K / G // [ EF ] m [ EG ] D / | |EF =CS C | |EG =CS :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- DC EJS \"#$%EËSUHFO % \" &EPóSVTBM [ BE ] m [ DE ] ) [#$]LFOBSŽOŽOPSUBOPLUBTŽPMTVO | | | |[ AB ] // [ DC ]  AD =CS  BE =CS & &')(EJLEÌSUHFOPMVS :VLBSŽEBLJWFSJMFSFHÌSF A^ ABC hLBÀCJSJNLBSFEJS \" &')( ==CS2 \" \"#$% = 2.30 =CS2CVMVOVS \"#$%ZBNVLPMEVôVOEBO \" \"%, =\" #,$ =\"EŽS & = & = 10.6 = 30 CS2 CVMVOVS A ( ABC ) A ( ABD ) 2 9. 24 10.  13 11. 20 12. 30

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 13 ÖRNEK 15 A B \"#$%EËSUHFO M .N h E [ AC ] m [ BD ] E h \"#$%EËSUHFO FG D C // / | |AC =CS // / | |BD =CS 3 [ AE ]WF[ BE ]B¿ŽPSUBZ |AF| = |FD| h |BG| = |GC| | |AD =CS 5 | |BC =CS D HC AK B :VLBSŽEBLJWFSJMFSFHÌSF A (BEC) PSBOŽLBÀUŽS | |:VLBSŽEBLJWFSJMFSFHÌSF  '( LBÀCJSJNEJS A (ADE) %$ LFOBSŽOŽO PSUB OPLUBTŽ PMBDBL öFLJMEF ) OPLUBTŽOŽ \"&WF#&BÀŽPSUBZPMEVôVOEBO BMBMŽN | KE | = | EM | = | EN | =IPMVS [()] // [ BD ]WF[\"$] // [')]PMEVôVOEBO 5.h A (BEC) 2 5 % ) = 90° PMVS m ( FHG = = CVMVOVS A (ADE) 3.h 3 [')]WF[()]PSUBUBCBOPMEVôVOEBO|')| =CSWF |()| =CSPMVS 2 |'(|2 = 32 + 42 j |'(| =CSCVMVOVS ÖRNEK 14 ÖRNEK 16 B \"#$%EËSUHFO A \"#$%EËSUHFO A 4h [ AE ] // [ DC ] 8 A D \"#$FõLFOBSпHFO E A E B | |AE =CS |BE| = |ED| 5-h 5 | | | |BC = DC =CS C | |AC =CS % B m ( BCD ) = 30° 30° B D 10 C :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- EJS EJS A^ ABC h = 8 2 3 B den |%$|ZF%EFO|\"&|ZFEJLMFSJOEJSFMJN 4 = 16 3 2 = A + B br \" \"#$% = A ( & ) + A ( A&ED ) + A ( A%EB ) BCD \" \"#$% = \"+# = 32 3 CVMVOVS 10.5 4. (5 - h) 4.h =+ + 2 22 70 = 2 2 = 35 br bulunur. 13.  14.  14 5  32 3  3

%ÌSUHFOMFS TEST - 4 1. A B \"#$%EËSUHFO 4. A B [ AF ] [ BF ] [ DE ] 60° E WF[ CE ]B¿ŽPSUBZ 5x+5 m ( A%FB ) = 2x D 2x % C m ( DEC ) = 5x + 5° C D F | | | | | |\"#$%EËSUHFO  AB = AD = DC  :VLBSŽEBLJWFSJMFSFHÌSF YLBÀEFSFDFEJS m ( B%AD ) = 60°  % = 100° \"  #  $  %  &  m ( ADC )  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- DCB EJS \"  #  $  %  &  2. A 3x+30° B 2x+5° C  ôFLJM*EFEËSUHFOõFLMJOEFLBSUPOWFSJMNJõUJS AB x D | | | | | | | | \"#%$EËSUHFO  AB = AC  BD = DC % = 3x + 30° m ( % ) = 2x + 5° DC m ( BAC ) ACD ôFLJM* m ( B%DC ) = x° #V LBSUPO &  $% LFOBSŽ Ð[FSJOEF CJS OPLUB PMNBL  :VLBSŽEBLJWFSJMFSFHÌSF YLBÀEFSFDFEJS Ð[FSF  #&$ пHFOJ [ BE ] CPZVODB LBUMBOEŽóŽO- \"  #  $  %  &  | | | |EBôFLJM**EFLJHËSÐOUÐPMVõVZPS AB = BC WF m ( A%BK ) = 70°EJS AB 3. A B \"#$%EËSUHFO 60° 150° [AE]WF[CE] D E B¿ŽPSUBZ % = 60° K m ( ADC ) D % ôFLJM** E m ( AEC ) = 150° C :VLBSŽEBLJ WFSJMFSF HÌSF % LBÀ EFSFDF-  :VLBSŽEBLJWFSJMFSFHÌSF m ( A%KB )LBÀEFSFDF- m ( ABC ) EJS EJS \"  #  $  %  &  \"  #  $  %  &  1. B 2. D 3. D  4. $ $

TEST - 5 %ÌSUHFOMFS 1. A \"#$%EËSUHFO 4. A B \"#$%EËSUHFO 6 F B 5 3 [ AC ] a [ BD ] = {F} E C |ED| |= AE| F | | | |BF = FC | |AB =CS D 5 | |D AD = 5 3 CS [ AC ] m [ BD ] C | |E BC =CS | |AC =CS | FE | = | CE | = | ED | | |BD =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  '& LBÀCJSJNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS \"  #  $  %  &  \"  #  $  %  &  2. B \"#$%EËSUHFO  A B \"#$%EËSUHFO 60° C [ AB ] m [ BC ] | |AC =CS A | |BD =CS 2 m ( D%AB ) = 60° DC 60° % ) = 60° m ( ADC  :VLBSŽEBLJ WFSJMFSF HÌSF  EÌSUHFOJO CÑUÑO LF- OBSMBSŽOŽOPSUBOPLUBMBSŽCJSMFöUJSJMFSFLPMVöUVSV- D MBOZFOJEÌSUHFOJOÀFWSFTJLBÀCJSJNEJS AD =CS | |10 \"  #  $  %  &  | |DC =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS A) 2 3 B) 3 3 C) 4 3 D) 5 3 E) 6 3 3. A \"#$%EËSUHFO  ôFLJMEF \"#$% EËSUHFOJ õFLMJOEFLJ UBSMB WFSJMNJõUJS B ¥JGU¿J)BLBOLFOBSMBSŽOPSUBOPLUBMBSŽOBLB[ŽLMBS¿B- [ AC ] m [ BD ] LŽQ CJSCJSJOF EJL JLJ JQ ZBSEŽNŽZMB UBSMBZŽ CËMHFMFSF BZŽSŽZPS EG |AE| = |ED| A GB E F |BF| = |FC| | |AC =CS DF C | |D C BD =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS | | | |BD =N  \"$ =NPMEVôVOBHÌSF )B- LBOhŽOCVJöJÀJOLBÀNFUSFJQFJIUJZBDŽWBSEŽS \"  #  $  %  &  \"  #  $  %  &  1. B 2. $ 3. B  4. \" D D

%ÌSUHFOMFS TEST - 6 1. A B 4. \"#$%EËSUHFOJõFLMJOEFLJCBI¿FEF%WF$OPLUBMB- 6 SŽOEBOCVMVOEVLMBSŽB¿ŽMBSŽOB¿ŽPSUBZMBSŽPMBDBLõF- 4E LJMEF¿FLJMFOJQMFS&OPLUBTŽOEBLFTJõJZPS 8 AB 10 8 43 DC DC | | | | | |\"#$%EËSUHFO  BC = EC =CS  EB =CS \"WF#OPLUBMBSŽ&JMFCJSMFõUJSJMFSFL \"%&CËMHFTJOF | | | |DE =CS  AE =CS QBUBUFT #$&CËMHFTJOFTPóBOFLJMJZPS  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS A) 10 55 B) 11 55 C) 12 55 D) 13 55 E) 15 55 | | | |\"% =NWF #$ =NPMEVôVOBHÌSF QBUB- UFTFLJMFOBMBOŽOTPôBOFLJMFOBMBOBPSBOŽLBÀ- UŽS 2. C A) 2 C) 4 D) 2 8 E) B B) 1 3 33 4 A 5E 6D  \"#$%EËSUHFO [ BA ] m [ AD ] [ BE ] // [ CD ]  %ËSUHFOõFLMJOEFLJCBI¿FBõBóŽEB\"#$%EËSUHFOJ | | | | | |AB =CS  AE =CS  ED =CS JMFNPEFMMFONJõUJS :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$& LBÀCJSJNLBSF- AB EJS \"  #  $  %  &  3. D 6 \"#$%EËSUHFO D EC C 8 [ BD ]B¿ŽPSUBZ #BI¿FOJO CJS LŽTNŽ ZFõJM BMBO CJS LŽTNŽ UBõMBSEBO AE PMVõNVõUVS #BI¿ŽWBO .FUFIBO ZFõJM BMBO LŽTNŽOŽ | |AD =CS TVOJ¿JNJMFZFOJMFNFLJTUJZPS | |DC =CS [AB] // [DC] [BC] m [DC] [BE] // [AD]  B & | | | |BC =N  DC =N  :VLBSŽEBLJWFSJMFSFHÌSF  A^ ABD h PSBOŽLBÀ-  :VLBSŽEBLJWFSJMFSFHÌSF .FUFIBOhŽOLBÀN2TV- UŽS A^ ABCD h OJÀJNFJIUJZBDŽWBSEŽS 1 2 3 1 4 \"  #  $  %  &  A) B) C) D) E) 7 7 7 2 7 1. $ 2. $ 3. E 17 4. $ $

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr :\".6, 7$1,0%m/*m %m/*m  öLJ LFOBSŽ QBSBMFM PMBO EËSUHFOF ZBNVL EFOJS A c B 1BSBMFM LFOBSMBSB UBCBO  EJóFS LFOBSMBSB ZBO E KL LFOBSMBSEFOJS / Yan kenarlar F //A TabanB / // Yan kenarlar Da C D Taban C \"#$%ZBNVóVOEB  \"#$%ZBNVóVOEB | | | | | | | |AE = ED WF BF = FC JTF [EF]PSUBUB- r [AB] // [DC] CBOEŽS r m ( D%AB ) + % = 180° EF = AB + DC EJS m ( ADC ) 2 r % + % = 180°EJS EK = LF = c m ( ABC ) m ( DCB ) 2 ÖRNEK 1 EL = KF = a 2 D 5C \"#$%ZBNVL 130° KL = a - c 50° | |DC =CS 2 50° | |BC =CS 4 130° | |AB =CS ÖRNEK 3 50° A A 5 9 K 4B % m ( ADC ) = 130° 6B :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS DCB \"%LFOBSŽOBQBSBMFMPMBDBLöFLJMEF[$,]EPôSVQBSÀBTŽOŽÀJ[FMJN K F E GH $#&JLJ[LFOBSÑÀHFOJPMVöVSm ( D%CB) = 50° + 50° = 100° olur. ÖRNEK 2 D8C D C \"#$%ZBNVL  \"#$%ZBNVL [AB] // [DC] [ BD ] a [ AC ] = { K}  m n [DE]WF[CE]B¿ŽPSUBZ | | | | | | | | | | | |AE = ED  BF = FC  AB =CS  DC =CS m n | |:VLBSŽEBLJWFSJMFSFHÌSF  () LBÀCJSJNEJS m ( D%AB ) + m ( C%BA ) = 80° 8+6 a x b EF = mn 2 A EB = 7 br :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS #\"%ÑÀHFOJOEF| EG|PSUBUBCBOPMEVôVOEBO| EG | =CS DEC #\"$ÑÀHFOJOEF|)'|PSUBUBCBOPMEVôVOEBO|)'| =CS |()| = |&'| - | EG | - |)'| a + b =š N+ a =š = 7 - 3 - 3 =CS + 2n + b =š  N+O + a + b =š N+ n =š N+ n +Y=šjY=š 1. 100 2. 40  3. 1

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m %m/*m A B A B E DC DC \"#$%JLJ[LFOBSZBNVL  \"#$%ZBNVLJTF | | | |[AC] a [BD] = {E}JTF AD = BC   |AC|2 + |BD|2 = |BC|2 + |AD|2 |+ AB||DC| |AC| = |BD| |DE| = |EC| |AE| = |EB|EJS ÖRNEK 4 B \"#$%ZBNVL A cB 6 A3 C [ AB ] // [ DC ] DE c FC 4 | |AB =CS a D7 | |AD =CS | |BC =CS | |DC =CS \"#$%JLJ[LFOBSZBNVL [ AE ] m [ DC ]WF | | | |AC + BD =CS | | | |[ BF ] m [ DC ]JTF DE = FC = a - c EJS | | | |:VLBSŽEBLJWFSJMFSFHÌSF  \"$  BD ÀBSQŽNŽLBÀCJ- 2 SJNLBSFEJS |\"$|2 + | BD |2 = 42 +2 + 2.3.7 =CS2 ÖRNEK 5 C [ DC ] // [ AB ] |\"$| + | BD | 2 =  2 |\"$|2 + 2 |\"$| . | BD | + | BD |2 = 144 D [ AD ] m [ BD ] 94 + 2 |\"$| . | BD | = 144 3 | | | |4 3 AD = BC =CS |\"$| . | BD | =CS2CVMVOVS | |BD =CS x ÷LJ[LFOBS:BNVL B A 1,8 K x b 5 M 1,8 B 7$1,0%m/*m A b | |:VLBSŽEBLJWFSJMFSFHÌSF  %$ LBÀCJSJNEJS a a [DK] m [\"#]WF[$.] m [\"#]PMBDBLöFLJMEF[DK]WF[$.] D C EPôSVQBSÀBMBSŽOŽÀJ[FMJN ²LMJUUFPSFNJOEFO  :BO LFOBSMBSŽOŽO V[VOMVóV FõJU PMBO ZBNVóB 32 =Y   |%$| =-  JLJ[LFOBSZBNVLEFOJS Y= CS= CS  öLJ[LFOBSZBNVóVOUBCBOB¿ŽMBSŽFõJUUJS 4.  19

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr %m/*m ÖRNEK 8 AE B D 4C [ DC ] // [ AB ] G 3a 32 | AD | = | BC | 3 // 3 a | |BC = 3 2 CS // 4 3B a | |CD =CS A3 D FC 3.m ( % = % ) DAB ) m ( BCD  \"#$%JLJ[LFOBSZBNVL [AB] // [DC]  [AC] a [BD] = {G} [AC ] m [ BD ] [EF] m [DC] | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀCJSJNEJS EF = AB + DC EJS ma % k + ma % k = 180° 2 DCB CBA 4a =šj a =š |\"#| =CSEJS ÖRNEK 6 AB [ AB ] // [ DC ] ÖRNEK 9 C \"#$%ZBNVL E | AD | = | BC | D // [BD] a [AC] = {E} [AC] a [BD] = { K } [ BD ] m [ AC ] [ AF ] m [ DC ] K |AD| = |BC| 82 DF | | | |C DC - AB =CS 135° | |AF =CS % = 22, 5° m ( BAC ) | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀCJSJNEJS 22,5° 22,5° | |AC = 8 2 CS A B AB + DC :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS AF = 2 = 16 4JOÑTBMBOGPSNÑMÑOEFO AB + DC = 32 A^ ABCD h = 1 2 .8 2· 2 = 32 2 CS2CVMVOVS DC - AB = 8 ·8 + 22 2 |%$| = |%$| =CS |\"#| =CSCVMVOVS ÖRNEK 7 %JL:BNVL B 7ANnM 5BCBOV[VOMVLMBSŽCJSJNWFCJSJNPMBOCJSJLJ[LFOBS ZBNVL¿J[JOJ[ A #VZBNVôVOLÌöFHFOMFSJOEFOCJSJOJOV[VOMVôVCJ- [ BA ] m [ AD ] SJNPMEVôVOBHÌSF ZBNVôVOZÑLTFLMJôJLBÀCJSJNEJS [ CD ] m [ AD ] A8B # EFO WF \" EBO EJL JOEJSF- DC MJN 1JTBHPSUFPSFNJOEFO 13 Y2 + 122 = 132  :BO LFOBSMBSŽOEBO CJSJ BMU UBCBOŽOB WF ÐTU UB- x CBOŽOBEJLEVSVNMVPMBOZBNVLMBSBEJLZBNVL Y=CSCVMVOVS EFOJS D4 8 4C 12 7.  20 10 9. 32 2

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 10 B \"#$%EJLZBNVL ÖRNEK 11 B \"#$%EJLZBNVL A [ FB ] m [ BC ] A [ AD ] m [ DC ] F [ DE ] m [ BC ] E [ BD ] m [ AC ] 8 ax | | | |E | |AD =CS k 8 DC = FD D | | | |AB 2 + DC 2 =CS2 2k | |b DE =CS b C C aM D :VLBSŽEBLJ WFSJMFSF HÌSF  ' OPLUBTŽOŽO %& LFOBSŽOB | | | |:VLBSŽEBLJ WFSJMFSF HÌSF  \"# + %$  UPQMBNŽ LBÀ FOLŽTBV[BLMŽôŽLBÀCJSJNEJS CJSJNEJS kx |\"%|2 = |\"#| . |%$| '.%WF%&$ÑÀHFOMFSJCFO[FSMJôJOEFO = = |\"#| . |%$| |\"#| + |%$| 2 = |\"#|2 + 2 |\"#| . |%$| + |%$|2 2k 8 Y=CSCVMVOVS = 272 += 400 %m/*m |\"#| + |%$| =CSCVMVOVS A B E :BNVLUB\"MBO // %m/*m A B DC  \"#$%EJLZBNVóVOEB [AC] a [BD] = {E} [ BD ] m [ AC ]JTF | | | | | |AD 2 = AB  DC EŽS DE C  \"#$%ZBNVóVOEB [AE] m [DC]PMNBLÐ[FSF mSPAT a AB + DC k AE AB A^ ABCD h = 2 EJS E AB E FD C  $ WF % JMF EPóSVTBM PMBDBL õFLJMEF ' OPLUBTŽ DC BMŽQ[AF] // [BD]PMBDBLõFLJMEF[AF]¿J[FMJN#V EVSVNEB % = 90°PMVS | | | | \"#$%ZBNVóVOEB  BE = EC JTF m ( FAC )  \"'$пHFOJOEF±LMJEUFPSFNJOEFO  & A^ ABCD h A^ ADE h = EJS | | | | | | | | | |AD 2 = FD  DC = AB  DC PMVS 2 10. 4 21 11. 20

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr mSPAT ÖRNEK 13 AB A B A A+B E E 12 F 16 BA DC D CF | | | |\"#$%ZBNVL [ AB ] // [ DC ] [ EF ] m [ BC ]  ED = EA | | | |EF =CS  BC =CS [AE a [DC = {F}PMBDBLõFLJMEF[EF]WF[CF] :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS ZJ¿J[FMJN && & 12.16 = 96 CS2EJS A^ EBC h = A^ ABE h = \"JTFFõпHFOMFSEFO A^ ECF h = A && A^ EDC h = B PMVSTB A^ ADE h = A +#PMVS  :BOJ A^ ADE h = A^ ABCD h PMVS 2 2 \" \"#$% ==CS2CVMVOVS %m/*m A B E ÖRNEK 12 A 6B a h a DC E 6 h  \"#$%ZBNVóVOEB [AB] // [DC]  h D [AC] a [BD] = {E}PMNBLÐ[FSF 8 b && b A^ ADE h = A^ BEC hEJS 8C \"#$% EJL ZBNVL  [AB] // [DC]  [BE] m [EC]  [ CE ] WF mSPAT | | | |[ BE ]B¿ŽPSUBZ  AB =CS  DC =CS AxB & A^ ABD h = :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS x.h E den |#$|EJLJOEJSFMJN ²LMJEEFO E 2 h2 =PMEVôVOEBOI= 4 3 CSEJS h h & x.h A^ ABCD h = ^ 6 + 8 h.8 3 = 56 3 CS2CVMVOVS A^ BAC h = 2 2 DC && & A^ ABD h = A^ BAC h  WF A^ AEB h PSUBL QBS¿B && PMEVóVOEBO A^ ADE h = A^ BEC hEJS 12. 56 3 22 13. 192

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 14 ÖRNEK 16 A B \"#$%ZBNVL ±óSFUNFOJ)BLBOhB[ AB ] // [ CD ]PMBDBLõFLJMEFCJS\"#$% 4 [AC] a [BD] = {E} yaNVóVOV¿J[NFTJOJJTUJZPS%BIBTPOSB\"%LFOBSŽÐ[FSJO- A A [AB] // [DC] EF CJS & OPLUBTŽ  #$ LFOBSŽ Ð[FSJOEF CJS ' OPLUBTŽOŽ BMŽQ E | | | |[ EF ]OŽ¿J[NFTJOJJTUJZPS[EF] // [CD]  AE = ED =CS  & =CS2 % 3 br2 16 A^ AEB h m ( ADC ) = 60°  A (ABCD) = 24 BMNBTŽOŽ TËZMÐ- & h =CS2 ZPS4POPMBSBL&'V[VOMVóVOVCVMNBTŽOŽJTUJZPS A^ DEC DC #VOB HÌSF  )BLBOhŽO WFSFDFôJ EPôSV DFWBQ LBÀ CJ- & SJNEJS :VLBSŽEBLJWFSJMFSFHÌSF  A^ AED hLBÀCJSJNLBSFEJS A^ AED h = Aa & k = A A B BEC 4 \"2 =CS2 A^ & h =\"=CS2CVMVOVS E F AED 4 43 60° H C D4 \"EBOEJLJOEJSFMJN  ÑÀHFOJOEFO A^ ABCD h = 24 3 = EF .4 3 |&'| =CSCVMVOVS ÖRNEK 15 ÖRNEK 17 39 6D 8 10 A 5B \"#$%ZBNVL .1 A a 6 [ AB ] // [ DC ] 3 k | |AD =CS E | |AB =CS 3 4 | |BC =CS | |DC =CS 66 3k D 5 10 K 5 C a a B 3C :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$% LBÀ CJSJNLBSF- \"#$%EJLZBNVL [AD] // [BC] [AB] m [BC], [ CE ]B¿ŽPS- EJS | | | | | | | |UBZ  AB = AE  BC = 3CS  AD =CS :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS \"%LFOBSŽOBQBSBMFMPMBDBLöFLJMEF[BK]EPôSVQBSÀBTŽ- OŽÀJ[FMJN |%\"|WF|$&|ZJV[BUŽQ$EFO|\"%|ZFEJLJOEJSFMJN & 3.4 2 A^ ABCD h = ^ 9 + 3 h.8 = 48 CS2CVMVOVS A^ BKC h= 2 2 = 6 br EJS \" \"#$% =++=CS2CVMVOVS 14.   23 17.

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 18 ÖRNEK 20 A B AF B \"#$%EJLZBNVL b a E 4 [EF] m [FG] D a a DC Hx [BC] m [DC] G | | | | | |\"#$%JLJ[LFOBSZBNVL  AD = BC  AC =CS b |AF| = |FB| |AE| = |ED| :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% nin FOCÑZÑL de- 4 | | | |BG = GC =CS ôFSJLBÀCJSJNLBSFEJS C A( ABCD ) =CS2 | |:VLBSŽEBLJWFSJMFSFHÌSF  %$ =YLBÀCJSJNPMBCJ- MJS \" \"#$% FOCÑZÑLEFôFSJOJa =šPMEVôVOEBBMŽS #'(WF()$CFO[FSÑÀHFOMFS x A^ ABCD h = 1 ·6.6 sin a = 1 ·6.6.sin90° =CS2 42 32 2 2 BF = 4   BF = x max CVMVOVS A^ ABCD h = d 64 +xn 8 = 80 x 2 64 + x2 x = 20 Y2 -Y+= 0 Y - Y -4 Y=WFZBY=PMVS ÖRNEK 19 ÖRNEK 21 #JSLBóŽEB[ AB ] // [ DC ]PMBDBLõFLJMEF\"#$%ZBNVóV- A 3B \"#$%ZBNVL [AB] // [DC] OV¿J[JOJ[#$LFOBSŽOŽOPSUBOPLUBTŽOŽ&PMBSBLBMŽOŽ[ a 5A b 4A 4A [ BD ] a [ AC ] = { F } % m | |AB =CS | |m(DAB) | |DC =CS < 90°, % = 2.m ( % )  AD =CS EG m ( DAE ) EAB | |AE =CSPMEVôVOBHÌSF \" \"#$% LBÀCJSJNLB- 4m 16A F 16A SFEJS 4b 4a 80A DC D 12 C a8 a :VLBSŽEBLJWFSJMFSFHÌSF ZBNVôVOBMBOŽ \"&'ÑÀHF- 10 11 OJOJOBMBOŽOŽOLBÀLBUŽEŽS 5E 2a 6 H & a A^ DFC h =\" EFSTFL B A && A^ DEF h = A^ FGC h =\" a 10 && A^ AEF h = A^ BFG h =\" K & & 11.8 = 44 CS2 A^ AFB h =\" A^ ADE h = 2 \" \"#$% =\"PMVS \" \"#$% = 2.44 =CS2CVMVOVS A^ ABCD h 125A 125 = = CVMVOVS & 4A 4 A^ AEF h 19.  24 125 20.  21. 4

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 22 ÖRNEK 24 D mC \"#$%ZBNVL Ax B \"#$%EJLZBNVL [AB] // [DC] A [AB] // [DC] [BD] a [AC] = {F} x [CE] a [BD] = {K} 6 E [AD] m [DC] F B 1K | |AD =CS | |AB =YCS | | | |4 AE = EB C C | |A 2k E k B FK =CS D x+4 | |KB =CS | |DC = (x + CS | |:VLBSŽEBLJWFSJMFSFHÌSF  %' LBÀCJSJNEJS && :VLBSŽEBLJ WFSJMFSF HÌSF  A^ DEC h - A^ AEB h GBSLŽ LBÀCJSJNLBSFEJS %'$WF#'\"ÑÀHFOMFSJOEFCFO[FSMJLUFO && & mx A^ AEB h = A, A^ ADE h = B ve A^ DEC h = C PMTVO = 3k 5 %$,WF,&#ÑÀHFOMFSJOEFCFO[FSMJLUFO m x+1 x+1 x -\"+ B = 6.x = 3x =, = 2 k4 12 5 6^ x + 4 h   Y=Y+ B +$= = 3x + 12 2 5 $-\"=CS2CVMVOVS x = CSCVMVOVS 7 ÖRNEK 23 ÖRNEK 25 \"#$%EJLZBNVL D 3 K3 C \"#$%ZBNVL A xB [ AE ] m [ ED ] 90°–a m % ) + % = 90° b % = % ( DAB m ( CBA ) a 90°–ax y m ( DAE ) m ( DEC ) E a 8 |DK| =|KC| 90°–a | |AD =CS 4 |AL| = |LB| a y C D aa bb | |DK =CS | | | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# . %$ ÀBSQŽNŽLBÀCJ- A 3 H x–3 L x.–3 M 3 B | |KL =CS SJNLBSFEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀCJSJNEJS x 88 %\"LFOBSŽOBQBSBMFMPMBDBLöFLJMEF[,)]OŽWF[#$]LFOB- 1JTBHPSUFPSFNJOEFO SŽOBQBSBMFMPMBDBLöFLMJEF[KM]OŽÀJ[FMJNa + b =š 2 + Z-Y 2 = Y+Z 2 x+y PMEVôVOEBO m ( H%KM ) = 90°PMVS x y–x .VIUFöFNÑÀMÑEFO 64 + 2 - 2xy + 2 = 2 + 2xy + 2 Y- 3 = 4 jY=CSEJS y x x y |\"#| =Y=CSCVMVOVS YZ=jYZ= |\"#|. |%$| =YZ=CS2 CVMVOVS 5 23. 14  24. 12  22. 7

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 26 ÖRNEK 28 Dy C AB$%EJLZBNVL ôFLJM * EF LBMŽOMŽLMBSŽ ËOFNTJ[ WF BSBMBSŽOEB  DN a V[BLMŽLPMBOUBCBOBEJLWFCJSCJSJOFQBSBMFM¿VCVLMBSWF- B [ FE ] m [ BC ] SJMNJõUJS x b AE |BE| = |EC| = |FE| B F A A ( ABEF ) =CS2 a Bb y Ax B ADN DN | |:VLBSŽEBLJWFSJMFSFHÌSF  \"% LBÀCJSJNEJS %'$WF#'\"FöÑÀHFOMFS \" \"#$% = ^ x + y h^ x + y h = 200 DN ôFLJM* 2 AD Y+Z 2 = 400 |\"%| =Y+Z=CSCVMVOVS ÖRNEK 27 150 150 B C 170 120 x K ôFLJM** ôFLJM*EFWFSJMFO\"#$пHFOJOEF(OPLUBTŽBóŽSMŽLNFS- ¥VCVLMBSŽOCPZMBSŽTŽSBTŽZMBDNWFDNEJS | | | |LF[JWF AB = GC EJSôFLJM*EFLJ\"($пHFOJLFTJ- 6[VO¿VCVLUBNPSUBTŽOEBOLŽSŽMŽZPSWFLŽSŽMBOQBS¿BOŽO BZBóŽ EJóFSVDVLŽTB¿VCVLJMFBZOŽIJ[BZBHFMFDFLõF- MJQ[AC]CPZVODB\"#$пHFOJOFZBQŽõUŽSŽMBSBL\"#$%ZB- LJMEFLBZŽZPSWFôFLJM**PMVõVZPS NVóVFMEFFEJMJZPS #VOBHÌSF õFLJM**EFPMVöBO\"$#%EJLZBNVôVOVO BMBOŽLBÀDN2EJS A A 6D a a 6 GG 3a 0MVöBOEJLÑÀHFOEF 2 +Y2 = 1702 B CB 9 K9 C Y=DNEJS ôFLJM* ôFLJM** A^ ACBD h = d 200 + 120 n150 | |\"#$%ZBNVôVOEB[\"%] // [#$]WF \"% =CSPMEV- 2 | |ôVOBHÌSF  #$ LBÀCJSJNEJS = 2400 \"($ÑÀHFOJOJ\"$LFOBSŽOBZBQŽöUŽSEŽôŽNŽ[EBO m ( % ) = m ( % ) PMVS:BNVLUBQBSBMFMMJLUFO GAC DAC m ( % ) = m ( % ) PMVS|\"(| =CSJTF|GK| =CSPMVS ACB GAC \",$JLJ[LFOBSÑÀHFOPMEVôVOEBO|,$| =CSWF[\",] ke- OBSPSUBZPMEVôVOEBO|#$| =CSPMVS 20 27.   2400

:BNVL TEST - 7 1. DC \"#$%ZBNVL 4. A B A E [AB] // [DC] // KL // |AK| = |KC| 3 |DL| = |LB| | |AB = (2x + CS DC B | | | |\"#$%ZBNVL [DC] // [AB]  AC = AD | |DC = (x + CS | |KL =CS m( % + % = 130° ADC ) m ( ABC ) | |:VLBSŽEBLJWFSJMFSFHÌSF  %$ LBÀCJSJNEJS  :VLBSŽEBLJWFSJMFSFHÌSF  m ( A%CB )LBÀEFSFDF- EJS \"  #  $  %  &  \"  #  $  %  &  2. D C  A 8 B A#$%ZBNVL [DC] // [AB] 6 E 2F 8 100° | |4 AB =CS | |BC =CS AB | |D 12 C DC =CS \"#$% ZBNVL  [DC] // [AB]  [ AE ]  [ BF ]  [ CF ] WF m % ) = 100° ( BAD | | | |[ DE ]B¿ŽPSUBZ [EF] // [DC]  AD =CS  BC =CS  | |EF =CS  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  LBÀ EFSFDF- | | | | :VLBSŽEBLJ WFSJMFSF HÌSF  \"# + %$  UPQMBNŽ BCD LBÀCJSJNEJS EJS \"  #  $  %  &  \"  #  $  %  &  3. D C  \"#$ пHFOJ õFLMJOEFLJ LBSUPOVO \",& пHFOJ JMF HËTUFSJMFO QBS¿BTŽ [KE] CPZVODB LBUMBOEŽóŽOEB \" G3 E4 OPLUBTŽ.OPLUBTŽOBHFMNFLUFEJS A [ AB ] m [ BC ] KE [ KE ] // [ BC ] AF B |AK| = 2|MB| | |BC =CS \"#$% ZBNVL  [DC] // [AB]  [AC] a [BD] = {G}, M | | | |[ AC ] a [ DF ] = { E }  EG =CS  CG =CS  BC |BF| |= AF| | | \" ,#$&  =  CS2 PMEVôVOB HÌSF  BM kBÀ | | :VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS CJSJNEJS \"  #   $   %  &   \"  #  $  %  &  1. E 2. D 3. $ 27 4. $ \" \"

TEST - 8 :BNVL 1. D 7 C G 4. \"#$% ZBNVóV õFLMJOEFLJ LBSUPO  [EF] CPZVODB 6F LBUMBOEŽóŽOEB\"WF#OPLUBMBSŽOŽOZFOJZFSMFSJTŽSB- TŽZMB\"hWF#hPMVZPS E 8 DC AB \"#$%ZBNVL [DC] // [AB] [ DE ]WF[ AG ]B¿ŽPSUBZ EF | | | |[DG] a [AG] = {G}  DE =CS  AE =CS AB | |DC =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  $( LBÀCJSJNEJS | | | |3. #' = 2. '$ WF[\"#]JMF[%$]EPôSVQBSÀBMBSŽ \"  #  $  %  &  BSBTŽOEBLJ V[BLMŽL  CS PMEVôVOB HÌSF  [\"h#h] WF [%$] EPôSV QBSÀBMBSŽ BSBTŽOEBLJ V[BLMŽL LBÀ CJSJNEJS \"  #  $  %  &  2. A B \"#$%ZBNVL [DC] // [AB]  DC [DC] // [AB] [ HE ] // [ AB ] F [ AE ]WF[ DE ]B¿ŽPSUBZ [ AC ] m [ BC ] 24 H E | |AD =CS | | | |E G | | | |AB + DC =CS BE = CE DC |AB| |= DC| A B m ( D%AC ) = 20° | | :VLBSŽEBLJWFSJMFSFHÌSF  )& LBÀCJSJNEJS % :VLBSŽEBLJ WFSJMFSF HÌSF  m ( CAE ) LBÀ EFSFDF- \"  #  $  %  &  EJS \"  #  $  %  &  | | | |3. AB > DC WF[ AB ] // [ DC ]PMBDBLõFLJMEFCJS | | | | AB > DC WF[ AB ] // [ DC ]PMBDBLõFLJMEFCJS \"#$% ZBNVóV ¿J[JOJ[ \"% LFOBSŽOŽO PSUB OPLUBTŽ \"#$% ZBNVóV ¿J[JOJ[ %\" LFOBSŽOŽO Ð[FSJOEF CJS PMBDBLõFLJMEFCJS,OPLUBTŽCFMJSMFZJOJ[ ,OPLUBTŽWFZBNVóVOEŽõŽOEB$ZFEBIBZBLŽO$ | | | |[,$] m [$#]  BK =CSWF #$ =CSPMEV- WF#JMFEPóSVTBMPMBDBLõFLJMEFCJS.OPLUBTŽBMŽQ ôVOBHÌSF CVZBNVôVOPSUBUBCBOŽOŽOV[VOMV- [ KM ]EPóSVQBS¿BTŽOŽ¿J[JOJ[ ôVLBÀCJSJNEJS | | | | | |m(K%MB) = m(M%BA)  AK = KD  DC =CS | | | |AB =CSPMEVôVOBHÌSF  KM LBÀCJSJNEJS A) 6 B) 2 10 C) 3 5 D) 73 E) 4 5 \"  #  $  %  &  1. B 2. $ 3. D  4. \" $ D

:BNVL TEST - 9 1. A B 4. ,ËõFHFOMFSJEJLLFTJõFOCJSJLJ[LFOBSZBNVóVOUB- \"#$%ZBNVL CBOMBSŽCJSJNWFCJSJNEJS [DC] // [AB]  #VOB HÌSF  CV ZBNVôVO BMU WF ÑTU UBCBOŽ BSB- TŽOEBLJV[BLMŽLLBÀCJSJNEJS | | | |AD = BC =BCS \"  #  $  %  &  | |AB =BCS | |D C CD =BCS  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- DAB EJS \"  #  $  %  &  | | | | | | | | AB > DC [ AB ] // [ DC ]WF AD = BC PMBDBL 2. A 5 B [DC] // [AB] õFLJMEFCJS \"#$%JLJ[LFOBSZBNVóV¿J[JOJ[ 6 D 11 C |AD| = |BC| [ AC ] a [ BD ] = {E }WF[ AC ] m [ BD ]PMBSBLBMŽOŽ[ | |AB =CS %BIBTPOSB[ EB ]Ð[FSJOEFCJS,OPLUBTŽBMŽOŽ[ | |BC =CS | |CD =CS | | | | | |[$,] // [%\"]  \"# = 9 2 WF KB = 2. EK JTF | |DE LBÀCJSJNEJS \"  #  $ 3 3 D) 4 2 E) 4 3  :VLBSŽEBLJWFSJMFSFHÌSF  m ( D%AB )LBÀEFSFDF-  A B \"#$%ZBNVL EJS C D [DC] // [AB] \"  #  $  %  &  | |BC =CS | |AB =CS | |DC =CS | |AD =CS 3. A B [DC] // [AB]  \"#$%ZBNVóV,` [DC]PMNBLÐ[FSF [BK]CPZVO- [ DB ] m[ AC ] DBLBUMBOEŽóŽOEBBõBóŽEBLJõFLJMFMEFFEJMJZPS | |DC =CS | | | |AD = BC = 2 17 CS C' A B L D 10 C DK | | :VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀCJSJNEJS | | $h`\"#PMEVôVOBHÌSF  -\" LBÀCJSJNEJS \"  #  $  %  &  A) 29  #  $  27 D) 24 20 7 E) 7 77 1. \" 2. $ 3. E 29 4. B $ $

TEST - 10 :BNVL 1. D C \"#$%EJLZBNVL | | | |4. AB > CD WF[ CD ] m [ DA ] [ BA ] m [ AD ]PMBDBL E [ BE ] [ CE ]B¿ŽPSUBZ õFLJMEF\"#$%ZBNVóVOV¿J[JOJ[#%LËõFHFOJÐ[F- | |BC =CS SJOEFBMŽOBO,OPLUBTŽJ¿JO[ CK ] m [ BD ]EJS A ( ABCD ) =CS2 | | | | | |AD =CS  AB =CS  KC =CSPMEVóVOB | |HËSF BK LBÀCJSJNEJS AB \"  #  $  %  &  | | :VLBSŽEBLJWFSJMFSFHÌSF  DE LBÀCJSJNEJS \"  #  $  %  &  2. D C \"#$%EJLZBNVL  ,-./ZBNVóVõFLMJOEFLJUBSMBOŽOFUSBGŽFõJLJ[LF- A [ AC ] m [ BC ] OBSZBNVLTBMCËMHFõFLMJOEF¿JNMFOEJSJMEJLUFOTPO- SB BSBEB LBMBO 1345 CËMHFTJ EF ZBNVL õFLMJOEF- | |AB =CS EJS | |DC =CS KL B PR NT SM | | :VLBSŽEBLJWFSJMFSFHÌSF  \"% LBÀCJSJNEJS  / JMF . OPLUBMBSŽ BSBTŽ V[BLMŽL  N PMEVôVOB HÌSF CBöMBOHŽÀUBUBSMBOŽOÀFWSFTJLBÀCJSJNEJS \"  #  $  %  &  \"  #  $  %  &  3. D \"#$%EJLZBNVL  D C \"#$%EJLZBNVL [ AC ] m [ BD ] E [ BE ] m[ EC ] | | | |C AE 2 + EB 2 =CS2 |DE| = |EA| | |DC =CS E | |AB =CS AB AB | | | | :VLBSŽEBLJ WFSJMFSF HÌSF  \"% . #$  ÀBSQŽNŽ | | :VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS LBÀCJSJNLBSFEJS A) 12 B) 5 6 C) 4 10 \"  #  $  %  &  D) 6 5 E) 10 2 1. E 2. E 3. $ 30 4. D D \"

:BNVL TEST - 11 1. D 10 C [ DC ] // [ AB ] 4. D C [ DC ] // [ AB ] 8 | |BC =CS // E [ AC ] m [ BD ] A 6 // |AD| = |BC| | |DC =CS | |AB =CS | |A B CD =CS | |B AD =CS m ( D%AB ) + m % = 90°  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- ( CBA ) LBSFEJS :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- \"  #  $  %  &  LBSFEJS \"  #  $  %  &   ôFLJMEFWFSJMFOEÐ[HÐOBMUŽHFOõFLMJOEFQFUFóJOCB- [ŽOPLUBMBSŽCJSMFõUJSJMJQBõBóŽEBLJõFLJMFMEFFEJMJZPS 2. D C [ DC ] // [ AB ] [ CE ] // [ AD ] % = 30° m ( BAD ) | |E AB =CS  %Ñ[HÑOBMUŽHFOöFLMJOEFLJQFUFLMFSJOCJSLFOBSŽ | |DC =CS CSPMEVôVOBHÌSF PMVöBOöFLMJOBMBOŽLBÀCJ- SJNLBSFEJS | |A B AD =CS &  :VLBSŽEBLJWFSJMFSFHÌSF  A^ DEC hLBÀCJSJNLB- SFEJS  A) 5  #  $  %  &  15 2 2 A) 1140 3 B) 1200 3 C) 1250 3 D) 1450 3 E) 1500 3  D4 C [ DC ] // [ AB ] 3. D C [ DC ] // [ AB ] 6 [ AE ] m [ DE] E A | |AB =CS |BE| = |EC| | | | |AD = BC =CS | |DC =CS | |CD =CS | | | |AB = DE =CS B  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- A 6B LBSFEJS  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- \"  #  $  %  &  LBSFEJS \"  #  $  %  &  1. \" 2. \" 3. $ 31 4. $ E E

TEST - 12 :BNVL 1. A B \"#$%ZBNVL 4. A B \"#$%EJLZBNVL E | | | | AB = DC E [ CE ]B¿ŽPSUBZ A^ & h =CS2 | | | |AE = DE =CS BEC | |BC =CS DC DC  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN-  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS LBSFEJS \"  #  $  %  &  \"  #  $  %  &  DC 2. 14 E G  A B \"#$%EJLZBNVL 3 F D [ AE ]WF[ DE ]B¿ŽPSUBZ 6 E [ EF ] m [ AD ] A FB |AD| |= AF| \"#$%EJLZBNVL [ AE ]WF[ DE ]B¿ŽPSUBZ | |BC =CS | |[ EG ] m [ BC ] [ EF ] m [ AF ]  AD =CS C | | | |EG =CS  EF =CSEJS  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN-  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS LBSFEJS \"  #  $  %  &  \"  #  $  %  &  3. D C E  D C \"#$%ZBNVL A FB E |AE | = |DE| |AB| |= DC| | | | | | | | | | |\"#$%ZBNVL  EC = EB  AF = FB = DC AB  :VLBSŽEBLJ WFSJMFSF HÌSF  A (ABCD)  PSBOŽ A (ABCD) Taral› Alan  :VLBSŽEBLJWFSJMFSFHÌSF  PSBOŽLBÀ- UŽS A (ABE) LBÀUŽS 9 D) 11 E) 6 A) 2 B) 59 E) 5 B) C) 3 D) \"  C) 5 22 22 1. $ 2. D 3. \" 32 4. E E B

:BNVL TEST - 13 | | | |1. AB > DC WF[ AB ] // [ DC ]PMBDBLõFLJMEFCJS 4. \"#$% QBSBMFMLFOBSŽ õFLMJOEFLJ LVNBõ QBS¿BTŽ N \"#$%ZBNVóVOV¿J[JOJ[\"%WF#$LFOBSMBSŽÐ[F- EPóSVTV CPZVODB LFTJMJQ õFLJM ** EFLJ HJCJ CJSCJSJOF SJOEFTŽSBTŽZMB&WF'OPLUBMBSŽBMŽOŽ[[EF] // [AB] EJLJMJZPS | | | |AB = DC =CS \" \"#'& =\" %&'$  N B | | PMEVôVOBHÌSF  &' LBÀCJSJNEJS AE A) 3 2 B) 2 5 C) 21 D) 2 8 E) 5 D FC ôFLJM* | | | | | |F' D' EB = DF = AE 2. D 3 C [ DC ] // [ AB ] 3 | | | |AD = DC =CS E E' B A8 | |AB =CS B %% m ( DAB ) = 2.m ( CBA ) FC  :VLBSŽEBLJWFSJMFSFHÌSF  \" \"#$% LBÀCJSJN- ôFLJM** LBSFEJS A^ FCD'F'E'E h  :VLBSŽEBLJWFSJMFSFHÌSF  PSBOŽ A) 10 2 B) 11 2 C) 12 2 A^ BD'F'E' h LBÀUŽS D) 14 2 E) 16 2 A) 8 B) 7 C) 2 D) 5 E) 4 3 3 33  AF B | | | |3. [ BA ] m [ AD ] [ AD ] m [ DC ]WF AB > DC PMB- EH DBLõFLJMEFCJS\"#$%ZBNVóVOV¿J[JOJ[\"%LFOBSŽ Ð[FSJOEFCJS,OPLUBTŽBMŽOŽ[ % CBA % D GC | | | | | |m(CKD) \"#$% ZBNVL  [ AB ] // [ DC ] WF \" \"%&  =  CS2  = m ( )  DK = 2. ,\"  #$ =CS  A ( BHC ) =CS2EJS | |,$ =  CS PMEVôVOB HÌSF  \" \"#$%  LBÀ CJ-  :VLBSŽEBLJWFSJMFSFHÌSF \" &')( LBÀCJSJNLB- SJNLBSFEJS SFEJS A) 108 B) 106 C) 21 5 5 &    %  \"  #  $  %  &  1. $ 2. B 3. \" 33 4. $ D

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr 1\"3\"-&-,&/\"3 TANIM ÖRNEK 2  ,BSõŽMŽLMŽLFOBSMBSŽCJSCJSJOFQBSBMFMPMBOEËSUHF- Dx E 5 F xC \"#$%QBSBMFMLFOBS ne QBSBMFMLFOBSEFOJS ba [ AF ] a [ BE ] = { G } %m/*m x+5 G x+5 [ AF ]WF[ BE ]B¿ŽPSUBZ D C a b | |EF =CS a b | |AB =CS A B :VLBSŽEBLJWFSJMFSFHÌSF ¦ \"#$% LBÀCJSJNEJS A B ÷ÀUFSTBÀŽMBSEBOJLJ[LFOBSÑÀHFOMFSPMVöVS Y+= 9  \"#$%QBSBMFMLFOBS Y=CS ¦ \"#$% = + =CSCVMVOVS |AB| = |DC| |AD| = |BC| ÖRNEK 3 r m (WA ) = m (XC ) D 6 EC \"#$%QBSBMFMLFOBS r m (XD ) = m (WB ) 120° 30° 60° r m (WA ) + m (XD ) = 180° 6 [ AE ]B¿ŽPSUBZ r m (XD ) + m (XC ) = 180° 6 B % = 30° m( DCB ) 60° 30° D C | |BC =CS A /E // // / | |:VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS AB ÷ÀUFSTBÀŽMBSEBOJLJ[LFOBSÑÀHFOMFSPMVöVS [AC] a [BD] = {E} [\"&] BÀŽPSUBZ PMEVôVOEBO m ( D%AE ) = m ( E%AB ) = 30° r |AE| = |EC| PMVS0IBMEF\"%&ÑÀHFOJOEFš š šÑÀHFOJOEFO r |DE| = |EB| |\"&| = 6 3 CSCVMVOVS ÖRNEK 1 %m/*m C |AE| = |EB| N |FB| = |FC| D B D F E C \"#$%QBSBMFMLFOBS K / / |DE| = |EC| |EC| = |BC| // // A EB A KB :VLBSŽEBLJWFSJMFSFHÌSF m ( A%EB )LBÀEFSFDFEJS [ AC] a [ DE ] = { K} [ KC] a [ DF ] = { N}JTF %\"LFOBSŽOBQBSBMFMPMBDBLöFLJMEF[EK]OŽÀJ[FSTFL | | | | | |KA = KN = NC PMVS |EK| = |\",|= |KB|PMVS | | | |C D / F/ C AE = EB 0IBMEFm ( A%EB ) = 90°PMVS | | | |N // CF = FD K // B // // AE | | | | | | PMEVóVOBHËSF  AK = KN = NC EJS 1. š 34 2. 32 3. 6 3

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 ÖRNEK 6 A B \"#%&QBSBMFMLFOBS G \"#$%QBSBMFMLFOBS 2 G |BC| = |CD| D F [ AF] a [ DB ] = { E} 4 C [ AG] a [ DC ] = { F} E H C |EF| = |FD| | |EF =CS | |EH = (2x + CS | |FG =CS | |E FD GB = (x + CS AB | |:VLBSŽEBLJWFSJMFSFHÌSF  () LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS |#$| = |$%|WF|&'| = |'%|PMEVôVOEBO |\"&|2 == 24 |&)| = |)(| = |BG|PMVS |\"&| = 2 6 CSCVMVOVS Y+ 1 =Y+jY=CS |)(| =Y+=CSPMVS ÖRNEK 7 ÖRNEK 5 A 5a B \"#$%QBSBMFMLFOBS a DE C \"#$%QBSBMFMLFOBS a 5k [ BE ]B¿ŽPSUBZ D2 E F a [ AC ] m [ BC ] [ EF ] // [ AD ] 3k 3a | | | | AC = FC | |AF =CS | |DE =CS 11 F | |BF =CS | |AD =CS 16 ab 12 3a C x b a a b A xK xB :VLBSŽEBLJWFSJMFSFHÌSF ¦ \"#$% LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS \"#$ÑÀHFOJOEFBÀŽPSUBZUFPSFNJOEFO [EK] #$WF\"%LFOBSŽOBQBSBMFMPMEVôVOEBO 3|\"#| =|#$|PMVS#$&JLJ[LFOBSÑÀHFOJOEF |#$| = |&$| =BPMVS % = m ( % ) WF m ( % ) = % ) PMVS m ( FAK ) AFK FBK m ( KFB B+ 2 =BjB= 1 ¦ \"#$% =B=BjB=CSCVMVOVS 0IBMEF |\",| = |KB| = |',|  '\"#ÑÀHFOJOEFQJTBHPSCBôŽOUŽTŽOEBOY=CSPMVS Y=CS |&'| = 11 - 10 =CSCVMVOVS ÖRNEK 8 A 4 12° B \"#$%QBSBMFMLFOBS 12° 4 %m/*m [ AF] m [ DC ] E 4 4 24° 8 K D F m ( A%BD ) = 12° E C 24° | |AD =CS DF | |C BE =CS G :VLBSŽEBLJWFSJMFSFHÌSF m ( D%AB )LBÀEFSFDFEJS AB [\",]LFOBSPSUBZŽOŽÀJ[FSTFL |\"%| = |\",|PMVS  \"#$%QBSBMFMLFOBS % + 36 = 180° m ( DAB ) [AE] a [ DC ] = {F} [AE] a [BD] = {G} m ( D%AB ) = 144°CVMVOVS | | | | | |AG 2 = GF  GE EJS 4. 9 1   2 6 7.  š

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 9 %m/*m A B \"#$%QBSBMFMLFOBS D C x aa [ AF ]WF[ DF ]B¿ŽPSUBZ M E 13–x 6 F [ FE] m [ DC ] b 6 b m ( D%AB ) > % A B d m ( ADC ) A' B' C' D' E' D 13–x E | |C FE =CS | |AD =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  DE LBÀCJSJNEJS  \"#$%QBSBMFMLFOBS [\"\"h] mE [%%h] m d [&&h] mE [##h] mE [$$h] m d \"'WF'%BÀŽPSUBZPMEVôVOEBOm ( D%FA ) = 90°EJS ²LMJEUFPSFNJOEFO2 =Y -Y jY2 -Y+= 0  &LËõFHFOMFSJOLFTJNOPLUBTŽ    Y -4 | | | | | | | | | |\"\"h + $$h = ##h + %%h = &&h EJS    Y-9 % Y=WFY= GBLBUm ( D%AB ) > m( ADC ) PMEVôVOEBO Y=UÑS0IBMEF|DE| = |DM| =PMVS %m/*m D C ÖRNEK 10 d C' A 5 E 5B \"#$%QBSBMFMLFOBS B' D' B % = 60° m ( ADC ) 4 44 4 | | | |AE = EB =CS A A' 60° | |BC =CS D5 60° K 4 F1 C | |CF =CS  \"#$%QBSBMFMLFOBS [A\"h] mE [%%h] mE  [##h] mE [$$h] m d | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS | | | | | | | |\"\"h + ##h + $$h = %%h EJS %\"LFOBSŽOBQBSBMFMPMBDBLöFLJMEF[EK]OŽÀJ[FMJN0IBMEF ÖRNEK 12 &,'ÑÀHFOJFöLFOBSÑÀHFOPMVS|&'|=CSPMVS D C ÖRNEK 11 E F \"#$%QBSBMFMLFOBS d A C' B [ KL] m [ DC ] AB D K D' LC [ KE] m [ DE ] A' | | | | KE = KL \"#$%QBSBMFMLFOBS [ \"\"h] mE [ %%h ] mE [ $$h ] m d | |DC =CS | | | |\"\"h =CS  $$h =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  %%h LBÀCJSJNEJS \" \",% =\" %,$ PMBDBôŽOEBO|KL| = |%\"| . |EK| |\"\"h| + |$$h| = |%%h|PMEVôVOEBO 12· KL = DA  |%\"| = 12· 3 =CS |%%h| = 4 + 3 |%%h| =CSCVMVOVS EK 4 |#$| =CSCVMVOVS 9. 9 10. 4 11. 9  12. 7

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 13 ÖRNEK 15 D 15 C \"#$%QBSBMFMLFOBS D 8 E 4C \"#$%QBSBMFMLFnar 8 a 120° 30° 60° 8 43 [ AE ]B¿ŽPSUBZ a [ AE]WF[ CF ] 30° 8 30° % = 60° 8 B¿ŽPSUBZ 30° B m ( DCB ) A 2a 7 a | |AE =CS A | |DE =CS | |B AD =CS 90°–a a F 8 | |DC =CS G 5 E :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS \"&BÀŽPSUBZPMEVôVOEBO m ( % ) = 30° PMVS DAE |%\"| = |DE|= |#$|=CS &#$ÑÀHFOJOEFšššLVSBMŽO- $'BÀŽPSUBZPMEVôVOEBO m ( % ) = m( % PMVS EBO|BE| = 4 3 WF[&$| =CSPMVS BCF BFC ) m ( % ) = 180° - 2a = 90° - a PMVS 0IBMEF A (ABCD) = 12.4 3 = 48 3 CS2CVMVOVS EAF 2 :BOJm ( A%EF ) = 90°PMVS0IBMEF|'&|2 +2 = 72 ÖRNEK 16 FE = 2 6 CSCVMVOVS E \"#$%QBSBMFMLFOBS ÖRNEK 14 3 4 B [ DF ]B¿ŽPSUBZ A [ FE] m [ DE ] F 5 a [ FK] m [ DC ] D 8 C \"#$%QBSBMFMLFOBS 54 | |AE =CS 3 aa | |FE =CS [ AB] // [ EF ] a | |KC =CS a M6 3aE F 3 [ AE ] [ CF ] D 8 K 2C b 3 K6 [ DE ]WF[ BF ]B¿ŽPSUBZ 3b | |3 :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS b AB =CS 8 | |B A BC =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  E' LBÀCJSJNEJS %'BÀŽPSUBZPMEVôVOEBOm ( A%DF ) = m ( A%FB ) EJS %&WF\"&BÀŽPSUBZPMEVôVOEBOm ( D%EA ) = 90°EJS$'WF :JOF%'BÀŽPSUBZPMEVôVOEBO |DE| = |DK| =CSEJS \" \"#$% = 10.4 =CS2 CVMVOVS #'BÀŽPSUBZPMEVôVOEBO m ( % ) = 90° EJS CFB |EM| = |MD| = |.\"| =CSWF|',| = |$,| = |KB| =CS  %m/*m |&'| =-=CSCVMVOVS A B 1BSBMFMLFOBSEB\"MBO E ABCD %m/*m D QBSBMFMLFOBS  [ AC ] WF [ BD ] C LËõFHFO A B [AC] a [BD] = {E} &&&& A^ AED h = A^ AEB h = A^ BEC h = A^ DEC hEJS a A E B ABCD QBSBMFMLFOBS  DE C E ` [ AB ] %  \"#$%QBSBMFMLFOBS m ( ADC ) = a [ AE ] m [ DC ] DC | | | |r A ( ABCD ) = DC  AE & A (ABCD) | | | |r A ( ABCD ) = AD  DC TJOa A^ DEC h = EJS 2 13. 2 6 14. 2 37  48 3 40

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 17 ÖRNEK 19 D E C DF E C ABCD 5 G x=12 paralelkenar a b 24 10 | |AG = 24 br a b | |BG = 10 br A B | |A B GF = 5 br ABCD paralelkenar, [ AE ] ve [ BE ]B¿ŽPSUBZ [ BF ] a [ AE ] = { G }, [ AE ] ve [ BF ]B¿ŽPSUBZ | | | |AB = 10 br, BE = 6 br :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS \"&WF#'BÀŽPSUBZPMEVôVOEBO m ( % ) = 90° AGB [\"&]WF[#&]BÀŽPSUBZPMEVôVOEBO m^ % h = 90° PMVS 24 10 AEB #FO[FSMJLUFO x = 5 Y=CS \"&#ÑÀHFOJOEFQJTBHPSUFPSFNJOEFO A^ ABE h = 36.10 = 180 \" \"#$% = 180.2 =CS2CV- 2 62 + |\"&|2 = 102 MVOVS |\"&| =CS A^ AEB h = 6.8 2 2 = 24 br ÖRNEK 20 \" \"#$% =\" \"&# =CS2CVMVOVS DM C ABCD paralelkenar F A 8 [ EF ] // [ DC ] L [ KM ] // [ DA ] A E A ( AKLE ) = 8 br2 8B B AK B :VLBSŽEBLJWFSJMFSFHÌSF \" .-'$ LBÀCJSJNLBSFEJS ÖRNEK 18 Dk E 2k C ABCD paralelkenar && %&-.QBSBMFMLFOBSŽOEB A^ DEL h = A^ DML h #,-'QBSB- 2a 4A 2m 2.|DE| = |EC| 11A F 6A && 3m 9A 3a A ( ADEF ) = 33 br2 MFMLFOBSŽOEB A^ LKB h = A^ BLF h WF \"#$% QBSBMFMLFOB- SŽOEB  Aa & k = A^ & h = EJS \" .-'$  = 8 CS2 CV- DBC DAB MVOVS A 3k B & :VLBSŽEBLJWFSJMFSFHÌSF  A^ BFC hLBÀCJSJNLBSFEJS &$'WF\"'#ÑÀHFOMFSJOEFCFO[FSMJLUFO %m/*m && A B E 3 |&'| = 2|'#|PMVS0IBMEF 2 A ^ FCB h = 3 A ^ FEC hWF && 2A ^ AFB h = 3A ^ FBC hEJS\" \"%&' =\"-\"=\" \"= 33 j\"= 3 A^ & h =\"=CS2CVMVOVS BFC DC  \"#$%QBSBMFMLFOBS &QBSBMFMLFOBSŽOJ¿CËMHF- TJOEFIFSIBOHJCJSOPLUB && && A^ AEB h + A^ DEC h = A^ ADE h + A^ BEC hEJS 17. 48 18. 18 38 19. 360 20. 8

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 21 ÖRNEK 22 D C D 2a C k E K A L k F k 3A AB AA // // A a Ea B \"#$%QBSBMFMLFOBS \" \"#$% =CS2 A^ & h =CS2 | | | | | | | |\"#$%QBSBMFMLFOBS  AE = EB  BF = FC AEB A ( KLBF ) =CS2 & :VLBSŽEBLJWFSJMFSFHÌSF A^ DEC hLBÀCJSJNLBSFEJS :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS && && $-#ÑÀHFOJOEF5IBMFTUFPSFNJOEFO A^ AEB h + A^ DEC h = A^ DAE h + A^ ECB h \" ,-#' =\" $,' EJS \"= 42 j\"= 14 0 IBMEF \"&# WF %&$ ÑÀHFOMFSJOJO BMBOMBSŽ UPQMBNŽ UÑN \" \"#$% =\"=\" BMBOŽOZBSŽTŽEŽS \" \"#$% = 12.14 =CS2 CVMVOVS & + A^ DEC h= 14 A^ DEC h =CS2CVMVOVS %m/*m A B ÖRNEK 23 F B H 4 D G / A // F / 5 AA E E // C DC  \"#$%QBSBMFMLFOBS \"#$%QBSBMFMLFOBS A^ & h =CS2  A^ & h =CS2 ADF FEB [AE] a [BD] = {G} [AF] a [BD] = {H} & :VLBSŽEBLJWFSJMFSFHÌSF  A^ DEC hLBÀCJSJNLBSFEJS | | | | | | | |DE = EC  BF = FC JTF %'#$ZBNVôVOEB & & & A (ABCD) && r A^ ADG h = A^ AGH h = A^ AHB h = A^ DFE h = A^ BEC h=\"PMTVO 6 A^ & h = & hPMEVôVOEB A^ & h =CS2PMVS ABD A^ BDC DEC r & = & = A (ABCD) A(DGE) A(HBF) 12 r & = A (ABCD) EJS A(EFC) 8 21.  39 22.  23. 9

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 24 ÖRNEK 26 \"#$% QBSBMFMLFOBSŽ õFLMJOEFLJ LBSUPO  [AC] LËõFHFOJ \"#$%QBSBMFMLFOBSŽOŽ ¿J[JQ #WF$JMFEPóSVTBMPMBDBL õFLJMEF QBSBMFMLFOBSŽO EŽõŽOEB CJS - OPLUBTŽ JõBSFUMFOJ- CPZVODBLBUMBOŽZPSWFõFLJM**EFLJLBSUPOPMVõVZPS ZPS A 10 D [ AL ] a [ DC ] = { K}WF[ AL ] a [ DB ] = { E }PMBDBLõF- 6 LJMEF&WF,OPLUBMBSŽCFMJSMFOJZPS | | | |AE =CS  KL =CSWF\" &#$, =CS2 PMEVôV- OBHÌSF \" \"#$% LBÀCJSJNLBSFEJS B C ôFLJM* AB 2 4A 2n 2A E 5A A 10 D n a k b A1 aa a 6 DK C 5 x 6 M 10–x . 3 BE K 2a 5 a a x b T . L C |\"&| 2 = | EK | | EK | +  6 4 = | EK | | EK | + WF| EK | =CS D' \"=CS2 j\"=CS2 ôFLJM** \" \"#$% =\"=CS2CVMVOVS | | | |[\"%h]BÀŽPSUBZ  \"# =CS  \"% =CSPMEVôVOB | |HÌSF  &$ LBÀCJSJNEJS ÖRNEK 25 \",%WF%$.ÑÀHFOMFSJCFO[FSMJôJOEFO DE 15k . 65 25 5k F = k= C 10 k 3 0IBMEF|\"5| = 50 PMVS 3 |\"$| = |\"5| - h |\"$| = 50 32 -= CS 33 A G 3k H B [\"&]BÀŽPSUBZPMEVôVOEBO | | | | | | | |\"#$%QBSBMFMLFOBS  DC = EF  AB = GH 32 A ( ABCD ) =CS2 36 :VLBSŽEBLJWFSJMFSFHÌSF \" ()'& LBÀCJSJNLBSFEJS = x 10 - x 32 x = CSCVMVOVS 5 \" \"#$% = |%$| . h =LIj kh =CS2 ^ 3k + 5k hh 2 \" ()'& = = 4k h = 16 br CVMVOVS 2 24.   40 32  5

1BSBMFMLFOBS TEST - 14 1. A B 4. D C EF F DC A EB | | | |\"#$%QBSBMFMLFOBS  AB= AC m ( % ) = 40° | | | | | |\"#$%QBSBMFMLFOBS  AE = EB = BC CAB % % = 20° m ( ACE ) = 20° m ( FDC ) :VLBSŽEBLJWFSJMFSFHÌSF m ( D%FA )LBÀEFSFDFEJS :VLBSŽEBLJ WFSJMFSF HÌSF  m ( D%FC ) LBÀ EFSFDF- \"  #  $  %  &  EJS \"  #  $  %  &  2. D C  E D C A BE AB | | | |\"#$%QBSBMFMLFOBS  BC = BE  \"#$%QBSBMFMLFOBS [ AD ]WF[ BE ]B¿ŽPSUBZ % = 130° m ( A%EB ) = 60° m ( DCE )  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  LBÀ EFSFDF- :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS DAB DCB EJS \"  #  $  %  &  \"  #  $  %  &  3. D E C F  A B AB E 190° | | | |\"#$%QBSBMFMLFOBS BF = BC [ AE ] m [ DC ] DC % = 30° | | | | | | | |\"#$%QBSBMFMLFOBS  AE = BE  DE = BC m ( DAE ) m ( D%CB ) = 110° m ( D%EB ) = 190°  :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS :VLBSŽEBLJWFSJMFSFHÌSF m ( A%BE )LBÀEFSFDFEJS DBA \"  #  $  %  &  \"  #  $  %  &  1. D 2. E 3. $ 41 4. \" B D

TEST - 15 1BSBMFMLFOBS 1. D C 4. D C F G E E F AB AB \"#$%QBSBMFMLFOBS [ DE ]WF[ CE ]B¿ŽPSUBZ \"#$%QBSBMFMLFOBS [ AC ] a [ BD ] = { G} | |[ EF ] // [ AB ]  EF =CS ¥ \"#$% =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  #' LBÀCJSJNEJS | | | | | |BF = CF  GE =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  BD LBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &   D C 2. D C E F E A BG A BF | | | |\"#$%QBSBMFMLFOBS  EF = DE | |\"#$%QBSBMFMLFOBS [BC] a [DF] = {E}  DF =CS | |[ AC ] a [ DG ] = { E }  DC =CS | | | |AB = BF ¥FWre ( ADF ) =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  BG LBÀCJSJNEJS | | | | :VLBSŽEBLJ WFSJMFSF HÌSF  BE + #'  UPQMBNŽ \"  #  $  %  &  LBÀCJSJNEJS  NEPóSVTV\"#$%QBSBMFMLFOBSŽOŽFõJUBMBOMŽJLJCËM- \"  #  $  %  &  HFZFBZŽSŽZPS AD G FN E 3. D FC BC E  #VOBHÌSF AB * | AE| = | FC| | | | |** FC = BE \"#$%QBSBMFMLFOBS [ AG ] a [ BD ] = { E} *** NEPóSVTVQBSBMFMLFOBSŽOBóŽSMŽLNFSLF[JOEFO | | | | # $WF(EPóSVTBM  EF =CS  EG =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS HF¿FS  WFSJMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS A) 2 3 B) 3 3 C) 4 3 \" :BMOŽ[* # :BMOŽ[** $ * *** D) 6 E) 8  % ** *** & * ** *** 1. $ 2. $ 3. $ 42 4. B \" $

1BSBMFMLFOBS TEST - 16 1. E ABCD 4. D EF C ABCD QBSBMFMLFOBS QBSBMFMLFOBS A A D [ DE ] m [ BE ] G [GF] // [AD] [ AF ] m [ BD ] | |AB =CS | |F DE =CS | |B DE =CS | |DC =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  $' LBÀCJSJNEJS | |B C BD =CS A) 1 B) 3 C) 2 D) 3 E) 7 22 | | :VLBSŽEBLJWFSJMFSFHÌSF  \"' LBÀCJSJNEJS \"  #  $  %  &  2. \"#$%QBSBMFMLFOBSŽOEB\"#,пHFOJ[ BK ]CPZVODB  D C LBUMBOEŽóŽOEB\"OPLUBTŽ&OPLUBTŽJMF¿BLŽõŽZPS DE C 45° E K AF B A 12 B ABCD QBSBMFMLFOBS [ DF ] m [ AB ] [ DE ] m [ BC ] % | | | | | | EC = AF  AD =CS DEK | | :VLBSŽEBLJWFSJMFSFHÌSF  %$ LBÀCJSJNEJS | |ma k = 45°  \"# =CSWF | | | | | |EK + KD = 8 2 CSPMEVôVOBHÌSF $& LBÀ \"  #  $  %  &  CSEJS A) 6 3 B)4 6 C) 3 10 D) 2 21 E) 4 5 3. A B ABCD  A B ABCD QBSBMFMLFOBS QBSBMFMLFOBS | |E AE =CS F G |DE| = |EC| | |DE =CS D EC |CG| = |BG| | |D C | |AE =CS AB = 2 13 CS | | :VLBSŽEBLJWFSJMFSFHÌSF  '& LBÀCJSJNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS \"  #  $  %  &  \"  #  $  %  &  1. B 2. E 3. $ 43 4. D D \"

TEST - 17 1BSBMFMLFOBS 1. A B 4. K E A M B DC DC \"#$%QBSBMFMLFOBS . QBSBMFMLFOBSŽOBóŽSMŽLNFS- ABCD QBSBMFMLFOBS [ DE ]WF[ CE ]B¿ŽPSUBZ | | | |LF[J [ DK ] m [ KB ]  KM =CS  KB =CS | | | |DE =CS  CE =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  KD LBÀCJSJNEJS  :VLBSŽEBLJWFSJMFSFHÌSF \"OPLUBTŽOŽO#$EPô- \"  #  $  %  &  SVTVOBFOLŽTBV[BLMŽôŽLBÀCJSJNEJS \"  #   $   %  &  2. A B F  AK B D EC DC \"#$% QBSBMFMLFOBS [ FE ] m [ DC ]  [AF]  WF [BF] | | | |\"#$%QBSBMFMLFOBS  DK =CS  KC =CS |AK| = |KB| = |AD| | | | | | |B¿ŽPSUBZ  DE =CS  EC =CS  FE =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  %$ LBÀCJSJNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS \"  #  $  %  &  \"  #  $  %  &  3. A B 8  #JS LBóŽEB CJS \"#$% QBSBMFMLFOBSŽOŽ ¿J[JOJ[ %$ K LFOBSŽÐ[FSJOEF [ DK ] m[ KB ]PMBDBLõFLJMEFCJS, DC OPLUBTŽ BMŽOŽ[ \"$ LËõFHFOJOJO PSUB OPLUBTŽOŽ . PMBSBLBMŽOŽ[ | | | |\"#$%QBSBMFMLFOBS [ AK ] m[ AD ]  DK = KB | |AB =CS | | | | | |DK 2 + BK 2 =CS2PMEVôVOBHÌSF  KM | | :VLBSŽEBLJWFSJMFSFHÌSF  \", LBÀCJSJNEJS LBÀCJSJNEJS \"   #  $   %   &   \"  #  $  %  &  1. B 2. \" 3. $ 44 4. \" B B

1BSBMFMLFOBS TEST - 18 1. D C 4. A F B G E E F B DC A ABCD QBSBMFMLFOBS [ DE ]WF[ CE ]B¿ŽPSUBZ \"#$%QBSBMFMLFOBS [ AC ] a [ BD ] = { E} % ABC | | | | | | | |AF = FE  GE = DG \" \"%(' =CS2 | |[ EF ] [ m AB ] m ( ) = 60°  EF =CS  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS A^ DEC h = 6 3 br2 \"  #  $  %  &   :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS A) 18 3 B) 20 3 C) 24 3 D) 25 3 E) 28 3 2. F  A G B DE C F AB D EC \"#$%QBSBMFMLFOBS [ AF ] a [ BF ] = { F} | | | |\"#$%QBSBMFMLFOBS  AG =CS  GB =CS | |EC =CS \" \"('% + A ( BFEC ) =CS2 | | | |EC = DE \" \"#$% =CS2  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- & LBSFEJS  :VLBSŽEBLJWFSJMFSFHÌSF  A^ FDE hLBÀCJSJNLB- \"  #  $  %  &  SFEJS \"  #  $  %  &   \"#$% QBSBMFMLFOBSŽ õFLMJOEFLJ LBSUPO [ AE ] WF [ GH ]CPZVODBLFTJMJQ[DE]WF[BG]CPZVODBLBUMB- OŽZPS A HB 3. D C E K G F AE B D FC \"#$%QBSBMFMLFOBS [ BD ] a [ CE ] = { F}  1BSBMFMLFOBSŽOBMBOŽCJSJNLBSFWF\"&'$,() CÌMHFTJOJO BMBOŽ  CJSJNLBSF PMEVôVOB HÌSF  | | | |AE = EB  \" \"#$% =L\" $'#  \"&% WF )#( ÑÀHFOMFSJOJO BMBOMBSŽ UPQMBNŽ LBÀ CJSJNLBSFEJS  :VLBSŽEBLJWFSJMFSFHÌSF LLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. D 2. \" 3. \"  4. E B B

TEST - 19 1BSBMFMLFOBS 1. A B 4. A B E G E F DC DC | |\"#$%QBSBMFMLFOBS  BC =CS \"#$%QBSBMFMLFOBS \" \"#$% =CS2 && & && A ^ GEF h = A ^ DFC h + A ^ EAB h 3.A ^ DEC h = 4.A ^ AEB h & | | :VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS  :VLBSŽEBLJWFSJMFSFHÌSF  A ^ AEB hLBÀCJSJNLB- \"  #  $  %   &  SFEJS \"  #  $  %  &   A B E 2. A HG B DC \"#$%QBSBMFMLFOBS [ DE ]B¿ŽPSUBZ [ AE ] m [ DE ] A^ & =CS2 DEC h DE FC  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS | | | |\"#$%QBSBMFMLFOBS  AB = HG | | | | DC = EF \" \"#$% =L\" )('&  \"  #  $  %  &   :VLBSŽEBLJWFSJMFSFHÌSF LLBÀUŽS A) 40 B) 40 C) 40 D) 40 E) 40  \"#$%QBSBMFMLFOBSŽõFLMJOEFLJUBSMBOŽO,CËMHFTJ- 17 13 11 9 7 OFLB[ŽL¿BLŽMŽQQBSBMFMLFOBSŽOLËõFMFSJOFJQMFS¿F- LJMJQõFLJMEFLJCËMHFMFSFMEFFEJMJZPS 3. A B F %BIBTPOSB\"%,CËMHFTJOFCVóEBZ#,$CËMHFTJOF D EC BSQB FLJMJZPS ,B[ŽL ¿BLŽMBO OPLUBOŽO \"% LFOBSŽOB PMBO V[BLMŽóŽ #$ LFOBSŽOB PMBO V[BLMŽóŽOŽO  LBUŽ- \"#$%QBSBMFMLFOBS [ AE ] m [ BF ] EŽS | |AE =CS A ( ABCD ) =CS2  5ÑNUBSMBOŽOBMBOŽN2PMEVôVOBHÌSF CVô- | | :VLBSŽEBLJWFSJMFSFHÌSF  #' LBÀCJSJNEJS EBZFLJMFOBMBO BSQBFLJMFOBMBOEBOLBÀN2GB[- MBEŽS \"  #  $  %  &  \"  #  $  %  &  1. $ 2. \" 3. D  4. B $ $

1BSBMFMLFOBS TEST - 20 1. D C 4. ôFLJMEFWFSJMFO\"#$%QBSBMFMLFOBSŽõFLMJOEFLJUBS- 60° MBOŽO % OPLUBTŽOEBO \"# LFOBSŽOŽO PSUB OPLUBTŽOB F4 CJSJQHFSJMJZPS E A K B 3 A GB N \"#$%QBSBMFMLFOBS & \"#$%QBSBMFMLFOBSŽOBóŽSMŽL NFSLF[J [EF] m [AD] [EG] m [AB] m ( % ) = 60° DC DCB | | | |EF =CS  EG =CS  :JOF \" OPLUBTŽOEBO #$ LFOBSŽOŽO PSUB OPLUBTŽOB CJS JQ HFSJMJZPS öQMFSJO LFTJN OPLUBMBSŽ . JMF JTJN-  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- MFOEJSJMJZPS %BIB TPOSB \"%. CËMHFTJOF TBMBUBMŽL  LBSFEJS .,#/CËMHFTJOFEPNBUFTFLJMJZPS A) 16 3 B) 24 3 C) 32 3 #VOBHÌSF EPNBUFTFLJMFOBMBO TBMBUBMŽLFLJMFO BMBOŽOLBÀLBUŽEŽS D) 40 3 E) 48 3 1 13 A) B) C) 1 D) E) 2 2. A 3 22 GB  A B FE D EC F C \"#$%QBSBMFMLFOBS [ AE ] a [ DG ] = { F}  DH & =CS2  G  A^ ADF h | | | |AG  GB & h =CS2 \"#$%WF#&('QBSBMFMLFOBS  A^ ABE A ( BEFG ) =CS2 & =CS2  A^ & =CS2 :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- A^ DEH h HGC h LBSFEJS & :VLBSŽEBLJ WFSJMFSF HÌSF  A^ BCF h LBÀ CJSJNLBSF- \"  #  $  %  &  EJS \"  #  $  %  &  3. A G B  A B F H E K M DE C | | | | | | | |\"#$%QBSBMFMLFOBS  AF  DF  EC  DE DG C & & & =CS2 ^ DFE h ^ GEC \"#$%QBSBMFMLFOBS  A^ BKC h A + A h =CS2EJS A ^ & h =CS2  A^ & h =CS2 EHM AHB :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- & LBSFEJS  :VLBSŽEBLJWFSJMFSFHÌSF  A^ MGK h kBÀCJSJNLB- SFEJS \"  #  $  %  &  \"  #  $  %  &  1. $ 2. D 3. \" 47 4. $ B $

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr &õ,&/\"3%²35(&/ TANIM ÖRNEK 2  ,BSõŽMŽLMŽLFOBSMBSŽQBSBMFMWFUÐNLFOBSMBSŽFõJU E \"#$% FõLFOBS EËSU- PMBOEËSUHFOFFöLFOBSEÌSUHFOEFOJS HFO // A B // 30° 120° [ AE ] m [ EC ] // // |AE| = |EC| %m/*m 15° % 30° m ( BCE ) = 15° A // B DC :VLBSŽEBLJWFSJMFSFHÌSF m ( A%DC )LBÀEFSFDFEJS E |\"&| = |&$|PMEVôVOEBOm(A%CE ) = 45°EJS D // C 0IBMEFm ( B%CA ) = 30°WF  \"#$%FõLFOBSEËSUHFOJTF %  r[ BD ] m [ AC ] m ( ADC ) = šCVMVOVS  r[ AC ]WF[ BD ]B¿ŽPSUBZ | | | | | | | | r AE = EC WF DE = BE EJS NOT: &õLFOBSEÌSUHFO QBSBMFMLFOBSŽOCÑUÑOÌ[FM- MJLMFSJOJTBôMBS ÖRNEK 1 ÖRNEK 3 B B A aa 2a \"#$%FõLFOBSEËSUHFO E 55° |AE| = |BE| = |BD| F Aa C 35° 35° 2a 20° E D CG 2a \"#$%FõLFOBSEËSUHFO <\"(>m<#$> m ( % ) = 20° AGD D :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS :VLBSŽEBLJWFSJMFSFHÌSF m ( A%BC )LBÀEFSFDFEJS AED #&%ÑÀHFOJOEF [BD]BÀŽPSUBZPMEVôVOEBO m ( % ) = m ( % ) = 35° ADB BDG a =š EJS a =š % % = 20° + 35° = 55° CVMVOVS m ( AED ) m ( ABC ) = 4a = 144°CVMVOVS 1. 144  2. š 3. š


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook