Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 2. Modül İkinci Dereceden Denklemler Parabol Eşitsizlikler

AYT Matematik Ders İşleyiş Modülleri 2. Modül İkinci Dereceden Denklemler Parabol Eşitsizlikler

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-24 01:27:04

Description: AYT Matematik Ders İşleyiş Modülleri 2. Modül İkinci Dereceden Denklemler Parabol Eşitsizlikler

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- %J[HJ–(SBGJL5BTBSŽN *4#//P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ   ÷MFUJöJN       &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*   JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ ÜNİVERSİTEYE HAZIRLIK 2. MODÜL MATEMATİK - 2 Alt bölümlerin Karma Testler ³İKİNCİ DERECEDEN DENKLEMLER EDĜOñNODUñQñL©HULU KARMA TEST - 1 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM Modülün sonunda ³PARABOL tüm alt bölümleri ³EŞİTSİZLİKLER 1. x2 - 6x + 4 = 0 5. x2 + 2x + 12 = 7 L©HUHQNDUPDWHVWOHU x2 + 2x \\HUDOñU  EFOLMFNJOJO LÌLMFSJOEFO CJSJ BöBôŽEBLJMFSE FO IBOHJTJEJS EFOLMFNJOJO LÌLMFSJOEFO CJSJ BöBôŽEBLJMFSEFO IBOHJTJEJS A) 2 - 5 B) 5 - 2 C) 3 - 5 ³ İkinci Dereceden Denklemler - I t 2 D) 5 - 3 E) 4 - 5 A) -3 B) -2 C) 2 D) 3 E) 4 ³ İkinci Dereceden Denklemler - II t 11 ³ İkinci Dereceden Denklemler - III t 21 ³ İkinci Dereceden Denklemler - IV t 24 ³ Parabol - I t 28 6ñQñIð©LðĜOH\\LĜ 2. ( a2 + 2a )2 - 18 ( a2 + 2a ) + 45 = 0 ³ Parabol - II t 36 %XE¸O¾PGHNL¸UQHN  EFOLMFNJOJO FO CÑZÑL JMF FO LÑÀÑL LÌLÑOÑO 6. x + 34 - x = 4 VRUXODUñQ©¸]¾POHULQH UPQMBNŽLBÀUŽS EFOLMFNJOJO HFSÀFM TBZŽMBSEBLJ ÀÌ[ÑN LÑNFTJ ³ Parabol - III t 42·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr DNñOOñWDKWDX\\JXODPDVñQGDQ BöBôŽEBLJMFSEFOIBOHJTJEJS XODĜDELOLUVLQL] ³ Parabol - IV t 48 ÷,÷/$÷%&3&$&%&/%&/,-&.-&3* A) -2 B) -1 C) 0 D) 1 E) 2 A) { -9 } B) { 2 } C) { –9, 2 } d) 5x2 - 3x = D) { 2, 9 } E) { 9 } x ( 5x - 3 ) = 0 ³ Eşitsizlikler - I t 56÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ%FOLMFN 33 TANIM x = 0 ve x = j Ç.K = { 0, } 55 ³ Eşitsizlikler - II t 61a, b, c `3WFBáPMNBLÐ[FSF  e) 2x2 = -3x ³ Eşitsizlikler - III t 67ax2 + bx + c = 2x2 + 3x = 0 x ( 2x + 3) = 0 CJ¿JNJOEFLJB¿ŽLËOFSNFMFSFJLJODJEFSFDFEFO 33 x = 0 ve x = - j Ç.K = { 0, - } ³ Eşitsizlikler - IV t 74CJSCJMJONFZFOMJEFOLMFNEFOJS 22 3. x + 4 x = 20 7. B`3PMNBLÑ[FSF <HQL1HVLO6RUXODU  #VFõJUMJóJTBóMBZBOYHFS¿FLTBZŽMBSŽOBEBCV 0RG¾O¾QJHQHOLQGH\\RUXP ³ Karma TestlEeFrOLMFtNJOi7L8ÌLMFSJuEFOJS <(1m1(6m/6258/$5EFOLMFNJOJO HFSÀFM TBZŽMBSEBLJ ÀÌ[ÑN LÑN FTJ \\DSPDDQDOL]HWPHYE EHFHULOHUL¸O©HQNXUJXOX ³ Yeni Nesil Sorular t 87 BöBôŽEBLJMFSEFOI÷BLOJOHDJTJJ%EJFSSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSaB2CP+M3a + a2 + 3a + 5 = 7 VRUXODUD\\HUYHULOPLĜWLU ÖRNEK 1 $\\UñFDPRG¾OVRQXQGD A) { -5, 4 } 1B.) {\"4I}NFU#FZõFCL)JME{ 2F5W6F,S6JMF2O5 }BMBOŽNP2MEPVMBôOVEOJBL-HÌSF B42.+(BÐO+Fõ )UPBQOMŽBNNhŽOŽO HŽOJUNEFôTJF SHJF SFLFO ZPMVO CJS LŽTNŽ WDPDPñ\\HQLQHVLOVRUXODUGDQ NWFOHFS¿FLTBZŽMBSPMNBLÐ[FSF ROXĜDQWHVWOHUEXOXQXU  N- 3 ) x3 + 2x3 -O + 4x - 3 = EËSUHFO CJ¿JNJOEFLJ CPõ BSTBZB CJS LFOBLSBŽÀYUŽSNFUSF BTGBMU CJSLŽTNŽUPQSBLUŽS\"TGBMUZPMLN UPQSBL D) { 256 } PMBO LBSFEC)J¿{J6N2J5OE}F CJS FW ZBQUŽSNBL JTUJZPS :BQŽ- ZPMLNV[VOMVóVOEBEŽS\"TGBMUZPMEBLJIŽ[Ž UPQ- MBOFWJOпUBSBGŽOEBõFSNFUSFCJSUBSBAGŽ)O4EBNB) 8 CS)B9LZPMEBLDJ)I1Ž[0ŽOEBOE) 1L2NTEBIBGB[MBEŽS CPõMVLCŽSBLŽMNŽõUŽS  :PMDVMVLUPQMBNTBBUTÑSEÑôÑOFHÌSF UPQSBL EFOLMFNJ  JLJODJ EFSFDFEFO CJS EFOLMFN PMEVôVOB f) x2 - 3x + 2 = 20 m ZPMEBLJIŽ[TBBUUFLBÀLNEJS HÌSF N+OUPQMBNŽLBÀUŽS 1 20 m x m 20 m \"  #  $  %  &  N- 3 = 0 jN= 3 (x - 2) (x - 1) = 0 xm 3 -O= 2 jO= 1 x = 2 ve x = 1 j Ç.K = { 1, 2} N+O= 3 + 1 = 4 4. 3 x2 - 6 3 x + 8 = 0 x+2 2 x+2 8. f p - 4f p+3 = 0 x-1 x-1 EFOLMFNJOJOHFSÀFMLÌLMFSJOJOUPQMBNŽLBÀ3U5ŽSm EFOLMFNJOJTBôMBZBOYEFôFSJLBÀUŽS A) 6 B) 8 C#) V2O4BHÌSDF) 6F4WJOCJSEL)F7O2BSV[VOMVôVLAB)À3NFUSF- B) 2 5 7  C) E) ÖRNEK 2 g) x2 + 5x + 6 = D) 3 dir? 2 2 2 (x + 3) (x + 2) = 0 $OW%¸O¾P7HVWOHUL \"öBôŽEBLJ EFOLMFNMFSJO HFSÀFL TBZŽMBSEBLJ ÀÌ[ÑN x = -3 ve x = -2 j Ç.K = { -3, -2 } \"  #  $  %  &  Her alt bölümün LÑNFMFSJOJCVMVOV[ TEST - 1 ÷LJODJ%FSFDFEFO%FOLMFN,BWSBNŽWF¦Ì[ÑNÑ VRQXQGDRE¸O¾POHLOJLOL 1. C 2. A 3. D 4. E 78 5. A 6. B 7. E 8. C a) x2 - 4 = WHVWOHU\\HUDOñU 5. #JS TPLBóŽO EPóSVTBM PMBO ZPMVOVO SFGÐKÐ Ð[FSJOF ( x - 2 ) (x + 2) = 0 1.  3x2 - x + m - 1 = 0 5. Y`3PMNBLÑ[FSF FõJUBSBMŽLMBSMBBZEŽOMBUNBEJSFLMFSJEJLJMFDFLUJS x = 2 ve x = -2   x - 4 x = 2 Ç.K. = { -2, 2 }  JEÀFJOOLNMFNOJFOJPOMNFöBJUMŽEJLŽJSHFSÀFLLÌhL)Ñ-OxÑ2O+CxVM+VO2N=BTŽ  EFOLMFNJOJOLBÀUBOFHFSÀFLLÌLÑWBSEŽS  \"SU BSEB EJLJMFO JLJ EJSFL BSBTŽ NFTBGF  UPQMBN EJSFL TBZŽTŽOB FöJU WF CBöUBLJ EJSFL JMF TPOEBLJ b) 4x2 - 36 = A) 11 B) 1 C) 13 D-) ( x72 - x - E2 )) 5 A) 0 B) 1 C) 2 D) 3 E) 4 EJSFLBSBTŽV[BLMŽLNFUSFPMEVôVOBHÌSF EJ- 12 12 =0 LJMFOEJSFLTBZŽTŽLBÀUŽS 63 2. #JS PLVMVO TBUSBO¿ UBLŽNŽOB TF¿JMFO LŽ[ WF FSLFL -( x - 2 ) ( x + 1 ) = 0 ËóSFODJMFSEFO PMVõUVSVMBO  LJõJMJL HSVQUBLJ LŽ[ \"  #  $  %  &  ËóSFODJMFSJO TBZŽTŽ JMF FSLFL ËóSFODJMFSJO TBZŽTŽOŽO 4 ( x - 3 ) ( x + 3) = 0 x = 2 ve x = -1 j Ç.K = { -1, 2 } ¿BSQŽNŽEŽS x = 3 ve x = -3 j Ç.K. = { -3, 3 } Ž 2x2 + 5x - 3 =  (SVQUBLJ FSLFL ÌôSFODJMFSJO TBZŽTŽ EBIB GB[MB PMEVôVOBHÌSF HSVQUBLBÀLŽ[ÌôSFODJWBSEŽS c) 3x2 + 6 = ( 2x -1 ) ( x + 3 ) = 0 \"  #  $  %  &  3x2 = -6 11 x2 = -2 j Ç.K = Ø x = ve x = - 3 j Ç.K = { -3, } 22 6. Y`3PMNBLÑ[FSF 2. #JS\"#$пHFOJOEF\"LËõFTJOEFO#$LFOBSŽOB¿J[J- MFOZÐLTFLMJL#$LFOBSŽOEBODNEBIBLŽTBEŽS   2x + 1 + x = 7  b)L\"{F–#3O$,B3}SюOÀcBH) ØFBOJUJOPJMOBOBMZBÑOLŽTFLDMN2JL2LPBMÀEVdD)ôN{V0EO, JB53S HÌSF #$3  EFOLMFNJOJO ÀÌ[ÑN L1ÑNFTJ BöBôŽEBLJMFSEFO 6. ax2 + bx +D=JLJODJEFSFDFEFOEFOLMFNEF 1. 4 2. a) {–2,2} } e) { 0, - } f) { 1, 2 } g) { –3, –2 } h) { –1, 2}Ž { –3, } * DJTFEFOLMFNJOTBOBMJLJLËLÐWBSEŽS IBOHJTJEJS 2 ** CJTFEFOLMFNJOHFS¿FLJLJLËLÐWBSEŽS 2 3. #JS\"#$пHFOJOEF\"LËõFTJOEFO#$LFOBSŽOB¿J[J- *** B   WF D   JTF EFOLMFNJO HFS¿FL JLJ LËLÐ WBSEŽS A) 2 + 5 B) 1 + 5 C) 5 - 1 A) Ø B) { 4 } C) { 12 } | |MFOZÐLTFLMJL #$ LFOBSŽOEBOCSEBIBLŽTBEŽS D) 5 - 2 E) 7 - 1 D) { 4, 12 } E) { 4, 7 } | | \"#$ÑÀHFOJOJOBMBOŽCS2PMEVôVOBHÌSF  BC LFOBSŽOBBJUZÑLTFLMJLLBÀCSEJS \"  #  $ - 1 + 3  ZVLBSŽEBLJ JGBEFMFSEFO IBOHJMFSJ EBJNB EPôSV- dur?  % 1 + 3  & - 1 + 2 \" :BMOŽ[* # :BMOŽ[*** $ *WF**  % *WF*** & * **WF*** 3.  ( x2 - x )2 + 8 ( x - x2 ) + 12 = 0 7. Y`3PMNBLÑ[FSF 1. B 2. C 3. C 87 4. A 5. C 6. D   x - 1 + x + 4 = 5  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS IBOHJTJEJS A) { -2, 3 } B) { -1, 2 } C) { -2, -1, 2, 3 } A) { 2 } B) { 3 } C) { 4 } D) Ø E) R D) { 5 } E) { 5, 6 } 4. 9x + 27 =x + 1 8. Y`3PMNBLÑ[FSF EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS A) 0 B) 1 C) 2 D) 3 | |x2 + x - 2 = 0  C C C %  EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS E) 4 A) -2 B) -1 C) 1 D) 2 E) 4 8 B B % B

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 ·/÷7&34÷5&:&)\";*3-*, ÜNİVERSİTEYE HAZIRLIK 2. MODÜL MATEMATİK - 2 ³İKİNCİ DERECEDEN DENKLEMLER ³PARABOL ³EŞİTSİZLİKLER ³ İkinci Dereceden Denklemler - I t 2 ³ İkinci Dereceden Denklemler - II t 11 ³ İkinci Dereceden Denklemler - III t 21 ³ İkinci Dereceden Denklemler - IV t 24 ³ Parabol - I t 28 ³ Parabol - II t 35 ³ Parabol - III t 42 ³ Parabol - IV t 48 ³ Eşitsizlikler - I t 56 ³ Eşitsizlikler - II t 61 ³ Eşitsizlikler - III t 67 ³ Eşitsizlikler - IV t 74 ³ Karma Testler t 78 ³ Yeni Nesil Sorular t 87 1

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&3* ÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ%FOLMFN d) 5x2 - 3x = TANIM a, b, c `3WFBáPMNBLÐ[FSF  x ( 5x - 3 ) = 0 ax2 + bx + c = 33  CJ¿JNJOEFLJB¿ŽLËOFSNFMFSFJLJODJEFSFDFEFO CJSCJMJONFZFOMJEFOLMFNEFOJS x = 0 ve x = j Ç.K = { 0, }  #VFõJUMJóJTBóMBZBOYHFS¿FLTBZŽMBSŽOBEBCV 55 EFOLMFNJOiLÌLMFSJuEFOJS e) 2x2 = -3x ÖRNEK 1 2x2 + 3x = 0 NWFOHFS¿FLTBZŽMBSPMNBLÐ[FSF x ( 2x + 3) = 0  N- 3 ) x3 + 2x3 -O + 4x - 3 = EFOLMFNJ  JLJODJ EFSFDFEFO CJS EFOLMFN PMEVôVOB 33 HÌSF N+OUPQMBNŽLBÀUŽS x = 0 ve x = - j Ç.K = { 0, - } 22 f) x2 - 3x + 2 = N- 3 = 0 jN= 3 (x - 2) (x - 1) = 0 3 -O= 2 jO= 1 x = 2 ve x = 1 j Ç.K = { 1, 2} N+O= 3 + 1 = 4 ÖRNEK 2 g) x2 + 5x + 6 = \"öBôŽEBLJ EFOLMFNMFSJO HFSÀFL TBZŽMBSEBLJ ÀÌ[ÑN (x + 3) (x + 2) = 0 LÑNFMFSJOJCVMVOV[ x = -3 ve x = -2 j Ç.K = { -3, -2 } a) x2 - 4 = h) -x2 + x + 2 = ( x - 2 ) (x + 2) = 0 x = 2 ve x = -2 -( x2 - x - 2 ) = 0 Ç.K. = { -2, 2 } -( x - 2 ) ( x + 1 ) = 0 b) 4x2 - 36 = x = 2 ve x = -1 j Ç.K = { -1, 2 } 4 ( x - 3 ) ( x + 3) = 0 x = 3 ve x = -3 j Ç.K. = { -3, 3 } c) 3x2 + 6 = Ž 2x2 + 5x - 3 = 3x2 = -6 ( 2x -1 ) ( x + 3 ) = 0 x2 = -2 j Ç.K = Ø 11 x = ve x = - 3 j Ç.K = { -3, } 22 2 33 1 1. 4 2. a) {–2,2} b) {–3,3} c) Ø d) { 0, } e) { 0, - } f) { 1, 2 } g) { –3, –2 } h) { –1, 2}Ž { –3, } 52 2

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, J 6x2 - 7x - 3 = 7$1,0%m/*m ( 3x + 1 ) ( 2x - 3) = 0 ax2 + bx + c =EFOLMFNJOEFÔ= b2 - 4ac PMNBL Ð[FSF 13 13 x = - ve x = j Ç.K = { - , } 32 32 Ô> 0JTFEFOLMFNJOCJSCJSJOEFOGBSLMŽJLJLÌLÑ WBSEŽS#VLËLMFS x1,2 = -b ! T CBóŽOUŽTŽJMFCVMVOVS 2a j) x2 - 3ax + 2a2 =  Ô= 0JTFEFOLMFNJO (x - 2a) (x - a) = 0 x = 2a ve x = a j Ç.K = { a, 2a } a) &öJUJLJLÌLÑWBSEŽS b) ÷GBEFCJSUBNLBSFEJS  D %FOLMFNJOÀÌ[ÑNLÑNFTJCJSFMFNBOMŽEŽS  %FOLMFNJOLËLMFSJ x1 = x2 = - b EŽS 2a ÔJTFEFOLMFNJOHFSÀFLLÌLMFSJZPLUVS L ax2 + (a - 1) x - 1 = (ax - 1) (x + 1) = 0 ÖRNEK 3 11 \"öBôŽEBLJ EFOLMFNMFSJO HFSÀFL TBZŽMBSEBLJ ÀÌ[ÑN x = a ve x = -1 j Ç.K = { -1, a } LÑNFMFSJOJCVMVOV[ a) x2 - x - 3 = M ax2 + ( ab - b) x - b2 = b) 2x2 + 3x - 1 = c) x2 + 4x + 6 = ax -b d) 3x2 - 12x + 12 = xb B  Ô= ( -1 ) 2 - 4.1. (-3) = 1 + 12 = 13 (ax - b) (x + b) = 0 bb x1.2 = 1 ! 13 x = a ve x = -b j Ç.K = { -b, a ) 2 b) Ô= 9 - 4 . 2 . ( -1 ) = 17 x1.2 = - 3 ! 17 4 N abx2 + (3a2 + b2) x - 6a2 - ab + 2b2 = c) Ô= 16 - 4 . 1. 6 = 16 - 24 = -8 <PMEVôVOEBO abx2 + ( 3a2 + b2 ) x-( 3a + 2b ) (2a - b) Ç.K = Ø ax - ( 2a - b ) bx ( 3a + 2b ) d) Ô= 144 - 144 = 0 12 ( ax - 2a + b ) ( bx + 3a + 2b ) = 0 x1.2 = 6 = 2 2a - b - 3a - 2b x = a ve x = b 2a - b - 3a - 2b Ç.K = { a , b } J ( - 1 3 2K \\B B^L) % - 1, 1 / M \\mC CB^N ( - 3a + 2b 2a - b 2 3 3. a) ( 1 ! 13 2 b) ( - 3 ! 17 2 c) Ø d) { 2 } , , 24 32 a ba

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 4 ÷LJODJ%FSFDFEFO#JS%FOLMFNF %ÌOÑöUÑSÑMFCJMFO%FOLMFNMFS 2x2 - 3x +N- 2 = ÖRNEK 7 EFOLMFNJOJO HFSÀFM LÌLÑ PMNBEŽôŽOB HÌSF  N OF PM NBMŽEŽS \"öBôŽEBLJEFOLMFNMFSJOSFFM HFSÀFM TBZŽMBSEBLJÀÌ [ÑNLÑNFMFSJOJCVMVOV[ Ô<PMNBMŽ a) x3 - x2 - 2x = 9 - N- 2 ) < 0 9 -N+ 16 < 0 x (x2 - x - 2 ) = 0 N> 25 x (x - 2 ) ( x + 1 ) = 0 x = 0, x = 2 ve x = -1 j Ç.K = { -1, 0, 2 } 25 N> 8 ÖRNEK 5 b) x2 - 3x + 2 = 0 x2 - 4  NY2 -NY+ 2 = EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ CJS FMFNBOMŽ PMEVôVOB ^ x - 2 h^ x - 1 h HÌSF NOJOBMBCJMFDFôJEFôFSMFSUPQMBNŽLBÀUŽS =0 Ô=PMNBMŽ ^ x - 2 h^ x + 2 h N2 -N= 0 x = 2, x = 1 N N- 8 ) = 0 YâWFYâ-2 j Ç.K = { 1 } N=WFN= 8 N5PQ = 8 c) 2 - x + x - 1 = 1 x+1 x-2 2 ÖRNEK 6 1BZEBFöJUMFSTFL  3x2 - x -N+ 1 = EFOLMFNJOJOGBSLMŽJLJHFSÀFLLÌLÑOÑOPMNBTŽJÀJO N - 2 + 4x - 4 + 2 - 1 1 IBOHJBSBMŽLUBPMNBMŽEŽS x x Ô>PMNBMŽ 1 - 4 . 3 (-N+ 1 ) > 0 x2 - x - 2 = 2 1 +N- 12 > 0 N> 11 8x - 10 = x2 - x - 2 11 x2 - 9x + 8 = 0 N> (x - 8) (x - 1) = 0 36 x = 8 x = 1 j Ç.K = { 1, 8 } d) x4 -Y2 + 9 = x2 =UPMTVO U2 -U+ 9 = 0 U-  U- 1 ) = 0 ( x2 - 9 ) ( x2 - 1 ) = 0 x=±3 x=±1 Ç.K = { -3, -1, 1, 3 } 25 11 4 7. a) { –1, 0, 2 } b) { 1 } c) { 1, 8 } d) { –3, –1, 1, 3 } 4. m > 5. 8 6. m > 8 36

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, e) x6 - 16x3 + 64 = Ž 4x -x + 1 + 8 = x3 =UPMTVO 2x =UPMTVO U2 -U+ 64 = 0 U2 -U+ 8 = 0 U- 8 )2 = 0 U-  U- 2 ) = 0 ( x3 - 8 )2 = 0 2x = 4 2x = 2 x3 = 8 ve x = 2 x = 2 ve x = 1 Ç.K = { 2 } Ç.K = { 1, 2 } f) x3 - 2x2 - 9x + 18 = J 3x + 31 - x = 4 x2 ( x - 2 ) - 9 ( x - 2 ) = 0 3x =UPMTVO ( x2 - 9 ) (x - 2 ) = 0 3 x = ±3 ve x = 2 Ç.K = { -3, 2, 3 } t+ =4 t U2 -U+ 3 = 0 U-  U- 1) = 0 3x = 3 3x = 1 x=1 x=0 Ç.K = { 0, 1 } g) ( x2 + x ) 2 - 8 ( x2 + x ) + 12 = x2 + x =UPMTVO j) x - 4 x - 72 = 0 U2 -U+ 12 = 0 4 x = t PMTVO U-  U- 2 ) = 0 U2 -U- 72 = 0 ( x2 + x - 6 ) (x2 + x - 2 ) = 0 U-  U+ 8) = 0 x = -3 x = -2 4 x = 9 j 4 x =-8 x=2 x=1 x = 38 q Ç.K = { -3, -2, 1, 2 } Ç.K = { 38 } h) c x 2 3x -4=0 3 x2 - 23 x-3=0 m- L  x-2 2-x x 3 x = t PMTVO = t PMTVO U2 -U- 3 = 0 U-  U+ 1) = 0 x-2 U2 +U- 4 = 0 3 x = 3 3 x =-1 x = 27 x = - 1 U+  U- 1 ) = 0 Ç.K = { -1, 27} d x + 4 nd x - 1 n = 0 x-2 x-2 8 q x= 5 e) { 2 } f) { –3, 2, 3 } g) { –3, –2, 1, 2 } h) ( 8 2 5 Ž \\ ^J \\ ^K \\8^L \\m ^ 5

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr M  x2 - x + 2 + x2 - x - 4 = 0 | |Ì x2 + x - 6 = 0 2 Yãj x2 - x - 6 = 0 x - x + 2 = t PMTVO (x - 3) (x + 2) = 0 U2 +U- 6 = 0 x = -2 x2 + x - 6 = 0 U+  U- 2) = 0 Yäj 2 - x + 2 =-3 ve 2 - x + 2 = 2 (x + 3) (x - 2) = 0 x x Ø 2 x=2 x -x-2=0 (x - 2) (x + 1) = 0 Ç.K = { -2, 2 } x = 2 x =-1 Ç.K = { 2, -1} N  3x - 2 + x = 4 | |Q x2 = x - 2 3x - 2 = - x + 4  IFSJLJUBSBGŽOLBSFTJBMŽOŽSTB Yãj x2 + x - 2 = 0 3x - 2 = x2 - 8x + 16 x2 - 11x + 18 = 0 ( x + 2 ) ( x - 1) = 0 ( x - 9 ) (x - 2 ) = 0 YâY= 2 Yäj x = -2 ve x = 1 Ç.K = { 2 } x2 - x + 2 = 0 D < SFFMLÌLZPLUVS Ç.K = { -2, 1 } O  x - x - 4 = 2 | | | |S  x - 1 2 - x - 1 - 2 = x - x - 4 = 4  IFSJLJUBSBGŽOLBSFTJBMŽOŽSTB | x - 1| =UPMTVO x-4 = x-4 U2 -U- 2 = 0 x-4 = x2 - 8x + 16 x2 - 9x + 20 = 0 U-  U+ 1 ) = 0 (x - 5) (x - 4) = 0 x = 5 ve x = 4 | x - 1| = 2 ve | x - 1| = -1 Ç.K = { 4, 5 } x - 1 = 2 ve x - 1 = -2 x=3 x = -1 Ç.K = { -1, 3 } P  x - 2 + x + 3 = 5 | |T  x2 - 3x = 2x - 4 x2 - 3x = 2x - 4 ve x2 - 3x = -2x + 4 x2 - 5x + 4 = 0 x2 - x - 4 = 0 )FSJLJUBSBGŽOLBSFTJBMŽOŽSTB x - 2 + 2 x2 + x - 6 + x + 3 = 25 (x - 4) (x - 1) =  Ô= 1 + 16 = 17 2 + x - 6 = 12 - x x =Yâ  x= 1 + 17 x≠ 1 - 17 x 22 12 22 x + x - 6 = 144 - 24x + x 1 + 17 25x = 150 Ç.K = { ,4} x=6 2 Ç.K = { 6 } M \\m ^N \\^O \\ ^P \\^ 6 Ì \\m ^Q \\m ^S \\m ^T  ( 1 + 17 , 4 2 2

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 8 ÖRNEK 10 x4 + 3x3 - 2x2 - 6x + 4 = x3 - x2 -4x + 4 = EFOLMFNJOJOFOLÑÀÑLLÌLÑLBÀUŽS EFOLMFNJOJOLÌLMFSJOJOFOCÑZÑLPMBOŽJMFFOLÑÀÑL PMBOŽBSBTŽOEBLJGBSLLBÀUŽS ,BUTBZŽMBSUPQMBNŽPMEVôVOEBO Y- CJSÀBSQBOEŽS x2 (x - 1) - 4(x - 1) = 0 x4 + 3x3 – 2x2 – 6x + 4 x – 1 (x - 1) (x2 - 4) = 0 (x - 1) (x - 2) (x + 2) = 0 x4 – x3 x3 + 4x2 + 2x – 4 x = 1, x = 2, x = -2 0IBMEFFOCÑZÑLLÌL FOLÑÀÑLLÌL-PMEVôVOEBO 4x3 – 2x2 – 6x + 4 GBSLCVMVOVS 4x3 – 4x2 ÖRNEK 11 2x2 – 6x + 4 2x2 – 2x x ` Z+  PMNBL Ð[FSF  LFOBS V[VOMVLBSŽ  CS EFO GBSL- MŽ PMBO  EJLEËSUHFOMFS QSJ[NBTŽ CJ¿JNJOEFLJ CJS LVUVOVO –4x + 4 IBDNJOJWFSFOEFOLMFN  –4x + 4 2x3 + 13x2 + 26x + 15 0 PMEVôVOB HÌSF   CV LVUVOVO BZSŽUMBSŽOEBO FO V[VO PMBOŽIBOHJEFOLMFNMFJGBEFFEJMJS ÷GBEF Y- 1) (x3 + 4x2 + 2x - 4) = 0 x3 + 4x2 + 2x -JGBEFTJOJOÀBSQBOMBSŽOEBOCJSJ  (x + PMEVôVOEBO x3 + 4x2 + 2x – 4 x+2 x3 + 2x2 x2 + 2x – 2 2x2 + 2x – 4 2x2 + 4x –2x – 4 –2x – 4 0 ÷GBEF Y- 1) (x + 2) (x2+ 2x - 2) =CJÀJNJOFEÌOÑ öÑS#VSBEBLÌLMFSY= 1, x = 2 ve x2+ 2x - 2 =EFOL MFNJOEF D = 4 – 4 (–2) = 12 x= - 2 ± 12 = - 1 ± 3 CVMVOVS 1,2 2 0IBMEFFOLÑÀÑLLÌL - 1 - 3 CVMVOVS ÖRNEK 9 x = -JÀJO-2 + 13 - 26 + 15 =PMEVôVOEBO Y+ 1) CJSÀBSQBOEŽS x3 - 6x2 + 11x - 6 = EFOLMFNJOJOFOCÑZÑLLÌLÑLBÀUŽS 2x3 + 13x2 + 26x + 15 x+1 2x3 + 2x2 2x2 + 11x + 15 11x2 + 26x + 15 ,BUTBZŽMBSUPQMBNŽPMEVôVOEBO Y- CJSÀBSQBOEŽS 11x2 + 11x x3 – 6x2 Ymæ x – 1 (x - 1) . (x2 - 5x + 6) = 0 15x + 15 15x + 15 x3 – x2 x2 – 5x + 6 (x - 1) (x - 2) (x - 3) = 0 0 –5x2 + 11x – 6 x = 1, x = 2, x =   CV –5x2 + 5x MVOVS Ymæ &OCÑZÑLLÌLUÑS (x + 1) (2x3+ 11x + 15) = (x + 1) (x + 3) (2x + 5) 6x – 6 FOV[VOBZSŽUY+UJS 0 8. - 1 - 3 9. 3 7 10. 4 11. 2x + 5

TEST - 1 ÷LJODJ%FSFDFEFO%FOLMFN,BWSBNŽWF¦Ì[ÑNÑ 1. 3x2 - x +N- 1 = 5. x `3PMNBLÑ[FSF  EFOLMFNJOJOFöJUJLJHFSÀFLLÌLÑOÑOCVMVONBTŽ x-4 x=2 JÀJONOFPMNBMŽEŽS  EFOLMFNJOJOLBÀUBOFHFSÀFLLÌLÑWBSEŽS A) 11 B) 1 C) 13 D) 7 E) 5 \"  #  $  %  &  12 12 6 3 2. #JS\"#$пHFOJOEF\"LËõFTJOEFO#$LFOBSŽOB¿J[J- 6. x `3PMNBLÑ[FSF MFOZÐLTFLMJL#$LFOBSŽOEBODNEBIBLŽTBEŽS 2x + 1 + x = 7  \"#$ÑÀHFOJOJOBMBOŽDN2PMEVôVOBHÌSF #$  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO LFOBSŽOBBJUPMBOZÑLTFLMJLLBÀDNEJS IBOHJTJEJS A) 2 + 5 B) 1 + 5 C) 5 - 1 A) Ø B) { 4 } C) { 12 } D) 5 - 2 E) 7 - 1 D) { 4, 12 } E) { 4, 7 } 3. ( x2 - x )2 + 8 ( x - x2 ) + 12 = 7. x `3PMNBLÑ[FSF x-1+ x+4=5  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS IBOHJTJEJS A) { -2, 3 } B) { -1, 2 } C) { -2, -1, 2, 3 } A) { 2 } B) { 3 } C) { 4 } D) Ø E) R D) { 5 } E) { 5, 6 } 4. 9x + 27 =x + 1 8. x `3PMNBLÑ[FSF EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS | |x2 + x - 2 =  EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS \"  #  $  %  &  A) -2 B) -1 C) 1 D) 2 E) 4 1. $ 2. $ 3. $ 4. D 8 5. # 6. # 7. D 8. #

÷LJODJ%FSFDFEFO%FOLMFN,BWSBNŽWF¦Ì[ÑNÑ TEST - 2 1. x2 - x - 3 x2 - x - 2 6 x2 - x = 0 5. x2 + 4x + 2 = EFOLMFNJOJOLBÀSFFMLÌLÑWBSEŽS  EFOLMFNJOJO LÌLMFSJOEFO LÑÀÑL PMBOl BöBôŽEB LJMFSEFOIBOHJTJEJS A) 1 B) 2 C) 3 D) 4 E) 5 A) - 2 - 2 B) - 2 + 2 C) 2 - 2 E) 4 + 2 D) 2 + 2 | |2. x = - x 6. x2 - 6x + 2 = EFOLMFNJOJO ÀÌ[ÑN BSBMŽôŽ BöBôŽEBLJMFSEFO  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS IBOHJTJEJS A) \" 3 - 2 7, 3 + 2 7 , B) \" 3 - 2 3, 3 + 2 3 , C) \" 6 - 2 7, 6 + 2 7 , D) \" 3 - 2 6, 3 + 2 6 , A) R– B) R+ C) R+ b\\^ E) \" 3 - 7, 3 + 7 , D) R– b\\^ & 3-\\^ 3. x4 - 4x2 - 2 = 7. NâPMNBLÑ[FSF  EFOLMFNJOJOLBÀUBOFSFFMLÌLÑWBSEŽS   N- 1) x2 + N+ 2) x +N2 +N- 5 = \"  #  $  %  &   EFOLMFNJOJOLÌLMFSJOEFOCJSJPMEVôVOBHÌSF  NLBÀUlS A) -4 B) -1 C) 2 D) 3 E) 4 4. x6 + 7x3 - 8 = 8. #JSEJLEËSUHFOJOV[VOLFOBSŽLŽTBLFOBSŽOEBODN  EFOLMFNJOJOLBÀUBOFSFFMLÌLÑWBSEŽS GB[MBEŽS #V EJLEËSUHFOJO LŽTB LFOBSŽ JLJ LBUŽOB ¿Ž- LBSŽMŽS  V[VO LFOBSŽ  DN LŽTBMUŽMŽSTB  BMBOŽ  DN2 A) 2 B) 3 C) 4 D) 5 E) 6 B[BMŽS  #VOBHÌSF JMLEJLEÌSUHFOJOLŽTBLFOBSŽLBÀDN EJS \"  #  $  %  &  1. D 2. D 3. $ 4. A 9 5. A 6. & 7. A 8. #

TEST - 3 ÷LJODJ%FSFDFEFO%FOLMFN,BWSBNŽWF¦Ì[ÑNÑ 1. x2 - 6x - 5 = 5. BâPMNBLÑ[FSF   EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO ax 2 - x + a - 8 = IBOHJTJEJS  EFOLMFNJOJOLÌLMFSJOEFOCJSJBPMEVôVOBHÌSF  A) \" 3 + 14, 3 - 14 , B) \" 14, - 14 , EJÚFSLÌLÑLBÀUlS C) \" 6 + 2 14, 6 –2 14 , D) { } A) - 2 B) - 3 C) - 1 D) 2 E) 3 2 3 2 E) {5, 1} 2. 9x2 - 6x + 1 = ^ x - a h2 6.  N2 -UN+ 2 = 9  EFOLMFNJOJOFöJUJLJLÌLÑOÑOPMNBTŽJÀJOQP[JUJG UEFôFSJLBÀPMNBMŽEŽS  FöJUMJôJOJTBôMBZBOBEFôFSJLBÀUŽS A) -1 B) - 1 C) - 1 D) 1 E) 1 A) 1 B) 3 C) 2 D) 2 6 E) 5 3 93 9 7. x2 - 2x + a - 1 = 3. x2 - 5x + 2 =  EFOLMFNJOJO GBSLMŽ JLJ HFSÀFL LÌLÑOÑO PMNBTŽ JÀJO B OŽO EFôFS BSBMŽôŽ BöBôŽEBLJMFSEFO IBOHJ  EFOLMFNJOJOEJTLSJNJOBOUŽLBÀUlS TJEJS A) a > 4 B) a > 2 C) a > A) 16 B) 17 C) 24 D) 25 E) 29 D) a < & B< 2 4. x2 - 6x +N= 8. a < -PMNBLÑ[FSF  (a + 1) x2 + ( 2a + 1) x + a - 4 =  EFOLMFNJOJOEJTLSJNJOBOUŽPMEVÚVOBHÌSF N  EFOLMFNJOJOFúJUJLJHFSÀFLLÌLÑPMEVÚVOBHÌ LBÀUlS SF BLBÀUlS A) 1 B) 3 C) 2 5 E) 3 A) - 1 B) - 4 C) - 17 D) 2 5 20 22 D) - 17 E) - 9 16 8 1. A 2. D 3. # 4. $ 10 5. # 6. D 7. & 8. D

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÷,÷/$÷%&3&$&%&/%&/,-&.-&3** Karmaşık Sayılar ÖRNEK 3 TANIM \"öBôŽEBLJEFOLMFNMFSJOÀÌ[ÑNLÑNFMFSJOJCVMVOV[  Y Z` R, i 2å=å-PMNBLÐ[FSF [å=Yå+åJZCJ¿J- a) x2 + 9 = b) x2 + x + 2 = NJOEFLJ TBZŽMBSB  LBSNBöŽL LPNQMFLT  TBZŽ MBSEFOJS c) x2 - 6x += d) x2 - 2x + 4 =  Y  [ LBSNBõŽL TBZŽTŽOŽO HFS¿FM SFFM  LŽTNŽEŽS a) x2 = -9 j x =–J WF3F [ å=YJMFHËTUFSJMJS C Ô= 1 - 4 . 1 . 2 = -7 j x1, 2 = -1! -7 -1!i 7  Z [LBSNBõŽLTBZŽTŽOŽOTBOBM JNBKJOFS LŽTNŽ- = EŽSWFIN [ å=ZJMFHËTUFSJMJS 2 2   $å=å{ x +JZY Z`å3 J2 = -1} 6 ± - 4 6 ± 2i  LÐNFTJOF LBSNBöŽL LPNQMFLT  TBZŽMBS LÑ D Ô= 36 -4.1.10 = -4 j x1, 2 = = =–J 2 2 NFTJEFOJS E Ô= 4 - 4.1.4 = -12 a ` RJTF - a2 = i a EŽS j x1, 2 = 2 ± - 12 2 ± 2i 3 =–J 3 = 2 2 ÖRNEK 1 ,BSNBöŽL4BZŽMBSŽO&öJUMJôJ \"öBôŽEBLJLBSNBöŽLTBZŽMBSŽOSFFMWFJNBKJOFSLŽTŽN 7$1,0%m/*m MBSŽOŽCVMVOV[ [1 = x +JZWF[2 = a +JCLBSNBõŽLTBZŽMBSŽJ¿JO a) [1 = 2 + 5i b) [2 = 3 + 4i [1 =[2 l ( x =BWFZ=C EJS c) [3 = -2i + 1 d) [4 = -4 e) z5 = 2 + 1 f) [6 = -4i ÖRNEK 4 B 3F [ = 2 , IN [ = 5 [1 = 3a -JWF[2 = 6 +CJJ¿JO C 3F [ = 3 , IN [ = 4 [1 =[2 PMEVôVOBHÌSF  B C OFEJS D 3F [ = 1 , IN [ = -2 E 3F [ = -4 , IN [ = 0 3a = 6 -4 = 2b e) 3F [ = 2 + 1 , IN [ = 0 G 3F [ = 0 , IN [ = -4 a=2 b = -2 ( a, b ) = ( 2, -2 ) ÖRNEK 2 ÖRNEK 5 \"öBôŽEBLJTBZŽMBSŽ JNBKJOFSTBZŽCJSJNJZMFZB[ŽOŽ[ a < b <PMNBLÑ[FSF - a2 + 2a - 1 + 2 a2 = 3 + - b2 + 4b - 4 PMEVôVOBHÌSF  B C TŽSBMŽJLJMJTJOFEJS a) - 9 b) - 5 c) - 4 d) - 12 | a - 1 |J+ 2 | a | = 3 + | b - 2 |J | a - 1 | = | b - 2 | ve 2 | a | = 3 B J   C  5 i -a + 1 = -b + 2 -2a = 3 c) J d) 2 3 i 3 b=a+1 1 a =- 2 b =- 2 d- 3 ,- 1 n 22 1. a) 2, 5 b) 3, 4 c) 1, -2 d) -4, 0 e) 2 + 1, 0 f) 0 , -4 11 3) a) {J -J} b) ( - 1 i 7 2 c) {–J} d) {1±i 3 } 4. (2,-2) 5. (- - 2)B JC  5 iD JE  2 3 i ± 22

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr J4BZŽTŽOŽO,VWWFUMFSJ ÖRNEK 8 7$1,0%m/*m P ( x ) = 2x + 3x99 - 4x + 2x84 PMEVôVOBHÌSF 1 J5 EFôFSJOFEJS O`/J¿JO i = i4 = i8 == i O = 1 1 J5 ) =1 J =J101 +J99 -J110 +J84 i1 = i5 = i9 == i O+ 1 = i =J+J3 -J2 + 2 i2 = i6 = i == i O+ 2 = -1 =J-J+ 4 + 2 i3 = i7 = i11 == i O+ 3 = -JPMVS = 6 -J ÖRNEK 6 ÖRNEK 9 \"öBôŽEBLJJGBEFMFSJOFöJUJOJCVMVOV[ - 3 . - 5 . - 15 a) i + i31 + i32 - 25 . - 8 . 2 b) i121 - i122 + i123 - i124 JGBEFTJOJOFöJUJOFEJS c) i + i2 + i3 + i4 + i5 ++ i d) i2 + i4 + i6 + i8 ++ i 3 i. 5 i. 15 i 15i 3i e) i + i3 + i5 + i7 ++ i121 == 5.4 4 B J2 -J3 +J4 = -1 -J+ 1 = -J 5i.2 2 i. 2 C J1 -J2 +J3 -J0 =J+ 1 -÷- 1= 0 c) 1i 4-414-2i +4 414+3 . . . . + i1 = i ÖRNEK 10 0 ( 1 - i3 ) (1 - i6 ) ( 1 - i9 ) … ( 1 - i300 ) JGBEFTJOJOFöJUJOFEJS d) -1 + 1 - 1 + 1 - ... -1 + 1 = 0 e) 9i - i + i - i + i - i + . . . . . + i = i ^ 1 + i h^ 1 + 1 h^ 1 - i h^>1 - 1 h . . . . ^ 1 - 1 h = 0 0 0 UYARI ÖRNEK 7 ( 1 + i )2 = 2i L`/PMNBLÑ[FSF (1 - i )2 = -2i  JL+ 8 +JL+ 1 +JL+ 3 EFôFSJOFEJS ÖRNEK 11 J0 +J+J3 ( 1 + i )10 JGBEFTJOJOFöJUJOFEJS = 5 +J-J= 5 +J [ ( 1 +J 2 ]5 = J 5 =J5 =J 6. a) -JC D JE F J7. 5 +J 12 3i 10. 0 11.J 8. 6 -J9. 4

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 12 ÷LJODJ%FSFDFEFO%FOLMFNMFSJO,ÌLMFSMF ,BUTBZŽMBS\"SBTŽOEBLJ#BôŽOUŽMBS ( 1 - i )9 LBSNBöŽLTBZŽTŽOŽOJNBKJOFSLŽTNŽLBÀUŽS [ ( 1 -J 2 ]4 . ( 1 -J  = [ -J]4 . ( 1 -J TANIM = 16( 1 -J = 16 -J ax2 + bx + c =EFOLMFNJOJOLËLMFSJY1 ve x2 IN [ = -16 JTF ,BSNBöŽL4BZŽOŽO&öMFOJôJ  r x1 + x2 = - b a  r x1Y2 = c a 3  r x1 - x2 = a 7$1,0%m/*m ÖRNEK 14 [= x +JZLBSNBõŽLTBZŽTŽJ¿JO 2x2 - 4x + 1 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS z = x - iy TBZŽTŽOB[OJOFöMFOJôJEFOJS #VOBHÌSF BöBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ ²[FMMJLMFS ^ z h = z, z1 + z2 = z1 + z2 a) x1 + x2 b) x1Y2 | |c) x1 - x2 f z1 p = z1 d) 1 + 1 e) x12 + x22 f) 1 + 1 z2 xx h) x1 + x2 2 2 z1.z2 = z1.z2, z2 ^ z2 ≠ 0h x 1 x 2 12 g) x31 + x33 ÖRNEK 13 b4 a) a = 2 b = -4 c = 1 j = x1 + x2 = - a = 2 = 2 \"öBôŽEBLJLBSNBöŽLTBZŽMBSŽOFöMFOJLMFSJOJCVMVOV[ c1 b) a = 2 b = -4 c = 1 j x1.x2 = a = 2 T 16 - 4.2.1 2 2 c) x1 - x2 = a = = =2 2 2 a) [= 5 + 3i b) [= -2 + i x +x 4 c) [= -5i + 1 d) [= -114 e) [= 6 + 2 f ) [= ^ - 7 + 5i h 1 1 12 2 =4 g) [= -3i h) [= 5 d) x +x = = x .x 1 12 12 2 e) 22 = ( x1 + x2 )2 -2x1.x2 j 22 - 2. 1 =4-1=3 2 x +x 12 22 x +x 11 3 f) + = 12 = = 12 a) z = 5 - 3i 2 2 ^ x .x 2 h2 d 1 2 b) z = - 2 - i c) z = 5i + 1 x x 1 n d) z = - 114 e) z = 6 + 2 1 2 2 f) z = - 7 + 5i H [=J g) x 3 + 3 =(x1+x2)3-3x1x2(x1+x2) = 3 - 3. 1 .2 = 8-3 = 5 I [= 5 1 2 x 2 2 h) a x+ x2 k 2 =x +x +2 x .x 1 12 12 a x+ x 2 = 2 + 2 1 2 1 2 k x + x = 2+ 2 12 12. -16 13. a) 5-JC -2-JD +JE -114 13 1 e) 6+ 2 f) -7+JH JI  14. a) 2 b) c) 2 d) 4 e) 3 f) 12 g) 5 h) 2 + 2 2

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 15 ÖRNEK 18 3x2 - 2x - 4 =EFOLMFNJOJOLÌLMFSJY1 ve x2PMEV x2 -NY+N+ 1 = ôVOBHÌSF  EFOLMFNJOJOLÌLMFSJOEFOCJSJ-PMEVôVOBHÌSF EJ ( 2x - 3 ) ( 2x - 3 ) ôFSJLBÀUŽS 1 2 %JôFSLÌLY1PMTVO x - 2 = 2m JGBEFTJOJOFöJUJLBÀUŽS 1 (2x1 - 3) (2x2 - 3) = 4x1.x2 - 6 ( x1+ x2 ) + 9 - 2/ x .^ - 2 h = m + 1 = 4.d - 4 n - 6d 2 n + 9 33 1 16 12 27 1 5x - 2 = - 2 =- - + =- 333 3 1 x1 = 0 ÖRNEK 16 ÖRNEK 19 2x2 - x - 3 =EFOLMFNJOJOLÌLMFSJY1 ve x2PMEV x2 - N- 1 ) x +N= ôVOBHÌSF  EFOLMFNJOJO LÌLMFSJOJO HFPNFUSJL PSUBMBNBTŽ    PM EVôVOBHÌSF BSJUNFUJLPSUBMBNBTŽLBÀUŽS x 2 . x32 + x 3 . x22 G.O = x1.x2 = & 2m = 2 1 1 JGBEFTJOJOFöJUJLBÀUŽS 2m = 4 & m = 2 x +x 2m - 1 3 12 A.O = = = 3 2 1 9 2 22 ^ x .x h2 ^ x + x h = d - 2 2 = 8 12 1 2 n. ÖRNEK 17 ÖRNEK 20 x2 - N+ 1) x +N=EFOLMFNJOJOLÌLMFSJBSBTŽOda, NY2 - N- 1 ) x - 2 = EFOLMFNJOJOTJNFUSJLJLJLÌLÑOÑOCVMVONBTŽJÀJON x21 + x 2 = 5 OFPMNBMŽEŽS 2 1 CBôŽOUŽTŽOŽOCVMVONBTŽJÀJONOJOBMBCJMFDFôJEFôFS 3m - 1 = 0 & m = MFSLÑNFTJOFEJS 3 ^ x + x h2 - 2x .x = 5 & ^ m + 1 h2 - 2m = 5 UYARI 1 2 12 ax2 + bx + c = EFOLMFNJOJO TJNFUSJL JLJ LËLÐOÐO CVMVONBTŽ J¿JO 2 + 1 = 5 x1+ x2 =WFY1Y2 <PMNBMŽEŽS :BOJYMJUFSJNJOLBUTBZŽTŽPMBOCOJOTŽGŽSPMNBTŽHF- m SFLJS m =\"2 {-2, 2} 1 9 14 18. 0 3 1 15. - 16. 17. { –2, 2 } 19. 20. 3 8 2 3

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 21 ÖRNEK 24 2x2 - 4x +N- 3 =EFOLMFNJOJOLÌLMFSJY1 ve x2 2x2 -NY+O=EFOLMFNJOJOLÌLMFSJBSBTŽOEB PMNBLÑ[FSF  x 2 + x 2 1 2 =2 x1 . x2 2x - x = 4 1 2 PMEVôVOBHÌSF NOFPMNBMŽEŽS CBôŽOUŽTŽWBSTBOJONDJOTJOEFOFöJUJOFEJS 2x - x = 4 ^ x + x 2 h2 - 2x .x 2 12 1 1 =2 + x +x =2 x .x 1 2 ,ÌLEFOLMFNJTBôMBS 12 3x = 6 &d m 2 n = 2. n 1 2.4 - 4.2 +N- 3 = 0 jN= 3 n - 2. x =2 2 22 1 22 mm = 2n & n = 48 ÖRNEK 22 ÖRNEK 25 x2 - 4x + m - 2 = 0 4 x2 -OY+N=EFOLMFNJOJOCJSLËLÐ-2, 3x2 - 2x + 3m - 1 = 0 x2 +QY+ q =EFOLMFNJOJOCJSLËLÐUÐS #VJLJEFOLMFNJOEJôFSLÌLMFSJPSUBLPMEVôVOBHÌSF  EFOLMFNMFSJOJOCJSFSLÌLMFSJPSUBLPMEVôVOBHÌSF N 2m + q LBÀUŽS LBÀUŽS - 3/ 2 - 4x + m - 2 = 0 n+p x + 2 - 2x + 3m - 1 = 0 3x 10x + 5 = 0 0SUBLLÌLY1PMTVO 2/ x .^ - 2 h = m 1 x -2=n 1 x =- 1 2 x .4 = q -/ x +4 =-p ,ÌLEFOLMFNJTBôMBS +1 1 11 -6=n+p 0 = 2m + q + 2 +m- 2 = 0 & m =- 44 2m + q 0 = =0 n+p -6 ÖRNEK 23 ÖRNEK 26 x2 -NY+N- 4 = x2 - 3x + 1 =EFOLMFNJOJOLËLMFSJY1 ve x2PMNBLÐ[F- SF x21 - 4x1 - x2 LBÀUŽS EFOLMFNJOJOLËLMFSJY1 ve x2PMTVO x1 ve x2BSBTŽOEBLJCBôŽOUŽOFEJS x + x = 2m ,ÌLMFSEFOLMFNJTBôMBS 12 2 - 2/ x .x = m - 4 x - 3x = - 1 ve x + x = 3 11 12 12 x + x - 2x .x = 8 2 - 4x - x = 2 - 3x - ^ x + x h = - 1 - 3 = - 4 12 12 x 1 2 x 1 1 2 1 1 2x .x + 8 = x + x 12 12 21. 3 1 23. 2x1.x2 + 8 = x1 + x2 15 2 25. 0 26. –4 22. - m 4 24. 8

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 27 ÖRNEK 30 x2 - N+ 1 ) x + 3 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS x2 - 3x +N=EFOLMFNJOJOLËLMFSJY1 ve x2EJS x21 - x22 = 6 8 – x1 = 1 x2 + 1 PMEVôVOBHÌSF NLBÀUŽS PMEVôVOBHÌSF NLBÀUŽS 8 - x .x - x |x1 - x2| . |x1 + x2| = 6 8 12 1 D ·d - b n=6 -x =1 & a a =1 x +1 1 x +1 2 2 &8-3-x =x +1 9 - 4m · 3 = 6 5 12 9 -N= 4 jN= 5 jN= 5-1=x +x 4 12 4=m+1 m=3 ÖRNEK 31 ÖRNEK 28 x2 - N- 4 ) x - 15 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS x2 + ax = 2x +EFOLMFNJOJOLËLMFSJY1 ve x2EJS x1 = -PMEVôVOBHÌSF N- x2GBSLŽLBÀUŽS x1 = x22 x1 . x2 = -15 ve x1= -3 j x2= 5 PMEVôVOBHÌSF LÌLMFSUPQMBNŽLBÀUŽS x2 + ( a - 2 ) x - 8 = 0 x + x2=N- 4 = 2 1 x1.x2 = - 8 N= 6 jN= 3 2 x2 = -JTFY1= 4 N- x2 = 3 - 5 = -2 x2.x2 = - 8 x1 + x2 = 2 3 x2 =-8 x2 =-2 ÖRNEK 29 ÖRNEK 32 x2 + N- 1 ) x +O=EFOLMFNJOJOLÌLMFSJ  x2 - 3x - 1 =EFOLMFNJOJOLÌLMFSJOEFOCJSJY1PM x2 + N+ 1 ) x -N- 3 = EVôVOBHÌSF EFOLMFNJOJOLÌLMFSJOJOöFSLBUŽJTFOLBÀUŽS x13 - x12 - 7x1 - 4 EFôFSJLBÀUŽS 2x + 2x = - 3m + 1 4x1.x2 = n 3 - 3x 2 + 2x 2 - 6x -x -4 12 x - 2/ x + x = - m - 1 1 1 1 11 + 12 - 4/ x1.x2 = - 6 + 0=-m+3 22 m=3 = x (x - 3x ) + 2 (x - 3x ) - x - 4 0 = n + 24 1 1 441 2 4413 1 441 2 4413 1 n = - 24 11 = x1 + 2 - x1 - 4 = -2 27. 3 28. 2 29. –24 16 5 31. –2 32. –2 30. 4

÷LJODJ%FSFDFEFO%FOLMFNJO,BSNBöŽL4BZŽ,ÌLMFSJ TEST - 4 1. i18 - 4i16 + 3i21 5.  [= ( -3 +J  + i ) JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS  LBSNBöŽLTBZŽTŽOŽOTBOBMLŽTNŽLBÀUŽS A) i B) - å+åJ $ -5 A) -8 B) -4 C) -1 D) 1 E) 8 D) -5 -åJ &  6. x2 - 6x + 13 = 2. 5 - 32 . 3 - 27 . - 25  EFOLMFNJOJO LPNQMFLT TBZŽMBS LÑNFTJOEFLJ LÌLMFSJOEFOCJSJBöBôŽEBLJMFSEFOIBOHJTJEJS  JöMFNJOJOTPOVDVOFEJS & J A) 3 + i B) 3 - 2i C) 1 + 3i A) - # - 5i C) - % J D) 1 - 3i E) -3 - 3i 3. 1 Y å= x3å- 3x2å+åYPMNBLÐ[FSF 7. x2 - 2x + 4 =EFOLMFNJJMFJMHJMJ P ( 1 -J JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBO * öLJGBSLMŽTBOBMLËLÐWBSEŽS HJTJEJS ** 4BOBMLËLMFSJOEFOCJSJ1 - 3 iEJS *** ,ËLMFSJCJSCJSJOJOFõMFOJóJEJS A) 1 + i B) 1 - i C) -i  JGBEFMFSJOEFO IBOHJTJ ZB EB IBOHJMFSJ EPôSV EVS D) i E) 1 \" :BMOŽ[* # :BMOŽ[** $ *WF** D) I ve III E) I, II ve III 4. ^ - 12 - - 3 h2 + ^ - 48 - - 27 h2 8. 5PQMBNMBSŽ  WF ÀBSQŽNMBSŽ  PMBO JLJ TBZŽEBO  JöMFNJOJOTPOVDVOFEJS  CJSJBöBôŽEBLJMFSEFOIBOHJTJEJS A) - 3i B) -6i C) - %  &  \" å-J # å+åJ$ -å-åJ  % å-åJ & å+åJ 1. # 2. & 3. A 4. $ 17 5. D 6. # 7. & 8. #

TEST - 5 ÷LJODJ%FSFDFEFO%FOLMFNJO,ÌLMFSJWF,BUTBZŽMBSŽ\"SBTŽOEBLJ÷MJöLJ 1. 2x2 - x - 3 =EFOLMFNJOJOLÌLMFSJY1 ve x2 5. 2x2 -NY+N+ 1 = PMNBLÑ[FSF   EFOLMFNJOJOLÌLMFSJOEFOCJSJ-PMEVôVOBHÌ SF EJôFSJLBÀUŽS ( 3x1 - 1 ) ( 3x2 - 1 )  ÀBSQŽNŽOŽOFöJUJLBÀUŽS A) 1 B) 1 C) 3 D) 2 E) 5 22 2 A) - # -12 C) -14 D) -16 E) -18 2. 3x2 - 2x - 1 =EFOLMFNJOJOLÌLMFSJY1 ve x 2 PMEVôVOBHÌSF  6. x2 -NY+N- 4 = x13. x2 + 2x12 . x22 + x23 . x1  EFOLMFNJOJO LÌLMFSJOJO BSJUNFUJL PSUBMBNBTŽ  PMEVôVOBHÌSF HFPNFUSJLPSUBMBNBTŽLBÀUŽS  JGBEFTJOJOFöJUJLBÀUŽS A) 1 B) 2 C) 3 D) 2 E) 3 A) - 2 B) - 1 C) - 2 9 27 27 D) - 4 27 E) - 1 9 3. x2 -NY+N- 1 =EFOLMFNJOJOLÌLMFSJBSBTŽO 7. N+ 1 ) x2 -NY+N- 3 = da,  EFOLMFNJOJOTJNFUSJLJLJLÌLÑWBSTBNLBÀUŽS 1 + 1 =5 2 2 4 x 1 x 2 A) -2 B) - $  %  &   CBôŽOUŽTŽWBSTBNOJOBMBCJMFDFôJEFôFSMFSUPQMB NŽLBÀUŽS \"  #  $  %  &  8. 3x2 - 6x +N- 1 = 4. 2 - 1 - 1 = 0  EFOLMFNJOJOY1 ve x2LÌLMFSJBSBTŽOEB x2 x EFOLMFNJOJO LÌLMFS UPQMBNŽ BöBôŽEBLJMFSEFO 3x1 - x2 =CBôŽOUŽTŽWBSTBNLBÀUŽS IBOHJTJEJS \"  #  $  %  &  A) -3 B) -1 C) 1 D) 2 E) 3 1. $ 2. D 3. A 4. # 18 5. A 6. # 7. $ 8. #

÷LJODJ%FSFDFEFO%FOLMFNJO,ÌLMFSJWF,BUTBZŽMBSŽ\"SBTŽOEBLJ÷MJöLJ TEST - 6 1. x2 -NY+N- 2 = 4. x2 - N- 1 ) x + 8 +N= EFOLMFNJOJOLÌLMFSJBSBTŽOEB NZFCBôMŽPMNB  EFOLMFNJOJO LÌLMFSJ GBSLŽ   PMEVôVOB HÌSF  N ZBOCJSCBôŽOUŽBöBôŽEBLJMFSEFOIBOHJTJEJS OJOBMBCJMFDFôJEFôFSMFSUPQMBNŽLBÀUŽS A) x1 + x2 + 3x1 x2 = 6 A) 7 B) 6 C) 5 D) -5 E) -6 B) x1 + x2 - x1 x2 = 3 C) x1 + x2å- 2x1 x2 = 3 D) x1 + x2 - 3x1 x2 = 6 E) x1 + x2 + x1 x2 = 6 2. x2 - 2x + m - 1 = 0 4 5. x 2 - 12 x + 8 = x2 - x + 2m + 1 = 0  EFOLMFN JO JOLËLMFSJBWFCEJS EFOLMFNMFSJOJOCJSFSLÌLMFSJPSUBLPMEVôVOBHÌ SF NOJOBMBCJMFDFôJEFôFSMFSUPQMBNŽLBÀUŽS  #VOBHÌSF  1 + 12 A) -8 B) -7 C) -6 D) -4 E) -3 a+ 9 a+ 1 b  JGBEFTJOJOEFôFSJLBÀUŽS A) - #  $  %  &  3. Ná Y2 + 4x +N=WFY2 +NY+ 4 =EFOL- 6. x2 +QY+ q =EFOLMFNJOJOCJSLËLÐ  MFNMFSJOJOCJSFSLËLMFSJPSUBLUŽS x2 +NY+O=EFOLMFNJOJOCJSLËLÐ-EJS  ÷MLEFOLMFNJOPSUBLPMNBZBOLÌLÑLBÀUŽS #V JLJ EFOLMFNJO EJôFS LÌLMFSJ PSUBL PMEVôVOB A) -5 B) -4 C) -3 D) -2 E) -1 HÌSF Q-NLBÀUŽS A) -4 B) -3 C) -2 D) 2 E) 4 1. D 2. # 3. A 19 4. # 5. D 6. A

TEST - 7 ÷LJODJ%FSFDFEFO%FOLMFNJO,ÌLMFSJWF,BUTBZŽMBSŽ\"SBTŽOEBLJ÷MJöLJ 1. x 2 - 4 x +N= 5. x2 - (a + b) x + 2a + b = EFOLMFNJOJOLËLMFSJY1 ve x2PMEVóVOBHËSF  EFOLMFNJO JOLËLMFSJY1 ve x 2EJS  NOJOIBOHJEFôFSJJÀJOY1 . x 2 + x 1 + x 2 = 7 ,ÌLMFSBSBTlOEB PMVS A) -3 B) -2 C) 2 D) 3 E) 4 x 1 + x 2 = 9 ve 1+1= 9 x1 x2 10 CBôŽOUŽMBSŽPMEVôVOBHÌSF CLBÀUŽS A) -8 B) - $  %  &  2. x 2 + U- 1 ) x + 8 = 6. ,FOBS V[VOMVLMBSŽ  DN WF  DN PMBO EJLEËSU-  EFOLMFN JO JOLËLMFSJY1 ve x2EJS HFOCJ¿JNJOEFLJLBSUPOVOLËõFMFSJOEFOCJSLFOBSŽY  ,ÌLMFSBSBTlOEBY1 = x22 CBôŽOUŽTŽPMEVôVOBHÌ DNPMBOLBSFMFSLFTJMJQ¿ŽLBSŽMŽZPS SF ULBÀUŽS A) -5 B) -4 C) -3 D) 5 E) 6 x x x x 80 cm xx 100 cm xx  (FSJZFLBMBOLBSUPOVOBMBOŽDN2PMEVôVOB 3. x 2 - N+ 4) x +N- 2 = HÌSF YLBÀUŽS EFOLMFN JO JOLËLMFSJY1 ve x 2EJS \"  # 10 2 C) 16 D) 16 2  &  6x1 = x1 - 6 x2 PMEVôVOBHÌSF NLBÀUŽS 7.  Z2 -Z+L= A) 26 B) 12 C) -18 D) -24 E) – 26  EFOLMFNJOJOLËLMFSJZ1WFZ2EJS y21 + y22 = 5PMEVôVOBHÌSF LLBÀUŽS A) 1 B) 3 C) 2 D) 5 E) 3 22 4. ax2 + bx + 6 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS 8. a2 + 5a +N- 2 = * a, b ` R EFOLMFNJOJOLËLMFSJB1 ve a2EJS ** x1 + x2 = 3 a 2 + a1.a2 = 5 PMEVôVOBHÌSF NLBÀUŽS *** x1Y2 = –3 2  PMEVôVOBHÌSF B+CUPQMBNŽLBÀUŽS A) - #  $  %  &  A) 6 B) 5 C) 4 D) 3 E) 2 1. D 2. A 3. & 4. $ 20 5. D 6. # 7. $ 8. A

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÷,÷/$÷%&3&$&%&/%&/,-&.-&3*7 ,ÌLMFSJ7FSJMFO÷LJODJ%FSFDFEFO%FOLMFNJO ÖRNEK 3 :B[ŽMNBTŽ ,ÌLMFSJOEFOCJSJ 1 PMBOEFSFDFEFOSBTZPOFM 7$1,0%m/*m 3-2 ¥Ë[ÐNLÐNFTJ{ x1, x2 }PMBOEFSFDFEFOEFOLMFN LBUTBZŽMŽEFOLMFNJOJCVMVOV[ x2 - ( x1 + x2 ) x + x1Y2 =EŽS 1 -2- 3 x = = =-2- 3 1 -2+ 3 4-3 (-2- 3) ÖRNEK 1 ise x = - 2 + 3 2 \"öBôŽEBÀÌ[ÑNLÑNFMFSJWFSJMFOEFSFDFEFOEFOL MFNMFSJZB[ŽOŽ[ x +x =-4 12 x .x = 1 12 2 x + 4x + 1 = 0 a) { -2, 3 } b) *- 1 , 2 c) { 3 } 4 23 d) \" 0, 2 , ÖRNEK 4 a) x + x = 1 ve x . x = -6 j x2 - x - 6 = 0 ,ÌLMFSJ Y2 - 4x + 1 =EFOLMFNJOJOLÌLMFSJOEFO ÑÀFSFLTJLPMBOEFSFDFEFOEFOLMFNJCVMVOV[ 1 2 1 2 11 b) x1 + x2 = 6 ve x .x = - 12 3 x1 + x2 = 4 x1.x2 = 1 x2 - 1 x- 1 =0 & 2 - x - 2 = 0 63 6x c) x1 + x2 = 6 ve x1 . x2 = 9 j x2 - 6x + 9 = 0 ,ÌLMFSJY1 - 3 ve x2 -PMBOEFOLMFNJÀJO T = x1+ x2 - 6 = 4 - 6 = - 2 d) x1 + x2 = 2 ve x1.x2 = 0 j x2 - 2 x = 0 Ç = x . x - 3( x + x ) + 9 = 1 - 12 + 9 = -2 1 2 1 2 x2 + 2x - 2 = 0 UYARI ÖRNEK 5 3BTZPOFMLBUTBZŽMŽEFSFDFEFOCJSEFOLMFNJOLËL- x2 + 3x - 2 =EFOLMFNJOJOLÌLMFSJY1 ve x2JTFLÌL MFSJOEFOCJSJp - q JTFEJóFSJp + q EVS MFSJY1 + 2 ve 3x +PMBOEFSFDFEFOEFOL 2 MFNJCVMVOV[ x1 + x2 = -3 ÖRNEK 2 x . x = -2 ,ÌLMFSJOEFO CJSJ 3 - 2  PMBO SBTZPOFM LBUTBZŽMŽ  1 2 EFSFDFEFOEFOLMFNJCVMVOV[ ,ÌLMFSJY1 + 2 ve 3x2 +PMBOEFOLMFNJÀJO T = 3( x1 + x2 ) + 4 = 3 . ( -3 ) + 4 = -5 Ç = ( 3x + 2) (3x + 2 ) 1 2 x = 3 - 2 ve x = 3 + 2 = 9x1 . x2 + 6 ( x1 + x2 ) + 4 12 x +x =6 = 9 . ( -2 ) + 6 ( -3 ) + 4 12 x .x = ^ 3 - 2 h ^ 3 + 2 h = 9 - 2 = 7 = -18 -18 + 4 = -32 x2 + 5x - 32 = 0 12 2 - 6x + 7 = 0 x 1. a) x2 – x – 6 = 0 b) 6x2– x – 2 = 0 c) x2 – 6x + 9 = 0 21 3. x2 + 4x + 1 = 0 4. x2 + 2x – 2 = 0 5. x2 + 5x – 32 = 0 2 2x = 0 2. x2 – 6x + 7 = 0 d) x -

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 9 3x2 - 4x - 1 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS x2 - 4x - 7 = ,ÌLMFSJ  3 ve 3  PMBO   EFSFDFEFO EFOLMFNJ EFOLMFNJOJOLÌLMFSJOJOFSGB[MBTŽOŽLÌLLBCVMFEFO x1 x2 JLJODJEFSFDFEFOEFOLMFNJCVMVOV[ CVMVOV[ 4 x1 + x2 = 4 x +x = x1 . x2= -7 1 23 x .x = - 1 ,ÌLMFSJY1+ 3 ve x +PMBOEFOLMFNJÀJO 12 3 2 4 T = x1+ 3 + x2+ 3 = 4 + 6 = 10 3^ x1 + x2 h 3. Ç = (x1 + 3) (x2 + 3) = -7 + 12 + 9 = 14 3 x2 - 10x + 14 =CVMVOVS T= = = - 12 x .x 1 12 - 3 99 = - 27 j x2 + 12x - 27 = 0 Ç= = x .x 1 - 12 3 ÖRNEK 7 ÖRNEK 10 ,ÌLMFSJBSBTŽOEB x2 - 2x - 4 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS x1+ x2 + x1Y2= 11 3x1 + 3x2 + 3 = x1Y2 x21 2 1+1 2 x1 x2 CBôŽOUŽTŽ CVMVOBO JLJODJ EFSFDFEFO EFOLMFNJ CVMV OV[ ,ÌLMFSJ + x ve PMBO EFOLMFNJ CVMV ^ x 1 + x 2 h + x .x 2 = 11 1 OV[ 3^ x + x h - x .x = - 3 1 2 12 + x + x = 2 1 2 4 ( x + x) = 8 x1 . x2 = -4 1 2 22 x1 + x2 = 2 ,ÌLMFSJ x + x ve 11 x1 . x2 = 9 j x2 - 2x + 9 = 0 + PMBOEFOLMFNJÀJO 12 xx 12 2 + x 2 = ^ x + x 2 h2 - 2x .x 2 2 x 1 1 1 = 4 + 8 = 12 ÖRNEK 8 1 1 x +x 2 1 ++ = =- #JSLÌLÑY1 = 4 + 3 PMBOJLJODJEFSFDFEFOSBTZP 12 OFMLBUTBZŽMŽEFOLMFNJCVMVOV[ xx x .x -4 2 12 12 1 23 T = 12 - = 22 x =4+ _ Ç = 12 . d - 1 n = - 6 3 bb 2 1 ` j T = 8, Ç = 13 2 23 3 bb %FOLMFN - x-6=0 x =4- a x 2 2 %FOLMFNY2- 8x + 13 = 0 2x2 - 23x - 12 =CVMVOVS 6. x2 + 12x – 27 = 0 7. x2 – 2x + 9 = 0 8. x2– 8x + 13 = 0 22 9. x2 – 10x + 14 = 0 10. 2x2 – 23x – 12 = 0

,ÌLMFSJ7FSJMFO÷LJODJ%FSFDFEFO%FOLMFNJO:B[ŽMNBTŽ TEST - 8 1. KÌLMFSJOEFOCJSJ2 2 - 1PMBO SBTZPOFMLBUTBZŽ 4. ÷LJODJ EFSFDFEFO CJS EFOLMFNJO LÌLMFSJ BSBTŽO MŽEFSFDFEFOEFOLMFNBöBôŽEBLJMFSEFOIBOHJ EB TJPMBCJMJS 3x ( 2 - x) + x ( 6 - x ) = 2 A) x2 + 2x - 7 = # Y2 - 2x - 7 = 1 2 2 1 C) x2 + 2x + 7 = % Y2 + 2x - 5 = x1 ( 2 - x2 ) + x2 ( 2 + 3x1 ) = 14 E) x2 + 2x - 9 = CBôŽOUŽMBSŽ CVMVOEVôVOB HÌSF  CV EFOLMFN BöBôŽE BLJMFSEFOIBOHJTJEJS A) x2 - 4x + 3 = B) x2 + 4x + 3 = C) x2 - 3x + 4 = % Y2 - 3x - 4 = E) x2 + 3x + 4 = 2. x2 - 2x - 4 = 5. ,ÌLMFSJOEFO CJSJ 3 – 2  PMBO JLJODJ EFSFDFEFO EFOLMFNJOJOLÌLMFSJY1 ve x2JTFLÌLMFSJ SBTZPOFM LBUTBZŽMŽ EFOLMFN BöBôŽEBLJMFSEFO 2x1 - 1 ve 2x2 -PMBOJLJODJEFSFDFEFOEFOL IBOHJTJEJS MFNBöBôŽEBLJMFSEFOIBOHJTJEJS A) x2 - 19x - 2 = B) x2 + 2x + 19 = A) x2 + 4x + 1 = # Y2 + 4x - 1 = C) x2 - 2x + 19 = % Y2 + 2x - 19 = C) x2 - 4x + 1 = % Y2 - 2x + 1 = E) x2 - 2x - 19 = E) x2 - 2x - 1 = 3. x2 - 2x - 1 =EFOLMFNJOJOLËLMFSJY1 ve x2EJS 6. \"SJUNFUJLPSUBMBNBMBSŽ HFPNFUSJLPSUBMBNBMB  ,ÌLMFSJ 2 ve 2 PMBOEFSFDFEFOEFOLMFN SŽ 15 PMBOJLJTBZŽZŽLÌLLBCVMFEFOJLJODJEF x1 x2 SFDFEFOEFOLMFN BöBôŽEBLJMFSEFOIBOHJTJEJS BöBôŽEBLJMFSEFOIBOHJTJEJS 2 2 A) x - 6x + 15 = 0 B) x - 6x + 15 = 0 A) x2 - 4 = # Y2 + 4x + 4 = 2 2 C) x2 - 4x + 4 = % Y2 + 4x - 4 = C) x - 12x + 15 = 0 D) x - 12x + 15 = 0 E) x2 - 4x - 4 = 2 E) x + 12x + 15 = 0 23 1. A 2. & 3. D 4. $ 5. A 6. D

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&3*7 ÷LJODJ%FSFDFEFO÷LJ#JMJONFZFOMJ%FOLMFN ÖRNEK 3 4JTUFNMFSJOJO¦Ì[ÑNÑ x2 + y2 = 7 4 TANIM x2 - 2y2 = - 5  B C D E F G`3PMNBLÐ[FSF EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ ax2 +CYZ+DZ2 +EY+FZ+G= x2 = 7 -Z2ZB[ŽMŽSTB  CJ¿JNJOEFLJEFOLMFNMFSF JLJODJEFSFDFEFOJLJ 7 -Z2 = -5 jZ2 = 12 jZ2 = 4 CJMJONFZFOMJEFOLMFNEFOJS   Z= ± 2 x2 = 3 j x = ! 3  #VEFOLMFNJTBóMBZBO Y Z JLJMJMFSJEFOLMFNJO Ç .K = % a - 3, - 2 k,a - 3, 2 k,a 3, - 2 k,a 3, 2 k / ¿Ë[ÐNLÐNFTJOJPMVõUVSVS ÖRNEK 1 ÖRNEK 4 x2 +Z2 - 4x +Z+ 13 = x+y = 3 EFOLMFNJOJTBôMBZBO Y Z JLJMJTJOJCVMVOV[ x2 + 2xy = 5 4 22 x - 4x + 4 + y + 6y + 9 = 0 EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ (x - 2) 2 + ^ y + 3 h2 = 0 Z= 3 -YZB[ŽMŽSTB x-2=0 y+3=0 x2 + 2x ( 3 - x ) = 5 j x2 + 6x - 2x2 = 5 jx2 - 6x + 5 = 0 j ( x - 5)(x -1) = 0 x=2 y = - 3 & Ç .K = \" ^ 2, - 3 h , x=5 x=1 TANIM x = 5 jZ= -2 x = 1 jZ= 2  öLJCJMJONFZFOJ¿FSFOCJSJODJEFSFDFEFOFOB[JLJ Ç.K = { ( 5, -2 ) , ( 1, 2 )} EFOLMFNJOPMVõUVSEVóVTJTUFNF CJSJODJEFSFDF- EFOJLJCJMJONFZFOMJEFOLMFNTJTUFNJEFOJS ÖRNEK 5  %FOLMFNMFSEFO FO B[ CJS UBOFTJ JLJODJ EFSFDF- 2x - y = 3 EFO JTF TJTUFNF JLJODJ EFSFDFEFO JLJ CJMJONF ZFOMJEFOLMFNEFOJS x2 + y2 = 5 4  %FOLMFNMFSJO PSUBL ¿Ë[ÐN LÐNFTJ EFOLMFN EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ TJTUFNJOJO¿Ë[ÐNLÐNFTJEJS Z= 2x -ZB[ŽMŽSTB ÖRNEK 2 x2 + 4x2 -12x + 9 = 5 x+y = 5 5x2 - 12x + 4 = 0 x2 - y2 = 15 4 ^ 5x - 2 h^ x - 2 h = 0 & x = 2 EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ ,x=2 5 ^>x - y h^>x + y h = 15 35 2 11 x+y=5 x = & y =- + x-y=3 55 2x = 8 j x = 4 jZ= 1 j Ç = {( 4, 1 )} x=2 & y=1 Ç .K = ( d 2 11 n,^ 2, 1 h 2 ,- 55 1. ( 2, –3 ) 2. { ( 4, 1) } 24 3. Ç .K = \" ^ - 3, - 2 h,^ - 3, 2 h,^ 3, - 2 h,^ 3, 2 h , 4.{ ( 5, –2 ), ( 1, 2 ) } 5. ( d 2 11 n,^ 2, 1 h 2 ,- 55

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 6 ÖRNEK 9 x2 + 2x - y = 4 4 5PQMBNMBSŽ LBSFMFSJGBSLŽPMBOJLJTBZŽEBOCÑZÑL - 4x + y = - 5 PMBOŽLBÀUŽS EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ x+y=8 2 2 - 2 = 48 & ^>x - y h^>x + y h = 48 x + 2x - y = 4 x y + - 4x + y = - 5 68 2 - 2x + 1 = 0 x -Z= 6 + x +Z= 8 x ^ x - 1 h2 = 0 & x = 1 & y = - 1 2x = 14 j x = Z= 1 Ç .K = \" ^ 1, - 1 h , ÖRNEK 7 ÖRNEK 10 x+y = 4 x+y=5 4 x.y = 6 x2 + y2 = 3 4 EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ y=5-x Z= 4 -YZB[ŽMŽSTB x2 + ( 4 - x )2 = 3 j2x2 - 8x + 13 = 0 x^ 5 - x h = 6 & 2 - 5x + 6 = 0 Ô= 64 - 4 . 2 . 13 Ô= -40 <PMEVôVOEBOSFFMLÌLZPLUVS x Ç.K = Ø ^ x - 2 h^ x - 3 h = 0 x=2 x=3 x = 2 & y = 3 4Ç .K = \" ^ 2, 3 h, ^ 3, 2 h , x=3&y=2 ÖRNEK 8 ÖRNEK 11 x2 - y2 = 48 4 x.y = 0 x +y=6 EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ x2 - 4x - 5 = y 4 Z= 6 - | x |ZB[ŽMŽSTB TJTUFNJOJOÀÌ[ÑNLÑNFTJLBÀFMFNBOMŽEŽS 2 - 36 + 12 x - 2 = 48 x =JÀJOZ= -5 j (0, -5) x x Z=JÀJOY2- 4x - 5 = 0 (x - 5) (x + 1) = 0 12 x = 84 x = 5 ve x = - 1 (5, 0) , (-1, 0) x = 7 & x =!7 & y =-1 ¦Ì[ÑNLÑNFTJFMFNBOMŽEŽS Ç .K = \" ^ - 7, - 1 h^ 7, - 1 h , 25 9. 7 10. \" ^ 2, 3 h, ^ 3, 2 h , 11. 3 6. \" ^ 1, - 1 h , 7. Ø 8. \" ^ - 7, - 1 h,^ 7, - 1 h ,

TEST - 9 ÷LJODJ%FSFDFEFO÷LJ#JMJONFZFOMJ%FOLMFN4JTUFNMFSJOJO¦Ì[ÑNÑ 1. ÷LJTBZŽOŽOGBSLŽ LBSFMFSJGBSLŽPMEVôVOBHÌ 4. 2x2 + 3y2 = 29 4 SF CVTBZŽMBSŽOÀBSQŽNŽLBÀUŽS x2 + y2 = 14 A) -4 B) -3 C) -2 D) 3 E) 4  EFOLMFN TJTUFNJOJO ÀÌ[ÑN LÑNFTJOEFLJ FMF NBOMBSEBOCJSJBöBôŽEBLJMFSEFOIBOHJTJEJS A) ( 1, 3 ) B) ( -1, 3 ) C) ^ 1, 13 h D) ^ 1, - 13 h E) ^ - 13, - 1 h 2. x2 - y2 - 2xy = - 14 4 5. x2 - y2 = 9 4 y - 3x = 0 3x2 + y2 = 55  EFOLMFN TJTUFNJOJ TBôMBZBO Y EFôFSMFSJOEFO  EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJOEFLJZFMF CJSJBöBôŽEBLJMFSEFOIBOHJTJEJS NBOMBSŽOEBOCJSJBöBôŽEBLJMFSEFOIBOHJTJEJS A) -2 B) - $  %  &  A) - 7 B) - 5 C) - 3 D) 1 E) 3 3. x2 - y2 + 2x - 3 = 0 4 6. x2 - x + y2 - y = 0 4 y2 + 3x - 3 = 0 x+y = 1  EFOLMFNTJTUFNJOJTBôMBZBOFOCÑZÑLZEFôFSJ  EFOLMFNTJTUFNJOJTBôMBZBOFOLÑÀÑLYEFôFSJ LBÀUŽS LBÀUŽS A) 13 B) 15 C) 17 D) 19 E) 21 A) -2 B) - $  %  &  1. # 2. # 3. & 26 4. & 5. A 6. $

÷LJODJ%FSFDFEFO÷LJ#JMJONFZFOMJ%FOLMFN4JTUFNMFSJOJO¦Ì[ÑNÑ TEST - 10 1. x.y = 3 4 4. a2 + b2 = 80 4 x+y = 4 3a - b = 4  EFOLMFNTJTUFNJOJOÀÌ[ÑNLÑNFTJBöBôŽEBLJ  EFOLMFNTJTUFNJOEFCLBÀPMBCJMJS MFSEFOIBOHJTJEJS A) -4 B) -2 C) 2 D) 4 E) 8 A) { ( 1, 3 ) , ( -1, -3 ) } B) { (-1, -3 ), ( 3, 1 ) } C) { (-3, -1 ), (3, 1 ) } D) { (1, 3 ), ( 3, 1 ) } E) { (-1, 3 ), ( 1, -3 ) } 5. a2 + b2 = 13 _ b 1 1 13 b a2 b2 36 ` 2. a2 + 3b2 = 7 4 + = bb a 3a2 - 2b2 = 10  EFOLMFNTJTUFNJOJTBôMBZBOBEFôFSMFSJOEFOCJ  EFOLMFNTJTUFNJOJTBôMBZBOBEFôFSMFSJOEFOCJ SJBöBôŽEBLJMFSEFOIBOHJTJEJS SJBöBôŽEBLJMFSEFOIBOHJTJEJS A) -3 B) -2 C) - %  &  A) -4 B) -1 C) 2 D) 4 E) 6 3. a2 + b2 + 4ab = 52 4 6. ^ x - y h2 - 2^ x - y h - 3 = 0 4 a2 + b2 - ab = 12 2x + y = 4  EFOLMFNTJTUFNJOJTBôMBZBOBEFôFSJLBÀPMBCJ  EFOLMFNTJTUFNJOJTBôMBZBOYEFôFSMFSJOEFOCJ MJS SJBöBôŽEBLJMFSEFOIBOHJTJEJS A) -5 B) -4 C) -3 D) -1 E) 1 A) 1 B) 2 C) 3 D) 4 E) 5 1. D 2. # 3. # 27 4. & 5. $ 6. A

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr 1\"3\"#0-* ÷LJODJ%FSFDFEFO'POLTJZPOMBS ÖRNEK 3 TANIM a, b, c `3WFBáPMNBLÐ[FSF  G Y = ( 7 -N Y2 + N- 1 ) x + 2 QBSBCPMÑOÑOLPMMBSŽZVLBSŽEPôSVPMEVôVOBHÌSF N   Z= ax2 + bx + c OJOFOHFOJöEFôFSBSBMŽôŽOFEJS  CJ¿JNJOEFLJ GPOLTJZPOMBSB JLJODJ EFSFDFEFO a >PMNBMŽ GPOLTJZPOMBS EFOJS #V GPOLTJZPOMBSŽO HSBGJóJ- 7 -N> 0 jN< 7 OFQBSBCPMBEŽWFSJMJS jN` ( -ß  ÖRNEK 1 ÖRNEK 4  G Y = N- 2 ) x3 + xO+ 3 + 2x - 1 NWFOCJSFSEPôBMTBZŽPMNBLÑ[FSF  G Y = N-O Y2 + 5x - 13 GPOLTJZPOVOVO HSBGJôJ CJS QBSBCPM CFMJSUUJôJOF HÌSF QBSBCPMÑOÑOLPMMBSŽOŽOZVLBSŽEPôSVPMNBTŽOŽTBôMB NOÀBSQŽNŽLBÀUŽS ZBO O EFôFSMFSJOJO UPQMBNŽ  PMEVôVOB HÌSF  N FO B[LBÀUŽS N- 2 = WF O+ 3 = 2 N-O> 0 jN>O N=  O= -1     O n^ n + 1 h NO= -2 = 28 & n^ n + 1 h = 56 jO= 7 ÖRNEK 2 2 N>PMEVôVOEBONNJO =EJS  N2 -N- 12 ) x3 + xN2 +N-1+ 3x + 2 GPOLTJZPOVOVO CFMJSUUJôJ FôSJ CJS QBSBCPM PMEVôVOB 7$1,0%m/*m HÌSF NLBÀUŽS G Y = ax2 + bx +DGPOLTJZPOVOVOHSBGJóJOJO N2 -N- 12 = 0 N-  N+ 3 ) = 0 x =J¿JOZFLTFOJOJLFTUJóJOPLUB Z= c ) N=N= -3  G Y =J¿JOYFLTFOJOJLFTUJóJOPLUBMBS WBSTB  N2 +N- 1 = 2 N2 +N- 3 = 0 CVMVOVS N+  N- 1 ) = 0 N= -N=PMEVôVOEBO ÖRNEK 5 N= -CVMVOVS  G Y = x2 +NY-N- 1 7$1,0%m/*m GPOLTJZPOVOVO HSBGJôJOJO Z FLTFOJOJ LFTUJôJ OPLUB - PMEVôVOB HÌSF  WBSTB Y FLTFOJOJ LFTUJôJ OPLUB G Y = ax2 + bx +DGPOLTJZPOVOVOHSBGJóJOEF MBSLBÀUŽS a > 0JTFQBSBCPMÐOLPMMBSŽZVLBSŽ -N- 1 = -4 jN= 3 f ( x ) = x2 + 3x - 4 a < 0JTFQBSBCPMÐOLPMMBSBõBóŽEPóSVEVS f ( x ) = 0 j x2 + 3x - 4 = 0 (x + 4) (x - 1) = 0 x = -4 x =CVMVOVS 1. –2 2. –3 28 3. ( –Þ, 7 ) 4. 8 5. { –4, 1 }

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 6 7$1,0%m/*m  G Y = x2 - N2 - Y+N G Y = ax2 + bx +DGPOLTJZPOVOVOHSBGJóJOJO5FQF QBSBCPMÑOÑO Y FLTFOJOJ LFTUJôJ OPLUBMBSŽO BQTJTMFSJ /PLUBTŽ5 S L PMNBLÐ[FSF UPQMBNŽ  PMEVôVOB HÌSF  Z FLTFOJOJ LFTUJôJ OPLUB OŽOPSEJOBUŽLBÀUŽS r = - b ve k = f (r)EJS 2a N2 - 10 = 6 jN2 - 16 = 0  N-  N+ 4 ) = 0 #VSBEB k = f (r) = 4ac - b2 GPSNÐMÐJMFEFCVMVOB- N=N= -4 4a N= 4 jZ=PMEVôVOEBQBSBCPMYFLTFOJOJLFTNF[ N= -4 jZ= -CVMVOVS CJMJS 7$1,0%m/*m ÖRNEK 9 G Y = ax2 + bx +DGPOLTJZPOVOVOHSBGJóJ\" Y1 Z1)  G Y = x2 - 4x + 3 OPLUBTŽOEBOHF¿JZPSTB QBSBCPMÑOÑOUFQFOPLUBTŽLPPSEJOBUMBSŽOFEJS  G Y1) =Z1EJS :BOJOPLUBEFOLMFNJTBóMBS 5 S L PMNBLÑ[FSF b4 r = - = = 2 ve k = f (r) j L= f ( 2 ) jL= -1 2a 2 T ( 2, - CVMVOVS ÖRNEK 7 ÖRNEK 10  G Y = N- 2 ) x2 + 4x +N2 -N- 2  G Y =NY2 -NY+N- 1 QBSBCPMÑ CBöMBOHŽÀ OPLUBTŽOEBO HFÀUJôJOF HÌSF N QBSBCPMÑOÑO UFQF OPLUBTŽ LPPSEJOBUMBSŽ  5     PM LBÀUŽS EVôVOBHÌSF NLBÀUŽS 0   EFOLMFNJTBôMBS f ( 1 ) =PMNBMŽ N2 -N- 2 = 0 N-N+N- 1 = 3 N-  N+ 1 ) = 0 N= 4 N=N= - 1 N=CVMVOVS N=BMŽOŽSTBG Y JLJODJEFSFDFEFOGPOLTJZPOPMBNB ZBDBôŽOEBON= -EJS ÖRNEK 8 ÖRNEK 11  G Y = x2 -NY+ 3 -N  G Y = 3 ( x - 2 )2 + 4 QBSBCPMÑ\"   OPLUBTŽOEBOHFÀUJôJOFHÌSF QBSB QBSBCPMÑOÑOUFQFOPLUBTŽLPPSEJOBUMBSŽOFEJS CPMZFLTFOJOJIBOHJOPLUBEBLFTFS f ( x ) = 3x2 - 12x + 12 + 4 = 3x2 - 12x + 16 f ( 1 ) = 10 j 1 -N+ 3 -N= 10 b 12  N= - 6   N= -3 5 S L PMNBLÑ[FSF r = - = = 2 f ( x ) = x2 + 3x + 6 2a 6 f ( 0 ) =QBSBCPMZFLTFOJOJZ=OPLUBTŽOEBLFTFS L=G S = f ( 2 ) = 4 j5   CVMVOVS 6. –16 7. –1 8. 6 29 9. T ( 2, –1 ) 10. 2 11. T ( 2, 4 )

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr 7$1,0%m/*m d) Z= 2x2 + 4 Z= ax2 + bx +DGPOLTJZPOVOVO QBSBCPMÐOÐO HSB- y GJóJ¿J[JMJSLFO y = 2x2 + 4  BJTFLPMMBSZVLBSŽ 4  BJTFLPMMBSBõBóŽEPóSVEVS Ox x =J¿JOZFLTFOJOJLFTUJóJOPLUBCVMVOVS e) Z= 2 (x - 1 )2 + 4  Z=J¿JOYFLTFOJOJLFTUJóJOPLUBMBSCVMVOVS y y = 2(x–1)2 + 4 ax2 + bx + c =EFOLMFNJOEF 6 x 1. ÓJTFLËLZPLUVS:BOJQBSBCPMYFLTFOJOJ 4 LFTNF[ O1 2. Ó=JTF¿BLŽõŽLJLJLËLWBSEŽS:BOJQBSBCPMY f) Z= -3 (x + 2 )2 + 3  FLTFOJOFUFQFOPLUBTŽOEBUFóFUUJS 3. Ó>JTFGBSLMŽJLJLËLWBSEŽS y  1BSBCPMYFLTFOJOJCVJLJOPLUBEBLFTFS 3  5 S L CVMVOVS(SBGJL¿J[JMJS O x ÖRNEK 11 –3 –2 –1 \"öBôŽEBLJGPOLTJZPOMBSŽOHSBGJLMFSJOJÀJ[JOJ[ y = –3(x+2)2 + 3 a) Z= x2 g) Z= 2 (x - 2 )2 y y = x2 y y = 2(x–2)2 8 x Ox O2 b) Z= -2x2 x h) Z= x2 - 3x + 2 y = –2x2 y y O y = x2 – 3x + 2 2 O1 2 x c) Z= x2 - 1 Ž Z= -2x2 + 8x - 6 y y O1 x y = x2 –1 –6 y = –2x2 + 8x – 6 3 O x –1 1 –1 30

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, J Z= 4x - x2 y ÖRNEK 14 O 4x \"õBóŽEBLJ õFLJMEF Z = 4x2 GPOLTJZPOVOVO HSBGJóJ WFSJM- NJõUJS y y = 4x2 y = 4x – x2 CB OA x ÖRNEK 12 \"OBMJUJL EÐ[MFNEF (SBGJLUF0\"#$LBSFTJOJO#LÌöFTJQBSBCPMÑ[FSJOEF WFCJSLÌöFTJPSJKJOEFPMEVôVOBHÌSF LBSFOJOÀFWSF y FLTFOMFSJ \"  # WF $ TJLBÀCJSJNEJS A OPLUBMBSŽOEB LFTFO L2 =LjL L- 1 ) = 0 B Z = -x2 + x + 6 1 O GPOLTJZPOVOVO HSB- L= 0 k = 4 x GJóJWFSJMNJõUJS 1 C L=PMBNBZBDBôŽOEBOk = UÑS #VOBHÌSF \" \"#$ LBÀCJSJNLBSFEJS 4 1 ¦ 0\"#$ =L= 4. = 1br CVMVOVS 4 y A^ ABC h = 5.6 = 15 2 br 6 2 –2 3x ÖRNEK 15 O ôFLJMEFLJ QBSBCPMÐO 5FQF OPLUBTŽ BOBMJUJL EÐ[MFNJO * ÖRNEK 13 CËMHFTJOEFEJS ôFLJMEFLJ#LËõFTJZ= x2 - 6x -QBSBCPMÐÐ[FSJOEF y PMBO0\"#$LBSFTJWFSJMNJõUJS T y x O O Cx y = ax2 + bx + c AB #VOBHÌSF BöBôŽEBLJMFSEFOLBÀUBOFTJEPôSVEVS * a < ** b2 > 4ac *** c > *7BCD< 7 b < #VOBHÌSF \" 0\"#$ LBÀCJSJNLBSFEJS * 1BSBCPMÑO HSBGJôJOJO LPMMBSŽ BöBôŽ EPôSV PMEV ôVOEBOB<EŽS #OPLUBTŽQBSBCPMÑTBôMBS x2 - 6x - 14 = -x ** 1BSBCPMYFLTFOJOJJLJOPLUBEBLFTUJôJJÀJO x2 - 5x - 14 = 0 D > 0 j b2 - 4ac >EŽS (x - 7) (x + 2) = 0 x = 7 *** 1BSBCPMZFLTFOJOJQP[JUJGUBSBGUBLFTUJôJJÀJO \" 0\"#$ =CS2 c > 0 EŽS *7 B< 0, b > 0 ve c >PMEVôVOEBOBCD< 0 b 7 Y1 + x2 > 0 j - a > 0 & b > 0 EJS 12. 15 13. 49 31 14. 1 15. 4

TEST - 11 y 1BSBCPM,BWSBNŽ T 1. 5.  G ( x ) = L- 3 ) x2 + 4x + 5 x1 x2 x  QBSBCPMÑOÑOLPMMBSŽZVLBSŽEPôSV  O  H Y = L- 8 ) x2 + 2x - 3 y = f(x)  QBSBCPMÑOÑOLPMMBSŽBöBôŽEPôSVPMEVôVOBHÌ  (SBGJôJWFSJMFOG Y = ax2 + bx +DQBSBCPMÑJÀJO SF LOJOBMBCJMFDFôJUBNTBZŽEFôFSMFSJOJOUPQMB BöBôŽEBLJMFSEFOIBOHJTJLFTJOMJLMFZBOMŽöUŽS NŽLBÀUŽS \"  #  $  %  &  A) a < # C< C) c > % - b < 0 2a E) ff - b p < 0 2a 2.  G Y = 3xN- 4 + 2x - 1 6.  G Y = x2 + N- 3 ) x - 8  GPOLTJZPOVOVO CFMJSUUJôJ FôSJ CJS QBSBCPM PMEV QBSBCPMÑOÑO Y FLTFOJOJ LFTUJôJ OPLUBMBSŽO BQ ôVOBHÌSF NLBÀUŽS TJTMFSJUPQMBNŽPMEVôVOBHÌSF NLBÀUŽS A) 3 B) 4 C) 5 D) 6 E) 7 A) 1 B) 2 C) 3 D) 4 E) 5 3.  G Y = N- 2 )x3 + xO+ 4 + 2x - 3 7.  G Y = x2 - ( 3 -N Y+N-N2  GPOLTJZPOVOVO CFMJSUUJôJ FôSJ CJS QBSBCPM PMEV QBSBCPMÑOÑO Z FLTFOJOJ LFTUJôJ OPLUBOŽO PSEJ ôVOBHÌSF N+OUPQMBNŽLBÀUŽS OBUŽ-PMEVôVOBHÌSF YFLTFOJOJLFTUJôJOPL UBMBSŽOBQTJTMFSJUPQMBNŽFOB[LBÀUŽS A) -4 B) -3 C) -2 D) -1 E) 1 A) -2 B) - $  %  &  4.  G Y = x2 + N+ 1 ) x +N3 - 7 8.  G Y = x2 - 2x + 2b - 3  GPOLTJZPOVOVO Z FLTFOJOJ LFTUJôJ OPLUBOŽO PS QBSBCPMÑOÑOZFLTFOJOJLFTUJôJOPLUB EJOBUŽPMEVôVOBHÌSF NLBÀUŽS ( 2a - 6, b - 1 ) OPLUBTŽPMEVôVOBHÌSF B+CUPQ MBNŽLBÀUŽS A) 5 B) 3 C) 2 D) -1 E) -3 A) - #  $  %  &  1. & 2. D 3. $ 4. D 32 5. $ 6. A 7. $ 8. A

1BSBCPM,BWSBNŽ TEST - 12 1.  G Y = N+ 2 ) x2 - 3x +N2 -N- 6 5.  G Y = x2 - N- 2 ) x +O- 7  QBSBCPMÑPSJKJOEFOHFÀUJôJOFHÌSF NLBÀUŽS  QBSBCPMÑOÑO UFQF OPLUBTŽ 5   -  PMEVôVOB A) 4 B) 3 C) 2 D) 1 E) -2 HÌSF N+OUPQMBNŽLBÀUŽS A) -6 B) -4 C) -3 D) 1 E) 3 2.  G Y = ax2 + 3x - 5 6. G Y = x2 - 6x +N+ 4 QBSBCPMÑ B    OPLUBTŽOEBO HFÀUJôJOF HÌSF B  QBSBCPMÑOÑOUFQFOPLUBTŽYFLTFOJÑ[FSJOEFPM LBÀUŽS EVôVOBHÌSF NLBÀUŽS A) -3 B) -2 C) -1 D) 1 E) 2 A) 2 B) 3 C) 4 D) 5 E) 6 3.  G Y = x2 + 2x - 4 7.  G Y = 2 ( x + 3 )2 + 4  QBSBCPMÑ Ñ[FSJOEF CVMVOBO WF BQTJTJ PSEJOBUŽ  QBSBCPMÑOÑOUFQFOPLUBTŽ5 S L PMEVôVOBHÌSF  OŽO ZBSŽTŽ PMBO OPLUBMBSŽO PSEJOBUMBSŽ UPQMBNŽ S+LUPQMBNŽLBÀUŽS LBÀUŽS A) -2 B) - $  %  &  A) - #  $  %  &  8.  G Y =NY2 + N+ 1 ) x - 4 4.  G Y = x2 + N+ 1 ) x -N  QBSBCPMÑ   OPLUBTŽOEBOHFÀUJôJOFHÌSF UF QFOPLUBTŽOŽOPSEJOBUŽLBÀUŽS  QBSBCPMÑ   OPLUBTŽOEBOHFÀUJôJOFHÌSF N LBÀUŽS A) -7 B) - 25 C) - 23 D) -5 4 4 A) 7 B) 6 C) 5 D) 4 E) 3 E) - 17 4 1. # 2. & 3. # 4. & 33 5. $ 6. D 7. D 8. #

TEST - 13 1BSBCPM¦J[JNJ 1. Z= ax2 + bx +DQBSBCPMÐJ¿JO 3. y a > C>WFD< T PMEVôVOBHÌSF QBSBCPMÑOHSBGJôJBöBôŽEBLJMFS EFOIBOHJTJPMBCJMJS x O A) y B) y T :VLBSŽEBLJHSBGJLG Y = ax2 + bx +DGPOLTJZPOV- O OBBJUUJS C) y xO x T T  #VOBHÌSF BöBôŽEBLJMFSEFOIBOHJTJ D) y  Z = cx2 - bx - B GPOLTJZPOVOB BJU PMBO HSBGJL PMBCJMJS A) y B) y Ox Ox Ox O x T E) y C) y D) y x OT Ox O x x 2. Z= ax2 + bx +DQBSBCPMÐJ¿JO E) y 4ac - b2 > 0 ve a <PMEVôVOBHÌSF QBSBCP O MÑOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJPMBCJMJS A) y B) y T O x O x y D) T DC C) y y 4. T AO B x O T x x O E) y x y = 8 – x2 OT  õFLJMEFZ= 8 - x2QBSBCPMÑWFJLJLÌöFTJQBSB CPMÑ[FSJOEF JLJLÌöFTJEFYFLTFOJÑ[FSJOEFÀJ [JMFO\"#$%LBSFTJOJOBMBOŽLBÀCS2EJS A) 16 B) 8 C) 4 D) 2 E) 1 1. # 2. & 34 3. $ 4. A

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, 1\"3\"#0-** %JTLSJNJOBOUŽO÷öBSFUJJMF1BSBCPM\"SBTŽOEBLJ ÖRNEK 3 ÷MJöLJ  G Y = 3x2 - 6x +N+ 6 7$1,0%m/*m QBSBCPMÑYFLTFOJOJLFTNFEJôJOFHÌSF NOJOBMBCJ MFDFôJFOLÑÀÑLUBNTBZŽEFôFSJLBÀUŽS Z= ax2 + bx +DGPOLTJZPOVOVOYFLTFOJOJLFT- UJóJOPLUBMBSCVMVOVSLFOBY2 + bx + c =EFOLMF- Ô<PMNBMŽ NJOJOLËLMFSJOFCBLŽMŽS1BSBCPMÐOUFQFOPLUBTŽOŽO 36 - N+ 6 ) < 0 BQTJTJSPMNBLÐ[FSF 1.  Ó>JTFQBSBCPMYFLTFOJOJGBSLMŽJLJOPLUBEB 36 -N- 72 < 0 -36 <N LFTFS -3 <NjNNJO = -2 2. a) Ó=WFS>JTFQBSBCPMYFLTFOJOFQP[JUJG ÖRNEK 4 UBSBGUBUFóFUUJS b) Ó=WFS<JTFQBSBCPMYFLTFOJOFOFHBUJG UBSBGUBUFóFUUJS 3. Ó<JTFQBSBCPMYFLTFOJOJLFTNF[ ÖRNEK 1 N>PMNBLÑ[FSF  G Y = x2 +NY+ 4  G Y = x2 - 2x +N- 1 QBSBCPMÑ JÀJO BöBôŽEB WFSJMFO JGBEFMFSEFO LBÀ UBOF QBSBCPMÑYFLTFOJOJGBSLMŽJLJOPLUBEBLFTUJôJOFHÌSF TJEPôSVEVS NOJOBMBCJMFDFôJFOCÑZÑLUBNTBZŽEFôFSJLBÀUŽS * YFLTFOJOJLFTNF[ ** ZFLTFOJOJOPLUBTŽOEBLFTFS Ô>PMNBMŽ *** 5FQFOPLUBTŽBOBMJUJLEÐ[MFNJO*CËMHFTJOEFEJS ( -2 )2 - N- 1 ) > 0 *7 YFLTFOJOJJLJGBSLMŽOPLUBEBLFTFS 7 ,PMMBSŽBõBóŽEPóSVEVS 4 -N+ 4 > 0 8 >N **WF*7NBEEFMFSEPôSV EJôFSMFSJZBOMŽöUŽS 2 >NjNNBY = 1 ÖRNEK 2 ÖRNEK 5  G Y = x2 + 12x -N+ 3  G Y = x2 - N- 1 ) x +N+ 1 QBSBCPMÑYFLTFOJOFUFôFUPMEVôVOBHÌSF NLBÀUŽS GPOLTJZPOVOVO HSBGJôJ Y FLTFOJOF UFôFU PMEVôVOB Ô=PMNBMŽ HÌSF NOJOBMBCJMFDFôJEFôFSMFSUPQMBNŽLBÀUŽS 144 - 4 ( -N+ 3 ) = 0 Ô=PMNBMŽ 144 +N- 12 = 0 N- 1 )2 - N+ 1 ) = 0 N= -132 N2 -N+ 1 -N- 4 = 0 N= -CVMVOVS N2 -N- 3 = 0 N1 +N2 = 10 1. 1 2. –11 35 3. –2 4. 2 5. 10

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 9  G Y = x2 + N+ 3 ) x +N2 - 3  Z= 2x2 -NY+O- 1 GPOLTJZPOVOVOHSBGJôJYFLTFOJOJLFTNFEJôJOFHÌSF  NOJOBMBCJMFDFôJFOCÑZÑLEFôFSLBÀUŽS GPOLTJZPOVOVOHSBGJôJYFLTFOJOF -  OPLUBTŽO EBUFôFUPMEVôVOBHÌSF N+OEFôFSJLBÀUŽS Ô<PMNBMŽ N+ 3 )2 - N2 - 3 ) < 0 5 S L = T ( -1, 0 ) 22 bm =-1 & m=-4 16m + 24m + 9 - 16m + 12 1 0 r=- &  N< -21 2a 2.2 7 L= f ( -1 ) =PMNBMŽEŽS m 1- 2 ( -1 )2 + 4 ( -1 ) +O- 1 = 0 8 2 - 4 +O- 1 = 0 m = -1 O=CVMVOVS max #VSBEBON+O= -EJS ÖRNEK 7 7$1,0%m/*m  G Y = x2 -NY+N2 -3 Z  BY2  CY  D  QBSBCPMÐOÐO UFQF OPLUBTŽOŽO GPOLTJZPOVOVO HSBGJôJ Y FLTFOJOJ GBSLMŽ JLJ OPLUBEB LFTUJôJOFHÌSF NOJOEFôFSBSBMŽôŽOFEJS BQTJTJ JMF WBSTB LËLMFS UPQMBNŽOŽO ZBSŽTŽ CJSCJSJOF Ô>PMNBMŽ FöJUUJS N 2 - N2 - 3 ) > 0 y N2 -N2 + 12 > 0 r =- b = x1 + x2 12 >PMEVôVOEBO 2a 2 N`3 O x1 // r // x 7$1,0%m/*m x2 Z  BY2  CY  D GPOLTJZPOVOVO HSBGJóJOJO TJNFUSJ T(r, k) FLTFOJ x = - b EPóSVTVEVS ÖRNEK 10 2a  Z= x2 - 4x + 3 GPOLTJZPOVOVOHSBGJóJYFLTFOJOJLFTUJóJOPLUBMBS\"WF# EJS &ôSJOJOUFQFOPLUBTŽ5PMEVôVOBHÌSF \"#5ÑÀHFOJ OJOBMBOŽLBÀCSJNLBSFEJS ÖRNEK 8 Z= x2 - 4x +GPOLTJZPOVOEB Z= 0 j x2 - 4x + 3 = 0 (x - 3) (x - 1) = 0  Z= x2 - N- 2 ) x - 7 x = 3, x =EJS GPOLTJZPOVOVO HSBGJôJOJO TJNFUSJ FLTFOJ Y =  EPô #VEVSVNEB\"   #   EŽS SVTVPMEVôVOBHÌSF NLBÀUŽS Td - b b n n & T^ 2, - 1 h bulunur. , fd - 2a 2a b 3m - 2 y & AB . HT ABT x=- & =2 A^ h = 2a 2 2 3m - 2 = 4 2 2.1 2 = = 1br 3m = 6 OA H B x 13 2 m=2 –1 T 6. –1 7. 38. 2 36 9. –1 10. 1

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 11 ÖRNEK 14 ôFLJMEF Y FLTFOJOJ - WF   Z FLTFOJOJ - OPLUBTŽOEB  Z=LY2 + ( 4 -L2 ) x + 18 LFTFO5FQFOPLUBTŽ5PMBOQBSBCPMÐOHSBGJóJWFSJMNJõUJS QBSBCPMÑYFLTFOJOJPSJKJOFHÌSFTJNFUSJLJLJOPLUBEB y LFTUJôJOFHÌSF LLBÀUŽS –2 O A B6 x 4 -L2 = 0 ( 2 -L  +L = 0 –4 D C L=WFZBL= -EJS L=JÀJOY2 + 18 =SFFMLÌLÑZPLUVS T L= -JÀJO-2x2 + 18 = 0 x = ±PMEVôVOEBO L= -CVMVOVS #VOBHÌSF \"#$%EJLEÌSUHFOJOBMBOŽLBÀCJSJNLBSF ÷LJODJ%FSFDFEFO#JS'POLTJZPOVO(ÌSÑOUÑ EJS ,ÑNFTJOJO&O#ÑZÑLWFZB&O,ÑÀÑL&MFNBOŽ \"OPLUBTŽTJNFUSJFLTFOJÑ[FSJOEFPMEVôVOEBO TANIM | OA | = |\"#| =CJSJNEJS \" \"#$% = 4 . 2 =CJSJNLBSFEJS a >PMNBLÑ[FSF Z= ax2 + bx +DGPOLTJZP- OVOVOHËSÐOUÐLÐNFTJOJOFOLпÐLEFóFSJ UF- ÖRNEK 12 QFOPLUBTŽOŽOPSEJOBUŽEŽS:BOJ  k = 4ac - b2 4a  Z= x2 - N- 2 ) x + 4 EŽS&OCÐZÐLEFóFSJZPLUVS GPOLTJZPOVOVOHSBGJôJOJO5FQFOPLUBTŽ5   PMEV a <PMNBLÑ[FSF Z= ax2 + bx +DGPOLTJZP- ôVOBHÌSF EFOLMFNJOLÌLMFSUPQMBNŽLBÀUŽS OVOVOHËSÐOUÐLÐNFTJOJOFOCÐZÐLEFóFSJ UF- b x +x & 2= x +x QF OPLUBTŽOŽO PSEJOBUŽEŽS :BOJ k = 4ac - b2 r =- = 12 12 2a 2 2 EŽS&OLпÐLEFóFSJZPLUVS 4a &x +x =4 12 7$1,0%m/*m ÖRNEK 15 Z= ax2 + bx +DGPOLTJZPOVOVOHSBGJóJZFLTF- Aşağıdaki fonksiyonların görüntü kümelerinin varsa, OJOFHËSFTJNFUSJLJTFC= en büyük veya en küçük elemanlarını bulunuz. ( yani ax2 + bx + c = 0 denkleminin kökler top- a) Z= 2x2 MBNŽY1+ x2 = EŽS a >PMEVôVOEBO 4.2.0 - 02 k = = 0 & FOLÑÀÑL 4.2 ÖRNEK 13  Z= L- 2 ) x2 + L+ 2 ) x +L+ 8 QBSBCPMÑZFLTFOJOFHÌSFTJNFUSJLPMEVôVOBHÌSF Y b)  Z= -3x2 FLTFOJOJIBOHJOPLUBMBSEBLFTFS a <PMEVôVOEBO 2 4. (- 3) .0 - 2 k + 2 = 0 & k = - 2 & - 4x + 6 = 0 0 k = = 0 & FOCÑZÑL 4. (- 3) 26 3 36 x = = & x =\" =\" 42 22 11. 8 6 37 14. –2 15. B FOLÑÀÑLC FOCÑZÑL 12. 4 13. \" 2

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr c) Z= 3x2 + 2 ÖRNEK 16 a >PMEVôVOEBO FOLÑÀÑL  Z= N- 1 ) x2 - N+ 1 ) x + 5 2 GPOLTJZPOVOVOHÌSÑOUÑLÑNFTJOJOFOLÑÀÑLEFôFSJ PMEVôVOBHÌSF NLBÀUŽS 4.3.2 - 0 k= =2 & 4.3 d) Z= -x2 - 3 4^ m - 1 h.5 - ^ m + 1 h2 =3 a <PMEVôVOEBO 4^ m - 1 h 2 N- 20 -N2 -N- 1 =N- 12 N2 -N+ 9 = 0 4. (- 1) . (- 3) - 0  N- 3 )2 = 0 k = = - 3 & FOCÑZÑL-3 N= 3 4. (- 1) e) Z= x2 - 5x + 2 ÖRNEK 17 a >PMEVôVOEBO - 17 N`3+PMNBLÑ[FSF 4.1.2 - (- 5) 2 - 17 & en küçük  G Y =NY2 +NY-N+ 3 GPOLTJZPOVOVOFOLÑÀÑLEFôFSJPMEVôVOBHÌSF N k= = 4 LBÀUŽS 4.1 4 - 2m f) Z= -2x2 + x - 3 r= = -1 a <PMEVôVOEBO 2m f ( -1 ) =PMNBMŽ 4. (- 2) . (- 3) - (1) 2 - 23 - 23 N -1 )2 +N -1 ) -N+ 3 = 1 k= = & en büyük N-N-N+ 3 = 1 4. (- 2) 8 8 -N= -2 N= 1 g) Z= 2 ( x - 3 ) 2 - 4 ÖRNEK 18 5 S L = T ( 3, - PMEVôVOEBO FOLÑÀÑL- 4 ôFLJMEFWFSJMFOEJLEËSUHFOJOLFOBSV[VOMVLMBSŽY+ 6 ve 8 -YCJSJNEJS h) Z= -3 ( x - 1 ) 2 + 2 8–x 5 S L =5   PMEVôVOEBO FOCÑZÑL x+6 #VEJLEÌSUHFOJOBMBOŽOŽOFOCÑZÑLEFôFSJLBÀCJSJN LBSFEJS \"MBO= ( x + 6) ( 8 - x ) = -x2 + 2x + 48 b r =- = 1 2a f ( 1 ) = -1 + 2 + 48 = 49CS2 17 38 16. 3 17. 1 18. 49 15. D FOLÑÀÑLE FOCÑZÑLmF FOLÑÀÑL- 23 4 G FOCÑZÑL- H FOLÑÀÑLmI FOCÑZÑL 8

%JTLSJNJOBOUWF5FQF/PLUBTŽOŽO²[FMMJLMFSJ TEST - 14 1. G Y =NY2 - N+ 1 ) x + 11 5. ôFLJMEFZ=G Y = ax2 + bx +DQBSBCPMÐOÐOHSB-  GPOLTJZPOVOVO HÌSÑOUÑ LÑNFTJOJO FO LÑÀÑL GJóJWFSJMNJõUJS EFôFSJPMEVôVOBHÌSF NOJOEFôFSJBöBôŽEB y LJMFSEFOIBOHJTJPMBCJMJS 6 A) -3 B) -2 C) 1 D) 2 E) 3 –4 12 x –5 #VOBHÌSF BDLBÀUŽS A) - 11 B) -7 C) - 11 5 8 2. G Y = ( 1 -N Y2 -NY+ 1 D) - & -18  QBSBCPMÑOÑOTJNFUSJFLTFOJY+ 3 =EPôSVTV PMEVôVOBHÌSF NLBÀUŽS 10 8 6 6 5 A) B) C) D) E) 11 9 7 5 3 6. ,FOBSV[VOMVLMBSŽY+CJSJNWF-YCJSJN PMBOCJSEJLEÌSUHFOJOBMBOŽFOÀPLLBÀCS2EJS A) 141 B) 145 C) 147 D) 149 E) 151 3. G Y = x2 + N+ 1 ) x +N+ 3  QBSBCPMÑZ=EPôSVTVOBOFHBUJGUBSBGUBUFôFU PMEVôVOB HÌSF  N OJO  EFôFSJ BöBôŽEBLJMFSEFO IBOHJTJEJS \"  #  $  % -1 E) -2 y 7. x C –2 T 4.  Z= x2 + 2x +N- 3 ôFLJMEFLJZ=G Y = 2ax2 - 4x + 2a2 - 4  QBSBCPMÐOÐOUFQFOPLUBTŽ5PMEVóVOBHËSF   GPOLTJZPOVOVO HSBGJôJOJO Y FLTFOJOJ JLJ GBSLMŽ OPLUBEBLFTNFTJJÀJO NOJOFOCÑZÑLUBNTBZŽ | |$5LBÀCS2EJS EFôFSJLBÀUŽS A) 2 B) 5 C) 7 D) 3 E) 2 2 A) 1 B) 2 C) 3 D) 4 E) 5 1. & 2. $ 3. # 4. $ 39 5. $ 6. $ 7. #

TEST - 15 %JTLSJNJOBOUWF5FQF/PLUBTŽOŽO²[FMMJLMFSJ 1. Z=G Y = x2 -NY+N2 - 1 5. G3Z R  QBSBCPMMFSJOJO UFQF OPLUBTŽ  BOBMJUJL EÑ[MFNEF   G Y = 2x2 - 12x -O+ 1 ***CÌMHFEFPMEVôVOBHÌSF NIBOHJBSBMŽôŽOFMF  GPOLTJZPOVOVOBMBCJMFDFôJFOLÑÀÑLEFôFS- 10 NBOŽEŽS PMEVôVOBHÌSF OLBÀUŽS A) ( -   #    $  -  A) -7 B) -6 C) -5 D) -4 E) -3 D) ( -2, -1 ) E) ( 1, 2 ) 2. Z= N- 2 ) x2 - 2x +N- 2 6. G[ -2, 3 ] Z R  QBSBCPMMFSJOJO UFQF OPLUBTŽ  Z = Y  EPôSVTV   G Y = x2 - 4x + 5 Ñ[FSJOEFPMEVôVOBHÌSF NOJOBMBCJMFDFôJEF ôFSMFSUPQMBNŽLBÀUŽS  GPOLTJZPOVOVOBMBCJMFDFôJ FOCÑZÑL ve FOLÑ ÀÑLEFôFSMFSJOUPQMBNŽLBÀUŽS A) 2 B) 3 C) 4 D) 6 E) 8 A) 19 B) 18 C) 17 D) 16 E) 15 3. x `3PMNBLÑ[FSF 7.  G Y = x2 - 5x + 7 ( 2x - 3 )2 + ( x + 1 )2  QBSBCPMÑ Ñ[FSJOEFLJ CJS OPLUBOŽO LPPSEJOBUMBSŽ  UPQMBNŽOŽOBMBCJMFDFôJFOLÑÀÑLEFôFSLBÀUŽS UPQMBNŽOŽO FOLÑÀÑLEFôFSJLBÀUŽS A) 1 B) 2 C) 3 D) 4 E) 5 A) 1 B) 2 C) 3 D) 4 E) 5 4.  G Y = x2 + N- 3 ) x +O- 1 8. YHFSÀFLTBZŽPMNBLÑ[FSF  QBSBCPMÑOÑO UFQF OPLUBTŽ 5   -  PMEVôVOB A = 2x2 - 5x + 4 HÌSF N+OUPQMBNŽLBÀUŽS B = -x2 + 3x + 6 A) -1 B) 1 C) 2 D) 3 E) 4 PMEVôVOBHÌSF \"+#UPQMBNŽFOB[LBÀUŽS \"  #  $  %  &  1. $ 2. $ 3. & 4. # 40 5. A 6. # 7. $ 8. D

%JTLSJNJOBOUWF5FQF/PLUBTŽOŽO²[FMMJLMFSJ TEST - 16 1.  G Y = N- 2 ) x2 + 4x +N+ 3 5.  Z= x2 - 6x + 5 GPOLTJZPOVOVO HSBGJôJOJO Y FLTFOJOJ LFTUJôJ  GPOLTJZPOVOVOHSBGJóJOJOYFLTFOJOJLFTUJóJOPLUBMBS OPLUBMBSŽOBQTJTMFSJÀBSQŽNŽ 7 PMEVôVOBHÌSF  \"WF#PMTVO 2  &ôSJOJOUFQFOPLUBTŽ5PMEVôVOBHÌSF \"#5ÑÀ NLBÀUŽS HFOJOJOBMBOŽLBÀCJSJNLBSFEJS A) -1 B) 1 C) 2 D) 3 E) 4 A) 15 B) 8 C) 17 D) 9 E) 19 2 2 2 2.  G Y = 2x2 + 6x +N- 3 GPOLTJZPOVOVOHSBGJôJYFLTFOJOJLFTUJôJOFHÌ 6.  Z= N- 2 ) x2 + N2 - 4) x + 8 SF NOJOFOHFOJöEFôFSBSBMŽôŽOFEJS  QBSBCPMÑOÑOUFQFOPLUBTŽZFLTFOJÑ[FSJOEFPM A) f - 3 , 15 p B) f - 3 , 9 H EVôVOBHÌSF NLBÀUŽS 2 2 C) > 15 , 3 p D) f - 3 , 15 H A) -2 B) -1 C) 1 D) 2 E) 8 2 2 E) f 15 , 3 p 2 3.  Z= 2x2 -LY+N- 1 7.  G Y = x2 + N+ 3 ) x +N+ 2 GPOLTJZPOVOVO HSBGJôJ Y FLTFOJOF -    OPL  QBSBCPMÑOÑOUFQFOPLUBTŽYFLTFOJÑ[FSJOEFPM UBTŽOEBUFôFUPMEVôVOBHÌSF L+NUPQMBNŽLBÀ EVôVOBHÌSF ZFLTFOJOJLFTUJôJOPLUBBöBôŽEB UŽS LJMFSEFOIBOHJTJEJS A) -4 B) -2 C) -1 D) 1 E) 2 A) -3 B) -2 C) -1 D) 1 E) 2 4.  Z= L- 2 ) x2 +LY+L- 4  GPOLTJZPOVOVOHSBGJôJEBJNBYFLTFOJOJOBMUŽO 8. #JSTBUŽDŽYMJSBZBBMEŽóŽCJSNBMŽZMJSBZBTBUNBLUBEŽS EBPMEVôVOBHÌSF NOJOÀÌ[ÑNBSBMŽôŽOFEJS  YJMFZBSBTŽOEB A) ( -R, 2 ) B) f 4 , 2 p   Z= -x2 + 9x + C) f - 3 , 4 p 3  CBôŽOUŽTŽ PMEVôVOB HÌSF  TBUŽDŽOŽO L»SŽ FO ÀPL 3 D) f - 4 , 3 p LBÀMJSBEŽS 3 A) 4 B) 16 C) 32 D) 56 E) 72 E) f - 4 , - 2 p 3 1. & 2. D 3. $ 4. $ 41 5. # 6. A 7. D 8. D

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr 1\"3\"#0-*** (SBüôJ7FSJMFO1BSBCPMÑO%FOLMFNJOJ:B[NB b) y 7$1,0%m/*m  YFLTFOJOJLFTFOOPLUBMBSCJMJOJZPSTB y y = f(x) 1BSBCPMÐOEFOLMFNJ –1 O x x2 x –2 3 O G Y =B Y- x1 ) ( x - x2 ) x1 EJS1BSBCPMÐ[FSJOEFLËL- Z= a( x + 1 ) ( x - 3), MFS EŽõŽOEB WFSJMFO IFS- IBOHJ CJS OPLUB QBSBCPM ( 0, - OPLUBTŽEFOLMFNJTBôMBS EFOLMFNJOEF ZB[ŽMBSBL B EFóFSJCVMVOVS -2 = a.1. (-3 )  1BSBCPMÐO UFQF OPLUBTŽOŽO LPPSEJOBUMBSŽ CJMJOJ- a = 2 UÑS ZPSTB 3 y 1BSBCPMÐOEFOLMFNJ 2 G Y =B Y-S 2 +LEJS y = (x + 1) (1 - 3) 3 1BSBCPM Ð[FSJOEF UFQF c) y O OPLUBTŽ EŽõŽOEB WFSJMFO 2 A(2, 2) T(r,k) x IFSIBOHJ CJS OPLUB QBSB- –1 CPMEFOLMFNJOEFZB[ŽMBSBL O BEFóFSJCVMVOVS 24 x ÖRNEK 1 Z= a( x + 1 ) ( x - 4) \"öBôŽEBWFSJMFOQBSBCPMMFSJOEFOLMFNMFSJOJCVMVOV[ \"   OPLUBTŽEFOLMFNJTBôMBS a) y 2 = a.3.( -2 ) j a = - 1 3 y = - 1 ^ x + 1 h^ x - 4 h 3 2 x d) y O1 2 O 45 x Z= a ( x - 1 ) ( x - 2), –5 A(5, –5)   OPLUBTŽEFOLMFNJTBôMBS 2 = a (-1 ) ( -2 ) Z= a( x - 0 ) ( x - 4) a =EJS A ( 5, - OPLUBTŽEFOLMFNJTBôMBS Z= ( x - 1 ) ( x - 2 ) -5 = a.5.1 j a = -1 Z= -x ( x - 4) 1. B Z Ym  Ym  42 b) y = 2 ^ x + 1 h^ x - 3 h c) y = - 1 ^ x + 1 h^ x - 4 hE ZmY Ym  33

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, e) h) 5FQFOPLUBTŽ5 -  WFZFLTFOJOJLFTUJôJOPL y UB  - PMBOQBSBCPMÑOEFOLMFNJOFEJS –1 O x Z=a ( x + 2 )2 ( 0, - OPLUBTŽEFOLMFNJTBôMBS T(–1, –2) –1 -4 = a.4 j a = -1 –2 Z= -( x + 2)2 Z=a ( x + 1 )2 - 2 Ž y ( 0, - OPLUBTŽEFOLMFNJTBôMBS -1 = a - 2 j a = 1 O1 x Z= ( x + 1)2 - 2 –2 f) y –4 A(1, –4) T(3, 4) Z=a.x2 - 2 4 A ( 1, - OPLUBTŽEFOLMFNJTBôMBS -4 = a - 2 j a = -2 O x Z= -2x2 - 2 3 ÖRNEK 2 y –2 2k –4 Z=a ( x - 3 )2 + 4 O kx ( 0, - OPLUBTŽEFOLMFNJTBôMBS -2 = a(-3)2 + 4 j a = - 2 3 y = - 2 ^ x - 3 h2 + 4 3 g) y :VLBSŽEBWFSJMFOZ=G Y GPOLTJZPOVJÀJO f^ k + 1 h 2 =-1 f^ -1 h O1 PMEVôVOBHÌSF LLBÀUŽS 5   PMEVôVOEBOZ= a(x - 1)2+ 0   OPLUBTŽEFOLMFNJTBôMBS x 2 = a(-1)2 j a = 2 Z= 2(x - 1)2 f (x ) = a (x -L  Y+ 4 ) f (k + 1) a (k + 1 - k) (k + 5) = =-1 f (- 1) a (- 1 - k) .3 L+ 5 =L+ 3 L= 2 jL= 1 F Z Y  2 – 2 f) y = - 2 ^ x - 3 h2 + 4 H Z2(x – 1)2 43 I Zm Y  2 Ž ZmY2 – 2 2. 1 3

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 3 ÖRNEK 5 y y = f(x) y x y = x2 – mx – m – 5 O B A AO Bx C ôFLJMEFHSBGJóJWFSJMFOGPOLTJZPOVOEFOLMFNJ | |:VLBSŽEBLJHSBGJLUF \"# =PMEVôVOBHÌSF NOJO | | | | | |f(x) = ax2 - bx - 1 , 12 0\" = 4 0# = 3 0$ EJS BMBCJMFDFôJEFôFSMFSJCVMVOV[ 4 :VLBSŽEBLJWFSJMFSFHÌSF B+CLBÀUŽS x2 -NY-N- 5 =EFOLMFNJOEF f (x ) = a (x +L  Y-L   -L EFOLMFNJTBôMBS | x - x | = T =5 1 2 a 4 2 -L=B L  -L j a.k = m + 4m + 20 = 5 m2 + 4m + 20 = 25 3 2 1 1 64 m + 4m - 5 = 0 x = 0 j-L= - j k = , a = 4 16 3 f (x) = 64 2 - 8 x- 1 (m + 5) (m - 1) = 0 x 3 34 56 m = - 5 ve m = 1 bulunur. a+b= 3 CVMVOVS ÖRNEK 4 ÖRNEK 6 %FOJ[TFWJZFTJOEFONZÐLTFLMJLUFLJCJSLBZBMŽLUBOEF- y y = 2x2 – 8x – 4m – 2 OJ[F BUŽMBO CJS UBõ  QBSBCPM HSBGJóJ PMVõUVSBSBL EÐõNFL- UFEJS5BõŽOEFOJ[TFWJZFTJOEFOFOZÐLTFLUFCVMVOEVóV OPLUB5OPLUBTŽEŽS T AO B x C 12 m # | | | |:VLBSŽEBLJHSBGJLUF  0# = 5 AO PMEVôVOBHÌSF $ \"H OPLUBTŽOŽOLPPSEJOBUMBSŽOŽCVMVOV[ \"OPLUBTŽOŽOBQTJTJ-L #OPLUBTŽOŽOBQTJTJL | | | | | |TH =NWF AH =NPMEVôVOBHÌSF \"# LBÀ x + x =L= 4 jL= 1 NFUSFEJS 1 2 y Z= a(x - 2)2 + 16 PIBMEFLÌLMFSY1 = -1 ve 16 12 = a(-2)2+ 16 j a = -1 x2 =UJS ,ÌLMFSEFOLMFNJTBôMBS 12 Z= -x2 + 4x - 4 + 16 x1 = -JÀJO x Z= -x2 + 4x + 12 2 + 8 -N- 2 = 0 -(x - 6) (x + 2) = 0 O2 N= 8 j N=CVMVOVS x =JÀJO$OPLUBTŽOŽOPSEJOBUŽ-CVMVOVS x = 6 j |\"#| =N 56 4. 6 44 5. –5 ve 1 6. (0, –10) 3. 3

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 7 ÖRNEK 9 Bx \"   `G  f(x) = ax2 + bx + c #   `G ôFLJMEFLJ QBSBCPM FLTFOMFSJ LFTUJóJ OPLUBMBS JMF CFMJSMFO- y $ N  `G NJõUJS#VQBSBCPMÐOÐTUZBSŽTŽÐ[FSJOEFEFóJõLFOCJS$ OPLUBTŽBMŽOŽZPS A [ CA ] m [AB] y C O 2 C BO A :VLBSŽEBLJ WFSJMFSF HÌSF   B + b + D UPQMBNŽOŽO EF –1 x ôFSJLBÀUŽS 4 0MVöBDBL\"0$ÑÀHFOJOJOBMBOŽOŽOBMBCJMFDFôJNBLTJ \"#$EJLÑÀHFOJOEFÌLMJECBôŽOUŽTŽOEBO-N= 32 NVNEFôFSLBÀCS2PMVS N= -CVMVOVS 1BSBCPMÑOEFOLMFNJZB[ŽMŽSTB #VSBEBOQBSBCPMÑOEFOLMFNJG Y = a(x + 1) (x - 9), Z= a ( x + 1 ) ( x - 4 )   OPLUBTŽEFOLMFNJTBôMBS 1 1 2 = a . 1. ( -4 ) j a = - 3 = a.1. (-9) j a = - 2 3 Z= - 1 ^ x + 1 h^ x - 4 h f^ x h =- 1 ^ x + 1 h ^ x - 9 h =- 1 x2 + 8 x + 3 2 3 33 \"MBOŽOŽO NBLTJNVN PMNBTŽ JÀJO $ OPLUBTŽ 5FQF OPL 18 16 a+b+c =- + +3 = UBTŽPMNBMŽEŽS 33 3 3 25 Td , n 28 25 25 bulunur. 4. = A^ AOC h = 8 4 2 ÖRNEK 8 ÖRNEK 10 #JSZÐ[ÐDÐ\"OPLUBTŽOEBOEFOJ[FHJSJQQBSBCPMJLCJSSPUB ôFLJMEFUFQFOPLUBTŽ5PMBO Z= x2 - 4x +DGPOLTJZPOVO JMFZÐ[FSFL#OPLUBTŽOBVMBõŽZPS HSBGJóJWFSJMNJõUJS y y y = f(x) Sahil K A B x –2 8 LT –5 x O Deniz :Ñ[ÑDÑTBIJMEFOFOÀPLLBÀCJSJNV[BLMBöNŽöUŽS | KL | = | -0| PMEVôVOBHÌSF DLBÀUŽS Z= a ( x + 2 ) ( x - 8 ) | KL | = | LO |PMEVôVOEBO -5 = a. 2. ( -8 ) j 5 c a= = c - 4 & c = 2c - 8 j c = 8 125 16 2 Td 3, 16 n 16 ZÑ[ÑDÑFOÀPL 125 CJSJNV[BLMBöŽS 45 9. 10. 8 16 3 25 125 7. 8. 4 16

TEST - 17 (SBGJôJ7FSJMFO1BSBCPMÑO%FOLMFNJOJ:B[NB 1. y f(x) 4. y = –x y õFLJMEFLJ 1\"0 ÑÀHF 2x OJOJOBMBOŽLBÀCJSJN –1 O O LBSFEJS x P A y = –3x2 –4 :VLBSŽEBHSBGJôJWFSJMNJöPMBOQBSBCPMÑOEFOL 1 1 1 1 1 MFNJBöBôŽEBLJMFSEFOIBOHJTJEJS A) B) C) D) E) \" G Y = x2 + x - # G Y = x2 - x - 2 C G Y = x2 - 2x - % G Y = 2x2 - 2x - 4 2 6 9 18 24   & G Y = 2x2 + 2x - 4 y 5. y 2. CB x f(x) OA 1 x –2 O  :VLBSŽEBLJHSBGJLUF QBSBCPMJLGPOLTJZPOVOUF QFOPLUBTŽOŽOBQTJTJWF0\"#$EJLEÌSUHFOJOJO :VLBSŽEBHSBGJôJWFSJMNJöPMBOQBSBCPMÑOEFOL BMBOŽCS2PMEVôVOBHÌSF EJLEÌSUHFOJOÀFWSF MFNJBöBôŽEBLJMFSEFOIBOHJTJEJS TJLBÀCJSJNEJS \" G Y = x2 + x + # G Y = x2 - 4x + 4 A  #  $  %  &  $ G Y = 1 x2 + x + 1 % G Y = 1 x2 - x + 1 24   & G Y = 1 x2 + x + 1 4 6. y y = f(x) = x2 + px + c 55FQFOPLUBTŽ 3. y 16 T A A OD x OB x –1 5 –2 BC  ôFLJMEFG Y = x2 +QY+ c QBSBCPMÐOÐOHSBGJóJWFSJM- NJõUJS  õFLJMEFLJ QBSBCPMÑO UFQF OPLUBTŽ $ PMEVôVOB HÌSF \"#$%EJLEÌSUHFOJOJOBMBOŽLBÀCS2EJS  \"0#5 EJLEÌSUHFOJOJO ÀFWSFTJ  CS PMEVôVOB HÌSF QDLBÀUŽS  \"   #   $   %   &  A) -96 B) - $ - % -& -48 1. D 2. & 3. D 46 4. D 5. # 6. A

(SBGJôJ7FSJMFO1BSBCPMÑO%FOLMFNJOJ:B[NB TEST - 18 1. y 4. ,PPSEJOBUEÐ[MFNJOEFZ=G Y QBSBCPMGPOLTJZPOV- y = f(x) OVOHSBGJóJWFSJMNJõUJS O x y T –3 1 3 2 x –2 1 O  ,PPSEJOBUEÑ[MFNJOEFHSBGJôJWFSJMFOQBSBCPMJL y = f(x) GPOLTJZPOJÀJOG G -  EFôFSJLBÀUŽS A) -3 B) -2 C) -1 D) 1 E) 2  #VOB HÌSF  GPOLTJZPOVO Z ZFLTFOJOJ LFTUJôJ OPLUBOŽOLPPSEJOBUMBSŽBöBôŽEBLJMFSEFOIBOHJTJ EJS \"   -  #   - $   -4 )  %   -  &   -6 ) 2. \"   #   WF$ -   OPLUBMBSŽOEBO HFÀFO QBSBCPMÑO EFOLMFNJ BöB 5. ôFLJMEFLJTVLFNFSJOJOUFQFOPLUBTŽOŽOZFSEFOZÐL- ôŽEBLJMFSEFOIBOHJTJEJS TFLMJóJNFUSF BZBLMBSŽOŽOJ¿LŽTŽNMBSŽBSBTŽOEBLJ \" Z= -x2 + # Z= -x2 - 4 NFTBGFNFUSFEJS $ Z= x2 - % Z= -x2 - x + 4 12 m   & Z= x2 + x + 4 6m 3. 5FQFOPLUBTŽLPPSEJOBUMBSŽ5 -  PMBO   #VOBHÌSF ZVLBSŽEBLJHJCJNPEFMMFOFOQBSBCP MÑOEFOLMFNJ TJNFUSJFLTFOJZFLTFOJPMBDBLöF Z=G Y QBSBCPMGPOLTJZPOV\" -4, - OPLUB LJMEF BöBôŽEBLJMFSEFOIBOHJTJEJS TŽOEBOHFÀUJôJOFHÌSF CVGPOLTJZPOVOZFLTF OJOJLFTUJôJOPLUBOŽOPSEJOBUŽLBÀUŽS A) y = - 4 ^ x2 - 9 h B) y = 4 ^ x2 - 9 h 3 3 A) -9 B) -7 C) -5 D) -3 E) -1 C) y = - 3 ^ x2 - 9 h D) y = - 4 ^ x2 - 3x h 4 3 E) y = - 4 ^ x2 + 3x h 3 1. # 2. A 3. # 47 4. & 5. A

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr 1\"3\"#0-*7 #JS1BSBCPMJMF#JS%PôSVOVO#JSCJSJOF(ÌSF ÖRNEK 2 %VSVNMBSŽ  Z= 2x2 - 4x + 2 7$1,0%m/*m QBSBCPMÑJMFZ= 2x +EPôSVTVOVOLFTJNOPLUBMB SŽOŽOBQTJTMFSJUPQMBNŽLBÀUŽS Z= ax2 + bx +DQBSBCPMÐJMFLY+QZ+S= EPóSVTVOVO LFTJN OPLUBMBSŽ CVMVOVSLFO  CV JLJ 2x2 - 4x + 2 = 2x + 1 EFOLMFNJOPSUBL¿Ë[ÐNÐOEFOFMEFFEJMFDFLPMBO 2x2 - 6x + 1 = 0 EFSFDFEFOEFOLMFN¿Ë[ÐMÐS#VEFOLMFNEF  ÓJTFEPóSV QBSBCPMÐGBSLMŽJLJOPLUBEBLF- 6 TFS x + x = = 3 CVMVOVS  Ó=JTFEPóSV QBSBCPMFUFóFUUJS 1 22  ÓJTFEPóSV QBSBCPMÐLFTNF[  Q=JTFEPóSV QBSBCPMÐCJSOPLUBEBLFTFS ÖRNEK 1 ÖRNEK 3 \"öBôŽEBLJ  QBSBCPM WF EPôSVMBSŽO CJSCJSJOF HÌSF EV Z= x2 - N+ 1 ) x - 4 SVNMBSŽOŽ JODFMFZJOJ[ WBSTB LFTJN OPLUBMBSŽOŽ CVMV QBSBCPMÑJMFZ=NY+EPôSVTVOVOLFTJNOPLUBMB OV[ SŽOŽOBQTJTMFSJUPQMBNŽPMEVôVOBHÌSF NLBÀUŽS a) Z= x2 - 3x +JMFZ= 3 - 2x x2 - N+ 1 ) x - 4 =NY+ 2 x2 - 3x + 1 = 3 - 2x x2 - N+ 1) x - 6 = 0 x2 - x - 2 = 0 x1 + x2 =N+ 1 =PMNBMŽ (x - 2) (x + 1) = 0 #VSBEBON=CVMVOVS x = 2 x = -1 ÖRNEK 4 x = 2 jZ= -1 jCwF-1) x = -1 jZ= 5 j( -1, 5 ) Z= x2 - 4x + 2 1BSBCPMEPôSVJMF  -1) ve (-  OPLUBMBSŽOEBLFTJöJS QBSBCPMÑJMFZ= 2x +EPôSVTVOVOLFTJNOPLUBMBSŽ b) Z= x2 - x +JMFZ= x + 1 \"WF#PMEVôVOBHÌSF [\"#]EPôSVQBSÀBTŽOŽOPSUB x2 - x + 2 = x + 1 OPLUBTŽOŽCVMVOV[ x2 - 2x + 1 = 0 x2 -4x + 2 = 2x + 3 ( x - 1 )2 = 0 x=1 x2 - 6x - 1 = 0 x = 1 jZ=QBSBCPMEPôSVJMF   OPLUB x +x 6 TŽOEBUFôFUUJS 12 = =3 c) Z= 3x2 + x +JMFZ= 4 - x 22 3x2 + x + 5 = 4 - x x =OPLUBTŽEPôSVEFOLMFNJOEFZB[ŽMŽSTBZ=CVMV 3x2 + 2x + 1 = 0 Ô= 4 - 4.3.1 = -8 <PMEVôVOEBOSFFMLÌLZPLUVS OVS0IBMEFPSUBOPLUB   EVS 1BSBCPMJMFEPôSVLFTJöNF[ 1. B   m  m  C    OPLUBTŽOEBUFôFUUJSD ,FTJöNF[MFS 48 2. 3 3. 1 4. ( 3, 9 )


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook