Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore TYT Matematik Ders İşleyiş Modülleri 3. Modül Üslü Köklü Sayılar

TYT Matematik Ders İşleyiş Modülleri 3. Modül Üslü Köklü Sayılar

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-23 00:46:36

Description: TYT Matematik Ders İşleyiş Modülleri 3. Modül Üslü Köklü Sayılar

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- :BZŽO&EJUÌSÑ %J[HJ–(SBGJL5BTBSŽN  .FINFU÷MLFS¦0#\"/ *4#//P :BZŽODŽ4FSUJGJLB/P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ #BTŽN:FSJ ÷MFUJöJN         &SUFN#BTŽN:BZŽO-UEõUJr    \":%*/:\":*/-\"3*  JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ ÜNİVERSİTEYE HAZIRLIK 3. MODÜL MATEMATİK - 1 Alt bölümlerin KARMA TEST - 5 ,ÌLMÑ4BZŽMBS Karma Testler EDĜOñNODUñQñL©HULU ÜSLÜ VE KÖKLÜ SAYILAR Modülün sonunda  ³ ÜSLÜ SAYILAR 1. x = 7 + 3 ve y = 2 - 1PMEVôVOBHÌSF 5. x = 5 - 24 4PMEVôVOBHÌSF tüm alt bölümleri y = 5 + 24 L©HUHQNDUPDWHVWOHU 14 – 3 + 3 2 - 7 \\HUDOñU x-y JGBEFTJOJOYWFZDJOTJOEFOEFôFSJBöBôŽEBLJMFS- yx  JöMFNJOJOTPOVDVLBÀUŽS EFOIBOHJTJEJS ³ Üslü Sayı t 2 A) x + y B) 2x - y xy A) - 5 6 B) - 4 6 C) - 3 6 C) 2 D) x.y E) x - y D) - 2 6 E) - 6 ³ Üslü Sayının Özellikleri t 2 ³ Toplama - Çıkarma İşlemi t 8 ³ Bölme İşlemi t 8 6ñQñIð©LðĜOH\\LĜ 6. 1 10 + 19 - 10 - 19 ³ Bilimsel Gösterim t 10·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr %XE¸O¾PGHNL¸UQHN 2. 8 + 2 15 - 8 - 2 15 VRUXODUñQ©¸]¾POHULQH  JöMFNJOJOTPOVDVLBÀUŽS DNñOOñWDKWDX\\JXODPDVñQGDQ ÜSLÜ SAYILAR - I XODĜDELOLUVLQL]  JöMFNJOJOTPOVDVLBÀUŽS ·TMÑ4BZŽMBSŽO²[FMMJLMFSJ ³ Üslü Denklemler t 15 $OW%¸O¾P7HVWOHUL,ÌLMÑ4BZŽMBS A) 5 + 3 B) 2 3 C) 5 - 3 2 2 ·TMÑ4BZŽ E) – 5 - 3 A) B) D)2 E) 6 Her alt bölümün D) 2 5 C) 1 D) 2 E) 2 2 VRQXQGDRE¸O¾POHLOJLOL 4 2 WHVWOHU\\HUDOñU ³ Üslü Sayılarda S7aı$r`1a,Rl0avemn%a`m/Z*+tmolm2a0k üzere, 7$1,0%m/*m C) 2 - 3 2 a ` R - {0} ve n ` Z olsun. E) 3 an ifadesine üslü ifade denir. a–n = f 1 n 1 ,c a –n b n p= m =f p an = 1a4.4a2.a.4.4.a3 n Z üs, a Z taban a an b a n tane <HQL1HVLO6RUXODU a, b ` R, m, n ` Z olsun. 3. 11+ 2 24 – 10 – 2 16 7. A =( 7 +1) (4 7 +1) (8 7 +1) (16 7 +1) (32 7 +1) ³ Karma Testlae`r R t- {02} ,4n ` Z+ olsun.  JöMFNJOJOTPOVDVLBÀ,U̎SLMÑ4BZŽMBS 0RG¾O¾QJHQHOLQGH\\RUXP r am . an = am + n <(1m1(6m/6258/$5 PMEVôVOBHÌSF  32 7 OJO\"UÑSÑOEFOFöJUJLBÀ- \\DSPDDQDOL]HWPHYE r a0 = 1 (00 belirsizdir.) UŽS EHFHULOHUL¸O©HQNXUJXOX  r an. an = ( a . b )n VRUXODUD\\HUYHULOPLĜWLU ³ Yeni Nesil Sor rua1la=ra t 32 $\\UñFDPRG¾OVRQXQGD  r ( an )m = ( am ) n = am.n dir. A) 3 1B.) ô2F-LJM1EF CJS BNCC)VMB3OT+ŽO L2B[B TPOSBTŽOEAB) HJAEF+C6JMF- A+4 C) A + 1 WDPDPñ\\HQLQHVLOVRUXODUGDQ r ( -1 )2n = 1 , ( -1 )2n-1 = -1 D) 3 - 2 DFóJIBTUBEO)F1MFSFPMBOV[BLMŽóŽHËTUFSJMNJõUJS A 3B. ) A 2A ROXĜDQWHVWOHUEXOXQXU a ` R- , n ` Z olsun. D) A LNEL AA B E) LN ÖRNEK 2 2A – 1 A+6 r n tek ise an < 0 , ( -2 )3 < 0 LN r n çift ise an > 0 , ( -2 )4 > 0 \"öBôŽEBWFSJMFOJöMFNMFSJOTPOVDVOVCVMBMŽN B LN LN LN -24á -2 )4 1 2 –2 -3 –1 p + 2–2 + f p a) f 4 LN 5 LN C 32  \"WF#EVSBLMBSŽOBTŽSBTŽZMB 75 LNWF 48 LN b) ( 5-3 . 54 ) –2 4. Y>PMNBLÑ[FSF A 3 LN 3LN8. 1 V[BLMŽLUB CVMVOBO CJS PUPCÑT ZPMDVTV  \" EVSB- (1+ 3) (1+ 4 3) . (1+ 8ôŽ3O)B._ 11+4176L3NiV[BLMŽLUBCVMVOBOWF 5 3 LNEL ^ –2 –2 h x – 2 + 2 x – 3 + x – 2 – 4x – 12 = 6 LN 16 TBCJU IŽ[MB IBSFLFU FEFO PUPCÑTF BöBôŽEB WFSJ- c) JöMFNJOJOTPOVDVLBÀUMŽFSOZÌOWFIŽ[MBSEBOIBOHJTJJMFIBSFLFUFEFSTF ÖRNEK 1 d) ^ 0, 3 hx.91–x.27x–1  PMEVôVOBHÌSF  x + 4 + x - 3 LBÀUŽS E C16JO3FC–JM1JS D A) 16 3 - 1 B) a) \"öBôŽEB WFSJMFO ÀBSQŽNMBSŽ ÑTMÑ JGBEF öFLMJOEF e) ( 0,0002 ) –2 . ( 0,08 )2 C) 1– 3 ZB[BMŽN A) 4 B) 5 C) 6 D) 7 E) 8 A) \"2ZËOÐOEF2 3 LNIŽ[MB f) ( -a2 ) . ( -a )7 . ( -a3 )2  5SBGJLZPôVOMVôVTBCJULBCVMFEJMEJôJOEFBNCVD-) 3 - 1 B) #ZËOÐEO)EF3 3 LNIŽ[MB MBOTŽOHJUNFTJHFSFLFOFOZBLŽOIBTUBOFBöBôŽ- 2 r 5.5.5.5 =  C)\"ZËOÐOEF 3 LNIŽ[MB g) 22. 32. 42... 102 EBLJMFSEFOIBOHJTJPMVS TEST - 16 r ( -3 ).( -3 ).( -3 ).( -3 ).( -3 ) =  1. D 2. B A3). AC 4. D B) B C) C 58D) D E) E 5. B 6. B D)7.#AZË8O.ÐBOEF 3 LNIŽ[MB ( 32 )5 ^ 2 5 h 2 3 3 a2x ax = a10 h) . r f 2 p.f 2 p.f 2 p =1. 5. 3 - 2 2 + 3 + 2 2 E) \"ZËOÐOEF 5 3 LNIŽ[MB 3 3 3 2  UPQMBNŽOŽOTPOVDVLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS A) 9 B) 10 C) 12 D) 14 E) 15 A) 2 B) 2 2 C) 3 b) \"öBôŽEBWFSJMFOJöMFNMFSJOTPOVDVOVCVMBMŽN 4. \"õBóŽEBWFSJMFO\"WF#NBLJOFMFSJOFBUŽMBOCJSBTB- r 25 - 33 - 190 =  ZŽTŽOŽO ÐSÐO PMBSBL LBSõŽMŽLMBSŽ TŽSBTŽZMB a - 1 WF a + 1 EJS #VOB HËSF  IFS JLJ NBLJOFZF EF  EFO  r ( -2 )6 - ( -2 )5 + ( -24 ) =  ZFLBEBS EBIJM UBNTBZŽMBSBUŽMŽZPSWFFMEF FEJMFOUÐNÐSÐOMFS¿BSQŽMBSBLCJS\"TBZŽTŽFMEFFEJMJ- r ( -1 )100 - ( -1 102) + ( -1 )103 =  ZPS r [ ( -5)10 ] 0 - (-20190 )100 =  6. 1 + 2 BB 3 - 2 2 6 + 32 0 2. a2 3 a a4 = ab AB iöMFNJOJOTPOVDVLBÀUŽS r ^ - 8 h1 + f 2 p - ^ - 1 h1001  2. N EBOLпÐLCJSEPóBMTBZŽPMNBLÐ[FSF 5m2 + 4 9 PMEVôVOBHÌSF CLBÀUŽS (a > 0) Bm B  JGBEFTJCJSUBNTBZŽZBFõJUUJS 3 4 5 3 A) -1 B) –2 2  #VOBHÌSF NOJOLBÀGBSLMŽEFôFSJWBSEŽS 2 32 11 1 1. a) 54, (–3)5, d 2 3 A) 1 B) C) D) E) 1 1 e) 204 f) a15 Dg))0(10!)2 h) 342 A) 2 B) 3 C) 4 D) 5 E) 6  #VOB HÌSF  \" TBZŽTŽ JMF JMHJMJ BöBôŽEBLJMFSEFO n b) 4, 80, 1, 0, –6 2. a6) 6 b) 245 c) d) IBOHJTJEPôSVEVS 3 2 3 A) &OCÐZÐLBTBM¿BSQBOŽEJS B) 4POEBOCBTBNBóŽTŽGŽSEŽS 3. a D R+ olmak üzere; C) EJS D) UBOFGBSLMŽBTBM¿BSQBOŽWBSEŽS E) 361 JMFCËMÐNÐOEFOLBMBOEJS 1 3 a8 a5 4 1 7. a ` R+ olmak üzere, 63 a2 a12 3+a-2 a+2 =4 PMEVôVOBHÌSF BLBÀUŽS 1. C 2. B 3. B 4. B JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS A) 21 B) 23 C) 25 D) 27 E) 29 A) a B) a a C) a2 a a E) a D) a 8. 7 + 4 3 . 7 - 48 4. 3 2x + 6 . 3 2x = 128 JöMFNJOJOTPOVDVLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS A) -1 B) 1 C) 2 3 E) 3 + 4 A) 12 B) 18 C) 20 D) 24 E) 32 D) 4 1. C 2. B 3. E 4. A 52 5. B 6. E 7. B 8. B

ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, MATEMATİK - 1 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR  ³ ÜSLÜ SAYILAR ³ Üslü Sayı t 2 ³ Üslü Sayının Özellikleri t 2 ³ Üslü Sayılarda Toplama - Çıkarma İşlemleri t 8 ³ Üslü Sayılarda Bölme İşlemi t 8 ³ Bilimsel Gösterim t 10 ³ Üslü Denklemler t 15 ³ Üslü Sayılarda Sıralama t 20 ³ Karma Testler t 24 ³ Yeni Nesil Sorular t 32 1

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÜSLÜ SAYILAR - I ·TMÑ4BZŽ ·TMÑ4BZŽMBSŽO²[FMMJLMFSJ 7$1,0%m/*m 7$1,0%m/*m a ` R ve n ` Z+ olmak üzere, a ` R - {0} ve n ` Z olsun. an ifadesine üslü ifade denir. an = 1a4.4a2.a.4.4.a3 n Z üs, a Z taban a–n = f 1 n 1 ,c a –n b n n tane p= m =f p a an b a a ` R - {0} , n ` Z+ olsun. r a0 = 1 (00 belirsizdir.) a, b ` R, m, n ` Z olsun.  r a1 = a r ( -1 )2n = 1 , ( -1 )2n-1 = -1 r am . an = am + n a ` R- , n ` Z olsun. r n tek ise an < 0 , ( -2 )3 < 0  r an. bn = ( a . b )n r n çift ise an > 0 , ( -2 )4 > 0  r ( an )m = ( am ) n = am.n dir. -24á -2 )4 ÖRNEK 2 \"öBôŽEBWFSJMFOJöMFNMFSJOTPOVDVOVCVMBMŽN a) f 2 –2 + 2–2 + f -3 –1 p p 32 b) ( 5-3 . 54 ) –2 ^ –2 –2 h 16 c) ÖRNEK 1 d) ^ 0, 3 hx.91–x.27x–1 a) \"öBôŽEB WFSJMFO ÀBSQŽNMBSŽ ÑTMÑ JGBEF öFLMJOEF e) ( 0,0002 ) –2 . ( 0,08 )2 ZB[BMŽN r 5.5.5.5 =  54 f) ( -a2 ) . ( -a )7 . ( -a3 )2 (–3)5 g) 22. 32. 42... 102  r ( -3 ).( -3 ).( -3 ).( -3 ).( -3 ) =  ( 32 )5 ^ 2 5 h 3 d 2 3 h) . n 2 2 2 3 r f 3 p.f 3 p.f 3 p = 9 1 2 11 a) + - = 443 6 b) 56.5-8 = 5-2 = 1 25 b) \"öBôŽEBWFSJMFOJöMFNMFSJOTPOVDVOVCVMBMŽN 11 1 – = (24) – = 2–1 = r 25 - 33 - 190 =  c) 16 4 4 2 4  r ( -2 )6 - ( -2 )5 + ( -24 ) =  80 d) 3–x.32.3-2x.33x.3-3 = 1 3 r ( -1 )100 - ( -1 102) + ( -1 )103 =  1 e) (2.10-4)-2 . (8.10-2)2 = 204 r [ ( -5)10 ] 0 - (-20190 )100 =  0 f) (-a2) . (-a7). a6 = a15 g) (10!)2 r ^ - 8 h1 + f 2 0 -6 h) 310.332 = 342 9 p - ^ - 1 h1001  1. a) 54, (–3)5, d 2 3 b) 4, 80, 1, 0, –6 2 11 1 1 1 e) 204 f) a15 g) (10!)2 h) 342 2. a) b) c) d) n 6 25 2 3 3

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 3 ÖRNEK 7 274 . 323 = 6m . n , ( m, n ` Z ) 1– x FöJUMJôJOEFNOJOFOCÑZÑLUBNTBZŽEFôFSJLBÀUŽS 3 x =5 312. 215 = 612 . 8 jN= 12 PMEVôVOBHÌSF 3xJGBEFTJOJOEFôFSJLBÀUŽS 3 1 –1 = 5 & 3 1 = 15 x .3 x 15 3x = a 1/x k3x = 3 3 = 27 3 ÖRNEK 4 ÖRNEK 8 506 . 804 . 2503 x2 + 2x + 4 = 0 TBZŽTŽLBÀCBTBNBLMŽEŽS = ( 52. 2 )6 . ( 24. 5 )4 . ( 53. 2 )3 = 525. 225 = 1025 jCBTBNBLMŽEŽS PMEVôVOBHÌSF  x–6 + c x –9 UŽS 2 m JGBEFTJOJOEFôFSJLBÀ- ÖRNEK 5 (x – 2) (x2 + 2x + 4) = x3 - 8 = 0 j x3 = 8 9x + 1 = 25 x–6 + d x –9 = a 3 k–2 + 29.a 3 k–3 PMEVôVOBHÌSF x + 1JOEFôFSJLBÀUŽS n x x 2 = 8 –2 + 9 –3 = 65 2 .8 64 9x . 9 = 25 j x = 5 3 3 27x + 1 = 27x . 27 = d 5 3 n .27 = 125 3 ÖRNEK 6 ÖRNEK 9 4x = m , 25-x = n 5–x =PMEVôVOBHÌSF PMEVôVOBHÌSF    xJONWFOUÑSÑOEFOFöJUJOF- EJS 25x + 1 + 1 - 9.52x – 1 25–x JGBEFTJOJOEFôFSJLBÀUŽS 25x. 25 + 25x - 9.25x. 1 5 d 64 x 16 x = ^ x h2 .25 –x =N2O 25x d 25 + 1 - 9 n = ^ x h2. 121 5 n =d n 4 55 100 25 =d 1 2 121 = 1 n. 11 5 5 3. 12 4. 26 5. 125 6. N2O 3 7. 27 65 1 8. 9. 64 5

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 14 BWFCZBOEBLJõFLJMJ¿JOEFLJIFS- IBOHJJLJTBZŽPMNBLÐ[FSF 2-x = m , 5x = n olmak üzere, 5 1600xJONWFOUÑSÑOEFOFöJUJOJCVMVOV[ –2 3 A = { x : x = ab } 1600x = (26.52)x = (2x)6. (5x)2 –3 –4 LÐNFTJUBOŽNMBOŽZPS 2 1 2 n 2 = .n = 66 mm B = { m : m = x1 - x2, x1, x2 ` A } öFLMJOEF UBOŽNMBOBO # LÑNFTJOJO FO CÑZÑL FMFNB- OŽLBÀUŽS  ÖRNEK 11 2 N= x1 - x2 j x1 ZNBY Y2 ZNJO a+b =2 ve c b mx = 27 x1 = 35 = 243 x2 = (-4)5 = -1024 a-b a PMEVôVOBHÌSF YLBÀUŽS  jN= x1 - x2 = 243 + 1024 = 1267 a + b = 2a - 2b j b1 = a 3 d 1 2/x = –2/x = 3 ÖRNEK 15 3 n 3 3 5n + 5–n = x PMEVôVOBHÌSF 25O + 25mOJGBEFTJOJOYUÑSÑOEFO 22 FöJUJOJCVMVOV[ - x = 3 & x =- 3 ( 5O)2 + ( 5-O)2 = ( 5O + 5-O) 2 - 2.5O.5-O = x2 - 2 ÖRNEK 12 YWFZUBNTBZŽPMNBLÐ[FSF  xy =PMBDBLöFLJMEFLBÀGBSLMŽ Y Z JLJMJTJWBSEŽS 64 = 26 = (-2)6 = 43 = 82 = (-8)2 = 641 { ( 2, 6 ), ( -2, 6 ), ( 4, 3 ), ( 8, 2 ), ( -8, 2 ), ( 64, 1 ) } jBEFU ÖRNEK 13 ÖRNEK 16 Y EFOCÑZÑLQP[JUJGUBNTBZŽPMNBLÑ[FSF 2x = 3y a = ^ –x–2 h3 , b = ^ x–3 h3 , c = ^ –x3 h4 xy B  C WF D TBZŽMBSŽOŽ LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMB- ZŽOŽ[ PMEVôVOBHÌSF 8 y + 9 x JGBEFTJOJOEFôFSJLBÀUŽS xy 2y =3 , 3x =2 1 , b = 1 , c = x12 dx 3y 2 a =- 2y n d n + 3x = 33 + 22 = 31 69 xx jBCDEJS n2 2 12. 6 13. a < b < c 4 14. 1267 15. x2 – 2 16. 31 10. 11. - 6 3 m

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 17 ÖRNEK 19 5x =PMEVóVOBHËSF  ôFLJMEFWFSJMFO\"WF#NBLJOFMFSJTŽSBTŽZMBBWFCCJSJN NBM[FNFZJTBCJUYCJSJNNBM[FNFJMFIBSNBOMBZBSBLBx x ve xbCJSJNFEËOÐõUÐSÐZPS – ax bx ^ 20 h 2x + 1 ifadeTJOJOEFôFSJLBÀUŽS x1 –– a 5 . 22 k 2x + 1 x 2x 2x + 1 = a .2 k AB 5 ax xb – 1 Yâ a 2x k 2x + 1 #VNBLJOFMFSEFOJLJGBSLMŽÐSFUJNEFOFOJZPS 2.2 = ÑSFUJN\"NBLJOFTJOFYCJSJNÐSÐOBUŽMBSBLFMEFFEJMFO ÐSÐOUFLSBS\"NBLJOFTJOFBUŽMŽZPS – 2x + 1 –1 1 =2 2x + 1 =2 = ÑSFUJN\"NBLJOFTJOFYCJSJNÐSÐOBUŽMBSBLFMEFFEJMFO ÐSÐOTPOSBTŽOEB#NBLJOFTJOFBUŽMŽZPS 2 4POV¿PMBSBLJLJÐSFUJNEFEFFMEFFEJMFOÐSÐONJLUBSŽOŽO ÖRNEK 18 FõJUPMEVóVHËSÐMÐZPS ôFLJMEF CJS GBCSJLBEB CVMVOBO \"  #  $  %  & WF ' NBLJ- #VOBHÌSF YJOFOCÑZÑLEFôFSJJÀJO\"WF#NBLJOF- OFMFSJOJO CJS HÐOEF ÐSFUUJóJ ÐSÐO NJLUBSMBSŽ NBLJOF Ð[F- MFSJOFCJSJNÑSÑOBUŽMŽSTBFMEFFEJMFOÑSÑONJLUBSMB- SJOEF WFSJMNJõUJS ¶SFUJMFO ÐSÐOMFSMF JMHJMJ BõBóŽEBLJ CJMHJ- SŽGBSLŽLBÀPMBCJMJS ler bilinmektedir. 2m 2O  2O  b x x l x hx UBOF UBOF UBOF x = ^ x A B C j xx = x2JTFYFOCÑZÑLEJS \"NBLJOFTJj 52 =CJSJN #NBLJOFTJj 25 =CJSJN 7O 7L 7L  32 - 25 =CJSJN UBOF UBOF UBOF D E F r # JMF $ OJO CJS HÐOEF ÐSFUUJóJ ÐSÐOÐ \" UFL CBõŽOB üretebilmektedir. r %JMF&OJOCJSHÐOEFÐSFUUJóJÐSÐOÐ'UFLCBõŽOBÐSF- ÖRNEK 20 tebilmektedir. 75m - 2 = 15m #VOBHÌSF NmO . 6 + 7O-L . 12 UBOFÑSÑOUÑNNB- PMEVôVOBHÌSF N- 4JGBEFTJOJOEFôFSJLBÀUŽS LJOFMFSLVMMBOŽMBSBLWFHÑOEFOmL - 2N-O UBOF ÑSFUJMFSFLLBÀHÑOEFUBNBNMBOŽS 2N = 2O+ 1 + 2O+ 4 j 2N-O = 18 m–2 75 m = 15 7L+ 1 = 7O + 7L j 7O-L= 6 22 1– – & 75 m = 15 & 75.75 m = 15 2m –n.6 + 7n – k.12 18.6 + 6.12 30.6 2 m–4 = = = 5 gün j 5 = 75 m & 5 = 9 9.7n – k - 2m – n 9.6 - 18 9.4 1 18. 5 5 19. 7 20. 9 17. 2

TEST - 1 ·TMÑ4BZŽMBSWF²[FMMJLMFSJ 1. ( -a )5 . ( -a6) . ( a )-4 . ( -a )-7 5. a = 2b PMEVóVOBHËSF  JGBEFTJOJOFöJUJBöBôŽE BLJMFSEFOIBOHJTJEJS 9a. 33 - 4b A) a B) -B $  % B–1 & -1 JGBEFTJOJOEFôFSJBöBôŽEBLJMFSE FOIBOHJTJEJS \"  #  $  %  &  2. BQP[JUJGCJSTBZŽPMEVôVOBHÌSF BöBôŽEBLJMFS- –4 EFOIBOHJTJOFHBUJGUJS A) - ( -a–2 ) B) ( -a3 )2 $ B5 6. ;a ( –2) –2 –2 2( –2 –2 E ) k.  %  -a2 )3 & -( -a3 ) JöMFNJOJOTPOVDVLBÀUŽS A) 2-20 B) 2-16 $ -15 % -10 & -8 3. a =WFC= -2 PMEVôVOBHÌSF 7 a - ba – b 7. 90–3. (0, 01) –6. (0, 0081) 4 ab JöMFNJOJOTPOVDVLBÀUŽS  JöMFNJOJOTPOVDVLBÀUŽS A) 3 . 102 #  $  A) -32 B) -42 $ - % - & -64 & 2 . 10-2  %  . 10-2 –2 a (- 2) –2 –3 1 p k (- 2) –2. (- 62) –1.f 8. –2 4. 3 a (- 42) –1 k (- 3–1) –1. 2–2  JöMFNJOJOTPOVDVLBÀUŽS JöMFNJOJOTPOVDVLBÀUŽS %  1  &  1 24 A) 2 B) 1  $  1  %  1  &  1 \"  #  $  3 2 6 12 24 1. E 2. D 3. D 4. D 6 5. D 6. C 7. A 8. E

·TMÑ4BZŽMBSWF²[FMMJLMFSJ TEST - 2 1. y D N+ için x-y  CJS UBN TBZŽ PMEVóVOB HËSF 5. ôFLJMEFLJ LVUVMBSB ÐTMÐ TBZŽMBS LVWWFUMFSJOF HËSF x BöBôŽEBLJMFSE FOIBOHJTJPMBCJMJS Ð[FSJOEFCFMJSUJMEJóJHJCJBUŽMBDBLUŽS A) 0, 2 B) 0, 3  $   %   &  X X AB X2 X3 X4 2. 3x . 91 - x . 273 - x = 0, 3 CD E FõJUMJóJWFSJMJZPS #VOBHÌSF YLBÀUŽS  ±SOFóJO  % LVUVTVOB ÐTTÐ  PMBO TBZŽMBS BUŽMBCJM- mektedir. \"  #  $  %  & -2  #VOBHÌSF 81, 324 WF42TBZŽMBSŽOŽOBUŽMBCJ- MFDFôJUPQMBNLVUVTBZŽTŽLBÀUŽS \"  #  $  %  &  3. f 0, 2 n 0, 5 n+1 3 n+1 0, 03 p ·f 2 p ·f 5 p 6. 2-0,017 = x JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS  FõJUMJóJWFSJMJZPS A) 3 B) f 3 n $ f 2 n+1  #VOBHÌSF 22,051JOYUÑSÑOEFOFöJUJOFEJS  20 5 p 3 p A) 4 B) 2  $ - 4x– 3 x3 x3  %  3  &  2 2 5  % - 4x3 & - 2x3 4. a = (- 2) (32), b = (- 22) –3, c = (3) ((–1)9) 7. a ` R ve -2 < a < -1 olmak üzere, x = ( a + 2 )-1, y = ( a + 2 )2 ve z = ( a + 2 )3 TBZŽMBSŽWFSJMJZPS  FõJUMJLMFSJWFSJMJZPS  #VOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBOHJTJ #VOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBOHJTJ EPôSVEVS  EPôSVEVS A) a < c < b B) c < a <C $ B< b < c  % C< c <B & C< a < c A) x < y < z B) x < z <Z $ Z< x < z  % [< x <Z & [< y < x 1. # 2. # 3. A 4. A 7 5. C 6. A 7. E

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÜSLÜ SAYILAR - II ·TMÑ4BZŽMBSEB5PQMBNB¦ŽLBSNB÷öMFNJ ·TMÑ4BZŽMBSEB#ÌMNF÷öMFNJ 7$1,0%m/*m 7$1,0%m/*m  )FNUBCBOŽIFNEFÐTTÐBZOŽPMBOÐTMÐTBZŽMBS a, b ` R - {0}, m, n ` Z olmak üzere, PSUBLQBSBOUF[FBMŽOBSBLUPQMBOŽSWFZB¿ŽLBSŽMB- bilir. am = am.a–n = am – n dir. a.xO + b.xO - c.xO = ( a + b - c ) . xO dir. an an =c a n dir. bn b m ÖRNEK 1 ÖRNEK 2 \"öBôŽEBLJJGBEFMFSJOFöJUJOJCVMBMŽN \"öBôŽEBLJJöMFNMFSJOTPOVDVOVCVMVOV[ a) 10.3n - 2.3n+1 + 6.3n-1 a) 52x – 1 b) 62-x - 61-x + 5.6-x 251– x c) 2x – 2 + 3.2x + 1 b) 3x + y – 2.9x – y 22 + x + 2x –1 271+ x + y d) 43 – 2x - 1 - 2–4x + 5 x2.^ –x–2 h.^ –x h3 16x – 1 c) x = -2 için, e) 2x.2x.2x.2x x3.^ –x h4.x–2 2–x + 2–x + 2–x + 2–x d) 12x + 2.72 + x. 52x + 1 25x – 1. 21x + 2. 4x + 1 a) 3O(10 - 6 + 2) = 6.3O 2x – 1 5 4x – 3 a) = 5 2 – 2x 5 b) 6-x (36 - 6 + 5) = 35.6-x 3 x + y – 2 2x – 2y b) .3 3x – y – 2 – 3 – 3x – 3y 2xd 1 + 6 n = 3-4y - 5 4 25 3 + 3x + 3y =3 c) = 3 2x d 4 + 1 n 18 2 ^ - 2 h2.^ -^ - 2 h–2 h.^ 2 h3 1 c) = d) 4-2x (64 - 16 - 32) = 42 - 2x ^ - 2 h3.^ + 2 h4.^ - 2 h–2 4 ^ 2x h4 x x 2 2 x 2x 3 .4 .12 .7 .7 .5 .5 4.5 4x x–2 5x–2 d) = = 500 e) = 2 .2 = 2 –x x –1 x 2 x –1 4.2 25 .25 .21 .21 .4 .4 25 1. a) 6.3O b) 35.6–x c) 25 d) 42 – 2x e) 25x – 2 8 2. a) 54x – 3 b) 3–4y – 5 c) 1 d) 500 18 4

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 3 ÖRNEK 6 A = 2 + 22 + 23 + ... + 230PMEVôVOBHÌSF  1 -1 24 + 25 + 26 + ... + 229 2–a - 1 1 - 2a JöMFNJOJOTPOVDVLBÀUŽS UPQMBNŽOŽO\"DJOTJOEFOEFôFSJOFEJS 11 ÷TUFOJMFOJGBEFYPMTVO - A = 2 (1 + 2 + 22 + 23 + 124444+2.x. .424293) 1 - 2a a A = 2^ 15 + x h & x = A - 30 1 - 2 2 a 2 a - 1 =-1 2 1 - a 2 ÖRNEK 4 ÖRNEK 7 5x = a 4 a = x3 , b = 4x , ba = 2162 2x = b PMEVôVOBHÌSF YJOBMBCJMFDFôJEFôFSMFSÀBSQŽNŽLBÀ- PMEVôVOBHÌSF  . 10x + 5x - 2JöMFNJOJOBWFCUÑ- UŽS SÑOEFOFöJUJOFEJS x d 2.2 x + 1 a.^ 50b + 1 h 3 x4 5 n= 4 25 25 ^ x hx 162 81 4 = = 2 = 4 x4 = 81 j x = ± 3 j -3.3 = -9 ÖRNEK 5 ÖRNEK 8 2–x + 2–x + 2–x = 81 A = 4 . 42. 43 . . . 410 PMEVôVOBHÌSe, 2220 + 2111 +UPQMBNŽOŽO\"DJOTJO- 6–x + 6–x + 6–x + 6–x 4 EFOEFôFSJOFEJS PMEVôVOBHÌSF x LBÀUŽS  A = 41+2+ ... + 10 = 455 = 2110 2220 + 2111 + 1 = (2110 + 1)2 = (A + 1)2 –x 3.2 81 –x –x = 4.2 .3 4 x+1=4 jx=3 A - 30 a.^ 50b + 1 h 5. 3 9 6. –1 7. –9 8. (A + 1)2 3. 4. 2 25

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÖRNEK 9 ÖRNEK 11 y ve x y = 5200 \"öBôŽEBWFSJMFOTBZŽMBSŽOCJMJNTFMHÌTUFSJNMFSJOJCV- x= MVOV[ 4 PMEVôVOBHÌSF YLBÀUŽS  a) 300000000 = 3.108 x h4 50 k4 b) 597.1011 =  5,97.1013 x 5 y = 4x j x4x = ^ = a xx = 550 = 52.25 = (25)25 j x = 25 c) 0,0000123 =  1,23.10-5 d) 72,5.10-23 =  7,25.10-22 ÖRNEK 10 ÖRNEK 12 BWFCJLJEPóBMTBZŽPMNBLÐ[FSF &SJõLJOCJSJOTBOEBZBLMBõŽLNJMZBSBEFUBMZVWBSIÐD- SFTJWBSEŽS)FSIÐDSFOJOJ¿JOFEFNJMZPOBEFUPLTJ- aNb =BOŽOCEFGB¿BSQŽMNBTŽJMFPMVõBOTBZŽOŽOCOJO KFONPMFLÐMÐCBóMBZBOIFNPHMPCJONPMFLÐMÐZFSMFõUJSJM- a defa¿BSQŽMNBTŽJMFPMVõBOTBZŽZBPSBOŽõFLMJOEFUB- NJõUJS #VOB HÌSF  JOTBO WÑDVEVOEBLJ UPQMBN IFNPHMPCJO OŽNMBOŽZPS 8 NPMFLÑMÑTBZŽTŽOŽOCJMJNTFMHÌTUFSJNJOJCVMVOV[ d 4N n NJMZBSNJMZPO #VOBHÌSF  2 N JGBEFTJOJOEFôFSJLBÀUŽS = 25.109 . 28.107 = 700.1016 = 7.1018 8 4 4N8 = 4 = 24 = 16 8 16 2N16 = 2 2 = 28 16 #JMJNTFM(ÌTUFSJN ÖRNEK 13 7$1,0%m/*m #JS ¿JUBOŽO TBBUUF PSUBMBNB  LN IŽ[B VMBõUŽóŽ CJMJO- mektedir.  #JMJNTFM HËTUFSJN ¿PL CÐZÐL WFZB ¿PL LпÐL TBZŽMBSŽ HËTUFSNFL J¿JO LVMMBOŽMBO CJS TUBOEBSU- #VOB HÌSF  ÀJUBOŽO  EBLJLB JÀFSJTJOEF BMEŽôŽ ZPMVO UŽS DNDJOTJOEFOCJMJNTFMHÌTUFSJNJOFEJS | |a ` R ve 1 G a <PMBDBLõFLJMEF  LN=DNTB a.10n ( n ` Z ) ifadesine CJMJNTFMHÌTUFSJNBEŽ 12.10 6 5 verilir. = 60 ·3 = 6.10 cm/dk 9. 25 10. 28 10 11. a) 3.108 b) 5,97.1013 c) 1,23.10–5 d) 7,25.10–22 12. 7.1018 13. 6.105

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 14 ÖRNEK 17 *õŽLIŽ[ŽTBOJZFEF8NFUSFEJS(ÐOFõŽõŽóŽOŽOEÐOZB- .FSLÐS (F[FHFOJhOJO (ÐOFõhF PMBO V[BLMŽóŽ ZBLMBõŽL ZBVMBõNBTŽJTF3 saniye sürmektedir. 57,9 milyar kilometredir. #VOBHÌSF HÑOFöJMFEÑOZBBSBTŽOEBLJV[BLMŽôŽONFU- #VOB HÌSF  CV V[BLMŽôŽO NFUSF DJOTJOEFO CJMJNTFM SFDJOTJOEFOCJMJNTFMHÌTUFSJNJOJCVMVOV[ HÌTUFSJNJOJCVMVOV[ 3.108 . 5.103 = 15.1011 = 1,5.1012 57,9.109LN= 57,9.109.103N = 57, 9.1012N= 5,79.1013N ÖRNEK 15 ÖRNEK 18 öOTBO WÐDVEVOEBLJ IÐDSFMFSJO PSUBMBNB 12 tanesi (Ë[MFHËSÐMNFZFOLпÐLDBOMŽMBSŽOCPZMBSŽNJLSPOJMFËM- IFSBZEBCJSZFOJMFONFLUFEJS çülmektedir. #VOB HÌSF   ZŽMEB CJS JOTBOŽO WÑDVEVOEB ZFOJMF- OFOIÑDSFTBZŽTŽOŽOCJMJNTFMHÌTUFSJNJOJCVMVOV[ 1000 mikron = 1 mm dir. 75.1012 . 35.2 = 70.75.1012 )FS CJSJ  NJLSPO CPZVOEB U UBOF DBOMŽOŽO CPZMB- SŽ UPQMBNŽ  N PMEVôVOB HÌSF  U TBZŽTŽOŽO CJMJNTFM = 5250.1012 = 5,25.1015 HÌTUFSJNJOJCVMVOV[ N=NN =NJLSPO 15.10 6 5 6 t= 15.10 5.10 10 = = 1, ÖRNEK 16 ÖRNEK 19 #JSHÑOÑOTBOJZFDJOTJOEFOCJMJNTFMHÌTUFSJNJOJCV- #JS ZFUJõLJO JOTBOEB PSUBMBNB LÐUMFTJOJO 1 ü kadar MVOV[ 13 TO LBOCVMVONBLUBEŽS#JSMJUSFLBOEB da 11.109 adet akyu- =TO= 8,64.104 WBSCVMVONBLUBEŽS #VOB HÌSF  LÑUMFTJ  LH PMBO CJS JOTBOŽO LBOŽOEB CVMVOBO BLZVWBS TBZŽTŽOŽO CJMJNTFM HÌTUFSJNJOJ CV- MVOV[ 91 =7 13 7.11.109 = 77.109 = 7,7.1010 14. 1,5.1012 15. 5,25.1015 16. 8,64.104 11 17. 5,79.1013 18. 1,5.106 19. 7,7.1010

TEST - 3 ·TMÑ4BZŽMBSMB÷öMFNMFS 1. 2x + 2x + 2 + 3.2x + 1 = 44 0, 3.10–3 + 5.10–4 PMEVôVOBHÌSF YLBÀUŽS 5. \"  #  $  %  &  0, 17.10–3 - 10.10–6 JöMFNJOJOTPOVDVLBÀUŽS  \"  #  $  %  1  &  1 25 2. 3x - 2 + 3x - 1 + 3x + 3x + 1 + 3x + 2 = 121 6. 5n - 10n 5n + 1 - 2.5n - 3.10n PMEVôVOBHÌSF YLBÀUŽS JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  A) - 2n + 5n B) 2n + 5n  $  2n - 5n 3 3 3 % - 1 &  1 3 3 3. 25x + 1 + 1 - 7.52x–1 = 123 7. 5x + 1 + 5x = 52x 25– x 125 5x –1 + 5x – 2 PMEVôVOBHÌSF YLBÀUŽS PMEVôVOBHÌSF YBöBôŽEBLJMFSEFOIBOHJTJE JS A) - #  $  %  &  A) 1 B) 2  %  3  &  2 3 2 $  8. 3x. 3x. 3x. 3x. 3x = 81 33x + 33x + 33x 4. 1616TBZŽTŽOŽOJLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS A) 264 B) 262 $ 61 % 60 & 58 A) 5 B) - 5  $  %  3  & - 3 2 2 22 1. C 2. C 3. A 4. # 12 5. # 6. E 7. C 8. A

·TMÑ4BZŽMBSMB÷öMFNMFS TEST - 4 1. 4. 3 . 3n + 5 . 3n + 1 + 2 . 3n = 540 .BWJWFHSJLBSFMFSEFOFMEFFEJMNJõTÐTMFNFEF10 n tane mavi kare LVMMBOŽMNŽõUŽS  #VOB HÌSF  TÑTMFNFEF LVMMBOŽMBO HSJ LBSFMFSJO PMEVôVOBHÌSF  n(n ) LBÀUŽS TBZŽTŽLBÀUŽS \"  #  $  %  &  A) 327 B) 39 $ 2 % 3 & 81 5. ( 0,0000005 )-1  TBZŽTŽOŽO CJMJNTFM HÌTUFSJNJ BöBôŽEBLJMFSEFO IBOHJTJEJS A) 5.107 B) 2.106 $ 6  % 5 & 7 2. YWFZUBNTBZŽMBS 6. #JS CBLUFSJ LÐMUÐSÐOEFLJ CBLUFSJ TBZŽTŽ IFS HÐO CJS 2x – 2. 3y – x = 1 ËODFLJHÐOÐOLBUŽOB¿ŽLNBLUBEŽS 2y + 1. 32x + 1   HÑOÑO TPOVOEB  NJMZBS CBLUFSJ PMEVôVOB PMEVôVOBHÌSF YZLBÀUŽS HÌSF  CBöMBOHŽÀUBLJ CBLUFSJ TBZŽTŽOŽO CJMJNTFM HÌTUFSJNJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  A) 36.105 B) 3,6.104 $  6  %  6 & 4 7. öOTBOLBMCJEBLJLBEBPSUBMBNBLF[BUNBLUBEŽS 3. xy – 1 + xy – 2 + xy – 3 = 16  #VOB HÌSF   HÑO JÀJOEF CJS JOTBOŽO LBMCJOJO LBÀ LF[ BUUŽôŽOŽO CJMJNTFM HÌTUFSJNJ BöBôŽEBLJ- xy+1 + xy+2 + xy+3 MFSEFOIBOHJTJEJS PMEVôVOBHÌSF YLBÀPMBCJMJS A) 5184.103 B) 5,184.106 $  5 A) -3 B) - 7 $ - 5  % - 1  & - 3  %  6 &  5 2 222 1. D 2. C 3. D 13 4. A 5. # 6. C 7. #

TEST - 5 ·TMÑ4BZŽMBSMB÷öMFNMFS 1. Y OTŽGŽSEBOGBSLMŽWFB EFOCÐZÐLUBNTBZŽMBS- 5. 124x 4. 22x f442x3 = 144x 4+444x2+ f4 4+444x3 y tan e 2y tan e EŽS  OUBOFBxTBZŽTŽOŽOÀBSQŽNŽOŽOOUBOFBx sa-  PMEVôVOBHÌSF YJOZUÑSÑOEFOFöJUJLBÀUŽS ZŽTŽOŽO UPQMBNŽOB PSBOŽ BöBôŽEBLJMFSEFO IBOHJ- TJEJS y-2 y y+1 A) B)  $  A) anx B) anx – x  $  ax a y-4 y-2 y %  ax + 1  n an – 1 y+3 2y + 1 &  ax %   &  y-1 y+1 a–n n2 (- a) 4 . a–2 . (- a) –7 . (- a) 6 6. f ax + y 2 bx 2 ax 2 2. ay p .f bx + y p :f by p (- a) –3 . a5 . (- a) –5 . a4  JGBEFTJOJOFOTBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ- JGBEFTJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS TJEJS A) ax B) ax + y  $  BC xy A) -1 B) -a2 $  % -B & B2 by bx – y &   %  bx + y  ax 3. x2x - 4.xx = 27.xx - 108 FöJUMJôJOJ TBôMBZBO Y UBN TBZŽMBSŽOŽO UPQMBNŽ 7. 1 1 11 LBÀUŽS + ++ \"  #  $  %  &  3–1007 + 1 3–1006 + 1 31006 + 1 31007 + 1 JöMFNJOJOTPOVDVLBÀUŽS A) 31007 B) 31006 $  %  &  4. x = 33 + 34 + 35 + …… + 327PMEVóVOBHËSF 3 + 32 + 33 + … + 328  JGBEFTJOJO Y DJOTJOEFO FöJUJ BöBôŽEBLJMFSEFO 8. 412 - 6.410 IBOHJTJEJS A) 2x + 17 B) 4x + $ Y+ 39  TBZŽTŽOŽOŽBöBôŽEBLJMFSEFOIBOHJTJEJS   % Y+ & Y+ 53 A) 218 B) 219 $ 20 % 21 & 22 1. # 2. A 3. # 4. C 14 5. # 6. E 7. D 8. E

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYLIAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÜSLÜ SAYILAR - III ·TMÑ%FOLMFNMFS ÖRNEK 4 TANIM a n {-1, 0, 1} , a ` R ve n, m ` R - {0} olmak Bâ-PMNBLÑ[FSF üzere, an = am ise n = m dir. 1 + 1 +...+ 1 = 144a +414. 444a2+ 14. .4. .44a44+ 13 a, b n {-1, 0, 1}, a, b ` R ve n ` Z - {0} ol- 12424–a4 4 42424–a2 4 4 4 4 4224–4a3 mak üzere, n tan e an = bnFõJUMJóJOEF i. n tek ise a = b dir. 8 tan e | | | |ii. n çift ise a = b dir. PMEVôVOBHÌSF OLBÀUŽS ÖRNEK 1 8.2a-2 = (4a+1)O 82n – 2 = 4n + 3 PMEVôVOBHÌSF OLBÀUŽS 2a+1 = 2(2a + O & a + 1 = 2a a + 1 k.n & n = 1 2 ( 23 ) O- 2 = (22)O+ 3 ÖRNEK 5 j 2O- 6 = 2O+ 6 jO- 6 =O+ 6 jO= 12 jO= 3 32a + 3a + 81a =a 3a + 2 + 9a + 1 + 34a + 2 27 PMEVôVOBHÌSF a LBÀUŽS ÖRNEK 2 a a 3a 2x + 1 + 2x - 2 + 2x = 26 PMEVôVOBHÌSF YLBÀUŽS 3 3 3 .a + 1 + k a = 27 a a 1 + a + 3a k 2x d 2 + 1 + 1 n = 26 9.3 3 3 4 a1 = &a=3 27 9 x 13 = 26 j 2x = 8 jx=3 2. 4 ÖRNEK 3 ÖRNEK 6 ( 0,125 ) x = ^ 0, 008 h 2 2 PMEVôVOBHÌSF YLBÀUŽS ( x - 1 )7 = ( 2x - 4 )7 3 PMEVôVOBHÌSF YLBÀUŽS . 10 x - 1 = 2x - 4 j x = 3 125 x 2 d n =d 8 n 3 2 1000 1000 .10 x 2 d 1 n =d 1 n 3 2 8 125 .10 –3x –3· 2 2 =5 3 2 & –3x 2 2 & x =- .10 2 =2 3 2 15 1 5. 3 6. 3 1. 3 2. 3 3. - 4. 2 3

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYLIAR www.aydinyayinlari.com.tr ÖRNEK 7 ÖRNEK 10 ( a + 2 )10 = ( a2 + 3 )5 x, y `;PMNBLÑ[FSF PMEVôVOBHÌSF BLBÀUŽS 23x – 6 = 35y – 25 (a2 + 4a + 4)5 = (a2 + 3)5 PMEVôVOBHÌSF YZLBÀUŽS a2 + 4a + 4 = a2+ 3 3x - 6 = 0 5y - 25 = 0 1 x=2 y=5 4a = -1 j a = - j x . y = 10 4 ÖRNEK 8 ÖRNEK 11 ( 2m - 1 )12 = ( 5 - m) 12 72a + 3b – 11 = 5b – 2a + 7 FöJUMJôJOJTBôMBZBONEFôFSMFSJOJOUPQMBNŽLBÀUŽS FöJUMJôJOEFBWFCUBNTBZŽPMEVôVOBHÌSF  a LBÀ- N- 1 = 5 -NWFZBN-1 = -5 +NPMVQ b N=WFN= -CVMVOVS UŽS O halde -4 + 2 = -CVMVOVS 2a + 3b - 11 = 0 b - 2a + 7 = 0 4b - 4 = 0 jb=1 j a=4 a =4 b ÖRNEK 9 ÖRNEK 12 ( 5x + 2 )4 = 28 ( x2 - 9 )x – 3 = 0 EFOLMFNJOJTBôMBZBOYEFôFSMFSJOJOÀBSQŽNŽLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS ( 5x + 2 )4 = 44 5x + 2 = -4 x2 - 9 = 0 , x -â 5x + 2 = 4 5x = - 6 x = ±3 j x = -3 5x = 2 2 6 x= x =- 5 5 d 2 n·d - 6 n = - 12 5 5 25 1 12 16 10. 10 11. 4 12. –3 7. - 8. –2 9. - 4 25

·TMÑ%FOLMFNMFS TEST - 6 1. f 1 m 5. y = 4x ve (y.x–1) 2 = 128 a p = 3–81 m PMEVôVOBHÌSF NLBÀUŽS   PMEVôVOBHÌSF BLBÀUŽS  \"  #  $  %  1  &  1 A) 2 B) 4  $  6  %  &  9 81 7 7 7 2. f 1 3–2x 6. 2x .3y = 0, 3 ve 3x . 2y = 108 3 p . 9x–1 = 27x + 5 PMEVôVOBHÌSF YBöBôŽEBLJMFSEFOIBOH JTJEJS PMEVôVOBHÌSF x + y LBÀUŽS A) 5 B) 20  $  %  &  \"  #  $  5  %  &  4 7 2 x1 7. 7 . 99 + 89 - 63 . 98 = ( 0,5 )-3x 3. x x + y = 2 ve x x + y = 16 PMEVôVOBHÌSF YLBÀUŽS  1 PMEVôVOB HÌSF x 2 BöBôŽEBLJMFSEFO IBOHJT J EJS A) 1 B) 1  $  1  %  1  &  1 A) -3 B) - $  1  %  &  16 8 6 42 3 4. 82x - 1 . 93x + 1 = 12x + 5 . 24x - 13 8. a3 = 4 ve ax = 1 FöJUMJôJOEFYBöBôŽEBLJMFSEFOIBOHJTJEJS ay 16 PMEVôVOBHÌSF x -ZLBÀUŽS A) 3 B) 2  $  3  %  4  &  4 5 5 2 35 A) -12 B) - $ - % -6 &) -4 1. A 2. E 3. E 4. A 17 5. # 6. # 7. E 8. D

TEST - 7 ·TMÑ%FOLMFNMFS 1. ( x + 1 )14 = ( x2 + 4x + 1 )7 5. x+y a2x =f b 7 = 3 ve  FöJUMJôJOEFYLBÀUŽS x-y b4y a p \"  #  $  %  &  PMEVôVOBHÌSF y BöBôŽEBLJMFSE FOIBOH JTJEJS A) - 3 B) - 5  $ - 3  % - 7  & - 5 2 4 442 2. 11a - 2 - 13b + 4 = 0 6. f 1 a–b 1 –b 1 a+b  EFOLMFNJOJTBôMBZBOBWFCUBNTBZŽMBSŽJÀJO p .103b+2 - f p .f p . 25 = 0 a -CLBÀUŽS 8 125 2 A) -4 B) - $  %  &  PMEVôVOBHÌSF 7b -BLBÀUŽS A) -4 B) - $ - %  &  2 7. 4x + y = 16 , 3x – y = 1 3x + y 4x – y 9 3. 2x – 1 = x3 PMEVôVOBHÌSF ZBöBôŽEBLJMFSEFOIBOH JTJEJS   FöJUMJôJOJTBôMBZBOYUBNTBZŽEFôFSMFSJOJOUPQ- MBNŽLBÀUŽS A) - #  $  %  &  A) 1 B) 2  $  %  4  &  3 2 3 32 4. x < 0 < y iken ( 2x - 3 )4 = ( 3y + 3 )4 8. x QPMNBLÑ[FSF  PMEVôVOB HÌSF x  BöBôŽEBLJMFSEFO IBOHJTJOF 1 y a. (45.x) x = (15.a x .x.y) x FöJUUJS PMEVôVOBHÌSF ZLBÀPMBCJMJS  A) - 1 B) - 1  $ - 3  % - 2  & -1 \"  #  $  %  &  2 3 23 1. A 2. E 3. D 4. C 18 5. D 6. # 7. C 8. C

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÜSLÜ SAYILAR - IV 7$1,0%m/*m ÖRNEK 4 ax = 1 denkleminde 3x = 8 ve 2y = 81 PMEVôVOBHÌSF YZLBÀUŽS i) BáWFY=EŽS ii) a = 1 ve x ` R olur. iii) a = -WFYCJS¿JGUUBNTBZŽEŽS xn = ym 4 ise 3x = 23 x3 = xa = yb n = m dir. 34 = 2y ise 4y & x.y = 12 ab ÖRNEK 1 ÖRNEK 5 (x - 2) x = 1 5a = 80 PMEVôVOBHÌSF YJOBMBDBôŽEFôFSMFSJCVMVOV[ 4b = 50 x-2=1 jx=3 PMEVôVOBHÌSF BOŽOCUÑSÑOEFOFöJUJOJCVMVOV[ x - 2 = -1 j x = YâYÀJGUPMNBMŽ x = 0, x -â ¦= {0, 3} ÖRNEK 2 5a -1 = 24 52 = 22b - 1 x2– 2x a-1 4 2b + 7 x =1 = &a= EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 2 2b - 1 2b - 1 |x| = 1 x2 - 2x = Yâ  | x | = -1 j x = ±1 x=2  x2 - 2x jÀJGU ¦= {-1, 1, 2}  ¦= q ÖRNEK 3 ÖRNEK 6 ( m + 3 )n - 2 2m + n = 125 JGBEFTJCFMJSTJ[PMEVôVOBHÌSF ONEFôFSJOJCVMVOV[ 52m - 2n = 32 N+ 3 = 0 jN= -3 22 O- 2 = 0 jO= 2 PMEVôVOBHÌSF 9m – n LBÀUŽS m –3 1 n =2 = 2N+O = 53 25 = 5N-O 8 j m+n = 3 5 2m - 2n  N2 -O2) = 15 jN2 -O2 = 15 15 15 &9 2 =3 1 19 4. 12 2b + 7 6. 315 1. {0, 3} 2. {–1, 1, 2} 3. 5. 8 2b - 1

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ·TMÑ4BZŽMBSEB4ŽSBMBNB ÖRNEK 10 7$1,0%m/*m 4a = 50 9b = 95 x ` R, m, n ` R - {0} olmak üzere, 5c = 25 x > 1 ise xn < xm iken n < m dir. 0 < x < 1 ise xn < xm iken n > m dir. PMEVôVOBHÌSF B CWFDOJOLÑÀÑLUFOCÑZÑôFEPôSV TŽSBMBOŽöŽOŽCVMVOV[ ÖRNEK 7 16 < 4a < 64 j 2 < a < 3 a , 2,8 f 4 x+8 9 3x–1 81 < 9b < 729 j 2 < b < 3 b , 2,2 5c = 25 j c = 2 p <f p j c < b <BEŽS 3 16 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ d 4 x+8 4 –6x + 2 j x + 8 < -6x + 2 n <d n 33 6 7x < -6 j x < - 7 Ç =d -3,- 6 n ÖRNEK 11 7 a = 44 , b = f 1 3 ve c = _ - 2 i12 8 p ÖRNEK 8 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- MVOV[ f 4 3a + 1 125 a–7 p <f p 25 8 FöJUTJ[MJôJOJTBôMBZBOFOLÑÀÑLBUBNTBZŽTŽLBÀUŽS a = 28 b = 2-9 c = 212 j b < a <DEJS d 2 6a + 2 2 –3a + 21 n <d n 55 6a + 2 > -3a + 21 9a > 19 19 a> j a=3 9 ÖRNEK 9 ÖRNEK 12 1 = 64 a = -3-4 , b=f- 1 –3 , c=f- 1 –5 31– x PMEVóVOBHËSF YHFSÀFLTBZŽTŽOŽOLBSFTJOJOFOCÑZÑL p p UBNTBZŽEFôFSJLBÀUŽS 93 27 < 64 < 81 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- 33 < 3x -1 < 34 MVOV[ 3<x-1<4 4<x<5 a = -3-4 b = -36 c = -35 j 16 < x2 <FOCÑZÑLY2 = 24 j b < c <BEŽS 7. Ç = d - 3 , - 6 n 8. 3 9. 24 20 10. c < b < a 11. b < a < c 12. b < c < a 7

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 13 ÖRNEK 16 1 11 7x < 1 ve 3x > 1 – –– 49 240 a=3 2 , b=5 3 , c=2 4 FöJUTJ[MJLMFSJOJ TBôMBZBO LBÀ GBSLMŽ Y UBN TBZŽ EFôF- SJWBSEŽS TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- MVOV[ –6 4 – 3 – a = 3 12 , b = 12 , c = 2 12 7x < 7-2 3x > 1 1 5 > x < -2 1 11 j -4 < x < -2 240 243 EFôFSBMŽS a = a –6 k 12 . b = a –4 k 12 c = ^ –3 h 12 3x > 3-4 j x > -4 3 5 2 3-6 < 5-4 < 2-3 j a < b <DEJS j x = -3 ÖRNEK 14 ÖRNEK 17 x = 2150 , y = 3120 , z = 590 x–7 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- MVOV[ 4 # 2 < 32 FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽMBSŽOŽOUPQMBNŽLBÀ- UŽS 2 # |x - 7| < 5 2 # -x + 7 < 5 k30 k30 2#x-7<5 -5 # - x < -2 x = ^ 5 h30 , y = a 4 , z = a 3 9 # x < 12 2<x#5 2 3 5 25 < 34 < 53 ¦= {3, 4, 5, 9, 10. 11} j x < y <[EJS 5PQMBN= 42 ÖRNEK 15 ÖRNEK 18 a = 7-51 , b = 2-85 , c = 5-68 x = 5-5 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- y = ( -5 )5 MVOV[ z = ( -5 )-5 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- MVOV[ h17 h17 k17 1 y = -55 1 x= z =- a = ^ –3 , b = ^ –5 , c = a –4 5 5 7 2 5 5 5 j y < z <YEJS 5-4 < 7-3 < 2-5 j c < a <CEJS 13. a < b < c 14. x < y < z 15. c < a < b 21 16. 1 17. 42 18. y < z < x

TEST - 8 ·TMÑ%FOLMFNMFS 1. 3x = 16 ve 2y = 81 5. x2y = 16 ve x3y = 3a - 2 PMEVôVOBHÌSF YZLBÀUŽS PMEVôVOB HÌSF  B BöBôŽEBLJMFSEFO IBOHJTJ PMB- CJMJS \"  #  $  %  &  \"  #  $  %  &  27x–1 = f 1 y _ b 3 p bb ` 6. 1– y b bb 2. 3a = 8 ve 3b = 32 f 1 p = 8x +1 4 a PMEVôVOBHÌSF  a + b JGBEFTJOJOEFôFSJOFEJS PMEVôVOBHÌSF x BöBôŽEBLJMFSEFOIBOHJTJE JS a-b y A) - 1 B) – 1  $ -1 % - & -4 A) 1 B) 1  $  1  %  1  &  1 4 2 24 18 12 8 4 3. 3a - b = 5 ve 5a + b = 243 7. (0, 25) m. 1 = 1 ve PMEVôVOBHÌSF a2 - b2 LBÀUŽS 2n + 6 ( 0, 2 )n - 1. ( 0, 2 )-m - 1 = 1 FöJUMJLMFSJOJTBôMBZBON+OUPQMBNŽLBÀUŽS \"  #  $  %  &  $ - 10  %  &  3 A) -5 B) -3 2 8. 4x . 5y = 100 4. (x4 + 1) x – 1 = 1 2y . 25x = 1000 ve 4x2 - y2 = 10 PMEVôVOBHÌSF  2x - ZOJOEFôFSJLBÀUŽS PMEVôVOBHÌSF YJOBMBCJMFDFôJEFôFSMFSJOÀBS- A) -2 B) - $  %  &  QŽNŽOFEJS A) -2 B) - $  %  &  1. A 2. E 3. D 4. C 22 5. # 6. A 7. C 8. D

·TMÑ4BZŽMBSEB4ŽSBMBNB TEST - 9 1. 3n = 176 5. 2x = 30 , 3y = 85 , 5z = 130 PMEVôVOBHÌSF, 2OBöBôŽEBLJBSBMŽLMBSEBOIBO-  PMEVôVOBHÌSF Y ZWF[TBZŽMBSŽOŽOEPôSVTŽSB- HJTJOEFCVMVOVS MBOŽöŽBöBôŽEBLJMFSEFOIBOHJTJEJS A) x < y < z B) y < x <[ $ Z< z < x \"     #     $     % [< y <Y  & [< x < y  %     &    2. 0 < a < b olmak üzere, 6. m = 757 , n = 2133 , k = 395 c a –x + 5 b 2x + 1  TBZŽMBSŽOŽO CÑZÑLUFO LÑÀÑôF EPôSV TŽSBMBOŽöŽ BöBôŽEBLJMFSEFOIBOHJTJEJS m <f p ba FöJUTJ[MJôJOJTBôMBZBOLBÀUBOFOFHBUJGYUBNTB- A) m > k > n B) n > k >N $ L> m > n ZŽTŽWBSEŽS  % N> n >L & L> n > m \"  #  $  %  &  3. f 7 3x–10 9 –6 7. 1P[JUJGUBNTBZŽMBSLÐNFTJOEFUBOŽNMŽCJSGD fonksi- p >f p 1 yonu D Z D D õFLMJOEFUBOŽNMBOŽZPS 3 49  FöJUTJ[MJôJOJTBôMBZBOFOLÑÀÑLYUBNTBZŽEF-  #VOB HÌSF  G2, f3 WF G4  EFôFSMFSJOJO LÑÀÑLUFO ôFSJLBÀUŽS CÑZÑôFEPôSVTŽSBMBOŽöŽBöBôŽEBLJMFSEFOIBOHJ- TJEJS \"  #  $  %  &  A) f2 < f3 < f4 B) f2 = f4 < f3 $ G3 < f2 = f4 % G3 < f2 < f4  & G4 < f3 = f2 4. a = (-27)10 , b = -9-12 , c = a _ - 9 i2 –4 ve d = 3-20 8. 1 = 240 ve 5y - 1 = 24 k 34 – x PMEVôVOBHÌSF YWFZHFSÀFLTBZŽMBSŽOŽOÀBSQŽ- TBZŽMBSŽOŽOLÑÀÑLUFOCÑZÑôFTŽSBMBOŽöŽBöBôŽEB- NŽOŽOFOLÑÀÑLUBNTBZŽEFôFSJLBÀUŽS LJMFSEFOIBOHJTJEJS \"  #  $  %  &  A) a < b < c < d B) b < a < c < d $ C< c < d <B % C< d < c < a   & C< a < d < c 1. A 2. # 3. # 4. D 23 5. D 6. A 7. # 8. #

KARMA TEST - 1 ·TMÑ4BZŽMBS 1. (-a2)3å . (a-3)2 . (a-1)-2 . (-a3)-1. (-a2) 5. YQP[JUJGCJSEPôBMTBZŽPMNBLÑ[FSF  JGBEFTJOJOTPOVDVLBÀUŽS a 2x 2 + 4 2 A) a B) 1  $ - % - 1  & -a aa 10 + 1 k  JGBEFTJOJO SBLBNMBSŽ UPQMBNŽ BöBôŽEBLJMFSEFO IBOHJTJEJS A) x2 + 2 B) x2 + $ Y  %  &  2. \"öBôŽEBLJFöJUMJLMFSEFOIBOHJTJ ZBOMŽöUŽS 6. 16a . 53a + 1 A) ( 23)–5 = 2–15 B) (-33 )2 = (-32 )3  TBZŽTŽ  CBTBNBLMŽ CJS TBZŽ PMEVôVOB HÌSF  B LBÀUŽS $  -56)2 = ( 52)6 %  -23 )4 = 212 \"  #  $  %  &   &  -54 )3 = -512 8x+ 1.f 1 1– x 4 p . (0, 5) x 7. = 64 45 – x. (0, 125) 2x + 1 :(- x) –3 D –2 . > 1 PMEVôVOBHÌSF YLBÀUŽS (- x8) 3. H A) -3 B) - $ - %  &   JGBEFTJOJOFOTBEFCJÀJNJBöBôŽEBLJMFSEFOIBO- giTJEJS A) -x4 B) x3 $ -x3 % Y2 & -x–2 8. B C Y ZTŽGŽSEBOGBSLMŽSFFMTBZŽMBSEŽS I. ax . ay = axy II. ax x y =a ay 4. 3n + 2 + 3n - 3n + 1 + 3n III. ( ax ) y = ayx 3n –1 + 3n – 3 3n – 2 + 3n –1 IV. ax . bx = ( a . b )2x  JöMFNJOJOTPOVDVLBÀUŽS V. ax = a \"  #  $  %  bx b &   FöJUMJLMFSJOEFOLBÀUBOFsi EBJNBEPôSVEVS \"  #  $  %  &  1. E 2. # 3. E 4. A 24 5. D 6. # 7. D 8. A

·TMÑ4BZŽMBS KARMA TEST - 2 41231 5. 3-x = y 1. (- 1) 3 + (- 1) 7 - (- 1) 5 - (- 1) 5 + (- 1) 9  PMEVôV CJMJOEJôJOF HÌSF 33x - 3  JGBEFTJOJO  Z  JöMFNJOJOTPOVDVLBÀUŽS UÑSÑOEFOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  % - & -2 A) 1 B) 2  $  2 y3 27y2 27y3 %  1  &  4 27y3 y3 2. x = -2 ve y = -3 veriliyor. 3 xy +å - yx + (-x ) (-x) p :32 - 24f JGBE FTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 6. f 3 1 p 10 22.103 A) 59 B) 85  $  149  JöMFNJOJOTPOVDVBöBôŽE BLJMFSEFOIBOHJTJEJS 28 27 36 A) -7 . 10–3 B) -7 . 10–2 $ -10–4  %  &   % -10–3 & –4 7. ôFLJMEFCJSCJSJOFEŽõUBOUFóFU¿FNCFSMFSJOJ¿JOFCF- MJSMJCJSLVSBMBHËSFTBZŽMBSZB[ŽMNŽõUŽS 3. aa = 224 35  PMEVôVCJMJOEJôJOFHÌSF BBöBôŽEBLJMFSEFOIBO- 32 34 HJTJOFFöJUUJS 3 3 33 \"  #  $  %  &   )FSBEŽNEBÀFNCFSTBZŽTŽCJSBSUUŽôŽOBHÌSF  BEŽNEBLJFOCÑZÑLTBZŽLBÀUŽS A) 352 B) 353 $ 54 % 55 & 56 4. YWFZQP[JUJGCJSFSUBNTBZŽ YâZWFYy = yx _ 0, 03 i–1._ 0, 2 i–2 %  3  &  1 22 PMEVôVCJMJOEJôJOFHÌSe, ( x + y )2JGBEFTJBöBôŽ- 8. EBLJMFSEFOIBOHJTJOFFöJUUUJS _ 0, 02 i–1._ 0, 3 i–2 JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  %  &  A) 3 B) 5  $  2 1. D 2. C 3. # 4. E 25 5. D 6. D 7. C 8. D

KARMA TEST - 3 ·TMÑ4BZŽMBS 1. 2x + 2x + 2x + 3.2x = 192 5. \"öBôŽEBLJTBZŽMBSEBOIBOHJTJFOCÑZÑLUÑS  FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS A) 555 B) 555 $  5 ) 5 & 55 \"  #  $  %  &  5 % 5(5 )  2. 21- 4x = A 6. 3x = 22 - x  PMEVôVOB HÌSF  x + 1 JGBEFTJOJO \" DJOTJOEFO 1 x + 2 FöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  PMEVôVOBHÌSF  4 x + 6 LBÀUŽS A) 32 B) 16 $  8  %  4  &  2 \"  #  $  %  &  A A A AA 3. 2x = a 3x = b 7. 3a = 5 a 5x = c  PMEVôVOB HÌSF   15 a + 1 JGBEFTJ BöBôŽEBLJMFS- PMEVôVOBHÌSF xJOB CWFDUÑSÑOEFOde- EFOIBOHJTJOFFöJUUJS ôFSJLBÀUŽS \"  #  $  %  &  A) a2 b2 c B) a b c2 $ B2 b c2  % BC2 D & B2 b2 c2 4. OCJSUBNTBZŽPMNBLÑ[FSF  8. 24–3x . 8x + 1 = (32) 2 ( -1 )2n + 4 - ( -18n - 2 ) - 14n - 1 - (-1)13 - 2n 2 . 161– 4x  JöMFNJOJOTPOVDVLBÀUŽS  FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS A) -2 B) - $  %  &  A) 1 B) 1  $  1  %  1  &  1 6 5 4 32 1. A 2. A 3. A 4. E 26 5. D 6. D 7. C 8. E

·TMÑ4BZŽMBS KARMA TEST - 4 1. f 2 x PMEVôVOBHÌSF 5. BCJSBTBMTBZŽPMEVôVOBHÌSF 224 - a . 523 UBN 3 p =a TBZŽTŽ FOÀPLLBÀCBTBNBLMŽPMVS 3.2x + 1 - 5.2x – 1 \"  #  $  %  &  2.3x + 1 + 4.3x – 1 JGBEFTJOJO B DJOT JOEFO EFôFSJ BöBôŽEBLJMFSEFO IBOHJTJEJS A) 17a B) 21a  $  19a  %  35a  &  72a 25 44 37 72 46 2. 5x = 7y (0, 00002) 2 . (8000) 3 xy 6.  PMEVôVOBHÌSF 25 y + 49 x OJOFöJUJOFEJS (0, 016) 4 . 5000000 JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  3. 35x - 1 = 5x + 1 7. 1 + 1  PMEVôVOBHÌSF xJOEFôFSJLBÀUŽS 1 + 3a 1 + 3–a  JGBEFTJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJOF \"  #  $  %  &  FöJUUJS A) -3 B) - $ - %  &  4. BWFCSFFMTBZŽMBSŽJÀJOa - 1 = 3a + 2 PMEVôV- 8. M = ( 5 + 1 ) ( 52 + 1 ) ( 54 + 1 ) ( 58 + 1 ) ( 516 + 1 ) OBHÌSF  3a + 2 + 3a.2b PMEVôVOBHÌSF 32 OJO.UÑSÑOEFOEFôFSJLBÀ- (2a + b) + 9.2a UŽS A) 2M + 3 B) 5M + $ .- 4  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS  % .- & .+ 1 A) 1 B) 1  $  1  %  1  &  1 24 18 12 9 6 1. # 2. D 3. C 4. # 27 5. D 6. C 7. D 8. E

KARMA TEST - 5 ·TMÑ4BZŽMBS 1. y-a =PMEVôVOBHÌSF  5. BWFOCJSFSUBNTBZŽEŽS y2a + y–a a2n - 9an + 20 = 1 ya + 1 a2n - 16 4  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS PMEVôVOBHÌSF LBÀGBSLMŽ B O JLJMJTJWBSEŽS A) 21 B) 7  $  12  %  24  &  17 \"  #  $  %  &  10 3 7 53 2. a = 3n - 1 6. 5a - 1 = 7a - 1 b = 3n + 3  PMEVôVOBHÌSF -a OŽOEFôFSJBöBôŽEBLJMFSE FO IBOHJTJEJS PMEVôVOBHÌSF BTBZŽTŽCOJOLBÀLBUŽEŽS $  1  %  1  &  1 7 53 %  1  &  1 \"  #  9 81 \"  #  $  3. B C DCJSCJSJOEFOGBSLMŽQP[JUJGUBNTBZŽMBSEŽS 7. a-x + 1 .16x = bx -1 ve a .b = 2 (ab)c = 256 PMEVôVOBHÌSF x BöBôŽEBLJMFSE FOIBOH JTJEJS PMEVôVOBHÌSF B+ b +DUPQMBNŽOŽOBMBCJMFD FôJ A) - 1 B) - 1  $ - 3  % - 5  & - 5 GBSLMŽEFôFSMFSJOUPQMBNŽLBÀUŽS 3 2 234 \"  #  $  %  &  4. a = 22 + 25 + 27 PMEVôVOBHÌSF 8. 2x + 3 - 3y + 1 = 5 2 + 2 4 + 26 4x - 1 + 3y - 1 = 7  JGBEFTJOJOBUÑSÑOEFOEFôFSJOFEJS EFOLMFNMFSJOJTBôMBZBOYWFZTBZŽMBSŽJÀJOYZ LBÀUŽS A) a  # B $  a  % B &  a \"  #  $  % - & -6 2 48 1. # 2. E 3. E 4. A 28 5. # 6. C 7. A 8. C

·TMÑ4BZŽMBS KARMA TEST - 6 1. ôFLJMEFNFUSFZÐLTFLMJóFTBIJQCJSLËQSÐWFSJMNJõUJS 4. 7x = 50 3m 5y = 24 3m 3z = 200 3m PMEVôVOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBO HJTJEPôSVEVS A) x < y < z B) x < z <Z $ Z< x < z  % [< x <Z & Z< z < x  0UPCÐTÐO ZÐLTFLMJóJ f 1 3x–7 729 p metre olup oto- CÐTLËQSÐEFOHF¿FNFNFLUFEJS  #VOBHÌSF YUBNTBZŽTŽFOÀPLLBÀUŽS 5. x = 3-300 , y = 5-200 , z = 7 -150 A) - #  $  %  &   TBZŽMBSŽOŽO EPôSV TŽSBMBOŽöŽ BöBôŽEBLJMFSEFO IBOHJTJEJS A) z < x < y B) y < z <Y $ [< y < x  % Y< y <[ & Z< x < z 2. f 1 2x – 1 1 7–x p <f p 9 27  FöJUTJ[MJôJOJTBôMBZBOYJOFOLÑÀÑLUBNTBZŽde- 6. 3x . 9x . 27x … ( 2187 ) x = 384 ôFSJLBÀUŽS  PMEVôVOBHÌSF YLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  3. a = 9x - 1 , b = 3x + 1 9x 3x  PMEVôVOBHÌSF BJMFCBSBTŽOEBLJCBôŽOUŽOFEJS 7. 2.9x + 1 - 3x + 1 - 1 = 0 A) a = 2b - b2 B) a = b2 + 2b - 1 EFOLMFNJOJTBôMBZBOYJÀJOYx - x2JGBEFTJOJO b-1 EFôFSJLBÀUŽS $) a = b2  % a = b2 - 2b + 1 A) -2 B) - $  %  &  b-1 b+1 & a = b2 + 2b + 1 b-1 1. D 2. D 3. A 29 4. C 5. D 6. # 7. A

KARMA TEST - 7 ·TMÑ4BZŽMBS x – 4 ^ x + 1 h2 5. (0, 5) x – 3 = (0, 25) x – 4 1. ^ x - 2 h x2 + x + 1 = 1 8x + 1 PMEVôVOBHÌSF Y-2LBÀUŽS  EFOLMFNJOJTBôMBZBOGBSLMŽYEFôFSMFSJOJOUPQ- MBNŽLBÀUŽS A) 1 B) 1  9 4 $  %  &  \"  #  $  %  &  ax + ay = m 6. a = 32b - 1 2. ax - ay = n 3a = 81b + 1  PMEVôVOBHÌSF B3x + a3yOJONWFOUÑSÑOEFO FöJUJOFEJS PMEVôVOBHÌSF COJOEFôFSJLBÀUŽS A) 3n2m + m3 B) mn2 + m2 A) -2 B) - $  %  3  &  4 4 2 $) n3 + 3nm2  %  3n2 + 2m2n 4 4 &  n3 - 3.m2n 4 7. ( 0,250 ) x = 27 . 2x PMEVôVOBHÌSF 3. a = 2x + 2 ( 0, 25 )x - f 1 x b = 2-x - 4 2 p PMEVôVOBHÌSF COJOBUÑSÑOEFOEFôFSJLBÀUŽS JöMFNJOJOTPO VDVBöBôŽEBLJMFSEFOIBOHJTJEJS A) 4a + 1 B) 7 - 3a  $  4a - 7 \"  #  $  %  &  a-3 a+3 2-a %  9 - 4a  &  4a + 9 a-2 3a + 1 4. x = 3-3 + 3-4 + 3-5 + 3-6 8. Y Z [CJSFSUBNTBZŽWF y = 3-5 + 3-6 + 3-7 + 3-8 22x + y - 3 = 3x -2y - 4 = 5z - 4  PME VôVOB HÌSF  x - 2y  JöMFNJOJO TPOVDV LBÀ- UŽS z PMEVôVOBHÌSF YJOZUÑSÑOEFOFöJUJOFEJS  y y &  1 \"  #  $  %  &  A)  $   % Z y # Z 3 9 1. # 2. A 3. D 4. D 30 5. D 6. A 7. # 8. D

·TMÑ4BZŽMBS KARMA TEST - 8 1. _ 0, 3 i x + 2 = f 1 2–x 5. BWFCUBNTBZŽMBSEŽS 81 p 72a + 3b - 7 = 5a - b - 6 PMEVôVOBHÌSF BCLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS A) -5 B) - $ - %  &  A) 1 B) 2  $  3  %  4  &  6 5 5 5 55 2. ( m - 1)4 = ( 2m - 5 )4 6. a, b `Z için,  FöJUMJôJOJTBôMBZBONEFôFSMFSJOJOUPQMBNŽLBÀ- 1 + 1 =1 UŽS 2a + b – 6 22a – b – 1 PMEVôVOBHÌSF BCÀBSQŽNŽLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  3. (x - 6) x2– 5x – 6 = 1 7. *õŽóŽO V[BZEB CJS ZŽMEB BMEŽóŽ ZPMB ŽõŽL ZŽMŽ BEŽ WF- SJMJS &WSFOTFM PMBSBL CJS ŽõŽL ZŽMŽ ZBLMBõŽL 11 LN EJS %ÐOZBhEBO FO ¿PL V[BLMBõBO OFTOF PMBO 7PZBHFS–VZEVTVZŽMMŽLCJSZPMDVMVóVOBSEŽOEBO  ŽõŽLZŽMŽZPMBMNŽõUŽS  EFOLMFNJOJTBôMBZBOGBSLMŽYEFôFSMFSJOJOUPQ-  #VOB HÌSF  7PZBHFS- VZEVTV %ÑOZBhEBO LBÀ MBNŽLBÀUŽS LNV[BLMBöNŽöUŽS A) 38.1012 B) 38.1013 $  10 \"  #  $  %  &   %  11 &  9 8. 5x = 3 ve 5y = 81  PMEVôVOBHÌSF  x+y PSBOŽLBÀUŽS 4. x `;PMNBLÑ[FSF x-y ( 3x + 8 ) 2x - 5 = 1 A) 3 B) - 3  $  5  % - 5  &  2  EFOLMFNJOJTBôMBZBOLBÀGBSLMŽYEFô FSJWBSEŽS 5 53 33 \"  #  $  %  &  1. E 2. A 3. E 4. E 31 5. A 6. A 7. C 8. D

<(1m1(6m/6258/$5 ·TMÑ4BZŽMBS 1. ¥FNCFS ¿FWJSNF  MŽ ZŽMMBSŽO NFõIVS ¿PDVL 4. \"õBóŽEBCJS¿J¿FL¿JOJOFõTBLTŽMBSLVMMBOBSBLPMVõ- PZVOMBSŽOEBOCJSJEJSöLJ¿PDVL¿FWSFV[VOMVLMBSŽ UVSEVóVLVMFMFSWFSJMNJõUJS4BLTŽMBSŽOIFSCJSJOJOCP- 16 br ve 25 - a CSPMBOJLJ¿FNCFSJBZOŽZPMCPZVO- ca biri 25UVS¿FWJSFSFLEJóFSJEFUVS¿FWJSFSFL yu 32 cm olVQпTBLTŽÐTUÐTUFLPOVMEVóVOEBPMV- õBOLVMFOJOCPyu 42 cm dir. tamamlayabiliyor. 42 cm 32 cm  #VOBHÌSF BTBZŽTŽOŽOBMBCJMFDFôJEFôFSMFSÀBS-  \"SUBSEBPMBOIFSJLJTBLTŽOŽOUBCBOMBSŽBSBTŽO- QŽNŽLBÀUŽS EBLJV[BLMŽLTBCJUPMEVôVOBHÌSF CPZV2DN PMBOCJSSBGJÀJOPMVöUVSVMBOLVMFJÀJOEFFOGB[MB A) -3 B) - $  %  &  LBÀUBOFTBLTŽCVMVOVS \"  #  $  %  &  2. LJõJMJLCJSHSVQZBQUŽL- ! DİKKAT MBSŽ BSBõUŽSNB TPOVDVOEB 5.  NFUSFMJL EÐ[ CJS ZPMVO CBõMBOHŽ¿ WF TPOVOEB  MJUSF BUŽL ZBóŽO  NJMZPO CVMVOBO JLJ LJõJEFO CJSJ CJSCJSMFSJOF EPóSV V[BLMŽóŽ MJUSFJ¿NFTVZVOVLJSMFUUJóJ- NFUSFDJOTJOEFOÐOUBNTBZŽLVWWFUJPMBOOPLUB- MBSBLŽSNŽ[ŽSFOLMJEJSFLEJóFSJEFÐOUBNTBZŽLVW- Atık yağ ni farkederek bir proje WFUJPMBOOPLUBMBSBNBWJSFOLMJEJSFLZFSMFõUJSJZPS CBõMBUŽZPSMBS  #VOBHÌSF GBSLMŽSFOLUFPMVQCJSCJSJOFFOZBLŽO  (SVQUBLJIFSCJSLJöJ7MJUSFBUŽLZBôUPQMBEŽôŽO- JLJEJSFLBSBTŽNFTBGFLBÀNFUSFEJS EB UFNJ[ LBMBO TVZVO MJUSF DJOTJOEFO CJMJNTFM HÌTUFSJNJBöBôŽEBLJMFSEFOIBOHJTJPMVS /PU%JSFLLBMŽOMŽôŽHÌ[BSEŽFEJMFDFLUJS A) 5.1011 B) 6,4.109 $ 13 \"  #  $  %  &   % 8 &  8 3. &HFCJSPZVOHFMJõUJSNFQSPHSBNŽOEBLBSFLUFSJOLP- 6. #JS MBCPSBUVWBSEB CBLUFSJMFS JMF ZBQŽMBO EFOFZEF OVNVOVYWFZEFóJõLFOMFSJOJLVMMBOBSBLYyõFLMJO- CBLUFSJZPóVOMVóVNJLSPOJMFJGBEFFEJMNFLUFEJS  EFUBOŽNMŽZPS#JSLBSBLUFSJOLPOVNVOVCFMJSMFSLFO UBCBOJMFÐTTÐOZFSJOJLBSŽõUŽSBSBLYJOZJODJLVWWF- 1 mikron ZPóVOMVLUBJTFZBLMBõŽLNJMZPOCBLUFSJ UJZFSJOFZOJOYJODJLVWWFUJOJBMNŽõUŽS CVMVONBLUBEŽSUCJSJNTÐSFEF2t-1 mikSPOZPóVOMV- óBVMBõBOCBLUFSJLPMJOJTJOEFZBLMBõŽLNJMZPOCBL-  #VIBUBZBSBôNFOLBSBLUFSJOLPOVNVEFôJöNF- UFSJPMEVóVUFTQJUFEJMNJõUJS EJôJOFHÌSF YâZJÀJOYZBöBôŽEBLJMFSEFOIBO- HJTJPMBCJMJS 3  #VOBHÌSF  6 t NJLSPOZPôVOMVôBVMBöBOCBL- UFSJLPMJOJTJOEFZBLMBöŽLLBÀNJMZPOCBLUFSJCV- MVOVS \"  #  $  %  &  \"  #  $  %  &  1. A 2. C 3. D 32 4. C 5. A 6. D

·TMÑ4BZŽMBS <(1m1(6m/6258/$5 1. #JSLFOBSV[VOMVóV10CSPMBOLBSFLBSUPOBõBóŽEB #BõMBOHŽ¿ WFSJMFOLFTJL¿J[HJMFSCPZVODBCFMJSUJMFOZËOEFTŽSB- A x 22 TŽJMFLBUMBOBSBLBSEŽõŽLõFLJMMFSPMVõNVõUVS B ôFLJMUFPMVõBOпHFOJOEJLLFOBSMBSŽOŽOPSUBOPL- UBMBSŽCFMJSMFOFSFLFMEFFEJMFOUBSBMŽпHFOLFTJMFSFL I : 2–3 BUŽMŽZPS C D x 42 II E : 4–2 III IV x 8–3 ôFLJM ôFLJM ôFLJM ôFLJM V  #VOBHÌSF TPOöFLJMBÀŽMEŽôŽOEBPMVöBOöFLMJO  :VLBSŽEB\" # $ %WF&CBMPODVLMBSŽOEBOPMVõBO BMBOŽLBÀCS2EJS WF BõBóŽ ZËOMÐ ¿BMŽõBO CJS NFLBOJ[NB WFSJMNJõUJS #BõMBOHŽ¿HJSJõJOFCŽSBLŽMBOCJSTBZŽ HF¿UJóJCBMPO- A) 224 - 218 B) 220 - 217 $ 22 - 219 DVLJ¿JOEFLJJõMFNZBQŽMBSBLZBCJSTPOSBLJCBMPODV- óBHJUNFLUFZBEB* ** *** *7WF7OPMVLVUVMBSBEÐõ-  % 20 - 216 & 19 - 217 NFLUFEJS#BõMBOHŽ¿HJSJõJOEFOTBZŽTŽNFLBOJ[NB J¿JOFCŽSBLŽMŽZPS   WFTPSVMBSŽZVLBSŽEBWFSJMFOCJMHJMFSF HÌSFDFWBQMBZŽOŽ[ 3. *7OPMVLVUVZBEÑöFOTBZŽBöBôŽEBLJMFSEFOIBO- HJTJPMBCJMJS A) 27 B) 28 $ 9 % 10 & 11 4. \"öBôŽEBLJMFSEFOIBOHJTJ LVUVMBSEBOCJSJOFEÑ- öFOTBZŽMBSEBOCJSJPMBNB[ A) 23 B) 27 $ 8 % 11 & 12 2.  5. )BOHJ LVUVZB EÑöFO TBZŽ EJôFSMFSJOEFO EBIB 42 LÑÀÑLUÑS 32  8     \" * # ** $ *** % *7 & 7  :VLBSŽEB WFSJMFO ÑÀHFOTFM ZBQŽ EFWBN FUUJSJMJS- 6. )FSIBOHJCJSLVUVEB12TBZŽTŽCVMVONVõUVS TFTBUŽSEBCVMVOBOTBZŽMBSŽOTBôEBOJLJODJTJ BöBôŽEBLJMFSEFOIBOHJTJPMVS  #VOB HÌSF   TBZŽTŽ TŽSBTŽZMB BöBôŽEBLJ IBOHJ CBMPODVLMBSEBOHFÀNJöUJS A) 237 B) 240 $ 46 % 56 & 67 A) A - B -% # \"-$ $ \"-$-%  % \"-# & \"-$-& 1. # 2. C 33 3. E 4. A 5. E 6. C

<(1m1(6m/6258/$5 ·TMÑ4BZŽMBS 1. 3. 1BTUBZBQŽNBUËMZFTJOEFCVMVOBOJLJGBSLMŽNBLJOF- BEŽN BEŽN BEŽN EFOCJSJJ¿JOFBUŽMBOIBNVSVJLJFõJUQBS¿BZB EJóFSJ EFпFõJUQBS¿BZBBZŽSBCJMJZPS,ÐUleleri 65HSPMBO  :VLBSŽEB JML ÑÀ BEŽNŽ WFSJMFO WF LJCSJU ÀÌQMFSJ JLJ Ë[EFõ IBNVS CV JLJ NBLJOFEF BõBóŽEBLJ LPõVM- LVMMBOŽMBSBL PMVöUVSVMBO ÌSÑOUÑOÑO  BEŽNŽO- MBSEBCËMÐOFSFLQBTUBZBQŽNŽHFS¿FLMFõFDFLUJS EBLBÀUBOFLJCSJUÀÌQÑWBSEŽS r )FSCËMNFJõMFNJOEFPMVõBOË[EFõIBNVSMBSEBO \"  #  $  %  &  ZBMOŽ[CJSJLVMMBOŽMBCJMJS r LF[CËMNFJõMFNJZBQŽMBSBLFMEFFEJMFOIBNVS JMFQBTUBZBQŽMBCJMJS  #VOB HÌSF  IFS JLJ NBLJOFEFO FMEF FEJMFO IB- NVSMBSJMFZBQŽMBOJLJQBTUBOŽOLÑUMFMFSJGBSLŽLBÀ HSBNEŽS \"  #  $  %  &  4. BWFCGBSLMŽSFFMTBZŽMBSPMNBLÐ[FSF 2. OLFOBSMŽCJSEÐ[HÐO¿PLHFOJOJ¿JOFNLFOBSMŽCBõ- b B= B B = BCmB WF  LBCJSEÐ[HÐO¿PLHFO¿J[JMFSFLFMEFFEJMFOõFLJM  max ( nm , mn  LVSBMŽ JMF CJS UBN TBZŽ PMBSBL JGBEF b BmC ediliyor. õFLMJOEFUBOŽNMBOŽZPS  ²SOFôJO  #VOBHÌSF  NBY 3, 34 EJS  5  #VOB HÌSF  BöBôŽEBLJ öFLJMMFSEFO IBOHJTJOF 2 LBSöŽMŽLHFMFOTBZŽEJôFSMFSJOEFOCÑZÑLUÑS A) B) C)  JöMFNJJMFFMEFFEJMFOTBZŽBöBôŽEBLJMFSEFOIBO- HJTJEJS A) 11 B) 10  $  1 10 11 10 D) E)  %  &  1 11 1. D 2. D 34 3. C 4. D

³ KÖKLÜ SAYILAR ³ Köklü Sayı t 36 ³ Kökten Çıkarma - Kök İçine Alma t 41 ³ Köklü Sayıların Eşleniği t 45 ³ İç İçe Kökler t 50 ³ Karma Testler t 54 ³ Yeni Nesil Sorular t 61

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr KÖKLÜ SAYILAR - I ,ÌLMÑ4BZŽ ÖRNEK 3 7$1,0%m/*m 3x - 1 - x - 3 6 - 2x + 3x + 5 n ` Z+ ve n $ 2 olmak üzere, xn =BFõJUMJóJOJ JGBEFTJCJSHFSÀFMTBZŽZBFöJUPMEVôVOBHÌSF CVTB- ZŽLBÀUŽS TBóMBZBOYTBZŽTŽOBBOŽOOEFSFDFEFOLÌLÑ x - 3 $ 0 ise x $ 3 denir. 6 - 2x $ 0 ise x # 3 #VEVSVNEBY=UÑS xn =BFõJUMJóJOEF 4 x = * na , n tek x =JÀJOJGBEFOJOFöJUJ EJS ±n a , n çift ve a $ 0 7 n a ifadesinde i) n çift ise a $ 0 ii) n tek ise a ` R dir. ÖRNEK 1 ÖRNEK 4 \"öBôŽEBWFSJMFOEFOLMFNMFSJOÀÌ[ÑNLÑNFTJOJCVMV- 3a - 4b + 13 + a + b + 2 = 0 FöJUMJôJOJ TBôMBZBO B WF C HFSÀFM TBZŽMBSŽOŽO ÀBSQŽNŽ OV[ b) x5 = -32 LBÀUŽS a) x2 = 81 d) x7 + 1 = 0 c) x2 + 64 = 0 3a - 4b + 13 = 0 a+b-2=0 a) x2 = 81 j x = ± 9 j¦= {±9} a = -3, b = 1 j a.b = -3 b) x5 = -32 j x = -2 j¦= {-2} c) x2 + 64 = 0 j¦= q d) x7 + 1 = 0 j x = -1 j¦= {-1} ÖRNEK 2 ÖRNEK 5 A= 3 x+ x-2 M = 2018 15 - x + 2019 x - 15 4 5-x+2 2020 x + 1 PMEVôVOBHÌSF \"OŽOHFSÀFMTBZŽPMNBTŽJÀJOYJOBMB- JGBEFTJOJOCJSHFSÀFMTBZŽCFMJSUNFTJJÀJOYLBÀGBSLMŽ caôŽUBNTBZŽEFôFSMFSJUPQMBNŽLBÀUŽS UBNTBZŽEFôFSJBMBCJMJS x-2$0 5-x$0 15 - x $ 0 j x # 15 x # -1 x$2 x#5 x+1$0 j j2#x#5 j -1 # x # 15 {2, 3, 4, 5} jUPQMBN {-1, 0, ..., 15} jUBOF 1. a) {± 9} b) {–2} , c) qFd) {–1} 2. 14 36 4 4. –3 5. 17 3. 7

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, 7$1,0%m/*m ÖRNEK 8 n ` Z+ ve n $ 2 olmak üzere, \"öBôŽEB WFSJMFO JGBEFMFSJO ÑTMÑ JGBEF PMBSBL FöJUMFSJ- Her x ` R için, n xn = * x , x tek ise OJCVMVOV[ 2 a) 5 x2 =  x , x çift ise x5 x ` R+ ve m, n ` Z+ olmak üzere, 7 13 13 n b) 2 3 =  2 21 m xn = x m dir. c) 53 =  3 d) 3 4–1 =  52 –1 43 ÖRNEK 6 \"öBôŽEBWFSJMFOLÌLMÑJGBEFMFSJOFöJUMFSJOJCVMVOV[ a) 3 64 =  33 ÖRNEK 9 4 =4 \"öBôŽEB WFSJMFO JGBEFMFSJO LÌLMÑ JGBEF PMBSBL FöJUMF- b) 5 - 32 =  5 ^ - 2 h5 = - 2 SJOJCVMVOV[ c) ( –4) 2. 3 (- 4) 3 = | -4 | . (-4) = -16 15 13 15 a) 2 13 =  2 1 4 –1 – 5 b) 5 4 =  d) (1 - 2) 2 =  1 - 2 = 2 - 1 13 17 13 c) 3 17 =  3 e) 3-1+ f- 1 2 d- 1 3 1 =- 1 + 1 2 3 16 27 9 p=3 3 9 3 9 9 n+  3 – 3 d) f 4 = p 11 2 =- + =- 39 9  ÖRNEK 7 ÖRNEK 10 x < 0 < y < z PMEVóVOBHËSF 3 4x = (0, 5) 2x + 1 PMEVôVOBHÌSF YLBÀUŽS (x - y) 2 + 3 (y - z) 3 - 4 (x - z) 4 2x –2x–1 2x - 2x - 1 JöMFNJOJOTPOVDVOVCVMVOV[ 2 3 =2 2 & = 32 = |x - y| + y - z - |x - z| 3 & x =- = -x + y + y - z + x - z = 2y - 2z 10 2/5 13/21 3/2 –1/3 8. a) x b) 2 c) 5 d) 4 2 37 6. a) 4, b) –2 c) –16 d) 2 - 1 e) - 7. 2y – 2z 13 15 4 –1 17 313 d) 3 2 b) 5 16/9 10. m 9 9. a) c)

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÖRNEK 11 7$1,0%m/*m 2 4x + 1 49 x ` R+ , m ` Z, n, k ` Z+ ve n $ 2 için, 3 f p= PMEVôVOBHÌSF YLBÀUŽS 74 n m n xm = n.k xm.k = k xk dir. 4x + 1 2 –2 x ` R+ ve m, n ` Z+ ve n $ 2 için, =d n _ n x im = n xm dir. d2n 3 77 4x + 1 =-2 j x = - 7 34 ÖRNEK 12 ÖRNEK 15 0 < x < 1 olmak üzere, \"öBôŽEBWFSJMFOJGBEFMFSJOFOTBEFIBMMFSJOJCVMVOV[ x2 + 1 + 2 - x2 + 1 - 2 x2 x2 JGBEFTJOJOFöJUJOJCVMVOV[ a) 21 27 =  7.3 3 = 7 3 3 = dx+ 1 2 dx- 1 2 n- n xx 1 1 11 b) 8 16 =  4.2 4 = 2 = x + x - x - x = x + x + x - x = 2x 2 ÖRNEK 13 c) 15 32 + 18 64 =  5.3 5 6.3 6 3 - 27 + 144 - _ - 3 i2 2+ 2 5 - 32 + 4 _ - 9 i2 - 3 - 125 JGBEFTJOJOFöJUJOJCVMVOV[  =3 2+3 2=23 2 3 ^ - 3 h3 + 122 - - 3 - 3 + 12 - 3 6 = = =1 ÖRNEK 16 -2 + 3 + 5 6 5 ^ - 2 h5 + 4 34 - 3 ^ - 5 h3 a = 2 , b = 3 5 , c = 4 13 ÖRNEK 14 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- MVOV[ 1-3+9 16 10 25 12 6 , 12 4 , 12 3 3 1 + f 7 - 1 pf 1 + 7 + 49 p 20 20 400 a= 2 b= 5 c= 13 JGBEFTJOJOEFôFSJOJCVMVOV[ 26 < 54 < 133 j a < b <DEJS d 1 - 3 2 13 - 45 n 45 = 7 =1 20 3d 7 3 20 n -1+1 7 12. 2x 13. 1 14. 1 38 15. a) 7 3 b) 2 c) 2 3 2 16. a < b < c 11. - 4

,ÌLMÑ4BZŽWF²[FMMJLMFSJ TEST - 10 1. (- 3) 2 + 3 - 64 - 4 (- 16) 2 5. 3 4.33 + 2.33 + 2.33 JöMFNJOJOTPOVDVLBÀUŽS 42 + 42 + 42 + 42 A) -4 B) - $ - % - & -8 JöMFNJOJOTPOVDVLBÀUŽS A) 2 B) 1  $  3  %  &  5 3 2 2 2 6. a < 1 olmak üzere, 2. ( –5) 2 - 6 (- 8) 2 - 3 - 14 &  a2 - 2a + 1 3 a - 1 . 3 a2 - 2a + 1  JöMFNJOJOTPOVDVLBÀUŽS A) -3 B) - $  %  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) - #  $ B- 1 & B2 - 1  % -B 3. 3 64 - (- 16) 2 7. 3 - 0, 125 - 1, 21 + 6, 25 JöMFNJOJOTPOVDVLBÀUŽS  JöMFNJOJOTPOVDVLBÀUŽS A) -2 B) - $ - % - & -6 \"   #   $   %   &   4. 13 + 6 + 1 + 64 8. 3 . 1 + 7 - 5 . 1 + 24 + 2 . 1- 3 JöMFNJOJOTPOVDVLBÀUŽS 9 25 4  JöMFNJOJOTPO VDVLBÀUŽS \"  #  $  %  &  A) -5 B) - $ - % - & -1 1. # 2. C 3. A 4. D 39 5. C 6. A 7. E 8. D

TEST - 11 ,ÌLMÑ4BZŽWF²[FMMJLMFSJ 1. 0 < x < y olmak üzere, 5. m = 3 3 , n = 5 , k = 5 9 3 - x3 - _ x - y i2 + 4 _ y - x i4  TBZŽMBSŽOŽO EPôSV TŽSBMBOŽöŽ BöBôŽEBLJMFSEFO IBOHJTJEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) x B) -Z $ -x A) m < n < k B) m < k < n $ O< m <L % L< m < n  % Z-Y & Z- 2x  & L< n < m 2. 5 - x - 4 2x - 10  x -xx 6. 2a = 5 , 3b = 7 ve 5c = 1 JGBEFTJ CJS HFSÀFM TBZŽ CFMJSUUJôJOF HÌSF  JGBEFTJOJOEFôFSJLBÀUŽS A) -5 B) - $  %  &  PMEVôVOB HÌSF  B  C WF D BSBTŽOEBLJ TŽSBMBNB BöBôŽEBLJMFSEFOIBOHJTJEJS A) a > b > c B) b > c >B $ D> b > a  % C> a >D & B> c > b 3. ôFLJMEFIFSBEŽNEBJLJõFSBSUBOCJSCJSJOFUFóFUË[- 7. m - 3 = 3 - 2 EFõ¿FNCFSMFSWFSJMNJõUJS  FöJUMJôJOJTBôMBZBONHFSÀFMTBZŽTŽLBÀUŽS BEŽN A) 3 B) 3 4 + 3  $ 3 - 3 4 BEŽN  %  &  4 4 + 3 BEŽN )FSBEŽNEBCVMVOBO¿FNCFSMFSJOTBZŽTŽOŽOLBSFLË- LÐ BMŽOBSBL P TBUŽSŽO JTNJ CFMJSMFOJZPS ±SOFóJO  BEŽNŽOJTNJ 6 EŽS  #VOBHÌSF JTNJUBNTBZŽPMBOBEŽNTBZŽTŽPM- EVôVOEBIFSIBOHJCJSBEŽNEBFOGB[MBLBÀÀFN- CFSCVMVOVS \"  #  $  %  &  4. 2x - 3y + 18 + 6 3x + y + 16 = 0 8. 22x + 1 . 3 2x + 1 . 4 2x – 1 = 64  FöJUMJôJOJTBôMBZBOYWFZHFSÀFMTBZŽMBSŽJÀJO x PMEVôVOBHÌSF x LBÀUŽS  PSBOŽLBÀUŽS y A) 21 B) 65  $  60  %  12  &  15 13 19 17 5 7 A) -4 B) - $  %  &  1. C 2. A 3. D 4. # 40 5. # 6. A 7. # 8. #

www.aydinyayinlari.com.tr ÜSLÜ - KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, KÖKLÜ SAYILAR - II ,ÌLUFO¦ŽLBSNB,ÌL÷ÀJOF\"MNB ÖRNEK 3 7$1,0%m/*m \"öBôŽEBWFSJMFOJGBEFMFSJOFOTBEFHÌTUFSJNMFSJOJCV- MVOV[ a, b ` R+ ve n ` Z+ ve n $ 2 için, a n b = n an.b dir. a) 288 =  2 = 12 2 x ` R+ ve a, b, c ` R, n ` Z+ ve n $ 2 ol- mak üzere, 12 .2 a n x + b n x - c n x = _ a + b - c i n x tir. b) 3 192 =  3 3 = 4 3 3 4 .3 c) 3 3 ^ - 5 h3.2 = - 5 3 2 - 250 = ÖRNEK 1 d) 5 - 224 =  5 ^ - 2 h5.7 = - 2 5 7 \"öBôŽEB WFSJMFO JGBEFMFSJ UFL CJS LÌL I»MJOEF JGBEF e) 4 162.1010 = 4 4 82 = 300 4 200 FEJOJ[  3 .2.10 .10 a) 2 3 3 =  3 24 ÖRNEK 4 b) x. 1 = x 4 83 - 5 37 - 21 - 3 - 64 x JGBEFTJOJOEFôFSJLBÀUŽS c) - 1 5 64 = 5 -2 4 83 - 5 37 - 21 - 3 64 = 3 2 –4 d) ^ 5 - 3 h 7 + 3 5 = -2 2 5 2 3 ÖRNEK 2 ÖRNEK 5 a=3 5 , b=2 7 , c=5 3 a= 2 , b= 3 , c= 5 TBZŽMBSŽOŽO LÑÀÑLUFO CÑZÑôF EPôSV TŽSBMBOŽöŽOŽ CV- PMEVôVOBHÌSF  2400 TBZŽTŽOŽOB CWFDUÑSÑOEFO MVOV[ FöJUJOJCVMVOV[ 2 _ b a= 3 .5 = 45 bb 52 b= 22.7 = 28 ` & b < a < c EJS 2400 = 3.2 .5 = 4.5. 6 b 2 bb = 4.5. 2. 3 = 42 = 52 c= = 75 a 5 .3 a .c .a.b a .b.c 1. a) 3 24 , b) x , c) 5 - 2 , d) - 2 2 2. b < a < c 41 3. a) 12 2 b) 4 3 3 c) - 5 3 2 d) - 2 4 7 e) 300 4 200 4. 3 5. a5.b.c2

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ - KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 10 2 , 1, 41 ve 3 , 1, 71PMEVóVOBHËSF  7 - 3 15 + 2 + 1 - 98 - 108 + 75 + 162 48 16 JöMFNJOJOTPOVDVLBÀUŽS JGBEFTJOJOZBLMBöŽLEFôFSJLBÀUŽS =- 2 .2 - 36.3 + 25.3 + 81.2 7 -3 15 2+ 11 + = 7 48 16 2 =-7 2-6 3+5 3+9 2 1 4 = + 2 2 - 3 = 2^ 1, 41 h - 1, 71 = 1, 11 3 2 3 2 ÖRNEK 7 ÖRNEK 11 4 243 + 3 81 + 3 192 - 4 1875 x, y, z ` R+ olmak üzere, JöMFNJOJOTPOVDVLBÀUŽS x y.z = 5 , y x.z = 15 ve z x.y = 12 PMEVôVOBHÌSF YZ[LBÀUŽS 4 35 - 3 4 + 3 4 3 - 4 4 3 .3 5 .3 =34 3+33 3+43 3-54 3 =73 3-24 3 _ x y.z = 5 b b y x.z = 15 ` UBSBGUBSBGBÀBSQBMŽN b b z x.y = 12 a 222 x.y.z x .y .z = 5.15.12 ÖRNEK 8 x2 . y2 . z2 = 5.15.12 j x.y.z = 30 7 3 16 - 2 3 128 + 5 3 54 ÖRNEK 12 JöMFNJOJOTPOVDVLBÀUŽS AB 14 3 2 - 8 3 2 + 15 3 2 = 21 3 2 \"JMF#BSBTŽ 20 3 CSEJS\"JMF#OPLUBMBSŽOEBCVMVOBO ÖRNEK 9 LJõJMFS CJSCJSMFSJOF EPóSV TBCJU IŽ[MB TŽSBTŽZMB EBLJLBEB a3 8 b23 JGBEFTJOJOFöJUJOJCVMVOV[ 12 br ve 27 CSIŽ[MBZBLMBõNBLUBEŽS b2 a13 #VOBHÌSF EBLJLBTPOSBBSBMBSŽOEBLJV[BLMŽLLBÀ CSPMVS 24 23 8 a .b 8 12 = 2 3 ZEBLZ 10.2 3 = 20 3 11 7 27 = 3 3 ZEBLZ 10.8 3 = 30 3 16 13 = 50 3 - 20 3 = 30 3 br a .b b .a 6. 1,11 7. 7 3 3 - 2 4 3 8. 21 3 2 8 11 7 42 1 11. 30 12. 30 3 10. 9. a .b 2

,ÌLUFO¦ŽLBSNB,ÌL÷ÀJOF\"MNB TEST - 12 1. 3 27 - 4 12 + 2 75 5. 4999 - 4997 + 4995  UPQMBNŽOŽOTPOVDVLBÀUŽS 4994 + 4998 - 4996 JöMFNJOJOTPOVDVLBÀUŽS  A) 8 3 B) 9 3  $  3 &  1 A) 2 2 B) 2  $  2 %   %  3  &  3 6. f ( x ) = xn- 1 ve f ^ 6 2 h = 15 2. 3 = a , 5 = b PMEVóVOBHËSF PMEVôVOBHÌSF OLBÀUŽS 180 JOBWFCDJOTJOEFOEFôFSJBöBôŽEBLJMFS- \"  #  $  %  &  EFOIBOHJTJEJS A) 2ab B) 2ab2 $ B2 b  % BC & B2 b2 7. 25 + 2500 + 250000 25 + 0, 25 + 0, 0025 JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  &  3. 2a = x ve 4 3a = y  %  PMEVôVOBHÌSF 12aOŽOYWFZUÑS ÑOEFOFöJUJ BöBôŽEBLJMFSEFOIBOHJTJEJS A) x2 y4 B) x4 y4 $  x y  % YZ2 & Y2 y2 8. 2 + 4 + 6 + 8 + 10 + . . . + 22 = x 3 + 6 + 12 + 18 + 24 + . . . + 66 = y  PMEVôVOBHÌSF ZJMFYBSBTŽOEBLJCBôŽOUŽBöBôŽ- EBLJMFSEFOIBOH JTJEJS  4. 4. 9 m - 3. 9 n = 2. 9 m + 9 n A) 3 + x = y B) y = 3 x + 1 FöJUMJôJOFHÌSF  3 m LBÀUŽS  $  y = 3 (x + 1)  %  y = x - 3 n %  1  &  1  &  y = 3 (x - 1) 24 \"  #  $  1. D 2. C 3. # 4. A 43 5. C 6. D 7. C 8. C

TEST - 13 ,ÌLUFO¦ŽLBSNB,ÌL÷ÀJOF\"MNB 1. 12 - 27 + 48 - 75 4. 1! .2! .3! .4! = a b 32 FöJUMJôJOJTBôMBZBOFOLÑÀÑL a +CUPQMBNŽLBÀ-  JöMFNJOJOTPOVDVLBÀUŽS UŽS \"  #  $  %  &  A) –2 3 B) – 3  $   %  3  & 2 3 5. 6 5 – 2 . 3 5 – 2 . 5 – 2  JöMFNJOJOTPOVDVLBÀUŽS A) 5 - 2 B) 5 + 2 $  2. a > -2 olmak üzere,  %  &  5 + 2 a + 3 32a + 28 TBZŽTŽ SBTZPOFM CJS TBZŽ PMEVôVOB HÌSF  B UBN TBZŽTŽOŽOLBÀGBSLMŽEFôFSJWBSEŽS \"  #  $  %  &  6. 6 25 , b = 5 34 , c = 4 53 a= TBZŽMBSŽOŽO TŽSBMBOŽöŽ BöBôŽEBLJMFSEFO IBOHJTJ- EJS A) b < c < a B) a < b <D $ D< b < a  % C< a <D & D< a < b 3. B CWFYEPóBMTBZŽPMNBLÐ[FSF  D x = a2.b = b õFLMJOEFUBOŽNMBOŽZPS  ±SOFóJO 9 18 = 2 dir. 7. YWFZQP[JUJGTBZŽMBS   #VOBHÌSF  9 9 63 + 9 43 JöMFNJOJOTPOVDV 8 56.34.x2 = y 9 162  PMEVôVOBHÌSF Y+ZOJOFOLÑÀÑLEFôFSJLBÀ- LBÀUŽS UŽS \"  #  $  43  %  &  44 \"  #  $  %  &  25 1. A 2. C 3. A 44 4. # 5. A 6. # 7. D

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ,ÌLMÑ4BZŽMBSŽO&öMFOJôJ KÖKLÜ SAYILAR - III ÖRNEK 3 7$1,0%m/*m n ` Z+ ve n $ 1 için  ¥BSQŽNMBSŽ SBTZPOFM PMBO JLJ HFS¿FL TBZŽEBO /n IFSCJSJOFCJSCJSJOJOFöMFOJôJBEŽWFSJMJS f_ k i = f_ 1 i + f_ 2 i + f_ 3 i + ... + f_ n i a + b OJOFõMFOJóJ a - b k=1 a + b OJOFõMFOJóJa - b õFLMJOEFUBOŽNMBONBLUBEŽS a OŽOFõMFOJóJ a 99 1 JGBEFTJOJOEFôFSJLBÀ- n am OŽOFõMFOJóJ n an – m dir. k+1+ k /#VOBHÌSF  k=1 UŽS /99 1 11 + ... + 1 =+ k=1 k+1+ k 2+1 3+ 2 100 + 99 ÖRNEK 1 ^ 2 - 1 h ^ 3 - 2 h . . . . ^ 100 - 99 h 7 - 6 + 10 _ 3- 2 5- 2 5 b JGBEFTJOJOEFôFSJLBÀUŽS 2-1 b 3- 2 b b 4- 3 ` b 100 - 1 = 10 - 1 = 9 hb b b 100 - 99 a 7 6 10 ÖRNEK 4 -+ 3- 2 5- 2 5 ^3+ 2h ^ 5+ 2h ^ 5h 7^ 3 + 2 h 6^ 5 + 2 h 10 5 =- + 5+1 7 35 :_ 3-1i =3+ 2-2 5-2 2+2 5 =3- 2 3 + 5 + 15 + 1 JGBEFTJOJOEFôFSJLBÀUŽS 5+1 5+1 11 = ·= 3^ 1 + 5 h + 5 + 1 ^ 5 + 1 h^ 1 + 3 h 3 - 1 2 ÖRNEK 2 ÖRNEK 5 3+ 2+ 6+1 A = 15 - 6 2+1 2 -1 5 JGBEFTJOJOEFôFSJLBÀUŽS PMEVôVOBHÌSF \"2TBZŽTŽOŽOEFôFSJLBÀUŽS 3^ 1 + 2 h + 1 + 2 ^ 1 + 2 h^ 3 + 1 h = = 3+1 2+1 1+ 2 A= 3^ 5- 2h 15 & 2 = 15 UJS =- A 2- 5 5 45 3. 9 4. 1 5. 15 1. 3 - 2 2. 3 + 1 2

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÜSLÜ VE KÖKLÜ SAYILAR www.aydinyayinlari.com.tr ÖRNEK 6 7$1,0%m/*m 3+ 2+1 a, b ` R+ , n ` Z+ ve n $ 2 olmak üzere, 3- 2+1 n a . n b = n a.b dir. JGBEFTJOJOFöJUJLBÀUŽS n a = n a dir. nb b 3+ 2+1 = ^ 3 + 2 + 1 h2 3 + 1 - 2 ^ 3 + 1 h2 - ^ 2 h2 ^ 3+1+ 2h ÖRNEK 9 6 + 2 6 + 2 3 + 2 2 2 2^ 3 + 1 h+ 2 3^ 1 + 3 h == 2+2 3 2^ 3 + 1 h \"öBôŽEBWFSJMFOJGBEFMFSJOFöJUJOJCVMVOV[ ^ 3 + 1 h^ 2 2 + 2 3 h a) 3 2 . 3 4 2. 5 = = 3+ 2 b) 2^ 3 + 1 h 4 16 3.3 9 48 + 3 128 c) d) 5 27 3 54 + 27 ÖRNEK 7 e) 3 3 . 3 9 . 3 0, 027 0, 49 + 0, 09 f) 2x2 + 1 - 2x2 + 3 = a ise 0, 25 - 0, 01 2x2 + 1 + 2x2 + 3 JGBEFTJOJOBUÑSÑOEFOFöJUJOJCVMVOV[ a) 3 2 . 2 4 = 3 8 = 2 b) 2. 5 10 = 4 100 10 = = 4 16 4 16 16 2 2x2 + 1 - 2 + 3 = a 4 UBSBGUBSBGBÀBSQBMŽN 3.3 9 15 10 = 30 2x 2x2 + 1 + 2 + = c) 3 .9 30 17 2x 3 b 5 27 6 = 3 (2x2 + 1) - (2x2 + 3) = a.b 27 2 48 + 3 128 4 3 + 4 3 2 4 -2 = a.b j b = - a d) = = 3 54 + 27 3 3 2 + 3 3 3 e) 3 3 . 3 9 . 3 0, 027 = 3 3.9.27 9 = = 0, 9 1000 10 0, 49 + 0, 09 0, 7 + 0, 3 1 5 f) = = = 0, 25 - 0, 01 0, 5 - 0, 1 0, 4 2 ÖRNEK 8 ÖRNEK 10 YWFZQP[JUJGHFS¿FMTBZŽMBSŽJ¿JO 11 - 2 . 3 11 + 2 . 6 11 + 2 x-y = 1 JöMFNJOJOTPO VDVLBÀUŽS x y+y x x PMEVôVOBHÌSF  x PSBOŽLBÀUŽS y x-y 1 a x + y ka x - y k == =1 x . ya x + y k x ya x+ yk x 6 ^ 11 - 2 h3.^ 11 + 2 h2.^ 11 + 2 h x - y = y & x = 2 y j y = 4 UÑS = ^ 11 - 2h^ 11 - 2 h3 = 6 3 9 =3 2 46 9. a) 2 b) 10 30 17 4 5 10. 3 7. - a c) 3 d) e) 0,9 f) 6. 3 + 2 8. 4 2 32

www.aydinyayinlari.com.tr ÜSLÜ VE KÖKLÜ SAYILAR 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 11 ÖRNEK 15 2, 88 3 0, 024 2, 56 _ 2 + 3 - 5 i_ 2 + 3 + 5 i +- JGBEFTJOJOFLTJôJOJOLBSFTJLBÀUŽS 0, 02 3 0, 003 0, 16 ^ 2 + 3 h2 - ^ 5 h2 = 7 + 4 3 - 5 = 2 + 4 3 JöMFNJOJOTPOVDVLBÀUŽS & ^ 2 + 4 3 - 2 h2 = 48 2, 88 0, 024 2, 56 = +3 - 0, 02 0, 003 0, 16 = 144 + 3 8 - 16 = 12 + 2 - 4 = 10 ÖRNEK 12 ÖRNEK 16 M =_8 5+1i_4 5+1i_ 5+1i 5 a3.b . 3 a.b2 JöMFNJOJOTPOVDVLBÀUŽS PMEVôVOBHÌSF  8 5 JO.UÑSÑOEFOFöJUJOFEJS 30 a28.b–4 ^ a3.b h6.^ a.b2 h10 = 30 28 26 a .b 30 30 30 =b = ^ 8 h^ 8 h ^ 4 5+1h^ 5 + 1 h = M^ 8 5 - 1 h 28 –4 28 –4 b 1 2 3 4 454-441 4 454+441 a .b a .b 1 4 4 4 44454–4142 4 4 4 4 4 4 443 1 4 4 4 4 4 4 4 454–4142 4 4 4 4 4 4 4 4 4 443 4 4 = ^ 3 5 - 1 h.Mj 8 5 = M + 4 ÖRNEK 17 M 5 0, 3 = 5 81 PMEVôVOBHÌSF YLBÀUŽS ÖRNEK 13 3 31–x 3 33x–6y 51 1 = 81PMEVôVOBHÌSF YLBÀUŽS 3 15 3 3 15 91–2y = = 5x–8 3 1–x 5–5x 3 3 3 3 6x – 12y 6 + 5x–8 4 6 = 6x – 12y – 6 12y = 81 3 – 6y 3 = 3 15 = 3 5 & x = 4 9 6 6x – 6 = x – 1 = 4 &x=5 3 3 3 ÖRNEK 14 ÖRNEK 18 A = 3 1- 3 , B = 6 4 + 2 3 f 3- 1 2 2 bPMEVôVOBHÌSF BCLBÀUŽS PMEVôVOBHÌSF \"#LBÀUŽS 6 p =a+ 6 ^ 1 - 3 h2.^ 4 + 2 3 h = 6 ^ 4 - 2 3 h ^ 4 + 2 3 h =6 4=3 2 ^ 3 2 - 1 h2 19 - 6 2 = = a+ 2b 66 19 j a = , b = - 1 & 6ab = - 19 6 11. 10 M+4 13. 5 14. 3 2 47 15. 48 16. b 17. 4 18. –19 12. 4

TEST - 14 ,ÌLMÑ4BZŽMBSMB÷öMFNMFS 1. 3 + 4 + 9 5. 6 - 3 3 48 27 6+ 3 JöMFNJOJOTPOVDVLBÀUŽS  TBZŽTŽOŽOÀBSQNBJöMFNJOFHÌSFUFSTJLBÀUŽS 73 B) 5 3  $  3 A) 3 - 1 B) 3 + 2  $  3 + 1 A) 3 &  3 3 3  % 3 3   %  2 - 1 &  2 + 1 2. 15 - 3 + 15 + 5 3- 3 3+ 5 5 6. 3 2 - 1 + ^ 3 2 h2 JöMFNJOJOTPOVDVLBÀUŽS 3 2-1 $  5  %  3  &  JöMFNJOJOTPOVDVLBÀUŽS 35 \"  #  B) - 3 2  $  3 4 &  3 2 + 1 A) –1  %  3. 3 27 - 3 7. 3 + 2 + 3 . - 3 + 2 + 3 . 3 + 1 16 3 + 3 ÀBSQ ŽNŽOŽOTPOVDVLBÀUŽS 27 A) 3 B) 2  $  % - 2  & - 3  JöMFNJOJOTPOVDVLBÀUŽS A) 3 B) 3  $  2  %  &  4 2 3 4. 2 8. a > b olmak üzere, 3 25 + 3 15 + 3 9  JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS A) 3 5 + 3 3 B) 3 5 - 3 3 9a2 - 9b2 + 4a2 - 4b2 a+b %  3 5 - 3 3  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS 2 $  A) 5 ( a - b ) B) 5 a - b  $ 5 a + b &  3 5 - 3 3 15  %  B+C  5 a-b &  a-b 1. A 2. E 3. E 4. # 48 5. D 6. A 7. # 8. #


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook