Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore TYT Matematik Ders İşleyiş Modülleri 4. Modül Polinomlar Çarpanlara Ayırma

TYT Matematik Ders İşleyiş Modülleri 4. Modül Polinomlar Çarpanlara Ayırma

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-23 00:48:19

Description: TYT Matematik Ders İşleyiş Modülleri 4. Modül Polinomlar Çarpanlara Ayırma

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- :BZŽO&EJUÌSÑ %J[HJ–(SBGJL5BTBSŽN  .FINFU÷MLFS¦0#\"/ *4#//P :BZŽODŽ4FSUJGJLB/P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ #BTŽN:FSJ ÷MFUJöJN         &SUFN#BTŽN:BZŽO-UEõUJr    \":%*/:\":*/-\"3*  JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr %¸O¾P.DSDáñ·/÷7&34÷5&:&)\";*3-*, ÜNİVERSİTEYE HAZIRLIK 4. MODÜL MATEMATİK - 1 Alt bölümlerin 1PMJOPNMBS¦BSQBOMBSB\"ZŽSNB KARMA TEST-3 Karma Testler EDĜOñNODUñQñL©HULU POLİNOMLAR 1. P( x ) bir polinom olmak üzere, E) 5 4. 1 Y  2 Y  WF 3 Y  CJSCJSJOF FõJU PMNBZBO QPMJ- Modülün sonunda ÇARPANLARA AYIRMA x .P( x ) + P( -x ) = 2x2 - x + 1 OPNMBSEŽS PMEVôVOBHÌSF 1  LBÀUŽS  EFS[1 Y ] =EFS[2 Y ] =EFS[3 Y ] =OFöJUMJ- ôJOEF A ) 15 B ) 10 C ) 8 D ) 6 I. der [ P ( x ) + Q ( x ) ] +EFS<3 Y >âO ³ Polinom Kavramı t 2 II. der [ P ( x ) ] . der [ R ( x ) ] = n2 III. der [ P ( x ) . Q ( x ) + R ( x ) ] = 3n  JGBEFMFSJOEFOIBOHJMFSJEPôSVEVS tüm alt bölümleri L©HUHQNDUPDWHVWOHU ³ Polinomlarda İşlemler t 8 2. P ( x - 1 ) polinomunun, x – 3 ile bölümünden kalan \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[*** 4, Q ( x + 1 ) polinomunun, x - 3 ile bölümünden kalan -PMEVóVOBHËSF 2Q [1 Y+ ] +Y2 + 1 D) I ve II E) I ve III ³ Polinomlarda Bölme İşlemi t 16 6ñQñIð©LðĜOH\\LĜ QPMJOPNVOVOY-JMFCÌMÑNÑOEFOLBMBOOF- ³ Polinomların Çarpanlara Ayrılması - I t 26 www.aydinyayinlari.com.tr EJS ·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" A ) -2 B ) -1 C ) 0 D ) 1 E ) 2 10-÷/0.,\"73\".* 5. 1 + x1 + x2 + x3 + ... + x7 : x6 + x4 + x2 + 1 \\HUDOñU x2 - 2x - 3 x2 - 9 ³ Polinomların Çarpanlara Ayrılması - II t 30 ÖRNEK 2 TANIM JGBEFTJOJOFOTBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ- 15 TJEJS ³ Polinomların Çarpaan0,laa1r, aa2,Aay3,r.ı..lm, ana-s1,ıa-n IHIFIS¿FtLTBZ4ŽMB1S O  1 Y = x 2n–1 +Y2mYn +12 %XE¸O¾PGHNL¸UQHN EPóBMTBZŽWFYEFóJõLFOPMNBLLPõVMVJMF polinomunun derecesi en çok kaç olabilir? A) x + 3 B) x + 1 C) 1 – x  1 Y = anYn + an-1Yn-1 + ... + a1 Y+ a0 3. D) 1 E) 1 ³ Karma Testler t 49 CJ¿JNJOEFLJGPOLTJZPOMBSBHFS¿FMLBUTBZŽMŽWFCJS x +1 x +3 EFóJõLFOMJ polinom ¿PLUFSJNMJ EFOJS VRUXODUñQ©¸]¾POHULQH <(1m1(6m/6258/$5 1PMJOPNMBS¦BSQBOMBSB\"ZŽSNB <HQL1HVLO6RUXODU DNñOOñWDKWDX\\JXODPDVñQGDQ ³ Yeni Nesil Sorular t 55#ÐUÐO QPMJOPNMBS  GPOLTJZPOMBSŽO Ë[FM CJS UÐSÐ 1. 6. x4 + x3 + 5x2 + 3 = ( x +31.) (x3 + ax2 + bx + c) + d 0RG¾O¾QJHQHOLQGH\\RUXP PMBSBLFMFBMŽOBCJMJS ¥FWSFTJYCSPMBO*õFLJMEFWFSJMFOFõLFOBSпHFO- :BSŽ¿BQŽCSPMBOCJSLÐSFNFSLF[JOEFOYCSV[BL- \\DSPDDQDOL]HWPHYE  1 Y = anYn + an-1Yn-1 + ... + a1Y+ a0QPMJ- EHFHULOHUL¸O©HQNXUJXOX OPNVOEB (x – 1) MFSõFLJMEFLJHJCJCPZBONŽõUŽS olduôVOBHÌSF B C D MEŽLUBJGBCEJSFETÐJO[MJFONEMFFôLFFSTJJMJZPS VRUXODUD\\HUYHULOPLĜWLU a0, a1Y B2Y2, ... , anYnJGBEFMFSJOJOIFSCJSJOF (x + 2) QPMJOPNVOterimleri, LBÀUŽS a0, a1, a2, ... , anHFS¿FMTBZŽMBSŽOB JMHJMJUFSJN- A) 6 B) 13 C) 7 D) 15 E) 8 MFSJOLBUTBZŽMBSŽ XODĜDELOLUVLQL] 22 ar `3WFS`/PMNBL1Ð[FSF ÖRNEK 3 &WJOCJSLFOBSV[VOMVóV O1 arYrUFSJNJOEFLJYJOÐTTÐPMBOSZF CVUFSJNJO P ( x ) = x3 + ax2 + ( b + 1 ) x + 3 x derecesiEFOJSWFder [ P ( x ) ] WFZBd [ P( x )] CJ- Aşağıdaki polinomların başkatsayısını, derecesini ve sabit terimini bulunuz.  CJSJNPMBOLBSFõFLMJOEFLJËOEVWBSŽ FIOJ Y+ 1) bi- O2 ¿JNJOEFHËTUFSJMJS a ) 1 Y =Y4 -Y2 +Y+ 2 b ) 2 Y =Y5 -Y2 +Y3 -Y7 + 1 - 2 rim, boyu (x + CJSJNPMBOEJLEËSUHFOõFLMJOEFLJ II  &OCÐZÐLEFSFDFMJUFSJNJOLBUTBZŽTŽPMBOBnLBU- c ) 1 Y Z =Y3 y5 +Y2 y -Y4 y7 TBZŽTŽOB CBöLBUTBZŽ  EFóJõLFO J¿FSNFZFO B0 NBOUPMBNBNBM[FNFTJJMFUBN\"BZNOŽFLOVLSBBQMBMBHOËBSDFB*L*UŽõSFLJMEF¿7FW. SFTYJ ZYWFCS[PQMBPO[JFUJõG-UBNTBZŽMBSPMNBLÑ[FSF UFSJNJOFEFsabit terimEFOJS LFOBSпHFOMFSCPZBONŽõUŽS Y` N+)-x2 + y2 - z2 = 13 +2xz #VOBHÌSF PMVöBOBSBLFTJUJOBMBOŽOŽOYJOCJS  #VOBHÌSF B+CLBÀPMNBMŽEŽS QPMJOPNVPMBSBLJGBEFTJ \" Y  JÀJO Buna göre, P ( x ) = ¥FWSFTJYPCMESVPôMBVOOFBõHLÌFSOFB SZLBÀUŽS I. \" Y -YJMFLBMBOTŽ[CËMÐOÐS $OW%¸O¾P7HVWOHUL A) 0 B) 3 C) 8 пHDF)O1E0FLJ CEP)ZB1O2NBNŽõ пHFO TAB)Z5ŽTŽ öFLBMJO) E6F C) 7 D) 8 E) 9 II. \" Y QPMJOPNVOVOLBUTBZŽMBSUPQMBNŽÕEJS ÖRNEK 1 UBOŽNMBOBO QPMJOPNVO LBUTBZŽMBS UPQMBNŽ LBÀ- TEST - 17- 11 , x7 , 1 , x , 2 3, 29 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ UŽS III. \" Y QPMJOPNVOVOCBõLBUTBZŽTŽÕEJS x3 x 5. x2 + 4x - 3 = 0 ise ifadelerinden hangileri bi1r .polinoam4u+nbt2er-imai2dbir2? - a2 1. E 2. A 3. D 51 4. D 5. A 6. E 7. CJGBEFMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS $  %  &  \"  #  \" :BMOŽ[* # *WF** $ *WF***  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSÖJ BRöNBEôKŽEB4LJMFSEFO   x2 + 9   % **WF*** & * **WF*** $\\UñFDPRG¾OVRQXQGD x2 IBOHJTJEFôJMEJS? \"öBôŽEBLJJGBEFMFSEFOIBOHJMFSJQPMJOPNEVS Her alt bölümün A) a2 + b2 B) a + b a ) 1 YC )=a-Y2b- 2 + 3  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS x D) a + 1 b )E)1a Y- =1Y3 -Y2 + 2 A) 22 B) 21 C) 20 D) 19 E) 18 2. ôFLJMEF  Fõ EJLEËSUHFOEFO PMVõBO PZVO QBSLŽ 4. ,VõCBLŽõŽ HËSÐOÐNÐ õFLJMEFLJ HJCJ PMBO CJS SFTJN x +3 NPEFMJWFSJMNJõUJS BUËMZFTJOJO LFOBS V[VOMVLMBSŽOŽO CB[ŽMBSŽ õFLJMEF HËTUFSJMNJõUJS WDPDPñ\\HQLQHVLOVRUXODUGDQ c ) 1 Y = x3 - x2 + x + 2 VRQXQGDRE¸O¾POHLOJLOL b ROXĜDQWHVWOHUEXOXQXU 32 xx ba d ) 1 Y = 3 x + 2 x xx x WHVWOHU\\HUDOñU ba a x y 2.  214 - 28 + 1  6.  a3 + b3 = 40 ve ab (a + b) = 8 210 - 8 y  JöMFNJOJOTPOVDVLBÀUŽS  PMEVôVOBHÌSF B+CBöBôŽEBL JMFSEFOIBOHJTJ 1. x7, 2 3 , 29A) 27 B) 127 C) 92 D2). 64 3. aE) )3 8 / 2 b) –8 / 7 / 1– OFFöJUUJS 4. c, d #VQBSLŽOIFSEJLEËSUHFOJOLFOBSMBSŽOBCJSTŽSBPMB- x 4 88 20 /4 2 c) –1 / 11 / 0 DBLõFLJMEFUPQMBNNFUSF¿JUMFSMF¿FWSJMFDFLUJS x 77  \"UÌMZFOJO BMBOŽ  CJSJNLBSF  ÀFWSFTJ  CJSJN PMEVôVOBHÌSF YLBÀCJSJNEJS A) 6 B) 4 C) 3 D) 2 E) 1  #VOBHÌSF QBSLŽOUPQMBNBMBOŽOŽOBUÑSÑOEFO FöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"   #   $  %  &   A) 520a - 13a2  # B-B2 3 $  B-B %  310a - 12a2 3 3.  1 a- a-6  &  530a - 12a2 + 3 a-4 a-2 7. 1969.1973 + 4   JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JöMFNJOJOTPOVDVLBÀUŽS 56 3. B 4. C 1. E 2. A A) a + 2 B) a - 3 C) 1 A) 1970 B) 1971 C) 1972 E) 1975 D) a - 4 E) 3 a D) 1974 4.  x – 5 = 4 8. x + 1 =-1PMEVôVOBHÌSF  x x  PMEVôVOBHÌSF x + 25 JGBEFTJOJOEFôFSJBöBôŽ   x2007 + 1  x x2007 EBLJMFSEFOIBOHJTJEJS  JGBEFTJOJOEFôFSJLBÀUŽS A) 12 B) 15 C) 18 D) 24 E) 26 A) 2 B) 1 C) 0 D) -1 E) -2 \" B C E 40 \" B B \"

ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, MATEMATİK - 1 4. MODÜL POLİNOMLAR ÇARPANLARA AYIRMA ³ Polinom Kavramı t 2 ³ Polinomlarla İşlemler t 8 ³ Polinomlarda Bölme İşlemi t 16 ³ Polinomların Çarpanlara Ayrılması - I t 26 ³ Polinomların Çarpanlara Ayrılması - II t 30 ³ Polinomların Çarpanlara Ayrılması - III t 41 ³ Karma Testler t 49 ³ Yeni Nesil Sorular t 55 1

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr 10-÷/0.,\"73\".* Polinom ÖRNEK 2 TANIM 15 a0, a1, a2, a3, ... , an-1, an HFS¿FL TBZŽMBS  O  1 Y = x 2n–1 +Y2mYn +12 EPóBMTBZŽWFYEFóJõLFOPMNBLLPõVMVJMF  1 Y = anYn + an-1Yn-1 + ... + a1 Y+ a0 polinomunun derecesi en çok kaç olabilir?  CJ¿JNJOEFLJGPOLTJZPOMBSBHFS¿FMLBUTBZŽMŽWFCJS 1 Y CJSQPMJOPNJTFIFSCJSUFSJNJOÑTTÑEPôBMTBZŽPM EFóJõLFOMJ polinom ¿PLUFSJNMJ EFOJS NBMŽEŽS#VOBHÌSF  15 ! N ve n + 12 `/PMNBMŽ  #ÐUÐO QPMJOPNMBS  GPOLTJZPOMBSŽO Ë[FM CJS UÐSÐ 2n - 1 PMBSBLFMFBMŽOBCJMJS  1 Y = anYn + an-1Yn-1 + ... + a1Y+ a0QPMJ- 15 EŽS ! N ise (2n - 1) ifadesi 15 in pozitif tam sa OPNVOEB a0, a1Y B2Y2, ... , anYnJGBEFMFSJOJOIFSCJSJOF 2n - 1 QPMJOPNVOterimleri, ZŽCÌMFOMFSJPMNBMŽEŽS a0, a1, a2, ... , anHFS¿FMTBZŽMBSŽOB JMHJMJUFSJN- MFSJOLBUTBZŽMBSŽEFOJS O halde, 2n - 1, {1, 3, 5, 15}EFôFSMFSJOJBMBCJMJS 2n - 1 = 1 j n = 1 , 2n - 1 = 3 j n = 2 2n - 1 = 5 j n = 3 , 2n - 1 = 15 j n = 8 olur. n = 8 için 15 = 1 olurken n + 12 = 20 olur. 2n - 1 O halde polinomun derecesi en çok 20 olur. ar `3WFS`/PMNBLÐ[FSF ÖRNEK 3 arYrUFSJNJOEFLJYJOÐTTÐPMBOSZF CVUFSJNJO Aşağıdaki polinomların başkatsayısını, derecesini derecesiEFOJSWFder [ P ( x ) ] WFZBd [ P( x )] CJ- ve sabit terimini bulunuz. a ) 1 Y =Y4 -Y2 +Y+ 2 ¿JNJOEFHËTUFSJMJS b ) 2 Y =Y5 -Y2 +Y3 -Y7 + 1 - 2 c ) 1 Y Z =Y3 y5 +Y2 y -Y4 y7  &OCÐZÐLEFSFDFMJUFSJNJOLBUTBZŽTŽPMBOBnLBU- TBZŽTŽOB CBöLBUTBZŽ  EFóJõLFO J¿FSNFZFO B0 UFSJNJOFEFsabit terimEFOJS ÖRNEK 1 B #BöLBUTBZŽTŽ EFSFDFTJ TBCJUUFSJNJEJS C #BöLBUTBZŽTŽ-8, derecesi 7, sabit terimi 1 - 2 dir. - 11 , x7 , 1 , x , 2 3, 29 D #BöLBUTBZŽTŽ- EFSFDFTJ TBCJUUFSJNJEŽS x3 x ÖRNEK 4 ifadelerinden hangileri bir polinomun terimidir? \"öBôŽEBLJJGBEFMFSEFOIBOHJMFSJQPMJOPNEVS r - 11 = - 11x-3 teriminde -3 n/PMEVôVOEBOCJS a ) 1 Y =Y2 - 2 + 3 3 x b )1 Y =Y3 -Y2 + 2 x + 3 x c ) 1 Y = x3 - x2 + x + 2 polinomun terimi olamaz. 32 r Y7 teriminde 7 `/EŽS1PMJOPNVOUFSJNJPMBCJMJS d ) 1 Y = 3 x + 2 r 1 = –1 teriminde -1 n/PMEVôVOEBOCJSQPMJ B 1PMJOPNEFôJMEJS x C 1PMJOPNEFôJMEJS x c) Polinomdur. d) Polinomdur. nomun terimi olamaz. 1 r 2 x=x 1 teriminde b NPMEVôVOEBOCJSQPMJOPNVOVO 2 terimi olamaz. r 2 3 ve 29 teriminde x li ifadenin derecesi 0 ol EVôVOEBO `/ QPMJOPNVOUFSJNJPMBCJMJS 1. x7, 2 3 , 29 2 2. 20 3. a) 3 / 4 / 2 b) –8 / 7 / 1– 2 c) –1 / 11 / 0 4. c, d

www.aydinyayinlari.com.tr 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 ÖRNEK 7  1 Y =Yn–2 +Y2-n +Y2 + 1  1 Y = N- Y2 + ( n - Y+NO JGBEFTJ CJS QPMJOPN PMEVôVOB HÌSF  1 O  - O EFôF JGBEFTJTBCJUQPMJOPNPMEVóVOBHËSF SJLBÀUŽS m + n +1  UPQMBNŽOŽOEFôFSJLBÀUŽS P(x) bir polinom ise 5xn-2 ve 4x2-n terimlerinin üssü 1 Y QPMJOPNVTBCJUQPMJOPNPMEVôVOBHÌSF Y2 ve x in n -äWF-OäPMNBMŽEŽS0IBMEFO=PMNBMŽEŽS P ( x ) = 5.x0 + 4.x0 + x2 + 1 = x2 + 10 bulunur. LBUTBZŽTŽPMNBMŽEŽS N- 2 = 0 ve n - 3 = 0 P ( 2 ) = 14 tür. P ( 2 ) - 2 = 14 - 2 = 12 bulunur. olur. 4BCJU1PMJOPN4ŽGŽS1PMJOPNV TANIM #VSBEBON= 2, n = 3 bulunur ve P ( x ) = m.n den P( x ) = 6 olur. 1 Y = an Yn + an-1 Yn-1 + ... + a2 Y2 + a1 Y1 + a0 QPMJOPNVOEB O halde, m + n + P ( 2018 ) = 2 + 3 + 6 = 11 bulunur. an = an -1 = ... = a2 = a1 = 0 ÷LJ1PMJOPNVO&öJUMJôJ  PMEVóVOEBFMEFFEJMFO1 Y = a0QPMJOPNVsa TANIM bit polinomdur. Sabit polinomun derecesi 0 EŽS 1 Y = anYn + an-1Yn-1 + ... + a2 Y2 + a1 Y1 + a0  1 Y QPMJOPNVOEB  2 Y = bNYN + bN-1YN-1 + ... + b2 Y2 + b1 Y1 + b0 an = an-1 = ... = a2 = a1 = a0 = 0  QPMJOPNMBSŽJ¿JO  PMEVóVOEBFMEFFEJMFO1 Y =YQPMJOPNVTŽGŽS polinomdur.  1 Y =2 Y l n =NWF 4ŽGŽSQPMJOPNVOVOEFSFDFTJCJMJOFNF[ an = bN , an-1 = bN-1 , ... , a1 = b1 , a0 = b0  PMNBMŽEŽS ÖRNEK 6 ÖRNEK 8  1 Y =Y2 -Y2 – a + ab - 3 1 Y =Y4 -Y3 -BY2 + ( b - Y+ 3 2 Y =DY4 + ( d - Y3 +Y2 -Y+ e ifadesi 4. dereceden ve sabit terimi 75 olan bir po MJOPNPMEVôVOBHÌSF B+CLBÀUŽS QPMJOPNMBSŽCJSCJSJOFFöJUPMEVôVOBHÌSF B C D EWF FTBZŽMBS ŽOŽCVMVOV[ P( x ) polinomu 4. dereceden bir polinom olabilmesi için -3x2-a teriminin üssü 2 - a =PMNBMŽEŽS0IBMEF 1 Y  WF 2 Y  QPMJOPNVOVO BZOŽ EFSFDFMJ UFSJNMFSJO a = -2 olur. P( x ) polinomunun sabit terimi 75 olma LBUTBZMBSŽFöJUPMBDBôŽOEBO TŽJÀJO ab - 3 ifadesi 75 = 5 3 PMNBMŽEŽS - 2b - 3 = 5 3 ise b = - 3 3 olur. c = 5 , a = -2 , e = 3 O halde, a + b = - 2 - 3 3 bulunur. -4 = d-1 b-1 =-1 fp fp d =-3 b=0 bulunur. 5. 12 6. - 2 - 3 3 3 7. 11 8. a) a = –2, b = 0, c = 5, d = –3, e = 3

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr ÖRNEK 9 ÖRNEK 12 1 Y =Y3 - ( 2a - Y2 +Y- c + 3  1 Y =Y3 -Y2 +Y- 4 2 Y = ( b - Y4 + ( d - Y3 +Y2 +Y- 1 PMEVôVOB HÌSF P (1 - 3 x)  JGBEFTJOJO FöJUJOJ CVMV nuz. QPMJOPNMBSŽCJSCJSJOFFöJUPMEVôVOBHÌSF B C DWFE TBZŽMBSŽOŽCVMVOV[ P ( x ) = (x3 - 3x2 + 3x - 1) - 3 = (x - 1)3 - 3 P^ 1 - 3 x h = ^ 1 - 3 x - 1 h3 - 3 1 Y WF2 Y QPMJOPNMBSŽOŽOBZOŽEFSFDFMJUFSJNMFSJOJO LBUTBZŽMBSŽFöJUPMBDBôŽOEBO = -x - 3 bulunur. b - 1 = 0 , 3 = d - 1 , -2a + 1 = 5 , -c + 3 = -1 b=1 d=4 a = -2 c=4 ( P ( x ) polinomunda 4. dereceden terim yoktur.) %m/*m ÖRNEK 13  1 Y WFSJMEJóJOEF 1 2 Y  JCVMNBLJ¿JO 1 Y   1 Y Z =Y2 y + y2 -Y+ 1 QPMJOPNVOEBYZFSJOF2 Y ZB[ŽMŽS PMEVôVOBHÌSF  P( 1 - x, y + JGBEFTJOJOFöJUJOJCV lunuz. ÖRNEK 10 P ( x, y ) = x2y + y2- 2x + 1 1 Y =Y2 -Y+ 3 P ( 1 - x, y + 1 ) = (1 - x)2 (y + 1) + (y + 1)2 - 2(1 - x) + 1 PMEVôVOBHÌSF P ( 2)LBÀUŽS = x2y + x2 + y2 - 2xy + 3y + 1 bulunur. P^ 2 h = 5^ 2 h2 - 4 2 + 3 %m/*m = 13 - 4 2 bulunur.  2 Y  JO UFSTJOJ 1 2 Y   QPMJOPNVOEB ZFSJOF ZB[BSTBL 1 Y JCVMVOV[ [ Q o Q-1 ] Y =YPMEVóVOVIBUŽSMBZŽOŽ[ ÖRNEK 11 ÖRNEK 14  1 Y =Y2 -Y+ 2  1 Y- =Y2 -Y+ 2 PMEVôVOBHÌSF 1 Y+ JGBEFTJOJOFöJUJOJCVMVOV[ PMEVôVOBHÌSF 1 Y JOFöJUJOJCVMVOV[ P ( x + 1 ) = ( x + 1 )2- 2 ( x + 1 ) + 2 3x - 1 in tersi olan x+1 ü polinomda yerine yazar = x2 + 1 bulunur. 3 sak; P(x) = 9d x+1 2 x+1 n+ 2 n - 6d 33 = x2 + 1 bulunur. 9. a = –2, b = 1, c = 4, d = 4 10. 13 - 4 2 11. x2 + 1 4 12. –x–3 13. x2y + x2 + y2 – 2xy + 3y + 1 14. x2 + 1

www.aydinyayinlari.com.tr 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 15 ÖRNEK 18 P( 1 -Y =Y2 -Y+ 4 1 Y = Y-  Y-  Y-  Y-  PMEVôVOBHÌSF 1  LBÀUŽS QPMJOPNVWFSJMJZPS #VOBHÌSF  1 -YJGBEFTJOJZBQBOYEFôFSJOJZFSJOFZB[BSTBL 1 - 2x = 3 1  +1  +1  + ... +1  +1   x = -1 UPQMBNŽLBÀUŽS P(3) = (-1)2 - (-1) + 4 = 6 bulunur. P(1) = (<1 - 1) (1 - 2) . . . (1 - 150) = 0 0 P(2) = (2 - 1) (<2 - 2) . . . (2 - 150) = 0 0 h P(150) = (150 - 1) . (150 - 2) ... (1145402- 145403) = 0 0 P(151) = (151 - 1) . (151 - 2) ... (151 - 150) = 150.149...1 = 150! bulunur. ÖRNEK 16 ÖRNEK 19  1 Y+ =Y2 -Y+ 1 1 Y QPMJOPNVJMFJMHJMJPMBSBLBõBóŽEBLJCJMHJMFSWFSJMJZPS PMEVôVOBHÌSF 1 Y+ JGBEFTJOJOFöJUJOJCVMVOV[ r der [1 Y ] =UÐS Polinomda x yerine x - 1 yazarsak; P ( x + 1) = (x - 1)2 - 3 ( x - 1 ) + 1 r ,BUTBZŽMBSŽCJSCJSJOEFOGBSLMŽEŽS = x2 - 5x + 5 bulunur. r ,BUTBZŽMBSŽ{0, 1, 2, 3, 4, 5}LÐNFTJOJOCJSFMFNBOŽ- EŽS ÖRNEK 17 #VOB HÌSF  ZVLBSŽEBLJ LPöVMMBSŽ TBôMBZBO LBÀ GBSLMŽ P ( 3 x ) =Y2 -Y+ 5 1 Y QPMJOPNVWBSEŽS PMEVôVOBHÌSF 1 Y2 OJOFöJUJOJCVMVOV[ P^ x h = 4 + 3 + 2 + dx + e Polinomda x yerine x6 yazarsak, P(x2) = (x6)2 - 3(x6) + 5 ax bx cx = x12 - 3x6 + 5 bulunur. . . . .. 5 . 5 . 4 . 3 . 2 = 600 (0 hariç ) GBSLMŽQPMJOPNWBSEŽS 15. 6 16. x2 – 5x + 5 17. x12 – 3x6+ 5 5 18. 150! 19. 600

TEST - 1 1PMJOPN,BWSBNŽ 1. \"öBôŽEBLJJGBEFMFSEFOIBOHJTJQPMJOPNEVS 5. * 1 Y =Y4 -Y3 + 3 x \" P (x) = 4x3 - 5x2 + 1 - 3 II. P Y =Y6 -Y2 - 4 5x x x # P (x) = 2x - x + 3 III. P Y = 4 2 x3 + 3 3 x2 + $ P (x) = 2 IV. 1 Y = 2 + 1 x + x2 V. P Y = 9 - x2 % P (x) = 2 x - 3 2 x2 + 1 x +1 23 & P (x) = 3x2 - 1 :VLBSŽEBLJJGBEFMFSden kaç tanesi polinomdur? x \"  #  $  %  &  12 6. 1 Y = ( 2a - Yb - 3 + ( a - Y6 + 2b - 1 2. P^ x h = x 3n–2 n–2  JGBEFTJ JLJODJ EFSFDFEFO CJS QPMJOPN PMEVôVOB HÌSF 1  LBÀUŽS +x +2 \" - # - $  %  &   JGBEFTJ CJS QPMJOPN CFMJSUUJôJOF HÌSF EFSFDFTJ 7. #JMHJ öLJ QPMJOPNVO FõJU PMNBTŽ J¿JO QPMJOPNMBSŽO LBÀUŽS BZOŽ EFSFDFMJ UFSJNMFSJOJO LBUTBZŽMBSŽ CJSCJSJOF FõJU \"  #  $  %  &  PMNBMŽEŽS  1 Y = N- Y4 + ( n - Y3 +Y+ k - 5 3. 1 Y Z =Y9 +Y4 y2 +Y8 y3 -Y6 y5  2 Y =Y3 + U- Y+ 7  QPMJOPNMBSŽWFSJMJZPS  QPMJOPNVOVOEFSFDFTJLBÀUŽS P ( x ) =2 Y PMEVôVOBHÌSF N+ n + k + t top MBNŽLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  4. 1 Y =Y4 - ( a -C Y3 +Y2 +Y- c + 3 24  2 Y =CY4 +Y2 + ( d -D Y+ 5 8. P(x) = ^ a - 2 h x a + ^ a - 24 h a – 2 PMNBLÐ[FSF  QPMJOPNMBSŽCJSCJSJOFFõJUPMEVóVOBHËSF  x a + b + c +ELBÀUŽS  1 Y CJSQPMJOPNEVS  #VOBHÌSF 1 Y QPMJOPNVOVOEFSFDFTJen çok kaç olabilir? \"  #  $  %  &  \"  #  $  %  &  1. D 2. C 3. & 4. & 6 5. C 6. \" 7. & 8. #

1PMJOPN,BWSBNŽ TEST - 2 1. \"öBôŽEBLJMFSEFOLBÀUBOFTJQPMJOPNEVS 5. #BõLBUTBZŽTŽ TBCJUUFSJNJPMBOEFSFDFEFO I. P (x) = 4x2 - 3 x + 2   1 Y =NY5 + ( n - Y4 + ( k - Y+U- 2 II. P (x) = 5x3 - 2x + 3  QPMJOPNVWFSJMJZPS x  1 Y QPMJOPNVOVOLBUTBZŽMBSUPQMBNŽPMEVôV III. P (x) = 3 7 + 4x OBHÌSF N+ n + k +UUPQMBNŽLBÀUŽS IV. 1 Y =Y-4 + Y-2 +Y+ 4 V. P (x) = 17 \"  #  $  %  &  VI. P (x) = x3 - 27 x-3 \"  #  $  %  &  12 6. BWFCCJSFSUBNTBZŽPMNBLÑ[FSF  p–4  1 Y = (a +C Y3 + ( a -  2 x2 + ( b +  3 Y 2. P (x) = 3x p –1 + 2x QPMJOPNVUBNTBZŽLBUTBZŽMŽCJSQPMJOPNPMEVôV polinomunun derecesi en çokLBÀUŽS OBHÌSF B+CUPQMBNŽLBÀUŽS \" - # - $ - %  &  \"  #  $  %  &  3.  1 Y =Ya+5 +Ya -Y24-3a +Y+ 1 7. 1 Y = N-O Y3 + N- Y2+ n + k -1  JGBEFTJ CJS QPMJOPN PMEVôVOB HÌSF  B OŽO LBÀ  QPMJOPNVTŽGŽSQPMJOPNPMEVôVOBHÌSF  GBSLMŽEPôBMTBZŽEFôFSJWBSEŽS m + n +LUPQMBNŽLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  4.  1 Y = ( n - Y2 + N+ Y+ k - 2 8. \"öBôŽEBLJMFSEFOIBOHJTJQPMJOPNEVS  TŽGŽSQPMJOPNVWFSJMEJôJOFHÌSF n + m + k topla \" P (x) = 2x7 - 3x + 4x + 3 NŽLBÀUŽS # P (x) = 5 + 5x + 1 \"  #  $  %  &  x $ P (x) = 3x3 - 3 x2 + x4/3 + 4 % P (x) = 3 x7 + 8x2 - 4x - 13 & P (x) = 15x4 - x + 7 + 3 x 1. # 2. # 3. C 4. \" 7 5. & 6. C 7. D 8. D

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr 10-÷/0.-\"3-\"÷õ-&.-&3 TANIM TANIM 1PMJOPNMBSEB5PQMBNBWF¦ŽLBSNB÷öMFNJ 1PMJOPNMBSEB#ÌMNF÷öMFNJ  1PMJOPNMBSEB UPQMBNB WFZB ¿ŽLBSNB JõMFNMF- 1 Y  CËMÐOFO 2 Y  CËMFO 3 Y  CËMÐN WF SJZBQŽMŽSLFOBZOŽEFSFDFMJUFSJNMFSJOLBUTBZŽMBSŽ , Y LBMBOEŽS UPQMBOŽSWFZB¿ŽLBSŽMŽS BZOŽEFSFDFMJUFSJNFLBU- TBZŽPMBSBLZB[ŽMŽS1PMJOPNMBSEBCVMVOBOGBSLMŽ 1 Y 2 Y EFSFDFMJUFSJNMFSUPQMBNBWFZBGBSLBBZOFOZB- 3 Y [ŽMŽS , Y 1PMJOPNMBSEB¦BSQNB÷öMFNJ der [1 Y ]ãEFS[2 Y ]UJS  1 Y WF2 Y QPMJOPNMBSŽOŽO¿BSQŽNŽCVMVOVS- LFO 1 Y  JO CÐUÐO UFSJNMFSJ 2 Y  JO CÐUÐO UF-  2 Y áPMNBLÐ[FSF  SJNMFSJJMF¿BSQŽMŽS&MEFFEJMFOUFSJNMFSJOUPQMBNŽ 1 Y 2 Y QPMJOPNVOVWFSJS der [, Y ] < der [2 Y ]UJS  1 Y =2 Y 3 Y +, Y FõJUMJóJOEFLJ , Y =JTF1 Y 2 Y FUBNCËMÐOÐS ÖRNEK 3 ÖRNEK 1 \"öBôŽEBWFSJMFO1 Y QPMJOPNMBSŽOŽ2 Y QPMJOPNMB SŽOB CÌMÑQ  CÌMÑNÑO EFSFDFTJOJ  CÌMÑNÑ WF LBMBOŽ  1 Y =Y2 -Y 2 Y =Y3 +Y- 4 PMNBLÑ[FSF BöBôŽEBLJJöMFNMFSJOFöJUJOJCVMVOV[ bulunuz. a)1 Y -2 Y a) 1 Y =Y5 -Y4 +Y3 - 2 Y =Y- 2 b) 1 Y =Y4 -Y3 +Y2 + 2 Y =Y2 +Y- 2 c) 1 Y =Y3 -Y2 +Ym 2 Y =Y- 1 b)1 Y 2 Y ¦Ì[ÑN x–2 c) 1 Y+ -Y2 Y 3x4 + 2x3 + 5x2 + 10x + 20 d)1 Y2 +Y2 Y 3x5 – 4x4 + x3 – 2 a) -3x3 + 2x2 - 8x + 12 a) b) x5 - x4+ 2x3 - 6x2 + 4x c) -x4 - x2 + 5x 3x5 – 6x4 d) 3x4 + 3x2 - 8x 2x4 + x3 – 2 2x4 – 4x3 5x3 – 2 5x3 – 10x2 10x2 – 2 10x2 – 20x 20x – 2 20x – 40 38  :VLBSŽEBLJCËMNFJõMFNJOJ   Y5-Y4 Y3 - 2 ÖRNEK 2 = Y-  (134x44+442x434+452x24+44104x4+42403) + 638 bölüm kalan Y-  Y2 - +1 Y -Y2 + 3 =Y3 -Y 2 +Y PMEVôVOBHÌSF 1 Y LBÀUŽS CJ¿JNJOEFJGBEFFEFCJMJSJ[#ËMÐOFOJO. derece- EFOWFCËMFOJOEFSFDFEFOQPMJOPNPMEVóVCJS CËMNFJõMFNJOEFCËMÐNQPMJOPNVOVOEFSFDFTJ ( 2x - 1 ) ( x2 - 3 ) + 2P ( x ) - x2 + 3 = x3 - x 2 + x 5 - 1 =CVMVOVS b)  #ËMÐNY2-Y+ LBMBO-Y+ 16, 2P(x) = -x3 + x2 + 7x - 6  CËMÐNÐOEFSFDFTJ - x 3 + 2 + 7x - 6 c) #ËMÐN 2 5 3 CËMÐNÐOEFSFDFTJ2, x x - x+ P(x) = 2 bulunur. 24 8 kaMBO- 5 8 1. a) –3x3 + 2x2 – 8x + 12 b) x5 – x4+ 2x3 – 6x2 + 4x c) –x4 – x2 + 5x 8 d) 3x4 + 3x2 – 8x 2. a - x3 + x2 + 7x - 6 k / 2

www.aydinyayinlari.com.tr 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, TANIM ÖRNEK 6 der [1 Y 2 Y ] = der [1 Y ] + der [2 Y ] 1 Y WF2 Y QPMJOPNMBSŽJ¿JO der> P^ x h der [ P Y ] - der [2 Y ] der6^ P (x) h@ = 3WFder9P (x) . Q2 (x)C = 10 der6^ Q (x) h@ H= Q^ x h PMEVôVOBHÌSF der6P (x)@ LBÀUŽS der [1 Y + 2 Y ]âNBY[EFS1 Y EFS2 Y ] der [1 Y ] n = n. der [1 Y ] der [P( x )] = m, der [Q ( x )] = n olsun. der6P^ xn h@ = n.der6P^ x h@ der7 P^ x hA m = 3 & = 3 olur. der7 Q^ x hA n der [B1 CY+D ] = der [1 Y ] der[P( x ).Q2( x )] = 10 j m + 2n = 10 olur. der [B1 CY+D n] = n.der [1 Y ] ÷LJJGBEFZJPSUBLÀÌ[FSTFL O= 2, m = 6 bulunur. der[P(x)] = 6 ÖRNEK 4 der [ P ( x ) ] = 3, der [ Q ( x ) ] =PMNBLÑ[FSFBöBôŽEB ÖRNEK 7 LJQPMJOPNMBSŽOEFSFDFTJOJCVMVO V[ a)1 Y 2 Y  b)1 Y +2 Y  öOUFSOFUÐ[FSJOEFOFmUJDBSFUZBQBOCJSJõMFUNF JISB¿FUUJ- P(x) d) P3 Y óJCJSÐSÐOÐOYBEFEJOJY5-ZFNBMFUNFLUFEJS#VÐSÐ- c) f ) P4 Y + Q2 Y OÐOYBEFEJOJOTBUŽõŽOEBOGJSNBOŽOHFMJSJJTF   Q(x) h) 3P2 Y+ 23 Y2  Y2 +JGBEFTJJMFCVMVOBCJMNFLUFEJS e) P2 Y . Q3 Y  P4 (x2) #VOBHÌSF  g) 4Q3 Y2 k) P3 (x) a) ·SÑOÑO TBUŽöŽOEBO FMEF FEJMFO L»SŽ JGBEF FEFO Q3 (x3) polinomu bulunuz. Ž Q2 (x) b) #V ÑSÑOEFO  UBOF TBUBSTB JöMFUNFOJO LBÀ 5-L»SFMEFFEFDFôJOJCVMVOV[ B  C  D  E  F  G  H  I  Ž  L  ÖRNEK 5 B   ÷öMFUNFOJO L»SŽOŽ WFSFO QPMJOPN  ÑSÑOMFSJO TBUŽöŽO 1 Y WF2 Y QPMJOPNMBSŽJ¿JO EFS[1 Y 2 Y ] = 3, den elde edilen gelir polinomu ile maliyet polinomu der > P (x) H = 1 PMEVôVOBHÌSF EFS[ P( x ) ] kaçUŽS OVOGBSLŽJMFCVMVOVS Q (x)  #VOBHÌSF L»SQPMJOPNV  P(x) = 0,02x2 + 175 - 7x der[P( x )] = m, der[Q ( x )] = n olsun. = 0,02x2 - 7x + 175 tir. der[P( x ).Q( x )] = m + n = 3, C  ÷öMFUNFOJO ÑSÑOEFO  UBOF TBUUŽôŽOEB FMEF FEF DFôJL»S L»SQPMJOPNVOVOY=JÀJOBMBDBôŽEFôF der> P(x) H = m - n = 1 olur. Taraf tarafa toplarsak; SFFöJUUJS #VOBHÌSF 1 Y = 0,02x2 - 7x + 175 polinomunda Q(x) P(2000) = 0,02 . (2000)2 - 7.2000 + 175 m = 2, n = 1 bulunur. = 80000 - 14000 + 175 der[P( x )] = 2 olur. =5-L»SFMEFFUNJöUJS 4. B  C  D  E  F  G  H  I  Ž  L  5. 2 9 6. 6 7. a) 0,02x2 – 7x + 175 b) 66175 TL

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr ÖRNEK 8 ÖRNEK 10 \"#$CJSпHFO  Y2 -BY+  BY3 +Y2 -Y+  A BÀŽMŽNŽOEBO FMEF FEJMFDFL QPMJOPNEB x3 lü terimin LBUTBZŽTŽPMEVôVOBHÌSF BLBÀUŽS 2x + 1 [AH] m [ BC] (x2 - ax + 3) (ax3 + 2x2 - 5x + 1) BH | |AH = Y+ | |BC = Y+ BÀŽMŽNŽOEB-5x3 -2ax3 + 3ax3 = (-5 -2a + 3a) x3 = (a - 5)x3 bulunur. x3MÑUFSJNJOLBUTBZŽTŽPMEVôVO C 1 Y =\" \"#$  dan a - 5 = 12 ve a = 17 bulunur. x+7 PMEVôVOBHÌSF 1 Y QPMJOPNVOVOLBUTBZŽMBSUPQMB NŽOŽCVMVOV[ P(x) =\" \"#$ = ^ x + 7 h.^ 2x + 1 h dir. 2 P^ 1 h = 8.3 = 12 bulunur. 2 1PMJOPNVO,BUTBZŽMBS5PQMBNŽOŽWF %m/*m 4BCJU5FSJNJOJ#VMNB 1 Y QPMJOPNVOVO TANIM  ¥JGUEFSFDFMJUFSJNMFSJOJOLBUTBZŽMBSŽUPQMBNŽ P^ 1 h+ P^ -1 h  #JSQPMJOPNVOTBCJUUFSJNJCVMVOVSLFOEFóJõLF- 2 OJOJOZFSJOF TŽGŽS ZB[ŽMŽS1 Y QPMJOPNVOVO  5FLEFSFDFMJUFSJNMFSJOLBUTBZŽMBSŽUPQMBNŽ TBCJUUFSJNJ1  EFóFSJOFFõJUUJS P^ 1 h- P^ -1 h EJS  #JS QPMJOPNVO LBUTBZŽMBS UPQMBNŽ CVMVOVSLFO 2 EFóJõLFOJOJO ZFSJOF  ZB[ŽMŽS 1 Y  QPMJOPNV- OVOLBUTBZŽMBSUPQMBNŽ1  EFóFSJOFFõJUUJS ÖRNEK 9 ÖRNEK 11  1 Y =Y2 -Y+ 5  1 Y = Y3 -Y2 -Y+ 2 QPMJOPNVOVOTBCJUUFSJNWFLBUTBZŽMBSUPQMBNŽOŽCV lunuz. QPMJOPNVOVO ÀJGU EFSFDFMJ UFSJNMFSJOJO LBUTBZŽMBSŽ UPQMBNŽLBÀUŽS P ( 0 ) = 02 - 4.0 + 5 = 5 P ( 1 ) = 12- 4.1 + 5 = 2 bulunur. P^ 1 h+ P^ -1 h =   ÀJGU EFSFDFMJ UFSJNMFSJO LBUTBZŽMBS 2 UPQMBNŽ P(1) = 4 ve P(-1) = 4 tür. P^ 1 h+ P^ -1 h 4 + 4 O halde, = = 4 bulunur. 22 8. 17 9. 4BCJUUFSJNJ LBUTBZŽMBSUPQMBNŽ 10 10. 12 11. 4

www.aydinyayinlari.com.tr 10-÷/0.-\"3¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 12 ÖRNEK 15  1 Y = Y2 +Y+ 3 Y3m 2 ôFLJMEFFOJ Y+ WFCPZV Y- CJSJNPMBOCJSCBI- ¿FOJOIBOHJNFZWFMFSMFFLJMFDFóJOFEBJSZBQŽMBOCJSLSP- QPMJOPNVOVO UFL EFS FDFMJ UFSJNMFSJOJO LBUTBZŽMBSŽ LJWFSJMNJõUJS UPQMBNŽLBÀUŽS 8x – 2 P(1) = 0 ve P(-1) = 4 P^ 1 h- P^ -1 h 0 - 4 Üzüm Elma O halde, = = - 2 bulunur. Ceviz Limon 22 Kivi 6x + 18 ÖRNEK 13 ¶[ÐNWFDFWJ[FLJNBMBOMBSŽCJSCJSJOFFõJUPMVQFMNB MJ- NPOWFLJWJBMBOMBSŽOŽOпÐCJSCJSJOFFõZBQŽMNŽõUŽS  Y3 -Y2 + 9 #VOB HÌSF  Ñ[ÑN  MJNPO WF LJWJ FLJMFDFL BMBOMBSŽO JGBEFTJOJOBÀŽMŽNŽOEBLJÀJGUEFSFDFMJUFSJNMFSJOLBUTB UPQMBNŽOŽWFSFO1 Y QPMJOPNVOVCVMVOV[ ZŽMBSŽUPQMBNŽOŽCVMVOV[ Üzüm j (3x + 9) (4x - 1) = 12x2 +32x - 9 P(1) = (4 - 5 + 1)9 = 0 Limon j = (2x + 6) (4x - 1) = 8x2 + 22x - 6 ,JWJj (2x + 6) (4x - 1) = 8x2+ 22x - 6 P(-1) = (-4 - 5 + 1)9 = (-8)9 = (-23)9 = -227 P(x) = (12x2 + 33x) - 9) + 2(8x2+ 22x - 6) P^ 1 h+ P^ -1 h 0 - 227 = - 26 bulunur. = 28x2 + 77x - 21 bulunur. = 22 2 ÖRNEK 14 ÖRNEK 16 P( x ) polinomu için, #JS1 Y QPMJOPNVY+JMFCËMÐOEÐóÐOEFCËMÐNY2 - 2 WFLBMBOEJS  1 Y- +1 Y+ =Y+ 16 #VOBHÌSF 1 Y QPMJOPNVOVCVMBMŽN PMEVôVOBHÌSF 1  LBÀUŽS <P ( x) = >(x + 2) .>(x2 - 2) + 51 P(x - 1) ve P(x + QPMJOPNMBSŽOŽOUPQMBNŽCJSJODJEF receden 12x + 16 polinomu ise P(x) = ax +CöFLMJO Bölünen Bölen Bölüm Kalan de birinci dereceden bir polinomdur. Polinomlar fonk TJZPOMBSŽO Ì[FM CJS UÑSÑ PMBSBL EÑöÑOÑMFCJMJS #V ZÑ[ P ( x ) = (x3 - 2x + 2x2 - 4) + 1 EFO GPOLTJZPOMBSEBLJ CJMFöLF JöMFNJOF CFO[FS PMBSBL  P ( x ) = x3+ 2x2 - 2x - 3 bulunur. P(x) = ax + b ise P(x - 1) = a(x - 1) + b = ax - a + b ve P(x + 3) = a(x + 3) + b = ax + 3a + b elde edilir. P(x - 1) + P(x + 3) = 2ax + 2a + 2b olur. 2ax + 2a + 2b = 12x + 16 j 2a ve 12 = 2a + 2b = 16 j a = 6 ve b = 2 dir. O halde, P ( x ) = 6x + 2 polinomu bulunur. P ( 2 ) = 14 olur. 12. –2 13. –226 14. 14 11 15. 28x2 + 77x – 21 16. x3+ 2x2 – 2x – 3

TEST - 3 1PMJOPNMBSMB÷öMFNMFS 1. 1 Y =Y5 -Y4 +Y2 -Y+ 3 5. 1 Y =Y3 +Y2 +Y+ 2  PMEVôVOBHÌSF 1 - LBÀUŽS  PMEVôVOBHÌSF P_ 3 2 - 1 iLBÀUŽS \"  #  $  %  &  \"  3 2 + 1 #  3 2  $   %  &  2. 1 Y =Y2 -Y+ 3 6. Y>PMNBLÐ[FSF  PMEVôVOBHÌSF 1 Y- BöBôŽE BLJMFSEFOIBO P_ 4 x i =Y3 -Y2 + 2 gisidir?  PMEVôVOBHÌSF 1 Y3 BöBôŽE BLJMFSEFOIBOHJ sidir? \" Y2 -Y+ # Y2 -Y+ 5 \" Y36 +Y24 - 2 # Y36 -Y24 + 2 $ Y2 -Y+ % Y2 -Y+ 1 $ Y9 -Y3 - % Y9 -Y3 + 2 & Y2 -Y+ 3 & Y18 -Y6 + 2 3. ( a -Y  CY2 +D =Y3 -Y2 +Y- 3 7. Y3 +BY2 +  Y4 +BY3 -Y2 -  PMEVôVOBHÌSF B+ b +DLBÀUŽS BÀŽMŽNŽZBQŽMEŽô ŽOEBFMEFFEJMFOQPMJOPNEBY6MŽ \" - # - $ - % - & -1 teriminin katsaZŽTŽ-PMEVôVOBHÌSF BLBÀ UŽS \" - # - $ - % - & -6 8. %JEFN CJS ZBõŽOEBLJ LŽ[Ž J¿JO CJS UBOHSBN ZBQNBL JTUJZPSY>PMNBLÐ[FSF 4. der [1 Y ] = 5, der [2 Y ] =WF Q_ x i CJSQPMJ- A | |AB =Y+ 2 DE | |AC =Y- 12 P_ x i | |BC = Y + 14 OPNPMEVóVOBHËSF  V[VOMVLMBSŽ WFSJMJ- I. EFS<1 Y 2 Y > II. EFS<1 Y  2 Y > yor. III. der > Q_ x i H=3 P_ x i BF C ifadelerJOEFOIBOHJMFSJEPôSVEVS  5BOHSBN EÌSU QBSÀBZB BZSŽMEŽôŽOEB PMVöBDBL PMBO EÌSU ÑÀHFOJO ÀFWSFMFSJO UPQMBNŽOŽ WFSFO \" :BMOŽ[* # *WF** $ **WF*** QPMJOPNBöBôŽEBLJMFSEFOIBOHJTJEJS  % *WF*** & * **WF*** \" Y+ # Y+ $ Y+ 20  % Y+ & Y+ 20 1. \" 2. # 3. # 4. D 12 5. & 6. # 7. C 8. D

1PMJOPNMBSMB÷öMFNMFS TEST - 4 1. Pf 1 - 7x p =Y3 +Y2 -Y+ 1 P (x - 1) + x.Q (x) 2 5. = 4 PMEVôVOBHÌSF P (- LBÀUŽS \" - # - $  %  &  x+2 olmak üzere, P ( x ) polinomunun sabit terimi 3 olduôVOBHÌSF 2 Y JOLBUTBZŽMBSUPQMBNŽLBÀ UŽS \"  #  $  %  &  2. der [1 Y ] =WFEFS[2 Y ] =PMNBLÐ[FSF  6.  Y5 +Y2 -Y- 2n P3 (x2)  QPMJOPNVOVO ÀJGU EFSFDFMJ UFSJNMFSJOJO LBUTBZŽ Q2 (x3) MBSUPQMBNŽPMEVôVOBHÌSF OLBÀUŽS  JGBEFTJ CJS QPMJOPN PMEVôVOB HÌSF CV QPMJOP mun EFSFD FTJLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  3. P( 1 -Y =Y2 -Y+ 1 7. Y3 -Y2 +Y-  Y4 +Y5 -Y3 +Y2 +   PMEVôVOBHÌSF 1 Y+ BöBôŽEBLJMFSEFOIBO ÀBSQŽNŽOEBY5MJUFSJNJOLBUTBZŽTŽLBÀUŽS gisidir? \"  #  $  %  &  A Y2 -Y+ # Y2 -Y- 1 $ Y2 +Y+ % Y2 +Y+ 1 & Y2 -Y+ 1 8. ôFLJMEFZBOZBOBCVMVOBOJLJLVUVEBZB[ŽMŽQPMJOPN- MBSUPQMBOŽZPSWFUPQMBN LPNõVMBSŽPMBOBMULVUVZB ZB[ŽMŽZPS Q(x) x–5 2x + 3 + + 2x + 1 4. 1 Y WF2 Y QPMJOPNMBSŽJ¿JO  + der [ P3 Y . 2 Y ] = 14 der> P2 (x) H = 2 P(x) Q3 (x)  #VOBHÌSF 1 Y +2 Y QPMJOPNVOVOLBUTBZŽ MBSUPQMBNŽLBÀUŽS PMEVôVOBHÌSF EFS[ P( x ) + Q ( x ) ] LBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. C 2. \" 3. D 4. # 13 5. & 6. C 7. \" 8. &

TEST - 5 1PMJOPNMBSMB÷öMFNMFS 1. \"öBôŽEBLJJGBEFMFSEFOIBOHJTJZBOMŽöUŽS? 5. 4BCJUPMNBZBO CJSEFOGB[MBQPMJOPNVO¿BSQŽNŽCJ- \"  1 Y+ QPMJOPNVOVOLBUTBZŽMBSUPQMBNŽ1   ¿JNJOEFZB[ŽMBNBZBOQPMJOPNMBSBJOEJSHFOFNFZFO UÐS QPMJOPNMBSEFOJS #  1 Y+ QPMJOPNVOVOTBCJUUFSJNJ1  UÐS  #BõLBUTBZŽTŽCJSPMBOJOEJSHFOFNFZFOQPMJOPNMBSB $  1 Y- QPMJOPNVOVOLBUTBZŽMBSUPQMBNŽ1 -  BTBMQPMJOPNEFOJS UÐS  1 Y WF2 Y QPMJOPNMBSŽEFSFDFTJPMBOBTBMQP- %  1 Y+ QPMJOPNVOVOLBUTBZŽMBSUPQMBNŽ1   MJOPNMBSEŽS EJS   1 Y 2 Y =Y2 +Y+ 2 &  1 Y+ QPMJOPNVOVOTBCJUUFSJNJ1  EJS PMEVôVOB HÌSF  1 Y  + 2 Y  BöBôŽEBLJMFSEFO hangisidir? \" Y+ # Y+ $ Y+ 3  % Y+ & Y+ 5 2. P (x)= _ 3a - 9 i 3 x + _ b - 2 i x + _ 2a + 3b ix + a - 2b 6. Y2 -Y+  Y4 -Y3 +Y+ P ( x ) bir polinPNPMEVôVOBHÌSF 1  LBÀUŽS  JGBEFTJOJOÀBSQŽNŽOEBY5MJUFSJNJOLBUTBZŽTŽLBÀ UŽS \"  #  $  %  &  \" - # - $ - % - & -1 3. 1 Y WF2 Y QPMJOPNMBSŽJ¿JO der [P (x)] = 3WF der [Q (x)] de r [ P2 Y+ 2 Y3 + ] = 18 7. 1 Y3 -Y2 =Y3 -Y2 + 5 PMEVôVOBHÌSF EFS[ P( x ) ]LBÀUŽS  PMEVôVOB HÌSF  1   BöBôŽEBLJMFSEFO IBOHJTJ dir? \"  #  $  %  &  \"  #  $  %  &  18 8. 1 Y =Yn +Yn-1 +Yn-2 +...+Y3 +Y2+Y+1 4. n+1 + 3 . x2n–6 + x2  JGBEFTJOEFSFDFEFO LBUTBZŽMBSŽCFMJSMJCJSLVSB MBHÌSFZB[ŽMNŽöCJSQPMJOPNPMEVôVOBHÌSF  P (x) = 4.x der [ P ( x ) ]LBÀUŽS CJSQPMJOPNPMEVôVOBHÌSF 1 Y QPMJOPNVOVO derecesi en azLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. D 2. C 3. & 4. # 14 5. C 6. # 7. D 8. \"

1PMJOPNMBSMB÷öMFNMFS TEST - 6 1. A = {1, 2, 3} PMNBLÑ[FSF BöBôŽEBLJMFSEFOIBO 5. 1 Y =YN +Y2 +YWF gisi her n ` \"JÀJOCJSQPMJOPNEFSFDFTJPMBCJ  2 Y =Y4 +Y+QPMJOPNMBSEŽS lir? der [1 Y +2 Y ] =N \" -O #  n2 + 1  $  6 2 n PMEVôVOBHÌSF [P ( x2 ) ] 3 polinomunun derece % - n2 &  2n + 1 si en azLBÀUŽS 3 \"  #  $  %  &  2. 1 Y+ =Y2 +Y+ 7  PMEVôVOBHÌSF 1 -Y QPMJOPNVBöBôŽEBLJ 6. 1 Y = Y2 -Y- 3 Y3 -Y- 5 lerden hangisidir?  QPMJOPNVOEB UFL EFSFDFMJ UFSJNMFSJO LBUTBZŽMBS \" Y2 + # Y2 +Y+ 3 UPQMBNŽLBÀUŽS $ Y2mY+ % Y2 +Y+ 3 \" - # - $  %  &  & Y2 + 3 3. 1 Y =Y4 -Y2 +Y- 5 7. 1 Y = N+ Y4 +Y3 -Y2 -Y+ 3  2 Y =Y2 +Y-QPMJOPNMBSŽWFSJMJZPS  2 Y =OY4 + N- Y3 + ( 2 +O Y2 +Y- 2  , Y =1 Y- +2 Y   PMEVôVOB HÌSF  , Y  QPMJOPNVOVO LBUTBZŽMBS QPMJOPNMBSŽ için d [P( x ) + Q ( x )] =  PMEVôV UPQMBNŽLBÀUŽS OBHÌSF 2 Y QPMJOPNVOVOLBUTBZŽMBSŽUPQMBNŽ LBÀUŽS \" - # - $ - %  &  \"  #  $  % - & -2 4. 1 Y Z =Y3 y2 -YZ3 +YZ+Y- 3y 8. 5BN TBZŽ LBUTBZŽMŽ JLJ WFZB EBIB GB[MB QPMJOPNVO polinomu için P ( 1, - JGBEFTJOJOEFôFSJLBÀUŽS ¿BSQŽNŽõFLMJOEFJGBEFFEJMFNFZFOWFCBõLBUTBZŽTŽ  PMBO QPMJOPNMBSB JOEJSHFOFNFZFO QPMJOPN EF- OJS  #VOBHÌSF BöBôŽEBLJMFSEFOIBOHJTJJOEJSHFOF meyen polinomdur? \"  #  $  %  &  \" Y2 -Y- # Y3 -Y $ Y2 + 1  % Y4 + & Y5 1. C 2. & 3. \" 4. D 15 5. D 6. D 7. & 8. D

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3WF¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr 10-÷/0.-\"3%\"#²-.&÷õ-&.÷ #ÌMNF÷öMFNJ:BQNBEBO,BMBO#VMNB ÖRNEK 2 ÖRNEK 1  1 Y =Y3 +Y2 -Y- 3 1 Y =Y2 -Y- 6 QPMJOPNVOVOTŽGŽSMBSŽOŽCVMVOV[ QPMJOPNVOVOTŽGŽSMBSŽOŽLÌLMFSJOJHSBGJLÀJ[FSFLCVMB ÷LJODJ EFSFDFEFO 1 Y  QPMJOPNV TŽGŽSMBSŽOŽ 1 Y  = 0 MŽN EFOLMFNJOJUBNLBSFZFUBNBNMBZBSBLCVMBMŽN P(x) = 0 j x2- 4x - 6 = 0 ¦Ì[ÑN x2 - 4x + 4 - 10 = 0 y x2 - 4x + 4 = 10 (x - 2)2 = 10 3 ^ x - 2 h2 = 10 2 1 | |x - 2 = 10 j x - 2 = 10 veya x - 2 = - 10 –3 –2 –1 0 12 3 x j x = 2 + 10 veya x = 2 - 10 dur. –1 P(x) Polinomunun ax + C JMF #ÌMÑONFTJOEFO –2 &MEF&EJMFO,BMBOŽO#VMVONBTŽ –3 TEOREM 7FSJMFO QPMJOPNVO HSBGJóJOJ ¿J[JN QSPHSBNŽ LVMMBOB-  #JS1 Y QPMJOPNVOVOBY+CJMFCËMÐNÐOEFO SBL¿J[FMJN¥J[JMFOHSBGJóJOYFLTFOJOJLFTUJóJOPLUB- FMEFFEJMFOLBMBOŽCVMNBLJ¿JO1 Y QPMJOPNVO- MBSQPMJOPNVOTŽGŽSMBSŽ 1 Y =PMEVóVOPLUBMBS EŽS EB YZFSJOFCËMFOQPMJOPNVOVOLËLÐPMBO #VOBHËSF Y= - Y= -WFY= 1 OPLUBMBSŽ1 Y  - b f ax + b = 0 & x = - b , a ≠ 0 pZB[ŽMŽS QPMJOPNVOVOTŽGŽSMBSŽEŽS aa NOT  #BõLBCJSJGBEFZMF1 Y = BY+C # Y + k PMVS P Y =Y3 +Y2 -Y-QPMJOPNVOVOTŽGŽSMBSŽ PMBO   1 B = 0 lY-B 1 Y QPMJOPNVOVOCJS¿BS-  Y= -J¿JO Y- (-  = Y+ QBOŽEŽS  Y= -J¿JO Y- (-  = Y+  Y=J¿JO Y-   õFLMJOEFCJSFS¿BSQBOŽPMEVóVOBEJLLBUFEJOJ[ ÖRNEK 1 ÖRNEK 3 1 Y =Y3 +Y2 +Y- 6 QPMJOPNVOVOLÌLMFSJOJCVMVOV[ 1 Y =Y3 -Y2 -Y+ 1 polinomunun x -JMFCÌMÑN ÑOEFOLBMBOLBÀUŽS x3 + 4x2 + x - 6 =PMEVôVOPLUBMBS  x3+ 3x2+ x2+ x - 6 = 0 x -1=0 jx=1 x2 (x + 3) + (x + 3) (x - 2) = 0 P(1) = 13 - 3.12 - 5.1 + 1 = -6 bulunur. (x + 3) (x2 + x - 2) = 0 (x + 3) (x + 2) (x - 1) =öFLMJOEFÀBSQBOMBSŽWBSEŽS#V OBHÌSF Y= -3, x = -2, x =OPLUBMBSŽ1 Y QPMJOPNV OVOTŽGŽSMBSŽEŽS 1. –3, –2, 1 16 2. 2 ± 10 3. –6

www.aydinyayinlari.com.tr 10-÷/0.-\"3WF¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 ÖRNEK 8 1 Y =Y2 -Y+ 3  1 Y- =Y3 -Y2 +Y- 3 polinomunun 2x -JMFCÌMÑNÑOE FOLBMBOLBÀUŽS WFSJMEJôJOFHÌSF 1 Y QPMJOPNVOVOVOY+JMFCÌMÑ NÑOEFOLBMBOLBÀUŽS 1 2x - 1 = 0 j x = x + 2 = 0 j x = -2 j P(- ZJCVMNBMŽZŽ[ x = 0 yazarsak; P(x - QPMJOPNVOEBCJ[FLBMBOŽWFSJS 2 P(-2) = -3 bulunur. 1 12 1 Pd n = 4·d n - 2·d n + 3 = 3 bulunur. 22 2 ÖRNEK 5  1 Y =Y12 +Y8 +Y2 -Y+ 2 QPMJOPNVOVOYJMFCÌMÑNÑOEFOLBMBOLBÀUŽS x = 0 j P ( 0 ) = 2 bulunur. ÖRNEK 6 ÖRNEK 9  1 Y =Y3 -Y2 +BYmB+ 1 P ( 1 -Y =Y2 -Y+ 7 polinomunun x +JMFCÌMÑNÑOEFOLBMBOPMEVôV WFSJMEJôJOFHÌSF1 Y- 2 ) polinomunun x +JMFCÌ OBHÌSF BLBÀUŽS MÑNÑOEFOLBMBOLBÀUŽS x + 2 = 0 j x = -2 , P(-2) = 3 x + 1 = 0 j x = -1 , P(x - 2) polinomunda x yerine -1 ZB[ŽMŽSTB 1 - CJ[FLBMBOŽWFSJS O halde P(1-x) polinomunda x yerine 4 yazarsak P(-3) ÑFMEFFUNJöPMVSV[ x = 4; P(-3) = 42 - 4 + 7 = 19 bulunur. P(-2) = (-2)3- (-2)2 + a.(-2) - 3a + 1 = 3 a =- 14 bulunur. 5 ÖRNEK 7 ÖRNEK 10  1 Y =Y3mBY2 +CY+ 2 1 Y- +2 Y+ =Y3 -Y2 +WFSJMJZPS polinomunun x -  JMF CÌMÑN ÑOEFO LBMBO   Y + 1 P ( x ) in x -JMFCÌMÑNÑOEFOLBMBOPMEVôVOBHÌ JMF CÌMÑNÑOEFO LBMBO   PMEVôVOB HÌSF B  C  JLJMJ re, Q ( x ) polinomunun x -  JMF CÌMÑNÑOEFO LBMBO sini bulunuz. LBÀUŽS x - 1 = 0 j x = 1 j P(1) = 2 x - 1 = 0 j x = 1 j P(1) = 3 tür. x - 4= 0 j x = 4 j2  LBMBOŽOŽWFSFDFLUJS x + 1 = 0 x = -1 j P(-1) = 4 O halde P(x - 2) + Q(x + 1) = x3- x2+ 2 ifadesinde x =P^91 h + Q^ 4 h = 27 - 9 + 2 olur. P(1) = 1 - a + b + 2, P(-1) = - 1 - a - b + 2 3 + Q(4) = 20 j Q(4) = 17 bulunur. 2=3-a+b 4=1-a-b 1=a-b -3 = a + b j÷LJEFOLMFNEFPSUBLÀÌ[ÑNZBQBSTBL   a = -1, b= -2 ve (-1, -2) bulunur. 4. 3 5. 2 6. - 14 7. (–1, –2) 17 8. –3 9. 19 10. 17 5

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3WF¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr ÖRNEK 11 ÖRNEK 14   1 Y- =Y- 2 +2 Y+ 1 Y- =Y2 -BY- 3a -QPMJOPNVWFSJMJZPS   2 Y+ =Y+ 1 -1 Y+ 1 Y JOLBUTBZŽMBSUPQMBNŽPMEVôVOBHÌSF TBCJUUF SJNJLBÀUŽS PMEVôVOB HÌSF   1 Y +   QPMJOPNVOVO Y JMF CÌMÑ NÑOEFOLBMBOLBÀUŽS P ( x ) polinomunda x =ZB[BSTBLLBUTBZŽMBSŽOUPQMB NŽOŽCVMVZPSEVL1  = 2, P(x) polinomunun sabit teri x = 0 j P(x + 1) polinomunda x = 0 yazarsak; mi ise P ( 0 ) olarak bulunuyordu. O halde 1  LBMBOŽOŽWFSFDFLUJS x =1  = 9 - 3a - 3a - 1 x =1 -1) = 3.1 - 2 + Q(1 + 1) 2 = 8 - 6a 2.P ( 1 ) = 1 + Q(2) j 2.P^ 1 h - Q^ 2 h = 1 a = 1 yerine yazarsak; x = -2 -1 + 3) = 5.(-1) + 1 - P(-1 + 2) P(x - 2) = x2 - x - 4 olur. P(0) = -2 bulunur. 3.Q ( 2 ) = -4 - P(1) j P^ 1 h + 3.Q^ 2 h = - 1 #VJLJJGBEFEF2  ZJZPLFEFSTFL P^ 1 h = - 1 bulunur. 7 ÖRNEK 12 ÖRNEK 15 1 Y WF2 Y QPMJOPNMBSŽOŽOY-JMFCËMÐONFTJOEFOFM- 1 Y+ = Y2 - 2 Y+ +Y-WFSJMJZPS EFFEJMFOLBMBOMBSTŽSBTŽJMFWFUJS 2 Y  QPMJOPNVOVO LBUTBZŽMBS UPQMBNŽ   PMEVôVOB #VOBHÌSF 1 Y 2 Y QPMJOPNVOVOY-JMFCÌMÑ HÌSF 1 Y JOTBC JUUFSJNJLBÀUŽS NÑOEFOLBMBOLBÀUŽS Q(1) = 1  ŽCVMBDBôŽ[ x - 3 = 0 j x = 3 j P ( 3 ) = 2 ve Q ( 3 ) = 5 tir. x = -1  = ( ( -2 )2 - 1 ) . Q ( 1 ) + 4 ( -2 ) - 1 x =1 Y 2 Y JGBEFTJOEFZFSJOFZB[BSTBL P ( 3 ) . Q ( 3 ) = 2.5 = 10 bulunur. = 3.4 - 8 - 1 = 3 bulunur. ÖRNEK 13 ÖRNEK 16 1 Y WF2 Y QPMJOPNMBSŽOŽOY-JMFCËMÐONFTJOEFOFM- 1 Y =Y2 -Y+QPMJOPNVWFSJMJZPS EFFEJMFOLBMBOMBSTŽSBTŽJMFWF-EJS P ( x - QPMJOPNVOVOLBUTBZŽMBSUPQMBNŽLBÀUŽS 3P (x) + 1 x = 1 yazarsak P(x - 3) polinomunda P(-2) yi bula k Q (x) DBôŽ[ x= -1 -2) = 2(-2)2 - 7(-2) + 4 = 26 bulunur. polinomunun x - 2 iMFCÌMÑONFTJOEFOLBMBOPM EVôVOBgÌSF LLBÀUŽS? x - 2 = 0 j x = 2, P(2) = 4 ve Q(2) = -1 dir. x = 3.P^ 2 h + 1 = 5 PMEVôVOBHÌSF  k.Q^ 2 h 3.4 + 1 = 5 & 13 = - 5k & k = - 13 bulunur. k.^ - 1 h 5 1 12. 10 13 18 14. –2 15. 3 16. 26 11. - 13. - 7 5

www.aydinyayinlari.com.tr 10-÷/0.-\"3WF¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 17 ÖRNEK 20 1 Y- =Y3 -Y2 +QPMJOPNVWFSJMJZPS ôFLJMEFLJUSBLUËSÐOBSLBUFLFSJOJO¿FWSFTJ Y+ NFUSF  P ( x + QPMJOPNVOVOTBCJUUFSJNJLBÀUŽS ËOUFLFSJOJO¿FWSFTJ Y- NFUSFEJS x = 0 yazarsa P(x + QPMJOPNVOEB1  JCVMBDBôŽ[ x =ZB[BMŽN1  = 23 - 22 + 4 = 8 bulunur. ÖRNEK 18 (x + 2) m (x – 1) m 1 Y =Y2 +Y-QPMJOPNVOVO Y- OJOB[BMBOLVW- Y3+BY2 -Y+ b -NFUSFZPMHJEJODFËOUFLFSJOWFBS- WFUMFSJOFHËSFEÐ[FOMFONJõCJ¿JNJ LBUFLFSJOUVSTBZŽMBSŽUBNTBZŽEŽS 1 Y- = Y- 2 + Y- -õFLMJOEFEJS #VOBHÌSF Y2 + 5x - 1 polinomunun (x + 1) in aza #VOBHÌSF BCEFôFSJOJCVMVOV[ MBOLVWWFUMFSJOFHÌSFZB[EŽôŽNŽ[EBCVMEVôVNV[QP MJOPNVOLBUTBZŽMBSUPQMBNŽLBÀUŽS x3 + ax2 - 2x + b - 2 polinomu (x + 2) ve (x - 1) ile UBNCÌMÑONFLUFEJS P(x) = x2 + 5x - 1 x = 1; (1)3 + a(1)2 - 2(1) + b - 2 = 0 j a + b = 3 bulunur. = 1.(x + 1)2 + 5.(x + 1) - 1 x = -2 ; -8 + 4a + 4 + b - 2 = 0 j 4a + b = 6 bulunur. ÷LJEFOLMFNJÀÌ[EÑôÑNÑ[EF LBUTBZŽMBSUPQMBNŽ+ 5 - 1 = 5 bulunur. a = 1, b = 2 bulunur ve a . b = 2 dir. ÖRNEK 19 ÖRNEK 21 x+4  Y- 1 Y =Y3 -BY2 +Y+ 1 x3 + 4x2 + 3x + 12 PMEVôVOBHÌSF 1  LBÀUŽS x–1ôFLJMEFHFOJõMJóJ  Y- NFUSF V[VOMVóV x = 1 için Y3+ Y2+ Y +   NFUSF PMBO CJTJLMFU ZPMV WFSJMNJõUJS #JTJLMFUZPMVOVOUBNBNŽFOJ Y- NFUSF CPZV Y+  0 = 1 - a + 2 + 1 j a = 4 buluruz. NFUSF PMBO QBSLF UBõMBSŽZMB CPõMVL LBMNBZBDBL õFLJMEF (x - 1). P(x) = x3- 4x2 + 2x + 1 LBQMBOBDBLUŽS#VJöJÀJOLBÀUBOFQBSLFUBöŽHFSFLJS x3 – 4x2 + 2x + 1 x–1 x3 + 4x2 + 3x + 12 polinomunu x +QPMJOPNVOBCÌM x3 – x2 x2 – 3x – 1 EÑôÑNÑ[EFY2 (x + 4) + 3(x + 4) = (x + 4) (x2+ CÌ lüm (x2+ 3), kalan da 0 olur. O halde (x2+ 3) tane par –3x2 + 2x + 1 LFUBöŽHFSFLJS –3x2 æY –x + 1 –x + 1 0 P(x) = x2- 3x - 1 olur. P(1) = 12 - 3.1 - 1 = -3 bulunur. 17. 8 18. 5 19. (x2+ 3) 19 20. 2 21. –3

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"3WF¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr ÖRNEK 22 ÖRNEK 25 1 Y +1 Y- = 5 -Y-Y2 1 Y- a - =Y3 +Y-QPMJOPNVWFSJMJZPS PMEVôVOBHÌSF 1  LBÀUŽS #VOBHÌSF 1 Y JOY+BJMFCÌMÑNÑOEFOLBMBOLBÀ P(x) = ax2+ bx + c olsun. UŽS P(x - 1) = a(x - 1)2 + b(x - 1) + c olur. x + a = 0 j x = -a j P(-B LBMBOŽWFSJS P(x - a - 1) polinomu P(-a) olabilmesi için x = 1 için P(x) + P(x - 1) = ax2 + bx + c + a(x - 1)2+ b(x - 1) + c P(-a) = 13 + 1 - 4 = -2 bulunur. 5 - 2x - x2 = 2ax2 + (2b - 2a)x + (2c + a - b) 13 ve c = 2 bu 1PMJOPN FöJUMJôJOEFO a = - , b = - 22 lunur. 2 P^ x h = - - 3x +2 dir. x 22 P(2) = -3 bulunur. ÖRNEK 23 ÖRNEK 26  1 Y m1 Y- =YWF1  = 4 #JS1 Y QPMJOPNVOVO Y-  Y+ JMFCËMÐNÐOE FO PMEVôVOBHÌSF 1  LBÀUŽS LBMBOY+NEJS x = P^ 2 h - P^ 1 h = 6 P ( x ) in x -JMFCÌMÑNÑOEFOLBMBOPMEVôVOBHÌ x = P^ 3 h - P^ 2 h = 9 re, x +JMFCÌMÑNÑOEFOLBMBOLBÀUŽS x=P^ 4 h - P^ 3 h = 12 P(4) - P(1) = 27 P(x) polinomunun (x - 3) (x + JMFCÌMÑNÑOEFOCÌMÑN P(4) = 4 + 27 j P(4) = 31 bulunur. #PMTVO1 Y = (x - 3) (x + 2 #+ (3x + m) dir. x - 3 = 0 j x = 3 j P(3) =EŽS P^ 3 h = 9 + m _ j P(x) = (x - 3) . (x + #+ (3x - 3) bb P(-2) = 3(-2) - 3 6=9+m ` = - 9 bulunur. bb m = - 3 tür. a ÖRNEK 24 ÖRNEK 27 1 Y +Y1 -Y =Y3 +Y2 +Y 1 Y  QPMJOPNVOVO Y2 m Y +  JMF CËMÐNÐOEF CËMÐN PMEVôVOBHÌSF P( - LBÀUŽS 2 Y LBMBOY+EJS x = - 3P^ - 1 h - P^ 1 h = - 2 Q ( x ) in ( x + JMFCÌMÑNÑOEFOLBMBOPMEVôVOBHÌ re, P( x ) in x3 +JMFCÌMÑNÑOE FOLBMBOOFEJS x = 3P^ 1 h + P^ - 1 h = 6 #VJLJEFOLMFNEF1  MFSJZPLFEFSTFL1 -1) = 0 bu P(x) = (x2 - x + 1) . Q(x) + (x + 2) olarak yazabiliriz. lunur. Q(x) in (x + JMFCÌMÑNÑOEFOCÌMÑN# LBMBOPMTVO Q(x) = (x + #+ 3 olur. P(x) te Q(x) ifadesini yeri ne yazarsak; P(x) = (x2 - x + 1) ((x + #+ 3) + (x + 2) = (x + 1) (x2 - x + #+ 3(x2 - x + 1) + (x + 2) = (x3 + #+ 3x2 - 2x + 5 olur ve kalan (3x2 - 2x + 5) bulunur. 22. –3 23. 31 24. 0 20 25. –2 26. –9 27. (3x2 – 2x + 5)

www.aydinyayinlari.com.tr 10-÷/0.-\"3WF¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 28 ÖRNEK 30 #JSOBLMJZFGJSNBTŽLÐQõFLMJOEFUBõŽNBLBCJOJZBQUŽSNB-  1 Y = Y2mYm 2 Y +Ym ZŽQMBOMBNBLUBEŽS PMEVôVOBHÌSF 1 Y QPMJO PNV Y+ JMFCÌMÑO EÑôÑOEFFMEFFEJMFDFLCÌMÑNQPMJOPNVOVCVMVOV[ x x+1 P(x) = (x2 - x - 2) . Q(x) + x - 3 x–1 = (x - 2) (x + 1).Q(x) + x - 3 nun (x + JMFCÌMÑNÑO EFOCÌMÑN Y- 2).Q(x) + 1 bulunur. * ,BCJOJOCJSBZSŽUŽ1 Y =Y3 +BY2 +CY+DCJSJNEJS ÖRNEK 31 ** ,BCJO BZSŽUMBSŽY+ Y-WFYCJSJNPMBOEJLEËSU- HFOMFS QSJ[NBTŽ õFLMJOEFLJ LVUVMBSMB CPõMVL LBMNB- P (x) = a . (3 x) 2 - (b - 1) x - 4x - 5 EBOEPMEVSVMBCJMJZPS ifadesi bir poliOPNPMEVôVOBHÌSF 1 B + P ( b ) top MBNŽLBÀUŽS #VOBHÌSF IBDNJY3 - 8 birimküp olan küplerle dol EVSVMVSTBLBÀCJSJNLÑQCPöMVLLBMŽS 1 Y JOQPMJOPNPMNBTŽJÀJOB= 0 ve b =PMNBMŽEŽS P(x) = -4x - 5 bulunur. P(0) + P(1) = -5 - 9 = -14 bu P (x ) polinomu x + 1, x -WFYFUBNCÌMÑOÑS1 -1) = 0, lunur. P(1) = 0, P(0) = 0 olur. ÖRNEK 32 P(0) = c = 0, P(-1) = -1 + a - b = 0 j a - b = 1 ve YQP[JUJGCJSUBNTBZŽPMNBLÐ[FSF P(1) = 1 + a + b = 0 j a + b = - ÑÀEFOLMFNJÀÌ[EÑôÑ Q = Y+  Y+   Y+  müzde a = 0, b = -1 ve c = 0 bulunur. PMBSBLCJS Q QPMJOPNVUBOŽNMBOŽZPS P(x) = x3 -YCVMVOVS#JSBZSŽUŽ1 Y PMBOLBCJOJOIBDNJ 2. Q = q PMEVóVOBHËSF (x3 - x)3 PMVS #V EFôFSJ  IBDNJ Y3 - 8) br3 olan bir kü QÑOIBDNJOFCÌMEÑôÑNÑ[EFY3- 8 = 0 j x3 = 8 j x = 2 yi q - Q GBSLŽen az LBÀBFöJUUJS (x3 - x)3 te yerine yazarsak, (23 - 2)3 = 63 = 216 bulunur. x = 1 için p = 2.3.4 = 24 x = 2 için p = 3.4.5 = 60 ÖRNEK 29 x = 3 için p = 4.5.6 = 120 P [1 Y +mY]m1 Y+ =PMNBLÐ[FSF  2. p = q olEVôVOBHÌSF  1 Y JOYmJMFUBNCËMÐOEÐóÐCJMJOJZPS p = 60, q = 120 q - p = 120 - 60 = 60 (en az) olur. 1 Y JOYmWFYmJMFBZSŽBZSŽCÌMÑNÑOEFOFM EFFEJMFOLBMBOMBSUPQMBNŽPMEVôVOBHÌSF 1   LBÀUŽS P ( 1 ) = 0 ve P ( 2 ) + P ( 4 ) = 14 olur. x =P [=P^ 1 h + 2] - P^ 4 h = 2 j P ( 2 ) - P (4) = 2 0 CVMVSV[÷LJEFOLMFNEFO1  = 6 bulunur. 28. 216 29. 6 21 30. (x – 2).Q(x) + 1 31. –14 32. 60

TEST - 7 1PMJOPNMBSEB#ÌMNF÷öMFNJ 1. Y3 -Y2 +Y-QPMJOPNV Y- JMFCËMÐOEÐ- 5. ¶¿ÐODÐEFSFDFEFOCJS1 Y QPMJOPNVOVOTBCJUUF- óÐOEFCËMÐN2 Y WFLBMBO, Y QPMJOPNEVS SJNJEJS 1 Y QPMJOPNV Y-  Y- WF Y- JMFUBN #VOBHÌSF 2 Y +, Y QPMJOPNVBöBôŽEBLJMFS CËMÐONFLUFEJS #VOBHÌSF 1  LBÀUŽS den hangisidir? \" - # - $ - % - & -12 \" Y2 -Y+ # Y2 -Y+ 4 $ Y2 -Y+ % Y2 -Y+ 4 & Y2 -Y- 5 2. 1 Y+ =Y2 -Y+ 8 6. 1 Y WF2 Y QPMJOPNMBSŽBSBTŽOEB polinomunun (x - JMFCÌMÑNÑOEFOLBMBOLBÀ P (2x + 1) . (x2 - 2) UŽS = x + 1CBóŽOUŽTŽWBSEŽS Q (x - 1)  1 Y QPMJOPNVOVOY-JMFCËMÐNÐOEFOLBMBO-6 EŽS \"  #  $  %  &   #VOBHÌSF Q ( x ) polinomunun sabit terimi kaç UŽS \"  #  $  %  &  3. 1 Y3 =Y12 -Y9 +Y6 -Y3 + 3 7. 1 Y =Y3 +Y2 +Y- 2 Y =Y2 +Y- 6  PMEVôVOBHÌSF 1 Y QPMJOPNVOVOY-JMFCÌ QPMJOPNMBSŽWFSJMJZPS MÑNÑOEFOLBMBOLBÀUŽS [ P ( Q ( x ) ) + 2x + 8] polinomunun ( x - JMFCÌ MÑNÑOEFOLBMBOLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  8. #JS GBCSJLBEB ÐSFUJMFO CPSVMBS Y2 + BY +   NFUSF V[VOMVóVOEBEŽS )FS CPSV Y -   NFUSF V[VOMV- óVOEBLJ Y+C FõJUQBS¿BZBCËMÐOÐZPS x2 + ax + 2 4. 1 Y2 + =Y4 - 3 polinomu için P ( x - JGBEFTJOJOFöJUJBöBôŽEB kilerden hangisidir? Ymå Ymå \" Y2 -Y+ # Y2 -Y+ 13  1BSÀBMBSEBOCJSJOJOV[VOMVôVNPMEVôVOBHÌ SF CPSVMBSLBÀFöJUQBSÀBZBCÌMÑONÑöUÑS $ Y2 -Y+ % Y2 -Y+ 13 & Y2 -Y+ 15 \"  #  $  %  &  1. # 2. C 3. C 4. D 22 5. & 6. \" 7. \" 8. D

1PMJOPNMBSEB#ÌMNF÷öMFNJ TEST - 8 1. 1 Y =Y4 -Y3 +Y2 -Y- 15 5. 1 Y QPMJOPNVOVO Y- JMFCËMÐNÐOEFOLBMBO QPMJOPNVOVOY-JMFCËMÐNÐOEFOLBMBON Y+ 1 UJS JMFCËMÐNÐOEFOLBMBOOPMEVóVOBHËSF m + n top MBNŽLBÀUŽS  Y+ 1 Y+ =2 Y + 2 \"  #  $  %  &   PMEVôVOB HÌSF  2 Y  QPMJOPNVOVO LBUTBZŽMBS UPQMBNŽLBÀUŽS \"  #  $  %  &  2. 1 Y =Y3 +Y2 +Y+N+QPMJOPNVWFSJMJZPS 6. 1 Y =Y54 +Y27 -Y9 +Y3 - 5  1 Y  QPMJOPNVOVO Y +   JMF CËMÐNÐOEFO LBMBO polinomunun x +JMFCÌMÑNEFOLBMBOLBÀUŽS  PMEVóVOB HËSF  1 Y  QPMJOPNVOVO Y JMF CÌMÑ \" - # - $ - % - & -5 NÑOEFOLBMBOLBÀUŽS \"  #  $  %  &  3. 1 Y =Y3 -Y2 +Y+QPMJOPNVWFSJMJZPS 7. 1 Y QPMJOPNVJ¿JO P (x + 3 ) polinomunun ( x + JMFCÌMÑNÑOEFO 1 Y = 3 P ( -Y +Y2 -Y LBMBOLBÀUŽS  PMEVôVOBHÌSF 1  LBÀUŽS \"  #  $  %  &  \" - 15  # - 13  $ - % - 11 & -5 22 2 4. A K 2 B 8. öCSBIJN6TUBFOJ Y2 +N DN CPZV Y2 -Y-  2 2 G DNPMBOEJLEËSUHFOõFLMJOEFUBIUBUBCBLBMBSEBOCJS E2 F LFOBSŽ Y- DNPMBOLBSFõFLMJOEFQBS¿BMBSLF- TFDFLUJS &MEF FUUJóJ QBS¿BMBSŽ  IB[ŽSMBEŽóŽ ¿FS¿FWF- MFSJ¿JOLVMMBOBDBLUŽS D CH (x2 + m) cm ôFLJMEF \"#$%CJSLFOBSŽOŽOV[VOMVóVYCSWF (x2 – 5x – 6) cm ,#'& CJS LFOBSŽ  CS PMBO LBSFEJS $)(' CJS EJL- Usta | |EËSUHFOPMVQ '( =CJSJNEJS  %JLEÌSUHFOöFLMJOEFLJUBIUBUBCBLBEBOIJÀBSU  5BSBMŽBMBOLFTJMJQ¿ŽLBSŽMEŽLUBOTPOSBHFSJZFLBMBO NBNBTŽJÀJONLBÀPMNBMŽEŽS BMBO1 Y QPMJOPNVJMFJGBEFFEJMNFLUFEJS \" - # - $ - % - & -1 #VOB HÌSF P ( x ) polinomunun x -  JMF CÌMÑ NÑOEFOLBMBOLBÀUŽS \"  #  $  %  &  1. C 2. D 3. # 4. \" 23 5. \" 6. D 7. # 8. #

TEST - 9 1PMJOPNMBSEB#ÌMNF÷öMFNJ 1. 1 Y  QPMJOPNV Y12 + Y9 + Y3 -  QPMJOPNV JMF 5. 1 Y =Y4 -BY3 +Y2 +CY+ 9 CËMÐOEÐóÐOEFCËMÐNWFLBMBOQPMJOPNMBSŽOŽOEFSF-  QPMJOPNVCJSUBNLBSFPMEVôVOBHÌSF CBöBôŽ DFMFSJFõJUPMNBLUBEŽS dakilerden hangisi olabilir?  #VOBHÌSF 1 Y QPMJOPNVOVOEFSFDFTJFOGB[ \" - # - $  %  &  la kaç olabilir? \"  #  $  %  &  6.  1 Y =YN+ 2 +YN- 4 2. ¶¿ÐODÐ EFSFDFEFO 1 Y  QPMJOPNV Y2 +  QPMJOP- polinomunun x + 1 ve x -JMFCÌMÑNÑOEFOLB MBOMBS FöJU PMEVôVOB HÌSF  N JÀJO BöBôŽEBLJMFS NVOBUBNCËMÐOFCJMNFLUFEJS EFOIBOHJTJLFTJOMJLMFEPôSVEVS P ( x ) polinomunun x - 3 ve x -JMFCÌMÑNÑO den LBMBOMBSTŽSBTŽZMBWFPMEVôVOBHÌSF  \" ¥JGUTBZŽ # 5FLTBZŽ (x + JMFCÌMÑNÑOEFOLBMBOLBÀUŽS $ %PóBMTBZŽ % ¥JGUEPóBMTBZŽ \"  #  $  %  &  & 5FLEPóBMTBZŽ 3. 1 Y TBCJUPMNBZBOCJSQPMJOPN  7. N O LTŽGŽSEBOGBSLMŽSFFMTBZŽMBSEŽS 1 1 Y - =1 Y - 5  1 NY2 +OY-L =Y4 +Y3 +NY2 +OY- k + 4  FöJUMJôJOJTBôMBZBO1 Y QPMJOPNVOVOY+ 3 ile QPMJOPNVWFSJMJZPS CÌMÑNÑOEFOLBMBOLBÀUŽS  1 Y QPMJOPNVOVOY-N+ n +LJMFCËMÐNÐOEFO LBMBO-EJS \" - # - $  %  &  #VOBHÌSF O+ k -NEFôFSJLBÀUŽS \" m # - $  %  &  4. Y4 -Y3 -Y2 +NY+ n 8. #JS[FZUJOZBóŽGBCSJLBTŽOEBHÐOMÐLZBóÐSFUJNJ polinomu x3 + x2 -JMFUBNCÌMÑOEÑôÑOFHÌ Y180 -   MJUSFEJS ¶SFUJMFO ZBóMBS UFOFLFMFSF FõJU NJLUBSEBQBZMBõUŽSŽMŽZPS n kaçtŽS  )JÀZBôBSUNBNBTŽJÀJOCJSUFOFLFEFLJZBôNJL re, UBSŽBöBôŽEBLJMFSEFOIBOHJTJolamaz? m \"  #  $  % - & -4 \" Y9 + # Y9 - $ Y20 + 1  % Y30 + & Y45- 1 1. D 2. \" 3. \" 4. & 24 5. & 6. D 7. D 8. C

1PMJOPNMBSEB#ÌMNF÷öMFNJ TEST - 10 1. 1 Y - 2 P ( -Y =Y3 +Y 5. 1 Y пÐODÐEFSFDFEFOCJSQPMJOPNEVS  PMEVôVOBHÌSF 1 - LBÀUŽS P ( - =1  =1  = 4 PMEVôVOBHÌSF P ( -2 ) +1  EFôFSJLBÀUŽS \"  # - $ - % - & -5 \"  #  $  %  &  2. 1 Y = Y3 -  Y+ 5QPMJOPNVJ¿JO 6. #JSGJSNBHÐOMÐL Y3 +BY2 +CY- UBOFÐSÐOÐSF- I. 5FLEFSFDFMJUFSJNMFSJOJOLBUTBZŽMBSŽUPQMBNŽ-2 UJZPS #V ÐSÐOMFSJ LPMJMFSF Y +   FS UBOF EJ[JODF  EJS ÐSÐO  Y FSUBOFEJ[JODFÐSÐOFLTJLLBMNBLUBEŽS II. Y6MŽUFSJNJOJOLBUTBZŽTŽ-EJS  #VOBHÌSF IJÀÑSÑOFLTJLLBMNBNBTŽJÀJOLPMJ III. ¥BSQBOMBSŽOEBOCJSJ Y2 +Y+ EJS MFSFEJ[JMFOÑSÑOTBZŽTŽBöBôŽEBLJMFSEFOIBOHJTJ olamaz?  JGBEFMFSJOEFOIBOHJMFSJEPôSVEVS \" Y+ # Y+ $ Y- 2 & Y2- 4 \" :BMOŽ[* # :BMOŽ[*** $ *WF**  % Y-  % *WF*** & * **WF*** 3. 1 Y QPMJOPNVOVOY3 +Y2 -Y-JMFCËMÐNÐO- 7. 1 Y =Y4 -Y2 -Y+ 16 EFOLBMBOY2 +Y-PMEVóVOBHËSF P2 ( x ) poli polinomunun x + 2 JMFCÌMÑNÑOEFOLBMBOLBÀ UŽS nomunun x -JMFCÌMÑNÑOEFOLBMBOLBÀUŽS \"  #  $  %  &  \"  #  $   % 4 - 5 2  & 4 - 10 2 4. 1 Y =Y3 +BY2 -CY+ 1 8. 1 Y QPMJOPNV CBõLBUTBZŽTŽPMBOJLJODJEFSFDF- polinomunun x +JMFCÌMÑNÑOEFOLBMBO  EFOCJSQPMJOPNEVS x -  JMF CÌMÑNÑOEFO LBMBOŽO  LBUŽ PMEVôVOB HÌSF B-CLBÀUŽS  1 Y  QPMJOPNVOVO TŽGŽSMBSŽ  WF - PMEVôVOB HÌSF 1  LBÀUŽS \" - # - $ - % - & -1 \"  #  $  %  &  1. # 2. # 3. C 4. # 25 5. D 6. D 7. D 8. \"

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr 10-÷/0.-\"3*/¦\"31\"/-\"3\"\":3*-.\"4** 0SUBL ¦BSQBO 1BSBOUF[JOF \"MBSBL ¦BSQBOMBSB NOT \"ZŽSNB  OCJSEPóBMTBZŽPMNBLÐ[FSF TANIM ( a -C 2n = ( b -B 2n  7FSJMFOCJSJGBEFEFPSUBLUFSJNMFSWBSTBJGBEFCV ( a -C 2n + 1 = -( b -B 2n + 1 PSUBLUFSJNMFSJOQBSBOUF[JOFBMŽOBSBL¿BSQBOMB- SŽOBBZSŽMBCJMJS  ±SOFóJO BY+CY-DY=Y B+ b -D EJS ÖRNEK 1 ôFLJMEFCJSLFOBSV[VOMVóVNCSPMBOCJSLBSFJMFLFOBS ÖRNEK 3 V[VOMVLMBSŽNCSWFOCSPMBOEJLEËSUHFO õFLJMEFJTF õFLJM  EFLJ EJLEËSUHFO WF LBSFOJO CJSMFõUJSJMNFTJZMF PMV- \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ õBOEJLEËSUHFO¿J[JMNJõUJS a) ( a -C 2 - ( b -B 3 ( a +C b) ( a -C 3 ( b -D 2 + ( c -C 3 ( b -B 2 mn m+n a) (b - a)2 - (b - a)3 (a + b) m mm (b - a)2 (1 - (b - a) (a + b)) (b - a)2.(1 - b2 + a2) ôFLJM ôFLJM b) (a - b)3 (b - c)2 + (c - b)3 (a - b)2 õFLJM  EFLJ EJLEÌSUHFOJO BMBOŽOŽ JLJ GBSLMŽ CJÀJNEF (a - b)2 (c - b)2 (a - b + c - b) ifade edelim. (a - b)2 (c - b)2 (a + c - 2b) ¦Ì[ÑN ôFLJM*EFLJQFNCFLBSFOJOBMBOŽN2 UVSVODVEJLEËSUHFOJOBMBOŽ=NO 5ÐNBMBO=N2+NO ôFLJMEFLJEJLEËSUHFOJOBMBOŽ=N N+O #VJLJJGBEFBZOŽBMBOCFMJSUUJóJOEFO N2+NO=N N+O EJS ÖRNEK 2 (SVQMBOEŽSŽMBSBL¦BSQBOMBSB\"ZŽSNB \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ TANIM a) NO2-N2 n b) N B+C - n ( a +C +Q B+C  7FSJMFO CJS JGBEFOJO UÐN UFSJNMFSJOEF PSUBL CJS c) N-O 2 Q-O + Q-O 2 N-O ¿BSQBO CVMVOBNŽZPSTB JGBEF HSVQMBOEŽSŽMBSBL d) ( a -C  B- b +D + ( b -B  B- b +D IFSHSVQLFOEJJ¿JOEF¿BSQBOMBSŽOBBZSŽMŽS a) 3mn (n - 2m)  (SVQMBS PSUBL ¿BSQBO QBSBOUF[JOF BMŽOEŽóŽOEB b) (a + b) (m - n + 2p) JGBEF¿BSQBOMBSŽOBBZSŽMNŽõPMVS c) (m - n) (p -n) (m-n + p - n) = (m - n) (p - n) (m+p-2n) BY+ by + ay +CY= a Y+Z + b Y+Z d) (a - b) (a - b + c) - (a - b) (2a - b + c) = Y+Z  B+C (a - b) (a - b + c - 2a + b - c) = (a - b) (-a) 2. a) 3mn (n – 2m) b) (a + b) (m – n + 2p) 26 3. a) (b – a)2.(1 – b2 + a2) b) (a – b)2 (c – b)2 (a + c – 2b) c) (m – n) (p – n) (m + p – 2n) d) (a – b) (–a)

www.aydinyayinlari.com.tr 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 ÖRNEK 5 \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ a) a2 - ba - a + b a) Y2+Y- 2 b) Y2 +Y- 6 b) 2ab - ac + a - 2b + c - 1 c) Y2 -Y 2 - Y2 -Y - 8 c) YZ [2 + -[ Y2 + y2 d) Y2 -Y- 12 d) 2y -Y-YZ+Y2 e) a3 - 3a2 - a + 3 a) x2 + x - 2 = (x + 2) (x - 1) b) x2 + 5x - 6 = (x + 6) (x - 1) a) a (a - b) - (a - b) = (a - b) (a - 1) c) (x2 - 3x - 4) (x2 - 3x + 2) b) a(2b - c + 1) - (2b - c + 1) = (2b - c + 1) (a - 1) c) xyz2 + xy - zx2 - zy2 (x - 4) (x + 1) (x - 2) (x - 1) d) 15x2 - 11x - 12 = (5x + 3) (3x - 4) zx (yz - x) - y(zy - x) = (yz - x) . (zx - y) d) 2y (1 - x) - 3x(1 - x) ÖRNEK 6 (1 - x) (2y - 3x)  Y2+ y2 +Y- 10y + 29 = 0 e) a3 - 3a2-a + 3 PMEVôVOBHÌSF Y+ZLBÀUŽS a2 (a - 3) - (a - 3) (a - 3) (a2 - 1) 29 u 25 +PMBSBLBZŽSŽSTBL x2 + 4x + 4 + y2 - 10y + 25 = 0 (x + 2 ) (x + 2) + (y - 5) (y - 5) = 0 (x +2 )2 + (y - 5)2 = 0 x + 2 = 0 j x = -2 y-5=0jy=5 x + y = 3 bulunur. ax2  CY  D  õFLMJOEFLJ ÷GBEFMFSJ ¦BSQBOMBSB \"ZŽSNB TANIM ÖRNEK 7  BY2 +CY+DõFLMJOEFLJпUFSJNMJJGBEFMFSJ¿BS- 2a2 - b2 + ab + 8a - b + 6 QBOMBSŽOB BZŽSŽSLFO CJSJODJ WF пÐODÐ UFSJNJO JGBEFTJOJÀBSQBOMBSŽOBBZŽSŽOŽ[ BY2 =QYUYWFD=NOõFLMJOEF¿BSQBOMBSŽTF- ¿JMJS 2a2 + ab - b2 - b + 8a + 6 ax2 + bx + c px m 2a * -b ** +2 tx n a +b +3 ***  #V ¿BSQBOMBS ¿BQSB[ PMBSBL ¿BSQŽMŽQ UPQMBO- EŽóŽOEB PSUBODB UFSJN CVMVOVZPSTB ¿BSQBOMBS 2ab - ab =BC * EPóSVTF¿JMNJõUJS#VTF¿JMFO¿BSQBOMBSZBOZB- OBZB[ŽMŽSTBBY2 +CY+ c = QY+N  UY+O  -3b + 2b = -C **  ¿BSQBOMBSŽOBBZŽSNBJõMFNJTPOMBONŽõPMVS 6a + 2a =B *** (2a - b + 2) (a + b + 3) bulunur. 4. a) (a – b) (a – 1) b) (2b – c + 1) (a –1) c) (yz – x) . (zx– y) 27 5. a) (x + 2) (x – 1) b) (x + 6) (x – 1) c) (x – 4) (x + 1) (x – 2) (x – 1) d) (1 – x) (2y – 3x) e) (a – 3) (a2 – 1) d) (5x + 3) (3x – 4) 6. 3 7. (2a – b + 2) (a + b + 3)

TEST - 11 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ 1. ( b -B 3 (a -åZ 2 - (a -C 2 (y -B 3 5. ( a -C  C+D 2 + ( b -B  B-D 2  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽEBLJMFSEFO  JGBEFTJOJO ÀBSQBOMBSŽOB BZSŽMNŽö öFLMJ BöBôŽEB hangisi EFôJMEJS? kilerden hangisidir? \"  C-B 2 # B-Z $ C- y \" ( a +C  B-C  C- a +D # ( a +D  C-D  C+ a -D  % B-C & C+ y $ ( a -D  C+D  C+ c -B % ( a +C  C-D  B- b +D & ( b -D  B-C  B- b -D 2. m3 x2 - m2 x3 m2 x - mx2  JGBEFTJOJO TBEFMFöNJö CJÀJNJ BöBô ŽEBLJMFSEFO hangisidir? \" Y # N $ Y2 % N2 & NY 6. B C DCJSFSHFSÀFMTBZŽPMNBLÑ[FSF  a + b + c =WFab + ac = 30 PMEVôVOB HÌSF b + D UPQMBNŽ BöBôŽEBLJMFSEFO hangisi olabilir? \"  #  $  %  &  3. 1 + x 7. abc2 + ab - a2 c - b2 c x + 1 1+ 1 a - bc x x2 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  # Y $ Y2  % Y2 + & Y2 +Y JGBEFTJOJOFOTBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ sidir? \" BC-D # C-BD $ D+ ab  % BD+C & CD- a 4. x3 + 2x2 - 3x - 6 x2 - 3  JGBEFTJOJOFOTBEFöFLMJBöBôŽdakilerden hangi 8. Y2 + 5y2 -YZ- 6y + 9 = 0 sidir?  PMEVôVOBHÌSF Y+ZUPQMBNŽLBÀUŽS \" Y- # Y+ $ Y2 - 2 \"  #  $  %  &   % Y2 + & Y2 - 3 1. & 2. & 3. # 4. # 28 5. \" 6. & 7. # 8. C

1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ TEST - 12 1. 272 + 62 5. x2 - 5x +BJGBEFTJOJOÀBSQBOMBSŽOBBZSŽMNŽöI»MJ  UPQMBNŽBöBôŽEBLJMFSEFOIBOHJTJJMFJGBde edile  Y-  Y+C  bilir? PMEVôVOBHÌSF BCLBÀUŽS \"  #  $  \" - # - $  %  &  &   %  2. N- 2 =OJTF N2 -N+  N2 -N  6. m - n = 2 , n + p = 5 ifadesinin O UÑSÑOEFO FöJUJ BöBôŽEBLJMFSEFO 36 PMEVôVOBHÌSF 18mn - 15n + 18mp ifadesinin hangisidir? EFôFSJLBÀUŽS \" O2 # O2 - $ O2 - 2n \"  #  $  %  &  % O2 - & O2 - 4n 3. 6a2 Y2 -BY+ 1 7. 1 + 1 1 - xa–b 1 - xb–a  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJTJ BöBôŽEBLJMFS  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS den hangisidir? \" - #  $   & Yb -Ya \" BY- # BY+ $ BY- 1 %  xa xb  % BY+ & BY+ 1 4. N5 -N3 +N2 - 18 8. a2 - ab - 2b2 - a2 - ab  JGBEFTJ BöBôŽEBLJMFSEFO IBOHJTJOF UBN CÌMÑ ab + b2 ab - b2 nür? \" N2 - # N2 - $ N2 - 6  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS  % N2 + & N2 + 6 \" B # C $  a  %  & -2 b 1. D 2. & 3. C 4. \" 29 5. \" 6. \" 7. C 8. &

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr 10-÷/0.-\"3*/¦\"31\"/-\"3\"\":3*-.\"4*** ²[EFöMJL,VMMBOBSBL¦BSQBOMBSB\"ZŽSNB ÖRNEK 3 TANIM  Y+ y =WFYZ= 6 Tam kare PMEVôVOBHÌSF x2 + y2JGBEFTJOJOEFôFSJLBÀUŽS ( a +C 2 = a2 + 2ab + b2 x + y = 4, x . y = 6 ( a -C 2 = a2 - 2ab + b2 (x + y)2 = 42 ( a + b +D 2 = a2 + b2 + c2 + 2 ( ab + ac +CD x2+ 2xy + y2 = 16 j x2+ y2 + 12 = 16 ( a - b -D 2 = a2 + b2 + c2 + 2 ( -ab - ac +CD j x2 + y2 = 4 bulunur. ÖRNEK 1 ÖRNEK 4 \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ 2m + 1 = 5PMEVóVOBHËSF  a) Y2 -Y+ 1 3m b) N2 n2 +NO+ 1 c) x4 + 16 + 8 4m2 + 1 JGBEFTJOJOEFôFri LBÀUŽS 9m2 x4 d) 16Y + 2Y+ 2 + 4 d 2m + 1 2 = 2 & 2 + 4 + 1 = 25 e) Y6 -Y3 y4 + 4y8 f) -Y3 y2 +Y2 y3 -YZ4 3m n 5 4m 3 2 9m 21 71 & 4m + = bulunur. a) x2 - 2x + 1 = (x - 1)2 2 3 9m b) 4m2n2 + 4mn + 1 = (2mn + 1)2 c) f 2 + 42 2p x x d) (22x + 2)2 e) ( 5x3 - 2y4 ) 2 f) -2y2 x(4x2 - 12yx + 9y2) = -2y2 x (2x - 3y)2 ÖRNEK 5 x - 1 = 3PMEVóVOBHËSF  x x + 1 ifadesinin QP[JUJGEFôFSJLBÀUŽS x ÖRNEK 2 dx- 1 2 & x2 - 2 + 1 =9 öLJTBZŽOŽOGBSLŽ LBSFMFSJUPQMBNŽEVS n = ^ 3 h2 #VTBZŽMBSŽOÀBSQŽNŽLBÀUŽS x2 x x - y = 7, x2+ y2 = 99 (x - y)2 = 72 j x2 - 2xy + y2 = 49 2 1 = 11 olur. d x + 1 n=^Ah olsun. j 99 - 2xy = 49 j x.y = 25 bulunur. x &x + 2 x dx+ 1 2 = 2 & 2 + 2 + 1 = 2 x n A x 2 A x j\"2 = 11 + 2 j A = 13 bulunur. 1. a) (x – 1)2 b) (2mn + 1)2 c) ^ x2 + 4 / x2 h 2 d) (22x+ 2)2 30 71 5. 13 e) (5x3-2y4)2 f) - 2y2 x (2x-3y)2 2. 25 3. 4 4. 3

www.aydinyayinlari.com.tr 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 6 ÖRNEK 9 N- n -Q=WFN2 + n2 +Q2 =PMEVóVOBHËSF ôFLJMEF \"#() WF (%&' CJSFS LBSF  #$%( CJS EJLEËSU- mn + mp -OQJGBEFTJOJOEFôFSJLBÀUŽS HFOEJS AB C (m - n - p)2 = (8)2 HG D j m2 + n2 + p2+ 2 (-mn - mp + np) = 64 j 72 + 2 . (-mn - mp + np) = 64 j mn + mp - np = 4 bulunur. FE ÖRNEK 7 #V öFLMJO UÑN BMBOŽ  CJSJNLBSF WF ÀFWSFTJ  CJ SJN PMEVôVOB HÌSF  NBWJ CÌMHFOJO BMBOŽ LBÀ CJSJN N- n +Q=WFN2 + n2 +Q2 = 20 karedir? PMEVôVOBHÌSF NO-NQ+OQJGBEFTJOJOEFôF SJLBÀUŽS yx Tüm alan = x2 + y2+ xy = 52 ¦FWSF= 4x + 4y = 32 (2m - n + 3p)2 = 62 j 4m2 + n2+ 9p2 + 2(-2mn + 6mp - 3np) = 36 y y x+y=8 j 20 + 2(-2mn + 6mp - 3np) = 36 j 2mn - 6mp + 3np = - 8 bulunur. yx (x + y)2 = (8)2 x2 + 2xy + y2 = 64 ÖRNEK 8 x x x2 + y2 = 64 - 2xy 52 = 64 - 2xy + xy xy = 12 bulunur. x x yz ÷LJ,BSF'BSLŽ TANIM :VLBSŽEBLFOBSV[VOMVLMBSŽY ZWF[CJSJNPMBOпBEFU  Y2 - y2 = Y-Z  Y+Z LBSFWFSJMNJõUJS,ŽSNŽ[ŽCËMHFOJOBMBOŽTBSŽWFNBWJCËM- HFMFSJOBMBOMBSŽUPQMBNŽOEBOCJSJNLBSFGB[MBEŽS ÖRNEK 10 #VÑÀöFLJMZVLBSŽEBLJHJCJZBOZBOBCJSMFöUJSJMFCJMEJ \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ ôJOFHÌSF Z[ÀBSQŽNŽLBÀUŽS a) Q2 - 50k2 b) N4 - Y+ 2 x2 - (y2 + z2) = 36 ve x=y+z c) N2 - 9n2 j x2 - (x2 - 2yz) = 36 x2 = (y + z)2 d) a4 - 9b2+ 6b - 1 x2 = y2 + z2 + 2yz a) 2(p2 - 25k2) = 2(p - 5k) (p + 5k) j 2yz = 36 ve yz = 18 bulunur. b) (2m2 - 2x - 1) (2m2 + 2x + 1) c) (2m - 3n) (2m + 3n) d) a4 - (9b2 - 6b + 1) = a4 - (3b - 1)2 = (a2 - 3b + 1) (a2 + 3b - 1) 6. 4 7. –8 8. 18 31 9. 12 10. a) 2(p–5k) (p + 5k) b) (2m2 – 2x – 1) (2m2 + 2x + 1) c) (2m–3n) (2m + 3n) d) (a2–3b + 1) (a2+ 3b – 1)

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr ÖRNEK 11 ÷LJ,ÑQ5PQMBNŽWFZB'BSLŽ \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ TANIM a) Y4 -Y2+ 25 b) a4 + 64 a3 + b3 = ( a +C  B2 - ab + b2 a3 - b3 = ( a -C  B2 + ab + b2 a) x4 - 10x2 + 25 - x2 (x2 - 5)2 - x2= (x2 - x - 5) (x2+ x - 5) ÖRNEK 14 b) a4 + 16a2 + 64 - 16a2 \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ (a2 + 8)2 - (4a)2 = (a2 - 4a + 8) . (a2 + 4a + 8) a) Y3+ 8 b) a3 - 27b3 ÖRNEK 12 c) N4 n -NO4 [- y =Y+ y =JTFx2 - 2y2 + z2 + 4 ifadesinin de a) x3 + 23 = (x + 2) (x2 - 2x + 4) ôFSJLBÀUŽS b) a3 - (3b)3 = (a - 3b) (a2 + 3ab + 9b2) c) 2mn (8m3 - 27n3) (x2 - y2) + (z2 - y2) + 4 2mn(2m - 3n) (4m2 + 6mn + 9n2) (x - y) (x + y) + (z - y) (z + y) + 4 6 (x - y) + 6(z + y) + 4 J z - y = 6 N K O K O K x + y = 6 O ÖRNEK 15 K z + x = 12 O  N+ n =WFN2 + n2 = 10 L P PMEVôVOBHÌSF m3 + n3 ifadesinin EFôFSJLBÀUŽS 6 (x + z) + 4 = 6.12 + 4 = 76 bulunur. ÖRNEK 13 (m + n)2 = (5)2 j m2 + 2mn + n2 = 25 j 10 + 2mn = 25 ,FOBSV[VOMVLMBSŽYWFYCSPMBOEJLEËSUHFOõFLMJOEF 15 CJSBSTBÐ[FSJOFUBCBOŽLBSFPMBOCJSLFOBSŽOŽOV[VOMVóV j m.n = ZCSPMBOWJMMBMBSEBOCJSNJLUBSJOõBFEJMFDFLUJS 2 y m3 + n3 = (m + n) . (m2 - mn + n2) 6x = (5) . d 10 - 15 n = 25 bulunur. 22 y ÖRNEK 16 8x \"STBZBWJMMBMBSJOõBFEJMEJLUFOTPOSBHFSJZFLBMBOBSTBOŽO Y+ y =WFYZ= 3 BMBOŽ_ 4 3 x - 2 7 y i _ 4 3 x + 2 7 y iPMEVóVOBHËSF  PMEVôVOBHÌSF x6 + y6JGBEFTJOJOEFôFri LBÀUŽS CVBSTBZBLBÀBEFUWJMMBJOöBFEJMNJöUJS (x + y)2 = (4)2 j x2 + 2xy + y2 = 16 \"STBOŽOBMBOŽ= 6x.8x = 48x2 br2 j x2+ y2 + 6 = 16 j x2 + y2 = 10 #JSWJMMBOŽOBMBOŽ= y.y = y2 br2 \"UBOFWJMMBJOöBFEJMTJO (x2 + y2)2 = (10)2 j x4 + 2x2y2 + y4 = 100 (FSJZFLBMBOBSTBOŽOBMBOŽ= j x4 + y4 + 18 = 100 j x4+ y4 = 82 a 4 3 x - 2 7 y ka 4 3 x + 2 7 y k = a 48x2 - 28y2 k br2 j 48x2 - 28y2 + y2\"= 48x2 x6+ y6 = (x2)3 + (y2)3 = (x2 + y2) (x4 - x2y2 + y4) j 28y2 = y2\"j\"=UBOFWJMMBJOöBFEJMNJöUJS = (10) . (82 - 9)= 730 bulunur. 11. a) (x2 – x – 5) (x2+ x – 5) b) (a2 – 4a + 8) . (a2 + 4a + 8) 32 14. a) (x + 2) (x2 - 2x + 4) b) (a - 3b) (a2 + 3ab + 9b2) 12. 76 13. 28 c) 2mn(2m - 3n) (4m2 + 6mn + 9n2) 15. 25 16. 730 2

www.aydinyayinlari.com.tr 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÷LJ5FSJNJO5PQMBNŽOŽOWF'BSLŽOŽO,ÑQÑ an ± bn#JÀJNJOEFLJ÷GBEFMFS TANIM TANIM ( a +C 3 = a3 + 3a2 b + 3ab2 + b3 n `/JTF ( a -C 3 = a3 - 3a2 b + 3ab2 - b3 an - bn = (a -C  Bn - 1 + an - 2 . b + an -3.b2 + ... + bn-1 ÖRNEK 17 n `/WFOUFLJTF an + bn = (a +C  Bn-1 - an - 2 . b + an - 3 . b2 - ... + bn - 1 993 + 3 . 992 + 3 . 99 + 1 JöMFNJOJOTPOVDVLBÀUŽS x = 99 olsun. ÖRNEK 20 993 + 3.992 + 3.99 + 1 = x3 + 3x2 + 3x + 1 \"öBôŽEBLJJGBEFMFSJÀBSQBOMBSŽOBBZŽSŽOŽ[ = (x + 1)3= (99 + 1)3 = 1003 = 106 bulunur. a) Y5 + y5 b)Y6 + y6 ÖRNEK 18 c) Y7 - 1 6a2b - 2a3 =WFC3 - 6ab2 = 11 PMEVôVOBHÌSF B- b kaçUŽS a) x5+ y5 = (x + y) . (x4 - x3y + x2 y2 - xy3 + y4) b) x6 + y6 = (x2)3 + (y2)3 6a2b - 2a3 = 5 2b3 - 6ab2 = 11 = (x2 + y2) (x4 - x2y2 + y4) 2b3 - 6ab2 + 6a2b - 2a3 = 16 c) x7 - 1 = (x - 1).(x6 + x5 + x4 + x3 + x2 + x + 1) 2 (b3 - 3ab2 + 3a2b - a3) = 16 (b - a)3 = 8 j b - a = 2 j a - b = -2 bulunur. ÖRNEK 19 ÖRNEK 21  Y- 3 + Y- 2 + Y- - 44 210 + 29 + 28 + ... + 22 + 2 =Y ifadesinin deôFri x = 3 7 JÀJOLBÀUŽS PMEVôVOBHÌSF 211 in x türünEFOFöJUJOFEJS 1(x4-4 41)434+434.^4x42- 14h42 4+434.^4x4-441 3h + 1 - 45 ((x - 1) + 1)3 - 45 = x3 - 45 x = 2 + 22 + ... + 28 + 29 + 210 x = 3 7 için ^ 3 7 h3 - 45 = 7 - 45 = - 38 bulunur. x + 1 = 1 + 2 + 22 + ... + 28 + 29 + 210 17. 106 18. -2 19. -38 F1 (2 - 1)^ x + 1 h = (<2 - 1) .^ 1 + 2 + . . . + 10 h 2 1 211 - 1 = x + 1 211 = x + 2 bulunur. 33 20. a) (x + y) . (x4 - x3 y + x2 y2 - xy3 + y4) b) (x2 + y2) (x4 - x2y2 + y4) c) (x - 1).(x6 + x5 + x4 + x3 + x2 + x + 1) 21. x + 2

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr UYARI ÖRNEK 23 ôFLJMEFLJCÐZÐLLÐQÐOCJSLF- OBSŽ B CJSJN LпÐL LÐQÐO CJS (ËSEÐóÐNÐ[ Ë[EFõMJLMFSEFO CB[ŽMBSŽOŽ EÐ[FO- b a LFOBSŽCCJSJNEJS MFZFSFLBõBóŽEBLJFõJUMJLMFSJFMEFFEFCJMJSJ[ ,ÑÀÑL LÑQ Lesilip çŽLBSUŽM A2 + B2 = ( A -# 2 + 2AB EŽôŽOEBHFSJZFLBMBOLŽTNŽO A2 + B2 = ( A +# 2 - 2AB IBDNJOJ WFSFO JGBEF BöBôŽ ( A +# 2 = ( A -# 2 + 4AB dakilerden hangisidir? ( A -# 2 = ( A +# 2 - 4AB ( A +# 3 = A3 + 3A2 B + 3AB2 + B3 \"  B-C  B+C ( A +# 3 = A3 + B3 + 3AB ( A +# #  B2 + b2 - 2ab ( A -# 3 = A3 - 3A2 B + 3AB2 - B3 $  B-C  B2 + ab + b2 ( A -# 3 = A3 - B3 - 3AB ( A -# %  B+C  B2 - ab + b2  ÖRNEK 22 &  B-C  B+C  B+C \"#$%LBSFTJOJOCJSLFOBSŽBCJSJNPMTVO ,BMBOIBDJN= a3 - b3 A Fb B = (a - b) (a2 + ab + b2) PMVQDFWBQ$öŽLLŽEŽS b b Eb G D aC ÖRNEK 24 #V LBSFOJO LÌöFTJOEFO  LFOBSŽ C CJSJN PMBO &'(# a2 - 4a - 6 =JTFa2 + 36 JGBEFTJOJOEFôFSJLBÀUŽS LBSFTJBUŽMŽSTBHFSJZFLBMBOBMBOŽWFSFOÌ[EFöMJLBöB a2 ôŽEBLJMFSEFOIBOHJTJEJS \"  B2 - b2 = (a -C  B+C a2 - 4a - 6 = 0 j a2 - 6 =BIFSJLJUBSBGŽBZBCÌMFS #  B-C 2 = a2 - 2ab + b2 $  B2 + b2 = ( a +C 2 - 2ab 2 - 6 4a 6 %  B3 - b3 = ( a -C  B2 + ab + b2 &  ^ a – b h = a2 – b2 sek; a = & a - a = 4 tür. a a+b a kalan alan = a2 - b2 da- 6 2 = ^ 4 h2 & 2 - 12 + 36 = 16 = (a - b) (a + b) n a PMVQDFWBQ\"öŽLLŽEŽS a2 a 2 36 & a + = 28 bulunur. 2 a 22. \" 34 23. C 24. 28

www.aydinyayinlari.com.tr 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 25 ÖRNEK 28  Y2 + 4y2 +Y- 16y + 25 = 0 #JS LFOBSŽ Y CS PMBO LBSF õFLMJOEFLJ CJS LºóŽU BõBóŽEBLJ PMEVôVOBHÌSF x + y ifadesinin EFôFSJLBÀUŽS HJCJLBUMBOŽZPS (x2 + 6x + 9) + (4y2 - 16y + 16) = 0 ZBSŽTŽOŽO ZBSŽTŽOŽO x karesi karesi x (x + 3)2 + (2y - 4)2 = 0 I x + 3 = 0 j x = -3 y II 2y - 4 = 0 j y = 2 x + y = -1 bulunur. y III ÖRNEK 26 ***õFLJMEFFMEFFEJMFOEJLпHFOEFLFOBSV[VOMVLMBSŽ  ZCSPMBOTBSŽSFOLMJJLJ[LFOBSEJLпHFOLFTJMJQ¿ŽLBSUŽMŽ- a . b =WF a + b = c JTFa + b - c ifadesinin yor. FöJUJLBÀUŽS #VOB HÌSF  LBMBO L»ôŽU UBNBNFO BÀŽMEŽôŽOEB BMBOŽ a + b = c & ^ a + b h2 = ^ c h2 OŽWFSFODFCJSTFMJGBEFBöBôŽEBLJMFSEFOIBOHJTJEJS j a + 2 7ab + b = c & a + b + 18 = c \"  Y-Z  Y+Z  #  Y-Z  Y+Z  81 $ Y2- 2y2  %  Y-Z 2 j a + b - c = -18 bulunur. &  Y-Z 2 x 2 *öFLMJOBMBOŽ 2 2 br ÖRNEK 27 x 2 **öFLMJOBMBOŽ YQPMNBLÐ[FSF  4 2 x + 12 = 19 x br PMEVôVOBHÌSF x + 4 x + 2 sonucu LBÀUŽS x 2 ***öFLMJOBMBOŽ 8 2 br 2 = 2 & 2 = 2 , 2 = 2 y x 8y 2x 4y x 4BSŽCÌMHeninBMBOŽ 28 x2 - 4y2 = 0 12 12 (x - 2y) (x + 2y) bulunur. x + = 16 + 3 & - 3 = 16 - x xx 4 4- x \"öŽLLŽ & 3f - 1 p = 16 - x & 3f p=a4- x k^4+ xh xx 3 & = 4 + x & x + 4 x = 3 olur ve x & x + 4 x + 2 = 3 + 2 = 5 bulunur. 25. -1 26. -18 27. 5 35 28. \"

TEST - 13 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ 1. N3 -N2 -N+ 8 5. Q2 -Q+ 3 = 0  JGBEFTJ BöBôŽEBLJMFSEFO IBOHJT JOF UBN CÌMÑOF  PMEVôVOB HÌSF  Q5  BöBôŽEBLJMFSEFO IBOHJTJOF mez? FöJUUJS \" N- # N+ $  N- 2 \" Q+ # Q- $ Q+ 15  %  N+ 2 & N2 - 4  % Q- & -Q 2. x2 + 1 - 38 6. x2 - 4x - 5 x2 x2 - a  JGBEFTJOJOÀBSQBOMBSŽOEBOCJSJTJBöBôŽEBLJMFSEFO rasyonFM JGBEFTJ TBEFMFöFCJMJS JTF B OŽO BMBCJMF DFôJEFôFSMFS UPQMBNŽLBÀUŽS hangisidir? \" - # - $  %  &  \" Ym #  1  $  x + 1 + 6 x+6 x   %  x + 1 - 6 &  x - 1 - 6 xx 3. a - b =JTF 7. 263 + 3 . 262 + 3 . 26 = 3n - 1 &  b-a  PMEVôVOBHÌSF OLBÀUŽS a-7 b+7 \"  #  $  %  JGBEFTJOJOEFôFSJLBÀUŽS \" -1 B  $  %  &  8. x y x (x + y)2 (x – y)2 y 4. \"öBôŽEBLJMFSEFOIBOHJTJ  :VLBSŽEBUBNLBSFNPEFMMFNFTJHÌTUFSJMNJöUJS ( a2 - b2 + c2 2 - 4a2c2 4 10 A 5B JGBE FTJOJOCJSÀBSQBOŽEFôJMEJS?  #VOBHÌSF \"+#UPQMBNŽen çokLBÀUŽS \" B- c -C # B- c +C $ B+ c - b  % B+ b +D & B- c \"  #  $  %  &  1. D 2. & 3. # 4. & 36 5. C 6. & 7. C 8. &

1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ TEST - 14 1. Y3 +Y2 y +YZ2 + y3 =JTF 5. 1 - 39 m2 x + m2 y + x + y 1 + 33 + 36 3m2 + 3 JöMFNJOJOTPOVDVLBÀUŽS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" -  # -  $ -  % -  & - 26 \" - #  $  %  &  6. a + 1 = 3 JTF a fa- 1 2 2. a2 + ab + bc + c2 =WFC2 + 2ac + ab + bc = 14 a p  PMEVôVOBHÌSF  a + b +D OJOQP[JUJGEFôFSJ  JGBEFTJOJOEFôFSJLBÀUŽS LBÀUŽS \"  #  $  %  &  \"  #  $  %  &  7. xn mn (x + y)n yn (x + y)m x xm 3. Y= WFZ= JTF y ym x2 + xy + y2 x3 - y3  :VLBSŽEBNY YO ZN ZOJGBEFTJOJOHFPNFUSJL BMBOHËTUFSJNJPMBSBL Y+Z N+ Y+Z OJGBEFTJ-  JGBEFTJOJOEFôFSJBöBôŽEBkilerden hangisidir? OFFõJUPMEVóVHËTUFSJMNJõUJS \" - # - $  %  &   #VOBHÌSF Y N+ n ) + y ( m + n ) ifadesinin alan PMBSBLHÌTUFSJNJBöBôŽEBLJMFSEFOIBOHJTJEJS A) m+n x B) x x x y m+n 4. 9a - 6a - 2 . 4a C) m n D) x + y x y  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽEBLJMFSEFO m+n hangisidir? \" a - 2a # a - 2a + 1 $ a + 2a + 1 m n E) % a + 2a – 1 & a + 1 - 2a x 1. # 2. D 3. \" 4. # 37 5. & 6. C 7. #

TEST - 15 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ 1. Y= 2052 - 1952 5. 1 a2 - a3 - 1  PMEVôVOBHÌSF YBöBôŽEBLJMFSEFOIBOHJTJEJS a + 1 + \"  #  $  a 1  %  &   JöMFNJOJOTPOVDVBöBôŽEBLJMFSden hangisidir? \" -B # B $  & -a - 1  % B+ 2. c - a =WFC+ c = -2 6. Y+ y -[=WFY2 + y2 +[2 = 92  PMEVôVOBHÌSF  a2 + b2 - 2c2 ifadeTJOJOEFôFSJ  PMEVôVOBHÌSF xy - xz -Z[LBÀUŽS LBÀUŽS \"  #  $  %  &  \"  #  $  %  &  7. YZ= 2, 1 + 1 = 8 3. x2 + ax - 12 x2 y2  PMEVôVOBHÌSF Y3 + y3BöBôŽEBLJMFSEFOIBOHJ x2 + 3x - 4 rasyonel ifadesi sadelFöFCJMJSJTFBOŽOBMBCJMF si olabilir? DFôJEFôFSMFSUPQMBNŽLBÀUŽS \"  #  $  %  &  \" m # m $  %  &  8. ôFLJMEFLJ\"#$%LBSFTJ CJSFWJOCBI¿FTJOJOLVõCB- LŽõŽHËSÐOÐNÐEÐS DC EF 4. x4 + 2x3 + x2 + 2x HG x2 + 2x AB  JGBEFTJOJOFOTBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ #VCBI¿FOJOJ¿FSJTJOF&'()LBSFTJõFLMJOEFCJSIB- WV[ZBQŽMNŽõUŽS#BI¿FOJOWFIBWV[VO¿FWSFMFSJUPQ- sidir? MBNŽNFUSFEJS \" Y+ # Y+ $ Y2 + 1  #BIÀF JMF IBWV[ BSBTŽOEB LBMBO CÌMHFOJO BMBOŽ JTFNFUSFLBSFPMEVôVOBHÌSF \"#$%CBIÀF  % Y2 +  & Y2 - 1 sinin çevresi kaç metredir? \"  #  $  %  &  1. C 2. & 3. D 4. C 38 5. C 6. & 7. \" 8. C

1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ TEST - 16 1. Y2 - 2y2 +YZ+Y+ 5y + 3 5. x + 1 = 4 ise x3 + 1  JGBEFTJOJOÀBSQBOMBSŽOEBOCJSJBY+ by + c oldu x x3 ôVOBHÌSF B+ b +DUPQMBNŽLBÀUŽS JGBEFTJOJOEFôFSJBöBôŽd akilerden hangisidir? \" - #  $  %  &  \"  #  $  %  &  2. 6x2 + mx - 2 a+b = 3 _ bb 2x - 1 6. a2 + b2 + c2 = 25 ` ab + ac + bc = 12bba JGBEFTJ TBEFMFöFCJMJZPS JTF TBEFMFöNJö CJÀJNJ BöBôŽEBLJMFSEFOIBOHJTJEJS  PMEVôVOBHÌSF DOJOBMBCJMFDFôJEFôFSMFSÀBS QŽNŽBöBôŽEBLJMFSEFOIBOHJTJEJS \" Y+ # Y- $ Y+ 1  % Y- & Y+ 2 \"  #  $  % - & -40 3. a2 - b2 - 4a + 4b =WFB+ b = 5 7. 8 x-4 +2  PMEVôVOBHÌSF B . b LBÀUŽS 16 x + 2 \"  #  $  % - & -100  JGBEFTJOJO TBEFMFöUJSJMNJö CJÀJNJ BöBôŽdakiler den hangisidir? \"  16 x - 2 #  8 x - 42 $  16 x  %  8 x  &  4 x 4. BáCPMNBLÐ[FSF  8. ^ 361/8 - 36–1/8 h.^ 361/8 + 36–1/8 h   BY- by = (a -C 2WFY- y = 4b 61/2 + 6–1/2  PMEVôVOBHÌSF YJOZEFOCBôŽNTŽ[PMBOFöJUJ  JöMFNJOJOTPO VDVLBÀUŽS BöBôŽEBLJMFSEFOIBOHJTJEJS \" B # C $ B- 4b \"  3  #  5  $  5  %  3  &  1 7 7 6 66  % B+C & B- 2b 1. & 2. & 3. D 4. \" 39 5. # 6. & 7. C 8. #

TEST - 17 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ 1. a4 + b2 - a2 b2 - a2 5. Y2 +Y- 3 =JTF  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽEBLJMFSEFO x2 + 9 x2 hangisi EFôJMEJS?  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS \" B2 + b2 # B+C $ B - b \"  #  $  %  &   % B+ & B - 1 2. 214 - 28 + 1 6. a3 + b3 =WFBC B+C = 8 210 - 8 JöMFNJOJOTPOVDVLBÀUŽS  PMEVôVOBHÌSF B+CBöBôŽEBk ilerden hangisi OFFöJUUJS \"  27 #  127  $  9  %  64  &  8 4 88 77 \"  #  $  %  &  3. 1 a- a-6 + a-4 a-2 7. 1969.1973 + 4  JGBEFTJOJOFöJUJBöBôŽEBLJMFSd en hangisidir?  JöMFNJOJOTPOVDVLBÀUŽS \"  a + 2 #  a - 3 $  \"  #  $  &   %  a - 4 & 3 a  %  4. x – 5 = 4 8. x + 1 =-1 PMEVôVOBHÌSF  x x PMEVôVOBHÌSF x + 25 JGBEFTJOJOEFôFSJBöBôŽ x2007 + 1 x x2007 dakilerden hangisidir? ifadesinin EFôFSJLBÀUŽS \"  #  $  %  &  \"  #  $  % - & -2 1. \" 2. # 3. C 4. & 40 5. \" 6. # 7. # 8. \"

www.aydinyayinlari.com.tr 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, 10-÷/0.-\"3*/¦\"31\"/-\"3\"\":3*-.\"4**** %FôJöLFO %FôJöUJSNF :ÌOUFNJ JMF ¦BSQBOMBSB 3BTZPOFM÷GBEFMFSJ¦BSQBOMBSB\"ZŽSNB \"ZŽSNB TANIM TANIM  1 Y  WF 2 Y  CJSFS QPMJOPN WF 2 Y  á  PM-  #JS JGBEFZJ CBõLB CJS EFóJõLFOMF EFóJõUJSFSFL EBIBCBTJUCJSJGBEFFMEFFUNFZFWFCVZËOUFN- NBLÐ[FSF  P_ x i õFLMJOEFLJJGBEFMFSFrasyo MF JGBEFZJ ¿BSQBOMBSB BZŽSNBZB EFôJöLFO EF ôJöUJSNF ZÌOUFNJ JMF ÀBSQBOMBSB BZŽSNB de- Q_ x i OJS nel ifadelerEFOJS ÖRNEK 4 ÖRNEK 1 6a2b2 - 54b2 3a3b - 18a2b + 27ab 397 . 385 – 399 . 383 JöMFNJOJOTPOVDVLBÀUŽS SBTZPOFMJGBEFTJOJFOTBEFöFLJMEFZB[ŽOŽ[ 383 = y, 397 = x olsun. 397 . 385 - 399 . 383 = x.(y + 2) - (x + 2) y 2 2 - 2 6b 2 a 2 - 9 k j xy + 2x - xy - 2y = 2x - 2y = 2.(x - y) j 2 (397 - 383) = 2.14 = 28 bulunur. 6a b 54b a 3 2 = 3a b - 18a b + 27ab 3aba a2 - 6a + 9 k 2b^ a - 3 h^ a + 3 h 2b^ a + 3 h = = bulunur. a^ a - 3 h a^ a - 3 h2 ÖRNEK 2 ÖRNEK 5 f a + 2 . 1 - m2 p : m2 - 2m - 3  Y2 +Y 2 - Y2 +Y - 3 m–1 4 - a2 a2 - 3a + 2 JGBEFTJOJÀBSQBOMBSŽOBBZŽSŽOŽ[ JöMFNJOJOTPOVDVOVFOTBEFöFLJMEFZB[ŽOŽ[ x2 + 2x = t diyelim. a + 2 ^ 1 - m h^ 1 + m h ^ a - 2 h.^ a - 1 h a - 1 t2 - 2t - 3 j (t - 3) (t + 1) ··= j (x2 + 2x - 3) (x2 + 2x + 1) j (x + 3) (x - 1) (x + 1)2 bulunur. m - 1 ^ 2 - a h^ 2 + a h ^ m - 3 h^ m + 1 h m - 3 bulu -1 -1 nur. ÖRNEK 3 ÖRNEK 6 20083 + 20073 - 2008 . 2007 + 1 > x + a - x - ax + bx H : a2 - 4x2 4015 ab ab b2 JöMFNJOJOTPOVDVLBÀUŽS iöMFNJOJOTPOVDVOVFOTBEFöFLJMEFZB[ŽOŽ[ 2008 = x , 2007 = y olsun. R V 2 2 Sx + a-x - ax + bx W : a - 4x b ab W x 3 + 3 ^ x + y h a 2 - xy + y 2 k S a 2 S ^ah y x W b x+y - x.y + 1 = - x.y + 1 SS ^ b h WW ^x+yh TX j x2- xy + y2- xy + 1 = (x2- 2xy + y2) + 1 xb + 2 - 2ax - b x 2 j (x - y)2 + 1, yerine yazarsak; j (2008 - 2007)2 + 1 = 12 + 1 = 2 bulunur. a b · ab a2 - 4x2 a ^ a - 2x h b2 b · = bulunur. a b ^ a - 2x h^ a + 2x h a + 2x 1. 28 2. (x + 3) (x - 1) (x + 1)2 3. 2 41 2b^ a + 3 h a-1 b 4. 5. 6. a^ a - 3 h m-3 a + 2x

·/÷7&34÷5&:&)\";*3-*, 4. MODÜL 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" www.aydinyayinlari.com.tr ÖRNEK 7 ÖRNEK 10 x2 - 6x + 5 Y= 7 , y =J¿JO x2 - a 1 rasyonel ifadesi sadFMFöFCJMEJôJOF HÌSF  B  ZFSJOF 3 x2 + 3 xy + 3 y2 HFMFCJMFDFLTBZŽMBSŽOUPQMBNŽLBÀUŽS ifadesiOJOFöJUJLBÀUŽS 2 ^ x - 5 h^ x - 1 h 3 x-3 y = & a = 25 ise x - 6x + 5 2 2 1 = x -a x -a 3 x2 + 3 xy + 3 2 y ka 3 2 y2 k x2 - 25 = (x - 5) (x + 5) olur. a3 x-3 + 3 xy + 3 y x 14444444442 4444444443 a = 1 ise x2- 1 = (x - 1) (x + 1) olur. a3 x-3 yk x–y BOŽOEFôFSMFSUPQMBNŽ+ 1 =EŽS 3 x-3 y 3 7-3 3 3 7-3 3 x - y = 7 - 3 = 4 bulunur. ÖRNEK 8 ÖRNEK 11 48 2017.1985 – 1981.2021 a2 - 8a + 24 JGBEFTJOJOTPOVDVLBÀUŽS ifadesinin en büyük dFôFSJLBÀUŽS 1981 = x , 2017 = y olsun. bulu y.^ x + 4 h - x.^ y + 4 h = x y + 4y - x y - 4x (a2 - 8a + 16) + 8 = (a - 4)2+ 8 ifadesinin en küçük de ôFSJB= 4 için (a - 4)2 + 8 = 8 olur. = 4^ y - x h = 4.^ 2017 - 1981 h = 4.36 = 12 48 nur. = 6 FOCÑZÑLEFôFSJEJS 8 ÖRNEK 9 ÖRNEK 12  Y2 + y2 +Y– 2y + 22 A = ^ 16 5 + 1 h ^ 8 5 + 1 h^ 4 5 + 1 h^ 5 + 1 h ifadesinin en küçükEFôFSJLBÀUŽS PMEVôVOBHÌSF  16 5 JO\"UÑSÑOEFOFöJUJOJCVMVOV[ (x2+ 8x + 16) + (y2- 2y + 1) + 5 &öJUMJôJOIFSJLJUBSBGŽOŽ^ 16 5 - 1 h ile çarparsak; = (x +4 )2 + (y - 1)2 +JGBEFTJOJOFOLÑÀÑLEFôFSJ ^ 16 5 - 1 hA = ^ 16 5 - 1 h^ 16 5 + 1 h ^ 8 5 + 1 h^ 5 + 1 h^ 5 + 1 h x = -4, y = 1 için 02 + 02+ 5 olur. 8 5-1 4 5-1 5-1 (5 - 1) ^ 6 5 - 1 h.A = ^ 5 - 1 h 6 5 = 4 + 1 = 4 + A bulunur. AA 7. 26 8. 6 9. 5 42 3 7-3 3 4+A 10. 11. 12 12. 4A

www.aydinyayinlari.com.tr 10-÷/0.-\"37&¦\"31\"/-\"3\"\":*3.\" 4. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 13 ÖRNEK 16 A = ( 5 +  2 +  4+  8 + Y>ZJ¿JO PMEVôVOBHÌSF 16TBZŽTŽOŽO\"UÑSÑOEFOFöJUJOJCV lunuz. 4x f -2 + 4x + 4y p &öJUMJôJOIFSJLJUBSBGŽOŽ - 1) ile çarparsak; 4–y 4y 4x JGBEFTJOJOFöJUJOJCVMVOV[ ^ 5 - 1 h.A = ^1 45 4-414h2.^ 54+4 414h3.a 2 + 1 k.a 5 4 + 1 ka 5 8 + 1 k 5 x y2 xy b 45 24–414l 4 x y .f 2 2 p = xy 2 2 - - 1 4 4 4 2 4 4 4 4 4 44 3 .4 yx 2 .2 . yx b 5444–144l2 22 142442+ 42443 1 4 4 4 4 4 4 8 4 4 4 4 4 4 4 4 44 3 1 4 4 4 4 4 4 4 4 454–4142 4 4 4 4 4 4 4 4 4 4 443 ^ x > y için h 516 - 1 2 xy 2 = x .2 y.f - p 16 16 yx 2 4.A = 5 - 1& 5 = 4A + 1 bulunur. 22 = (2x)2 - (2y)2 = 4x - 4y bulunur. ÖRNEK 14 215 + 28 + 2n JGBEFTJ CJS UBN LBSF PMEVôVOB HÌSF  O EPôBM TBZŽTŽ LBÀUŽS 28 = (24)2 olarak yazarsak; (24)2 + 4 + ? 2 >2.2 . ? ÖRNEK 17 215 = 25. ? Y+ y =WFYZ=JTF ? = 210PMNBMŽEŽS O halde ?2 = 220PMNBMŽEŽSn = 220PMEVôVOEBO  1+1 n = 20 bulunur. x4 y4 JGBEFTJOJOEFôFSJLBÀUŽS x+y 3 xy 11 = & xy + xy = 3 & y + x =3 x.y 1 ÖRNEK 15 &d 1 + 1 2 1 + 1 + 2 =9 Y3 +Y2 +Y- 6 JGBEFTJOJÀBSQBOMBSŽOBBZŽSŽOŽ[ xy n = ^ 3 h2 & 2 2 6xy x3 + 3x2+ x2 + x - 6 x y 1 x2 (x + 3) + (x + 3) (x - 2) (x + 3) (x2+ x - 2) 11 & + = 7 bulunur. (x + 3) (x + 2) (x - 1) bulunur. 22 xy f 1 1 2 & 121 + + + = 49 2 p = ^ 7 h2 2 4 22 4 xy x =x y y 1 11 & + = 47 bulunur. 44 xy 13. \"+ 1 14. 20 15. (x + 3) (x + 2) (x - 1) 43 16. 4x - 4y 17. 47

TEST - 18 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ y-x x+y a- a 5. a + 3 a2 - 9 · a + 3 1. + x+y x-y 1 -1 3  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOhangisidir? a-3 \"  #  $ -1  JöMFNJOJOTPOVDVBöBôŽd akilerden hangisidir? 4xy 2xy \" - 1  # - a  $  a  % -B & B %   & 3 33 x2 - y2 x2 - y2 2. a^ b2 + 1 h - b^ a2 + 1 h 9y2 - 1 - 24xy + 16x2 a2b2 - 1 6. 4x + 1 - 3y  JGBEFTJOJO TBEFMFöNJö CJÀJNJ BöBôŽEBLJMFSEFO  JGBEFTJOJOFöJUJBöBôŽEBLJlerden hangisidir? hangisidir? \"  a + b  #  b  $  a + b \" Z-Y- # Y- 3 ab a ab - 1 $ Y- 3y - % Y- 3y & - b  %  b - a a  & Y- y ab + 1 3. 4 + 3 + x + x 7. \"öBôŽEBLJMFSEFOIBOHJTJB4 + 3a2 + 4 ifadesinin x-2 x+3 2-x ÀBSQBOMBSŽOEBOCJSJTJEJS  JöMFNJOJOTPOVDVBöBôŽd akilerden hangisidir? \" +Y # Y- $ -Y \" B- # B+ $ B- 1 & B2 - a + 2  %  2 & Y  % B+ x -2 1+ 2 8. 32 4. x : 1 x2 + 14x + 53 x - 4 2x - x2 ifadesinin en büyükEFôFSJLBÀUŽS x  JöMFNJOJOTPOVDVBöBôŽEBLJMFSd en hangisidir? \" - #  $ Y % Y- & -Y \"  #  $  %  &  1. D 2. D 3. D 4. & 44 5. # 6. C 7. & 8. C

1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ TEST - 19 1. 1 - z2.t2 zt + 1 5. f x + 3 : y2 - y - 6 p : 4 - y2 : z- 1 zt y - 2 xy - 2y - 3x + 6 4x2 + 4x - 24 t  JGBEFTJOJOFOTBEFöFLMJBöBôŽdakilerden hangi ifadesiOJOFOTBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ sidir? sidir? \" [ U # - [ U2 $ - [ U % - [ & [ U2 \" - # - 1  $  1 4 4  % -Y- 3 &  x + 3 x-2 2. f x2 - x3 p : x2 6. x5 - x4z - xy4 + y4z x · x + 1 x - 1 x2 - 1 x4 - x3z - x2y2 + xy2z x2y + y3  JöMFNJOJOTPOVDVBöBôŽd akilerden hangisidir? ifadesinin en TBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ sidir? \" - (1 +Y2  # +Y2 $ - 1 - Y #  1  $  x y y  % +Y &  \"  % Y2 - y2 & Y 3. 2x2 + 5x - 12 · 6x2 - x - 15 7.  Y2 +Y+ y2 - 4y + 25 = 0 3x3 + 7x2 - 20x 4x2 - 9 4  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" -  # - Y $ Y %  &  1  PMEVôVOBHÌSF Y+ 3y ifadesinin FöJUJBöBôŽ x dakilerden hangisidir? \" - #  $  %  &  ^ a + 8 h.f 1 - 64 p 8. a4 + 4b4 a2 4. 1 + 16 + 64 a a2  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽEBLJlerden hangisidir?  JöMFNJOJOTPOVDVBöBôŽEBLJMFSd en hangisidir? \" B2 - 2b2 + # B2 + 2b2 + 2ab \" -  #  $ B- 8 $ B2 + 2b2 + % B2 + b2 + 2ab &  8  %  1 & B2 - b2 + 2b 8-a a 1. # 2. \" 3. & 4. C 45 5. # 6. # 7. C 8. #

TEST - 20 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ 1. a = WFC= PMEVóVOBHËSF 5. a4 + b2 - a2 b2 - a2 ^ a + b h2 - 4ab  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽEBLJMFSEFO 5a + 5b hangisi EFôJMEJS? ifadesiOJOFöJUJBöBô ŽEBLJMFSEFOIBOHJTJEJS \" B2 + b2 # B+C $ B- b \"   #   $    % B+ & B- 1  %   &   2. f x2 - 4 · 3x2 - 5x + 2 p : 3x2 + 4x - 4 x2 + x - 6 x2 + x - 2 x2 + 5x + 6 ifadesiOJO FO TBEF CJÀJNJ BöBôŽEBLJMFSEFO IBO 6. A = 292 - 112 ve B = 192 + 39 gisidir?  PMEVôVOBHÌSF \"-#LBÀUŽS \"  x - 1  # Y+ $  3x - 1 \"  #  $  %  &  x+2 x-3  %  & -1 3. a4 + 2a2 + 9 7. _ 8 7 + 1 i _ 4 7 + 1 i _ 7 + 1 i = x  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽdakilerden PMEVôVOBHÌSF _ 8 7 - 1 i JOYDJOTJOEFOEFôFSJ hangisidir? BöBôŽEBLJMFSEFOhangisidir? \" B2 + 2a - # B2 - 2a - 3 \"  6  #  4  $  2  % Y & Y x x x $ B2 - 2a + % B2 + a - 3 & B2 - a + 3 x4 + x2y2 + y4 8. \"öBôŽEBLJMFSEFOIBOHJTJ 4. 1002 . 1004 . 1006 . 1008 x2 + y2 - xy  ÀBSQŽNŽOEBOEBIBCÑZÑLUÑS \" 10032 . 10072  JGBEFTJOJO TBEFMFöNJö CJÀJNJ BöBôŽEBLJMFSEFO # 10012 . 10092 hangisidir? $ 1001 . 10052 . 1007 % 1001 . 10052 . 1009 \" Y2 + y2 +YZ # Y2 + y2 -YZ & 1001 . 1005 . 1007 . 1009 $ Y2 + y2 -YZ % Y2 -YZ- y2 & Y2 +YZ- y2 1. D 2. D 3. C 4. \" 46 5. \" 6. \" 7. \" 8. \"

1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ TEST - 21 1. 4a2 - b2 - 4a + 4b - 3 5. a4 + 4 2a - b + 1  JGBEFTJOJO ÀBSQBOMBSŽOEBO CJSJ BöBôŽEBLJMFSEFO hangisidir?  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  B2 - 2a +  #  B2 - a +  \" B+ b - # B- b + $ B+ 1 $  B2 - 2a +  %  B2 - a +  % B- & C- 3 &  B2 + a + 2. a3 + 2a2 + 4a : a3 - 8 6. YWFZCJSFSEPóBMTBZŽEŽS a2 + 4a + 4 4 - a2 Y2 + 4y = y2 +Y- 17  JöMFNJOJOTPOVDVBöBôŽd akilerden hangisidir? PMEVôVOBHÌSF YJOBMBCJMFDFôJGBSLMŽEFôFSMFSJO UPQMBNŽLBÀUŽS \"  a  # - a  $  a \"  #  $  %  &  a+2 a+2 a-2 % - a  & B a-2 x-y y y 7. x - 5 = 8 - -1 x-3 x x+y x 3. : x+y x +1 PMEVôVOB HÌSF  (x - 3) 2 + 25 ifadesinin - x (x - 3) 2 y x-y y EFôFSJLBÀUŽS  JöMFNJOJO FO TBEF CJÀJNJ BöBôŽEBLJMFSEFO IBO \"  #  $  %  &  gisidir? \"  x  # - x  $  % - & Y y y 4. f x2 - 36 · x2 + 3x - 10 p : x2 + 4x - 12 8. Y2 -Y+ 1 = 0 x3 + 125 3x - 18 x2 - 5x + 25  PMEVôVOBHÌre, x2 - 1 ifadesinin pozitif de x2  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS ôFSJLBÀUŽS \" - #  1  $  %  &  \" 5 21  #  13  $  17 3  %  4 7  &  15 1. \" 2. # 3. D 4. # 47 5. \" 6. & 7. \" 8. \"

TEST - 22 1PMJOPNMBSŽO¦BSQBOMBSB\"ZSŽMNBTŽ 1. 4m2 - 1 5. x - 2 = 41 x (m + n) 2 - (m - n + 1) 2  JGBEFTJOJO TBEFMFöUJSJMNJö CJÀ JNJ BöBôŽEBLJMFS PMEVôVOBHÌSF x + 2 in po[JUJGEFôFSJLBÀUŽS den hangisidir? x \"  #  $  %  &  \"  2m + 1  #  2m - 1  $  1 2n + 1 2n - 1 2n - 1 %  1  &  2m + 1 2. a2 - 1 · a4 + a2 + 1 6. x2 + 1 = 7 a3 - 1 a3 + 1 x2 PMEVôVOB HÌSF  x3 + 1 ifadesinin pozitif de  JöMFNJOJOTPOVDVBöBôŽEBLJlerden hangisidir? x3 \" B- # B+ $ B2 - a + 1 ôFSJLBÀUŽS \"  #  $  %  &   % B2 + a + &  3. 2a3 - 11a2b - 21ab2 : a2 - 3ab - 28b2 7. Y`;PMNBLÐ[FSF 4a2 - 9b2 2a2 + 5ab - 12b2 Y+  Y+  Y+  Y+ - 24 = 0  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS  EFOLMFNJOJ TBôMBZBO Y EFôFSMFSJOJO UPQMBNŽ \" B-C # -B $  BöBôŽEBLJMFSEFOIBOHJTJEJS \" - # - $  %  &   % B & C- 3a 4. f ^ x + y h2 - z2 . x2 + xy + xz p: x2 - xy + xz 8. a ve b ` Z ve 1 < n < 110 olmak üzere, ^ x + y + z h2 ^ x - z h2 - y2 ^ x - y h2 - z2   Y2 +Y- n = Y-B  Y-C  ifadeTJOJOFOTBEFöFLMJBöBôŽEBLJMFSEFOIBOHJ sidir?  FöJUMJôJOJTBôMBZBOLBÀGBSLMŽOUBNTBZŽTŽWBS EŽS \"  # Y $ Y+ y -[  % Y- y -[ & Z \"  #  $  %  &  1. # 2. & 3. D 4. \" 48 5. D 6. C 7. \" 8. &


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook