Paper Code : 1001CT103516015 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE PHASE-III to VII (SCORE-I) ANSWER KEY : PAPER-1 TEST DATE : 05-03-2017 Test Type : PART TEST PART-1 : PHYSICS Test Pattern : JEE-Advanced Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. A,B,D A,B A,B,D B,D B,D A,D A,B B,D A C Q. 11 12 13 14 A. D A D C SECTION-II Q.1 A B C D P,Q,R,S P,Q,R,S P,Q,R,S,T R,S SECTION-IV Q. 1 2 3 4 5 A. 3 8 2 8 2 PART-2 : CHEMISTRY Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. A,C,D B,C A,C,D A,C A,B A,B,C,D B B,C,D A C Q. 11 12 13 14 A. D D C D SECTION-II Q.1 ABCD Q,R P,S P,R,T Q,T SECTION-IV Q. 1 2 3 4 5 A. 5 2 6 4 7 PART-3 : MATHEMATICS Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. B,C,D A,B,C A,B,C,D A,C B A,B A,C A,B,D C B Q. 11 12 13 14 A. C C A D SECTION-II ABCD Q.1 P,Q,R,S,T Q,S P,Q,R,S,T P,R,S,T SECTION-IV Q. 1 2 3 4 5 A. 6 3 9 7 7 Paper Code : 1001CT103516016 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE PHASE-III to VII (SCORE-I) ANSWER KEY : PAPER-2 TEST DATE : 05-03-2017 Test Type : PART TEST Test Pattern : JEE-Main Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ans . 3 2 2 3 2 3 1 2 3 3 1 4 1 4 2 2 4 1 1 4 Que. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ans . 1 3 2 1 3 4 3 2 2 3 4 4 2 4 4 2 2 4 4 3 Que. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Ans . 2 1 3 4 1 3 4 2 3 1 3 1 4 3 1 1 2 3 4 2 Que. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Ans . 4 1 1 3 3 1 4 2 1 1 1 1 1 3 4 3 2 2 3 2 Que. 81 82 83 84 85 86 87 88 89 90 Ans . 3 2 4 4 2 3 2 4 4 3
Paper Code : 1001CT103516015 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE PHASE- III to VII (SCORE-I) Test Type : PART TEST Test Pattern : JEE-Advanced TEST DATE : 05 - 03 - 2017 PAPER-1 PART-1 : PHYSICS SOLUTION SECTION-I V0 2L2 R2 = 0, 1. Ans. (A,B,D) L 1 2 R2 Sol. Perimeter is decreasing at a rate of 2v C d (2r ) = 2v dr = v VRL V0 × C dt dt r = (r0 – v 1 t) VC = i0 × C = B · r2 = d dr = dt = B · 2 · r dt VRL = V0 vv v = 2B(r0 – t) · = 2Bv(r0 – t) V0 2Bvr Bv 2LC 1 2 2R2C2 I = R = · 2r = 2. Ans. (A,B) = 0 Sol. Just after switch is closed, L is open circuit VC V0 LC and C is short circuit Just after = E 5. Ans. (B,D) +– R3 Sol. Applying ampere's law R0 i=0 R1 R1 B 2r = µ0 ienclosed R2 Option (B) ienclosed = 0 B=0 Long time E Option (D) ienclosed = 0 6. Ans. (A,D) R3 R1 i = 0 7. Ans. (A,B) R2 3. Ans. (A,B,D) Sol. p0 + h11g = p0 + h21g + h33g 4. Ans. (B,D) Sol. ad Sol. VRL i0 2L2 R2 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-1/12 +91-744-5156100 [email protected] www.allen.ac.in
8. Ans. (B,D) Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-1 12. Ans. (A) Sol. The geometrical construction shown in 13. Ans. (D) figure is important for developing the Sol. d = RN + Rp mathematical description of interference. It is subject to misinterpretation, however, R as it might suggest that the interference can only occur at the position of the screen. R = R0A1/3 = R0 141/3 + R0 41/3 A better diagram for this situation is figure. 14. Ans. (C) which shows paths of destructive and constructive interference all the way from Sol. 1 µvr2el = kq1q2 the slits to the screen. These paths would 2 d be made visible by the smoke. Since fringes are present everywhere in space they are 1 × 4m 14m v 2 = k 2 e 7e non-localised and their shapes are 2 4m 14m rel R0 (141/3 22/ 3 ) hyperboloid. 1 × 4m v 2rel = 18ke2 9. Ans. (A) 2 R0 (141 / 3 22 / 3 ) Sol. µdAE = dBC + µdCD SECTION-II µ(dAE – dCD) = dBC air A1 B 1. Ans. (A ) (P,Q,R,S); (B) (P,Q,R,S); medium E 1 C (C) (P,Q,R,S,T); (D) (R,S) SECTION-IV D r 1. Ans. 3 2. Ans. 8 Sol. Process A B Pdv = 3 T1/ 2dv WAB = 2 C rr = 3 T1/ 2 1 RT1/ 2dT v 23 (dAE – dCD) = d BC On solving, WAB = 50 R = 50 × 8.3 = 415 J rr Process B C 10. Ans. (C) U = 1 V1/ 2 2 3 RT = 1 V1 / 2 3PV1/2 = 1 2 2 i r 1 P= 3 V Sol. Now WBC = 1600 1 dv 2 Pdv = 100 3 V = 3 V sin i = 2 [40 10] = 2 30 = 20 J sin r 3 3 µe < 0, r < 0 so refractive index is negative, Total W = 415 + 20 = 435 so final wave return to it's 3. Ans. 2 same side where it is incident. Sol. Pab = heat energy 11. Ans. (D) time Sol. Fring width; D msT d (Intensity) (cross section area) = If V decreases, then increases & hence t increases. (4 103 )(4200)(5) HS-2/12 t = (1000)(1.4 104 ) = 600 s = 10 min. 1001CT103516015
Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-1 4. Ans. 8 1 1 1 K 12 22 1 = R(z – 1)2 Sol. Energy available = 2 µ vrel2. = Q value. 13 th = 1 × 7 1 × vrel2 = Q value. 10 (K – th) = K 2 2 7 1 18 3 K = 13 1 th 2 × vrel2 = Q × 7 10 10 2 8 3 4 107 8 12.4 107 Ki = 1645 × 7 = 1880 keV = 10 15.5 103 5. Ans. 2 10 3(z7 )2 hc 5000 Sol. th = eVa 8 = (z – 1)2 625 = (z – 1)2 z = 26 PART–2 : CHEMISTRY SOLUTION SECTION - I 13. Ans. (C) 1. Ans. (A,C,D) 14. Ans. (D) 2. Ans. (B,C) SECTION - II dN M du 1. Ans. (A)(Q,R); (B)(P,S); (C) (P,R,T); NT (D)(Q,T) SECTION - IV 3. Ans. (A, C, D) 1. Ans. 5 4. Ans. (A, C) 5. Ans. (A, B) [NaCl] = 0.025 M = C1 V1 = 2V 6. Ans. (A,B,C,D) T1 = 273 K 7. Ans. (B) 8. Ans. (B,C,D) 9. Ans. (A) Gº = –nFEº Eº298K = 0.07 volt (1)(96500)(0.07) [Na2SO4] = 0.1 M 1000 = V2 = 3V = –96.5 × 0.07 = –6.755 T2 = 273 K 10. Ans. (C) c1v1i1 c2v2i2 dEº = v1 v2 22.4 Sº = –nF dT dEº 5104 7 106 T 298 0.025 2v 2 0.1 3v 3 dT 298K K = 22.4 5v = 5 × 10–4 – 7 × 10–6 (0) 0.1v 0.9v 22.4 = 5 × 10–4 = 5v 22.4 = 5 Sº = +(1) (96500) (5 × 10–4) = 4.48 = + 482500 × 10–4 2. Ans. 2 = +48.25 JK–1Mol–1 3. Ans. 6 11. Ans. (D) 4. Ans. 4 12. Ans. (D) 5. Ans. 7 1001CT103516015 HS-3/12
Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-1 PART-3 : MATHEMATICS SOLUTION SECTION-I 1. Ans. (B,C,D) y = m1x – 2m1 – m13 (–1,0) (1,0) 6 m1 m13 m1 2 m 1 (–1/2,0) 2 P(4,4) r 5 e2 1 3 e 2 2. Ans. (A,B,C) 1 4. Ans. (A,C) 2k1 2k2 k1 2 k2 16 72 9 (A,0) k2 = 0,9,.......63 8 values so n(A B) = 8. e 2k1 2k2 i /4 9 . 16 72 / 36 Hyperbola and ellipse will be confocal with focus 2 2,0 as 1st,10th, 19th roots are common. 1 e12 1 e1 22 e2 3 5. k2 = 0,1,.......8 and k1 = 0,1,........16. 9 3 22 6. will give all possible z1z2 144 Ans. (B) A = (d1,d2,d3,d4) x2 y2 1 A 8 A4 d14 , d 4 , d43 , d 4 I A2 B2 3 2 4 64 9 1 8 d14 d 4 d34 d44 I 9 8 9 2 B2 B2 d1 ,d2 ,d3 ,d4 are forth roots of unity as d1 + d2 + d3 + d4 = 0 9x2 9y2 1 64 8 2. 4! 4! = 36 ways are there to 3. Ans. (A,B,C,D) 2!2! 2 1 1 assign values to d1,d2,d3,d4. 1 2 0 Also d1d2d3d4 is product of 4th roots of unity 2 1 3 which is –1 or 1 when 1, –1, 1, –1 or i, –i, i, –i are used. Ans. (A,B) 2 3 2 3 1 2 0 a b c 32 2 3 0 Let A d e f 3 2 2 0 g h i 2 AB = BA 1 2 1 a ab a b c a d g beh c f i 2 4 d de eh gh d e f d g h f i 3 g 1 2 y2 1 g h i g i 2 3 so conic is x g = 0, d = h = 0, a = e = i, b = f 4 whose center is 1 ,0 a b c 2 A 0 a b 0 0 a HS-4/12 1001CT103516015
(A) a = b = c = 1 |A|= 1 Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-1 (B) trace(A) = 6 a = z |A|= 8 Paragraph for Question 9 & 10 (C) |A| = a3 which may or may not be zero (D) 3a + 2b + c = 6 x1 5 V 5,0 (5,0) 3 abc 4 matrices y2 = –4a(x – 5) 0 0,1,2,3 2 matrices 1 0,1 x2 ax 5 1 200 1 matrix 9 x2 – 9ax + 45a – 9 = 0 D = 81a2 – 4(45a – 9) = 0 = 9a2 – 4(5a – 1) = 0 7. Ans. (A,C) 2 9a2 – 20a + 4 = 0 a = 2, 9 C A B A.C 0 2a + 2b – c = 0 at a = 2 x = 9 rejected for (A) and (B) a + b + c = 0 c = 0, a + b = 0 a 2 x 1 A 4 2 42 9 1, 3 ; B 1, 3 1 , 1 ,0 Normal at A 2 2 as a2 + b2 + c2 = 1 9x 4y 5 3 y5 1, 1 1 4 2/3 9x 2 2 2 ,0 9x 2 3y 5 2 a2 b2 c2 1 tangent at A 3x 9y 2 27 c 9,0 (C) and (D) 2a 2b c are not satisfied ABC 1 .8. 8 2 32 2 for any triplet of integers. 23 3 8. Ans. (A,B,D) 9. Ans. (C) If n coplanar lines are there such that no 3 10. Ans. (B) are concurrent and no two are parallel then the number of parts in which they will Paragraph for Question 11 & 12 divide their plane is 2 + 2 + 3....n a + b = 13 or 17 n2 n 2 L4 passes through Q(12,12) (9,8) quadrilateral 2 Q AB (n + 1)th plane will be intersected by (2,7) (6,4) (10,1) previous n planes in n2 n 2 lines (3,10) No quad. 2 A B ƒ n 1 ƒ n n2 n 2 11. Ans. (C) 12. Ans. (C) 2 Paragraph for Question 13 to 14 ƒ n ƒ n 1 n 12 n 1 2 2 2 12 1 2 22 2 2 ..... n 12 n 1 2 nP n n 1P n n 2P ........ 1n 1 n n 1 1P ...(i) 1 2 F n,P nP 22 2 2 1 n n 1 2n 1 n n 1 2 n 46 4 36 4 26 4 16 1 2 3 1 F 4,6 2 6 2 46 n3 5n 6 4096 2916 384 4 1560 195 4096 4096 512 6 1001CT103516015 HS-5/12
Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-1 Also if P < n then probability is zero and if SECTION – IV P = n by (1) 1. Ans. 6 nn n n 1n ..... 1 n1 n n 1 1n n! x+1=y 1 nn (y + 2)2 (y + 3)3(x + 4)4 = y9 + a1y8 + a2y6......+a8y + a9 nn n1 n C11n nC2 2n nC3 3n n1 nCn nn 1 1 .... 1 n! D is right. a2= [(2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 + 4)2 2 13. Ans. (A) – (2.22 + 3.32 + 4.42)] 14. Ans. (D) 1 292 99 371 SECTION – II 2 1. Ans. (A)(P,Q,R,S,T); (B)(Q,S); 2. Ans. 3 (C)(P,Q,R,S,T); (D)(P,R,S,T) .nˆ is minimum area. (s a)(s c) (A) ac A(3,3,3) AB AC (s b)(s c) (s a)(s b) bc ab 3kˆ 3ˆi 3kˆ B(3,3,0) n^ b 2b 2 9ˆj C(0,3,0) sb acb as a, b, c are in A.P. nˆ 1 2ˆi ˆj 2kˆ D(0,3,3) 3 (B) bcsinA = 2bc – (b2 + c2 – a2) sinA = 1 [2bc 2bc cos A] .nˆ 3 bc 3. Ans. 9 = 2(1 – cosA) (1 + x5)20 + 20C1x7(1 + x5)19 + 20C2x14(1 + x5)18 +..... 4 sin2 A cot A 2 20.19C2 = 20.19.9 22 4. Ans. 7 sinA = 2. 1 4 , cosA = 3 2 5 5 x3 + y3 = 8 1 1 (I) x,y both even all favourable 4 so x = 5sinA,5cosA or x = 3,4 = 50 49 2 AD 1 2 131 50C2 2 2 (C) 9 49 A (II) x,y both odd 1 100 5 category Number 2 B C of numbers AB, DE = AB.DC D (i) 8 + 1 1, 9,......97 13 7.7 E (ii) 8 + 3 3, 11,......99 13 22 DE 49 (iii) 8 + 5 3, 13,......93 12 (iv) 8 + 7 7, 15,......91 12 5 20 [ AE] 5 49 7 x (i) y (iv) (13 × 12) 20 x (ii) y (iii) (13 × 12) tan A tan B 1 Ans. 25 × 49 + 312 = 1537 2 2 (D) 4 5. Ans. 7 r r r r 4 3 3 3 3 3 3 7 4 7 4 . .1 .1 1 p 1 1 3 1 3 1 1 6 1 1 3 1 1 9 1 1 6 6 6 6 6 6 6 6 6 6 6 7 r2 + 11r = 28 r 7 25 64 = r(11 + r) = 28 r HS-6/12 1001CT103516015
Paper Code : 1001CT103516016 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE PHASE- III to VII (SCORE-I) Test Type : PART TEST Test Pattern : JEE-Main TEST DATE : 05 - 03 - 2017 PAPER-2 SOLUTION 1. Ans. (3) y mg 20 Sol. Out-put is XOR GATE AY A & B two are input Total length is = 40 cm = 20 mg cm AY XOR out put = A . B + B. A 4. Ans. (3) 2. Ans. (2) Sol. Sine magnification is –2 so virtual object Sol. qE = qvB have virtual image. mv2 virtual object to virtual image then mirror qvB = is convex. 3. Ans. (2) r mv mE r = qB qB2 5. Ans. (2) M Sol. Some of the characteristics of an optical fibre Sol. dx are as follows x (i) This works on the principle of total internal reflection. Tension is rod at a distnace x from lower (ii) It consists of core made up of glass/silica/ mxg plastic with refractive index n1, which is surrounded by a glass or plastic cladding end is with refractive index n2 (n2 > n1). The Y is young modulus of elasticity refractive index of cladding can be either then change in length in dx element is dy changing abruptly or gradually changing Y × strain = stress (graded index fibre). dy T (iii) There is a very little transmission loss Y× through optical fibres. dx A dy mgx Y × dx A Y ydy 70 mg xdx (iv) There is no interference from stray 30 A electric and magnetic field to the signals 0 through optical fibres. mg 702 302 6. Ans. (3) Yy = A 2 7. Ans. (1) y mg 2000 8. Ans. (2) AY 100 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-7/12 +91-744-5156100 [email protected] www.allen.ac.in
Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 9. Ans. (3) 14. Ans. (4) Sol. Replacing it with string block system Sol. V voltage of source drop across resistance is VR, inductor is VL and capacitor VC v=0 v=0 Applying Krichhof's law NLP I.P. F.P. K m 2F V = 0 AB VR + VL = VC – V = 0 15. Ans. (2) F/K X Sol. Temperature of surrounding is 20°C Let at initial position 2F force is applied then 50°C 35°C W.E.T. from A to B Heater 100 W Heater XW WS + WF = 0 100 = K (50 – 20) x = K(35 – 20) X 3F K 100 = K × 30 x 100 15 30 Net elongation in spring = 3F 3CE K x = 50 10. Ans. (3) 16. Ans. (2) Sol. Eye recive all component of light which is Sol. F = pressure at centroid × area along the line. AP P0 h h ah a g 1 ab 3 2 IA F = I/2 = P0 h 2a g 1 ab 3 2 –2I sin2 17. Ans. (4) 18. Ans. (1) P Sol. Maximum current thorugh capacitor = V0 And perpendicular component is I sin2 z 2 i V0 Net intensity recieved by light is z I I sin2 Q V0 22 z 11. Ans. (1) Q V0 Sol. I B02 C z 2 19. Ans. (1) 1002 109 2 Sol. On increaing temperature of semiconductor I 2 4 107 3 108 bond between molecule break so more electron become free to move hence. I 104 1018 3 108 Conducting infreases and mobility 8 107 decreases. I 30 1.19426 20. Ans. (4) 89 Sol. Charge is conserved. In order to fully convert 12. Ans. (4) an electron into energy, a positron (the 13. Ans. (1) electron's antiparticle must be involved). Sol. R2B0 = E × 2r That is, electron + positron – > energy, NOT electron – > positron + energy.] E= R2 B0 R2B0 21. Ans. (1) 2r 2r a = qE q R2B0 qB0R2 1001CT103516016 m m 2r 2mr HS-8/12
22. Ans. (3) Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 35. Ans. (4) Sol. 1st 2nd 3rd 4th 1 V.S. 0.95 0.90 0.85 0.80 Collision frequenciy Z11 = 2 (2) GAP 0.05 0.10 0.15 0.20 2Avg. Nº 2 difference is = 0.5 mm = 0.05 cm N º P KT Net reading is = 3.1 + 0.05 = 3.15 cm 23. Ans. (2) 1 8 RT P 2 2 Z11 = Sol. Index error in u = +1cm 2 2 M KT u = 8 cm 1 T3/2 index error in v = –1cm Z11 v = 17 + 1 = 18 cm 36. Ans. (2) 111 37. Ans. (2) P0 = 76 f 18 8 Ps = 38 f = 5.53 cm P0 Ps 1 i(1) 24. Ans. (1) Ps (2) i = 2 = 1 + (2) 25. Ans. (3) 26. Ans. (4) Sol. Damping coefficient = 2 km 2 = 1 = 2m 1 m =2 38. Ans. (4) mA = m m 39. Ans. (4) mB = 2 40. Ans. (3) bA 1 41. Ans. (2) bB 2 42. Ans. (1) 27. Ans. (3) 43. Ans. (3) Sol. PV m RT 44. Ans. (4) M 45. Ans. (1) 46. Ans. (3) PVM T T M Þ THe TN2 47. Ans. (4) Rm 28. Ans. (2) 48. Ans. (2) 29. Ans. (2) 49. Ans. (3) 50. Ans. (1) 30. Ans. (3) 51. Ans. (3) 52. Ans. (1) Sol. min (p )min 1500Å ; 53. Ans. (4) E E1 12420 eV 8.28eV 54. Ans. (3) 1500 55. Ans. (1) 56. Ans. (1) Hence ionization potential is 8.28V 57. Ans. (2) 58. Ans. (3) 31. Ans. (4) 32. Ans. (4) 33. Ans. (2) 59. Ans. (4) 60. Ans. (2) 34. Ans. (4) 1001CT103516016 HS-9/12
Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 61. Ans. (4) minimum distance is distance P(), Q(), R(), S(), T(,) distance 6 4 2 RQ 187 4 1 .2 5 P 2 69. Ans. (1) S 187 = ( + 3) P(A) = 0.3 T = 11, 3 + = 17 P(A B) = P(A B) = P(A) + P(B) – P(A)P(B) = 11 and = 2 0.8 = 0.3 + P(B) – 0.3 P(B) 62. Ans. (1) x2 2x 1 0 PB 5 1 i 1 , 1 i 1 7 2 2 2 2 PA B 1 PA B = 1 – (P(A) – P(A)P(B)) = ei/4 = e–i/4 2 32 7 35 50 + 50 = ei25/2 + e–i25/2 = i + (–i) = 0 1 0.3 63. Ans. (1) 70. Ans. (1) 1 .a2 1 a n Cr2 36, nCr1 84 , n Cr 126 r 2 2 2 a a 2a Cn 84 nr2 7 a r 1 36 r 1 3 2 Cn r2 1 a2 1 . 4 2 4 2 a 3n 13 10r ...(1) 22 n Cr 126 n r 1 3 Cn 84 r 2 32 2 64. Ans. (3) r 1 2n + 2 = 5r ....(2) 15º tan15 30 n = 9, r = 4 d nC2r = 9C8 = 9 30 75º 71. Ans. (1) d 15º 30 30. 3 1 d Let |U| 2 cos iˆ 2 sin ˆj 2 3 3 1 65. Ans. (3) 2 2cos 2sin 0 2 It is always true for n > 5 [U V W] 2 1 1 66. Ans. (1) 1 03 P1 and P2 are x + 2y – 2z = 0 and 2x – 3y + 6z = 0 = |6cos – 14sin|2 Maximum value = 36 + 196 = 232 72. Ans. (1) A cos 2 6 12 16 sin 1 D1 3.7 21 3 1 C1 67. Ans. (4) AC1 = 3 D2 C2 |adj 3P| = |3P|3 = 312|P|3 = –312.23 AC2 = 6 2 AD = 8 68. Ans.(2) Given conic C is parabola BD 2 2 B DC focus : (1,–1) E : 3x – 4y = 0 Area = 1 .4 2.8 16 2 1001CT103516016 2 HS-10/12
Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 73. Ans. (1) (2,1,–1) x 2 y 1 z 1 |z – 3 – 4i| = 4 L: 2 2 8 ||z| – 5| < 4 29 P |z| < 9 K: x 2 y3 z4 74. Ans. (3) (–2,3,–4) 2 2 8 12 b c cos 8 4 24 2 a 24 c 0 72 29 29 a b 36 sin 27 29 (12) (24) (36) – 12bc – 36ba + 2abc – 24ac = 0 79. Ans. (3) ....(i) 4 1 2 3 (1009 2n)4 4Cn (1)n a 12 b 24 c 36 n0 b 24 c 36 2a 12 c 36 3a 12 b 24 a 12b 24c 36 (1009)4–4(1007)2+6.(1005)4– 4(1003)4+(1001)4 (1005 + 4)4 + (1005 – 4)4 –4[(1005 + 2)4 + (1005 – 2)4] + 6(1005)4 on solve = 512 – 4 × 32 = 384 1 80. Ans. (2) 6 75. Ans. (4) 2p – 3q + 12r = 5 b = p2 + q2 + r2 6 × 5! c = pq – qp + qr – qr + 3r2 = 3r2 76. Ans. (3) b + c = p2 + q2 + 4r2 y = mx + 1 is tangent to ellipse use : 2iˆ 3ˆj 6kˆ . piˆ qˆj 2rkˆ 22 32 62 p2 q2 4r2 x2 + 4y2 = 1 in Ist quadrant m < 0 25 p2 q2 4r2 1 49 1 = m2 + 4 81. Ans. (3) Q m 3 or 3 PQ2 + PR2 + QR2 = 2QR2 R 22 = 2((C1C2)2 – (r1 – r2)2) = 2[36 – 4] = 64 C1 P C1 (reject) 77. Ans. (2) 82. Ans. (2) Use : contrapositive of p q is (~q)(~p) a R b a = 2k.a it is true for k = 0 reflexive (2,1) R but (1,2) R it is not symmetric 78. Ans. (2) if a 2k1 b and b 2k2 c , then a 2k1 k2 c (1,2,3) lie on it is transistive. 114 83. Ans. (4) L 2 b c P 2 19 19 b = –2, c = –8 10 9 45 Line L and k are parallel favourable : {(3,4),(3,5),......(3,10) (6,7), (6,8),....(6,10) 2 b c 2 1 8 (9,10), a2d a d (1,4),(2,4) a = –2,d = 8 (1,8),(2,8),(4,8),(5,8),(7,8)} 1001CT103516016 HS-11/12
84. Ans. (4) Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 87. Ans. (2) Let ellipse x2 y2 1 If circle intersect at 4 points then a2 b2 sum of x coor = 0 (0,5) tangent x ye 1 Points (17,289), (–2,4), (13,169),(–28,784) b b directrix is y 1 – ba2,be a2,be b 4 sum of perpendicular distances 130,0 289 1 4 1 169 1 784 1 4 4 4 4 b 5 = 1247 e 88. Ans. (4) and b 10 e 2 2 A 2 A 2 A 2 B x y z 33 500 2a2 100 = (Area of PQR)2 b a2 L.R = iˆ ˆj kˆ 2 81 27 3 1 1 85. Ans. (2) 1 1 1 16 2 2 2 1 4 Determinant value of matrix = 1 – wc – aw + w2ac = 0 9 =2 (1 – aw) (1 – wc) = 0 a 1 w4 b and c each have 4 and 4 89. Ans. (4) w np = 2 options. npq = 1 p = q = 1 ,n 4 2 if c 1 w4 and a w4 w Px 1 4C0 1 4 4C1 1 4 1 1 4 11 16 16 16 a have 3 and b have 4 options. 2 2 Total matrices = 4 × 4 + 3 × 4 = 28 90. Ans. (3) 4x3 + 4y3 = xy(xy + 16) 86. Ans. (3) 4x3 + 4y3 – x2y2 – 16xy = 0 (4x – y2) (x2 – 4y) = 0 Mean of i = (mean of yi) + k it is combined equation of two parabola 55 = .48 + k ...(i) given tangent is common tangent of parabola y2 = 4x and x2 = 4y standard deviation of given tangent is x + y + 1 = 0 ==1 i = (standard deviation of yi) 15 = .12 ...(ii) = 1.25 and k = –5 HS-12/12 1001CT103516016
Search
Read the Text Version
- 1 - 13
Pages: