Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore 8- Question Report (8)

8- Question Report (8)

Published by Willington Island, 2021-09-27 06:28:31

Description: Question Report (8)

Search

Read the Text Version

ENGLISH Form Number : Paper Code : 1001CT103516016 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE PHASE-III to VII (SCORE-I) Test Type : PART TEST Test Pattern : JEE-Main TEST DATE : 05 - 03 - 2017 PAPER – 2 Important Instructions Do not open this Test Booklet until you are asked to do so. 1. Immediately fill in the form number on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited. 2. The candidates should not write their Form Number anywhere else (except in the specified space) on the Test Booklet/Answer Sheet. 3. The test is of 3 hours duration. 4. The Test Booklet consists of 90 questions. The maximum marks are 360. 5. There are three parts in the question paper A,B,C consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response. 6. One Fourth mark will be deducted for indicated incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the Answer Sheet. 7. Use Blue/Black Ball Point Pen only for writting particulars/marking responses on Side–1 and Side–2 of the Answer Sheet. Use of pencil is strictly prohibited. 8. No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone any electronic device etc, except the Identity Card inside the examination hall/room. 9. Rough work is to be done on the space provided for this purpose in the Test Booklet only. 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/Hall. However, the candidate are allowed to take away this Test Booklet with them. 11. Do not fold or make any stray marks on the Answer Sheet. Your Target is to secure Good Rank in JEE (Main) 2017 Corporate Office :  CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 +91-744-5156100 [email protected] www.allen.ac.in

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 HAVE CONTROL  HAVE PATIENCE  HAVE CONFIDENCE  100% SUCCESS BEWARE OF NEGATIVE MARKING PART A - PHYSICS 1. Switch B can rest at either 1 or 2 as well as 4. Consider the mass-spectrometer as shown switch A can rest at either 3 or 4 then in figure. The electric field between plates output will be :-  is E V/m, and the magnetic field in both the 1 B2 Output velocity selector and in the deflection chamber has magnitude B. Find the radius 3 A4 'r' for a singly charged ion of mass 'm' in the deflection chamber :- (1) A.B (2) A.B + A . B B B (3) A . B + B. A (4) A  B v E + 2. If lateral magnification is –2 for virtual e object for a spherical mirror then :- (1) Convex mirror, Real image mE mE2 mE mE (2) Convex mirror, Virtual image (1) eB (2) (3) eB2 (4) Be2 (3) Concave mirror, Real image eB (4) Concave mirror, Virtual image 5. Consider telecommunication through 3. A meter scale of mass m, Young modulus Y optical fibres. Which of the following and cross section area A is hanged statements is NOT true ? vertically from ceiling at zero mark. Then (1) Optical fibres can be of graded separation between 30 cm and 70 cm mark refractive index mg (2) Optical fibres are subjected to will be :- ( AY is dimensionless) :- electromagnetic interference from outside mg mg (1) 30 AY cm+40cm (2) 20 AY cm + 40cm (3) Optical fibres have extremely low transmission loss mg mg (4) Optical fibres may have homogeneous (3) 50 cm+ 40 cm (4) 40 cm + 40cm core with a suitable cladding AY AY SPACE FOR ROUGH WORK 1001CT103516016 E-1/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 6. In Young's double-slit experiment, both 8. Graph A-B is an adiabatic curve. Choose slits are illuminated by a laser beam and the correct statement :- the interference pattern was observed on a screen. If the viewing screen is moved A farther from the slit, what happens to the C interference pattern ? (1) The pattern gets brighter. (2) The pattern gets brighter and closer B together. (3) The pattern gets less bright and farther (1) Process AC and BC, both are apart. exothermic (4) There is no change in the pattern. (2) Process AC and BC, both are 7. A standing wave is established in single endothermic loop. At t = 0, K.E. of string is zero. Choose (3) Process AC is endothermic, BC is the correct option :- exothermic CB string at t = 0 (4) Process AC is exothermic, BC is A endothermic 9. Maximum charge on capacitor after switch x x 2x is closed :- (1) All particles between A and C are L +CE –CE loosing energy at this instant. C (2) Only A is loosing energy among all t=0 2E particles from A to B (1) 2CE (2) 4CE (3) All particles between B and C are (3) 3CE (4) None of these loosing energy at this instant (4) C is loosing energy at this instant. SPACE FOR ROUGH WORK E-2/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 10. Unpolarized light of intensity I scattered 13. Circular region of radius R has uniform from point A. Intensity of light perceive by  magnetic field B = B0 + B0t kˆ . At t = 0 given observer is :- acceleration of charged particle :- IA m, +q  + y r y x Rx B (1) I (2) I cos2  2 (3) I  I sin2  (4) I  I cos2  (1) qB0R2 (2) qB0R (3) qB0R3 (4) qB0R2 22 22 2mr 2mr 2mr2 mr 11. Equation of light wave, normally incident 14. In L–C–R circuit V, VR, VL, VC are voltage on a surface is of source, resistance, inductance and capacitor at any instant then choose the  correct relation :- VC B = (100 nT) sin (2(1015t – (3 × 10–7)x) + 6 ). VR VL Find intensity of light on that surface :- (1) 1.2 W/m2 (2) 1.6 W/m2 (3) 0.8 W/m2 (4) 0.9 W/m2 12. For amplitude modulated wave broadcast ~ V which of wave are suitable Wave (A) Am > AC m > C (1) V   VR2  VL  VC 2 m > C Wave (B) Am < AC m < C (2) V   VL2  VR  VC 2 m < C  (3) V2  VC2  VR  VL 2 Wave (C) Am > AC (3) C (4) V + VR + VL + VC = 0 Wave (D) Am < AC (1) A (2) B (4) D SPACE FOR ROUGH WORK 1001CT103516016 E-3/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 15. Assuming newton's law of cooling to be 17. Two long parallel glass plates has water valid, body at temperature 50° C in between them. Contact angle between surrounding of temperature 20°C, achieve glass and water is zero. If separation steady state with help of 100 W heater. If between the plates is 'd' (d is small). Surface tension of water is 'T'. Atmospheric same body has temperature 35°C in same pressure = P0. Then pressure inside water surrounding, then power of heater just below the air water interface is :- required to maintain steady state :- (1) 70 W (2) 50 W (3) 100 W (4) 35 W 16. A vertical triangular plate ABC is placed inside water with side BC parallel to water surface as shown. The force on one surface of plate by water is (density of water is  and atmospheric pressure P0) :- d Ah (1) P0  2T (2) P0  2T a d Bb d /2 (3) P0  8T (4) P0  2T d d C 18. In RLC circuit as shown in the diagram, hg 1 the maximum value of charge on capacitor (1) P0  2 ab is :- (2) P0  hg 1 ab  a2b g R LC 3 2 (3) P0  g  h  a 1 ab ~ 2 v0sint (4) 0 (1) v0 (2) v0R (3) v0 (4) v0R z z2 z z2 SPACE FOR ROUGH WORK E-4/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 19. On heating a semiconductor :- 21. Final image of object forms on object. If (1) mobility decrease, resistivity decreases focal length of lens is 30 cm, then radius of (2) mobility decreases, resistivity increases curvature of mirror is :- (3) mobility increases, resistivity increases (4) mobility increases, resistivity decreases \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 20. A scientist claims to have a perfect Object technique in which he can spontaneously convert an electron completely into energy 60cm 30cm in the laboratory without any other material required. What is the conclusion (1) 30 cm about this claim from our current (2) 60 cm understanding of physics? (3) 15 cm (1) This is possible because Einstein's equation says that mass and energy are (4) This situation is not possible equivalent... it is just very difficult to 22. Main scale division of vernier calliper is achieve with electrons 1mm and vernier scale division are in A.P.; (2) This is possible and it is done all the 1st division is 0.95 mm ; 2nd division is 0.9 mm and so on. time in the high-energy physics labs. (3) The scientist is almost correct... except When an object is placed between jaws of vernier calliper, zero of vernier lies that in converting the electron to between 3.1 cm and 3.2 cm and 4th division energy, an electron's anti-particle is of vernier coincide with main scale produced in the process as well division. Reading of vernier is :- (4) This is not possible because charge (1) 3.12 cm (2) 3.14 cm conservation would be violated. (3) 3.15 cm (4) 3.18 cm SPACE FOR ROUGH WORK 1001CT103516016 E-5/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 23. In optical bench experiment index error is 25. Difference between k and min become +1 cm and –1 cm, between object needle and twice if accelerating potential changes lens, lens and image needle respectively. Observed values of u and v are 9 cm and from 3100 volt to 12400 volt. Find k 17 cm. Focal length of lens is :- (Given hc = 12400 eVÅ) :- (1) 6.15 cm (2) 5.54 cm (3) 5.88 cm (4) 6.25 cm E 24. Two identical capacitors are arranged as shown. Work function of plate 1 is  eV.  min x k  The emf of battery is . If energy of e incident photon is h then maximum kinetic energy of e– reaching plate 2 is :- (1) 6 Å (2) 5Å h (3) 7 Å (4) 5.5 Å 12 34 26. Two damped spring-mass oscillating systems  have identical spring constants and decay times. However, system A's mass mA is twice system B's mass mB. How do their damping constants, b, compare ? (1) bA = 4bB (2) bA = 2bB (1) hv – /2 (2) h –  (3) bA = bB (4) bA = 1 bB (3) h – 2 (4) h 2 SPACE FOR ROUGH WORK E-6/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 27. You have two containers of equal volume. 29. What are the directions of the magnetic field One is full of helium gas. The other holds an between and outside a pair of two parallel equal mass of nitrogen gas. Both gases have large sheets carrying currents in the same the same pressure. How does the directions, as illustrated in Figure (from the temperature of the helium compare to the side shown)? temperature of the nitrogen ? (1) Thelium > Tnitrogen (2) Thelium = Tnitrogen (3) Thelium < Tnitrogen (4) can't be said K K 28. Water is pumped through the hose shown below, from a lower level to an upper level. Compared to the water at point 1, the water at point 2 :- (1) towards us between the plates and away from us above and below the plates. (2) toward us above the plates and away from us below plates and zero between plates. (3) towards us above and below the plates and zero between the plates (4) towards us between the plates and zero above and below the plates. 30. For a certain hypothetical one electron atom the wavelength (in Å) for the spectral lines for transition from n = p to n = 1 are given by  1500p2 (where p > 1), then the  p2  1 (1) has greater speed and greater pressure (2) has greater speed and less pressure ionization potential of this element must (3) has less speed and less pressure be :- (Take hc = 12420 eV-Å) (4) has less speed and greater pressure (1) 0.95 V (2) 2.05 V (3) 8.28 V (4) 13.6 V SPACE FOR ROUGH WORK 1001CT103516016 E-7/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 PART B - CHEMISTRY 31. Which of the following is a Gel 35. Which of the following is correct about (1) Gem stone (2) Smoke collision frequency (Z11) of an ideal gas (3) Milk (4) Cheese participating in isobaric process. 32. Which of the following is correct for two (1) On increasing volume Z11 will remain dimensional closed pack crystal : constant (1) The packing fraction of square packing (2) On increasing volume four times Z11 is more than hexgonal packing will becomes 4 times of its initial value (2) The void fraction of hexagonal packing (3) On increasing volume four times Z11 is more than square packing will becomes 8 times of its initial value (3) In square packing each atom is (4) On increasing volume four times Z11 surrouded by six trigonal planar voids 1 (4) In hexagonal close packing each atom will becomes times of its initial value 8 is surrounded by six trigonal planar voids 36. The vanderwaal constants for HCl gas are 122 gm a = 3.6 atm. lit2 mol–2 and b = 40 ml mol–1. 15 33. of benzoic acid (C6H5COOH) The critical temperature of gas is : dissolved in 25 gm of benzene shown a [R = 0.08 atm. lit. K–1mol–1] depression in freezing point equal to 9.8 K. (1) 666.66 K (2) 333.33 K Molal depression constant for benzene is (3) 999.99 K (4) 1200 K 4.9 KKg mol–1. The % of benzoic acid in 37. At a certain temperature the vapour dimeric form is ? pressure of pure water is 76 mm of Hg. (1) 66.7 % (2) 33.3 % When 1 mol of Na2SO4 is dissolved in (3) 50 % (4) 60 % 36 ml of water the vapour pressure of 34. Consider a Daniell cell operating under non solution becomes 38 mm of Hg. What is the standard state conditions suppose that the percentage dissociation of Na2SO4 in the solution : cell's reaction is multiplied by 2. Which of the following will double of its initial value. (1) 100 % (2) 50 % (1) Ecell (2) Eºcell (3) 25 % (4) 75 % (3) Q (4) ln Q SPACE FOR ROUGH WORK E-8/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 38. Eo  0.9 V 40. Which of the following is correct regarding Hg2 |Hg22 Bohr's theory : Eo  0.8 V (1) On doubling the mass of elelctron Hg22 |Hg (hypothetically) moving in stationary orbit its velocity increases The value of rGº at 25ºC is : Hg22+  Hg2+ + Hg() (2) On doubling the mass of elelctron (hypothetically) moving in stationary (1) –67.55 kJ / mol (2) +19.30 kJ / mol orbit its velocity decreases (3) –144.75 kJ / mol (4) +9.65 kJ / mol 39. For a single electron system following (3) On doubling the mass of elelctron graph is drawn for radial distribution (hypothetically) moving in stationary function (RDF) versus radial distance. The orbit its kinetic energy will increases correct statement regarding the graph is : (4) On doubling the mass of elelctron (hypothetically) moving in stationary (RDF) orbit its kinetic energy will decreasese Radial distance 41. 2BF3 + 6 NaH 450K X(g) + 6Y Which of the following statement is INCORRECT for X :- (1) The graph must be representing 1s orbital (1) 'X' is readily hydrolysed by water to give (2) The graph must be representing 2p orbital weak mono basic acid (3) The graph must be representing 3d orbital (4) The graph must be representing an (2) Back bonding is present in 'X' (3) In 'X' maximum number of atoms in one orbital different from 2s plane is '6' (4) 'X' burn with O2 and gives sesqui oxide SPACE FOR ROUGH WORK 1001CT103516016 E-9/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 42. Which of the following order is CORRECT :- 47. Which of the following ion is diamagnetic :- (1) Pa+4 (2) Yb+3 (3) U+3 (4) Ce+4 (1) B(OH)3 > B(OMe)3  Boiling point 48. Which of the following method is used for (2) NaOH > NaNH2 > NaH  Basic strength the removal of only temporary hardness :- (3) Cl2 > F2 > Br2 > I2  Bond energy (1) Treatment with washing soda (2) Clark's method (4) Cl3– > Br3– > I3–  Stability (3) Calgon's method 43. Which of the following match is CORRECT :- 49. (4) Ion-exchange method Which of the following ligand is not (1) Moissan process  Preparation method bidentate :- of Cl2 (1) 8-hydroxyquinolinato ion (2) Solvay process  Preparation method of (2) N, N-diethyldithiocarbamato ion (3) Hydrazine caustic soda (4) Salicylate ion (3) Spring reaction  Preparation method 50. Which of the following alloy contains Ni of Hypo metal :- (2) Gun metal (4) Ostwald's process  Preparation method (1) Monel metal (4) 14 carat gold (3) Solder of NH3 51. Al2O3 / (A) 44. Which of the following element is metalloid :- CH3–Cl / AlCl3 (1) Bi (2) Po (3) C (4) Sb 45. Which of the following metal oxide is not amphoteric :- (1) Fe2O3 (2) Pb3O4 (3) Mn2O3 (4) Sb2O3 Major product of above reaction is : 46. Which of the following is INCORRECT :- (1) (2) (3) (4) (1) ICl2–  Trigonal bipyramidal electron geometry (2) NH3  Tetrahedral electron geometry (3) SnF4  Tetrahedral electron geometry (4) PBr5(g)  Trigonal bipyramidal electron geometry SPACE FOR ROUGH WORK E-10/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 52. Select correct statement among following 54. Major product obtained on reaction (1) The linkage present in maltose is between chlorobenzene & chloral taken -C1-C4 linkage in 2 : 1 ratio in acidic condition is : (2) Maltose is a non-reducing sugar (1) Analgesic (2) Antiseptic (3) Maltose and sucrose both give similar (3) Insecticide (4) Anti-pyretic product on hydrolysis F Cl Br I (4) Maltose is a sweet polysaccharide : 55. NH2 +– NO2 PhN2Cl (P) 53. (A) NO2 NO2 NO2 (Q) (R) (S) Coloured compound (Major product) The coloured major product formed in The decreasing order of reactivity of above above reaction is : +– NH2 N=N compound towards NaOMe is : (1) (1) P > Q > R > S (2) S > R > Q > P (3) Q > P > R > S (4) Q > R > S > P NH2 56. Select the reaction giving correct major product : (2) NO2 NH2 N=N NH2 Br Br (3) (1) (i) Fe or Sn / HCl N=N (ii) Br2 / water Br CH3 NH–N=N (2) C2H2 (i) Red hot Fe tube (ii) Me–Cl / AlCl3 (4) (iii) Cl2 / hv Cl SPACE FOR ROUGH WORK 1001CT103516016 E-11/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 OH OMe 58. Which of the following is condensation (i) NaHCO3 co-polymer : (ii) Me–I (3) (1) Styrene (2) PVC : (3) Nylon-6,6 (4) Nylon-6 NH2 OH 59. Which of the following compound evolve (4) (i) (NaNO2 + HCl) / 0-5ºC 2 mole of CO2 on gentle heating : (ii) H3PO2 NH2 Aq. HNO2 (A) O COOH COOH COOH COOH Major (1) (2) O product 57. Ph COOH Major product of above reaction is : COOH COOH OH (3) (4) COOH O O (1) Ph COOH COOH OH 60. Select the correct statement : (2) Ph COOH (1) DNA do not transfer genetic character from one generation to next (3) Ph COOH (2) Deficiency of vitamine-D, causes OH reckets (3) Vitamine-D is water soluble vitamine OH (4) Valine is a non-essential amino acids (4) Ph COOH SPACE FOR ROUGH WORK E-12/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 PART C - MATHEMATICS 61. Let  and  be integers satisfying 0 <  < . 65. For positive integer n, 10n–2 > 91n, then Let P(), Q be the reflection of P in the complete set of values of n is line y = x, R be the reflection of Q in the y-axis, S be the reflection of R in the x-axis (1) {1, 2, 3, 4} (2) {6, 7, 8, 9,.....} and T be the reflection of S in the y-axis. (3) {5, 6, 7, 8,.....} (4) {7, 8, 9, 10,.....} If the area of convex pentagon PQRST is 187 sq. units, then value of 2 is- 66. If  is acute angle between planes P1 and (1) 20 (2) 34 (3) 27 (4) 15 P2 where combined equation of planes P1 and 62. Let  and  are the roots of x2  2x  1  0 , P2 is 2x2 – 6y2 – 12z2 + 18yz + 2zx + xy = 0, then value of cos is - then the value of 50 + 50 is - 16 9 (1) 21 (2) 17 (1) 0 (2) 2 (3) 2 (4) 1 63. Inradius of a circle which is inscribed in a 17  (3) 6 (4) 15 isosceles triangle, one of whose angle is , 2 is 1, then area of triangle is (in sq. units) - 67. Let P = [aij] be 4 × 4 matrix. If |P| = –2, (1) 3  2 2 (2) 4  2 2 then value of |adj(3P)|, is (where |A| denotes determinant value of matrix A) (3) 4  4 2 (4) 6  4 2 (1) 312.23 (2) –39.23 64. From the top of a light house 30 meter (3) –34.23 (4) None of these high with its base at the sea-level, the angle of depression of a boat is 15°. The distance 68. Consider conic C : 25(x – 1)2 + 25(y + 1)2 of the boat from the foot of the light = (3x – 4y)2. If curve E is locus of point of house is- intersection of perpendicular tangents to (1)  2  3  3 1 the conic C, then minimum distance 30  2  3  (2) 30  3  1  between curve E and point (2,–1) is-  3 1  2 3 (1) 1 (2) 2 (3) 30  3  1  30  2 3  (4) (3) 4 (4) 3 SPACE FOR ROUGH WORK 1001CT103516016 E-13/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 69. True statement A and true statement B are 73. If |z – 3 – 4i| = 4, where i  1 , then two independent events of an experiment. maximum possible value of |z| is Let P(A) = 0.3, P(A  B) = 0.8, then P(A  B) (1) 9 (2) 7 (3) 5 (4) 6 is (where P(X) denotes probability that 74. Consider system of equations in x, y and z statement X is true statement) 12x + by + cz = 0 32 6 (1) 35 (2) 35 ax + 24y + cz = 0 3 (4) data is insufficient ax + by + 36z = 0. (3) 35 (where a, b, c are real numbers, a  12, b  24, c  36). 70. If n Cr2  36, nCr1  84 and n Cr  126 , If system of equation has solution and z  0, then value of nC2r is - then value of 123 is -  a 12 b  24 c  36 (1) 9 (2) 36 1 11 1 (3) 66 (4) 126 (1)  (2)  (3)  (4)  3 12 6 4   3kˆ ,|U |  71. Let V  2ˆi  ˆj  kˆ , W  iˆ  2 . If U is 75. The number of arrangements of the letters a vector in x-y plane, then greatest value of the word PALANHAR in which no two     2 vowels are together and exactly two vowels are at odd places, is - of [U V W] is - (1) 232 (2) 340 (3) 236 (4) 312 (1) 3600 (2) 1440 (3) 2880 (4) 720 72. In ABC, AB = AC. Let P1 denote the 76. Let A = {(x,y) : y = mx + 1} incircle of ABC. Circle P2 is tangent to B = {(x,y) : x2 + 4y2 = 1} sides AB,AC and to circle P1. If radius of C = {() : ()  A and ()  B and   0}. circles P1 and P2 are 2 and 1 respectively, If set C is singleton set then sum of all then area of ABC is- possible values of m is (1) 8 8 (2) 4 2 (1) 0 (2) 3 2 (3) 16 8 (4) 8 2 (3)  3 (4) none of these 2 SPACE FOR ROUGH WORK E-14/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 77. The contrapositive of statement 'If Jaipur is 80. Let p, q, r are three real numbers satisfying capital of Rajasthan, then Jaipur is in 2 p q  India' is (1) Jaipur is not in India or Jaipur is not [p q r] 3 q p  r   [5 b c] , then  12 r q  3r capital of Rajasthan. minimum value of (b + c) is - (2) If Jaipur is not in India, then Jaipur is 25 25 not capital of Rajasthan (1) 157 (2) 49 (3) Jaipur is not in India and Jaipur is not 25  271 25  589 capital of Rajasthan. (3) (49)2 (4) (157)2 (4) If Jaipur is not capital of Rajasthan, then Jaipur is not in India. 81. Let two circles C1 and C2 of radii 2 and 4 78. The line L given by x 2 y 1 z 1 be tangent at point P and tangent to a  common straight line (not passing through 2 bc passes through the point (1, 2, 3). Another P) at points Q and R, then value of line K is parallel to line L and has the PQ2 + QR2 + RP2 is- equation x  2  y  3  z  4 . Then the (1) 48 (2) 56 (3) 64 (4) 72 a2d 82. Let I be the set of positve integers. R is distance between line L and K is a relation on the set I given by (1) 297 (2) 243 R = {(a,b)  I × I| log2  a  is a non-negative 3 3  b  272 291 integer}, then R is (3) (4) 9 9 (1) neither symmetric not transitive but reflexive. 79. 4 (1009  2n)4  4 (1)n is (2) reflexive, transitive but not symmetric n0  n   (3) neither reflexive non transitive but (1) 512 (2) 272 symmetric (4) equivalence relation. (3) 384 (4) 264 SPACE FOR ROUGH WORK 1001CT103516016 E-15/17

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 83. Two numbers are selected randomly from the 87. Let P be the parabola in the plane set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} without determined by the equation y = x2. Suppose replacement one by one. The probability that a circle C in the plane intersects P at four minimum of the two numbers is divisible by distinct points. If three of these points are 3 or maximum of the two numbers is (17,289), (–2,4), (13,169), then sum of the divisible by 4, is - perpendicular distances from the directrix of P to all four of the intersection points is- 23 37 16 19 (1) 45 (2) 45 (3) 45 (4) 45 (1) 1177 (2) 1247 (3) 1369 (4) 1421 84. If lines 3x + 2y = 10 and –3x + 2y = 10 are 88. CBonsAidxeiˆ rPA(1yˆ,j2,–A3z)k,ˆQ. (–If2,1A,x–,4)A, Ry (a3n,4d,–2A)zanbde tangents at the extremities of latus rectum of an ellipse whose centre is origin, then the length of latus rectum of ellipse is - projections of area of triangle PQR on the 16 100 yz, zx and xy planes respectively, then value (1) 3 (2) 3 5 (3) 4 5 (4) 27 of |B|2 is - 85. Let a, b, c are non real numbers satisfying (1) 18 (2) 9 9 (3) 24 (4) 2 equation x5 = 1 and S be the set of all non-invertible matrices of the form 89. In the mean and the variance of a binomial 1 a b i2 variate X are 2 and 1 respectively, then the 1 probability that X takes a value greater  w c  , we 5 . Then the number of than one is equal to -   w2 w 1 4 15 (1) 16 (2) 16 distinct matrices in the set S is - (1) 4 (2) 28 (3) 24 (4) 32 5 11 86. Let y1, y2, y3,..... yn be n observations. (3) 16 (4) 16 Let wi = yi + k  i = 1, 2, 3....., n, where , k are constants. If the mean of yi's is 48 and 90. If line x + y +  = 0 touches curve their standard deviation is 12, then mean of 4x3 + 4y3 = xy(xy + 16) at points (x1, y1) and wi's is 55 and standard deviation of wi's is (x2, y2), x1  x2, then value of  is (R) 15, then values of  and k should be (1)  = 2.5, k = 5 (2)  = 1.25, k = 5 (1) 0 3 (3) 2 (4) –1 (3)  = 1.25, k = –5 (4)  = 2.5, k = –5 (2) 2 SPACE FOR ROUGH WORK E-16/17 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 SPACE FOR ROUGH WORK SPACE FOR ROUGH WORK 1001CT103516016 E-17/17

Form Number : Paper Code : 1001CT103516016 HINDI CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE PHASE-III to VII (SCORE-I) Test Type : PART TEST Test Pattern : JEE-Main TEST DATE : 05 - 03 - 2017 PAPER – 2 Important Instructions   Do not open this Test Booklet until you are asked to do so.              1. Immediately fill in the form number on this page of the 1.   Test Booklet with Blue/Black Ball Point Pen. Use of pencil    is strictly prohibited. 2.  2. The candidates should not write their Form Number         anywhere else (except in the specified space) on the Test Booklet/Answer Sheet. 3. 3 4. 90 360 3. The test is of 3 hours duration. 4. The Test Booklet consists of 90 questions. The maximum 5.  A,B,C 30  marks are 360.  4  5. There are three parts in the question paper A,B,C consisting of Physics, Chemistry and Mathematics 6.   having 30 questions in each part of equal weightage.  Each question is allotted 4 (four) marks for correct    response. 7.  6. One Fourth mark will be deducted for indicated incorrect     response of each question. No deduction from the total      score will be made if no response is indicated for an item in the Answer Sheet. 8.   7. Use Blue/Black Ball Point Pen only for writting  particulars/marking responses on Side–1 and Side 2 of  the Answer Sheet. Use of pencil is strictly prohibited. 9.  8. No candidate is allowed to carry any textual material, 10.  printed or written, bits of papers, mobile phone any   electronic device etc, except the Identity Card inside the  examination hall/room. 11.              9. Rough work is to be done on the space provided for this purpose in the Test Booklet only. 10. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Room/ Hall. However, the candidate are allowed to take away this Test Booklet with them. 11. Do not fold or make any stray marks on the Answer Sheet. Your Target is to secure Good Rank in JEE (Main) 2017 Corporate Office :  CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 +91-744-5156100 [email protected] www.allen.ac.in

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 HAVE CONTROL  HAVE PATIENCE  HAVE CONFIDENCE  100% SUCCESS BEWARE OF NEGATIVE MARKING PART A - PHYSICS 1. Switch B can rest at either 1 or 2 as well as 1. B 12  switch A can rest at either 3 or 4 then A34  output will be :-  1 B2 Output 1 B2 Output 3 A4 3 A4 (1) A.B (2) A.B + A . B (1) A.B (2) A.B + A . B (3) A . B + B. A (4) A  B (3) A . B + B. A (4) A  B 2. If lateral magnification is –2 for virtual 2.          –2 object for a spherical mirror then :- (1) , (1) Convex mirror, Real image (2) , (2) Convex mirror, Virtual image (3) , (3) Concave mirror, Real image (4) , (4) Concave mirror, Virtual image 3. A meter scale of mass m, Young modulus Y 3. m Y and cross section area A is hanged A vertically from ceiling at zero mark. Then 30cm 70 cm  separation between 30 cm and 70 cm mark mg (mAYg):- will be :- ( AY is dimensionless) :- mg mg mg mg (1) 30 AY cm+40cm (2) 20 AY cm + 40cm (1) 30 AY cm+40cm (2) 20 AY cm + 40cm mg mg mg mg (3) 50 AY cm+ 40 cm (4) 40 AY cm + 40cm (3) 50 AY cm+ 40 cm (4) 40 AY cm + 40cm  1001CT103516016 H-1/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 4. Consider the mass-spectrometer as shown 4.  in figure. The electric field between plates   EV/m  is E V/m, and the magnetic field in both the      B   velocity selector and in the deflection chamber has magnitude B. Find the radius 'm'   'r' for a singly charged ion of mass 'm' in r the deflection chamber :- v B v B + B + B e E e E mE mE2 mE mE2 (1) (2) (1) (2) eB eB eB eB mE mE mE mE (3) eB2 (4) Be2 (3) eB2 (4) Be2 5. Consider telecommunication through 5.  optical fibres. Which of the following      statements is NOT true ? (1)  (1) Optical fibres can be of graded refractive index (2)        (2) Optical fibres are subjected to  electromagnetic interference from outside (3)  (3) Optical fibres have extremely low (4)       transmission loss  (4) Optical fibres may have homogeneous core with a suitable cladding  H-2/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 6. In Young's double-slit experiment, both 6.  slits are illuminated by a laser beam and  the interference pattern was observed on  a screen. If the viewing screen is moved  farther from the slit, what happens to the interference pattern ? (1)  (1) The pattern gets brighter. (2)  (2) The pattern gets brighter and closer  together. (3)         (3) The pattern gets less bright and farther  apart. (4)  (4) There is no change in the pattern. 7. A standing wave is established in single 7.  loop. At t = 0, K.E. of string is zero. Choose t= 0  the correct option :-  CB CB string at t = 0 A string at t = 0 xx A 2x 2x xx (1) All particles between A and C are (1) A C  loosing energy at this instant.  (2) Only A is loosing energy among all (2) A B A particles from A to B  (3) All particles between B and C are (3) B C  loosing energy at this instant  (4) C is loosing energy at this instant. (4) C    1001CT103516016 H-3/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 8. Graph A-B is an adiabatic curve. Choose 8.  A-B      the correct statement :-  A A C C B B (1) Process AC and BC, both are (1) AC BC  exothermic (2) Process AC and BC, both are (2) AC BC   endothermic (3) AC  BC (3) Process AC is endothermic, BC is exothermic (4) AC   BC (4) Process AC is exothermic, BC is  endothermic 9. Maximum charge on capacitor after switch 9.  is closed :-  L +CE –CE L +CE –CE C C t=0 2E 2E t=0 (1) 2CE (2) 4CE (3) 3CE (2) 4CE (1) 2CE (4) None of these (3) 3CE (4)   H-4/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 10. Unpolarized light of intensity I scattered 10. IA from point A. Intensity of light perceive by  given observer is :-  IA IA   (1) I (2) I cos2  (1) I (2) I cos2  2 2 (3) I  I sin2  (4) I  I cos2  (3) I  I sin2  (4) I I cos2  22 22 22  22 11. Equation of light wave, normally incident 11.  on a surface is   B = (100 nT) sin (2(1015t – (3 × 10–7)x) + ). B = (100 nT) sin (2(1015t – (3 × 10–7)x) + ). 6 6 Find intensity of light on that surface :-  (1) 1.2 W/m2 (2) 1.6 W/m2 (1) 1.2 W/m2 (2) 1.6 W/m2 (3) 0.8 W/m2 (4) 0.9 W/m2 (3) 0.8 W/m2 (4) 0.9 W/m2 12. For amplitude modulated wave broadcast 12.  which of wave are suitable  Wave (A) Am > AC m > C (A) Am > AC m > C m > C  (B) Am < AC m > C Wave (B) Am < AC m < C  (C) m < C  (D) Am > AC m < C Wave (C) Am > AC (3) C (1) A Am < AC m < C Wave (D) Am < AC (2) B (3) C (1) A (2) B (4) D (4) D  1001CT103516016 H-5/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 13. Circular region of radius R has uniform 13.   R       magnetic field B = B0 + B0t kˆ . At t = 0  B=B0 + B0t kˆ t=0 acceleration of charged particle :-  y m, +q y m, +q x + x + y y r r Rx Rx B B (1) qB0R2 (2) qB0R (3) qB0R3 (4) qB0R2 (1) qB0R2 (2) qB0R (3) qB0R3 (4) qB0R2 2mr 2mr 2mr2 mr 2mr 2mr 2mr2 mr 14. In L–C–R circuit V, VR, VL, VC are voltage 14. L–C–R V,VR, VL, VC  of source, resistance, inductance and  capacitor at any instant then choose the correct relation :-  VR VL VC VR VL VC ~ ~ V V (1) V   VR2  VL  VC 2 (1) V   VR2  VL  VC 2 (2) V   VL2  VR  VC 2 (2) V   VL2  VR  VC 2  (3) V2  VC2  VR  VL 2  (3) V2  VC2  VR  VL 2 (4) V + VR + VL + VC = 0 (4) V + VR + VL + VC = 0  H-6/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 15. Assuming newton's law of cooling to be 15. 20°C 50°C  valid, body at temperature 50° C in   100 W      surrounding of temperature 20°C, achieve       steady state with help of 100 W heater. If 35°C  same body has temperature 35°C in same         surrounding, then power of heater required to maintain steady state :-  (1) 70 W (2) 50 W (3) 100 W (4) 35 W (1) 70 W (2) 50 W (3) 100 W (4) 35 W 16. A vertical triangular plate ABC is placed 16. ABC inside water with side BC parallel to water       BC surface as shown. The force on one surface            of plate by water is (density of water is           and atmospheric pressure P0) :- P0):- Ah Ah a a Bb C Bb C (1) P0  hg 1 ab P0 hg 1 2 2 (1)  ab (2) P0  hg 1 ab  a2b g (2) P0  hg 1 ab  a2b g 3 3 2 2 (3) P0  g  h  a 1 ab (3) P0  g h  a  1 ab 2 2 (4) 0 (4) 0  1001CT103516016 H-7/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 17. Two long parallel glass plates has water 17.  between them. Contact angle between glass and water is zero. If separation  between the plates is 'd' (d is small). Surface 'd' 'T'  tension of water is 'T'. Atmospheric P0   pressure = P0. Then pressure inside water just below the air water interface is :- dd (1) P0  2T (2) P0  2T (1) P0  2T (2) P0  2T d d d / 2 d /2 (3) P0  8T (4) P0  2T (3) P0  8T (4) P0  2T d d d d 18. In RLC circuit as shown in the diagram, 18. RLC  the maximum value of charge on capacitor  is :- R LC R LC ~ ~ v0sint v0sint (1) v0 (2) v0R (3) v0 (4) v0R (1) v0 (2) v0R (3) v0 (4) v0R z z2 z z2 z z2 z z2  H-8/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 19. On heating a semiconductor :- 19. :- (1) mobility decrease, resistivity decreases (1)  (2) mobility decreases, resistivity increases (2)  (3) mobility increases, resistivity increases (3)  (4) mobility increases, resistivity decreases (4)  20. A scientist claims to have a perfect 20.       technique in which he can spontaneously  convert an electron completely into energy  in the laboratory without any other material required. What is the conclusion         about this claim from our current            understanding of physics?  (1) This is possible because Einstein's (1)        equation says that mass and energy are          equivalent... it is just very difficult to  achieve with electrons (2)   (2) This is possible and it is done all the  time in the high-energy physics labs. (3) The scientist is almost correct... except that in converting the electron to (3)  energy, an electron's anti-particle is         produced in the process as well  (4) This is not possible because charge conservation would be violated. (4)    1001CT103516016 H-9/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 21. Final image of object forms on object. If 21.  focal length of lens is 30 cm, then radius of 30cm curvature of mirror is :-  Object \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Object \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 60cm 30cm 60cm 30cm (1) 30 cm (1) 30 cm (2) 60 cm (2) 60 cm (3) 15 cm (3) 15 cm (4) This situation is not possible (4)  22. Main scale division of vernier calliper is 22.          1mm and vernier scale division are in A.P.; 1mm  1st division is 0.95 mm ; 2nd division is 0.95mm; 0.9mm 0.9 mm and so on.           When an object is placed between jaws of 3.1cm3.2 cm  vernier calliper, zero of vernier lies between 3.1 cm and 3.2 cm and 4th division of vernier coincide with main scale          division. Reading of vernier is :-  (1) 3.12 cm (2) 3.14 cm  (3) 3.15 cm (4) 3.18 cm (1) 3.12 cm (2) 3.14 cm (3) 3.15 cm (4) 3.18 cm  H-10/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 23. In optical bench experiment index error is 23.  +1 cm and –1 cm, between object needle and       +1cm lens, lens and image needle respectively. –1 cm u v 9cm Observed values of u and v are 9 cm and  17 cm :- 17 cm. Focal length of lens is :- (1) 6.15 cm (2) 5.54 cm (1) 6.15 cm (2) 5.54 cm (3) 5.88 cm (4) 6.25 cm (3) 5.88 cm (4) 6.25 cm 24. Two identical capacitors are arranged as 24.     shown. Work function of plate 1 is  eV. 1eV     2e–   The emf of battery is . If energy of e e h incident photon is h then maximum :- kinetic energy of e– reaching plate 2 is :- h 34 h 34 12 12   (1) hv – /2 (2) h –  (1) hv – /2 (2) h –  (3) h – 2 (4) h (3) h – 2 (4) h  1001CT103516016 H-11/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 25. Difference between k and min become 25.  k min    twice if accelerating potential changes      31 00volt  from 3100 volt to 12400 volt. Find k 12400 volt k  (Given hc = 12400 eVÅ) :- (hc = 12400 eVÅ) EE min x k  min x  k (1) 6 Å (2) 5Å (1) 6 Å (2) 5Å (3) 7 Å (4) 5.5 Å (3) 7 Å (4) 5.5 Å 26. Two damped spring-mass oscillating 26.  systems have identical spring constants A and decay times. However, system A's mass mA, B mB mA is twice system B's mass mB. How do b their damping constants, b, compare ? (1) bA = 4bB (2) bA = 2bB (1) bA = 4bB (2) bA = 2bB (3) bA = bB 1 (3) bA = bB 1 (4) bA = 2 bB (4) bA = 2 bB  H-12/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 27. You have two containers of equal volume. 27.  One is full of helium gas. The other holds           an equal mass of nitrogen gas. Both gases have the same pressure. How does the        temperature of the helium compare to the  temperature of the nitrogen ? (1) Thelium > Tnitrogen (2) Thelium = Tnitrogen (1) Thelium > Tnitrogen (2) Thelium = Tnitrogen (3) Thelium < Tnitrogen (4)  (3) Thelium < Tnitrogen (4) can't be said 28. Water is pumped through the hose shown 28.   below, from a lower level to an upper level. 12 Compared to the water at point 1, the water  at point 2 :- (1) has greater speed and greater pressure (1)  (2) has greater speed and less pressure (2)  (3) has less speed and less pressure (3)  (4) has less speed and greater pressure (4)   1001CT103516016 H-13/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 29. What are the directions of the magnetic field 29.  between and outside a pair of two parallel  large sheets carrying currents in the same          directions, as illustrated in Figure (from the  side shown)? KK KK (1) towards us between the plates and away (1)  from us above and below the plates.  (2) toward us above the plates and away (2)   from us below plates and zero between  plates. (3)  (3) towards us above and below the plates  and zero between the plates (4)  (4) towards us between the plates and zero  above and below the plates. 30. For a certain hypothetical one electron 30.   n =p  atom the wavelength (in Å) for the spectral n = 1      lines for transition from n = p to n = 1 are given by  1500p2 (where p > 1), then the (Å   1500p2 p>1  p2  1 p2  1 ionization potential of this element must (hc=12420 eV-Å) be :- (Take hc = 12420 eV-Å) (1) 0.95 V (2) 2.05 V (3) 8.28 V (4) 13.6 V (1) 0.95 V (2) 2.05 V (3) 8.28 V (4) 13.6 V  H-14/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 PART B - CHEMISTRY 31. Which of the following is a Gel 31.  (1) Gem stone (2) Smoke (1)  (2)  (3) Milk (4) Cheese (3)  (4) C heese 32. Which of the following is correct for two 32.  dimensional closed pack crystal : : (1) The packing fraction of square packing (1)       is more than hexgonal packing  (2) The void fraction of hexagonal packing (2)       is more than square packing  (3) In square packing each atom is (3)        surrouded by six trigonal planar voids  (4) In hexagonal close packing each atom (4)  is surrounded by six trigonal planar voids  33. 122 gm of benzoic acid (C6H5COOH) 33. 122 gm (C6H5COOH) 25 gm 15 15 dissolved in 25 gm of benzene shown a 9.8K depression in freezing point equal to 9.8 K.  Molal depression constant for benzene is 4.9 KKg mol–1       4.9 KKg mol–1. The % of benzoic acid in %? dimeric form is ? (1) 66.7 % (2) 33.3 % (1) 66.7 % (2) 33.3 % (3) 50 % (4) 60 % (3) 50 % (4) 60 % 34. Consider a Daniell cell operating under non 34.       standard state conditions suppose that the         cell's reaction is multiplied by 2. Which of  the following will double of its initial value.  (1) Ecell (2) Eºcell (1) Ecell (2) Eºcell (3) Q (4) ln Q (3) Q (4) ln Q  1001CT103516016 H-15/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 35. Which of the following is correct about 35.  collision frequency (Z11) of an ideal gas (Z11)  participating in isobaric process.  (1) On increasing volume Z11 will remain (1) Z11  constant (2) Z11 (2) On increasing volume four times Z11 will 4  becomes 4 times of its initial value (3) Z11 (3) On increasing volume four times Z11 will 8  becomes 8 times of its initial value (4) Z11 (4) On increasing volume four times Z11 will 18  1 becomes times of its initial value 8 36. The vanderwaal constants for HCl gas are 36. HCl a=3.6atm. a = 3.6 atm. lit2 mol–2 and b = 40 ml mol–1. lit2 mol–2 b = 40 ml mol–1  The critical temperature of gas is : [R = 0.08 : [R = 0.08 atm. lit. K–1mol–1] atm. lit. K–1mol–1] (1) 666.66 K (2) 333.33 K (1) 666.66 K (2) 333.33 K (3) 999.99 K (4) 1200 K (3) 999.99 K (4) 1200 K 37. At a certain temperature the vapour 37. 76 mm pressure of pure water is 76 mm of Hg. Hg 1 Na2SO4 36 ml  38mm Hg  When 1 mol of Na2SO4 is dissolved in 36 ml of water the vapour pressure of solution becomes 38 mm of Hg. What is the Na2SO4  percentage dissociation of Na2SO4 in the (1) 100 % (2) 50 % solution : (1) 100 % (2) 50 % (3) 25 % (4) 75 % (3) 25 % (4) 75 %  H-16/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 38. Eo  0.9 V 38. Eo  0.9 V Hg2 |Hg22 Hg2 |Hg22 Eo  0.8 V Eo  0.8 V Hg22 |Hg Hg22 |Hg The value of rGº at 25ºC is : 25ºC  rGº :  Hg22+  Hg2+ + Hg() Hg22+  Hg2+ + Hg() (1) –67.55 kJ / mol (2) +19.30 kJ / mol (1) –67.55 kJ / mol (2) +19.30 kJ / mol (3) –144.75 kJ / mol (4) +9.65 kJ / mol (3) –144.75 kJ / mol (4) +9.65 kJ / mol 39. For a single electron system following 39.        graph is drawn for radial distribution (RDF)  function (RDF) versus radial distance. The correct statement regarding the graph is : :  (RDF) (RDF) Radial distance Radial distance (1) The graph must be representing 1s orbital (1) 1s  (2) The graph must be representing 2p orbital (2) 2p  (3) The graph must be representing 3d orbital (3) 3d  (4) The graph must be representing an (4) 2s orbital different from 2s   1001CT103516016 H-17/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 40. Which of the following is correct regarding 40. : Bohr's theory : (1)  (1) On doubling the mass of elelctron          (hypothetically) moving in stationary orbit its velocity increases (2)  (2) On doubling the mass of elelctron         (hypothetically) moving in stationary  orbit its velocity decreases (3) On doubling the mass of elelctron (3)  (hypothetically) moving in stationary         orbit its kinetic energy will increases  (4) On doubling the mass of elelctron (hypothetically) moving in stationary (4)          orbit its kinetic energy will decreasese  41. 2BF3 + 6 NaH 450K X(g) + 6Y 41. 2BF3 + 6 NaH 450K X(g) + 6Y Which of the following statement is X :- INCORRECT for X :- (1) 'X',  (1) 'X' is readily hydrolysed by water to give  weak mono basic acid (2) 'X'  (2) Back bonding is present in 'X' (3) 'X'  (3) In 'X' maximum number of atoms in one '6'  plane is '6' (4) 'X', O2  (4) 'X' burn with O2 and gives sesqui oxide  H-18/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 42. Which of the following order is CORRECT :- 42. :- (1) B(OH)3 > B(OMe)3  Boiling point (1) B(OH)3 > B(OMe)3   (2) NaOH > NaNH2 > NaH  Basic strength (2) NaOH > NaNH2 > NaH   (3) Cl2 > F2 > Br2 > I2  Bond energy (3) Cl2 > F2 > Br2 > I2   (4) Cl3– > Br3– > I3–  Stability (4) Cl3– > Br3– > I3–   43. Which of the following match is CORRECT :- 43. :- (1) Moissan process  Preparation method (1)  Cl2  of Cl2 (2)  (2) Solvay process  Preparation method of caustic soda (3) Spring reaction  Preparation method (3)  of Hypo (4) Ostwald's process  Preparation method (4) NH 3  of NH3 44. Which of the following element is metalloid :- 44. :-  (1) Bi (2) Po (3) C (4) Sb (1) Bi (2) Po (3) C (4) Sb 45. Which of the following metal oxide is not 45. :- amphoteric :- (1) Fe2O3 (2) Pb3O4 (3) Mn2O3 (4) Sb2O3 (1) Fe2O3 (2) Pb3O4 (3) Mn2O3 (4) Sb2O3 46. Which of the following is INCORRECT :- 46. :- (1) ICl2–  Trigonal bipyramidal electron (1) ICl2–   geometry (2) NH3   (3) SnF4   (2) NH3  Tetrahedral electron geometry (3) SnF4  Tetrahedral electron geometry (4) PBr5(g)   (4) PBr5(g)  Trigonal bipyramidal electron geometry  1001CT103516016 H-19/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 47. Which of the following ion is diamagnetic :- 47. :- (1) Pa+4 (2) Yb+3 (1) Pa+4 (2) Yb+3 (3) U+3 (4) Ce+4 (3) U+3 (4) Ce+4 48. Which of the following method is used for 48.  the removal of only temporary hardness :- :-  (1) Treatment with washing soda (1)  (2) Clark's method (2)  (3) Calgon's method (3)  (4) Ion-exchange method (4)  49. Which of the following ligand is not 49. :-  bidentate :- (1) 8- (1) 8-hydroxyquinolinato ion (2) N, N- (2) N, N-diethyldithiocarbamato ion (3)  (3) Hydrazine (4)  (4) Salicylate ion 50. Which of the following alloy contains 50. Ni  :- Ni metal :- (1)  (1) Monel metal (2)  (2) Gun metal (3)  (3) Solder (A) (4) 14  (A) (4) 14 carat gold 51. Al2O3 / Al2O3 / 51. CH3–Cl / AlCl3 CH3–Cl / AlCl3  H-20/33 1001CT103516016

Major product of above reaction is : Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 (1) (2)  (1) (2) (3) (4) (3) (4) 52. Select correct statement among following 52.  (1) The linkage present in maltose is -C1-C4 (1) -C1-C4 linkage (2)  (2) Maltose is a non-reducing sugar (3)       (3) Maltose and sucrose both give similar  product on hydrolysis (4)  (4) Maltose is a sweet polysaccharide : : NH2 +– NH2 +– PhN2Cl PhN2Cl 53. (A) 53. (A)  Coloured compound (Major product)  The coloured major product formed in above  reaction is : NH2 NH2 NH2 NH2 N=N N=N (2) (2) (1) (1) N=N N=N NH2 NH–N=N NH2 NH–N=N (3) (4) (3) (4) N=N N=N  1001CT103516016 H-21/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 54. Major product obtained on reaction between 54. 2 : 1  chlorobenzene & chloral taken in 2 : 1 ratio          in acidic condition is : (2) Antiseptic  (1) Analgesic (4) Anti-pyretic (1) Analgesic (2)  (3) Insecticide (3)  (4)  F Cl Br I F Cl Br I 55. 55. NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2 (P) (Q) (R) (S) (P) (Q) (R) (S) The decreasing order of reactivity of above N+aO–M e  +–  compound towards NaOMe is : (1) P > Q > R > S (2) S > R > Q > P (1) P > Q > R > S (2) S > R > Q > P (3) Q > P > R > S (4) Q > R > S > P (3) Q > P > R > S (4) Q > R > S > P 56. Select the reaction giving correct major 56.  product :  NO2 NH2 NO2 NH2 Br Br Br Br (1) (i) Fe or Sn / HCl (1) (i) Fe or Sn / HCl (ii) Br2 / water (ii) Br2 / water Br Br CH3 CH3 (2) C2H2 (i) Red hot Fe tube (2) C2H2 (i) Red hot Fe tube (ii) Me–Cl / AlCl3 (ii) Me–Cl / AlCl3 (iii) Cl2 / hv (iii) Cl2 / hv Cl Cl  H-22/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 OH OMe OH OMe (3) (i) NaHCO3 (3) (i) NaHCO3 (ii) Me–I (ii) Me–I : : NH2 OH NH2 OH (4) (i) (NaNO2 + HCl) / 0-5ºC (4) (i) (NaNO2 + HCl) / 0-5ºC (ii) H3PO2 (ii) H3PO2 NH2 NH2 COOH Aq. HNO2 (A) Aq. HNO2 (A) 57. Ph Major 57. Ph COOH  product  Major product of above reaction is :  OH OH (1) Ph COOH (1) Ph COOH OH OH (2) Ph COOH (2) Ph COOH (3) Ph COOH (3) Ph COOH OH OH OH OH (4) Ph COOH (4) Ph COOH  1001CT103516016 H-23/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 58. Which of the following is condensation 58.  co-polymer : (2) PVC (1)  (2) PVC (1) Styrene (3) Nylon-6,6 (4) Nylon-6 (3) -6,6 (4) -6  59. Which of the following compound evolve 59.    2  2 mole of CO2 on gentle heating : CO2   O COOH COOH O COOH COOH COOH (1) COOH (2) O (1) (2) O COOH COOH COOH COOH COOH COOH (4) COOH (3) (4) COOH (3) O O O O COOH COOH 60. Select the correct statement : 60.  (1) DNA do not transfer genetic character (1) DNA ,  from one generation to next  (2) Deficiency of vitamine-D, causes (2) -D  (3) -D ,  reckets (4)  (3) Vitamine-D is water soluble vitamine (4) Valine is a non-essential amino acids  H-24/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 PART C - MATHEMATICS 61. Let  and  be integers satisfying 0 <  < . 61. 0<<  Let P(), Q be the reflection of P in the P(), Q y= x  P  line y = x, R be the reflection of Q in the R, y-Q S,x-R  y-axis, S be the reflection of R in the x-axis   T,y- S    and T be the reflection of S in the y-axis. PQRST 187  If the area of convex pentagon PQRST is 2 - 187 sq. units, then value of 2 is- (1) 20 (2) 34 (3) 27 (4) 15 (1) 20 (2) 34 (3) 27 (4) 15 62. Let  and  are the roots of x2  2x  1  0 , 62. x2  2x  1  0       then the value of 50 + 50 is - 50 + 50 - (1) 0 (2) 2 (3) 2 (4) 1 (1) 0 (2) 2 (3) 2 (4) 1 63. Inradius of a circle which is inscribed in a 63.        21 isosceles triangle, one of whose angle is 2 , () - is 1, then area of triangle is (in sq. units) - (1) 3  2 2 (2) 4  2 2 (1) 3  2 2 (2) 4  2 2 (3) 4  4 2 (4) 6  4 2 (3) 4  4 2 (4) 6  4 2 64. From the top of a light house 30 meter high 64. 30  with its base at the sea-level, the angle of  depression of a boat is 15°. The distance of 15 °    the boat from the foot of the light house is - -  (1)  2  3  3 1 (1)  2  3  3 1 30  2  3  (2) 30  3  1  30  2  3  (2) 30  3  1   3 1 (4)  2 3  3 1 (4) 30  2  3 (3) 30  3  1  30  2 3  (3) 30  3  1   2  3   1001CT103516016 H-25/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 65. For positive integer n, 10n–2 > 91n, then 65. n10n–2 > 91n n complete set of values of n is  (1) {1, 2, 3, 4} (2) {6, 7, 8, 9,.....} (1) {1, 2, 3, 4} (2) {6, 7, 8, 9,.....} (3) {5, 6, 7, 8,.....} (4) {7, 8, 9, 10,.....} (3) {5, 6, 7, 8,.....} (4) {7, 8, 9, 10,.....} 66. If  is acute angle between planes P1 and 66.   P1 P 2  P2 where combined equation of planes P1   P1 P2    and P2 is 2x2 – 6y2 – 12z2 + 18yz + 2zx + xy = 0, 2x2 – 6y2 – 12z2 + 18yz + 2zx + xy = 0 cos then value of cos is - - 16 9 16 9 (1) 21 (2) 17 (1) 21 (2) 17 1 7 1 7 (3) 6 (4) 15 (3) (4) 6 15 67. Let P = [aij] be 4 × 4 matrix. If |P| = –2, 67. P= [aij], 4 × 4 |P|=–2  then value of |adj(3P)|, is (where |A| |adj(3P)|   (|A|, A  denotes determinant value of matrix A) )  (1) 312.23 (2) –39.23 (1) 312.23 (2) –39.23 (3) –34.23 (4) None of these (3) –34.23 (4)  68. Consider conic C : 25(x – 1)2 + 25(y + 1)2 68. C:25(x – 1)2 + 25(y + 1)2 = (3x – 4y)2 = (3x – 4y)2. If curve E is locus of point of EC  intersection of perpendicular tangents to E  the conic C, then minimum distance (2,–1) - between curve E and point (2,–1) is- (1) 1 (2) 2 (1) 1 (2) 2 (3) 4 (4) 3 (3) 4 (4) 3  H-26/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 69. True statement A and true statement B are 69. A B  two independent events of an experiment. P(A) =0.3 , P(A  B) = 0.8  Let P(A) = 0.3, P(A  B) = 0.8, then P(A  B) P(A  B) (  P(X), X  is (where P(X) denotes probability that statement X is true statement) ) 32 6 32 6 (1) 35 (2) 35 (1) (2) (4) data is insufficient 3 35 35 (3) 35 3 (3) 35 (4)  70. If n Cr2  36, nCr1  84 and n Cr  126 , 70. n Cr2  36, nCr1  84 n C r  126  then value of nC2r is - nC2r - (1) 9 (2) 36 (1) 9 (2) 36 (3) 66 (4) 126 (3) 66 (4) 126 71. Let   2ˆi  ˆj  kˆ ,   iˆ  3kˆ ,|U | 2 . If  is 71.   2ˆi  ˆj  kˆ ,   iˆ  3kˆ ,|U | 2   V W U W V a vector in x-y plane, then greatest value  [UV  2  U , x-y     2 W] of [U V W] is - -  (1) 232 (2) 340 (1) 232 (2) 340 (3) 236 (4) 312 (3) 236 (4) 312 72. In ABC, AB = AC. Let P1 denote the 72. ABC , AB = AC P1 incircle of ABC. Circle P2 is tangent to ABC P2,AB,  sides AB,AC and to circle P1. If radius of AC  P1       circles P1 and P2 are 2 and 1 respectively, P1 P2 2 1 then area of ABC is- ABC - (1) 8 8 (2) 4 2 (1) 8 8 (2) 4 2 (3) 16 8 (4) 8 2 (3) 16 8 (4) 8 2  1001CT103516016 H-27/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 73. If |z – 3 – 4i| = 4, where i  1 , then 73. |z – 3 – 4i| = 4 i 1 |z| maximum possible value of |z| is  (1) 9 (2) 7 (3) 5 (4) 6 (1) 9 (2) 7 (3) 5 (4) 6 74. Consider system of equations in x, y and z 74. x, y z 12x + by + cz = 0 12x + by + cz = 0 ax + 24y + cz = 0 ax + 24y + cz = 0 ax + by + 36z = 0. ax + by + 36z = 0 (where a, b, c are real numbers, a  12, (a, b, c  ,a 12, b  24, b  24, c  36). If system of equation has solution and z  0, c  36)          then value of 123 is - z  0 , 1  2  3 -  a 12 b  24 c  36 a 12 b  24 c  36 1 11 1 1 11 1 (1)  (2)  (3)  (4)  (1)  (2)  (3)  (4)  3 12 6 4 12 6 3 4 75. The number of arrangements of the letters 75. PALANHAR  of the word PALANHAR in which no two  vowels are together and exactly two vowels - are at odd places, is - (1) 3600 (2) 1440 (3) 2880 (4) 720 (1) 3600 (2) 1440 (3) 2880 (4) 720 76. Let A = {(x,y) : y = mx + 1} 76. A = {(x,y) : y = mx + 1} B = {(x,y) : x2 + 4y2 = 1} B = {(x,y) : x2 + 4y2 = 1} C = {() : ()  A and ()  B and   0}. C = {() : ()  A ()  B  0}  If set C is singleton set then sum of all C m  possible values of m is  (1) 0 3 (1) 0 (2) 3 (2) 2 2 (3)  3 (4) none of these (3)  3 (4)  2 2  H-28/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 77. The contrapositive of statement 'If Jaipur is 77.  capital of Rajasthan, then Jaipur is in India'  is (1) Jaipur is not in India or Jaipur is not (1)   capital of Rajasthan. (2)  (2) If Jaipur is not in India, then Jaipur is  not capital of Rajasthan (3)         (3) Jaipur is not in India and Jaipur is not  capital of Rajasthan. (4)  (4) If Jaipur is not capital of Rajasthan, then Jaipur is not in India.  78. The line L given by x  2  y 1  z 1 78. L, x  2  y 1  z  1  2 bc 2 bc passes through the point (1, 2, 3). Another (1, 2, 3) K,L line K is parallel to line L and has the   x  2  y  3  z  4   equation x  2  y  3  z  4 . Then the a2d a2d LK  distance between line L and K is 297 243 297 243 (1) (2) (1) (2) 3 3 3 3 272 291 (3) 272 (4) 291 (3) (4) 9 9 9 9 79. 4 (1009  2n)4  4 (1)n is 79. 4  4 ( 1)n  n0  n   n   (1009  2n)4  n0 (1) 512 (2) 272 (1) 512 (2) 272 (3) 384 (4) 264 (3) 384 (4) 264  1001CT103516016 H-29/33

Target : JEE (Main + Advanced) 2017/05-03-2017/Paper-2 80. Let p, q, r are three real numbers satisfying 80. p, q, r      2 p q  2 p q  [p q r] 3 q p  r   [5 b c] , then [p q r] 3 q p  r   [5 b c]     12 r q  3r 12 r q  3r minimum value of (b + c) is - (b+ c) - 25 25 25 25 (1) 157 (2) 49 (1) 157 (2) 49 25  271 25  589 25  271 25  589 (3) (49)2 (4) (157)2 (3) (49)2 (4) (157)2 81. Let two circles C1 and C2 of radii 2 and 4 81. 2 4C1C2  be tangent at point P and tangent to a P common straight line (not passing through (P )QP P) at points Q and R, then value of    PQ2+ QR2 + RP2   PQ2 + QR2 + RP2 is- -  (1) 48 (2) 56 (3) 64 (4) 72 (1) 48 (2) 56 (3) 64 (4) 72 82. Let I be the set of positve integers. R is 82. I R, I a relation on the set I given by R={(a,b)  a   b   I × I | log2 R = {(a,b)  I × I| log2  a  is a non-negative  }   R   b  integer}, then R is  (1) neither symmetric not transitive but (1)  reflexive. (2)  (3)  (2) reflexive, transitive but not symmetric (3) neither reflexive non transitive but symmetric (4)  (4) equivalence relation.  H-30/33 1001CT103516016

Leader Course/Phase-III to VII/Score-I/05-03-2017/Paper-2 83. Two numbers are selected randomly from the 83. S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}  set S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} without          replacement one by one. The probability      3   that minimum of the two numbers is 4  divisible by 3 or maximum of the two -  numbers is divisible by 4, is - 23 37 16 19 23 37 16 19 (1) 45 (2) 45 (3) 45 (4) 45 (1) 45 (2) 45 (3) 45 (4) 45 84. If lines 3x + 2y = 10 and –3x + 2y = 10 are 84. 3x+ 2y = 10 –3x + 2y = 10  tangents at the extremities of latus rectum  of an ellipse whose centre is origin, then  the length of latus rectum of ellipse is - -  16 100 16 100 (1) 3 (2) 3 5 (3) 4 5 (4) 27 (1) (2) 3 5 (3) 4 5 (4) 27 3 85. Let a, b, c are non real numbers satisfying 85. a,b,c x5 =1 equation x5 = 1 and S be the set of all 1 a b non-invertible matrices of the form i2 S,w1  c  , we 5 1 a b i2 w2 w 1 1  w c  , we 5 . Then the number of    w2 w 1 distinct matrices in the set S is - S - (1) 4 (2) 28 (3) 24 (4) 32 (1) 4 (2) 28 (3) 24 (4) 32 86. Let y1, y2, y3,..... yn be n observations. 86. y1, y2, y3,..... yn, n    Let wi = yi + k  i = 1, 2, 3....., n, where , k are constants. If the mean of yi's is 48 and wi = yi + k  i = 1, 2, 3....., n , k  their standard deviation is 12, then mean of yi48 12 wi's is 55 and standard deviation of wi's is wi  55 wi   15 15, then values of  and k should be k (1)  = 2.5, k = 5 (2)  = 1.25, k = 5 (1)  = 2.5, k = 5 (2)  = 1.25, k = 5 (3)  = 1.25, k = –5 (4)  = 2.5, k = –5 (3)  = 1.25, k = –5 (4)  = 2.5, k = –5  1001CT103516016 H-31/33


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook