JEE-Physics UNIT # 03 (PART – I) CENTRE OF MASS EXERCISE –I (1)(5) (1)(3) 9 . vCM = 1 m/s 1 1 x xdm L kx2 3L Position of centre of mass at t=1s dm x dx 4 L t = 1s 0 (1)(2) (1)(8) X CM 1 1 (1)(1) 5 1 6m 1. kx2 L dx 2 . Equation of line joining the CM of two rods 10. xm1.mx11mm22.x2 xy Let x = distance moved by ring 1 L/2 L/2 x = coordinate L , L satisfies this equation. 0= mx 2m(1.2 x) x = 0.8 m 3 6 m 2m L3,L6 11. Impulse = pf – pi = 1 × 10 –1× (–25) = 35kg m/s () 3 /2 3 . x cos 30 48 60° CM p = 2p cos 3 = 2mv0 sin 6 /2 1 2 . /3 4 . Let xp=x shift of plank to the right xp=x 13. For the Ist ball ():h e12 h x m A x A m B x B m c x c m p x p 4 mA mB mC mP For the IIndball :h e 2 h 2 16 40(x 4) 50x 60(x 4) 90x 1 0 40 50 60 90 x= 3 m Impulse on first ball 5 . x m1.x1 m2.x2 3 m1 m2 = I1 = mv0 (1+e1) = 2 mv0 Impulse on second ball 0 m1a m 2 x2 x 2 m1a 5 m1 m2 m2 = I2 = mv0(1+e2)= 4 mv0 6. y m1y1 m 2 y2 I1 3 / 2 mv0 6 5I1 = 6I2 m1 m2 I2 5 / 4 mv0 5 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 m 3m 14. KE = 1 m v 2 1 m v 2 0 4 (1 5 ) 4 ( y 2 ) y2 = –5 cm 2 2 2 1 7. CM remains at rest if initially it is at rest. 12m(v2v1 v v1 ) 1 I.(v1 v2 ) ).( 2 2 8. 1 2i 2 (2 cos 30i 2 sin 30j) 15. v v' v v cm m1v1 m2v2 3 m2 m m 2m m1 0= 2mv – mv + mv' v' = –v 2 2 3 i 2 j Total mechanical energy released 3 3 = 1 (m+m+2m)v2 = 2mv2 2 1
JEE-Physics 16. COLM : 3 × 2 = (3 + 2)v v 6 m/s vC m1 (1 e) u1 m2 em1 v 2 m (1 1) v 0 = v 5 (m1 m2 ) m1 m2 4m 2 1 3 22 1 5 62 1 480 x2 For collision between A and B : 2 2 5 2 COME : (AB x 1 m vA= 0 + m (1 1) 3v 6v 10 5m 5 25 1 7 . COLM : vB' = 0 m 4m 3v 9v 5m 5 Along horizontal () 25 u cos u vB' < vC B will not collide with C. v Q u cos (B C u cos Therefore there will be only two collisions. 0 = m(u cos – v) – 4mv v = 5 velocity of shell along horizontal w.r.t ground 21.C OME : m1u1 + m2u2 = m1v1 + m2v2 = u cos – u cos 4 u3 = (u cos ) 1 × u + 0 = 1 × 4 mv2 4 u = mv2 ....(i) 55 () T=2 u sin e v2 v1 v2 u / 4 v2 u / 4 g u2 u1 0u u Time of flight x = horizontal displacement v2 u 5u u ....(ii) 4 4 4 cos 2u sin 4u2 sin 2 5 u g 5g 3 5 m3 4 4 5 (i) & (ii) u m u 0.6kg mm 18. COME : mv cos = (– v cos ) + v' 2 2 2 2 . At the lowest position () 3mv cos m v ' v ' 3v cos COME : M 2 gL (M m )v ....(i) 2 2 COME : 1 (M+m)v2 = (M+m)gh ....(ii) v cos mm 2 v 22 M 2gL M 2 2gh v h m M L (M m) 1 9 . The ball & the earth froms a system and no external force acts on it. Hence total momentum remains constant.(23. Alongtangent () u cos = v sin ...(i) ) 20. v v node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 A BC u A vB vC vA A BC vB' vC BC Along normal () e v cos cot2 = cot260 1 u sin = 3 For collision between B and C : (BC u 2 4 . COLM 2mu + 0= 2mv + mu v = 2 m1 em2 m2 (1 e) vB m1 m2 u1 (m1 m2 ) u 2 2m m 2m m u e v2 v1 u u /2 1 v u(Let) u2 u1 0 u 2 m 4m 5m v 0 = – 3/5 v 2
JEE-Physics 2 5 . After 1s , vA= 20–10 × 1 = 10 m/s 1. EXERCISE –II and vB = 0 + 10 × 1 = 10 m/s 2. In the absence of external forces, the linear At the time of collision ( ) momentum of the system remains constant. , VA = VB = 5m/s ( after collision, velocity gets enterchanged. ) () Momentum of the coin perpendicular to the 26. e v2 v1 1 5 v1 v1 5 common normal remains constant. u2 u1 5 (10) 15 v1 = 20 m/s Impulse on ball= m(v u) =1× [20–(10)]=30N-s (4,6) u () 3 2 7 . v0 v0 v2 v2 (0,0) v1 vy = – 3 (constant) vyt = – 6 t = 2 sec & vxt = –4 2 vX = –2 m/s COLM 2mv0 = 3mv1 v1 3 v0 Which is given by stricker. COME 2 1 m v 2 = 2 1 m ( v 2 v 2 ) 1 m v 2 () 2 0 2 1 2 2 1 So initial velocity of stricker = 2ms–1 () Final velocity of the striker = 0. () 2 2 2 2 dv dm dv dm 3 3 2mv02 = 2m v 0 2 m v 2 m v 0 3. Fext = m dt v rel dt 0 = m dt 2 dt 2 2 v0 m /2 2dm v 2 3 dv v = 2n2 2 v 2 2 v 2 3 3 v 0 v2 = m 2 0 m 0 4. In the ground frame () 5. Velocity of particle = v 2 v 2 4 v 2 v 2 7 : mAxA + mBxB + mpxp = 0 1 2 0 0 3 v0 40 × 60 + 0 + 40 × xp= 0 xp = –60 (to the left) 93 Hence A & B meet at the right end. () 2 8 . For second object () A B 2v1 = 0 + at; t 2v1 ...(i) u=0 a u=v1 Force exerted by one leg on the ground a 1 2 d () s1 = s2 + d; 1 at2 ut d N = 1 [Total force] 2 4× node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 1 2v1 2 2v1 2 v 2 2 v12 1 [wt + rate of change of momentum] 2 a a 1 a 4 [wt a v1 d d 0 +] a 1 = [Mg + n (mv cos 60°)× 2]= 1N 2 9 . Average power ( ) 4 W K U 1 (x)v2 xg x / 2 6. h1 t = t 2 t 7. h (h–d) 2g(h d) e 2gh d 1 e2 t <P> = 1 v3 vg COLM : mR(0.8) + mS(0) = mR(0.2) + mS(1.0) 22 0.6 mR = mS mR > mS 3
JEE-Physics 8 . T.t T.t 1 7 . Initially when the shell is empty the C.M. lies at its geometric centre. Also when the shell is filled with A 3m N.t m sand CM lies at its geometric centre. Bm N.t ( –Nt = m(v – u); Nt – Tt = m(v–0) Tt = 3m(v–0) v = u/5 ) Impulsive tension ( )Tt = 3mu 5 M1x1 M2x2 M a M a a 18. a cm Fnet (0 .2 )(3 )(1 0 ) 2 ms2 2 2 2 3 Total mass 12 9. x 12 M1 M2 M OR Acceleration of 1kg w.r.t. ground 10. (1kg ) (M 0) M L M 4L L =(0.1)(10)=1ms–2 4 3 4 6 Accceleration of 2 kg w.r.t. ground 4 (2kg ) x M = (0.2)(3)(10) (0.1)(10) 5 ms2 22 1 1 . x 3M.x M(x 2) 0 x 1 4M 2 a cm m1a1 m2a2 (1)(1) (2)(5 / 2) 2ms 2 m1 m2 12 m vN 1 2 . Nmv = (M + Nm)vf v f M Nm 1 9 . p = change in momentum ( )=2mv y xy t = time between two collision 2(L d) P (x=y) 1 v 13. 26 x () (2,0) Force exerted on wall () (0,6) p mv2 y' = t (L d) Co-ordinate of P (P )=(3,3) 20. t1 L (time for Ist collision) v Speed of 3rd particle (3rd= 3 2 m/s 2L t2 v (time for IInd collision) 1 4 . Let x = displacement of ring to the left. (x=) 2mx m(x L L cos ) 3L xcm = 0 t3 v (time for 3rd collision) 3m x L (1 cos ) 3 L t(n–1)= (n–1) (time for (nth) collision) v node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 M 1 5 . Mv = 0 + 1 0 v 2 v2 = 10v n 1 6 . COLM m(v1 cos 45° + v2) + mv2 = 0 h n(n 1) L ti 2 v v1 = 2 2.v2 COME Ki + Ui=Kf+ Uf i 1 mgR 1 45° V2 2 1 . In elastic head on collision if the masses of the 0 + 2 = 2 mv22 V1 colliding bodies are equal, the velocities after 1 v 2 v1 v1 2 v2 gR collision are interchanged.( 1 2 22 32 m ) + 2 2 For Ist bead(),Fd = 1 2Fd mu2 u 2m 4
x m1x1 m 2x2 m 3x3 JEE-Physics m1 m2 m3 2 8 . COME : – MV + m (v cos 60 –V)=0 v = 10 m/s 22. x (80 2) (50 2) (70 0) 2 9 . x m x1 M x2 0 80 50 70 m M = 30cm towards right 1( sin 30 sin 30 x) 4x 14 0 P Displacement of bar ( )=x=0.2 23. + = J J A BA B m 0m R R For A : P – J = mv1 ....(i) 3 0 . xcm= mm 2 for B : J = mv2 ....(ii) J P J xCG = W1 (0) W2 (R ) mgR R m e v2 v1 m = 2J 1 W1 W2 mg u2 u1 p 0 P m R R R xCG – xCM = 2 2 2 4 . mu – I1 = –mu I1 = 2mu & mu – I2 = 0 I2 = mu (for IInd ball) I2 = I1/2 3 1 . Velocity before strike ( ) 4 u = 2gh 4 Impulse = Ft = m(v–u) 4 4 F = m(v u) w(0 2gh ) = 5.21 W t g 0.15 2 5 . Cart frame (): 45° 4 45 3 2 . COLM m1u1 + m2u2 = (m1 + m2)v 5 × 103 × 1.2 + 0 = (5 + 1) × 103 × v v = 1 m/s Ground frame : 33. v1= (m1 m2) u1 2m2 u2 (m1 m2 ) m1 m2 44 The velocity of rebound ()=4 5 m/s v2 2m1 u1 m 2 m1 u2 1 m m 1 m2 vi j v i v j (m 2 ) 2 2 mv4 26. COLM m m v m 0 2mu 2 For C : vC= u v 1 1 i 1 1 j 3m 3 v4 2 v 2 mv 3 4 . From COLM Mv xA 2Mv xB 0 v xA 2 v xB so 2v x i vk A vA m,v node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 135° r1 v 3 5 . 2rsin = 2 ; sin = 4 r/2 m,v Total energy released ( ) r/2 2r 15 B v2 1 1 1 1 1 2 cos = 4 v2 2 2 2 2 v2 = mv2 mv2 mv2 m 1 2 v × 15 2 4 = mv2(3– 2 ) 3 6 . m × 1 = mv1 + (2mv2 × cos60°) 11 10 (15 0) 27. Fext= mv (for first body)Fext = 3 50N v2 = 2 & v1 = 2 COME m1u1 + m2u2 = (m1+m2)v 1 10 × 15 + 25 × u2 = (10 + 25)5 u2 = 1 m/s (KE)initial = 2 × 1 × 12 = 0.5 J 5
JEE-Physics 1 1 2 1 12 D 1 (KE)final = (1) × 2 1 2 2 = mg = gD4 2 2 2 2 = 0.25 + 0.125 = 0.3755 PE of solid cone KE = 0.5 –0.375 = 0.125 J D 3 7 . Component of velocity of A along common normal = mg 4 =gD4 48 is v cos 60° and this velocity of A after collision PE of solid cylinder with B is interchanged. Hence A moves along v sin 60° which is normal to common normal. D = mg 2 = gD4 8 (A vcos60° A v A , vsin60° : mu +0 = (m + M)v v m u M m 4 1 . COLM ) KE after collision : B = 1 (m M ) m m M 2 u2 m2u2 vcos60° 2 60° 2(m M) Av 42. pi = – mv , pf = m(v + 2u) p = 2m(v + u) vsin60° Force = p 2m(v u) 3 8 . At the time of collision both particles have common t t velocity and hence the system has minimum kinetic energy. (KEinitial = 1 mu2 , KEfinal = 1 m(2v u)2 ) 2 2 COME : mu + 0 = 3mv v = u/3 1 KE = m[4v2 + u2 + 4uv – u2] 1 KEinitial = mu2 = 3J 2 2 1 m[4v(v u)] 2mv(u v) 1 1 u2 2 KEcollision = (3m)v2 = (3m) 1J 2 29 PEcollision = (3–1) = 2J Total energy remains constant and hence KE of system First decreases & then increases. ( ) 3 9 . At the time of maximum compression, node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 () COLM : mu = 2mv (for A & B ) v = u/2 COME : 1 mu2 1 2mv2 1 kx2 x v m 22 2 2k 4 0 . PE of solid sphere () D = mgR = mg = gD4 12 2 PE of solid cube ( 6
JEE-Physics EXERCISE –III (B) For body 2M : p = pf p pf =2p Fill in the blank pp 1 . By applying conservation of momentum (C) e v2 v1 MM =0 e = 0 () u1 u2 2p p M 2M 3 . For 1kg v1 = (2t) i = 4 i ; ai = 2 i = 2 i 0 = mv1 mv2 2mv3 For 2kg v2 = t2 j = 4 j ; a2 = 2t j =4 j v1 v2 2v v v3 2 2 2 m1a1 m2a2 Total energy released in explosion (A) Acceleration of centre of mass = m1 m2 () 1 1 1 v 2 3mv2 2 i 8 j acm= 4 64 68 2 2 2 a cm 3 3 m/s2 mv2 mv2 2m 2 99 3 2 f = macm= 68 N 2 . Area under the F-t curve = impulse=5× 10-3 N-s (B) Velocity of centre of mass () (F-t m1v1 m2v2 = 4 i 8 j m/s 3 . h = (e2)n h0 h = (0.82)3 h0 h = (0.8)6 h0 v cm m1 m2 3 3 6 . Momentum is conserved in all collision. 16 64 80 | v cm | () 99 3 mv (C) 7 . COLM : mv = (m + Ax)v' v'= m Ax 1 2tˆi 2 t2ˆj 2 tˆi 2 t2ˆj v cm 33 12 m1m2 Displacement = 2(m1 m2 ) 8. Loss in KE= (1–e2) (u1 – u2)2 2 2 3 t2 2 2 t3 4 ˆi 16 ˆj vcm dt 2 2 3 3 ˆj 39 5 1 ˆi 0 15 0 Here e = 3 (3)(2) 1 1 42 16 2 20 2(3 2 9 3 9 units KE = ) (15)2 = 120J Dispalcement 9 Match the Column 4 . As no external force acts on the system velocity of 1 . By applying conservation of momentum centre of mass remain same ( () ) Before collision 2m After collision B vcm=2u/3 A M 2m 4 K=P2 v/3 2v/3 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ m 2m p= 2mK node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 m1u1 + 2m(0) = mv1 + 2mv2 ....(i) 2m(u) 2u Also u = v2 v1 ....(ii) vcm = 3m = 3 In frame of centre of mass velocity of B is 2u/3 2v v 4mv 4p 2u 2u v2 = and v1 = ; p2 = , 3 3 3 3 33 and It oscillates from , mv p 8K K In frame of centre of mass velocity of A is u/3 and p1 = 3 3 ; K2 = 9 ; K1 = 9 It oscillates from u , u . In ground frame velocity 2 . Impulse = change in momentum 3 3 () of B 0, 4u . In ground frame velocity of A u , u 3 3 (A) For body M : p = pf p pf = p 7
JEE-Physics and by conservation of energy K.E. = US x ) B2u/3 m (4–x) = Mx x = 0.8 m Co-ordinate where block will leave wedge 2u , 2u () 3 3 Ax=4–0.8 = 3.2 u/3 u , u Time for m will strike the ground is = 22 3 3 10 B0 , 4u A 3u , u (m) 3 2 K.E. = US xf = 3.2 + 4 2 × 10 = 6.8 m 5. (A) Net force on block m acts in downward m1a1 m2a2 a (5m/s2) acm = m1 m2 60 direction 3. (m) (1) a cos 60 = 4a Acceleration of centre of mass is in downward direction. ( 5 3 aM 8 m/s2 ) (B) Net force acts in downward as well as in N cos 30 = 4maM horizontal direction. 3 Ncos30° 30° 53 30° N 4(1) 28 N N N = 5 Newton 4 . Ng = N sin 30 + 40 Ng = 42.5 mg Ng acm moves both in horizontal & vertical 30° M direction. N Nsin30 ( acm ) (C) As the mass of monkey & block is same both moves upward. Comprehension # 2 (Byapplying conservation of momentum ) () Centre of mass moves upward 2(6) + 1(4) = 1v2 + 2v1; 16 = v2 + 2v1 ...(i) ( ) By applying newton law of collision () (D) Centre of mass of the system does not moves () 1= v2 v1 v2 – v1 = 2 ...(ii) 2 Comprehension # 1 20 14 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 v2 = 3 , v1 3 1 . By applying conservation of momentum () 20 8 1. Impulse = change in momentum –4 N–s 3 3 mv1 + Mv2 = 0 v1 = –4v2 ...(i) = By applying conservation of energy ( ) 2 . To change the direction of a block impulse should 1 1 v 2 2 v 2 20 ...(ii) be greater than 12 N–s ( 2 mv12 + 2 Mv22 = mgh 1 2 12 N-s) 2 v2 = 2m / s ; v1 = 4 2 m/s Comprehension # 3 As horizontal velocity (i.e. velocity along the surface) 2 . When 'm' leaves the wedge 'M' then wedge moves 30 distance 'x' in left side ( Mmremains constant so required time = 6s 5 8
JEE-Physics () Comprehension # 6 = 30 6s 1 . As no external force acts on the two blocks friction acts like an internal forces and the two blocks will 5 Comprehension # 4 move with common velocity. fM \\\\\\\\\\\\\\\\\\\\\\ fr dm By applying conservation of momentum 1 . f = v dt = 2(20) = 40 fr = mg () m = 40 = M0 –2(t) t = 5 sec (1kg) (15 m/s) = 1v = 2v v = 5 m/s so (0.1) (50–2t) = 40 t = 5 sec P1 = 5 N–s ; P2 = 10 N–s 2. v = v m – gt= 20 n 4 –gt 20 (0.28) – 5 dp n m0 3 2 . dt =fext = 5.6 – 5 0.6m/s For block of 1 kg friction fr = mg= 0.4 × 1 × 10 = 4 N Comprehension # 5 3 . v = u + at 5 = 15 – (4) t t = 2.5 sec m1 r10 m 2 r20 m1 m2 1 . 1 3ˆi 2 9ˆj ˆi 6ˆj m rcm 12 Comprehension # 7 f 1 vcm m1v1 m2v2 2m 2 m2 1 3ˆi 2 6ˆj ˆi 4ˆj m / s 1. As macm = f acm = so scm = at2 = f t2 m1 4m 12 2. xcm= m1x1 m2x2 x1 + x2 = f Now rcm v cm t rcm rcm0 v cm t 2m t2 2m x 1ˆi y 6ˆj ˆi 4ˆj t x1 – x2 = x0 Therefore f t2 + x0 x1= 4m 2 x 1 t and y= 6+ 4t y= 4x+ 2 From above equations x2 = ft2 – x0 m1a1 m2a2 4m 2 m1 m2 2. 1 2ˆi 2 2ˆj a cm Comprehension # 8 12 2 ˆi 2ˆj m / s2 1 . By COLM 3 mA 0 = mA vA + mB vB; vB mB vA By using vcm ucm acm t ; we get t =3s Both velocity are opposite in direction node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 1 () 3 . By using s = ut + at2 for individual partiles II, IV, V 2 1 2 . If mA = mB v B v A Graph II For Ist particle:s = (3) (1.5) + (2) (1.5)2 = 2.25 m ; mA > mB vB > vA tanB > tanA Graph IV x2 If mA < mB vA > vB Graph IV 3 . vcm is not zero in graph (I), (III) and (VI) 1 For IInd particle = s =(6) (3) + (–2)(3)2 = 9m ((I), (III) (VI)vcm y2 Therefore x = 2.25 +1 = 1.75 m and cm 3 y= 2 9 +6 = 12m cm 3 9
JEE-Physics 1. EXERCISE –IV(A) (2 ) (a2 ) a a 2 – a – a2 = 0 y 22 8. (i) The centre of mass remains at O as the 2 a2 excluded masses are symmetrically placed. (O y ) (ii) CM shifts from 0 to 3 diagonally a ( 5 1) x UNCUT PART 2 (03) A (iii) CM shifts along OY a CUT OUT PART (OY ) (–a/2,a/2) x 0a (iv) CM does not shift. a () xdm xydx y=kx2 dm x (v) CM shifts diagonally from 0 to 4. 9. x cm 0 3 a a 4 (04) ydx (vi) CM doesnot shift. 0 () (m 0) (2m a) (3m a) (4m 0) a 1 0 . (i) CM does not shift 2 . xcm = m 2m 3m 4m 2 () y cm (m 0) (2m 0) (3m a) (4m a) 7a (ii) Plank moves towards right. m 2m 3m 4m 10 ( (iii) x CM m 1x1 m 2 x2 M x 0 m1 m2 M 3 . Length of rod = (4 2)2 (2 5 )2 13m x cm (3 2) (2 4) 14 ; y cm (3 5) (2 2) 19 0 50(x 2) 70(x 2) 80x 3 2 5 3 2 5 50 70 80 x = 0.2m (right) M a (M 0) M a a (iv) xm1 = x + 2 = 2.2 m (right) 2 2 3 (v) xm2 = x – 2 = –1.8m (left) 4. x cm MMM m1v1 m2v2 1 1 . For 0 < t < 1 from vcm = m1 m 2 (M 0) M a M a 2 2 a y cm 3 2 (1)(1) (2)v2 M M M 3 6m v2 = 2.5 ms–1 (2R ) 2 12 4 x2=2.5t 2.5m 3 4R R 3 R 3 5 R for 1<t<2,2= (1)(1) 2(v2 ) 3 5. y cm = 4R v2 = 3.5ms–1 (2R )2 1 4 12 3 4R 2 4 R 3 3 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 6 . 2 r 2 r r2 4r 2r x2 = 2.5 + 3.5 (t –1) 2 2 3 3(4 ) 1 2 . COLM 3mv 30 2m v 10 2 m / s xcm = = r 2 30m/s 2 r 2 2 m 302 m 562 28 422 35 4 4 7 . x cm m30m/s 562 422 4 4 3m.v =9cm from left edge 10
JEE-Physics 1 3 . Velocity of mass-1 when string is in normal length. h = 4.9 × 2 1 9.8 2 2 78.4m (1) 2 vA 6g 2g 2 g For the combined mass () Now impulsive tension acts on both bodies to come x = ut + 1 × 9.8 t2, t = 4.53 2 to common velocity ( ) vcommon vA g Total time of height ( ) 2 Displacement of C.M. when string becomes taut. = 2 + 4.53 = 6.53 sec. ()18. xcm = M x1 m x 2 0 = Mx m(x R r) M m the m m 0 Mm moved by y1cm m m cylinder x m(R r) 2 Distance Mm Displacment of CM when masses reach the max. height () () Formotion along x-axis 0 = m(v1 + v2) + mv2....(i) v2 (x) 2g 2 2 2 y 2m y cm 1 1 2 2 1 4 . From work energy theorem ( ) mg(R – r) = m (v1+ v2)2 + Mv22 ...(ii) WF + Wg = KE 2g(R r) v2 m M(M m) mg(h3 h1 ) Favg(h2 – h1)–mg(h3–h1)=0 Favg = (h2 h1 ) m m k 2m 1 5 . In the presence of gravity, the CM shifts along vertically downward direction. 19. C v0 A B ( Aftercollision ( ): uA = v0 ) (i) When (vinst) A = (vinst)B mv0 =3mv v =v0/3 For point P : y = r sin (ii) COME x = (/2 – r) cos 1 mv02 = 1 (3m)v2 + 1 kx02 2 2 2 1 x 2 y2 vcm P r 2m v0 2 r 3 x0 r k 2 20. u o =v o 1 6 . Let v = velocity of wedge and u = veloicty of par- m1 m2 (m1+m2) ticle relative to wedge COLM m1u +0 = (m1 + m2)v ....(i) (v= u=) Energy equation ( ) v 1 m u 2 2 1 (m1 m2 )v2 ..(ii) 2 3 2 u node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 COLM m1 2 :1 m (v + u cos ) + 4 mv = 0 m2 u cos = –5v; u 5v 21. L After Ist collision R R cos 60° () 17. 1 gt 2 49 t 1 gt2 98 2 2 m 2 2g 2g(1 cos ) (u=) 5 gt(j) 19.6j m t = 2s u1 / s 1 cos = 5 (u gt)j 29.4j m /s 98m u2 For IInd collision () 78.4 m u1 u2 vf 2 4.9 m / s 49 m/s m=100gm 11
JEE-Physics 2 . 2 2g 2g(1 cos ) 5 m/s 2 m/s 55 27. 3kg For nth collision (n) 2kg 1.6 m/s 2 n 1 cos 4n 1 cos (A) v cm (2 5) (3 2) i 4 i m/s 5 5 2 3 5 4 n (B) COLM (2 × 5) + 3(–2) = +2(–1.6) + 3v2 5 v2 = 2.4 m/s cos 1 Put n=0,1,2,3 and get answer (C) e v2 v1 4 u2 u1 7 4ML M(L 5R) 4MX M(X 5R) 28. COLM: implies that vC & vB are opposite to each 2 2 . xcm 5M 5M other. (vCvB ) x = L + 2R 29. mg – T = m a g ...(i) 6 MM (L,0) x g/6 m mm a 23 . In this elastic collision velocity of masses are T 2 g 2 a ...(ii) m/2 A For solving eq. (i) & (ii) exchanged. (4g 13 mg a & T 18 ) 9 So vA = 0 A does not rise 3 0 . Velocity of B when string is in natural length 24. COME mg(h + x0) = 1 kx 2 0.1kg (B) 2 0 = uB 2gh 2g (h 1) mg(0.24 + 0.01) T 1 Impulse equation B = 2 k(0.01 × 0.01) ....(i) –Tt = m [v – 2g ] ...(i) T T.t m[v 0] ...(ii) & mg(h + 0.04) = 1 k(0.04)2 ...(ii) A 2 Equation (i) divided by (ii) h= 3.96 m 2g g On solving eq. (i) & (ii) : v 2 2 2 5 . No, KE is not conserved during the short time of Distance travelled by A before coming to rest, collision. ((A ) ) v2 s =1+ 1.25m Av u=0 A vA 1.6v 2g 26. v1 B B B e=1 v0 before collision after collision 31. COLM (1.6 v ) v A vA = 0.6V ...(i) A BC node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 0v COLM mv0 = 3mv1 AC v2 v2 COLM mAv = mA × (0.6V) + mB(1.6 v) v1 = v0 ...(i) 3 mA 4 mB ...(ii) COME KB = 1 mB(1.6 v)2 = 0 = 2mB (0.8 v)2 1 mv02 = 1 3m v 2 1 2 m v 2 v2 v0 2 2 2 1 2 0 3 KA = 1 (4mB)v2 = 2mBv2 K B 0.64 64% Therefore velocity of A = v 2 v 2 6 m/s 2 KA 1 2 12
JEE-Physics EXERCISE –IV(B) (b) s ut 1 at2 , a 0 1 g t2 , t 6a 3 v 2 2 3 gg u cos2 3R R t 2v 4 2 g 30° 1. (i) 2g L= 10m (c) 3 cos = 4/5 = 37° u=50 m/s 3M ucos 4 M 6 . (a) mu – Tt = mv ...(i) B A R u2 sin2 Tt = mv ...(ii) u (ii) x 2 2g 120m On solving eq. (i) & (ii) v = u/2 2 y H u2 sin2 45m 2 u 2g (b) A 2 . COLM :1 × v1 + 4 × v2 = 5 × 20 cos 60°= 50 ...(i) sin120 sin 20m/s v1 v2 sin 3 ; cos 13 2 44 1kg 4kg 60° mu cos – Tt = mv ...(i) 60- Tt = mv..(ii) B 60° COME 1 × 1 × v12 + 1 × 4 × v22 On solving eq. (i) & (ii) u cos v 2 2 2 u (90–) = 1 5 (1 0 ) 2 2 ...(ii) (c) 2 cos = = 60° 2 mucos 30° – Tt = mv ..(i) 2 v1 = –10 or 30 m/s & v2 = 15 or 5 m/s mu 3 u v = 25 m/s Tt ...(ii) A Time to fall down to ground 4 2 3 7 . 2mu cos 2mv sec. 2 m,u ()= 2h = v g .98 v u cos u Separation between particles ( ) 22 2m = v.t = 44.2m m,u 1 mx0 m1 (x0 h cot ) m2 (x0 h) cos ; 60 , = 120° m m1 m2 2 2 2 3. xcm =0 8 . COLM mu = (m + Ax)v v mu h(m2 m1 cot ) m Ax x0 = (m m1 m2 ) dx mu 150 150 1 (m Ax)dx mudt dt m Ax 00 4. us 2g(1 cos 60) 2g 3.13 m / s 2 Ax2 4 mx 2 = mut COLM 5uB = 4 × us uB = 5 g = 2.53 m/s 10–2x + 10–3 × 104 x2 = 10–2 × 103 × 150 Energy equation ( ) 2 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 1 4 2 x = 105 m 2 m 5 g = mg × 0.8 = 0.4 v v1 e = – v 2 v1 0.8 9. m M m u 2 u1 5 . 2mg – T = 2m.a ...(i) 2a 2a v2 v2 T – mg = m.a ...(ii) 2m m (i) COLM (m + m) × 0 + Mv = (M + 2m)v1 g AB On solving eq. (i) & (ii) a 3 v1 M M v aa 2m (a) v B u2 2as 0 2 g a 2ag (ii) COME 1 MV2 1 m ( v 2 v 2 ) 2 1 m v 2 3 3 2 2 1 2 2 1 13
JEE-Physics Net velocity v0 v 2 v 2 v 2M(M m) 1 2 . COLM : mv0 = (M + 2m) v1 1 2 (M 2m) mv0 v0 = 1m/s v1 = 6m 6 2mv0/2 g COME 1 0 . 2mg – T = 2ma; T – mg = ma; a = \\\\\\\\\\\\\\\\\\\\\\\\ 3 1 (2m) v0 2 1 Mv12 + 2m × g × h 1 (2m)v12 2 2 2 2 h = 0.3 m = L (1 – cos ) AB cos = 1 – 3 4 = 37° m 2m 15 5 mc 1 3 . For first collision with plate A, final velocity of ball Velocity of m & 2m after falling through a distance A (x m2m ) v1 = ev0 = e 2gh 0 ...(i) x 2ax 2gx For second collision ( 3 v Impulse equation ( ) mv = 4mv' v' = 2gx 4 Tt = 2m v 3 e 2gh0 2 4 2gh2 e = 3 2gx Tt – T't = m v 3 Height attained after first collision () T't = m(v–0), v 3gx h1 = e2h0 = 2 2 9 = 4m 8 33 1 4 . Let v = velocity of the ball after collision along the v0 normal 3 11. COLM mv0 + 0= (m + 2m)v1 v 1 (v=) J = impulse on ball ( ) After collision at highest point v1 = v – (– 2 cos 30°) = v + 3 () Impulse on wedge ( ) vx 1m / s mv1 v2 J sin 30° = mv1 = 2v1 2m m v0 v1 v = 4v1 – 3 ...(i) Coefficient of restitution m vy 1m / s m 2 Normal 2m ()v1 M A 30° COME 1 m v 2 1 m (v12 v 2 ) 1 (2 m ) v 2 v2 2 0 2 2 2 1 v1 J 2 30° v2 v1 v v2 24 m/s u2 u1 1 e= node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 v 2 2 2 cos 30 2 Max height attained 1.2m 2g v 3 v1 ...(ii) 22 () Solving we get v1 1 For the block ( )vx= 1m/s m/s while for the wedge it has 3 vx = 2m/s For the ball velocity along incline remains constant. 1 () 2 ( v xwedge v xblock )t & ut at2 block = 1.2 v' = 2 sin 30° = 1 m/s t = 0.4 sec and = (2–1)t = 0.4 m = 40 cm Final velocity of ball 12 1 2 2 m/s 3 3 14
JEE-Physics EXERCISE –V-A 7 . The object will have translation motion without 1 . vcm m 2v m v v rotation, when F is applied at CM of the system. mm 2 ( F ) 2 . Linear momentum is a vector quantity whereas kinetic energy is a scalar quantity. ( ) 3. P CM 2m 2 Initial position ( ) x C Just before collision For this system, position of centre of mass remains If P is the CM then (P) same x 2m x x 4 3 m 2 Fsystem 0 8 . On applying law of conservation of linear M 0 5M 12R M d 5M d 3R d 7.5 R momentum ( ) M 5M M 5M 16 0 Pf v Pi 12 4ˆi 4 12 ˆi 4v4 4 . In order to shift centre of mass, the system must experience an external force, as there is no external The 4 kg block will move in a direction opposite to force responsible for explosion, hence centre of 12 kg block with a speed of 12 m/s.The mass does not shift. corresponding kinetic energy of 4 kg block (4kg12kg 12 m/s4kg ) = 1 4 122 288 J 5 . Let maximum momentum be p then 2 (p) 9 . m1 d x m2 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 p2 1 kL2 p L Mk 2M 2 m1 d v Here m1d=m2x x= m2 3 6. m m 1v2 1 2 1 0 . Since mass area () before collision v2 after collision From COLM () AB mv2 m v 2 m v 2 v2 2v 3 3 Let mass of the bigger disc = 4M 15
JEE-Physics () EXERCISE –V(B) mass of the smaller disc = M 1 . By applying impulse-momentum theorem () () mass of the remaining portion () = 4M –M = 3M m1 v1 m 2 v2 m1 v 2 Now put the cut disc at its place again, centre of m1 m 2 2 t 0 2 m1 m2 gt0 g mass of the whole disc will be at centre O. () 2 . Just after collision O 10 14 4 0 vc = 10 m/s Centre of mass of the smaller disc is at its centre 10 4 that is at B. since spring force is internal force, it cannot change (B) the linear momentum of the (two mass + spring) Suppose CM of the remaining portion is at A and system. Therefore vc remains the same. AO is X. Let O as origin ( AOA= X vc O ) R 3. A[ˆi cos(kt) ˆj sin(kt)] 3M(x)=RM x = 3 p(t) This suggests that centre of mass of remaining disc Ak[ˆi sin(kt) ˆj cos(kt)] will shift from the centre of original disc by a distance F dp of (1/3)R towards left. dt F.p F.p Fp cos But 0 cos 0 = 90°. (1/3)R 4. A A 1 260° 3 1 m1m2 2 m1 m2 11. Energy loss ( )= u1 u2 2 60° 120° • 2v v • v 2v 0.5 1 2 02 2 J 1st collision IInd collision 2 0.5 1 3 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 L x n Particle with velocity 'v' covers and angle of 120° 0 L and after collision its velocity become '2v'. 1 2 . k x d x It will cover angle of 240° X cm xdm L n n 1 L dm 0 n 2 x m1y1 m2y2 m3y3 k L d x 5. Y= cm M1 M2 M3 Ycm = 6m(0) m(a) m(a) m(–a) m(0) a ;Ycm = 10 L 10 m For n=0, xcm = 2 and for n , xcm = L Multiple choice questions : 1 . As p1 p2 0 so p1' p2' 0 For (A) = (a + a ) ˆi + (b + b ) ˆj + c1 kˆ p1' p2' 1 2 1 2 For (B) = (a + a ) ˆi + (b + b ) ˆj For (C) p1' p2' 12 + 1 2 For (D) p1' p2' = (c + c ) kˆ 2b ˆj 1 1 p1' p2' 2 = (a + a ) ˆi 12 16
JEE-Physics But a, b, c, a, b, c 0 1 1 1 2 2 2 Therefore (A) & (D) is not possible to get 15 60 45 45 p1' p2' 0 15 60 3. Comprehension type questions : Before collision After collision A vertical component of velocity is zero 1. M () h1 v Subjective Questions : h2 60° B 30° C 1 . For body of mass m from A to B 3 33 (ABm) u = 10 m/s (given) a = – m g sin f m g sin mg cos m m h1 = tan60° h = 3m = – [g sin + g cos ] = – g [sin + cos ] 3 1 = – 10 [0.05 + 0.25 × 0.99] = – 2.99 m/s2 h2 h1 = tan30° h – h = 3 h = 6m v2 – u2 = 2as 33 2 1 2 Velocity of block just before collision at B v 100 2 2.99 6 8 m/s (B ) = 2gh = 2 10 3 = 60 ms–1 MC B uA N m 30° 30° mg sin f mg cos 60 )Amg After collision ( ): Let v1 be the velocity of mass m after collision and v2 be the velocity of mass M after collision.Body of mass M moving from B to C and coming to rest. For totally inelastic collision velocity of block along (mv1 normal to BC becomes zero and since there is no Mv2MBC impulse along BC so momentum (velocity) along ) BCrBemCainsunchanged( andsu==0v.25; v = 0, a=– 2.99 m/s2 v2 = 2as node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 – u2 BCBC (0)2 – v22 = 2(–2.99) × 0.5 ) v22 = 1.73 m/s Speed of block just after collision Body of mass m moving from B to A after collision ( ) (m BA v= 60 cos 30 = 60 3 4 5 m s 1 ) B 2 u = v1; v = +1 m/s 2 . vc2 = vB2 + 2g(h2 – h1) (K.E. + P.E.)initial = (K.E. + P.E.)final + Wfrication v = 452 2 10 3 = 105 ms–1 1 m v 2 mgh 1 mv2 0 m g s c 2 1 2 17
JEE-Physics 1 v12 + 10 × (6 × 0.05) = 1 Horizontal distance covered by the car 2 (1)2 + 0.25 × 10 × 6 () 2 BS=6 v1 = – 5m/s P = 12 × 53 = 603m h h Since the second ball also struck the trolley sin = 6 () A h = 6 sin = 6 × 0.05 In time 12 seconds the trolley covers a distance of 603 Coefficient of restitution( ) (12 s603 e Relative velocity of seperation For trolley in 12 sec (12s ) Relative velocity of approach From 5 1.73 0.84 s u v 60 3 5.5 3 v 1 2 v 7.8 m/s 8 0 2 2 2 . Consider the vertical motion of the cannon ball To find the final velocity of the carraige after the second impact we again apply conservation of linear ( ) momentum in the horizontal direction S = ut + 1 – 120 = 50t0 – 5t02 ( at2 ) 2 5t02 – 50t0 – 120 = 0 t02 – 10 t0 – 24 = 0 m vx + (M + m)7.8 = (M + 2m) vf t0 = – (10) 100 4(1)(24) = 12 or –2 1 × 55 3 + (9 + 1)7.8 = (9 + 2)vf 2 vf = 15.75 m/s The horizontal velocity of the cannon ball remains v2 the same 3. t vx = 100 cos30° + 5 3 55 3 m/s t +P u = 53m/s – 30°v=53m/s m=9kg (v2 sin tˆi v2 cos tˆj) and v1ˆj C v2 v1 120m A B uT=0 v21 v2 v1 Apply conservation of linear momentum to v2 sin tˆi (v2 cos t v1 )ˆj the cannon ball-trolley system in horizontal direction. If m is the mass of cannon ball and M is the mass of mv2 sin tˆi m(v2 cos t v1 )ˆj p21 mv21 the trolley then ( v2 mwhere = R M) 4 . The string snaps and the spring force comes into node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 mvx + M × 0 = (m + M) Vx Vx mvx play. The spring force being an internal force for m M the two mass-spring system will not be able to change the velocity of centre of mass. This means the location of centre of mass at time t will be v0 t where vx (isthvexvelocityof the(cannonball-trolley)) ( system 1 55 3 Vx = 1 9 = 5.53 m/s tv0t) The second ball was projected after 12 second. x cm m1x1 m2x2 v0t m1 m2 (12s) 18
JEE-Physics m1[v0t–A(1–cos t)] + m2x2 = v0tm1 + v0tm2 dp b ... (ii) m2x2 = v0tm1 + v0tm2–v0tm1+m1A (1–cos t) F = n dt × (Area) = n × (2mv) × a × 2 m2x2 = v0tm2 + m1A(1 – cos t) b b 3b m1 From (i) and (ii) Mg × = n × (2mv) × a × × x2 = v0t + m2 A(1 – cos t) 2 24 (b) Given that x1 = v0t – A(1 – cos t) 32 3 × 10 = 100 × 2 × 0.01 × v × 1 × 4 dx1 = v0 – A sin t 6. v = 10 m/s dt For collision between A & B d2 x1 = – A2 cos t ... (i) vA (m 2m) = –3ms–1 dt2 (m 2m) (9) This is the acceleration of mass m1. When the 2(m) spring comes to its natural length instantaneously vB (m 2m) (9) = +6ms–1 For collision between B and C then (m1 ) d2 x1 = 0 and x2 – x1 = vC 2m m (6) = 4ms–1 dt2 0 2m v 0 t m1 A (1 cos t) –[v0t – A (1 – cos t)] = u0cos m2 0 u0cos Hmax. m1 1 A (1 – cos t) =0 7. u0 m2 u0 Also when d2 x1 = 0; cos t = 0 from (1) u 2 sin2 dt2 0 Maximum height of first particle Hmax = 2g = m1 1 A Speed of 2nd particle at height Hmax given as 0 m2 v 2 u 2 2gHmax u 2 u 2 sin2 v = u0cos y 0 0 0 y 5. Since the plate is held horzontal therefore net torque By Momentum Conseravtion acting on the plate is mv0 cos ˆi zero. ( p f f m v0 cos ˆj pi 2mv ) vf v0 cos ˆi ˆj 2 m Angle with horizontal immediately after the node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 3 & 4\\01-Centre of mass.p65 3b/4 F collision = 4 a b/2 Mg b 3b ... (i) Mg × × F × 24 19
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420