ﻭﺯﺍﺭﺓ ﺍﻟﺘﺮﺑﻴﺔ »ª∏Y öûY …OÉ◊G ∞q °üdG ∫hC’G »°SGQódG π°üØdG øjQɪàdG á°SGôq c ﺍﻟﻠﺠﻨﺔ ﺍﻹﺷﺮﺍﻓﻴﺔ ﻟﺪﺭﺍﺳﺔ ﻭﻣﻮﺍﺀﻣﺔ ﺳﻠﺴﻠﺔ ﻛﺘﺐ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﺃ .ﺇﺑﺮﺍﻫﻴﻢ ﺣﺴﲔ ﺍﻟﻘﻄﺎﻥ )ﺭﺋﻴ ﹰﺴﺎ( ﺃ .ﻓﺘﺤﻴﺔ ﻣﺤﻤﻮﺩ ﺃﺑﻮ ﺯﻭﺭ ﺃ .ﺣﺼﺔ ﻳﻮﻧﺲ ﻣﺤﻤﺪ ﻋﻠﻲ ﺍﻟﻄﺒﻌﺔ ﺍﻟﺜﺎﻧﻴﺔ ١٤٣٧ - ١٤٣٦ﻫـ ٢٠١٦ - ٢٠١٥ﻡ
ﳉﻨﺔ ﺩﺭﺍﺳﺔ ﻭﻣﻮﺍﺀﻣﺔ ﻛﺘﺐ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻟﻠﺼﻒ ﺍﳊﺎﺩﻱ ﻋﺸﺮ ﻋﻠﻤﻲ ﺃ .ﺣﺴﻦ ﻧﻮﺡ ﻋﻠﻲ ﺍﳌﻬﻨﺎ )ﺭﺋﻴ ﹰﺴﺎ( ﺃ .ﻣﺼﻄﻔﻰ ﻣﺤﻤﺪ ﺷﻌﺒﺎﻥ ﻣﺤﻤﻮﺩ ﺃ .ﺣﺴﲔ ﺍﻟﻴﻤﺎﻧﻲ ﺍﻟﺸﺎﻣﻲ ﺃ .ﺷﻴﺨﺔ ﻓﻼﺡ ﻣﺒﺎﺭﻙ ﺍﳊﺠﺮﻑ ﺃ .ﺻﺪﻳﻘﺔ ﺃﺣﻤﺪ ﺻﺎﻟﺢ ﺍﻻﻧﺼﺎﺭﻱ ﺃ .ﻣﻨﻰ ﻋﻠﻲ ﻋﻴﺴﻰ ﺍﳌﺴﺮﻱ ﺩﺍﺭ ﺍﻟ ﱠﺘﺮﺑﹶﻮ ﹼﻳﻮﻥ House of Educationﺵ.ﻡ.ﻡ .ﻭﺑﻴﺮﺳﻮﻥ ﺇﺩﻳﻮﻛﻴﺸﻦ ٢٠١٣ © ﹶﺟﻤﻴﻊ ﺍﳊﻘﻮﻕ ﹶﻣﺤﻔﻮﻇﺔ :ﻻ ﻳﹶﺠﻮﺯ ﻧ ﹾﺸﺮ ﺃ ﹼﻱ ﹸﺟﺰﺀ ﻣﻦ ﻫﺬﺍ ﺍﻟ ﹺﻜﺘﺎﺏ ﺃﻭ ﺗﹶﺼﻮﻳﺮﻩ ﺃﻭ ﺗﹶﺨﺰﻳﻨﻪ ﺃﻭ ﺗﹶﺴﺠﻴﻠﻪ ﺑﺄ ﹼﻱ ﻭﹶﺳﻴﻠﹶﺔ ﺩﹸﻭﻥ ﹸﻣ ﹶﻮﺍﻓ ﹶﻘﺔ ﺧ ﹼﻄ ﱠﻴﺔ ﹺﻣ ﹶﻦ ﺍﻟ ﹼﻨﺎ ﹺﺷﺮ. ﺍﻟﻄﺒﻌﺔ ﺍﻷﻭﻟﻰ ٢٠١٣ ﺍﻟﻄﺒﻌﺔ ﺍﻟﺜﺎﻧﻴﺔ ٢٠١٥
ﺍﻟﻤﺤﺘﻮﻳﺎﺕ ﺍﻟﻮﺣﺪﺓ ﺍﻷﻭﻟﻰ :ﺍﻷﻋﺪﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺗَ َﻤ ﱠﺮ ْﻥ 9 .............................................................................................................................................1-1 ﺗَ َﻤ ﱠﺮ ْﻥ 12 .............................................................................................................................................1-2 ﺗَ َﻤ ﱠﺮ ْﻥ 15 .............................................................................................................................................1-3 ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻷﻭﻟﻰ17 ................................................................................................................................................. ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴّﺔ 19 ............................................................................................................................................................ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ :ﺍﻟﺪﻭﺍﻝ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺗَ َﻤ ﱠﺮ ْﻥ 20 .............................................................................................................................................2-1 ﺗَ َﻤ ﱠﺮ ْﻥ 22 ............................................................................................................................................ 2-2 ﺗَ َﻤ ﱠﺮ ْﻥ 24 .............................................................................................................................................2-3 ﺗَ َﻤ ﱠﺮ ْﻥ 27 ............................................................................................................................................ 2-4 ﺗَ َﻤ ﱠﺮ ْﻥ 30 ........................................................................................................................................... 2-5 ﺗَ َﻤ ﱠﺮ ْﻥ 32 ............................................................................................................................................ 2-6 ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ 34 .................................................................................................................................................. ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴّﺔ 36 ........................................................................................................................................................... ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻟﺜﺔ :ﻛﺜﻴﺮﺍﺕ ﺍﻟﺤﺪﻭﺩ ﺗَ َﻤ ﱠﺮ ْﻥ 38 .............................................................................................................................................3-1 ﺗَ َﻤ ﱠﺮ ْﻥ 41 .............................................................................................................................................3-2 ﺗَ َﻤ ﱠﺮ ْﻥ 43 .............................................................................................................................................3-3 ﺗَ َﻤ ﱠﺮ ْﻥ 46 .............................................................................................................................................3-4 ﺗَ َﻤ ﱠﺮ ْﻥ 49 .............................................................................................................................................3-5 ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻟﺜﺔ 51 .................................................................................................................................................. ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴّﺔ 52 ...........................................................................................................................................................
ﺍﻟﻮﺣﺪﺓ ﺍﻟﺮﺍﺑﻌﺔ :ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﻴﺔ ﻭﺍﻟﺪﻭﺍﻝ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﻴﺔ ﺗَ َﻤ ﱠﺮ ْﻥ 54 .............................................................................................................................................4-1 ﺗَ َﻤ ﱠﺮ ْﻥ 57 ............................................................................................................................................ 4-2 ﺗَ َﻤ ﱠﺮ ْﻥ 59 .............................................................................................................................................4-3 ﺗَ َﻤ ﱠﺮ ْﻥ 62 .............................................................................................................................................4-4 ﺗَ َﻤ ﱠﺮ ْﻥ 65 .............................................................................................................................................4-5 ﺗَ َﻤ ﱠﺮ ْﻥ 67 .............................................................................................................................................4-6 ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺮﺍﺑﻌﺔ 69 ................................................................................................................................................. ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴّﺔ 71 ............................................................................................................................................................ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺨﺎﻣﺴﺔ :ﺍﻟﻤﺘﺠﻬﺎﺕ ﺗَ َﻤ ﱠﺮ ْﻥ 72 .............................................................................................................................................5-1 ﺗَ َﻤ ﱠﺮ ْﻥ 74 .............................................................................................................................................5-2 ﺗَ َﻤ ﱠﺮ ْﻥ 77 .............................................................................................................................................5-3 ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺨﺎﻣﺴﺔ81 .............................................................................................................................................. ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴّﺔ 84 ............................................................................................................................................................ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺴﺎﺩﺳﺔ :ﺍﻟﺠﺒﺮ ﺍﻟﻤﺘﻘﻄﻊ )ﺍﻹﺣﺼﺎﺀ( ﺗَ َﻤ ﱠﺮ ْﻥ 85 .............................................................................................................................................6-1 ﺗَ َﻤ ﱠﺮ ْﻥ 87 ............................................................................................................................................ 6-2 ﺗَ َﻤ ﱠﺮ ْﻥ 89 .............................................................................................................................................6-3 ﺗَ َﻤ ﱠﺮ ْﻥ 91 .............................................................................................................................................6-4 ﺗَ َﻤ ﱠﺮ ْﻥ 93 .............................................................................................................................................6-5 ﺗَ َﻤ ﱠﺮ ْﻥ 95 .............................................................................................................................................6-6 ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺴﺎﺩﺳﺔ 97 ............................................................................................................................................. ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴّﺔ 99 ...........................................................................................................................................................
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﺠﺬﻭﺭ ﻭﺍﻟﺘﻌﺒﻴﺮﺍﺕ ﺍﻟﺠﺬﺭﻳﺔ 1-1 Roots and Radical Expressions ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﻮﺍﻧﻴﻦ ﺍﻟﺠﺬﻭﺭ ﺃﻭﺟﺪ ﺇﻥ ﺃﻣﻜﻦ: (a) 400 (b) 1600 (c) 104 (d) 0.01 (f) 0.0064 (e) 0.25 (j) 36 # 25 )(g - 16 )(h 2 49 50 )(i 12 )(k -1 (l) 75 # 300 147 121 ) (2ﺑﺎﺳﺘﺨﺪﺍﻡ ﻗﻮﺍﻧﻴﻦ ﺍﻟﺠﺬﻭﺭ ﺃﻭﺟﺪ: (a) 3 27 (b) 3 1000 (c) 3 -64 (d) 3 0.125 (f) 3 216 # 343 (h) 3 0 )(e 3 8 )(g 3 - 375 125 24 (i) 3 60 # 90 ) (3ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺒﻴﺮﺍﺕ ﺍﻟﺠﺬﺭﻳﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺴﺘﺨﺪ ًﻣﺎ ﻗﻮﺍﻧﻴﻦ ﺍﻟﺠﺬﻭﺭ: (a) 16x2 (b) 0 . 25x6 (c) x8 y18 (d) 8x3 , x $ 0 (g) 3 -125y6 )(e x3y5 , y $ 0, x 2 0 (f) 5 216x2 + 23 64x4, x 2 0 25x (h) 3 81x2 (i) 3 -250x6 y5 (j) 3 49x2 # 3 56xy3 (k) 3 256u5 v ' 3 4u2 v10 , u ! 0 , v ! 0 (a) 5 # 40 ) (4ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺒﻴﺮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺴﺘﺨﺪ ًﻣﺎ ﻗﻮﺍﻧﻴﻦ ﺍﻟﺠﺬﻭﺭ: (d) 5 # ^ 5 + 15h (g) ^5 + 2 11h2 (b) 3 4 # 3 80 )(c 3 640 (j) 75 - 4 18 + 2 32 3 270 (e) ^ 3 - 2h2 (f) 2 # ^ 50 + 7h )(h 3.6 # 108 (i) 3 3 16 - 4 3 54 + 3 128 4 # 103 (k) 4 3 81 - 3 3 54 (l) 3 -18 # 3 -12 (m) ^2 7 + 1h2 - ^ 3 - 1h^ 3 + 1h 9
) (5ﺣﺪﻳﻘﺔ ﻣﺴﺘﻄﻴﻠﺔ ﺍﻟﺸﻜﻞ ﻃﻮﻟﻬﺎ 5 21 mﻭﻋﺮﺿﻬﺎ 2 7 m ) (aﺃﻭﺟﺪ ﻣﺤﻴﻂ ﺍﻟﺤﺪﻳﻘﺔ. ) (bﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ ﺍﻟﺤﺪﻳﻘﺔ. ) (6ﺍﻛﺘﺐ ﻛ ًّﻼ ﻣﻤﺎ ﻳﻠﻲ ﺑﺤﻴﺚ ﻳﻜﻮﻥ ﺍﻟﻤﻘﺎﻡ ﻋﺪ ًﺩﺍ ﻧﺴﺒﻴًّﺎ: )(a 21 7 )(b 3 (c) 4 4 # 27 32 3 3-2 (d) 3 + 8 (e) 5 + 5 (f) 5 - 2 - ^9 - 4 5h 2-2 8 4-3 5 5+2 )(g 22 (h) 3 - 1 (i) x + 1 , x d Z+ , x ! 1 - 2 2 2- 3 x-1 3- 2 3+ 2 )(j x + y+2 xy , x, y d Z+ x+ y ) (7ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺘﻌﺒﻴﺮ ، x2 - 6 :ﺇﺫﺍ ﻛﺎﻥ x = 4 5-1 =x 1+ 5 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺘﻌﺒﻴﺮ ، x2 - x + 1 :ﺇﺫﺍ ﻛﺎﻥ )(8 2 ) (9ﺍﻛﺘﺐ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺒﻴﺮﻳﻦ ﺍﻟﺘﺎﻟﻴﻴﻦ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ a + b 2 , a , b d Z E = 5 + 6 2^3 2 + 4h F = ^7 2 - 4h2 ) (10ﺍﻟﺤﺴﺎﺏ ﺍﻟﺬﻫﻨﻲ .ﺑ ّﺴﻂ1 + 5 + 11 + 21 + 13 + 7 + 3 + 1 : ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. (1) 3 -64x3 + 4x = 0 ab ab )(2 8- 7 + 3 dZ ab 3 4- ab 7 ab (3) ^3 - 2 2h27 # ^3 + 2 2h27 = 1 (4) 3 2 + 3 3 = 3 5 (5) m # m2 = m2 , 6m d R 10
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-12ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺍﻟﺘﻌﺒﻴﺮ ﺍﻟﺠﺬﺭﻱ ﺍﻟﺬﻱ ﻓﻲ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻫﻮ: a 3 216 b 2 c 39 d 2 a2 32 3 a 2- 3 a ϕ2 + ϕ = 1 ﻓﻲ ﺃﺑﺴﻂ ﺻﻮﺭﺓ ﻧﻀﺮﺏ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺒﺴﻂ ﻭﺍﻟﻤﻘﺎﻡ ﻓﻲ: 3 5 ﻟﻮﺿﻊ ﺍﻟﺘﻌﺒﻴﺮ ﺍﻟﺠﺬﺭﻱ )(7 a -1 3 4 b 32 c2 d4 ) 7 + 4 3 (8ﻳﺴﺎﻭﻱ: b 2+ 3 c 3- 2 d 3+ 2 b ϕ2 = ϕ + 1 b -x ﻓﺈﻥ: =ϕ 1+ 5 ﺇﺫﺍ ﻛﺎﻥ )(9 2 c ϕ + ϕ2 + 1 = 0 d ϕ2 + 1 = ϕ ﻳﺴﺎﻭﻱ: 1 : x ﻓﺈﻥ ﺇﺫﺍ ﻛﺎﻥ x d R- )(10 x c1 d x ) (11ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﺷﺒﻪ ﺍﻟﻤﻜﻌﺐ ﺍﻟﻤﻘﺎﺑﻞ ﻳﺴﺎﻭﻱ ،40 cm3ﻓﺈﻥ xﺗﺴﺎﻭﻱ: x 5x a 2 cm b 2 2 cm c -2 2 cm d 4 cm ) (12ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﺃﺳﻄﻮﺍﻧﺔ ﺍﺭﺗﻔﺎﻋﻬﺎ hﻭﻃﻮﻝ ﻧﺼﻒ ﻗﻄﺮﻫﺎ rﻳﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔ V = π r2h :ﺣﻴﺚ ﺍﻟﺤﺠﻢ )(V ﺑﺪﻻﻟﺔ ﻛﻞ ﻣﻦ ﺍﺭﺗﻔﺎﻉ ﻭﻧﺼﻒ ﻗﻄﺮ ﺍﻷﺳﻄﻮﺍﻧﺔ ،ﻓﺄﻱ ﻣﻦ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺻﺤﻴﺤﺔ؟ a h = π r2V b h = π :V c r = π hV d =r V r2 πh 11
ﺗﻤ ﱠﺮ ْﻥ ﺍﻷﺳﺲ ﺍﻟﻨﺴﺒﻴﺔ 1-2 Rational Exponents ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ (a) -4 81 (b) 4 -81 ) (1ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺒﻴﺮﺍﺕ ﺍﻟﺠﺬﺭﻳﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺇﻥ ﺃﻣﻜﻦ: (c) 4 36 # 108 )(d 5 256 (e) 5 32y10 (f) 5 -x20 58 (h) 4 81 + 4 729 16x25 (g) 5 0.01024 )(i 4 y12 : x, y 2 0 ) (2ﺍﻛﺘﺐ ﻛﻞ ﻋﺪﺩ ﻣﻤﺎ ﻳﻠﻲ ﺑﺎﻟﺼﻮﺭﺓ ﺍﻟﺠﺬﺭﻳﺔ: )(a x 1 , x $ 0 )(b x 2 )(c y- 9 , y 2 0 6 7 8 (d) x1.5 , x $ 0 )(e x 3 , x $ 0 )(f 2 4 73 (g) y3.2 )(h x- 2 | x ! 0 3 ) (3ﺑ ّﺴﻂ ﻛﻞ ﻋﺪﺩ ﻣﻦ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺘﺎﻟﻴﺔ )ﺩﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ(: )(a 2 )(b ^- 32h- 4 (c) 41.5 5 64 3 ) (4ﺍﻛﺘﺐ ﻛﻞ ﻋﺪﺩ ﺑﺎﻟﺼﻮﺭﺓ ﺍﻷﺳﻴﺔ: (a) 7x3 , x $ 0 (b) ^7xh3 , x H 0 (c) ^ 7xh3 , x H 0 (d) 3 ^5xyh6 (g) 5 ^1024h3 (e) 4 81x3 , x H 0 (f) 0.0049t52 ) (5ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻤﺎ ﻳﻠﻲ )ﺩﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ(: (a) 2 4 163 (b) 3 ^-27h-4 (c) 5 -243 23 31 2 : y - 1 : 4 )(d x 7 : x 14 , x H 0 )(e x 5 ' x 10 , x 2 0 )(f x3 1 , x 2 0, y 2 0 1 2 y - x2 )(g x 1 : y- 1 )(h 3 - 1 i2 1 )(i 9t -12 2 3 2 27t2 `_3 2 j3 o, 3 1 , x 2 0, y 2 0 x , x20 e3 t 2 0 4 2 x - : y - 12
) (6ﺃﻭﺟﺪ ﻧﺎﺗﺞ ﻛ ّﻞ ﻣﻤﺎ ﻳﻠﻲ ﻓﻲ ﺃﺑﺴﻂ ﺻﻮﺭﺓ: (a) 3 64x6 )(b 2 # 25 - 1 )(c 3 82 # 4 32 (d) 10 1024 - 2 6 26 3 88 4 53 11 ^32h2 # ^16h- 3 )(e 6 64 (f) ^2 - 3 8h^2 + 3 8h ) (7ﺃﻭﺟﺪ ﻋﺪ ًﺩﺍ xﺑﺤﻴﺚ ﻳﻜﻮﻥ ^4 + 5h # xﻋﺪ ًﺩﺍ ﻧﺴﺒﻴًّﺎ. ﻏﺎﺯ. ﻣﻦ ﻋﻴﻨﺔ Vﻳﻤﺜﻞ ﺣﺠﻢ ﺍﻟﻀﻐﻂ، ﻳﻤﺜﻞ P ﺣﻴﺚ ، PV 7 ﺍﻟﺘﻌﺒﻴﺮ ﻓﻲ )(8 5 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺘﻌﺒﻴﺮ ﺇﺫﺍ ﻛﺎﻥP = 6, V = 32 : 5 #_4 - 5 1 i = 5# 1 = 20 - 25 1 = 15 ﺗﺤﻠﻴﻞ ﺍﻟﺨﻄﺄ :ﺃﻭﺟﺪ ﺍﻟﺨﻄﺄ ﻓﻲ ﺍﻟﺤﻞ ﺍﻟﺘﺎﻟﻲ: )(9 2 2 4 - 5 # 52 m = 46 # 104 ﻛﺎﻥ ﺇﺫﺍ ﺍﻟﺘﻌﺒﻴﺮ، ﻗﻴﻤﺔ ﺃﻭﺟﺪ ﺍﻟﺴﻮﺍﺋﻞ. ﻟﺪﺭﺍﺳﺔ 3 ﻋﻠﻢ ﺍﻷﺣﻴﺎﺀ :ﻳﺴﺘﺨﺪﻡ ﺍﻟﺘﻌﺒﻴﺮ: )(10 0.036 m 4 ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ 33 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab (1) 16- 4 = 32- 5 ab ab 1 32 ab ab (2) x 2 ' x 4 = x 3 )(3 x - 1 1 = x- 1 2 6 : x3 (4) 4 x = x , x 2 0 (5) 32 # 16-1 = 4 ﻓﻲ ﺍﻟﺒﻨﻮﺩ ) ،(6-12ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺇﺫﺍ ﻛﺎﻥ ، n 2 0ﻓﺈﻥ ﺍﻟﺘﻌﺒﻴﺮ ﺍﻟﺬﻱ ﻻ ﻳﻜﺎﻓﺊ 4 4n2ﻫﻮ: a ^4n2h41 b 2n 1 c ^2nh21 d 2n 2 a 14y = (8) _4 x-2 y4 i-2 15 ﻳﺴﺎﻭﻱ: 56 3 # y 3 ) (7ﺇﺫﺍ ﻛﺎﻥ ، y 2 0 :ﻓﺈﻥ ﺍﻟﺘﻌﺒﻴﺮ 1 ^7y2h3 b 1 y c 2y d 8 y 7 7 :x!0 , y!0 a x-1 y2 b x y-2 c xy2 d x-2 y2 )(9 11 1 2 = 3 5 # 3 52 c 52 d 53 a5 - 1 b 1 2 5 13
) (10ﺇﺫﺍ ﻛﺎﻥ x2 - xy + y2 = 4 , x + y = 2ﻓﺈﻥ 6 x3 + y3ﻳﺴﺎﻭﻱ: a2 b 32 c 36 d2 =V 243 =, P 32 7 )(11 32 27 ﻓﻲ ﺍﻟﺘﻌﺒﻴﺮ P.V 5ﺣﻴﺚ Pﻳﻤﺜﻞ ﺍﻟﻀﻐﻂ V ،ﻳﻤﺜﻞ ﺣﺠﻢ ﻋﻴﻨﺔ ﻣﻦ ﻏﺎﺯ ﻓﺈﻥ ﻗﻴﻤﺘﻪ ﻋﻨﺪﻣﺎ ﻳﺴﺎﻭﻱ: a 4 b4 c 81 d 243 81 4 4 ﺗﺴﺎﻭﻱ: 3 x6 : 4 x5 ) (12ﺇﻥ ﻗﻴﻤﺔ ﺍﻟﺘﻌﺒﻴﺮ , x 2 0 x3 : 8 x2 ax b 1 c1 d x x 14
ﺗﻤ ﱠﺮ ْﻥ 1-3 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ Solving Equations ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) 3 x + 3 = 15 (b) x + 3 = 5 )(c 2 3 ^x + 5h3 = 4 (d) ^x + 1h2 - 2 = 25 (e) 3 - 4x - 2 = 0 3 3 (f) 2^2x + 4h4 = 16 (g) ^5 - 3xh2 + 4 = 3 ) (a) (2ﺍﻟﺤﺠﻢ :ﻳﺘﺴﻊ ﺧ ّﺰﺍﻥ ﻛﺮﻭﻱ ﺍﻟﺸﻜﻞ ِﻟـ 424 . 75 m3ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﻄﺮ ﻫﺬﺍ ﺍﻟﺨ ّﺰﺍﻥ. dﻃﻮﻝ ﻗﻄﺮ ﺍﻟﻜﺮﺓ(. ﺣﻴﺚ π # d3 = )ﻣﺴﺎﻋﺪﺓ :ﺣﺠﻢ ﺍﻟﻜﺮﺓ 6 ) (bﺗﺮﺍﺑﻂ ﺣﻴﺎﺗﻲ :ﺗﻘﺎﺱ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻘﺼﻮﻯ Kﻟﺘﺪﻓّﻖ ﺍﻟﻤﻴﺎﻩ ﻓﻲ ﺃﻧﺒﻮﺏ ،ﺑﺎﻟﻘﺎﻧﻮﻥ ،K = m # V :ﺣﻴﺚ mﻫﻲ ﻣﺴﺎﺣﺔ ﺍﻟﻤﻘﻄﻊ ﺍﻟﻌﺮﺿﻲ ﻟﻸﻧﺒﻮﺏ V ،ﻫﻲ ﺍﻟﺴﺮﻋﺔ ﺍﻟﻤﺘﺠﻬﺔ ﻟﻠﻤﻴﺎﻩ .ﺃﻭﺟﺪ ﻃﻮﻝ ﻗﻄﺮ ﺍﻷﻧﺒﻮﺏ ﺍﻟﺬﻱ ﻳﺴﻤﺢ ﺑﺘﺪﻓﻖ 1.48 m3/minﺑﺴﺮﻋﺔ 183 m/min ) (3ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) 11x + 3 - 2x = 0 (b) 3x + 13 - 5 = x (c) -3x - 5 = x + 3 1 1 (f) 10x - 2 5x - 25 = 0 (d) ^x + 3h2 - 1 = x (e) x + 8 = ^x2 + 16h2 11 )(h 11 3 (g) ^3x + 2h2 - ^2x + 7h2 = 0 ^x - 9h2 + 1 = x 2 (i) ^2x + 3h4 - 3 = 5 4 )(k ^3x + 1 = 8^3x + 2h- 1 11 2 (j) 2^x - 1h3 + 4 = 36 2h2 (l) ^2x + 1h3 = ^3x + 2h3 )(m 11 )ﻣﺴﺎﻋﺪﺓ :ﺭﻓﻊ ﻃﺮﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺇﻟﻰ ﺍﻟﻘﻮﺓ (6 (n) ^x + 5h21 - ^5 - 2xh41 = 0 ^2x - 1h3 = ^x + 1h6 = ،Sﺣﻴﺚ xﻫﻲ ﻃﻮﻝ ﺍﻟﻀﻠﻊ. 3 3 x2 ﺍﻟﻬﻨﺪﺳﺔ :ﻗﺎﻧﻮﻥ ﻣﺴﺎﺣﺔ ﻣﻀﻠّﻊ ﺳﺪﺍﺳﻲ ﻣﻨﺘﻈﻢ ﻫﻮ: )(4 2 ) (aﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻀﻠﻊ xﺑﺪﻻﻟﺔ ﺍﻟﻤﺴﺎﺣﺔ S ) (bﺃﺭﺍﺩ ﺃﺣﺪ ﺍﻷﺷﺨﺎﺹ ﺻﻨﻊ ﺻﻨﺪﻭﻕ ﻗﺎﻋﺪﺗﻪ ﻣﻀﻠﻊ ﺳﺪﺍﺳﻲ ﻣﻨﺘﻈﻢ ﻭﻣﺴﺎﺣﺘﻪ x ﺗﺴﺎﻭﻱ 200 cm2ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﻤﻀﻠﻊ .ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺿﻠﻌﻴﻦ ﻣﺘﻮﺍﺯﻳﻴﻦ. x ) (5ﺻﻨﺪﻭﻕ ﻣﻜﻌﺐ ﺍﻟﺸﻜﻞ ﺳﻌﺘﻪ 150 m3ﺃﻭﺟﺪ ﻃﻮﻝ ﺿﻠﻌﻪ. 3x ) x, y (6ﻫﻤﺎ ﻋﺪﺩﺍﻥ ﺣﻘﻴﻘﻴﺎﻥ. 2 ) (aﺃﻭﺟﺪ ﺍﻟﻨﺎﺗﺞ^x - yh^x2 + xy + y2h : ، 3ﺑﺤﻴﺚ ﻳﻜﻮﻥ ﺍﻟﻤﻘﺎﻡ ﻋﺪ ًﺩﺍ ﻧﺴﺒﻴًّﺎ. 1 2 ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺴﺎﺑﻘﺔ ،ﺍﻛﺘﺐ ﺍﻟﻜﺴﺮ )(b 3-3 15
) (7ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻷﺳﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ: (a) 52x-3 = 125 (b) 3x+1 = 1 (c) 3x2+5 = 39 (e) 4x = 2x )(d = 3x2-5x 1 (h) 5x2-3x = 1 )(f a 1 n = 0.25 92 2 k (g) 5x = 125 5 (i) ^3x - 27h^2x - 1h = 0 )(j a 2 x-1 = a 125 x 5 8 k k ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. a ) (1ﻣﺠﻤﻮﻋﺔ ﺣﻞ 73-x = 1ﻫﻲ b \"3, a a ) (2ﻣﺠﻤﻮﻋﺔ ﺣﻞ x - 1 = 1 - xﻫﻲ b \"0, a a ) (3ﺇﺫﺍ ﻛﺎﻥ 3 9 + x2 = 3ﻓﺈﻥ b x = 3 2 b 2x2-4 = 1 x = - 1ﺣ ًّﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ )(4 32 b R- ﻫﻲ 25 |x |+ 1 5 1 - 2x ﻣﺠﻤﻮﻋﺔ ﺣﻞ )(5 2 = ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ: 1 ) (6ﻣﺠﻤﻮﻋﺔ ﺣﻞ _ x20i5 - x2 = 0ﻫﻲ: a \"0, b R+ c R- dR ) (7ﻣﺠﻤﻮﻋﺔ ﺣﻞ 3 x - 2 = x - 2ﻫﻲ: a \"2, b \"1,2, c \"1,2,3, d \"2,3, ) (8ﻣﺠﻤﻮﻋﺔ ﺣﻞ 3 2x2 + 2 = 3 3 - xﻫﻲ: a &- 1, 1 0 b & 1 0 c &- 1, -1 0 d &1, 1 0 2 2 2 2 ) (9ﻣﺠﻤﻮﻋﺔ ﺣﻞ x2 = xﻫﻲ: a \"-1, 0, 1, b \"0,1, c \"0, d \"1, ﺗﺴﺎﻭﻱ: x ﻓﺈﻥ a 1 x+1 = 32-x ﻛﺎﻥ ﺇﺫﺍ )(10 9 k a -2 b2 c -4 d4 16
ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻷﻭﻟﻰ (a) 121x90 (b) 3 -64y81 ) (1ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺒﻴﺮﺍﺕ ﺍﻟﺠﺬﺭﻳﺔ ﺍﻟﺘﺎﻟﻴﺔ: (c) 5 32y25 (d) 0 . 0081x60 (e) 16x36 y96 (f) 8^ 24 + 3 8h (h) 32 )ﺣﻴﺚ yﻋﺪﺩ ﺣﻘﻴﻘﻲ (g) 2 5x3 # 3 28x3y2 , ^x $ 0, 2 (i) 3 2x2 # 3 4x ) (2ﺍﻛﺘﺐ ﻛﻞ ﻛﺴﺮ ﻣﻤﺎ ﻳﻠﻲ ﺑﺤﻴﺚ ﻳﻜﻮﻥ ﻣﻘﺎﻣﻪ ﻋﺪ ًﺩﺍ ﻧﺴﺒﻴًّﺎ: )(a ^ 5+2 1 5-2 3h (b) 5 ^3 h 4 7+5 (c) 2 + 10 (d) -2 + 8 2-3 5 -3 - 2 ) (3ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺎﺑﻴﺮ ﺍﻟﺘﺎﻟﻴﺔ: 2 (b) 251.5 )(c 11 (a) 64 3 6 2 # 12 2 (d) 81- 0.25 )(e) 8 # 2 - 2 75 + 5 12 (f 22 - 3- 2 3+ 2 ) (4ﻟﻴﻜﻦ xﺍﻟﻌﺪﺩ ﺍﻟﺤﻘﻴﻘﻲx = 6 - 2 5 - 6 + 2 5 ، ) (aﺍﺣﺴﺐ x2 ) (bﺃﺛﺒﺖ ﺃﻥ ﻗﻴﻤﺔ xﺗﺴﺎﻭﻱ -2 )(a 5 )(b y - 2 , y ! 0 ) (5ﺍﻛﺘﺐ ﻛﻞ ﺗﻌﺒﻴﺮ ﻣﻤﺎ ﻳﻠﻲ ﺑﺎﻟﺼﻮﺭﺓ ﺍﻟﺠﺬﺭﻳﺔ: 9 (c) ^5 xh2 x7 (d) 3 4 64 (e) 2 3 # 54 3 (f) 3 x # 2 3 x , x $ 0 (g) 2 3 3 ' 4 3 (h) 5 10 # 2 4 10 # 3 10 (i) 2 ' 36 8 ) (6ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺒﻴﺮﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ: )(a ^8 -3 y -6h- 2 )(b d 16x14 1 y ! 0 3 81y18 n2 , )(c __ - 1 i2 1 )(d x 1 : y- 1 2 3 2 i3 x , x 2 0 3 3 ,x 2 0, y 2 0 x6 :y4 17
ﻛﺘﺐ ﺃﺣﺪ ﺍﻟﻄﻼﺏ ﻣﺎ ﻳﻠﻲ: 1 2 h2 ﺗﺤﻠﻴﻞ ﺍﻟﺨﻄﺄ :ﻓﻲ ﺳﺒﻴﻞ ﺗﺒﺴﻴﻂ ﺍﻟﻜﺴﺮ )(7 ^1 - 1 2 h2 = ^1 - 2 h-2 ^1 - = 1-2 - ^ 2 h-2 ^ = 1- 1 2 h2 = 1 - 1 2 1 =2 ﻣﺎ ﺍﻟﺨﻄﺄ ﺍﻟﺬﻱ ﺍﺭﺗﻜﺒﻪ ﺍﻟﻄﺎﻟﺐ؟ ) (8ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) 5 x + 7 = 8 (b) x + 2 = x (c) 4x - 23 - 3 = 2 )ﻣﺴﺎﻋﺪﺓ :ﺗﺮﺑﻴﻊ ﻃﺮﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻣﺮﺗﻴﻦ ﻣﺘﺘﺎﻟﻴﺘﻴﻦ( (d) 2x + 1 - x + 11 = 0 (e) x - x - 5 = 2 (f) 3x - 9 = 2x + 4 ) (9ﺍﻟﻔﻴﺰﻳﺎﺀ :ﺍﻟﺴﺮﻋﺔ Vﻟﺠﺴﻢ ﻣﺎ ﺃﺳﻘﻂ ﻋﻦ ﺳﻄﺢ ﻣﺒﻨﻰ ﻋﺎﻝ ﻣﻌﻄﺎﺓ ﺑﺎﻟﻘﺎﻧﻮﻥ ،V = 8 m :ﺣﻴﺚ mﻫﻲ ﺍﺭﺗﻔﺎﻉ ﺍﻟﻤﺒﻨﻰ .ﺃﻭﺟﺪ ﺍﻻﺭﺗﻔﺎﻉ mﺑﺪﻻﻟﺔ ﺍﻟﺴﺮﻋﺔ V ) (10ﺇﺫﺍ ﻛﺎﻥ ، x = 2ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ x2 ^3 - xh 3-1 ) (11ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) 2x2 = 512 (b) 4x2-x = 16 18
ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴﺔ ) (1ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻤﺎ ﻳﻠﻲ ﺩﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ: (a) 3 -343 (b) 4 810 000 (c) _4 3 i8 (d) -4 6 561 (e) 5 -0.00001 (f) 9^ 3 - 2h2 - 4^1 - 3h2 ) (2ﺃﻭﺟﺪ ﻧﺎﺗﺞ ﻣﺎ ﻳﻠﻲ: )(g 27-2 # 45-3 )(h 123 # 18-2 36-5 # 454 6-2 # 3-5 (a) 4 ^3 4 - 4h4 - 3 -8^3 2 + 1h6 (b) _5 32 + 3i^3 - 6 8h )(c 3 132 # 13 3 1 13 2 8x9 y3 2 ) (3ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺘﻌﺎﺑﻴﺮ ﺍﻟﺘﺎﻟﻴﺔ: 27x2 y12 )(a e 3 , x ! 0, y ! 0 )(b _ x -3 : y 1 i16 , x 2 0, y $ 0 8 4 o )(c y h_ x 1 1 1 1 i )(d 3 x2 # x, x20 3 3 6 6 ^3 x + 3 y -6 x : + y + x : y 1 3 x2 B ) ABC (4ﻣﺜﻠﺚ ﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ A M AN = 2 + 3 AM = 2 3 - 1 MN // BC MB = 1 A (a) CN ﺃﻭﺟﺪ(b) MN : NC ) (5ﺍﻛﺘﺐ ﻛﻞ ﻛﺴﺮ ﻣﻤﺎ ﻳﻠﻲ ﺑﺤﻴﺚ ﻳﻜﻮﻥ ﻣﻘﺎﻣﻪ ﻋﺪ ًﺩﺍ ﻧﺴﺒﻴًّﺎ ﺩﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ: (a) 2 6 1 3+ 2- 5 )(b 1 )(c x2 +1 , x d Z+ , x!1 3 3-3 2 1 x2 -1 ) (6ﺃﻭﺟﺪ ﻗﻴﻤﺔ xﻟﻴﻜﻮﻥ ﺍﻟﻌﺪﺩ x # -xﻋﺪ ًﺩﺍ ﺣﻘﻴﻘﻴًّﺎ. ) (7ﺗﺤﻠﻴﻞ ﺍﻟﺨﻄﺄ :ﺃﻭﺟﺪ ﺍﻟﺨﻄﺄ 16 = ^-2h # ^-8h = -2 # -8 ) (8ﻣﺎ ﻗﻴﻤﺔ ،xﺇﺫﺍ 320.8 # x = 1؟ 1 ) (9ﺑ ّﺴﻂ ﻛ ًّﻼ ﻣﻤﺎ ﻳﻠﻲ: a-b )(a d xa2 )(b 2 # 3x+2 - 8 # 3x )(c _ x 1 y - 1 i , x $ 0 , y ! 0 xb2 n 3x+1 + 2 # 3x 2 3 # ) (10ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) ^0 . 01hx = 0 . 000001 (b) 2 1 ^x+3h 23 (c) ^32x - 9h^2x - 16h = 0 2 2 (d) ^3xh2 - 10 # 3x + 9 = 0 = 19 )ﻣﺴﺎﻋﺪﺓ :ﻟﻴﻜﻦ (3x = y (e) 4x-1 - 9 # 2x-1 + 8 = 0
ﺗﻤ ﱠﺮ ْﻥ 2-1 ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ Domain of the Function ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-6ﺍﺳﺘﺨﺪﻡ ﺍﺧﺘﺒﺎﺭ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺮﺃﺳﻲ ﻟﺘﺤﺪﻳﺪ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺑﻴﺎﻥ ﻛﻞ ﻋﻼﻗﺔ ﻣﻤﺎ ﻳﻠﻲ ﻳﻤﺜﻞ ﺑﻴﺎﻥ ﺩﺍﻟﺔ ﺃﻡ ﻻ. (1) y (2) y (3) y xx x (4) y (5) y (6) y xx x )(7 )f (x =- 1 x2 + x2 - 1 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(7-16ﺣ ّﺪﺩ ﻣﺠﺎﻝ ﻛ ّﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ: 2 (8) g(x) = 3x - 7 + 2 = )(9) t(x -2x + 3 )(10 )h (x =- 3x - 1 x-1 5 - 2x (11) u(x) = 3 7 - 5x )(12 = )v (x 2x - 1 3+x )(13 )h (x = 5+ x-2 = )(14) u(x 3 + 4x - 3 2x - 1 25 - 9x2 )(15 = )v (x 3 - 2 (16) w (x) = 3 x2 - 2^ 2x - 3h x+1 x2 - 1 20
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. a ) (1ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ f(x) = ^x - 2h2ﻫﻮ b R a a b = ) f(xﻫﻮ 63, 3h ) (2ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ 3 a a 2x - 6 ay ) (3ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ f(x) = -xﻫﻮ @b ^-3,0 b ﻫﻮ 6-3,3h = )f (x 1 ) (4ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ x + 3 x2 ) (5ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ f(x) = x - 2ﻫﻮ b R ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-11ﻇﻠﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺃﻳًّﺎ ﻣﻤﺎ ﻳﻠﻲ ﻻ ﻳﻤﺜﻞ ﺑﻴﺎﻥ ﺩﺍﻟﺔ: by cy dy xx x x ﻫﻮ: = )f (x x2 - 1 ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ )(7 x2 + 2x + 1 aR b R /\"1, c R/\"-1, 1, d R/\"-1, b 60, 3h a R /\"0, b R / \"0,1, = ) f(xﻫﻮ: x2 ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ )(8 x a R /\"1, c ^-3, 0h d ^0, 3h a ^0, 3h @a 6-2, 2 ﻫﻮ: = )f (x x-1 ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ )(9 c ^0, 2h x- x 21 c R - \"0, d ^0, 3h/\"1, = ) f(xﻫﻮ: x ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ )(10 x+1-1 b 61, 3h c ^-1, 3h d 6-1, 3h/\"0, ) (11ﻟﺘﻜﻦ . f(x) = x x , g :6-2, 2@ \" R , g(x) = x2ﻓﺈﻥ ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ f : gﻫﻮ: @b 60, 2 ﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ ﺻﺤﻴ ًﺤﺎ d
ﺗﻤ ﱠﺮ ْﻥ 2-2 ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻭﻧﻤﺬﺟﺘﻬﺎ Quadratic Functions and their Modelling ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-8ﺃﻱ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺧﻄﻴﺔ؟ ﻭﺃﻳﻬﺎ ﺗﺮﺑﻴﻌﻴﺔ؟ (1) y = x + 4 (2) f (x) = x2 - 7 (3) y = 3^x - 1h2 + 4 (4) r(x) = - 7x )(5 )f (x = 1 ^4x + 10h 2 (6) y = 3x^x - 2h (7) y = (2x + 1) (x - 2) + 4 - 2x2 (8) y = (3x + 7) 2 - ^9x2 - 49h ) (9ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻨﺎﻗﺪ :ﻣﺎ ﺍﻟﺤﺪ ﺍﻷﺩﻧﻰ ﻟﻌﺪﺩ ﺃﺯﻭﺍﺝ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻤﻄﻠﻮﺑﺔ ﻹﻳﺠﺎﺩ ﻧﻤﻮﺫﺝ ﺗﺮﺑﻴﻌﻲ ﻟﻤﺠﻤﻮﻋﺔ ﻣﺎ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ؟ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(10-12ﺃﻭﺟﺪ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ ﻟﻜﻞ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ. (10) x -1 0 1 2 3 f(x) 4 -3 -6 -5 0 (11) x -1 0 1 2 3 f(x) -1 0 3 8 15 (12) x -1 0 1 2 3 f(x) 17 20 17 8 -7 22
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭﻇﻠﻞ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺍﻟﺪﺍﻟﺔ f(x) = kx2 + x - 3 , k d Zﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺩﺍﻟﺔ ﺧﻄﻴﺔ. ab ab f(x) = x +ﻫﻲ ﺩﺍﻟﺔ ﺧﻄﻴﺔ. x ) (2ﺍﻟﺪﺍﻟﺔ x ) (3ﺍﻟﻨﻘﻄﺔ ) A(1, 6ﺗﻨﺘﻤﻲ ﺇﻟﻰ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔf(x) = ^3xh^2xh + 6 : ab ) (4ﺍﻟﺪﺍﻟﺔ y = x^1 - xh - ^1 - x2hﻫﻲ ﺩﺍﻟﺔ ﺧﻄﻴﺔ. ab ) (5ﺍﻟﺪﺍﻟﺔ f(x) = π2 - xﻫﻲ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. a y = ^3x + 1h^-x - 3h ) (6ﺍﻟﺪﺍﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺍﻟﺘﻲ ﺣﺪﻫﺎ ﺍﻟﺜﺎﺑﺖ ﻳﺴﺎﻭﻱ -3ﻓﻴﻤﺎ ﻳﻠﻲ ﻫﻲ: c f (x) = ^x - 3h^x - 3h b y = x2 - 3x + 3 d y = - 3x2 + 3x + 9 a y = ^x - 1h^x - 2h ) (7ﺃﻱ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ ﻟﻴﺴﺖ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ: c y = 3x - x2 b y = x2 + 2x - 3 )d y = - x2 + x (x - 3 ) (8ﺃﻱ ﻧﻘﻄﺔ ﻣﻤﺎ ﻳﻠﻲ ﺗﻨﺘﻤﻲ ﺇﻟﻰ ﻣﻨﺤﻨﻰ ﺩﺍﻟﺔ f(x) = 3x2 - 5x + 1؟ )a (3, 12 b ^-1, - 1h )c (2, 3 )d (-2, 22 ) (9ﺗﻜﻮﻥ ﺍﻟﺪﺍﻟﺔ f(x) = ^a2 - 4hx2 - ^a - 2hx + 5ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ ﻟﻜﻞ aﺗﻨﺘﻤﻲ ﺇﻟﻰ: aR b R - \"-2, 2, c R - \"2, d R - \"-2, ) (10ﻳﻤﻜﻦ ﻧﻤﺬﺟﺔ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ x, yﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﺑﺎﻟﺪﺍﻟﺔ: x -1 1 2 y -1 3 8 a f (x) = x2 + x + 1 b f (x) = x2 + 2x - 1 c f (x) = - x2 + 2x + 2 d f (x) = x2 + 2x 23
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻭﺍﻟﻘﻄﻮﻉ ﺍﻟﻤﻜﺎﻓﺌﺔ 2-3 Quadratic Functions and Parabolas ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻛﻞ ﻧﻘﻄﺔ ﺗﻘﻊ ﻋﻠﻰ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﺭﺃﺳﻪ ﻧﻘﻄﺔ ﺍﻷﺻﻞ .ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻫﺬﺍ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ،ﻭﺍﺫﻛﺮ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﻣﻔﺘﻮ ًﺣﺎ ﺇﻟﻰ ﺃﻋﻠﻰ ﺃﻡ ﺇﻟﻰ ﺃﺳﻔﻞ. )(1) F(3, 2 )(2) F(8, -12 )(3) H(-6, -2) (4) G(-2, 5 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-10ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻛﻞ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﺑﺪﻻﻟﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺃﺳﻪ. (5) y (6) y )(0, 4 3 )3 (1, 3 1 )1 (2, 1 -3 -1 1 3x -3 -2 -1 1 2 3x (7) y (8) y -1 1 3 5 x )(-2, 0 -2 -4 -2-1 1 2 3 x -4 (9) y x = 1 (10) y 2 (-4, 4) (-2, 4)4 2 -2 2 4x -5 -2 2x -2 (-3, -2) -2 24
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(11-18ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﻛﻞ ﺩﺍﻟﺔ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ: (11) y = ^x + 3h2 (12) y = ^x - 2h2 (13) y = - ^x + 1h2 (14) y = - x2 + 3 (15) y = ^x + 4h2 + 1 (16) y = 3^x - 2h2 + 4 (17) y = - 4^x + 3h2 (18) y = - 2^x + 1h2 - 4 ) (19ﺍﻟﻜﺘﺎﺑﺔ :ﺻﻒ ﺍﻟﺨﻄﻮﺍﺕ ﺍﻟﺘﻲ ﺳﻮﻑ ﺗﺴﺘﺨﺪﻣﻬﺎ ﻟﺮﺳﻢ ﺍﻟﺪﺍﻟﺔ y = - 2^x - 3h2 + 4 :ﺑﻴﺎﻧﻴًّﺎ. ) (20ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻔﺘﻮﺡ :ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻟﺪﺍﻟﺔ ﻳﻤﺜﻠﻬﺎ ﺑﻴﺎﻧﻴًّﺎ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻟﻪ ﻣﺤﻮﺭ ﺍﻟﺘﻤﺎﺛﻞ ﺍﻟﺘﺎﻟﻲx = - 2 : ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(21-25ﺍﺭﺳﻢ ﻛﻞ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻣﺴﺘﺨﺪ ًﻣﺎ ﺍﻟﻤﻌﻠﻮﻣﺎﺕ ﺍﻟﻤﻌﻄﺎﺓ .ﺛﻢ ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺘﻪ ﺑﺪﻻﻟﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﺮﺃﺱ. ) (21ﺍﻟﺮﺃﺱ ) V(0, 0ﻭﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ )P(2, 10 ) (22ﺍﻟﺮﺃﺱ ) V(0, 0ﻭﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ )P(-2, -10 ) (23ﺍﻟﺮﺃﺱ ) V(0, 5ﻭﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ )P(1, -2 ) (24ﺍﻟﺮﺃﺱ ) V(3, 1ﻭﺍﻟﺠﺰﺀ ﺍﻟﻤﻘﻄﻮﻉ ﻣﻦ ﻣﺤﻮﺭ ﺍﻟﺼﺎﺩﺍﺕ -2 ) (25ﺍﻟﺮﺃﺱ ) V(-2, 6ﻭﺍﻟﺠﺰﺀ ﺍﻟﻤﻘﻄﻮﻉ ﻣﻦ ﻣﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ 2 ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭﻇﻠﻞ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺍﻟﻤﻌﺎﺩﻟﺔ y = 2x2 - 2(3 - x)2ﺗﻤﺜﻞ ﻣﻌﺎﺩﻟﺔ ﻗﻄﻊ ﻣﻜﺎﻓﺊ. ab ﻓﺘﺤﺘﻪ ﺇﻟﻰ ﺍﻷﻋﻠﻰ. y =- 1 (x + )2 2 - 3 ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ )(2 3 a b =y 1 x2 - 2 ﺍﻟﺪﺍﻟﺔ ﻳﻜﻮﻥ ﺑﻴﺎﻧﻬﺎ ﺃﻛﺜﺮ ﺍﺗﺴﺎ ًﻋﺎ ﻣﻦ ﺑﻴﺎﻥ y = 2 (x - 1) 2 + 2 ﺍﻟﻤﻌﺎﺩﻟﺔ )(3 2 ab ) (4ﺗﻮﺟﺪ ﻋﻨﺪ ﺭﺃﺱ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ y = - (x - 3)2 - 2ﻗﻴﻤﺔ ﻋﻈﻤﻰ. ab ) (5ﻣﻨﺤﻨﻰ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ y = (- x + 2)2 + 3ﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ )P(2, 3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-11ﻇﻠﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺍﻟﺪﺍﻟﺔ y = a(3 - x)2 - 2ﻳﻜﻮﻥ ﺭﺳﻤﻬﺎ ﺃﻭﺳﻊ ﻣﻦ ﺭﺳﻢ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = - 2x2ﺇﺫﺍ ﻛﺎﻥ: a a =2 b a 22 c a12 d a 12 ) (7ﻣﻌﺎﺩﻟﺔ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ y = 2x2ﺍﻟﺬﻱ ﺗﻢ ﺇﺯﺍﺣﺔ ﺭﺃﺳﻪ ﻭﺣﺪﺗﻴﻦ ﻳﺴﺎ ًﺭﺍ ﻭ 4ﻭﺣﺪﺍﺕ ﻷﻋﻠﻰ ﻫﻲ: a y = (2x + 2) 2 + 4 b y = 2 (x - 2) 2 + 4 c y = 2 (x + 2) 2 + 4 d y = 2 (x + 2) 2 - 4 25
) (8ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ ﻳﻤﺜﻞ ﻣﻨﺤﻨﻰ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻣﻌﺎﺩﻟﺘﻪ ﻫﻲ: y 12345 6x 2 1 0 -4 -3 -2 --1 1 -2 a y = (x - 2) 2 + 2 b y = 1 (x - 2) 2 + 2 2 c y = - 1 (x - 2) 2 - 2 d y =- 1 (x - 2) 2 + 2 2 2 ) (9ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ y = a(x - h)2 + kﻳﻘﻄﻊ ﺍﻟﻤﺤﻮﺭﻳﻦ ﻋﻠﻰ ﺍﻷﻛﺜﺮ ﻓﻲ: ﻧﻘﻄﺔ a ﻧﻘﻄﺘﻴﻦ b 3ﻧﻘﺎﻁ c 4ﻧﻘﺎﻁ d ﺍﻟﻨﻘﻄﺔ: ﻋﻨﺪ ﻫﻲ y = 1 (3 - x) 2 - 2 ﻟﻠﺪﺍﻟﺔ ﺍﻟﺼﻐﺮﻯ ﺍﻟﻘﻴﻤﺔ )(10 3 )a (3, - 2 )b (- 3, 2 )c (- 3, - 2 )d (3, 2 ) (11ﻳﻘﻊ ﺟﺴﺮ ﻋﻠﻰ ﺷﻜﻞ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻓﻮﻕ ﻧﻬﺮ .ﻳﺒﻠﻎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﻗﺎﻋﺪﺗﻴﻪ 20 mﻭﺍﺭﺗﻔﺎﻋﻪ ﺍﻷﻗﺼﻰ 8 mﻣﻌﺎﺩﻟﺔ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ﻫﻲ: y 8 4 0 4 8 12 16 20 x a y = 0.08 (x - 10) 2 + 8 b y = - 0.08 (x - 10) 2 + 8 c y = - 0.08 (x - 20) 2 + 8 d y = 0.08 (x + 10) 2 + 8 26
ﺗﻤ ﱠﺮ ْﻥ 2-4 ﻣﻘﺎﺭﻧﺔ ﺑﻴﻦ ﺻﻮﺭﺓ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺑﺪﻻﻟﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺃﺱ ﺍﻟﻤﻨﺤﻨﻰ ﻭﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ Comparing Vertex and General Form Equation of Quadratic Functions ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-7ﺍﻛﺘﺐ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺑﺪﻻﻟﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﺮﺃﺱ: (1) y = x2 - 4x + 6 (2) y = x2 + 2x + 5 (3) y = 4x2 + 7x (4) f (x) = - 2x2 + 35 (7) y = - 3x2 - 2x + 1 (5) y = - 8x2 (6) f (x) = 2x2 + x (8) y = ^x + 3h2 - 4 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(8-13ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻛﻞ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ. (11) y = ^5x + 6h2 - 9 (9) f (x) = 2^x - 2h2 + 5 (10) f (x) = - ^x - 7h2 + 10 (12) f (x) = - ^3x - 4h2 + 6 (13) f (x) = - 2x^x + 7h + 8x ) (14ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻨﺎﻗﺪ :ﻣﻌﺎﺩﻟﺔ ﺃﺣﺪ ﺍﻟﺮﺳﻤﻴﻦ ﺍﻟﺒﻴﺎﻧﻴﻴﻦ ﺃﺩﻧﺎﻩ ﻫﻲy = x2 - 8x + 18 : ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻵﺧﺮ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ. y 5 3 1 1 3 5x ) (15ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ،y = 2x2 - 12x + c :ﻟﻪ ﺭﺃﺱ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ ) .(3, 5ﻓﻤﺎ ﻗﻴﻤﺔ c؟ ) (16ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ، y = ax2 + bx + 8 :ﻟﻪ ﺭﺃﺱ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ ) .(2, - 4ﻓﻤﺎ ﻗﻴﻢ a , b؟ 27
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻇﻠﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ) (1ﺍﻟﻤﻌﺎﺩﻟﺔ y = - 2(x + 3)2 + 4ﻫﻲ ﻣﻌﺎﺩﻟﺔ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﺑﺪﻻﻟﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺃﺱ ﺍﻟﻤﻨﺤﻨﻰa b . ) (2ﺍﻟﻤﻌﺎﺩﻟﺔ y = 3(x - 2)2 + 4(x - 2) + 1ﻫﻲ ﻣﻌﺎﺩﻟﺔ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔa b . ab ) (3ﺭﺃﺱ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ y = x2 - 2x - 3ﻫﻮ V^1, - 4h ab ) (4ﻣﻌﺎﺩﻟﺔ ﻣﺤﻮﺭ ﺍﻟﺘﻤﺎﺛﻞ ﻟﻠﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ y = 3x2 + 12x + 8 :ﻫﻲ y = - 4 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-12ﻇﻠﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (5ﺭﺃﺱ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ y = ax2 + 2ax + 5, a ≠ 0ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ: )a (1, 1 )b (-1, 1 )c (1, 5 )d (-1, 5 ) (6ﻣﻌﺎﺩﻟﺔ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ﺍﻟﻤﺎﺭ ﺑﺎﻟﻨﻘﻄﺔ ) (-3, 10ﻭﺭﺃﺳﻪ ) (0, 1ﻫﻲ: a y = 5x2 + 1 b y = - 3x2 + 10 c y = x2 + 1 d y = - x2 - 1 ) (7ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ y = - 2x2 + 4x - 5ﻟﻪ ﺭﺃﺱ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ: )a (-2, -3 )b (1, -3 )c (1, -1 )d (-1, -3 ) (8ﻳﻘﻊ ﺭﺃﺱ ﻣﻨﺤﻨﻰ y = - x2 - 16x - 62ﻓﻲ ﺍﻟﺮﺑﻊ: ﺍﻷ ّﻭﻝ a ﺍﻟﺜﺎﻧﻲ b ﺍﻟﺜﺎﻟﺚ c ﺍﻟﺮﺍﺑﻊ d a x = 12 b x=6 ) (9ﻣﻌﺎﺩﻟﺔ ﻣﺤﻮﺭ ﺍﻟﺘﻤﺎﺛﻞ ﻟﻠﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ y = x2 - 6x + 2ﻫﻲ: c x=3 d x=2 ) (10ﺍﻟﻤﺴﺎﺣﺔ ﺍﻟﻌﻈﻤﻰ ﺑﺎﻟﻮﺣﺪﺍﺕ ﺍﻟﻤﺮﺑﻌﺔ ﻟﻤﺴﺘﻄﻴﻞ ﻣﺤﻴﻄﻪ 128 mﻫﻲ: a 4 096 b 1 024 c 256 d 32 ) (11ﻳﻨﻤﺬﺝ ﻣﺪﺧﻮﻝ ﺇﺣﺪﻯ ﺍﻟﺸﺮﻛﺎﺕ ﺑﺎﻟﻌﻼﻗﺔ R = - 15 p2 + 300 p + 12 000ﺣﻴﺚ ) pﺑﺎﻟﺪﻳﻨﺎﺭ( ﻫﻮ ﺳﻌﺮ ﻣﺒﻴﻊ ﺇﺣﺪﻯ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻨﺘﺠﺔ .ﻗﻴﻤﺔ pﺍﻟﺘﻲ ﺗﻌﻄﻲ ﺃﻋﻠﻰ ﻣﺪﺧﻮﻝ ﻫﻲ: a 30 b 10 c 15 d 12 ) (12ﺃﻱ ﻣﻨﺤﻨﻰ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺃﺩﻧﺎﻩ ﻟﻪ ﺧﻂ ﺗﻤﺎﺛﻞ x = 3؟ a y = 2^x + 3h2 b y = x2 - 6x + 9 c y = x2 + 3x + 6 d y = 4^x + 3h2 28
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) (13-15ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ،ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺒﻪ ﻓﻲ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 ay ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﻟﻠﺪﺍﻟﺔ: 2 ) y = x2 + 4x + 1 (13ﻫﻮ: -5 -3 -1 x by ) y = - x2 - 4x + 1 (14ﻫﻮ: 2 -4 -2 x -2 -4 cy ﻫﻮ: y =- 1 x2 - 2x + 1 )(15 2 2 -4 -2 x -2 -4 dy 2 -4 -2 x -2 -4 29
ﺗﻤ ﱠﺮ ْﻥ 2-5 ﺍﻟﻤﻌﻜﻮﺳﺎﺕ ﻭﺩﻭﺍﻝ ﺍﻟﺠﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ Inverses and Square Root Functions ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-3ﺍﺭﺳﻢ ﺑﻴﺎﻧﻴًّﺎ ﺍﻟﺪﺍﻟﺔ ﺍﻟﻤﻌﻄﺎﺓ ﻭﻣﻌﻜﻮﺳﻬﺎ ﻋﻠﻰ ﻣﺤﺎﻭﺭ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﻧﻔﺴﻬﺎ .ﺛﻢ ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﻌﻜﻮﺱ. )(1 y = 1 x )(2 y = x+1 (3) y = 5x + 3 2 3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(4-10ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﻌﻜﻮﺱ ﻟﻜﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: )(4 y = 1 x2 (5) y = x2 - 1 (6) y = ^x - 2h2 + 1 )(7 y = x+5 2 3 (8) y = 6x + 2 (9) y = x2 - 3 (10) y = (x + 5)2 + 2 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(11-14ﺍﺭﺳﻢ ﻛﻞ ﺩﺍﻟﺔ ﺟﺬﺭ ﺗﺮﺑﻴﻌﻲ .ﺛﻢ ﺍﺫﻛﺮ ﺍﻟﻤﺠﺎﻝ ﻭﺍﻟﻤﺪﻯ. (11) y = - x - 1 (12) y = - x + 2 (13) y = x - 4 + 2 (14) y = - x + 3 - 2 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(15-16ﺍﺭﺳﻢ ﺑﻴﺎﻧًﺎ ﻟﻤﻌﻜﻮﺱ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ،ﺛﻢ ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻛﻞ ﺭﺳﻢ ﺑﻴﺎﻧﻲ ،ﻭﻣﻌﺎﺩﻟﺔ ﻣﻌﻜﻮﺳﻪ. (15) y (16) y 4 2 x 2 0 0 24 2 4x ) (a) (17ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻓﻲ ﺍﻹﻋﻼﻧﺎﺕ ﺍﻟﺘﺠﺎﺭﻳﺔ :ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﺗﻌﻄﻲ ﺛﻤﻦ ﺍﻟﺒﻴﻊ yﻟﻠﺜﻤﻦ ﺍﻷﺻﻠﻲ xﺑﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﺴﻠﻊ ﻓﻲ ﺍﻹﻋﻼﻥ ﺍﻟﻤﺠﺎﻭﺭ. ﺣﺴﻮﻣﺎﺕ ﺃﺳﺮﻉ! ) (bﺃﻭﺟﺪ ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺘﻲ ﺃﻭﺟﺪﺗﻬﺎ ﻓﻲ ﺍﻟﻔﻘﺮﺓ ).(a ﺳﻮﻑ ﺗﻨﺘﻬﻲ ﺍﻟﺤﺴﻮﻣﺎﺕ ﻓﻲ 31ﻳﻨﺎﻳﺮ ) (cﺍﻟﻜﺘﺎﺑﺔ :ﻣﺎﺫﺍ ﺗﻤﺜﻞ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺘﻲ ﻛﺘﺒﺘﻬﺎ ﻓﻲ ﺍﻟﺴﺆﺍﻝ )(b؟ ﻭﻓّﺮ 20 % 30
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ab ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﻘﻄﺔ ) M(x, yﺗﻨﺘﻤﻲ ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ fﻓﺈﻥ ﺍﻟﻨﻘﻄﺔ )N(y, x ab ﺗﻨﺘﻤﻲ ﻟﺒﻴﺎﻥ ﻣﻌﻜﻮﺱ ﻫﺬﻩ ﺍﻟﺪﺍﻟﺔ. ab ab ) (2ﺇﺫﺍ ﻛﺎﻧﺖ f(x) = x + 1, g(x) = x - 1ﻓﺈﻥ ﺍﻟﺪﺍﻟﺘﻴﻦ ﻛﻞ ﻣﻨﻬﻤﺎ ﻣﻌﻜﻮﺱ ﻟﻸﺧﺮﻯ. ) (3ﺍﻟﻤﺴﺘﻘﻴﻢ y = xﻫﻮ ﺧﻂ ﺍﻧﻌﻜﺎﺱ ﻟﺒﻴﺎﻥ ﺩﺍﻟﺔ fﻭﺑﻴﺎﻥ ﻣﻌﻜﻮﺳﻬﺎ. ) (4ﺇﺫﺍ ﻣﺮ ﺑﻴﺎﻥ ﺩﺍﻟﺔ ﺑﻨﻘﻄﺔ ﺍﻷﺻﻞ ﻓﺈﻥ ﺑﻴﺎﻥ ﻣﻌﻜﻮﺳﻬﺎ ﻳﻤﺮ ﺃﻳ ًﻀﺎ ﺑﻨﻘﻄﺔ ﺍﻷﺻﻞ. ) (5ﻻ ﻳﺘﻐﻴﺮ ﻣﺠﺎﻝ ﺩﺍﻟﺔ ﺍﻟﺠﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ﺑﻌﺪ ﺇﺯﺍﺣﺔ ﺑﻴﺎﻧﻬﺎ 3ﻭﺣﺪﺍﺕ ﻳﻤﻴﻨًﺎ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ: ) (6ﺇﺫﺍ ﺍﻧﺘﻤﺖ ﺍﻟﻨﻘﻄﺔ ) A(2, 3ﺇﻟﻰ ﺑﻴﺎﻥ ﺩﺍﻟﺔ ﻓﺈﻥ ﺍﻟﻨﻘﻄﺔ ﺍﻟﺘﻲ ﺗﻨﺘﻤﻲ ﺇﻟﻰ ﺑﻴﺎﻥ ﻣﻌﻜﻮﺱ ﺗﻠﻚ ﺍﻟﺪﺍﻟﺔ ﻫﻲ: )a (-2, 3 )b (2, -3 )c (3, -2 )d (3, 2 ) (7ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = x + 2 - 2ﻫﻮ ﺍﻧﺴﺤﺎﺏ ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ :y = x ﻭﺣﺪﺗﻴﻦ ﺇﻟﻰ ﺍﻟﻴﺴﺎﺭ ﻭﻭﺣﺪﺗﻴﻦ ﻟﻸﻋﻠﻰ a ﻭﺣﺪﺗﻴﻦ ﺇﻟﻰ ﺍﻟﻴﺴﺎﺭ ﻭﻭﺣﺪﺗﻴﻦ ﻟﻸﺳﻔﻞ b ﻭﺣﺪﺗﻴﻦ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻦ ﻭﻭﺣﺪﺗﻴﻦ ﻟﻸﻋﻠﻰ c ﻭﺣﺪﺗﻴﻦ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻦ ﻭﻭﺣﺪﺗﻴﻦ ﻟﻸﺳﻔﻞ d ) (8ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ y = x2 + 2ﻫﻮ: a y= x-2 b y =- x-2 c y =! x-2 ﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ ﺻﺤﻴ ًﺤﺎ d ) (9ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ y = 5x - 1ﻫﻮ: a y = 5x + 1 b y = x+1 5 c y = x +1 d y = x -1 5 5 ) (10ﻣﺠﺎﻝ ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ y = x + 3 - 1ﻫﻮ: aR b ^-1, 3h c ^-3, 1h d 6-1, 3h 31
ﺗﻤ ﱠﺮ ْﻥ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺎﺕ 2-6 Solving Inequalities ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) ^x - 3h^2x + 5h 1 0 (b) 2x2 - 3x - 5 $ 0 (c) -3x2 + 2x 1 - 1 (d) 4x2 + 12x + 9 $ 0 (e) -9x2 + 6x 1 1 (f) 21 + 4x 2 x2 ) (2ﻟﻨﻌﺘﺒﺮ ﻋﺮﺽ ﻣﺴﺘﻄﻴﻞ ^x - 2h cmﻭﻃﻮﻟﻪ 2x cm ) (aﻭ ّﺿﺢ ﻟﻤﺎﺫﺍ ﻳﺠﺐ ﺃﻥ ﺗﻜﻮﻥ ﻗﻴﻤﺔ xﺃﻛﺒﺮ ﻣﻦ 2 ) (bﺍﻛﺘﺐ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﻲ ﺗﻌﻄﻲ ﻣﺴﺎﺣﺔ ﻫﺬﺍ ﺍﻟﻤﺴﺘﻄﻴﻞ. ) (cﻋﻠ ًﻤﺎ ﺃ ّﻥ xﻋﺪﺩ ﺻﺤﻴﺢ ،ﺃﻭﺟﺪ ﻗﻴﻤﺔ xﻟﺘﻜﻮﻥ ﻣﺴﺎﺣﺔ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺑﻴﻦ 90 cm2ﻭ ،100 cm2ﺛﻢ ﺍﺳﺘﻨﺘﺞ ﻃﻮﻝ ﺍﻟﻤﺴﺘﻄﻴﻞ ﻭﻋﺮﺿﻪ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(3-9ﺣ ّﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: )(3 x-1 1 0 )(4 x2 - 1 # 0 )(5 x2 + x - 12 2 0 x2 - 4 x2 + 1 x2 - 4x + 4 )(6 1 + 1 # 0 )(7 1 - 2 2 0 )(8 x + 2 H 0 x+1 x-3 x+2 x-1 x+1 x-1 )* (9 2x + 1 + 3x G 0 x 1 - 2x ) (10ﻋﻤﺮ ﺟ ّﺪ ﺃﺣﻤﺪ ﻳﺴﺎﻭﻱ 8ﺃﺿﻌﺎﻑ ﻋﻤﺮ ﺃﺣﻤﺪ .ﺑﻌﺪ 3ﺳﻨﻮﺍﺕ ،ﺳﻴﺘﺨﻄﻰ ﺗﺮﺑﻴﻊ ﻋﻤﺮ ﺃﺣﻤﺪ ﺿﻌﻒ ﻋﻤﺮ ﺟ ّﺪﻩ )ﻟﻠﻤ ّﺮﺓ ﺍﻷﻭﻟﻰ( .ﺃﻭﺟﺪ ﻋﻤﺮ ﺃﺣﻤﺪ ﻭﻋﻤﺮ ﺟ ّﺪﻩ ﺍﻵﻥ. ) (11ﻟﻨﻌﺘﺒﺮ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ،(d) : y = - 1ﺃﻭﺟﺪ ﺑﻴﺎﻧﻴًّﺎ ﺍﻟﺤﻞ ﻟـ f(x) = y , f(x) 2 y , f(x) 1 yﻓﻲ ﻛ ّﻞ ﻣﻦ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (a) f (x) = 2x2 + 4x - 1 (b) f (x) = x2 + 1 (c) f (x) = - x2 + 4x - 1 ) (12ﻟﻨﻌﺘﺒﺮ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ،(d): y = 2ﺃﻭﺟﺪ ﺑﻴﺎﻧﻴًّﺎ ﺍﻟﺤﻞ ﻟـ f(x) $ y , f(x) 1 yﻓﻲ ﻛ ّﻞ ﻣﻦ ﺍﻟﺤﺎﻟﺘﻴﻦ ﺍﻟﺘﺎﻟﻴﺘﻴﻦ: (a) f (x) = 3x2 + 2 (b) f (x) = x2 - x - 2 32
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1 - 5ﻇﻠﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ: ab ) (1ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ^x + 3h2 2 0ﻫﻲ R ab x-1 $0 ﻫﻮ ﺣﻞ ﻟﻠﻤﺘﺒﺎﻳﻨﺔ ^0, 3h ﻛﻞ xﻳﻨﺘﻤﻲ ﻟﻠﻔﺘﺮﺓ )(2 ab x2 - x ) (3ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ^x + 3h2 + 2 1 1ﻫﻲ ﺍﻟﻤﺠﻤﻮﻋﺔ ﺍﻟﺨﺎﻟﻴﺔ φ ab ﻫﻲ ^-1,3h x+2 $1 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ )(4 ab x+1 ) (5ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ (- x - 3)2 1 0ﻫﻲ }{3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-13ﻇﻠﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻟﺔ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ﻫﻲ: -3 (x + 1)ax + 1 k # 2 ﻟﻠﻤﺘﺒﺎﻳﻨﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻨﺎﻇﺮﺓ )(6 3 a -3x2 + 2x - 5 = 0 b x2 + 4 x + 1 = 0 c -3x2 + 4x - 3 = 0 d -3x2 + 2x + 1 = 0 3 3 ) (7ﺇﻥ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ (1 - 2x)(4 + 5x) 1 0ﻫﻲ: a `- 4 , 1 j b ` - 3, - 4 j , ` 1 , 3j 5 2 5 2 c ` - 3, - 1 j , ` 4 , 3j d ` - 3, - 4 j , `- 1 , 3j 2 5 5 2 ﻫﻲ: )(x2 + 1) (x - 3 20 ﺇﻥ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ )(8 x-3 aR *b R c R - \"3, d R - \"0, 3, ) (9ﺍﻟﻤﺘﺒﺎﻳﻨﺔ ﺍﻟﺘﻲ ﻣﺠﻤﻮﻋﺔ ﺣﻠﻬﺎ ] [-2, 3ﻫﻲ: a x2 - x - 6 1 0 b x2 - x - 6 # 0 c x2 - x - 6 2 0 d x2 - x - 6 $ 0 ) (10ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﺘﺒﺎﻳﻨﺔ x2 + x 2 0ﻫﻲ: aR b ^0, 3h c R - \"0, ﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ ﺻﺤﻴ ًﺤﺎ d ﻓﺈﻥ ﻗﻴﻢ xﺍﻟﺘﻲ ﺗﺠﻌﻞ fﻏﻴﺮ ﻣﻌ ّﺮﻓﺔ ﻫﻲ: )f (x = )x (x + 1 ﺇﺫﺍ ﻛﺎﻧﺖ )(11 )(2x - 3) (3x + 2 a $ 2 , - 3 . b $ -2 , 3 . c $ 2 , 3 . d $ -2 , - 3 . 3 2 3 2 3 2 3 2 ) (12ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ x2 + x - 2 = 0ﻫﻲ: a \"1, - 2, b \"-1, 2, c \"-1,1, d \"-2, 2, ﻏﻴﺮ ﻣﻮﺟﺒﺔ ﻭﻻ ﺗﺴﺎﻭﻱ ﺍﻟﺼﻔﺮ ﻫﻲ: ﻓﺈﻥ ﻗﻴﻢ xﺍﻟﺘﻲ ﺗﺠﻌﻞ )f(x )f (x =- 3x2 + x - 1 ﺇﺫﺍ ﻛﺎﻧﺖ )(13 12 a ^-3, 0h b ^0, 3h c $ 1 . d R - $ 1 . 6 6 33
ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(1-2ﺃﻭﺟﺪ ﻣﺠﺎﻝ ﻛ ّﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ: = )(1) f(x 9x2 - 4 + 2 = )(2) g(x -x + 2 - 3 2x - 3 x2 - 4 ) (3ﻳﺒﻴّﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺭﺑﺢ ﺇﺣﺪﻯ ﺍﻟﺸﺮﻛﺎﺕ yﺑﺂﻻﻑ ﺍﻟﺪﻧﺎﻧﻴﺮ ﻭﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻨﺘﺠﺔ x x1 2 3 4 5 ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ ﺗﻨﻤﺬﺝ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ x, y y 0 -1 0 3 8 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(4-5ﺍﺭﺳﻢ ﻛﻞ ﻣﺠﻤﻮﻋﺔ ﺑﻴﺎﻧﺎﺕ ﻣﻤﺎ ﻳﻠﻲ ،ﺛﻢ ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻛ ّﻞ ﻣﻨﻬﺎ: (4) x -1 0 1 2 3 4 (5) x -1 0 1 2 3 f(x) -1 -3 -1 5 15 29 f(x) -2 1 6 13 22 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(6-7ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ﺇﺫﺍ ﻋﺮﻓﺖ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﺮﺃﺱ ﻭﻧﻘﻄﺔ ﺇﺿﺎﻓﻴﺔ ﻳﻤﺮ ﺑﻬﺎ. ) (7ﺍﻟﺮﺃﺱ )A(2,11) , V(1,5 ) (6ﺍﻟﺮﺃﺱ )A(- 3,3) , V(0,0 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(8-11ﺍﺭﺳﻢ ﻛﻞ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ .ﺛﻢ ﺣ ّﺪﺩ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﺮﺃﺱ. (8) f (x) = x2 - 7 (9) f (x) = x2 + 2x + 6 (10) f (x) = - x2 + 5x - 3 )(11 )f (x = - 1 x2 - 8 2 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(12-15ﺃﻭﺟﺪ ﻣﻌﻜﻮﺱ ﻛﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: (12) y = 4x + 1 )(13 y = 2 x-6 (14) y = x2 - 10 (15) y = ^x + 2h2 - 3 3 ) (16ﺳﺆﺍﻝ ﻣﻔﺘﻮﺡ :ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺩﺍﻟﺔ ،ﺣﻴﺚ ﻣﻨﺤﻨﻰ ﻣﻌﻜﻮﺳﻬﺎ ﻫﻮ ﻗﻄﻊ ﻣﻜﺎﻓﺊ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(17-20ﺍﻛﺘﺐ ﻛﻞ ﺩﺍﻟﺔ ﺑﺪﻻﻟﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﺮﺃﺱ .ﺛﻢ ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻜﺎﻓﺊ ﻭﺣ ّﺪﺩ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﺮﺃﺱ. (17) y = x2 - 6x + 5 (18) y = - x2 + 8x - 10 (19) y = 2x2 - 3x + 1 )(20 y =- 1 x2 + 4x - 9 2 ) (21ﺃﻭﺟﺪ ﺃﻛﺒﺮ ﻣﺴﺎﺣﺔ ﻟﺤﺪﻳﻘﺔ ﻣﻜﻮﻧﺔ ﻣﻦ ﻣﺴﺘﻄﻴﻠﻴﻦ ﻟﻬﻤﺎ ﺿﻠﻊ ﻣﺸﺘﺮﻙ ﻭﻳﻤﻜﻦ ﺇﺣﺎﻃﺘﻬﻤﺎ ﺑﺸﺮﻳﻂ ﻃﻮﻟﻪ ) .120 mﺍﻧﻈﺮ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻤﻘﺎﺑﻠﺔ(. x xx 1 ^120 - 3xh 2 34
) (22ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﻛﻞ ﻣﺘﺒﺎﻳﻨﺔ ﻣﻤﺎ ﻳﻠﻲ: (a) x2 - 8x + 15 # 0 (b) -x2 + 7x - 120 1 0 )(c 3x - 4 $ -1^x ! 2h x-2 ) (a) (23ﺍﺭﺳﻢ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔ ، f(x) = - x2 + 4x - 3 :ﻭﺍﻟﺨﻂ ﺍﻟﻤﺴﺘﻘﻴﻢ y = - 8ﻋﻠﻰ ﺷﺒﻜﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﻭﺍﺣﺪﺓ. ) (bﺍﺩﺭﺱ ﺑﻴﺎﻧﻴًّﺎf(x) = - 8 , f(x) 1-8 , f(x) 2-8 : ) (cﺗﺤ ّﻘﻖ ﺣﺴﺎﺑﻴًّﺎ ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺘﻲ ﺣﺼﻠﺖ ﻋﻠﻴﻬﺎ ﻓﻲ ﺍﻟﻔﻘﺮﺓ ).(b 35
ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(1-2ﺃﻭﺟﺪ ﻣﺠﺎﻝ ﻛ ّﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ: )(1 )f (x = 2x - x + 2 x2 + 1 = )(2) f(x x2 - 4x + 4 x+1 2+x 9 - x2 x2 + 7 - 4 ) (3ﻓﻲ ﺇﺣﺪﻯ ﻣﺒﺎﺭﻳﺎﺕ ﻛﺮﺓ ﺍﻟﻘﺪﻡ ،ﺗﻮﺍﺟﺪ ﺃﺣﺪ ﺍﻟﻼﻋﺒﻴﻦ ﻣﻨﻔﺮ ًﺩﺍ ﻭﺟ ًﻬﺎ ﻟﻮﺟﻪ ﻣﻊ ﺣﺎﺭﺱ ﻣﺮﻣﻰ ﺍﻟﻔﺮﻳﻖ ﺍﻟﻤﻨﺎﻓﺲ ﻓﻘﺮﺭ ﺭﻓﻊ ﺍﻟﻜﺮﺓ ﻓﻮﻕ ﺍﻟﺤﺎﺭﺱ ﺁﻣ ًﻼ ﺃﻻ ﺗﻌﻠﻮ ﻣﺮﻣﻰ ﺍﻟﻔﺮﻳﻖ ﺍﻟﻤﻨﺎﻓﺲ ،ﻭﻛﺎﻥ ﻫﺬﺍ ﺍﻟﻼﻋﺐ ﻋﻠﻰ ﺑﻌﺪ 16 mﻣﻦ ﺧﻂ ﺍﻟﻤﺮﻣﻰ ،ﺑﻴﻨﻤﺎ ﺍﻟﺤﺎﺭﺱ ﻳﻘﻒ ﻋﻠﻰ ﺑﻌﺪ 7 mﻣﻦ ﺍﻟﻼﻋﺐ .ﻳﻨﻤﺬﺝ ﻣﺴﺎﺭ ﺍﻟﻜﺮﺓ ﺍﻟﻤﻨﻄﻠﻘﺔ ﻣﻦ ﺍﻷﺭﺽ ﻋﺒﺮ ﺗﺴﺪﻳﺪﺓ ﺍﻟﻼﻋﺐ ﻋﻠﻰ ﺷﻜﻞ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻣﻌﺎﺩﻟﺘﻪy = a^x - 10h2 + 3 : ) (aﺃﻭﺟﺪ ﻗﻴﻤﺔ aﻣﻌﺘﺒ ًﺮﺍ ﻧﻘﻄﺔ ﺍﻧﻄﻼﻕ ﺗﺴﺪﻳﺪﺓ ﺍﻟﻼﻋﺐ ﻫﻲ ﻧﻘﻄﺔ ﺍﻷﺻﻞ. ) (bﻋﻠ ًﻤﺎ ﺃﻥ ﺍﻟﺤﺎﺭﺱ ﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﻳﺪﻳﻪ ﻳﺼﻞ ﺇﻟﻰ ﺍﺭﺗﻔﺎﻉ 2.53 mﻭﺃﻥ ﺍﺭﺗﻔﺎﻉ ﺍﻟﻤﺮﻣﻰ ﻫﻮ 2.44 m ﻓﻬﻞ ﺳﺘﺘﺨﻄﻰ ﺍﻟﻜﺮﺓ ﺍﻟﺤﺎﺭﺱ؟ ﻭﻫﻞ ﺳﻴﺴﺠﻞ ﺍﻟﻼﻋﺐ ﻫﺪﻓًﺎ؟ ) (4ﻓﻲ ﺇﺣﺪﻯ ﺩﻭﺭﺍﺕ ﻛﺮﺓ ﺍﻟﻤﻀﺮﺏ ،ﺗﻮﺍﺟﺪ ﺃﺣﺪ ﺍﻟﻼﻋﺒﻴﻦ ﻋﻠﻰ ﺑﻌﺪ 3 mﻣﻦ ﺍﻟﺸﺒﻜﺔ ،ﻓﻘﺮﺭ ﺍﻟﻼﻋﺐ ﺍﻟﺜﺎﻧﻲ ﺍﻟﻤﺘﻮﺍﺟﺪ ﻋﻠﻰ ﺍﻟﺨﻂ ﺍﻟﺨﻠﻔﻲ ﻣﻦ ﺍﻟﻤﻠﻌﺐ ﺭﻓﻊ ﺍﻟﻜﺮﺓ ﻓﻮﻕ ﻣﻨﺎﻓﺴﻪ ﻋﻠﻰ ﺃﻥ ﺗﺄﺗﻲ ﺍﻟﻜﺮﺓ ﺩﺍﺧﻞ ﻣﻠﻌﺐ ﻣﻨﺎﻓﺴﻪ. ﻋﻠ ًﻤﺎ ﺃﻥ ﻃﻮﻝ ﻣﻠﻌﺐ ﻛﺮﺓ ﺍﻟﻤﻀﺮﺏ 23.8 mﺗﺘﻮﺳﻄﻪ ﺍﻟﺸﺒﻜﺔ ﺍﻟﺘﻲ ﺗﻘﺴﻢ ﺍﻟﻤﻠﻌﺐ ﺇﻟﻰ ﻗﺴﻤﻴﻦ ﻣﺘﺴﺎﻭﻳﻴﻦ. ) (aﺇﺫﺍ ﺍﻋﺘﺒﺮﻧﺎ ﺃﻥ ﻣﺴﺎﺭ ﺍﻟﻜﺮﺓ ﻣﻦ ﻣﻀﺮﺏ ﺍﻟﻼﻋﺐ ﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ 1 mﻋﻠﻰ ﺷﻜﻞ ﻗﻄﻊ ﻣﻜﺎﻓﺊ ﻣﻌﺎﺩﻟﺘﻪ: y = - 0.08^x - 9h2 + kﻓﻤﺎ ﻗﻴﻤﺔ k؟ ) (bﻣﺎ ﺍﻻﺭﺗﻔﺎﻉ ﺍﻷﻗﺼﻰ ﻟﻠﻜﺮﺓ ﻋﻦ ﺃﺭﺽ ﺍﻟﻤﻠﻌﺐ؟ ) (cﻫﻞ ﺳﺘﺘﺨﻄﻰ ﺍﻟﻜﺮﺓ ﺍﻟﻼﻋﺐ ﺍﻟﻤﻨﺎﻓﺲ ﺇﺫﺍ ﻛﺎﻥ ﺃﻗﺼﻰ ﺍﺭﺗﻔﺎﻉ ﻳﻤﻜﻦ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻴﻪ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻣﻀﺮﺑﻪ ﻫﻮ 3.3 m؟ ) (dﻫﻞ ﺳﺘﺴﻘﻂ ﺍﻟﻜﺮﺓ ﺩﺍﺧﻞ ﻣﻠﻌﺐ ﺍﻟﻼﻋﺐ ﺍﻟﻤﻨﺎﻓﺲ؟ ﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺟﺎﺑﺘﻚ ﻧﻌﻢ ،ﺃﻭﺟﺪ ﺑﻌﺪﻫﺎ ﻋﻦ ﺧﻂ ﺍﻟﻤﻠﻌﺐ. ) (a) (5ﺍﺭﺳﻢ ﺑﻴﺎﻧﻴًّﺎ ﻣﻨﺤﻨﻰ ﺍﻟﺪﺍﻟﺔy = x2 - 4x : ) (bﺃﻭﺟﺪ ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ ،ﺛﻢ ﺍﺭﺳﻤﻪ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﻧﻔﺴﻪ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﺣ ّﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﺘﺒﺎﻳﻨﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: )(6) (x - 3) (x + 2) 2 (x - 3) (2x - 1 )(7) 4x2 - 9 # (3 - 2x) (x + 1 (8) x2 (x - 3) 2 0 (9) (x - 6) 2 (x - 5) 2 0 )(10 3x - 1 $ 0 (2x - 7) 2 36
) (a) (11ﺃﻛﻤﻞ ﺍﻟﺠﺪﻭﻟﻴﻦ ﺍﻟﺘﺎﻟﻴﻴﻦ .ﺍﻛﺘﺐ ﻓﻲ ﺍﻟﺼﻒ ﺍﻷﺧﻴﺮ ﻣﻦ ﻛﻞ ﻣﻨﻬﻤﺎ ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﻗﻴﻢ yﺍﻟﻤﺘﺘﺎﻟﻴﺔ. ﺟﺪﻭﻝ )(2 ﺟﺪﻭﻝ )(1 543210 x 543210 x 50 32 18 8 2 0 10 8 6 4 2 0 y = 2x2 y = 2x 62 22 ﺍﻟﻔﺮﻕ ﺍﻟﻔﺮﻕ ) (bﺃﻱ ﻣﻦ ﺍﻟﺪﺍﻟﺘﻴﻦ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ؟ ) (cﺃﻱ ﻧﻤﻂ ﺗﺮﺍﻩ ﻓﻲ ﺍﻟﺼﻒ ﺍﻷﺧﻴﺮ ﻣﻦ ﺍﻟﺠﺪﻭﻝ )(1؟ ﻭﻣﻦ ﺍﻟﺠﺪﻭﻝ )(2؟ ) (dﻛ ّﻮﻥ ﺟﺪﻭ ًﻻ ﻟﻜ ّﻞ ﻣﻦ ﺍﻟﺪﺍﻟﺘﻴﻦ y = - x + 4 , y = - x2 + 4 :ﻣﺴﺘﺨﺪ ًﻣﺎ ﻗﻴﻢ xﻧﻔﺴﻬﺎ ﻓﻲ ﺍﻟﻔﻘﺮﺓ ).(a ﻫﻞ ﺗﺮﻯ ﺍﻷﻧﻤﺎﻁ ﻧﻔﺴﻬﺎ ﻛﻤﺎ ﻓﻲ ﺍﻟﻔﻘﺮﺓ )(c؟ ) (eﻛﻴﻒ ﺗﺴﺎﻋﺪﻙ ﻗﻴﻢ yﻟﻤﺠﻤﻮﻋﺔ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻓﻲ ﺗﻮﻗﻊ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺨﻄﻴﺔ ﺃﻭ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻫﻲ ﺍﻟﻨﻤﻮﺫﺝ ﺍﻷﻓﻀﻞ؟ ) (12ﻳﺒﻴّﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻋﻤﻖ ﺍﻟﻤﻴﺎﻩ ﻓﻲ ﺍﻟﻤﺤﻴﻂ yﺑﺎﻷﻣﺘﺎﺭ ) (mﻭﺳﺮﻋﺔ ﺍﻟﺘﺴﻮﻧﺎﻣﻲ ) xﻣﺘﺮ ﻓﻲ ﺍﻟﺜﺎﻧﻴﺔ .(m/s x 52 58 61 65 71 76 82 98 y 270.40 336.40 372.10 422.50 504.10 577.60 672.40 960.40 ﺍﺳﺘﺨﺪﻡ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻤﺪﻭﻧﺔ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﻹﻳﺠﺎﺩ ﻣﻌﺎﺩﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ ﺗﻨﻤﺬﺝ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ x, yﺛﻢ ﺗﺤﻘﻖ. )ﺍﺳﺘﺨﺪﺍﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ( 37
ﺗﻤ ﱠﺮ ْﻥ 3-1 ﺩﻭﺍﻝ ﺍﻟﻘﻮﻯ ﻭﻣﻌﻜﻮﺳﺎﺗﻬﺎ Power Functions and their Inverses ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﺍﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻤﺜﻞ ﺩﻭﺍﻝ .ﺻﻒ ﺗﻤﺎﺛﻞ ﻛﻞ ﺩﺍﻟﺔ ﺛﻢ ﻭ ّﺿﺢ ﻫﻞ ﻫﻲ ﺯﻭﺟﻴﺔ ﺃﻡ ﻓﺮﺩﻳﺔ ﺃﻡ ﻟﻴﺴﺖ ﺯﻭﺟﻴﺔ ﻭﻟﻴﺴﺖ ﻓﺮﺩﻳﺔ. (1) y = - x2 + 1 6x ! R (2) y = 3 x 6x ! R y y 1 1 -1 12 x -1 1 x -1 -1 (3) y = x2 - 2x + 2 6x ! 6-1, 3h )(4 =y x 6x ! R/\"1, x-1 y y 2 2 x 1 1 -2 -1 1 2 -2 --11 1 2 -1 -2 x 38
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-9ﺍﺫﻛﺮ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ ﻓﺮﺩﻳﺔ ﺃﻡ ﺯﻭﺟﻴﺔ ﺃﻡ ﻟﻴﺴﺖ ﻓﺮﺩﻳﺔ ﻭﻟﻴﺴﺖ ﺯﻭﺟﻴﺔ. (5) y = x3 (6) y = (x - 1) 3 + 2 (7) y = x4 (8) y = - x4 + 3 (9) y = - 4 x ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(10-15ﺃﻭﺟﺪ ﻣﻌﻜﻮﺱ ﻛﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: )(10 y = 1 x3 (11) y = 24 x )(12 y = 1 x4 3 (14) y = 3 x - 1 3 )(13 =y 13 x (15) y = ^x + 2h4 - 3 3 ) (a) (16ﺍﻟﻌﻼﻗﺔ ،M = 0 . 008p3 :ﻭﺯﻥ ﺑﻄﻴﺨﺔ » «Mﺑﺎﻟﺠﺮﺍﻡ ﺣﻴﺚ ﻣﺤﻴﻄﻬﺎ » «pﺑﺎﻟﺴﻨﺘﻴﻤﺘﺮ ).(cm ﻗ ّﺪﺭ ﻭﺯﻥ ﺑﻄﻴﺨﺔ ﻣﺤﻴﻄﻬﺎ 80 cm ) (bﻣﻦ ﺍﻟﻌﻼﻗﺔ M = 0 . 008p3 :ﺍﻛﺘﺐ pﺑﺪﻻﻟﺔ .M ) (cﺃﻭﺟﺪ ﻣﺤﻴﻂ ﺍﻟﺒﻄﻴﺨﺔ ﺍﻟﺘﻲ ﻭﺯﻧﻬﺎ 3.250 kg ) (17ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻔﺘﻮﺡ :ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻗﻮﻯ ﻳﻘﻊ ﺭﺳﻤﻬﺎ ﺍﻟﺒﻴﺎﻧﻲ ﻓﻲ ﺍﻟﺮﺑﻊ ﺍﻟﺜﺎﻧﻲ ﻭﺍﻟﺮﺑﻊ ﺍﻟﺮﺍﺑﻊ. ) (18ﻋﻨﺪﻣﺎ ﺗﺪﻭﺭ ﺩﺍﺋﺮﺓ ﺣﻮﻝ ﺧﻂ ﻣﺜﻞ ﺍﻟﺨﻂ ﺍﻟﻤﻮﺿﺢ ﻓﻲ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ ،ﻓﺈﻥ ﺍﻟﺴﻄﺢ ﺍﻟﻨﺎﺗﺞ ﻳﺴﻤﻰ ﻧﺘﻮﺀًﺍ ﻣﺴﺘﺪﻳ ًﺮﺍ ﺑﺎﻟﻌﻼﻗﺔ: ﺣﺠﻤﻪ ﻭﻳﻌﻄﻰ (torus or )donut R2 V = 2π2 R1 R 2 2 R1 V = 6π2 R 3 ﺃﻥ: ﺗﺤ ّﻘﻖ ، R1 = 3R2 ﺃﻥ: ﺍﻓﺮﺽ )(a 2 ) (bﺃﻭﺟﺪ Vﺇﺫﺍ ،R1 = 3R2ﺣﻴﺚ .R2 = 1 . 27 cmﻗ ّﺮﺏ ﺍﻟﻨﺎﺗﺞ ﺇﻟﻰ ﺃﻗﺮﺏ ﺟﺰﺀ ﻣﻦ 10 11 ) (19ﻭ ّﺿﺢ ﻛﻴﻒ ﺃﻥ ﺍﻟﻤﻘﺪﺍﺭ ^- 64h2ﻻ ﻳﻤﺜّﻞ ﻋﺪ ًﺩﺍ ﺣﻘﻴﻘﻴًّﺎ ،ﻓﻲ ﺣﻴﻦ ﺃﻥ ﺍﻟﻤﻘﺪﺍﺭ ^- 64h3ﻳﻤﺜّﻞ ﻋﺪ ًﺩﺍ ﺣﻘﻴﻘﻴًّﺎ. ) (20ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻨﺎﻗﺪ :ﺻﻒ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ f(x) = axnﺑﺤﺴﺐ ﺍﻟﺸﺮﻭﻁ ﺍﻟﻤﻮﺿﻮﻋﺔ ﻋﻠﻰ .a , n ) n (bﻋﺪﺩ ﺻﺤﻴﺢ ﺯﻭﺟﻲa 1 0 ، ) n (aﻋﺪﺩ ﺻﺤﻴﺢ ﺯﻭﺟﻲa 2 0 ، ) n (dﻋﺪﺩ ﺻﺤﻴﺢ ﻓﺮﺩﻱa 1 0 ، ) n (cﻋﺪﺩ ﺻﺤﻴﺢ ﻓﺮﺩﻱa 2 0 ، ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ،ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) y = x4 (1ﺩﺍﻟﺔ ﻗﻮﻯ ab ) f :6-3,3@ $ R , f(x) = x5 (2ﺩﺍﻟﺔ ﻓﺮﺩﻳﺔ ab ) y = x x (3ﺩﺍﻟﺔ ﺯﻭﺟﻴﺔ ab ) y = ^x + 4h2 (4ﺩﺍﻟﺔ ﺯﻭﺟﻴﺔ 39
ab ) (5ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ y = xﻫﻮ ﺧﻂ ﺗﻨﺎﻇﺮ ﺑﻴﻦ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺗﻤﺜﻞ ﺍﻟﻌﻼﻗﺔ rﻭﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺗﻤﺜﻞ ﻣﻌﻜﻮﺳﻬﺎ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠّﻞ ﺩﺍﺋﺮﺓ ﺍﻟﺮﻣﺰ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﻣﻌﻜﻮﺱ ﺩﺍﻟﺔ ﺍﻟﻘﻮﻯ y = 0.2x4ﻫﻮ: a y=4 x b y =!4 x c y =!4 x d y = - 4 5x 0.2 0.2 2 ) (7ﺃﻱ ﻣﻤﺎ ﻳﻠﻲ ﺗﻤﺜﻞ ﺩﺍﻟﺔ ﺯﻭﺟﻴﺔ. ay by cy dy xx xx ) (8ﺍﻟﺪﺍﻟﺔ y = 4.9t2ﺩﺍﻟﺔ ﺯﻭﺟﻴﺔ ﺇﺫﺍ ﻛﺎﻥ ﻣﺠﺎﻟﻬﺎ: a 6-4, 4h b 6-4, 2h @c 6-2, 2 d 60,3h aR ﻫﻮ: f -1 ﻓﺈﻥ ﻣﺠﺎﻝ = )f : 6-4, 4@ $ R , f (x x3 ﺇﺫﺍ ﻛﺎﻧﺖ )(9 64 y 1 b R+ @c 6-4, 4 @d 6-1, 1 x ) (10ﻟﻴﻜﻦ ﺑﻴﺎﻥ f -1ﻛﻤﺎ ﻫﻮ ﻣﻮﺿﺢ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ .ﺑﻴﺎﻥ fﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ: ay b yc yd y 1 x 1x 1x 1 x ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(11-12ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﺍﻟﺴﺆﺍﻝ ﻓﻲ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ x = 0 a ) (11ﺑﻴﺎﻥ ﺩﺍﻟﺔ ﺯﻭﺟﻴﺔ ﻣﺘﻤﺎﺛﻞ ﺣﻮﻝ: ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ y = 0 b ) (12ﺑﻴﺎﻥ ﺩﺍﻟﺔ ﻓﺮﺩﻳﺔ ﻣﺘﻤﺎﺛﻞ ﺣﻮﻝ: ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ y = x c d ﻧﻘﻄﺔ ﺍﻷﺻﻞ 40
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺤﺪﻭﺩﻳﺔ 3-2 Polynomial Functions ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-9ﺍﻛﺘﺐ ﻛﻞ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻣﻤﺎ ﻳﻠﻲ ﺑﺎﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ ﺛﻢ ﺻﻨﻔﻬﺎ ﺗﺒ ًﻌﺎ ﻟﻠﺪﺭﺟﺔ ﻭﻋﺪﺩ ﺍﻟﺤﺪﻭﺩ. (1) ^2x2 + 9h - ^3x2 - 7h (2) ^7x2 + 8x - 5h + ^9x2 - 9xh (3) ^7x3 + 9x2 + 8x + 11h - ^5x3 - 13x - 16h (4) ^30x3 - 49x2 + 7xh + ^50x3 - 75x - 60x2h )(5 3x5 + 4x 6 (6) 5x2 ^6x - 2h (7) ^x2 + 1h2 (8) ^2c - 3h^2c + 4h^2c - 1h (9) ^w - 1h4 ) (10ﺗﺼﻤﻴﻢ ﺍﻟﻌﺒﻮﺍﺕ :ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ ﻳﻮ ّﺿﺢ ﺯﺟﺎﺟﺔ ﻋﻄﺮ ﺗﺘﻜ ّﻮﻥ ﻣﻦ ﻗﺎﻋﺪﺓ ﺃﺳﻄﻮﺍﻧﻴﺔ ﻭﻏﻄﺎﺀ ﻧﺼﻒ ﻛﺮﻭ ّﻱ. ) (aﺍﻛﺘﺐ ﻣﻘﺪﺍ ًﺭﺍ ﻳﻌﺒّﺮ ﻋﻦ ﺣﺠﻢ ﺍﻷﺳﻄﻮﺍﻧﺔ. h = 10 cm ) (bﺍﻛﺘﺐ ﻣﻘﺪﺍ ًﺭﺍ ﻳﻌﺒّﺮ ﻋﻦ ﺣﺠﻢ ﺍﻟﻐﻄﺎﺀ ﻧﺼﻒ ﺍﻟﻜﺮﻭ ّﻱ. ) (cﺍﻛﺘﺐ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﺗﻤﺜّﻞ ﺍﻟﺤﺠﻢ ﺍﻟﻜﻠ ّﻲ. R ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) (11-15ﻋﻴّﻦ ﺳﻠﻮﻙ ﺍﻟﻨﻬﺎﻳﺔ ﻟﺒﻴﺎﻥ ﻛﻞ ﺩﺍﻟﺔ. (11) y = 3x + 2 (12) f (x) = - x2 + x )(13 )f (x = 1 x 4 - 2 2 (14) y = - 4x4 + 5x5 )(15 )f (x = - 1 x3 - 4x2 + x - 1 2 41
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ) (1ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ f(x) = ax3 + (a + 2)x2 + 5 , 6a ! R ،ﻫﻲ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻟﺜﺔa b . ab ) (2ﺍﻟﻤﻌﺎﻣﻞ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻜﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ f(x) = 2x5 - 3x3 ^1 - x2hﻫﻮ 2 ab ) (3ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ^1 - x2h3 ^x + 1hﻫﻲ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺴﺎﺑﻌﺔ. ab ) (4ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﺍﻟﺤﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ nﻓﺈﻥ ﻟﻬﺎ nﺣ ًّﺪﺍ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-7ﻇﻠّﻞ ﺩﺍﺋﺮﺓ ﺍﻟﺮﻣﺰ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) ^x + 1h3 (5ﻳﺴﺎﻭﻱ: a x3 + 1 b ^x + 1h^x2 + x + 1h c x3 + 3x2 + 3x + 1 d x3 + x2 + x + 1 a ^x4 - 2x2 + 3h - ^x4 - x2 - 9h ) (6ﺃﻱ ﻣﻤﺎ ﻳﻠﻲ ﻳﺴﺎﻭﻱ 2x4 - 3x + 6؟ c ^3x4 - x + 3h + ^3 - 2x - x4h b 2x4 - 3^x + 6h d x^2x3 - 3xh + 6 y ) (7ﺳﻠﻮﻙ ﻧﻬﺎﻳﺔ ﺍﻟﺪﺍﻟﺔ xﻫﻮ: a ^6 , 3h b ^5 , 4h c ^5 , 3h d ^6 , 4h ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) (8-11ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ،ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﻛﻞ ﺗﻤﺮﻳﻦ ﻓﻲ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 ﺳﻠﻮﻙ ﻧﻬﺎﻳﺔ ﺍﻟﺪﺍﻟﺔ: a ^6 , 3h b ^5 , 4h )f (x) = x4 - 2x5 (8 c ^5 , 3h )g (x) = 2x + x3 + 5 (9 d ^6 , 4h a ^6 , 3h ﺳﻠﻮﻙ ﻧﻬﺎﻳﺔ ﺍﻟﺪﺍﻟﺔ: b ^5 , 4h )f (x) = - x6 + 7x (10 c ^5 , 3h d ^6 , 4h )g (x = 1 x 4 - 2 )(11 2 42
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻌﻮﺍﻣﻞ ﺍﻟﺨﻄﻴﺔ ﻟﻜﺜﻴﺮﺍﺕ ﺍﻟﺤﺪﻭﺩ 3-3 Linear Factors of Polynomials ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-3ﺍﻛﺘﺐ ﻛﻞ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ ﻭﺍﺫﻛﺮ ﺩﺭﺟﺘﻬﺎ. (1) y = ^x + 3h^x + 4h^x + 5h (2) y = ^x - 3h2 ^x - 1h (3) y = x^x - 1h^x + 1h ) (4ﺍﻟﻬﻨﺪﺳﺔ :ﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﺻﻨﺪﻭﻕ 2x + 1ﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ ،ﻭﻋﺮﺿﻪ x + 4ﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ ،ﻭﺍﺭﺗﻔﺎﻋﻪ x + 3ﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ ،ﻭﻗﺪ ﻛﻮﻧﺘﻪ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻜﺘﻞ ﺍﻟﺨﺸﺒﻴﺔ ،x ،x2 ،x3ﺍﻟﻮﺣﺪﺓ ).(1 1 x x2 x3 2x + 1 ﻓﺈﻟﻰ ﻛﻢ ﻛﺘﻠﺔ ﺗﺤﺘﺎﺝ ﻣﻦ ﻛﻞ ﻣﻨﻬﺎ؟ x+3 x+4 ) (5ﺍﻟﻬﻨﺪﺳﺔ :ﺻﻨﺪﻭﻕ ﻋﻠﻰ ﺷﻜﻞ ﺷﺒﻪ ﻣﻜﻌﺐ ﻃﻮﻟﻪ 2x + 3 :ﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ ،ﻋﺮﺿﻪ 2x - 3ﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ ،ﺍﺭﺗﻔﺎﻋﻪ 3xﻣﻦ ﺍﻟﻮﺣﺪﺍﺕ .ﻋﺒّﺮ ﻋﻦ ﺣﺠﻢ ﺍﻟﺼﻨﺪﻭﻕ ﻓﻲ ﺻﻮﺭﺓ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ. (6) y = ^x - 1h^x + 2h (7) y = ^x + 3h3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-8ﻋﻴّﻦ ﺃﺻﻔﺎﺭ ﻛﻞ ﺩﺍﻟﺔ ﻭﺗﻜﺮﺍﺭﻫﺎ. (8) y = x^x - 2h2 ^x + 9h ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-12ﺃﻭﺟﺪ ﺃﺻﻔﺎﺭ ﻛﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ ﺛﻢ ﺍﺭﺳﻢ ﺑﻴﺎﻧًﺎ ﺗﻘﺮﻳﺒﻴًّﺎ ﻟﻜﻞ ﻣﻨﻬﺎ ﻣﺮﺍﻋ ًﻴﺎ ﺳﻠﻮﻙ ﺍﻟﻨﻬﺎﻳﺔ ﻟﺒﻴﺎﻥ ﻛﻞ ﺩﺍﻟﺔ. (9) y = ^x - 2h^x + 2h (10) y = ^x + 1h^x - 2h^x - 3h (11) y = x^x + 2h2 (12) y = ^x + 1h2 ^x - 2h^x - 1h ) (13ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻨﺎﻗﺪ :ﻛﻴﻒ ﺗﻌﺮﻑ ﻧﻘﺎﻁ ﺗﻘﺎﻃﻊ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﻟﺪﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﻣﻊ ﻣﺤﻮﺭ ﺍﻟﺼﺎﺩﺍﺕ ﺩﻭﻥ ﺭﺳﻤﻬﺎ ﺑﻴﺎﻧﻴًّﺎ؟ ) (14ﺍﻟﻬﻨﺪﺳﺔ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ :ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ ﻣﻨﻄﻘﺔ ﻣﺴﺘﻄﻴﻠﺔ ﺍﻟﺸﻜﻞ ،ﺃﺣﺪ ﺃﺭﻛﺎﻧﻬﺎ ﻳﻘﻊ ﻋﻠﻰ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﻟﻠﺪﺍﻟﺔ: y y = - x2 + 2x + 4 ) (aﺍﻛﺘﺐ ﻣﺴﺎﺣﺔ ﺍﻟﻤﻨﻄﻘﺔ ﺍﻟﻤﺴﺘﻄﻴﻠﺔ ) (Aﻛﺪﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ(A) (x, y) . x x = 2 1 ﺃﻭﺟﺪ ﻣﺴﺎﺣﺔ ﺍﻟﻤﻨﻄﻘﺔ ﺍﻟﻤﺴﺘﻄﻴﻠﺔ ﺇﺫﺍ ﻛﺎﻧﺖ )(b 2 ) (15ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻔﺘﻮﺡ :ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻟﻬﺎ ﺍﻟﻤﻤﻴﺰﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ: ﺛﻼﺛﺔ ﺃﺻﻔﺎﺭ ﻣﺨﺘﻠﻔﺔ ،ﺃﺣﺪ ﺃﺻﻔﺎﺭﻫﺎ ﻫﻮ ﺍﻟﻌﺪﺩ ،1ﻭﺻﻔﺮ ﺁﺧﺮ ﻣﻦ ﺃﺻﻔﺎﺭﻫﺎ ﻣﻜﺮﺭ ﻣﺮﺗﻴﻦ. 43
2x + 1 ) (16ﺍﻟﺼﻨﺎﻋﺎﺕ ﺍﻟﺨﺸﺒﻴﺔ :ﺑﺪﺃ ﻧﺠﺎﺭ ﻋﻤﻠﻪ ﺑﺎﺳﺘﺨﺪﺍﻡ ﻛﺘﻠﺔ ﺧﺸﺒﻴﺔ ﻛﺎﻟﻤﻮﺿﺤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ. x+3 x+2 ) (aﻋﺒّﺮ ﻋﻦ ﺣﺠﻢ ﺍﻟﻜﺘﻠﺔ ﺍﻟﺨﺸﺒﻴﺔ ﺍﻷﺻﻠﻴﺔ ﻭﺣﺠﻢ ﺍﻟﺘﺠﻮﻳﻒ ﻓﻲ ﺷﻜﻞ ﻛﺜﻴﺮﺗﻲ ﺣﺪﻭﺩ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ. x+1 ) (bﺍﻛﺘﺐ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻟﺤﺠﻢ ﺍﻟﺨﺸﺐ ﺍﻟﻤﺘﺒﻘﻲ. x+4 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(17-20ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ ﻣﺴﺘﺨﺪ ًﻣﺎ ﺍﻷﺻﻔﺎﺭ ﺍﻟﻤﻌﻄﺎﺓ: (17) 1, - 1 (18) 0, 1, 2 (19) -4 , - 1, 3 )(20 1 , -1 ,2 ﻣﺮﺗﻴﻦ( )ﻣﻜﺮﺭ 2 2 ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab f a 3 k = 0 ﺇﺫﺍ ﻛﺎﻧﺖ fﺗﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ^2x + 3hﻓﺈﻥ )(1 ab 2 ) (2ﺇﺫﺍ ﻛﺎﻧﺖ ^x + 2hﻋﺎﻣﻞ ﻣﻦ ﻋﻮﺍﻣﻞ ﺍﻟﺤﺪﻭﺩﻳﺔ gﻓﺈﻥ g^-2h = 0 ab ) (3ﺇﺫﺍ ﻗﺒﻠﺖ f(x) = x4 - 2x2 + k + 1ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ xﻓﺈﻥ k = - 1 ab ) (4ﺑﺎﻗﻲ ﻗﺴﻤﺔ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ nﻋﻠﻰ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻷﻭﻟﻰ ﻫﻮ ﻋﺪﺩ ﺛﺎﺑﺖ. ab ) ^x + 1h (5ﻋﺎﻣﻞ ﻣﻦ ﻋﻮﺍﻣﻞ ﺍﻟﺤﺪﻭﺩﻳﺔp(x) = x3 - x2 - 2x : ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-13ﻇﻠّﻞ ﺩﺍﺋﺮﺓ ﺍﻟﺮﻣﺰ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺇﺫﺍ ﻛﺎﻥ x = - 2aﺻﻔﺮ ﻣﻦ ﺃﺻﻔﺎﺭ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻓﺈﻥ ﺃﺣﺪ ﻋﻮﺍﻣﻠﻬﺎ ﻫﻮ: a ^x - 2ah b ^2x + ah c ^2x - ah d ^x + 2ah ) (7ﺃﻱ ﻣﻦ ﺍﻟﻤﻘﺎﺩﻳﺮ ﺍﻟﺘﺎﻟﻴﺔ ﺇﺫﺍ ﺿﺮﺏ ﻓﻲ ^x - 1hﻳﺼﺒﺢ ﺍﻟﻨﺎﺗﺞ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﺗﻜﻌﻴﺒﻴﺔ ﺛﻼﺛﻴﺔ: a ^x - 1h2 b x2 - x c x2 - 1 d x2 + 1 y ) (8ﻟﻴﻜﻦ ﺑﻴﺎﻥ fﻛﻤﺎ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺮﺳﻮﻡ ﻓﺈﻥ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ f(x) = 0ﻫﻲ: 2 1 a \"-1, 2, 3, b \"1, - 2, - 3, -1 1 2 3 x c \"-1, 0, 2, 3, d \"0, a 4x2 - 9 ) (9ﺷﺒﻪ ﻣﻜﻌﺐ ﺃﺑﻌﺎﺩﻩ 2x + 3, 2x - 3, 3xﻓﺘﻜﻮﻥ ﺩﺍﻟﺔ ﺍﻟﺤﺠﻢ ) f(xﺗﺴﺎﻭﻱ: b 3x^4x2 + 9h c 12x2 - 9x d 12x3 - 27x ) (10ﻗﻴﻤﺔ kﺍﻟﺘﻲ ﺗﺠﻌﻞ ^x - 1hﻋﺎﻣ ًﻼ ﻣﻦ ﻋﻮﺍﻣﻞ f(x) = ^x2 + x - 2h + 2kﻫﻲ: a1 b2 c0 d 1 2 44
) f(x) = x3 - x (11ﺗﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ x - kﺇﺫﺍ ﻛﺎﻥ kﻳﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﻤﻮﻋﺔ: a \"0, b \"-1, c \"1, d \"0, - 1,1, x = 2 bﺻﻔﺮ ﻣﻜﺮﺭ ﻣﻦ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ f ) (12ﺇﺫﺍ ﻛﺎﻧﺖ ) f(xﺗﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ^x - 2h2ﻓﺈﻥ: x = - 2 dﺻﻔﺮ ﻣﻜﺮﺭ ﻣﻦ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ f x = 2 aﺻﻔﺮ ﻣﻦ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ f x = - 2 cﺻﻔﺮ ﻣﻦ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ f a f (x) = x2 + m ) x + m (13ﻋﺎﻣﻞ ﻣﻦ ﻋﻮﺍﻣﻞ: c f (x) = x3 + mx2 b f (x) = x3 + mx d f (x) = x2 + m2 45
ﺗﻤ ﱠﺮ ْﻥ ﻗﺴﻤﺔ ﻛﺜﻴﺮﺍﺕ ﺍﻟﺤﺪﻭﺩ 3-4 Dividing Polynomials ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ (1) ^x2 - 3x - 40h ' ^x + 5h ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﺍﻗﺴﻢ ﻣﺴﺘﺨﺪ ًﻣﺎ ﻗﺴﻤﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﺍﻟﻤﻄﻮﻟﺔ. (3) ^x3 - 13x - 12h ' ^x - 4h )(2) ^x3 + 3x2 - x + 2h ' (x - 1 )(4) (9x3 - 18x2 - x + 2) ' (3x + 1 (5) x - 3 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(5-6ﺑﻴّﻦ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﺛﻨﺎﺋﻴﺔ ﺣﺪ ﻋﺎﻣ ًﻼ ﻣﻦ ﻋﻮﺍﻣﻞ x3 + 4x2 + x - 6 (6) x + 2 )(7) ^x3 + 3x2 - x - 3h ' (x - 1 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(7-11ﺍﻗﺴﻢ ﻣﺴﺘﺨﺪ ًﻣﺎ ﺍﻟﻘﺴﻤﺔ ﺍﻟﺘﺮﻛﻴﺒﻴﺔ. )(9) ^2x4 + 6x3 + 5x2 - 45h ' (x + 3 )(8) ^-2x3 + 5x2 - x + 2h ' (x + 2 (11) ^2x3 + 4x2 - 10x - 9h ' ^x - 3h )(10) ^x3 - 3x2 - 5x - 25h ' (x - 5 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(12-13ﺍﺳﺘﺨﺪﻡ ﺍﻟﻘﺴﻤﺔ ﺍﻟﺘﺮﻛﻴﺒﻴﺔ ﻭﺍﻟﻌﺎﻣﻞ ﺍﻟﻤﻌﻄﻰ ﻟﺘﺤﻠﻴﻞ ﻛﻞ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﺑﺎﻟﻜﺎﻣﻞ. (12) y = x3 + 2x2 - 5x - 6 ; x + 1 (13) y = x3 - 4x2 - 9x + 36 ; x + 3 ) (14ﺍﻟﻬﻨﺪﺳﺔ :ﻳﻌﻄﻰ ﺣﺠﻢ ﺻﻨﺪﻭﻕ ﺑﺎﻟﻤﻌﺎﺩﻟﺔ V(x) = x3 + x2 - 6x :ﺑﺎﻷﻣﺘﺎﺭ ﺍﻟﻤﻜﻌﺒﺔ x 2 2 : ^m3h ﻣﺎ ﺍﻷﺑﻌﺎﺩ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻬﺬﺍ ﺍﻟﺼﻨﺪﻭﻕ؟ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(15-18ﺍﺳﺘﺨﺪﻡ ﺍﻟﻘﺴﻤﺔ ﺍﻟﺘﺮﻛﻴﺒﻴﺔ ﻭﻧﻈﺮﻳﺔ ﺍﻟﺒﺎﻗﻲ ﻹﻳﺠﺎﺩ )f(a (15) f (x) = x3 + 4x2 - 8x - 6 ; a = - 2 (16) f (x) = x3 - 7x2 + 15x - 9 ; a = 3 )(17 )f (x = 2x3 - x2 + 10x + 5 ; a = 1 (18) f (x) = 2x4 + 6x3 + 5x2 - 45 ; a = - 3 2 ) (a) (19ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻤﻨﻄﻘﻲ :ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ) f(xﻗﺴﻤﺖ ﻋﻠﻰ ﺛﻨﺎﺋﻴﺔ ﺍﻟﺤ ّﺪ ^x - ahﻭﺍﻟﺒﺎﻗﻲ ﺻﻔﺮ. ﻣﺎﺫﺍ ﻳﻤﻜﻨﻚ ﺃﻥ ﺗﺴﺘﻨﺘﺞ؟ ﻓ ّﺴﺮ. ) (bﺗﻔﻜﻴﺮ ﻧﺎﻗﺪ :ﻭ ّﺿﺢ ﻟﻤﺎﺫﺍ x2 + 1ﻻ ﻳﻤﻜﻦ ﺗﺤﻠﻴﻠﻬﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺃﻋﺪﺍﺩ ﺣﻘﻴﻘﻴﺔ؟ ) (cﺍﻛﺘﺸﺎﻑ ﺍﻟﺨﻄﺄ :ﺣﻠّﻞ ﻃﺎﻟﺐ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ x3 - x2 - 2x :ﺇﻟﻰ ﺛﻼﺛﺔ ﻋﻮﺍﻣﻞ ،ﻭﻛﺎﻥ ^x - 1hﺃﺣﺪ ﻫﺬﻩ ﺍﻟﻌﻮﺍﻣﻞ .ﺍﺳﺘﺨﺪﻡ ﺍﻟﻘﺴﻤﺔ ﻟﺘﺜﺒﺖ ﺃﻥ ﺍﻟﻄﺎﻟﺐ ﺍﺭﺗﻜﺐ ﺧﻄﺄ. 46
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(20-22ﺍﻗﺴﻢ ﻣﺎ ﻳﻠﻲ: (20) ^2x3 + 9x2 + 14x + 5h ' ^2x + 1h (21) ^x5 + 1h ' ^x + 1h )(22) ^3x4 - 5x3 + 2x2 + 3x - 2h ' (3x - 2 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(23-25ﺍﻗﺴﻢ ﺛ ّﻢ ﺃﻭﺟﺪ ﻧﻤﻄًﺎ ﻓﻲ ﺍﻹﺟﺎﺑﺎﺕ. (23) ^x2 - 1h ' ^x - 1h (24) ^x3 - 1h ' ^x - 1h (25) ^x4 - 1h ' ^x - 1h ) (26ﻣﺴﺘﺨﺪ ًﻣﺎ ﺍﻷﻧﻤﺎﻁ ،ﺍﻗﺴﻢ ^x5 - 1h ' ^x - 1h ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(27-29ﺍﻗﺴﻢ ﺛ ّﻢ ﺃﻭﺟﺪ ﻧﻤﻄًﺎ ﻓﻲ ﺍﻹﺟﺎﺑﺎﺕ. (27) ^x3 + 1h ' ^x + 1h (28) ^x5 + 1h ' ^x + 1h (29) ^x7 + 1h ' ^x + 1h ) (30ﻣﺴﺘﺨﺪ ًﻣﺎ ﺍﻷﻧﻤﺎﻁ ،ﺃﻭﺟﺪ ^x9 + 1h ' ^x + 1h ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ ﺍﻟﺪﺍﺋﺮﺓ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻹﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺇﺫﺍ ﻛﺎﻥ ﺑﺎﻗﻲ ﻗﺴﻤﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ) f(xﻋﻠﻰ ^x + αhﻳﺴﺎﻭﻱ ﺻﻔ ًﺮﺍ ﻓﺈﻥ α ab ﻋﺎﻣﻞ ﻣﻦ ﻋﻮﺍﻣﻞ f ab ) (2ﺍﻟﺪﺍﻟﺔ f(x) = ^x - 2h2 - 1ﺗﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ )(x - 1 ) (3ﺑﺎﻗﻲ ﻗﺴﻤﺔ ) (x3 + a3ﻋﻠﻰ ) (x - aﻫﻮ 2a3 ab ) (4ﻧﺎﺗﺞ ﻗﺴﻤﺔ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ nﺣﻴﺚ n H 2ﻋﻠﻰ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺗﻜﻮﻥ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ^n - 2h ab ) (5ﻧﺎﺗﺞ ﻗﺴﻤﺔ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺴﺎﺩﺳﺔ ﻋﻠﻰ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻟﺜﺔ ﺗﻜﻮﻥ ﺣﺪﻭﺩﻳﺔ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ﻣﻦ ) ،(6-11ﻇﻠّﻞ ﺩﺍﺋﺮﺓ ﺍﻟﺮﻣﺰ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺑﺎﻗﻲ ﻗﺴﻤﺔ ) f(xﻋﻠﻰ g(x) = x - kﻫﻮ: )a g(k )b f(k )c f (- k d -k ) (7ﺑﺎﻗﻲ ﻗﺴﻤﺔ ) (x4 + 2ﻋﻠﻰ ) (x - 3ﻫﻮ: a3 b 27 c 81 d 83 47
) (8ﻧﺎﺗﺞ ﻗﺴﻤﺔ ) (2x4 - 8x2ﻋﻠﻰ ) (x + 2ﻳﺴﺎﻭﻱ: a 2x3 - 4x2 b 2x3 - 8x2 c x3 - 4x2 d 2x3 - 4x2 + 2x ) (9ﺇﺫﺍ ﻛﺎﻥ 0ﻫﻮ ﺑﺎﻗﻲ ﻗﺴﻤﺔ f(x) = 2x3 - 4x2 + kx - 1ﻋﻠﻰ ) (x + 1ﻓﺈﻥ kﺗﺴﺎﻭﻱ: a7 b -7 c -3 d3 ) (10ﺇﺫﺍ ﻛﺎﻥ ﺑﺎﻗﻲ ﻗﺴﻤﺔ f(x) = x4 - kx2 + x - kﻋﻠﻰ ) (x - 1ﻫﻮ 3ﻓﺈﻥ kﺗﺴﺎﻭﻱ: a 1 b3 c - 1 d 5 2 2 2 ) (11ﺇﺫﺍ ﻛﺎﻥ f(- 1) = f(0) = f(3) = - 2ﻓﺈﻥ ) f(xﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ: a x3 - x2 + 3x - 2 b x3 - 2x2 - 3x c 2x3 - 2x2 - 3x - 2 d 2x3 - 4x2 - 6x - 2 48
ﺗﻤ ﱠﺮ ْﻥ ﺣﻞ ﻣﻌﺎﺩﻻﺕ ﻛﺜﻴﺮﺍﺕ ﺍﻟﺤﺪﻭﺩ 3-5 Solving Polynomial Equations ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-9ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ﻭﻗ ّﺮﺏ ﺇﺟﺎﺑﺘﻚ ﻷﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻣﺌﺔ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺫﻟﻚ ﺿﺮﻭﺭﻳًّﺎ. (1) 6y2 = 48y (2) 3x3 - 6x2 - 9x = 0 (3) 12x3 - 60x2 + 75x = 0 (4) 4x3 = 4x2 + 3x (5) 2a4 - 5a3 - 3a2 = 0 (6) 2d4 + 18d3 = 0 (7) x3 - 6x2 + 6x = 0 (8) x3 + 13x = 10x2 (9) 2x3 - 5x2 = 12x (10) x3 - 2x2 - 3 = x - 5 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(10-12ﺍﺳﺘﺨﺪﻡ ﺍﻟﺘﻘﺴﻴﻢ ﻟﺤﻞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (11) x3 + 3x2 - 4x - 12 = 0 (12) x3 + 2x^x - 1h = 1 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(13-17ﺍﺳﺘﺨﺪﻡ ﺍﻷﺻﻔﺎﺭ ﺍﻟﻨﺴﺒﻴﺔ ﺍﻟﻤﻤﻜﻨﺔ ﻟﺤﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (13) x4 + 2x3 + x2 = 4x2 + 8x + 4 (14) x3 - 3x + 2 = 0 (15) x3 + x2 - 8x - 12 = 0 (16) x3 - 7x + 6 = 0 (17) x4 + x3 - 6x2 - 4x + 8 = 0 ) (18ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻔﺘﻮﺡ :ﻟﺤﻞ ﻣﻌﺎﺩﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ،ﻳﻤﻜﻨﻚ ﺍﺳﺘﺨﺪﺍﻡ ﻃﺮﻳﻘﺔ ﺃﻭ ﺃﻛﺜﺮ ﻣﻦ ﺍﻟﻄﺮﻕ ﺍﻟﺘﺎﻟﻴﺔ :ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ، ﺍﻟﺘﺤﻠﻴﻞ ﺇﻟﻰ ﻋﻮﺍﻣﻞ ،ﺍﻟﻘﺎﻧﻮﻥ ﺍﻟﻌﺎﻡ ﻟﺤﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ .ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻭﺣﻠﻬﺎ ﻟﺘﻮﺿﺢ ﻛﻞ ﻃﺮﻳﻘﺔ. ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab &- 4 , 4 0 ﻫﻲ 9x2 + 16 = 0 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ )(1 ab 3 3 ab ) (2ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ x ! R ،2x3 + 2 = 0ﻫﻲ ﻣﺠﻤﻮﻋﺔ ﺃﺣﺎﺩﻳﺔ. ^4x2 + 1ha x2 - 1k = 0 ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺇﺫﺍ ﻛﺎﻧﺖ 2kﺗﻨﺘﻤﻲ ﺇﻟﻰ )(3 4 ﻓﺈﻥ k ! \"-1,1, ab ) (4ﺇﻥ \"1,ﻫﻲ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 3x4 + 12x2 - 15 = 0 a b ﺣﻴﺚ b , c ! R f (x) = 2x3 + bx2 + cx - 3 ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺻﻔ ًﺮﺍ ﻟﻠﺤﺪﻭﺩﻳﺔ 2 )(5 3 49
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-8ﻇﻠّﻞ ﺩﺍﺋﺮﺓ ﺍﻟﺮﻣﺰ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) 5 (6ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺻﻔ ًﺮﺍ ﻣﻦ ﺃﺻﻔﺎﺭ ﺍﻟﺤﺪﻭﺩﻳﺔ ) f (xﺗﺴﺎﻭﻱ: a ax3 + x4 + 5 b x5 - 1 c 5x3 + 6x - 1 d ^x + 5h^x2 + 25h a -1 b -3 ) (7ﺃﻱ ﻗﻴﻤﺔ ﻣﻤﺎ ﻳﻠﻲ ﻟﻴﺴﺖ ﺣ ًّﻼ ﻟﻠﻤﻌﺎﺩﻟﺔx4 - 10x2 + 9 = 0 : c3 d2 )a f (x) = (x - 1) (x + m) (x + n ) (8ﺇﺫﺍ ﻛﺎﻥ f(m) = f(n) = f(- 1) = 0ﻓﺈﻥ fﻣﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ: c f (x) = (x + 1) (x - m) (x - n) 2 )b f (x) = (x - 1) (x - m) 2 (x - n )d f (x) = (x + 1) (x - mn ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-11ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﻛﻞ ﺗﻤﺮﻳﻦ ﻓﻲ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 ) (9ﻣﺠﻤﻮﻋﺔ ﺣﻞ f(x) = 0ﻫﻲ \"-1, 2,3, a y 1 ` ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ fﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ: 1x ) (10ﻣﺠﻤﻮﻋﺔ ﺣﻞ f(x) = 0ﻫﻲ \"-1,2, y ` ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ fﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ: b -1 2 3 x ) (11ﻣﺠﻤﻮﻋﺔ ﺣﻞ f(x) = 0ﻫﻲ \"1, - 2, - 3, y ` ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ fﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ: c -1 2 x y d -3 -2 1x 50
Search