******************* y=ln(-x) y y=lnx y3 3 2 2 1 1 -5 -4 -3 -2 -1 0 1234 x -5 -4 -3 -2 -1 0 1234 x -1-1 y=-ln(-x) -2-2 -3-3 y=-lnx BAC2020 larbibelabidi @ gmail.com Facebookالعربي الجزائري
******************* 2، 1 2 1 BAC2020 : larbibelabidi @ gmail.com Facebookالعربي الجزائري
1 ln 0; x ey y ln x y x 0 2 n yx xy ln x ln y 2 x y ln x ln y 1 ln e 1 x e ln x 1 ln1 0 x 1 ln x 0 ln xn n ln x 3 ln( x ) ln x ln y 2 ln(x.y) ln x ln y 1 y ln x² 2ln x 3 ln x 1 ln x 2 ln( 1 ) ln x 1 2 x x n ln(x)n n ln x n ln(x)n n ln x ln(ax b) 3 ln(ax b) x b ln(ax b) ln x 0 x 1; e 0a xx .a 1 0 .a 2 xx 0 ln x 0 x 0;1 lnu(x) u(x) 0 u(x) 1 lnu(x) a(ln x)² b(ln x) c 0 4 X ln x a(ln x)² b(ln x) c 0 aX² bX c 0 5 limln x 3 lim x ln x 0 2 lim ln x 1 x 0 x 0 x lim ln(x 1) 1 5 lim ln x 0 4 lim ln x 1 xx0 xx x1 x 1 lim ln x 0 lim xn ln x 0 n xx n x 0
6 (ln x) ' 1 x x ln x 1 x ax b 0 b a ln(ax b)' a 2 x lnu(x) D ax b u3 ln(u(x))' u '(x) D u(x) ln u(x) ' u '(x) u u(x) ln ax b ' ln ax b ' (ax a.d b.c d) cx d cx d b)(cx x ln x 7 x0 0; e x ln x 1 x 1 ln x 1 e y 3 2 1 0 1 2 3 4 5 6 7 8x -1 -2 -3
21 1 1 (ln x)² 0 5،ln(x2 3x 2) 2ln 2 4 ln x 1 0 3 ln(x 1) 0 2 ln x 1 0 1 (ln x)² 5 ln x 1 0)8،ln(4x 5) ln(x 1) 5ln 2 ln(x) 7 ln(2x 3) ln(x 3) ln5 6 2 ln3 x 3ln ²x 4 0 12 ln e2x ex 1 0 11 ln e2x 1 x 11 ln 2x 1 ln x 1 ln 2 9 2 ln x² 1 0 5 ln(x² 2x) ln(4x 5) 4 ln x2 0 3 ln(x 1) 0 2 ln x 1 1 x 1 2(ln x)3 7(ln x)² 3lnx 0 9 1 ln x 0 8 (ln x 1)(ln x 1) 0 7 (ln x)² ln x 2 0 5 1 ln x 20 Px 2x3 3x2 11x 6 x P Px 0 Px 2x 1x 23 x 1 2 2e3x 3e2x 11ex 6 2(ln x)3 3(ln x)2 11(ln x) 6 23 P(x) x3 3x 2 P(x) 1 P(x) 0 P(1) 2 (x 1)(ln2 x ln x 2) 0 (x 1)e2x (x 1)(ex 2) 24 f (x) x 1 2 ln x 2 4 f (x) 1 ln x 3 f (x) ln(x² x 2) 2 f (x) ln(x 1) 1 x 1 x f (x) 1 1 8 f (x) 1 (ln x)² 7 f x ln e2x ex 1 6 f x lnx2 1 lnx2 1 5 ln x f x x 1 ln x 1 12 f (x) x 11 f (x) x ln x 11 f x 1 ln x 9 x 1 ln x x x 1 0202
25 gx x2 2 2ln x f x x 2ln x 0; f f1 x f 'x 0; x 1 g ' 0; 2 0; 3 g3 0; f4 1;2 f x 0 5 f 6 26 f O;i, j A(3;1) (C ) B(2;1 e) f y 1 C(1;3) (C ) f f '(2) f '(1) f ''(1) 1 2 f (x) C(1;3) (T) 3 f (x) m f (x) 0 4 3; 5 6 m f g(x) f (x) lnf (x) ; g .f '(x) f (x) g '(x) g 27 1; ln 1 0 0202
1;0 f : x ln xx 1 2 1; 3 f : x ln x2 1 4 5 ln x2 ln 3x 4 6 xf 'x 1 x f x x ln x ;2 1 ln2 x 0 28 f (x) 2ln x2 ln x 3 0; f 1 lim f (x) lim f (x) lim f (x) 0 2 x 0 x 0 x 0 3 4 f (x) x² 2x ln(x 1)² 1 f x2 x 1 x 1 x2 x 1 x 1 3 5 3x 2 f 1 0 f (x) 3x f '(x) ln 3 1 ln3 f '(x) ln 3 e 1 ln 3 f '(x) ln 3 1 ln3 x ex ex 2x² x² x² 29 A(e; 2e) 0 ; f (C) O;i, j y e 7 6 A c ba 2 2e e 3x f (x) 2x a ln x2 bln x c 5 c b a f '(x) 1 4 2 3 f 'ef' e f ' 1 3 2 e 1 f (x) 2x 2ln x2 3ln x 2 01 e 1e e 2 3 0202 2
f t ln x 1f 4 5 f '(x) 2(ln x 1)(2ln x 1) x 0; 6 f f '(x) 12 f (x) x² 2x 2ln(1 2x) ; 4 x 0 f 1 e x 4; f 2 (C) (x) ln ;x 0 . O;i, j lim f (x) f (0) 1 lim f (x) f (0) -1 x 0 x 2 x 0 x f O limf (x) ln x ln 2 0 x 0 f 2 3 x 4; f (x) f (0) 4;3 f (x) 0 4 (C) 5 4;0 g6 m m g (x) f (x) 1 mm B(;1) A(0;1) g (C ) mm 4 0202
0219 11 f (x) 1 ln x 0;2 2; (C ) f f x2 1 2 . O;i, j 3 lim f(x) lim f(x) lim f(x) lim f(x) 4 x 2 x 2 x 0 g6 x 0;2 2; f y ln () 3 (Cg ) () lim f(x) ln x 2 g(x) f (2x) 1 x 0 12 -1 (C ) -2 f -3 (C ) () f ;1 1;0 g g(x) 0218 10 gI g(x) 1 (ln x)² ln x 1 0; (Cg ) g(1) x g(x) x 3x (Cf ) f (x) 1 ln x 0; f II 1 x ln x O, i, j lim f (x) 0 limf(x) 1 2 x x 0 f '(x) g(x) :0; منx (1 x ln x)² f (C ) (T) y e² x e 3 f (C ) e 1 e 1 4 (e 1)f(x) e²x em f (T) m 5 0202
f (x) 2 x ln x 1 0217 13 f 3 x 1 D ;1 1; O, i, j (Cf ) 1 f 2 lim f (x) lim f (x) lim f (x) lim f (x) 3 x x x 1 x 1 4 5 (Cf ) 6 m7 f '(x) 2 x² 2 D x 3 x² 1 f I (Cf ) 1,8 1,9 f (x) 0 1 () (C ) (C ) y 2 x () f f3 () 2 (Cf ) 3 (2 3 m )x 3ln x 1 0 m 4 x 1 0217 14 gI 1 f (x) 1 2ln(2x 1) 1 ; f 2 (2x 1)² 2 O, i, j lim f (x) lim f (x) x x 1 2 f '(x) 8ln(2x 1) x (2x 1)3 1 ; 2 f f (x) f (x) 0 1 ; 2 (Cf ) (Cf ) 0216 15 g(x) x² 1 ln x 0; g g(x) 0 0; x g( 2 ) 6 0202 2
f (x) ln x x 1 0; f II x (C) O, i, j 1 2 lim f (x) lim f (x) x 3 x 0 4 f '(x) g(x) 0; x x² 1 () f y x 1 (C) (T) (C) () (C) (C) () (T) 5 ( ) m6 y mx m m ( ) A(1;0) m m m f (x) mx m 0216 16 g(x) 1 (x 1)e 2ln(x 1) 1; g I g 1 0,34 0,33 g(x) 0 2 x 3 1; g(x) 1; f II f (x) e ln(x 1) x 1 (x 1)² lim f (x) (Cf ) 1 O, i, j x 1 lim f (x) f x f '(x) g(x) 1; x (x 1)3 1; f () 3,16 (Cf ) 3 k (Ck ) k(x) f ( x ) 1;1 k k (Cf ) (Ck ) k(x) m m 7 0202
0215 17 y (γ) O, i, j 3 (Δ) x ln x I 2 1 y x 3 0 1 2 3 4 5 6 x 1 -1 α 0; g2 g(x) x 3 ln x 0; -2 2,2 2,3 g(x) x 0; f II (Cf ) f (x) (1 1)(ln x 2) x lim f (x) lim f (x) 1 x x 0 f f '(x) g(x) x 0; 2 x² f () f () ( 1)² 3 4 0;e² (Cf ) (Cf ) 0214 18 (Cf ) f (x) 1 2ln x 0; f x lim f (x) lim f (x) 1 x 2 x 0 3 0; f 4 e e0,4 0,3 y 1 () (Cf ) 1 (Cf ) (T) 0 ;1 f (x) 0 h(x) 1 2ln x 0 (Cf ) (T) x h (Ch ) h(x) h(x) 0 x ln x² (m 1) x (Cf ) (Ch ) m 8 0202
0213 19 g(x) x² 2x 4 2ln(x 1) 1; g gI lim f (x) 1 g(x) 0 x 1; 2 (C ) f (x) x 1 2ln(x 1) 1; x 1 f II f x 1 1 limf (x) 2 x 3 f '(x) g(x) x 1; 4 (x 1)² f(I 1 1; f 2 3 0 0,5 1; f(x) 0 4 (C ) y x () f () (C ) f x (C ) yx 2 (T) 0f e3 (C ) (T) x f 0 f(x) x m m 0210 02 (Cf ) f (x) x 5 6ln( x ) ;0 x 1 limf (x) lim f (x) x x 0 f f '(x) x² x 6 x ;0 x(x 1) (C ) yx5 () f () (C ) 1,1 1 3,5 3,4 f f(x) 0 9 0202
() (C ) 5 f B(2; 5 6ln 3) A(1;3 6ln 3) 6 24 4 (AB) M y 1 x 7 6ln 3 0 22 4 0211 01 (C ) (AB) f (C ) 6y g(x) x 1 1 g (I g 5 (C ) 4 x 1 3 g 2 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8x -1 -2 g -3 g(x) 0 -4 -5 -6 0 g(x) 1 x (Cf ) f (x) x 1 ln x 1 1; f II x 1 x 1 1 2 lim f (x) lim f (x) x x 1 g'(x) 2 x 1; (x 1)² f f '(x) f(x) 0 x 3,62 ;3,63 0 (C ) f 1; ln x 1 3 x 1 I fI 0212 00 (Cf ) f (x) 1 ln(2x 1) I 1 ; 2 12 0202
lim f (x) lim f (x) 1 x 1 2 2 x 3 4 I f g II yx (d) (Cf ) 1 2 f (x) ln(x a) b I x 3 ba 4 5 (Cf ) (C ) ln (C ) (C ) f hI g(x) f (x) x I 1 2 lim g(x) lim g(x) 3 x 1 x 2 f II 1 I g 2 1,5; g(x) 0 g(1) 3 4 23 0,5;5 g (C ) g (d) (C ) I g(x) f 1; f (x) 1; x 0229 03 h(x) x² 2x ln(x 1) 1; lim h(x) lim h(x) x x 1 h h'(x) 1 2(x 1)² x1; x 1 h(x) h(0) (C ) f (x) x 1 ln(x 1) 1; f x 1 lim f (x) lim f (x) x x 1 (Cf ) lim ln u 0 et uu lim f tt 3,4 3,3 lim [f (x) (x 1)] x (Cf ) f '(x) h(x) x 1; (x 1)² y2 (Cf ) (Cf ) 11 0202
10 0202
0219 04 0; gI g(x) (x 1)(x e) e(x ln x) 0; g(x) lim g(x) f (x) ln(x 1) eln x x 0 x 1 0; f II O, i, j (Cf ) 1 lim f (x) lim f (x) 2 x x 0 3 f '(x) g(x) 0; x x(x 1)² 1 f A (C ) (T) f 0,7 0,8 0; x ln(x 1) () 4 lim f (x) ln(x 1) x (C ) () f (C ) () (T) f 0218 05 g(x) 2 x ln x 0;1 g I 0;1 g 1 2 0,15 0,16 g(x) 0 3 0;1 g(x) x II f (x) 1 2x ln x 1; f (Cf ) x 1 1 O, i, j f (x) 1 2x ln x f(x) lim f (x) lim f (x) x 1 x 1 x x 1 13 0202
g( 1 ) 2 f '(x) x x 3 (x 1)² 4 5 1 ; 1; 1 f (Cf ) 1 y 2 () (C ) f 2 3 f ( 1 ) 1,8 (Cf ) 4 5 f (x) m m 6 I 0217 06 1 2 f (x) 2x 3 2 ln x 1 Df ;1 2; f 3 x 2 II (Cf ) O, i, j lim f (x) lim f (x) x 2 x 1 lim f (x) lim f (x) x x f f '(x) 2 2 Df x (x 1)(x 2) f (3 x) f (x) 0 (3 x) Df Df x (Cf ) f (x) 0 0,45;0,46 () (C ) (C ) y 2x 3 () f f (Cf ) () 0217 07 g(x) 1 2 ln x 0; g 2 x² lim g(x) lim g(x) x x 0 g g(x) 1,71 1,72 g(x) 0 f (x) 1 x 2 1 ln x 0; f 2x O, i, j 14 0202
lim f (x) lim f (x) 1 x 2 x 0 3 f .(C ) y1x2 () f 2 () (C ) 4,19 4,22 0,76 0,77 f f () f () 0 f () 0,87 (C ) () f 1 0216 08 g(x) x 1 ln(x 1) 1; gI 1 x 1 2 f II lim g(x) lim g(x) 1 2 x x 1 3 1; g 4 0,4 0,5 g(x) 0 1; g(x) f (x) 1 (x 1)ln(x 1) 1; lim f (x) lim f (x) x x 1 1; f 102 f () f () 4 4 a f (C) 1 a (T ) 1; a O, i, j h(x) f (x) f '(a)(x a) f (a) 1; x h '(x) f '(x) f '(a) 1; x 1; h x h '(x) g (T ) (C) a (T ) A(1;0) a (C) 0 0216 09 g(x) x xln x. 0; g I 1 lim g(x) lim g(x) x x 0 15 0202
0; g g(x) 1 3,5 3,6 g(x) 1 2 3 0; f (x) ln x 0; f II x 1 (C ) O, i, j (C ) j 4cm i 2cm f f x y0 x0 f 1 0; (T) 2 f '(x) g(x) 1 0; lim f (x) f () (C ) x x 3 x(x 1)² f 4 f () 1 ; 1 f () (C ) 102 f mx x² x 2m(x 1) ln(x²)..(E) f (x) 1 x m (E) 2 m (E) ln x * h5 (C ) h(x) h x 1 (C ) (C ) h f h 2015 32 h(x) (x 2)² 2 2ln(x 2) 2; hI lim h(x) ( lim h(x) 1 x x 2 h 2 h(x) 0 2; x 3 f (x) x 1 2 ln(x 2) 2; f II x2 lim f (x) (C ) 1cm O, i, j f x 2 1 lim f (x) x 16 0202
f '(x) h(x) x 2; 2 (x 2)² 2; f (C ) y x 1 () 3 f () (C ) 4 A f (C ) f (C ) f g(x) x 1 2 ln(x 2) 2; g III x2 g lim g(x) g(1) lim g(x) g(1) 1 x 1 x 1 x 1 x 1 2 g (C ) (C ) 3 g f 0214 31 O, i, j 1,45 1,46 0; 3 g(x) x ln x x 0; 3 gI 1 g 2 g(x) 2 y g(x) 2 2 1 f (Cf ) 0; 3 II 2f f (x) x 2 ln x 0 1234 x (Cf ) 1 -1 2 f 3 -2 (Cf ) h(x) (2 cosx)ln(cosx) 0 ; h III 2 h (Ch ) (Ch ) x () 1 2 h 2 (Ch ) () 1 0213 30 g(x) (x 1)² 2 ln(x 1) 1; gI 1; g 1 17 0202
ln( 1) 2 ( 1)² 0,31 0,32 g(x) 0 2 g(x) x 3 (C ) f (x) (x 1)² 2 ln(x 1)2 1; f II f 1 lim f (x) lim f (x) 2 x 1 3 f '(x) 2g(x) x 1; 4 5 x 1 () III f f () f () ( 1)²1 ( 1)2 1; 2 (C ) f h(x) ln(x 1) 1; h x () M (1;2) A AM f (x) AM 1 k2 k(x) f (x) 1; 1; fk AM () B 0 0213 AB ( 1) ( 1)² 1 33 g(x) (x 1)ex g gI 1 (x 1)ex 0 x 1 2 f (x) ex 1;x 0 0; f II x f1 f (0) 1 2 lim f (x) 0; n III x C f '(x) 1 (x 1)ex x 0; n 1 x² f f (x) ex 1 n ln x 0; f n1 n nx (O; i; j) limf (x) lim f (x) 2 0; f x n 0 n n 18 0202
Cn1 C 3 n 4 5 B gI f ( ) 0 0,3 ;0,4 11 1 fn (1) 0 n 1 n f ( ) 0 ;1 nn 1 n ex 1 e 1 0;1 x 34 II x 0; 0210 g(x) x² a bln(x) 4 A(1; 1) (C ) b a f 1 g b 2 a 2 2 0; g(x) 0; g(x) 0 f (x) x 2 2ln(x) 0; f II x (C ) O, i, j f f '(x) g(x) f '(x) lim f (x) lim f (x) 1 x² x x 0 f f '(x) () (C ) (C ) y x 2 () 2 f f () (T) (C ) f x2 x1 f(x) 0 1,25 (C ) (T) () 2,7 x2 2,8 0,6 x1 0,7 f m3 (m 2)x 2ln(x) 0 0211 35 ba f (x) a bln(2x) 0; f (O; i; j) 4x² C f 19 0202
1 ba 1 (C ) A( ;1) g2 f2 (C ) g(x) 1 2ln(2x) 0; g 4x² lim g(x) lim g(x) x 0 x g g(x) 0 0; 0212 36 (C ) g g(x) 2x ln x g 1; x g g g(x) 0 x 1; (C ) f (x) 6ln x 1; f2 f 2x ln x lim f (x) 6ln x x f (x) x x ln f 2 x f f(x) k k 1 (C ) ( ) f1 (C ) h(x) f (ex ) 1; h3 h 1 (C ) ( ) h h2 (C ) (C ) ( ) ( ) h f 21 02 0202
0219 37 f (x) x x² ln x ; x 0 0; f f (0) 0 (Cf ) 3cm O, i, j 1 1 x 2xln x 0 x 1 2 1 x 2xln x 0 0 x 1 4 1 f m5 (Cf ) () lim f (x) (Cf ) () f x (Cf ) f 1 () (Cf ) (T) 2 3 1,76 1,77 1; f (x) 0 (;0) () (d) (Cf ) () (d) (T) 0; 0; x²ln x m 0 m 0218 38 f (x) x 1 1 ;x * 1 0;1 1; ln x f (0) 1 O, i, j 1f lim f (h) f (0) h 0 h . lim f (x) lim f (x) lim f (x) x 1 x 1 x f () (Cf ) () (Cf ) 01 0202
1,49 1,5 (Cf ) 4 y ( 3 1 )(x ) () (Cf ) 5 h h6 (Cf ) A7 h(x) 1 x x ln x 1; I 1; 1 1; h(x) 2 II f(x) x 1 h(x) x 1 x (Cf ) x ln x x ln x 1 2 x 1 f(x) x 1 x 1 3 x ln x 4 (Cf ) (Cf ) e xe 1 (e² ²) ln( 1) A 1 (e )(e 2) 22 0217 39 g(x) 1 ln x 0; g x g 0; g(x) 1,76;1,77 g(x) 0 f (x) x 1 ;x 0 0; f x ln x f (0) 0 O, i, j f (x) 0; 1 f lim 0; x xx 0 limf (x) f '(x) g(x) x (x ln x)² f h h(x) x ln x h(x) 0 x y 1 f () 2,31 ) (Cf ) 00 0202
0217 42 g(x) x 2 ln x 0; g I g(x) g f (x) 1 x e ln(x²) * f II 2 x (Cf ) O, i, j 1 2 f f '(x) g(x²) x 2x² f (x) f (x) x limf (x) lim f (x) limf (x) lim f (x) x x 0 x x 0 f () (C ) .(C ) y1x e () 3 f f 22 1 (Cf ) 4 2 (Cf ) 0,5 0,4 2 2,1 x(e 2m) ln(x²) (Cf ) () 5 m (Cf ) 6 0216 41 g(x) 1 x² 2ln x 0; gI g1 0,52 ;0,53 g(x) 0 2 0; g(x) 3 f (x) x 3 2ln x 0; f II x C (O; i; j) f 1 lim f (x) lim f (x) x x 0 03 0202
f '(x) g(x) 0; x 2 x² f () 2 1 f limf (x) x 3 4 x () C xx f 10 () (T) C f C f 2,11 x 2,13 0,22 x 0,23 10 C () (T) f 3 2ln x mx 0 m m5 0215 40 f (x) 1 x² ln x 0; x f (0) 1 f (O; i; j) f C f 1f 1 lim f (x) 1 2 x 0 x f limf (x) x 0; f(x) 0 3 1,531 1,532 g(x) f ( x ) g4 (O; i; j) g C g g C 2; 2 g 04 0202
0214 43 f (x) (1 2ln x)(1 ln x) 0; f1 (O; i; j) f C f 0 ; e² e f g2 C C f f 1I C 2 C f g 3 g(x) 1 ln x 0; f II (C ) g f 0 ; e² C C C g gf 1 2 0213 44 u(x) ex 3x 4 e 0; u u ex e 3x 4 x 0; v(x) 3x3 4x² 1 ln x 0; v v v ' v '(1) 0 v(x) 0 x 0; 1 ln x 3x 4 x 0; x² ex e 1 ln x 0 x0; x² f (x) ex ex ln x 0; x O, i, j lim f (x) lim f (x) x x 0 0; f 0; 2, 5 (C ) f (1) 3 f gI 0210 45 g(x) 2ln(x 1) x 1; 3 x 1 05 0202
g 1 2 0,8 0,7 g(x) 0 3 h4 g(x) x f II h(x) g(x)² 1; 3 1 2 g '(x) g(x) h '(x) 3 h h '(x) 4 (C ) f (x) x² 1) ;x 0 1; 3 5 f ln(x 6 g1 f (0) 0 1 (C ) Tf 1 f f f '(x) xg(x) ² x 1;0 0;3 ln(x 1) f () f () 2( 1) f lim f (x) f (3) x ln(x 1) 0 x 1 x 1; 3 T (C ) f 3 (C ) T T' f (C ) T' T f f(x) x m m 0211 46 g(x) x² ln(x2) 1 0; g 06 0202
g(x) g(1) f (x) (1 1 )(ln x) 0; f2 x² f C (O; i; j) f f '(x) g(x) f x3 0; f 0; x ln x lim 1 ln x C x ²x f C 0212 47 f (C ) g(x) x 1 2ln x 0; g g 1 2 lim g(x) x 0 lim g(x) x g(1) g 3,5 3,6 g(x) 0 f (x) x² x x² ln x ;x 0 g( 1 ) g(x) f3 f (0) 0 x 0; f (x) lim xx 0 f f '(x) xg( 1 ) 0; x x 07 0202
f( 1 ) 1 f f 2² f(1) 0;3 4 f (C ) f 08 0202
f (x) 1 1 ln x 95 48 x f1 xx 2 0; f (O; i; j) 0; f 1 E 49 98 (x) x² 4x 3 6ln x 2 2 I 1 (3) (1) 2 II (x) f (x) x 2 5 6ln x 2 2 f x2 x2 1 (O; i; j) f f f '(x) (x) 2 x (x 2)² f 1 f (4) f (4) f (0) f (1) (2; 4) 10 0221 52 (C) f (x) x ln ex 2 ln 2 2cm (O; i; j) f 09 0202
f (x) 2x ln 1 2ex f 1 2 ln 2 x ' y x ln 2 y 2x (C) (C) 0224 51 (C) f (x) 1 ln x² * f x (C) (O; i; j) f (C) f 1 y 1 (C) f (x) f (x) 2 1; 0, 5 f(x) 0 3 (T) (C) 4 (C) A(0;1) (T) (C) (T) 5 f (x) mx 1 m 6 () g(x) 1 ln x² * g7 x g () g 32 0202
0218 50 u () u(x) x 1 4ln x. 0; (O; i; j) y x (D) () 4 () 1 (O; i ) () u(x) limu(x) limu(x) u '(4) u() u(1) 1 lim x x0 2 xx u '(x) u(x) f (x) ex1 (x 1) 4ln x 0; f x4 (O; i; j) f (C) f (x) eu(x) u(x) x 0; 1 limf (x) lim f (x) x0 x f '(x) u '(x) eu(x) 1 x 0; 2 f x 1;4 ; f '(x) 0 ex 2x 0 x 3 () (C) 0;15 (C) u () y (D) 6 5 () 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x -1 -2 -3 31 0202
0217 53 g(x) x² x 2 2ln x 0; g I g(1) 0 1 x 1 2 g '(x) g g(x) 0 g(x) 0 II g(x) 0;1 x 1 1; x 2 f (x) x 1 2 ln x 0; f 3 x 4 (O; i; j) f (C ) f 1; lim f (x) lim f (x) x x 0 f '(x) g(x) 0; x x² 0;1 0; f 1 2 ln x 0 0; x (C ) yx (D) f 1;2 (D) (C ) 1;2 x f (x) x f (D) 0;5 (C ) f 0214 54 g(x) 1 1 ln x 0; g I g 1 x² 2 g(1) 0; g(x) II f f (x) (1 ln x)² 1 0; 1 x² (C ) f f (O; i; j) lim f (x) lim f (x) x 0 x 30 0202
f '(x) 2g(x) 0; x 2 3 x 4 f 5 6 (ln x)² 2ln x 1 0 0; x x² (O; i; j) (C ) f (5) f (4) f (3) f (2) f (C ) h(x) (1 ln(2 x))² 1 ; 2 h h (2 x)² 0216 (C ) (C ) fh 55 g(x) 2ln(x 1) x 1; g x 1 g g g '(x) 1 2 0, 72; 0, 71 1 g(x) 0 1 1; g(x) 2 3 f (0) 0 f (x) x² ; x 1; x 0 f ln(x 1) 4 f (x) (1 x)e ;x1 x 1 (O; i; j) f (C ) f f 1 1f 1f f '(x) x.g(x) 1; 0 x f '(x) ln ²(x 1) ; 1 f 1 (C ) (T) f (C ) 1 (T) f f (2;5) 6;7 f (3) 6;5 f (α) 0;41 33 0202
0215 56 (C ) f (x) 1 x f f x(1 ln x) 2cm (O; i; j) f Df 0;e e; f 1I 2 lim f (x) lim f (x) x(1 ln x) x x ln x 3 x e x e y (C ) lim f (x) f x lim f (x) x 0 f '(x) ln x Df x x²(1 ln x)² 0;1 f 3 e; 1;e 2 Df f 1 0 1 2 3 4x 0; g II g (C ) g(x) 1 x²(1 ln x) g (O; i; j) g(x) 0 1 x 2,1 2,2 2,3 2,4 g(x) 0,14 0,02 0,12 0,28 2,2 α 2,3 α g(x) 0 f (x) x g(x) Df x 2 x(1 ln x) 3 (Δ) α1 (C ) y x g(x) f f (x) x 0 1;α (C ) g (O; i; j) 1;α x (C ) (Δ) f 34 0202
0213 57 f(x) x 2 x 2 0; f1 1f f (x) 2 limf (x) 1 g(x) ln(x 2 x 2) x 3 0; f g2 (O; i; j) limg(x) ln x lim g(x) (C) 1 x ln x x x k 2 lim g(x) g(0) (C ') x0 x 3 4 0212 g 5 6 () (C) 0; (C) () (C ') k(x) ln(ex 2e x 2e) 58 g(x) 1 x² 2x² ln x 0; g lim g(x) lim g(x) 1 2 x x 0 3 g Cf 1,8 1,9 g(x) 0 1 g(x) f (x) ln x 0; 2 1 x² f 0; (O; i, j) j 4 i 1 lim f (x) f '(x) g(x) 0; x f x x(1 x²)² f () 1 0; 2² 0 f (x) ln x x 1; f x² f () Cf 0; 35 0202
0212 Polynésie 59 y 0, g (C g ) I 3 g(x) 1 ln x x2 2 0, g (x ) 1 f x 2ln x 2x 4 0; f II lim f x x lim f x (C f ) x 0 1 2 3x 2cm O ,i , j x 0 1 -1 -2 Cf y 2x 4 (D ) (D ) Cf f x 2g x 0; x 2 x2 f 2,3 2,4 0,4 0.5 f (x ) 0 3 m y mx m 2 Cf Dm Dm m m 2ln x (m 2)x2 (m 2)x 0 0229 62 C f (x) 2ln(ex 2 ex 2) x f limf (x) (O; i, j) x f ex 2 ex 2 ( ex 1)² 1 x 1 1 2 2 0x 2 ex ex 3 limf (x) ln 4 x f '(0) 0 f '(x) 2 ex ( ex 1) x ( ex 1)² 1 36 0202
;0 0; f ( ex 1) f (x) 2x 2ln(1 2 2 x 4 ex ex ) (D) 5 (C) y 2x 6 ex 3 ex 2 ( ex 1)( ex 2) x ( ex 1)( ex 2) ( ex 2) ex 2 ex 2 ex 0;ln 4 x f (x) x 0;ln 4 x (C) 37 0202
38 0202
******************* ********** ********** ********** BAC2020
0242 44 lim f(x) lim f(x) lim f(x) 4 x 2 x 2 x 0 f (x) 1 ln x 0;2 2; f x2 lim f(x) lim 1 lim ln x 1 lim ln x x 0 x 2x 0 x 0 2 x 0 lim f(x) lim 1 lim ln x lim 1 2 x 2 x 2x 2 x 0 x 0 x 2 lim f(x) lim 1 lim ln x lim 1 2 x 2 x 2x 2 x 0 x 0 x 2 (C ) x0 lim f(x) f x 0 lim ln x (C ) x 2 lim f(x) x f x 2 lim f(x) x lim 1 0 lim f(x) lim 1 lim ln x x x 2 x 2x x x 0;2 2; f 0 f '(x) 1 1 x (x 2)² x² 5x 4 0;2 2; (x 2)² x x(x 2)² x(x 2)² x² 5x 4 f '(x) x² 5x 4 x 4 x 1 x² 5x 4 0 x² 5x 4 0 1;2 2;4 x² 5x 4 0 0;1 4; f 1;2 2;4 0;1 4; x0 1 2 f 0 f '(x) 4 0 1 f (x) 1 2ln 2 14 0202 2
lim f(x) ln x 3 x lim f(x) lnx lim 1 0 x x x 2 (C ) ln () lim f(x) lnx 0 f x f(x) lnx () (C ) f () (C ) f (x 2) f(x) lnx 1 x2 () (C ) (x 2) 0 0;2 () (C ) f f (x 2) 0 0;2 2; (C ) () 1 f y (C ) 3f 2 1 () 0 1 2 3 4 5 6 7 8 9 10 x -1 -2 -3 g 6 g g(x) f (2x) ;1 1;0 g f x (2x) g'(x) 0 g'(x) 0 g'(x) 2f '(2x) ;1 1;0 x g'(x) 0 x 2 x 1 2x 4 2x 1 f '(2x) 0 2 f '(2x) 0 g x 2; 1 1; 1 2 g x ; 2 1 ;0 f '(2x) 0 2 10 0202
0242 40 g(x) x g(1) I g(x) 1 (ln x)² ln x 1 0; g x 1 (Cg ) g(1) 0 x 0;1 g(x) 0 0;1 (Cg ) x 1; g(x) 0 1; (Cg ) lim f (x) 0 limf(x) 4 II x x 0 f (x) 1 ln x 0; f 1 x ln x lim x ln x 0 limln x limf(x) x 0 x 0 x 0 lim 1 0 lim ln x 0 1 ln x xx xx x x lim ln x f (x) 1 ln x lim f (x) 0 x x x x 0 (Cf ) limf(x) x 0 y0 (Cf ) lim f (x) 0 x f '(x) g(x) :0; منx 0 (1 x ln x)² ( 1 (1 x ln x) (ln x 1)(1 ln x)) 1 ln x (ln x)² 2ln x 1 g(x) f '(x) x x (1 x ln x)² (1 x ln x)² (1 x ln x)² f f g(x) f '(x) f '(x) g(x) f 1; (1 x ln x)² 0 x 0;1 f '(x) 1 0 1 f (x) 0 13 0202
(C ) (T) y e² x e 3 f e1 e1 x 1 1 ln x 0 f (x) 0 (C ) 0e f y f '(1)(x 1) f (1) x (T) eee 0 f (1) 0 f '(1) g(e1) e 1 e² e e (1 e1 ln e1)² (1 e1)² e 1 y e² (x 1) e² x e e 1 e e 1 e 1 (C ) (T) f y 2 () 1 (C ) f -1 0 -1 1 2 3 4 5 6 7x -2 -3 (e 1)f(x) e²x em m 4 f(x) e² x e m (e 1)f(x) e²x em e 1 e 1 (T) y e² x e f(x) y f(x) e² x e m=1 e1 e1 e1 e1 m 1 (e 1)f(x) e²x em 11 0202
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194