اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ
Original Title: اﻟﺮﻳﺎﺿﻴﺎت Geometry © 2010 اﻟﺼﻒ ا ول اﻟﺜﺎﻧﻮي By: John A. Carter, Ph. D Gilbert J. Cuevas, Ph. D Roger Day, Ph. D Carol E. Malloy, Ph. D Contributing Authors Jerry Cummins Dinah Zike CONSULTANTS Mathematical Content Prof. Viken Hovsepian Grant A. Fraser, Ph. D Arthur K. Wayman, Ph. D Gifted and talented Shelbi K. Cole College Readiness Robert Lee Kimball, Jr. Graphing Calculator Ruth M. Casey Mathematical Fluency Robert M. Capraro, Ph.D Pre-AP Dixie Ross Reading and Writing Releah Cossett Lent Lynn T. Havens www.macmillanmh.com اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ www.obeikaneducation.com www.obeikaneducation.com English Edition Copyright © 2010 the McGrawHill CompaniesInc © All rights reserved © Arabic Edition is published by Obeikan under agreement with e McGrawHill CompaniesInc© 2008
ﻳﺴﺮﻧﺎ ﺃﻥ ﻧﻘ ﱢﺪﻡ ﺩﻟﻴﻞ ﺍﻟﻤﻌﻠﻢ ﻟﻤﺎﺩﺓ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ،ﺁﻣﻠﻴﻦ ﺃﻥ ﻳﻜﻮﻥ ﻟﻜﻢ ﺍﻟﻤﺮﺷﺪ ﻓﻲ ﺗﺪﺭﻳﺲ ﺍﻟﻤﺎﺩﺓ ،ﻭﺍﻟﺪﺍﻋﻢ ﻓﻲ ﺗﻘﻮﻳﻢ ﺍﻟﻄﻼﺏ ،ﺑﻤﺎ ﻳﺤﻘﻖ ﺍﻷﻫﺪﺍﻑ ﺍﻟﻤﻨﺸﻮﺩﺓ ﻣﻦ ﺗﺪﺭﻳﺲ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ. ﺗﻮﺿﺢ ﻫﺬﻩ ﺍﻟﻤﻘﺪﻣﺔ ﻛﻴﻔﻴﺔ ﺑﻨﺎﺀ ﺍﻟﺴﻠﺴﻠﺔ ﻋﻠﻤ ﹰﹼﻴﺎ ﻭﺗﺮﺑﻮ ﹼﹰﻳﺎ ،ﻭﺗﺒﺮﺯ ﺍﻟﻨﻘﺎﻁ ﺍﻟﻤﺤﻮﺭﻳﺔ ﺍﻟﺘﻲ ﻳﺮﻛﺰ ﻋﻠﻴﻬﺎ ﺍﻟﻤﻨﻬﺞ ﻓﻲ ﻫﺬﺍ ﺍﻟﺼﻒ ،ﻭﻓﻠﺴﻔﺔ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﻤﺘﻮﺍﺯﻧﺔ ﺃﻓﻘ ﹰﹼﻴﺎ ﻭﺍﻟﻤﺘﺮﺍﺑﻄﺔ ﺭﺃﺳ ﹰﹼﻴﺎ ،ﻭﺃﺳﺎﻟﻴﺐ ﺍﻟﺘﺪﺭﻳﺲ ﺍﻟﻤﺘﺒﻌﺔ ﻭﺍﻟﻤﺘﻨﻮﻋﺔ ﻓﻲ ﺍﻟﺪﻟﻴﻞ ،ﻭﺃﻧﻮﺍﻉ ﺍﻟﺘﻘﻮﻳﻢ ،ﻭﺃﺩﻭﺍﺗﻪ ﺍﻟﻤﻘﺘﺮﺣﺔ ،ﺍﻟﺘﻲ ﺗﺮﺍﻋﻲ ﺍﻟﻔﺮﻭﻕ ﺍﻟﻔﺮﺩﻳﺔ ﺑﻴﻦ ﺍﻟﻄﻼﺏ. ﺗﻢ ﺗﻮﺯﻳﻊ ﺍﻟﻤﻘﺮﺭ ﺇﻟﻰ ﻓﺼﻮﻝ .ﻭﻳﺒﺪﺃ ﺩﻟﻴﻞ ﺍﻟﻤﻌﻠﻢ ﻓﻲ ﻛﻞ ﻓﺼﻞ ﺑﺘﻘﺪﻳﻢ ﻧﻈﺮﺓ ﻋﺎﻣﺔ ﻋﻠﻴﻪ ﺗﺘﻀﻤﻦ ﻣﺨﻄ ﹰﻄﺎ ﻟﻠﺪﺭﻭﺱ ﻭﺃﻫﺪﺍﻓﻬﺎ ،ﻭﻣﺼﺎﺩﺭ ﺗﺪﺭﻳﺴﻬﺎ ،ﻭﺍﻟﺨﻄﺔ ﺍﻟﺰﻣﻨﻴﺔ ﺍﻟﻤﻘﺘﺮﺣﺔ ﻟﻠﺘﺪﺭﻳﺲ .ﺛﻢ ﻳﻘ ﹼﺪﻡ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﻟﻤﻮﺿﻮﻉ ﺍﻟﻔﺼﻞ ﺧﻼﻝ ﺍﻟﺼﻒ ﻭﺍﻟﺼﻔﻮﻑ ﺍﻷﺧﺮ .ﻛﻤﺎ ﻳﻘﺘﺮﺡ ﺍﻟﺪﻟﻴﻞ ﺁﻟﻴﺔ ﻟﺘﻌﻠﻢ ﻣﻬﺎﺭﺍﺕ ﺍﻟﻔﺼﻞ ﻣﻦ ﺧﻼﻝ ﻣﻬﺎﺭﺓ ﺍﻟﺪﺭﺍﺳﺔ .ﺛﻢ ﻳﻘﺪﻡ ﺩﻋﻤﺎ ﻟﻠﻤﻌﻠﻢ ﻣﻦ ﺧﻼﻝ ﺻﻔﺤﺔ ﺍﺳﺘﻬﻼﻝ ﺍﻟﻔﺼﻞ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻓﻲ ﻛﺘﺎﺏ ﺍﻟﻄﺎﻟﺐ ،ﻭﻛﻴﻔﻴﺔ ﺍﻻﺳﺘﻔﺎﺩﺓ ﻣﻨﻬﺎ ﻓﻲ ﺗﻘﺪﻳﻢ ﻣﻮﺿﻮﻉ ﺍﻟﻔﺼﻞ ،ﻛﻤﺎ ﻳﺒﺮﺯ ﻏﺮﺽ ﺍﻟﻤﻄﻮﻳﺎﺕ ﻭﻭﻇﻴﻔﺘﻬﺎ ﻭﻭﻗﺖ ﺍﺳﺘﻌﻤﺎﻟﻬﺎ .ﺛﻢ ﻳﻌﺮﺽ ﻣﺨﻄ ﹰﻄﺎ ﻟﻠﺘﻘﻮﻳﻢ ﺑﺄﻧﻮﺍﻋﻪ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻭﺃﺩﻭﺍﺗﻪ ﺍﻟﻤﺘﻌﺪﺩﺓ. ﻳﻘ ﹼﺪﻡ ﺍﻟﺪﻟﻴﻞ ﺃﻧﺸﻄﺔ ﻣﻘﺘﺮﺣﺔ ﺗﺮﺍﻋﻲ ﺍﻟﻔﺮﻭﻕ ﺍﻟﻔﺮﺩﻳﺔ ﺑﻴﻦ ﺍﻟﻄﻼﺏ ،ﻭﺑﺄﺳﺎﻟﻴﺐ ﺗﺪﺭﻳﺲ ﻣﺘﻨﻮﻋﺔ ،ﺗﺴﺎﻋﺪ ﺍﻟﻤﻌﻠﻢ ﻓﻲ ﺗﺪﺭﻳﺲ ﻛﻞ ﺩﺭﺱ .ﺑﻌﺪ ﺫﻟﻚ ﻳﻌﺮﺽ ﺍﻟﺪﻟﻴﻞ ﺍﻟﺪﺭﺱ ﺑﺨﻄﻮﺍﺕ ﻣﺤﺪﺩﺓ ﻫﻲ: ﻳﺒﻴﻦ ﺗﺮﺍﺑﻂ ﺍﻟﻤﻬﺎﺭﺍﺕ ﺍﻟﺮﺋﻴﺴﺔ ﻗﺒﻞ ﺍﻟﺪﺭﺱ ﻭﻓﻲ ﺃﺛﻨﺎﺋﻪ ﻭﺑﻌﺪﻩ. ﻳﻘ ﹼﺪﻡ ﻣﻘﺘﺮﺣﺎﺕ ﻟﻠﻤﻌﻠﻢ ﺣﻮﻝ ﻛﻴﻔﻴﺔ ﺗﺪﺭﻳﺲ ﺍﻟﺪﺭﺱ ،ﺗﺘﻀﻤﻦ ﺃﺳﺌﻠﺔ ﺗﻌﺰﻳﺰ ﺣﻮﺍﺭﻳﺔ ﻭﺃﻧﺸﻄﺔ ﻣﻘﺘﺮﺣﺔ ،ﻭﻳﺒﺮﺯ ﺍﻟﻤﺤﺘﻮ ﺍﻟﺮﻳﺎﺿﻲ ﻟﻤﻮﺿﻮﻉ ﺍﻟﺪﺭﺱ .ﻛﻤﺎ ﻳﻘ ﹼﺪﻡ ﺃﻣﺜﻠﺔ ﺇﺿﺎﻓﻴﺔ ﻟﻠﻤﻌﻠﻢ. ﻳﺘﻀﻤﻦ ﺗﺪﺭﻳﺒﺎﺕ ﻣﺘﻨﻮﻋﺔ ﺣﺴﺐ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﻼﺏ ﺗﺤﻘﻖ ﺃﻫﺪﺍﻑ ﺍﻟﺪﺭﺱ. ﻳﻘ ﹼﺪﻡ ﻣﻘﺘﺮﺣﺎﺕ ﻟﺘﻘﻮﻳﻢ ﺍﻟﺪﺭﺱ ،ﻛﻤﺎ ﻳﺘﻀﻤﻦ ﻣﻘﺘﺮ ﹰﺣﺎ ﻟﻠﻤﻌﻠﻢ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻣﺪ ﺍﺳﺘﻴﻌﺎﺏ ﺍﻟﻄﻼﺏ ﻟﻠﻤﻔﺎﻫﻴﻢ ﻭﺇﺗﻘﺎﻧﻬﻢ ﺍﻟﻤﻬﺎﺭﺍﺕ ﺍﻟﻤﻘ ﹼﺪﻣﺔ ﻓﻲ ﺍﻟﺪﺭﺱ ،ﻭﻳﻌﺮﺽ ﺍﻟﺪﻟﻴﻞ ﺁﻟﻴﺔ ﻟﻤﺘﺎﺑﻌﺔ ﺍﻟﻤﻄﻮﻳﺎﺕ. ﻛﻤﺎ ﻳﻘ ﹼﺪﻡ ﺍﻟﺪﻟﻴﻞ ﻓﻲ ﻛﻞ ﺩﺭﺱ ﺇﺟﺎﺑﺎﺕ ﻣﻔ ﹼﺼﻠﺔ ﻟﺒﻌﺾ ﺍﻷﺳﺌﻠﺔ ﻭﺍﻟﺘﻤﺎﺭﻳﻦ. ﺗﻘ ﹼﺪﻡ ﺍﻟﺴﻠﺴﻠﺔ ﺃﺳﺎﻟﻴﺐ ﻣﺘﻨﻮﻋﺔ ﻟﺘﻘﻮﻳﻢ ﺍﻟﻄﻼﺏ )ﺍﻟﺘﺸﺨﻴﺼﻲ ﻭﺍﻟﺘﻜﻮﻳﻨﻲ ﻭﺍﻟﺨﺘﺎﻣﻲ( ،ﻭﺁﻟﻴﺎﺕ ﻟﻤﻌﺎﻟﺠﺔ ﺍﻷﺧﻄﺎﺀ ﻭﺍﻟﺼﻌﻮﺑﺎﺕ ﻟﺪ ﺍﻟﻄﻼﺏ. ﻭﻧﺤﻦ ﺇﺫ ﻧﻘ ﹼﺪﻡ ﻫﺬﺍ ﺍﻟﺪﻟﻴﻞ ﻟﺰﻣﻼﺋﻨﺎ ﺍﻟﻤﻌﻠﻤﻴﻦ ﻭﺍﻟﻤﻌﻠﻤﺎﺕ ،ﻟﻨﺄﻣﻞ ﺃﻥ ﻳﺤﻮﺫ ﺍﻫﺘﻤﺎﻣﻬﻢ ،ﻭﻳﻠﺒﻲ ﻣﺘﻄﻠﺒﺎﺗﻬﻢ ﻟﺘﺪﺭﻳﺲ ﻫﺬﺍ ﺍﻟﻤﻘﺮﺭ ،ﻭﻳﺴﺎﻋﺪﻫﻢ ﻓﻲ ﺃﺩﺍﺀ ﺭﺳﺎﻟﺘﻬﻢ.
10A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 10C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 12 1 -1 19 1 -2 26 1 -3 36 1-3 37 1 -4 45 1 -5 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 1 -6 60 1 -7 66 1 -8 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 84C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 86 2 -1 92 2-2 94 2 -2 102 2 -3 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 2 -4 117 2 -5 125 2-5 126 2 -6 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
144A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 144C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 146 3 -1 153 3-2 154 3 -2 162 3 -3 170SSS , SAS 3 -4 178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179ASA , AAS 3 -5 186 3-5 188 3 -6 196 3 -7 202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 212C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 214 4-1 215 4 -1 224 4-2 225 4 -2 233 4 -3 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 4 -4 248 4-5 250 4 -5 255 4 -6 263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 1 ﺇﻥ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﺍﻟﻘﻮﻱ ﺑﻴﻦ ﺍﻷﺳﺎﻟﻴﺐ ﺍﻟﺘﺪﺭﻳﺴﻴﺔ ﺑﺪ ﹰﺀﺍ ﻣﻦ ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﻳﻌﺪ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﻟﻠﻤﺤﺘﻮ ﻋﻤﻠﻴﺔ ﻣﻬﻤﺔ ﺗﺴﺎﻋﺪ ﻃﻼﺑﻚ ﻋﻠﻰ ﺍﻟﺘﺤﻘﻖ ،ﻳﺴﻬﻞ ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺍﻻﻧﺘﻘﺎﻝ ﻣﻦ ﺍﻟﻤﺮﺣﻠﺔ ﺍﻻﺑﺘﺪﺍﺋﻴﺔ ﺇﻟﻰ ﺍﻟﻤﺘﻮﺳﻄﺔ ﻭﻫﺬﺍ.ﻣﻦ ﺍﻟﺘﺴﻠﺴﻞ ﺍﻟﺪﻗﻴﻖ ﻟﻠﻤﺤﺘﻮ ﻭﺗﺘﺎﺑﻌﻪ ﻣﻦ ﻣﺴﺘﻮ ﺇﻟﻰ ﻣﺴﺘﻮ ﺁﺧﺮ ﻭﺍﻟﺘﻘﻨﻴﺎﺕ ﻭﺍﻟﻮﺳﺎﺋﻞ ﺍﻟﺤﺴﻴﺔ ﻭﺧﻄﺔ ﺍﻟﺪﺭﺱ، ﺇﺫ ﺗﻌﻤﻞ ﺍﻟﻤﻔﺮﺩﺍﺕ.ﻓﺎﻟﺜﺎﻧﻮﻳﺔ ﻳﻤﻨﺤﻚ ﺍﻟﺜﻘﺔ ﺑﺄﻥ ﺍﻟﻤﺤﺘﻮ ﻳﺘﻢ ﺗﻘﺪﻳﻤﻪ ﻭﺗﻌﺰﻳﺰﻩ ﻭﺗﻘﻮﻳﻤﻪ ﻓﻲ ﺍﻷﻭﻗﺎﺕ ﻣﻤﺎ، ﻛﻤﺎ ﻳﺴﺎﻋﺪ ﻋﻠﻰ ﺳﺪ ﺍﻟﺜﻐﺮﺍﺕ ﻭﺗﺠﻨﺐ ﺍﻟﺘﻜﺮﺍﺭ ﻏﻴﺮ ﺍﻟﻤﺒﺮﺭ،ﺍﻟﻤﻨﺎﺳﺒﺔ ﻭﺍﻟﻤﻌﺎﻟﺠﺔ ﻋﻠﻰ ﺍﻟﺘﻘﻠﻴﻞ ﻣﻦ ﻋﻮﺍﻣﻞ ﺍﻟﺼﻌﻮﺑﺔ ﻭﺍﻟﺘﺸﻮﻳﺶ ﺍﻟﺘﻲ ﻳﻮﺍﺟﻬﻬﺎ ﺑﻌﺾ .ﻳﻤﻜﻨﻚ ﻣﻦ ﺗﻮﺟﻴﻪ ﺗﺪﺭﻳﺴﻚ ﻭﺗﻜﻴﻴﻔﻪ ﻟﻴﺘﻼﺋﻢ ﺣﺎﺟﺎﺕ ﺍﻟﻄﻼﺏ .ﺍﻟﻄﻼﺏ ﻋﻨﺪﻣﺎ ﻳﻨﺘﻘﻠﻮﻥ ﻋﺒﺮ ﺍﻟﺼﻔﻮﻑ ﺍﻟﻤﺨﺘﻠﻔﺔ 3 ،ﺗﺸﺘﻤﻞ ﺻﻔﺤﺎﺕ ﺍﻟﺴﻠﺴﻠﺔ ﻋﻠﻰ ﺗﺼﺎﻣﻴﻢ ﺑﺼﺮﻳﺔ ﻣﺘﺴﻘﺔ ﻣﻦ ﺻﻒ ﻵﺧﺮ ﻛﻤﺎ ﺗﺰﺩﺍﺩ،ﺗﺴﺎﻋﺪ ﺍﻟﻄﻼﺏ ﻋﻠﻰ ﺍﻻﻧﺘﻘﺎﻝ ﺑﺴﻼﺳﺔ ﻣﻦ ﻣﺮﺣﻠﺔ ﺇﻟﻰ ﺃﺧﺮ ﺩﺍﻓﻌﻴﺘﻬﻢ ﻟﻠﺘﻌﻠﻢ ﻭﺍﻟﻨﺠﺎﺡ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﻃﺮﻳﻘﺔ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﻫﺬﻩ ﺍﻟﺼﻔﺤﺎﺕ .ﻣﺄﻟﻮﻓﺔ ﻟﺪﻳﻬﻢ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ تﺎﻳﻮﺘﺤﻤﻟا اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ www.obeikaneducation.comتﺎﻳﻮﺘﺤﻤﻟا www.obeikaneducation.com اﻟﻤﺤﺘﻮﻳﺎت www.obeikaneducation.com www.obeikaneducation.com تﺎﻳﻮﺘﺤﻤﻟا ٢ www.obeikaneducation.com T1
3 ، ﻭﺧﺘﺎﻣﻴﺔ، ﻭﺗﻜﻮﻳﻨﻴﺔ،ﺗﺘﻀﻤﻦ ﻫﺬﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻣﺼﺎﺩﺭ ﻣﺘﻌﺪﺩﺓ ﻟﻠﺘﻘﻮﻳﻢ؛ ﺗﺸﺨﻴﺼﻴﺔ 1 . ﻭﺇﺛﺮﺍﺋﻴﺔ،ﺇﺿﺎﻓﺔ ﺇﻟﻰ ﺧﻄﻂ ﻋﻼﺟﻴﺔ ﻣﻦ ﺍﻟﻄﻠﺒﺔ ﺍﻟﺬﻳﻦ ﻳﻈﻬﺮﻭﻥ ﻧﺠﺎ ﹰﺣﺎ ﻓﻲ ﻣﺠﺎﻟﻲ٪٨٠ ﺑﻴﻨﺖ ﻧﺘﺎﺋﺞ ﺍﻟﺒﺤﻮﺙ ﺃﻥ 4 ،ﺍﻟﺠﺒﺮ ﻭﺍﻟﻬﻨﺪﺳﺔ ﻓﻲ ﺍﻟﺼﻒ ﺍﻟﻌﺎﺷﺮ ﻳﻠﺘﺤﻘﻮﻥ ﺑﺎﻟﻜﻠﻴﺎﺕ ﺍﻟﺠﺎﻣﻌﻴﺔ ﺫﺍﺕ ﺍﻟﻌﻼﻗﺔ ﻭﺃﺧﺮ ﺇﺛﺮﺍﺋﻴﺔ،ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﻣﺼﺎﺩﺭ ﻣﺘﻨﻮﻋﺔ ﺗﺘﻀﻤﻦ ﺃﻧﺸﻄﺔ ﻭﺧﻄ ﹰﻄﺎ ﻋﻼﺟﻴﺔ ﻭﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﺫﻟﻚ ﺍﻫﺘﻤﺖ ﺍﻟﺴﻠﺴﻠﺔ ﺑﺎﻟﺨﺮﺍﺋﻂ ﺍﻟﻤﻔﺎﻫﻴﻤﻴﺔ ﻟﻠﺨﺒﺮﺍﺕ.ﻭﻳﻨﺠﺤﻮﻥ .ﻭﻓ ﹰﻘﺎ ﻟﻨﺘﺎﺋﺞ ﺍﻟﻄﻼﺏ ﻓﻲ ﺍﻟﺘﻘﻮﻳﻢ ﺍﻟﺘﺸﺨﻴﺼﻲ .ﺍﻟﺴﺎﺑﻘﺔ ﻭﻃﻮﺭﺗﻬﺎ 2 ﺗﻢ ﺗﻄﻮﻳﺮ ﺍﻟﺴﻠﺴﻠﺔ ﺑﺤﻴﺚ ﺗﺮﻛﺰ ﻋﻠﻰ ﺍﻟﻤﻬﺎﺭﺍﺕ ﻭﺍﻟﻤﻮﺿﻮﻋﺎﺕ ﺍﻟﺘﻲ ﻳﻮﺍﺟﻪ .ﺍﻟﻄﻼﺏ ﺻﻌﻮﺑﺎﺕ ﻓﻴﻬﺎ؛ ﻣﺜﻞ ﺣﻞ ﺍﻟﻤﺴﺄﻟﺔ ﻓﻲ ﻛﻞ ﻣﺴﺘﻮ ﺻﻔﻲ ﻭﺗﺘﻀﻤﻦ ﺗﻌﺮﻑ ﺃﺧﻄﺎﺀ ﺍﻟﻄﻼﺏ 1 3 - 5 2 1 ﻭﻣﻌﺎﻟﺠﺘﻬﺎ؛ ﻭﺫﻟﻚ ﺑﻤﺮﺍﺟﻌﺔ ﺍﻟﻤﻔﺎﻫﻴﻢ ﻭﺍﻟﻤﻬﺎﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ (1 (1 (2 . ﻗﺒﻞ ﺍﻻﻧﺘﻘﺎﻝ ﺇﻟﻰ ﺗﺪﺭﻳﺲ ﺍﻟﻤﻌﺮﻓﺔ ﺍﻟﺠﺪﻳﺪﺓ،ﺑﻬﺎ (2 (3 (3 (4 ﻭﺗﺘﻀﻤﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺑﺪﺍﺋﻞ 2 ﻭﺍﺳﺘﺮﺍﺗﻴﺠﻴﺎﺕ ﻣﺘﻨﻮﻋﺔ ﺗﻨﺎﺳﺐ ﺃﻧﻤﺎﻁ ﺍﻟﺘﻌﻠﻢ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻟﺪ (4 (5 .ﺍﻟﻄﻼﺏ (5 (6 (6 5 6 – 8 9 – 1 2 (1 ﺑﻄﺮﻕ ﺗﻌﻠﻴﻢ ﺇﺿﺎﻓﻴﺔ؛،ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﻓﺮ ﹰﺻﺎ ﻋﺪﻳﺪﺓ ﻟﻠﻤﻌﻠﻢ ﻟﻴﻄ ﹼﻮﺭ ﺃﺩﺍﺀﻩ ﻣﻬﻨ ﹰﹼﻴﺎ (1 (2 ﻭﺍﻟﻤﻮﺍﻗﻊ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻤﺘﺮﺍﺑﻄﺔ، ﻭﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﺍﻟﻤﺤﻮﺳﺒﺔ، ﺍﻟﻔﻴﺪﻳﻮ:ﻣﺜﻞ (3 (2 (4 .ﺗﺮﺍﺑﻄ ﹰـﺎ ﺭﺃﺳ ﹰﹼﻴﺎ ﻣﺘﻜﺎﻣ ﹰﻼ ﻣﻦ ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﺍﻻﺑﺘﺪﺍﺋﻲ ﺇﻟﻰ ﺍﻟﺼﻒ ﺍﻟﺜﺎﻧﻲ ﻋﺸﺮ (3 (5 (4 (5 (6 اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ www.obeikaneducation.com www.obeikaneducation.com تﺎﻳﻮﺘﺤﻤﻟا www.obeikaneducation.com www.obeikaneducation.com www.obeikaneducation.com www.obeikaneducation.com T2
• ﺍﺳﺘﻘﺼﺎﺀ ﺍﻟﻤﻔﺎﻫﻴﻢ ﻭﺑﻨﺎﺀ ﻓﻬﻢ ﺇﺩﺭﺍﻛﻲ. • ﺗﻄﻮﻳﺮ ﻣﻬﺎﺭﺍﺕ ﺇﺟﺮﺍﺋﻴﺔ ﻭﺣﺴﺎﺑﻴﺔ ﻭﺗﻌﺰﻳﺰﻫﺎ ﻭﺇﺗﻘﺎﻧﻬﺎ. • ﺗﻄﺒﻴﻖ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻓﻲ ﺣﻞ ﻣﺴﺎﺋﻞ ﻣﻦ ﻭﺍﻗﻊ ﺍﻟﺤﻴﺎﺓ. ﻳﺴﺘﻌﻤﻞ ﻃﻼﺏ ﹶﻳﺤﻮﻱ ﻛﻴ ﹲﺲ ﹶﻋﺪ ﹰﺩﺍ ﻣﻦ ﹶﺣ ﱠﺒﺎ ﹺﺕ ﺍﻟﺘﻔﺎ ﹺﺡ، ﻗﻄﻊ ﻋﺪ ﺑﻠﻮﻧﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻟﺘﻤﺜﻴﻞ ﺟﻤﻞ ﺍﻟﺠﻤﻊ. ﻭﺇﹺﻟﻰ ﺟﺎﻧ ﹺﺐ ﺍﻟﻜﻴ ﹺﺲ ﹸﺗﻔﺎﺣﺘﺎ ﹺﻥ؛ ﺇﺫ ﹾﻥ ﻋﺪ ﹸﺩ ﻭ ﹸﻳﻌﺪﱡ ﻫﺬﺍ ﺍﻟﻨﺸﺎﻁ ﺃﺳﺎ ﹰﺳﺎ ﻟﻠﻔﻬﻢ ﻭﺍﻟﻨﺠﺎﺡ ﻓﻲ ﺣﻞ ﺍﻟﺘﻔﺎ ﹺﺡ ﺍﻟ ﹸﻜﻠ ﱡﻲ ﹸﻳﺴﺎﻭﻱ ﻋ ﹶﺪ ﹶﺩ ﺍﻟﺘﻔﺎﺣﺎ ﹺﺕ ﻣﻌﺎﺩﻻﺕ ﺟﺒﺮﻳﺔ. ﻓﻲ ﺍﻟﻜﻴ ﹺﺲ ﺯﺍﺋ ﹶﺪ .٢ ﺍﻟ ﹸﻤﺘﻐ ﱢﻴ ﹸﺮ ﹸﻳﻤ ﹺﻜ ﹸﻦ ﺗﻤﺜﻴ ﹸﻞ ﺍﻟ ﹶﻌﺪ ﹺﺩ ﺍﻟ ﹶﻤﺠﻬﻮ ﹺﻝ ﻣﻦ ﺍﻟ ﱡﺘﻔﺎﺣﺎ ﹺﺕ ﺑﹺ ﹸﻤﺘﻐ ﱢﻴ ﹴﺮ ،ﻭﺍﻟ ﹸﻤﺘﻐ ﱢﻴ ﹸﺮ ﺣﺮ ﹲﻑ ﺃﻭ ﺭﻣ ﹲﺰ ﹸﻳﻤﺜ ﹸﻞ ﺍﻟﻌﺒﺎﺭ ﹸﺓ ﺍﻟﺠﺒﺮ ﱠﻳ ﹸﺔ ﺣﺴﺎ ﹸﺏ ﻗﻴﻤ ﹴﺔ ﹶﻋﺪ ﹰﺩﺍ ﻣﺠﻬﻮ ﹰﻻ. www.obeikaneducation.com ﻋﺪ ﹸﺩ ﺍﻟﺘﻔﺎﺣﺎ ﹺﺕ ﺧﺎﺭ ﹶﺝ ﺱ٢+ ﹶﻋﺪ ﹸﺩ ﺍﻟﺘﻔﺎﺣﺎ ﹺﺕ ﻓﻲ ﺍﻟﻜﻴ ﹺﺲ ٧ ﺍﻟﻜﻴ ﹺﺲ ﻗﻴﻤ ﹲﺔ ﹶﻣﻌﻠﻮﻣ ﹲﺔ. ﻗﻴﻤ ﹲﺔ ﹶﻣﺠﻬﻮﻟ ﹲﺔ. ﺍﻟﻌﺒﺎﺭ ﹸﺓ ﺍﻟﺠﺒﺮ ﱠﻳ ﹸﺔ ﹺﻣ ﹾﺜ ﹸﻞ ﺱ ،٢+ﹶﻣﺠﻤﻮﻋ ﹲﺔ ﻣﻦ ﺍﻟ ﹸﻤﺘﻐ ﱢﻴﺮﺍ ﹺﺕ ﻭﺍﻷﻋﺪﺍ ﹺﺩ ﹶﺗ ﹾﺮﺑﹺ ﹸﻄﻬﺎ ﹶﻋﻤﻠﻴ ﹲﺔ ٧=٦ +١ ﻭﺍ ﹺﺣﺪ ﹲﺓ ﻋﻠﻰ ﺍﻷ ﹶﻗ ﱢﻞ .ﹺﻋﻨﺪﻣﺎ ﺗﺴﺘﺒﺪ ﹸﻝ ﺑﺎﻟﻤﺘﻐ ﱢﻴ ﹺﺮ ﻋﺪ ﹰﺩﺍ ﻓﻲ ﻋﺒﺎﺭ ﹴﺓ ،ﹸﻳﻤﻜ ﹸﻨ ﹶﻚ ﺣﺴﺎ ﹸﺏ ﻗﻴﻤ ﹺﺔ ٧=٥ +٢ ٧=٤ +٣ ﺗﹺ ﹾﻠ ﹶﻚ ﺍﻟﻌﺒﺎﺭ ﹺﺓ. ﹶﺃﻭ ﹺﺟ ﹾﺪ ﻗﻴﻤ ﹶﺔ ﺍﻟﻌﺒﺎﺭ ﹺﺓ ﺱ ،٢+ﺇﺫﺍ ﻛﺎﻧ ﹾﺖ ﺱ = ٣ ﺱ ٢ +ﺍ ﹾﻛ ﹸﺘ ﹺﺐﺍﻟﻌﺒﺎﺭ ﹶﺓ.ﺍﺳﺘﻌﻤ ﹾﻞ ﹸﻛﻮ ﹰﺑﺎﻭﻗﻄﻌ ﹶﺘﻲ ﹶﻋ ﱟﺪ ﻟﹺﺘﻤﺜﻴ ﹺﻞ ﺱ ٢+ ٢ + ٣ﻋ ﱢﻮ ﹾﺽ ﻋﻦ ﺱ ﺑﺎﻟ ﹶﻌﺪ ﹺﺩ ٣ﹶﺿ ﹾﻊ ٣ﹺﻗ ﹶﻄ ﹺﻊ ﻋ ﱟﺪ ﻓﻲ ﺍﻟ ﹸﻜﻮ ﹺﺏ. ﺍﺟﻤ ﹾﻊ ٣ﻭ ٢ ٥ ٧=٧+٠ ﹶﺗ ﹾﻜ ﹺﻮﻳ ﹸﻦ ﺍ ﹾﻟ ﹶﻌ ﹶﺪ ﹺﺩ ٧ ﺍﻟﻤﺠﻤﻮ ﹸﻉ٥ ٧=٦+١ ﹸﻳ ﹶﺴﺎ ﹺﻭﻱ ﺍﻟ ﹼﻨﺎﺗﹺ ﹸﺞ ﺯﺍﺋﹺﺪ ... ... ٧ = 7+ 0 =٧ + ﺃﻣﺎ ﻃﻼﺏ ﻓﻴﺴﺘﻔﻴﺪﻭﻥ ﻣﻦ =٧ + ﺧﺒﺮﺍﺗﻬﻢ ﻓﻲ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﺍﻷﻛﻮﺍﺏ ﻭﻗﻄﻊ ﺍﻟﻌﺪ؛ ﻻﺳﺘﻌﻤﺎﻟﻬﺎ =٧ + ﻓﻲ ﺗﻤﺜﻴﻞ ﻣﻌﺎﺩﻻﺕ ﺍﻟﺠﻤﻊ ﻭﺍﻟﻄﺮﺡ ،ﻭﺣﻠﻬﺎ. =٧ + ٥-١ :٦ ١٢٨ T3
ﺗﺴﺘﻄﻴﻊ ﺃﺣﻴﺎ ﹰﻧﺎ ﺃﻥ ﺗﻜﺘﺐ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻓﻴﻬﺎ ﺍﻟﻤﺘﻐﻴﺮ xﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ، au2 + bu + cﻓﻤﺜ ﹰﻼ ﺑﻔﺮﺽ ﺃﻥ ،u = x2 ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ x4 + 12x2 + 32ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ (x2)2 + 12(x2) + 32ﺃﻭ . u2 + 12u + 32 ﻭﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﺍﻟﺠﺪﻳﺪﺓ ﻫﺬﻩ ﺗﻜﺎﻓﺊ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﺍﻷﺻﻠﻴﺔ ،ﻭﻟﻜﻨﻬﺎ ﻣﻜﺘﻮﺑﺔ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ. a,b,ca≠0au2+bu+c x xu 12x6 + 8x3 + 1 = 3(2x3)2 + 4(2x3) + 1 5 ﺍﻛﺘﺐ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﺇﻥ ﺃﻣﻜﻦ ﺫﻟﻚ: 150n8 + 40n4 - 15 (a ﺍﺑﺤﺚ ﻋﻦ ﻋﺎﻣﻠﻴﻦ ﻟﻠﻌﺪﺩ 150؛ ﺃﺣﺪﻫﻤﺎ ﻣﺮﺑﻊ ﻛﺎﻣﻞ ،ﻭﻋﻦ ﻋﺎﻣﻠﻴﻦ ﻟﻠﻌﺪﺩ 40؛ ﺃﺣﺪﻫﻤﺎ ﺍﻟﺠﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ﻷﺣﺪ ﻋﺎﻣﻠﻲ ﺍﻟﻌﺪﺩ .150 u 150 = 6×25, 40 = 8×5 150n8 + 40n4 - 15 = 6×25n8 + 8×5n4 - 15 ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺑﻄﺎﻗﺎﺕ ﺍﻟﺠﺒﺮ ﻟﺤﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﻲ ﺗﺸﺘﻤﻞ ﻋﻠﻰ ﻣﺘﻐﻴﺮﺍﺕ ﻓﻲ ﻃﺮﻓﻴﻬﺎ. (5n4)2 = 25n8 = 6(5n4)2 + 8(5n4) - 15 y8 + 12y3 + 8 (b ﺍﺳﺘﻌﻤﻞ ﺑﻄﺎﻗﺎﺕ ﺍﻟﺠﺒﺮ ﻟﺤﻞ٣ :ﺱ = ١ +ﺱ .٥ + ﻻ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ؛ ﻷﻥ .y8 ≠ (y3)2 ✓ 8x4 + 12x2 + 18 (5B x4 + 5x + 6 (5A x ﻳﻤﻜﻨﻚ ﻓﻲ ﺑﻌﺾ ﺍﻷﺣﻴﺎﻥ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ ﻟﺤﻞ ﻣﻌﺎﺩﻻﺕ ﻛﺜﻴﺮﺍﺕ ﺍﻟﺤﺪﻭﺩ ﺫﺍﺕ ﺩﺭﺟﺎﺕ ﺃﻛﺒﺮ ﻣﻦ ﻣ ﹼﺜﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ. ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ. + 6 ﺍﺣﺬﻑ ﻋﺪ ﹰﺩﺍ ﻣﺘﺴﺎﻭ ﹰﻳﺎ ﻣﻦ ﺑﻄﺎﻗﺎﺕ ﺱ ﻣﻦ ﻛﻞ ﻃﺮﻑ ﺇﻟﻰ ﺃﻥ ﺗﺼﺒﺢ ﺑﻄﺎﻗﺎﺕ ﺱ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ.18 x4 - 21x2 + 3 = 0 : ﻓﻲ ﺃﺣﺪ ﺍﻟﻄﺮﻓﻴﻦ ﻓﻘﻂ. + 18x4 - 21x2 + 3 = 0 ﺍﺳﺘﻌﻤﻠﻨﺎ ﺳﺎﺑ ﹰﻘﺎ ﻗﻄﻊ ﺍﻟﻌﺪ ﺍﻟﻤﻮﺟﺒﺔ ﻭﺍﻟ ﱠﺴﺎﻟﺒﺔ ﻟﺠﻤﻊ ﺍﻷﻋﺪﺍﺩ ﺍﻟ ﱠﺼﺤﻴﺤﺔ ﻭﻃﺮﺣﻬﺎ ﺍﺣﺬﻑ ﻋﺪ ﹰﺩﺍ ﻣﺘﺴﺎﻭ ﹰﻳﺎ ﻣﻦ ﺑﻄﺎﻗﺎﺕ ﻭﺿﺮﺑﻬﺎ ﻭﻗﺴﻤﺘﻬﺎ ،ﻛﺬﻟﻚ ﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﺍﻷﻋﺪﺍﺩ ﺍﻟ ﱠﺼﺤﻴﺤﺔ ﺑﺒﻄﺎﻗﺎﺕ ﺍﻟﺠﺒﺮ. 2(3x2)2 = 18x4 2(3x2)2 - 7(3x2) + 3 = 0 ﺍﻟﻌﺪﺩ ) (١ﻣﻦ ﻛﻞ ﻃﺮﻑ ﺇﻟﻰ ﺃﻥ ﺗﺼﺒﺢ ﻭﺍﻟﺠﺪﻭﻝ ﺍﻟ ﱠﺘﺎﻟﻲ ﻳﺒ ﱢﻴﻦ ﻫﺬﻳﻦ ﺍﻟﻨﻮﻋﻴﻦ ﻣﻦ ﺍﻟﻨﻤﺎﺫﺝ: ﺑﻄﺎﻗﺎﺕ ﺱ ﻭﺣﺪﻫﺎ ﻓﻲ ﺃﺣﺪ ﺍﻟﻄﺮﻓﻴﻦ. u = 3x2 2u2 - 7u + 3 = 0 (2u - 1)(u - 3) = 0 u 3x2 u=3 ﺃﻭ u = _1 ﺍﻟﻨﻤﻮﺫﺝ 2 3 _1 3x2 = 3 3x 2 = 2 - ﺍﻷﻛﻮﺍﺏ ﻭﻗﻄﻊ ﺍﻟﻌﺪ = + x2 = 1 x 2 = _1 6 _√6 x = ±1 x = ± 6 ﺑﻄﺎﻗﺎﺕ ﺍﻟﺠﺒﺮ ﺱ ١- . - _√6 , _√6 ,1, -1 ﻫﻲ: ﺍﻟﻤﻌﺎﺩﻟﺔ ﺣﻠﻮﻝ ﻭﺯﻉ ﺍﻟﺒﻄﺎﻗﺎﺕ ﺍﻟﻤﺘﺒﻘﻴﺔ ﻓﻲ ﻣﺠﻤﻮﻋﺘﻴﻦ = x ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺃ ﱟﻱ ﻣﻦ ﻫﺬﻳﻦ ﺍﻟﻨﱠﻤﻮﺫ ﹶﺟﻴﻦ ﻟﺤ ﱢﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ. 6 6 ﻣﺘﺴﺎﻭﻳﺘﻴﻦ. x ✓ = 8x4 + 10x2 - 12 = 0 (6B 4x4 - 8x2 + 3 = 0 (6A ﻭﺑﻬﺬﺍ ،ﺗﻜﻮﻥ ﻗﻴﻤﺔ ﺱ = ،٢ﻭﺑﻤﺎ ﺃﻥ ، ٥ + ٢ = ١ + (٢)٣ :ﻓﺎﻟﺤﻞ ﺻﺤﻴﺢ. ﺍﺳHﺘﻌCﻤTEﻞ ﺍﻷﻛﻮﺍﺏ ﻭﻗﻄﻊ ﺍﻟﻌﺪ ﺃﻭ ﺍﻟ ﱠﺮﺳﻢ ﻟﹺ ﹶﺘ ﹸﺤ ﱠﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ :ﺱ + 146 TECH TECH ﻭﻓﻲ ﺍﻟﻤﺮﺣﻠﺔ ﺍﻟﺜﺎﻧﻮﻳﺔ ﻳﺴﺘﻤﺮ ﺍﻟﻄﻠﺒﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﺳﺘﻌﻤﻞ ﺑﻄﺎﻗﺎﺕ ﺍﻟﺠﺒﺮ ﻟﺤﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻲ: + +x ﺱ ٢ = ٢ +ﺱ ٢ ١ +ﺱ ٣ = ٧ +ﺱ ٢ ٤ +ﺱ – = ٥ﺱ – ٧ ٢ ﺱ ٤ = ٨ -ﺱ – ٢ + ٨ ﺱ = ٣ﺱ ٤ ﺱ = ﺱ – ٦ ﻧﻤﻮﺫﺝ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺒﻄﺎﻗﺎﺕ ﻻﺳﺘﻜﺸﺎﻑ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺘﻌﺪﺩﺓ )ec3kmark) (place checkmark) 3 (place checkmarkﺱ3 (plac٢e +ch ﺍﻟﺨﻄﻮﺍﺕ ،ﻭﻳﻄﺒﻘﻮﻥ ﺍﻟﺨﻄﻮﺍﺕ ﺍﻟﺘﻲ ﻃﻮﺭﻭﻫﺎ ﻓﻲ ﺑ ﹼﻴﻦ ﺃ ﱡﻱ ﺧﺼﺎﺋﺺ ﺍﻟﺘﺴﺎﻭﻱ ﺗﺴﺘﻌﻤﻠﻬﺎ ﻟﻠﺘﺨﻠﺺ ﻣﻦ ﺍﻟﻌﺪﺩ ﻧﻔﺴﻪ ﻣﻦ ﺑﻄﺎﻗﺎﺕ ﺍﻟﺠﺒﺮ + ﺍﺣﺬﻑ ﺍﻟﻌﺪﺩ ﻧﻔﺴﻪ ﻣﻦ ﻗﻄﻣﻊ ﺍﻟﻦﻌﺪﻛ ﻣﻞﻦ ﻛﻃﱢﻞﺮﻃﺮﻑﻑﻋﻠﻰ ﻟﻮﺣﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ. + ﺑﺤﻴﺚ ﻳﺼﺒﺢ ﺍﻟﻜﻮﺏ ﻭﺣﺪﻩ ﻓﻲ ﻃﺮﻑ ﻣﻌﻤﻞ ﺍﻟﺠﺒﺮ ﺇﻟﻰ ﺭﻣﻮﺯ ﺟﺒﺮﻳﺔ. ﺱ ٢ - ٢ + ﻋﺪﺩ ﻗﻄﻊ ﺍﻟﻌﺪ ﺍﻟﻤﺘﺒ ﱢﻘﻴﺔ ﻓﻲ ﺍﻟﻄﺮﻑ ﺍﻷﻳﺴﺮ ﺗﻤ ﱢﺜﻞ + = ﻗﻴﻤﺔ ﺱ + + ﺱ= ٣ ﺇﺫﻥ ﺱ = ،٣ﻭﺑﻤﺎ ﺃ ﱠﻥ ،٥ = ٢ + ٣ﻓﺎﻟﺤ ﱡﻞ ﺻﺤﻴﺢ. ﺍﺳﺘﻌﻤ ﹾﻞ ﺍﻷﻛﻮﺍﺏ ﻭﻗﻄﻊ ﺍﻟﻌﺪ ﺃﻭ ﺍﻟ ﱠﺮﺳﻢ ﻟﹺ ﹶﺘ ﹸﺤ ﱠﻞ ﻛ ﱠﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﺄﺗﻲ: ﺃ( ﺱ ٤ = ٤ +ﺏ( = ٥ﺱ ٤ +ﺟـ( + ١ = ٤ﺱ ﺩ( + ٢ = ٢ﺱ ﻳﻨﺘﻘﻞ ﻃﻼﺏ ﺧﻼﻝ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﺍﻟﺠﺒﺮ ،ﻣﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻷﻛﻮﺍﺏ ﻭﻗﻄﻊ ﺍﻟﻌﺪ ﺇﻟﻰ ﺍﺳﺘﻌﻤﺎﻝ ﻧﻤﺎﺫﺝ ﺟﺒﺮﻳﺔ ﺃﻛﺜﺮ ﺗﺠﺮﻳ ﹰﺪﺍ .ﻭﻳﺤ ﹼﻞ ﺍﻟﻄﻼﺏ ﻓﻲ ﺍﻟﺪﺭﻭﺱ ﺍﻟﻼﺣﻘﺔ ،ﻣﻌﺎﺩﻻﺕ ﺑﺴﻴﻄﺔ ﺗﺤﺘﻮﻱ ﻋﻠﻰ ﺭﻣﻮﺯ ﺟﺒﺮﻳﺔ. ﻳﻮ ﹼﺿﺢ ﺍﻟﺘﺴﻠﺴﻞ ﺍﻟﺘﻌﻠﻴﻤﻲ ﺍﻟﺬﻱ ﺗﻢ ﻭﺻﻔﻪ ﻗ ﹼﻮﺓ ﺍﻟﻤﻘﺎﺑﻠﺔ ﺑﻴﻦ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﻤﺮﻏﻮﺏ ﻓﻴﻬﺎ ﻭﺍﻟﻨﺠﺎﺡ ﻓﻲ ﺍﻟﺠﺒﺮ. ﻭﺗﻌﻤﻞ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻟﺘﻄﻮﻳﺮﻳﺔ ﻋﻠﻰ ﺗﺠﻨﺐ ﻭﺟﻮﺩ ﻓﺠﻮﺍﺕ ﺃﻭ ﺗﺪﺍﺧﻼﺕ ﺑﻴﻦ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﺼﻔﻮﻑ ،ﻭﺗﺆ ﹼﻛﺪ ﻋﻠﻰ ﺃ ﹼﻥ ﻣﻔﺎﻫﻴﻢ ﻛﻞ ﺻﻒ ﻭﻣﻬﺎﺭﺍﺗﻪ ﻣﺒﻨﻴﺔ ﻋﻠﻰ ﺃﺳﺎﺱ ﻗﻮﻱ ﺗﻢ ﺗﻄﻮﻳﺮﻩ ﻓﻲ ﺻﻔﻮﻑ ﺳﺎﺑﻘﺔ .ﻭﻳﺴﺘﻌﻤﻞ ﺍﻟﻤﻨﺤﻰ ﻧﻔﺴﻪ ﻋﺒﺮ ﺍﻟﻤﺴﺎﺭﺍﺕ ﺟﻤﻴﻌﻬﺎ ﺍﺑﺘﺪﺍ ﹰﺀ ﻣﻦ ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﺍﻻﺑﺘﺪﺍﺋﻲ ﺣﺘﻰ ﺍﻟﺼﻒ ﺍﻟﺜﺎﻟﺚ ﺍﻟﺜﺎﻧﻮﻱ. T4
• • • ﺗﺰ ﹼﻭﺩ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻟﻄﻼﺏ ﺑﺨﻄﻂ ﻣﻼﺋﻤﺔ ﻟﺤﻞ ﺍﻟﻤﺴﺄﻟﺔ ،ﻭﻣﻬﺎﺭﺍﺕ ﻭﺗﻄﺒﻴﻘﺎﺕ ﻋﻠﻴﻬﺎ ﺧﻼﻝ ﺍﻟﺼﻔﻮﻑ؛ ﺇﺫ ﻳﺘﻮﺍﻓﺮ ﻟﻬﻢ ﻓﺮﺹ ﻣﺴﺘﻤﺮﺓ ﻟﺘﻄﺒﻴﻖ ﻣﻬﺎﺭﺍﺕ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ،ﻭﺣﻞ ﺍﻟﻤﺴﺎﺋﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﺒﺼﺮﻱ ،ﻭﺍﻻﺳﺘﺪﻻﻝ ﺍﻟﻤﻨﻄﻘﻲ ،ﻭﺍﻟﺤﺲ ﺍﻟﻌﺪﺩﻱ ،ﻭﺍﻟﺠﺒﺮ. ﺗﺬ ﹼﻛﺮ ﺃﻥ ﺟﻤﻴﻊ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠ ﹼﻴﺔ ﻟﻠﻤﻀﻠﻊ ﺍﻟﻤﻨﺘﻈﻢ ﻣﺘﻄﺎﺑﻘﺔ .ﻭﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﻫﺬﻩ ﺍﻟﺤﻘﻴﻘﺔ ﻭﻧﻈﺮﻳﺔ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠ ﹼﻴﺔ ﻟﻠﻤﻀﻠﻊ ﻹﻳﺠﺎﺩ ﻗﻴﺎﺱ ﺍﻟﺰﻭﺍﻳﺔ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻷﻱ ﻣﻀﻠﻊ ﻣﻨﺘﻈﻢ. ﺗﺴﺎﻋﺪ ﺍﺳﺘﺮﺍﺗﻴﺠﻴﺎﺕ ﺣﻞ ﺍﻟﻤﺴﺄﻟﺔ ﺍﻟﻄﻼﺏ ﻋﻠﻰ ﺗﻌﻠﻢ ﻃﺮﺍﺋﻖ ﻣﺨﺘﻠﻔﺔ ﻟﻤﻮﺍﺟﻬﺔ ﺍﻟﻤﺴﺎﺋﻞ ﺍﻟﻜﻼﻣﻴﺔ. 2 ﻓﻲ ﺍﻟﻤﻨﻈﺮ ﺍﻟﻌﻠﻮﻱ ﻟﻠﻤﻈﻠﺔ ﺍﻟﻤﺠﺎﻭﺭﺓ ،ﺗﺸ ﹼﻜﻞ ﺍﻷﻋﻤﺪﺓ ﺭﺅﻭﺱ ﻣﻀﻠﻊ ﺳﺪﺍﺳﻲ ﻣﻨﺘﻈﻢ .ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻋﻨﺪ ﺃﻱ ﻣﻦ ﺃﺭﻛﺎﻥ ﺍﻟﻤﻈﻠﺔ. ﻣﻨﻈﺮ ﻋﻠﻮﻱ ﻟﻤﻈﻠﺔ ﺳﺪﺍﺳﻴﺔ ﻣﻨﺘﻈﻤﺔ ﺍﻟﺸﻜﻞ. ﺇﻳﺠﺎﺩ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻲ ﺗﺸﻜﻞ ﻋﻨﺪ ﺃﻱ ﺭﻛﻦ ﻣﻦ ﺃﺭﻛﺎﻥ ﺍﻟﻤﻈﻠﺔ. ﺍﺭﺳﻢ ﺷﻜ ﹰﻼ ﻳﻤ ﱢﺜﻞ ﺍﻟﻤﻨﻈﺮ ﺍﻟﻌﻠﻮﻱ ﻟﻠﻤﻈﻠﺔ. 2 3 1 (34ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺍﻟﺬﻱ ﻳﺒﻴﻦ ﻋﺪﺩ ﺍﻟﻄﻼﺏ 3 ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻲ ﺗﺘﺸ ﹼﻜﻞ ﻋﻨﺪ ﺃﻱ ﻣﻦ ﺃﺭﻛﺎﻥ ﺍﻟﻤﻈﻠﺔ ﻫﻲ ﺯﺍﻭﻳﺔ ﺩﺍﺧﻠ ﹼﻴﺔ ﻟﺴﺪﺍﺳﻲ ﻣﻨﺘﻈﻢ. 190 210 ﻓﻲ ﻣﺪﺭﺳﺔ ﻣﺪﺓ ﺃﺭﺑﻊ ﺳﻨﻮﺍﺕ ﻣﺘﺘﺎﻟﻴﺔ1425 . ﺍﺳﺘﻌﻤﻞ ﻧﻈﺮﻳﺔ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻠﻤﻀﻠﻊ ﻹﻳﺠﺎﺩ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ 240 ﺍﻟﺪﺍﺧﻠ ﹼﻴﺔ ﻟﻠﺴﺪﺍﺳﻲ .ﻭﺑﻤﺎ ﺃﻥ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻠﺴﺪﺍﺳﻲ ﺍﻟﻤﻨﺘﻈﻢ ﻣﺘﻄﺎﺑﻘﺔ ،ﻓﺈﻥ ﻗﻴﺎﺱ ﻛﻞ ﺯﺍﻭﻳﺔ 260 ﺩﺍﺧﻠﻴﺔ ﻳﺴﺎﻭﻱ ﻧﺎﺗﺞ ﻗﺴﻤﺔ ﺍﻟﻤﺠﻤﻮﻉ ﻋﻠﻰ ﻋﺪﺩ ﺍﻟﺰﻭﺍﻳﺎ. 1426 (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ﺃﻭ ﹰﻻ :ﺃﻭﺟﺪ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠ ﹼﻴﺔ. 1427 (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻣﻌﺘﻤ ﹰﺪﺍ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﺍﻟﺠﺪﻭﻝ ،ﻭﺍﺷﺮﺡ ﻛﻴﻒ ﻳﺆ ﱢﻳﺪ ﺗﻤﺜﻴﻠﻚ 1428 ˚S = (n - 2) 180 ﺍﻟﺒﻴﺎﻧﻲ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. n=6 ˚= (6 - 2) 180 ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺃ ﱞﻱ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺻﺤﻴ ﹰﺤﺎ ﺃﻭ ﺧﺎﻃ ﹰﺌﺎ ،ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. 4 ˚= 4 180˚ = 720 (35ﺇﺫﺍ ﻛﺎﻥ nﻋﺪ ﹰﺩﺍ ﺃﻭﻟ ﹰﹼﻴﺎ ،ﻓﺈﻥ n + 1ﻟﻴﺲ ﺃﻭﻟ ﹰﹼﻴﺎ. ﺛﺎﻧ ﹰﻴﺎ :ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﻛﻞ ﺯﺍﻭﻳﺔ ﺩﺍﺧﻠ ﹼﻴﺔ. (36ﺇﺫﺍ ﻛﺎﻥ xﻋﺪ ﹰﺩﺍ ﺻﺤﻴ ﹰﺤﺎ ،ﻓﺈﻥ –xﻋﺪﺩ ﻣﻮﺟﺐ. (37ﻓﻲ ﺍﻟﻤﺜﻠﺚ ABCﺇﺫﺍ ﻛﺎﻥ ، (AB)2 + (BC)2 = (AC)2 :ﻓﺈﻥ ABCﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ. ﻣﺠﻤﻮﻉ ﻗﻴ_ﺎﺳﺎﺕ ﺍﻟﺰﻭﺍ_ﻳﺎ ﺍﻟﺪﺍﺧﻠﻴﺔ_ = 7_20° (38ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﻣﺴﺘﻄﻴﻞ ﺗﺴﺎﻭﻱ ،20 m2ﻓﺈﻥ ﻃﻮﻟﻪ ﻳﺴﺎﻭﻱ ، 10 mﻭﻋﺮﺿﻪ .2 m ﻋﺪﺩ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠﻴﺔ 6 (39ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺩﻧﺎﻩ ﻟﺘﻌﻄﻲ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ: ˚= 120 ﺇﺫﻥ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺘﻜ ﱢﻮﻧﺔ ﻋﻨﺪ ﻛﻞ ﺭﻛﻦ ﻳﺴﺎﻭﻱ .120° 120° 120° ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺃ ﹼﻥ ﻫﺬﺍ ﺍﻟﻘﻴﺎﺱ ﺻﺤﻴﺢ ،ﺍﺳﺘﻌﻤﻞ ﺍﻟﻤﺴﻄﺮﺓ ﻭﺍﻟﻤﻨﻘﻠﺔ 120° ﻟﺮﺳﻢ ﺳﺪﺍﺳﻲ ﻣﻨﺘﻈﻢ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺘﻪ ﺍﻟﺪﺍﺧﻠ ﹼﻴﺔ .120° 120° ﺳﻴﺮﺗﺒﻂ ﺍﻟﻀﻠﻊ ﺍﻷﺧﻴﺮ ﺑﻨﻘﻄﺔ ﺍﻟﺒﺪﺍﻳﺔ ﻷﻭﻝ ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ ﹸﺭﺳﻤﺖ. 25.0% 6.8 25.5% 6.9 ✓ 6.6% 1.8 12 (2Aﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﺴﺠﺎﺩﺓ ﻋﻠﻰ ﺷﻜﻞ ﺛﻤﺎﻧﻲ ﻣﻨﺘﻈﻢ. 15.1% 4.1 1431 (2Bﺗﺰ ﱢﻳﻦ ﺍﻟﻨﻮﺍﻓﻴﺮ ﺍﻷﻣﺎﻛﻦ ﺍﻟﻌﺎﻣﺔ ،ﻭﻳﻘﺎﻡ ﺑﻌﻀﻬﺎ ﻋﻠﻰ ﺷﻜﻞ ﻣﻀﻠﻌﺎﺕ ﻣﻨﺘﻈﻤﺔ .ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻨﺎﻓﻮﺭﺓ ﻋﻠﻰ ﺷﻜﻞ ﺗﺴﺎﻋﻲ ﻣﻨﺘﻈﻢ. (aﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻤﺠﻤﻮﻉ ﻋﺪﺩ ﺳﻜﺎﻥ ﺍﻟﻤﻨﺎﻃﻖ ﺍﻹﺩﺍﺭﻳﺔ ﺍﻷﺭﺑﻊ ﺍﻟﻮﺍﺭﺩﺓ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺃﻗﻞ ﻣﻦ 25%ﻣﻦ ﺳﻜﺎﻥ ﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ. 5 14 (bﻳﺰﻳﺪ ﻋﺪﺩ ﺳﻜﺎﻥ ﺃ ﱟﻱ ﻣﻦ ﺍﻟﻤﻨﺎﻃﻖ ﺍﻹﺩﺍﺭﻳﺔ ﺍﻷﺭﺑﻊ ﻋﻠﻰ ﻣﻠﻴﻮ ﹶﻧﻲ ﻧﺴﻤ ﹴﺔ. (40ﻳﻨﺺ ﺗﺨﻤﻴﻦ ﺟﻮﻟﺪ ﺑﺎﺥ ﻋﻠﻰ ﺃﻧﻪ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ﺃﻱ ﻋﺪﺩ ﺯﻭﺟﻲ ﺃﻛﺒﺮ ﻣﻦ 2ﻋﻠﻰ ﺻﻮﺭﺓ ﻣﺠﻤﻮﻉ ﻋﺪﺩﻳﻦ ﺃﻭﻟﻴﻴﻦ .ﻓﻌﻠﻰ ﺳﺒﻴﻞ ﺍﻟﻤﺜﺎﻝ.4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5 : (aﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ ﻟﻸﻋﺪﺍﺩ ﺍﻟﺰﻭﺟﻴﺔ ﻣﻦ 10ﺇﻟﻰ 20 (bﺇﺫﺍ ﹸﺃﻋﻄﻴﺖ ﺍﻟﺘﺨﻤﻴﻦ ﺍﻵﺗﻲ :ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ﺃﻱ ﻋﺪﺩ ﻓﺮﺩﻱ ﺃﻛﺒﺮ ﻣﻦ 2ﻋﻠﻰ ﺻﻮﺭﺓ ﻣﺠﻤﻮﻉ ﻋﺪﺩﻳﻦ ﺃﻭﻟﻴﻴﻦ. ﻓﻬﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ ﺃﻡ ﺧﺎﻃﺊ؟ ﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. AB ﺇﺍﺫﺍﻟﻨ ﹸﺃﻘﻄﺿﺘﻴﺎﻔﻥ ﺍﺖﻟﻧﻮﻘﺍﻗﻄﻌﺔﺘﺎﺃﻥﺧﺮﻋﻠﻰCﻣﻋﺴﺘﻠﻘﻴﻰ ﺍﻢﻟﺗﻘﺸﻄ ﱢﻌﻜﺔﻼﺍﻟﻥﻤﻗﺴﻄﺘﻘﻌﻴﺔﻤﻣﺔﺴ_ﺘ_Bﻘﻴ_Aﻤ،ﺔ، ___ (41 A CB ﻣﺜﻞ . AB ﻓﺈﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ ﺗﺸ ﱢﻜﻞ ﺛﻼﺙ ﻗﻄﻊ ﻣﺴﺘﻘﻴﻤﺔ. (aﻣﺎ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻣﻦ ﺃﺭﺑﻊ ﻧﻘﺎﻁ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ؟ ﻭﻣﻦ ﺧﻤﺲ ﻧﻘﺎﻁ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ؟ ﺗﺘﻄﻠﺐ ﻫﺬﻩ ﺍﻟﻤﺴﺎﺋﻞ ﺍﺳﺘﻌﻤﺎﻝ ﻣﻬﺎﺭﺍﺕ ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻌﻠﻴﺎ (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻌﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻣﻦ nﻧﻘﻄﺔ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ. (cﺍﺧﺘﺒﺮ ﺗﺨﻤﻴﻨﻚ ﺑﺈﻳﺠﺎﺩ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻣﻦ 6ﻧﻘﺎﻁ. )ﺍﻟﺘﺤﻠﻴﻞ ،ﻭﺍﻟﺘﺮﻛﻴﺐ ، ... ،ﺇﻟﺦ(. (42ﻳﺘﻨﺎﻗﺶ ﺃﺣﻤﺪ ﻭﻋﻠﻲ ﻓﻲ ﻣﻮﺿﻮﻉ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ .ﻓﻴﻘﻮﻝ ﺃﺣﻤﺪ :ﺇﻥ ﺟﻤﻴﻊ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ ﺃﻋﺪﺍﺩ ﻓﺮﺩﻳﺔ .ﻓﻲ ﺣﻴﻦ ﻳﻘﻮﻝ ﻋﻠ ﱞﻲ :ﻟﻴﺴﺖ ﺟﻤﻴﻊ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻓﺮﺩﻳﺔ .ﻫﻞ ﻗﻮﻝ ﺃ ﱟﻱ ﻣﻨﻬﻤﺎ ﺻﺤﻴﺢ؟ ﻓ ﹼﺴﺮ ﺇﺟﺎﺑﺘﻚ. 17 1- 1 T5
ﺗﺴﺎﻋﺪ ﻣﺴﺎﺋﻞ ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﻤﺘﻌﺪﺩﺓ ﺍﻟﻄﻼﺏ ﻋﻠﻰ ﺗﺼﻮﺭ ﺍﻟﻤﻔﺎﻫﻴﻢ ﻭﺗﻌﻤﻴﻖ ﺍﻟﻔﻬﻢ، ﻭﺗﺘﻀﻤﻦ :ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻠﻔﻈﻴﺔ ﻭﺍﻟﻌﺪﺩﻳﺔ ﻭﺍﻟﺠﺒﺮﻳﺔ ﻭﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﻭﺍﻟﺠﺪﺍﻭﻝ ...ﺇﻟﺦ. ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺓ ﺃﺩﻧﺎﻩ ﻟﻜﺘﺎﺑﺔ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﻣﻌﻠﻮﻣﺎﺕ ﺍﻟﺮﺑﻂ ﻣﻊ ﺍﻟﺤﻴﺎﺓ ﻟﺘﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻨﻬﺎ ،ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺃ ﱞﻱ ﻣﻨﻬﺎ ﺧﺎﻃﺌﺔ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. ”ﺍﻟﺤﻴﻮﺍﻥ ﺍﻟﺬﻱ ﺗﻈﻬﺮ ﻋﻠﻰ ﺟﺴﻤﻪ ﺧﻄﻮﻁ ﻫﻮ ﺍﻟﺤﻤﺎﺭ ﺍﻟﻮﺣﺸﻲ“. (38ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ (37ﻋﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ (40ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ (39ﻣﻌﻜﻮﺱ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺃﻭﺟﺪ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞ ﻋﺒﺎﺭﺗﻴﻦ ﻓﻴﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﻗ ﱢﺮﺭ ﻫﻞ ﻫﻤﺎ ﻣﺘﻜﺎﻓﺌﺎﻥ ﻣﻨﻄﻘ ﹼﹰﻴﺎ ﺃﻡ ﻻ؟ 4 ∼(p → q) , ∼ p → ∼ q (41 5 ∼(p → q) , ∼(∼ q → ∼ p) (42 (p q) ∨ r , p (q ∨ r) (43 ﺍﻛﺘﺐ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺣ ﱢﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺃ ﱞﻱ ﻣﻨﻬﺎ ﺻﺎﺋ ﹰﺒﺎ ﺃﻡ ﺧﺎﻃ ﹰﺌﺎ .ﻭﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. (44ﺇﺫﺍ ﻛﻨﺖ ﺗﻌﻴﺶ ﻓﻲ ﺍﻟﺪﻣﺎﻡ ،ﻓﺈﻧﻚ ﺗﻌﻴﺶ ﻓﻲ ﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ. (45ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻄﺎﺋﺮ ﻧﻌﺎﻣﺔ ،ﻓﺈﻧﻪ ﻻ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﻄﻴﺮ. (46ﺟﻤﻴﻊ ﺍﻟﻤﺮﺑﻌﺎﺕ ﻣﺴﺘﻄﻴﻼﺕ. (47ﺟﻤﻴﻊ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺘﻄﺎﺑﻘﺔ ﻟﻬﺎ ﺍﻟﻄﻮﻝ ﻧﻔﺴﻪ. (48ﺍﻟﻤﺜﻠﺚ ﺍﻟﻘﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﻳﺤﻮﻱ ﺯﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ 90° ﺍﺳﺘﻌﻤﻞ ﺃﺷﻜﺎﻝ ﭬﻦ ﺃﺩﻧﺎﻩ؛ ﻟﺘﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ .ﻭﻓ ﱢﺴﺮ ﺗﺒﺮﻳﺮﻙ. ﻣﺘﺴﺎﻗﻄﺔ ﺍﻟﺜﺪﻳﻴﺎﺕ ﺍﻟﺪﻭﺍﻝ ﺍﻷﻭﺭﺍﻕ ﺍﳊﻴﻮﺍﻧﺎﺕ ﺍﻟﺒﺤﺮﻳﺔ ﻏﻴﺮ ﺍﳋﻄﻴﺔ ﺩﺍﺋﻤﺔ ﺍﳋﻀﺮﺓ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺮﺑﻴﻌﻴﺔ (49ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﻏﻴﺮ ﺧﻄﻴﺔ ،ﻓﺈﻧﻬﺎ ﺗﻜﻮﻥ ﺩﺍﻟﺔ ﺗﺮﺑﻴﻌﻴﺔ. (50ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ،ﻓﺈﻧﻪ ﻻ ﻳﻜﻮﻥ ﺣﻴﻮﺍ ﹰﻧﺎ ﺑﺤﺮ ﹼﹰﻳﺎ. Angles and Parallel Lines (51ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺸﺠﺮﺓ ﻣﺘﺴﺎﻗﻄﺔ ﺍﻷﻭﺭﺍﻕ ،ﻓﺈﻧﻬﺎ ﻻ ﺗﻜﻮﻥ ﺩﺍﺋﻤﺔ ﺍﻟﺨﻀﺮﺓ. ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺤﺎﺳﺒﺔ ﺍﻟﺒﻴﺎﻧﻴﺔ TI - nspire؛ ﻟﺘﺴﺘﻜﺸﻒ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻦ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﻮﺍﺯﻳﻴﻦ ﻭﻗﺎﻃﻊ ﻟﻬﻤﺎ. (52ﻓﻲ ﻫﺬﻩ ﺍﻟﻤﺴﺄﻟﺔ ﺳﻮﻑ ﺗﺴﺘﻘﺼﻲ ﺃﺣﺪ ﻗﻮﺍﻧﻴﻦ ﺍﻟﻤﻨﻄﻖ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ. (aﺍﻛﺘﺐ ﺛﻼﺙ ﻋﺒﺎﺭﺍﺕ ﺷﺮﻃﻴﺔ ﺻﺎﺋﺒﺔ ،ﺑﺤﻴﺚ ﺗﻜﻮﻥ ﻧﺘﻴﺠﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻓﺮ ﹰﺿﺎ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺗﻠﻴﻬﺎ. 3 1 (bﺍﺭﺳﻢ ﺷﻜﻞ ﭬﻦ ﻳﻮﺿﺢ ﻫﺬﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ. • ﺍﺭﺳﻢ ﺍﻟﻨﻘﻄﺔ Aﻋﻠﻰ ، FGﻭﺍﻟﻨﻘﻄﺔ Bﻋﻠﻰ ، JKﻭﺫﻟﻚ ﺑﺎﻟﻀﻐﻂ (cﺍﻛﺘﺐ ﻋﺒﺎﺭ ﹰﺓ ﺷﺮﻃﻴ ﹰﺔ ﻣﺴﺘﻌﻤ ﹰﻼ ﻓﺮﺽ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﻟﻰ ،ﻭﻧﺘﻴﺠﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺜﺎﻟﺜﺔ .ﺇﺫﺍ ﻛﺎﻥ ﻓﺮﺽ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﻟﻰ ﺻﺎﺋ ﹰﺒﺎ .ﻓﻬﻞ ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻟﻨﺎﺗﺠﺔ ﺻﺎﺋﺒ ﹰﺔ؟ (dﺇﺫﺍ ﹸﺃﻋﻄﻴﺖ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻟﺸﺮﻃﻴﺘﻴﻦ ﺍﻟﺼﺎﺋﺒﺘﻴﻦ :ﺇﺫﺍ ﻛﺎﻥ ، aﻓﺈﻥ ، bﻭﺇﺫﺍ ﻛﺎﻥ ،bﻓﺈﻥ ،cﻓﺎﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﺣﻮﻝ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ cﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ aﺻﺎﺋﺒﺔ .ﻓ ﱢﺴﺮ ﺗﺒﺮﻳﺮﻙ. • ﺍﺭﺳﻢ ﻣﺴﺘﻘﻴ ﹰﻤﺎ ﻭﺳ ﱢﻢ ﺍﻟﻨﻘﻄﺘﻴﻦ F, Gﻋﻠﻴﻪ، 33 1-3 ،ﺛﻢ ﺣ ﱢﺪﺩ ﻛ ﹰﹼﻼ ﻣﻦ ﻋﻠﻰ ﻭﺍﺧﺘﺮ ﺛﻢ ﺍﺧﺘﺮ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﺍﻟﻤﻔﺎﺗﻴﺢ ﺛﻢ ﺍﺧﺘﻴﺎﺭ ﺍﻟﻨﻘﻄﺘﻴﻦ ﻭﺗﺴﻤﻴﺘﻬﻤﺎ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ ﺛﻢ ،ﻭﺳ ﱢﻢ ﻛ ﹼﹰﻼ ﻣﻨﻬﻤﺎ. ﺍﺭﺳﻤﻪ ،ﺛﻢ ﺍﺧﺘﺮ ﻧﻘﻄﺔ ﻋﻠﻴﻪ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﻭﻣﻨﻬﺎ ﺍﺧﺘﺮ • ﹺﺻ ﹾﻞ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺘﻴﻦ A, Bﻟﺮﺳﻢ ﺍﻟﻘﺎﻃﻊ ،ABﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ . ،ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ • ﺳ ﱢﻢ ﻛﻞ ﻣﻦ ﺍﻟﻨﻘﻄﺘﻴﻦ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﺍﻟﻨﻘﻄﺔ ،ﺛﻢ ﻋﻠﻰ ﺛﻢ ﺍﺿﻐﻂ ﻋﻠﻰ ﺍﻟﻨﻘﻄﺘﻴﻦ A, B ﻭﺗﺴﻤﻴﺔ ﺍﻟﻨﻘﻄﺘﻴﻦ ﺑﺎﻟﺤﺮﻓﻴﻦ FG ﻭﺍﺧﺘﻴﺎﺭ 4 2 • ﺍﺭﺳﻢ ﻧﻘﻄﺘﻴﻦ ﻋﻠﻰ ABﻭﺳ ﱢﻤﻬﻤﺎ C, Dﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ، • ﺣ ﱢﺪﺩ ﻧﻘﻄ ﹰﺔ ﻻ ﺗﻘﻊ ﻋﻠﻰ FGﻭﺳ ﱢﻤﻬﺎ Jﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ،ﺛﻢ ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ ، ﺛﻢ ﺍﺿﻐﻂ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ AB ﻭﺍﺧﺘﺮ ﻭﺣ ﱢﺪﺩ ﻣﻜﺎﻥ ﺍﻟﻨﻘﻄﺘﻴﻦ ﻛﻤﺎ ﻓﻲ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ. ﻭﺣﺪﺩ ﺍﻟﻨﻘﻄﺔ ﻭﺳ ﱢﻤﻬﺎ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﺍﻟﻨﻘﻄﺔ ﺛﻢ ﻋﻠﻰ ،ﺛﻢ ﺍﺧﺘﺮ • ﺳ ﱢﻢ ﻛ ﹰﹼﻼ ﻣﻨﻬﺎ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﻭﺗﺴﻤﻴﺔ ﺍﻟﻨﻘﻄﺔ ﺑﺎﻟﺤﺮﻑJ ﻭﺍﺧﺘﻴﺎﺭ ﻭﺳ ﹼﻤﻬﻤﺎ ﺑﹺـ C, D ﻭﺍﺧﺘﻴﺎﺭ • ﺍﺭﺳﻢ ﻣﺴﺘﻘﻴﻤﺎ ﻳﻤ ﱡﺮ ﻓﻲ Jﻭﻳﻮﺍﺯﻱ FGﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ • ﻟﻘﻴﺎﺱ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺜﻤﺎﻧﻲ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻦ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺜﻼﺛﺔ، ﺛﻢ ﺍﻟﻀﻐﻂ ،ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ TI-nspire ،ﺛﻢ ﺍﺧﺘﺮ ﺍﻟﺰﺍﻭﻳﺔ ﺍﺿﻐﻂ ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ ﻋﻠﻰﺍﻟﻨﻘﻄﺔ Jﻭﺍﻟﻤﺴﺘﻘﻴﻢ،FGﻓﻴﻨﺘﺞﻣﺴﺘﻘﻴﻢﻣﻮﺍ ﹴﺯ. ﺗﻮﻓﺮ ﻫﺬﻩ ﺍﻟﻤﻌﺎﻣﻞ ﻟﻠﻄﻼﺏ ﻓﺮﺻﺔ ﻟﻔﻬﻢ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻣﻦ ﻭﺍﺿﻐﻂ ﻋﻠﻰ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ Jﺛﻢ Bﺛﻢ ، Dﺳﻴﻈﻬﺮ m∠JBD • ﺍﺧﺘﺮ ﻧﻘﻄ ﹰﺔ ﻋﻠﻴﻪ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ،ﻭﻣﻨﻬﺎ ﺍﺧﺘﺮ ﺧﻼﻝ ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻧﻴﺔ ﻭﻟﻴﻜﻦ 78° ﺛﻢ ﺍﺿﻐﻂ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ﻭﺣ ﱢﺪﺩ ﺍﻟﻨﻘﻄﺔ • ﻛ ﱢﺮﺭ ﺫﻟﻚ ﻣﻊ ﺑﺎﻗﻲ ﺍﻟﺰﻭﺍﻳﺎ ﻹﻳﺠﺎﺩ ﻗﻴﺎﺳﺎﺗﻬﺎ. ﻭﺳ ﱢﻤﻬﺎ ﺑﺎﻟﻀﻐﻂ ﻋﻠﻰ ﺍﻟﻤﻔﺎﺗﻴﺢ ﻭﺍﺧﺘﺮ ﻣﻨﻬﺎ ﻭﺳ ﱢﻤﻬﺎ K 2 92 T6
ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﺗﻘﻮﻳ ﹰﻤﺎ ﺻﺮﻳ ﹰﺤﺎ ﺫﺍ ﻣﻌﻨﻰ ﻟﻤﺪ ﺗﻘﺪﻡ ﺍﻟﻄﻼﺏ ﻓﻲ ﺑﻨﻴﺔ ﺍﻟﻤﻨﻬﺞ ﻭﻓﻲ ﺍﻟﻤﻮﺍﺩ ﺍﻟﻤﺴﺎﻧﺪﺓ ﺍﻟﺘﻲ ﻳﺴﺘﻌﻴﻦ ﺑﻬﺎ ﺍﻟﻤﻌﻠﻢ. 1 3 2 1 1 1 ﻗ ﱢﻮﻡ ﻣﻌﺮﻓﺔ ﻃﻼﺑﻚ ﻓﻲ ﺑﺪﺍﻳﺔ ﺍﻟﻌﺎﻡ ﺍﻟﺪﺭﺍﺳﻲ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﺧﺘﺒﺎﺭﺍﺕ ﺗﺸﺨﻴﺼﻴﺔ ﻭﺍﺧﺘﺒﺎﺭﺍﺕ ﺗﺤﺪﻳﺪ ﺍﻟﻤﺴﺘﻮ. ﻭﺳﻮﻑ ﻳﺴﺎﻋﺪﻙ ﻫﺬﺍ ﻋﻠﻰ ﺗﺤﺪﻳﺪ ﻣﺪ ﺣﺎﺟﺔ ﻃﻼﺑﻚ ﻟﻤﻮﺍﺩ ﻭﻣﺼﺎﺩﺭ ﺗﻌﻠﻢ ﺇﺿﺎﻓﻴﺔ ﻟﻴﻜﻮﻧﻮﺍ ﻗﺎﺩﺭﻳﻦ ﻋﻠﻰ ﺍﻟﻤﻮﺍﺀﻣﺔ ﻣﻊ ﻣﻌﺎﻳﻴﺮ 1 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻣﻤﺎ ﻳﺄﺗﻲ ﻋﻨﺪ ﻗﻴﻤﺔ xﺍﻟ ﹸﻤﻌﻄﺎﺓ. ﻣﺴﺘﻮ ﺍﻟﺼﻒ. ﺃﻭﺟﺪ ﻗﻴﻤﺔ x2 – 2x + 11ﺇﺫﺍ ﻛﺎﻧﺖ . x = 6 180 (x – 2) , x = 8 (2 4x + 7 , x = 6 (1 ﻗ ﱢﻮﻡ ﺍﻟﻤﻌﺎﺭﻑ ﺍﻟﺴﺎﺑﻘﺔ x2 – 2x + 11 )_x(x - 3 , x = 5 (4 5x2 – 3x , x = 2 (3 x=6 = (6)2 – 2(6) + 11 ﻟﻄﻼﺑﻚ ﻓﻲ ﺑﺪﺍﻳﺔ ﺍﻟﻔﺼﻞ ﺃﻭ ﺍﻟﺪﺭﺱ ،ﻣﻦ ﺧﻼﻝ: = 36 – 2(6) + 11 2 = 36 – 12 + 11 ﻛﺘﺎﺏ ﺍﻟﻄﺎﻟﺐ: = 35 x + (x + 1) + (x + 2) , x = 3 (5 • ﺍﻟﺘﻬﻴﺌﺔ ﺍﻛﺘﺐ ﻛﻞ ﺗﻌﺒﻴﺮ ﻟﻔﻈﻲ ﻣﻤﺎ ﻳﺄﺗﻲ ﻋﻠﻰ ﺻﻮﺭﺓ ﻋﺒﺎﺭﺓ ﺟﺒﺮﻳﺔ: • ﻓﻴﻤﺎ ﺳﺒﻖ ،ﺍﻵﻥ ،ﻟﻤﺎﺫﺍ. (6ﺃﻗﻞ ﻣﻦ ﺧﻤﺴﺔ ﺃﻣﺜﺎﻝ ﻋﺪﺩ ﺑﺜﻤﺎﻧﻴﺔ. ﺩﻟﻴﻞ ﺍﻟﻤﻌﻠﻢ: • ﺑﺪﺍﺋﻞ ﺗﻨﻮﻳﻊ ﺍﻟﺘﻌﻠﻴﻢ (7ﺃﻛﺜﺮ ﻣﻦ ﻣﺮﺑﻊ ﻋﺪﺩ ﺑﺜﻼﺛﺔ. ﺩﻟﻴﻞ ﺍﻟﺘﻘﻮﻳﻢ 2 ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻲ : • ﻧﻤﻮﺫﺝ ﺍﻟﺘﻮﻗﻊ 8x – 10 = 6x (8 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ . 36x – 14 = 16x + 58 T7 36x – 14 = 16x + 58 18 + 7x = 10x + 39 (9 16x 36x – 14 – 16x = 16x + 58 –16x 3(11x – 7) = 13x + 25 (10 20x – 14 = 58 _3 x + 1 = 5 – 2x (11 14 20x – 14 + 14 = 58 + 14 2 (12ﺍﺷﺘﺮﺕ ﻋﺎﺋﺸﺔ 4ﻛﺘﺐ ﺑﻘﻴﻤﺔ 52ﺭﻳﺎ ﹰﻻ؛ ﻟﺘﻘﺮﺃﻫﺎ 20x = 72 20 _20x ﻓﻲ ﺃﺛﻨﺎﺀ ﺍﻹﺟﺎﺯﺓ ﺍﻟﺼﻴﻔﻴﺔ .ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻜﺘﺐ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﺴﻌﺮ، _72 20 = ﻓﺎﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻹﻳﺠﺎﺩ ﺛﻤﻦ ﺍﻟﻜﺘﺎﺏ ﺍﻟﻮﺍﺣﺪ ،ﺛﻢ ﹸﺣ ﱠﻠﻬﺎ. 20 x = 3.6 3 ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻓﻲ ﻣﺜﺎﻝ 3ﻟﻺﺟﺎﺑﺔ ﻋﻤﺎ ﻳﺄﺗﻲ : (13ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﻨﻔﺮﺟﺘﻴﻦ ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ. ﺇﺫﺍ ﻛﺎﻥC D ، m∠BXA = (3x + 5)° : (14ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺘﺎﻣﺘﻴﻦ. B XE ،m∠DXE = 56°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x (15ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺠﺎﻭﺭﺗﻴﻦ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﻓﻲ ﺁﻥ ﻭﺍﺣﺪ. A m∠BXA = m∠DXE 3x + 5 = 56 (16ﺇﺫﺍ ﻛﺎﻥ m∠DXB = 116° :ﻭ ،m∠EXA = (3x + 2)° 3x = 51 ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x x = 17 (17ﺇﺫﺍ ﻛﺎﻥm∠CXD = (6x – 13)° : 5 ﻭ ،m∠DXE = (10x + 7)°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x 3 www.obeikaneducation.com 2 11 1 1
2 1-5 1-1 ﺍﺳﺘﻌﻤﻞ ﺃﺷﻜﺎﻝ ﭬﻦ ﺃﺩﻧﺎﻩ ﻟﺘﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻛﺘﺐ ﺗﺨﻤﻴ ﹰﻨﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ .ﻭﻓﺴﺮ ﺗﺒﺮﻳﺮﻙ 1-3 . ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ 1-1 . ...... (2 5, 5, 10, 15, 25, ......(1 (33ﺑ ﱢﻴﻦ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺃﺍﻋﺕ ﺍﻂﻵﻣﺗﺜﻴﺎﺔ ﹰﺗﻨﻻﺘﻣﺞ ﻣﻀﻨﺎﻄ ﹼﹰﺩﻘﺍ ﹰﹼﻴﺎﻳﺒﻋﻴﻦﻦﺍﻟﺃﻌﺒﻥﺎﺭﺗﻛﻴﹼﹰﻼﻦ ﺍﻟﻣﺘﺎﻟﻦﻴﺘﺍﻴﻟﺘﻦ.ﺨﻤﻴﻨﻴﻦ ﺍﻵﺗﻴﻴﻦ (14ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﻀﻠﻊ ﻣﺮﺑ ﹰﻌﺎ ،ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﻣﺴﺘﻄﻴ ﹰﻼ. ﺇﺫﺍ ﺍﺷﺘﺮﻳﺖ ﻭﺟﺒﺘﻴﺧﺎﻦ،ﻃﻓﺈﺊﻧ:ﻚ ﺳﺘﺤﺼﻞ1ﻋﻠ1-ﻰﻋﻠﺒﺔ . ___ ﻣﻨﺘﺼﻒ ﻣﺠﺎ ﹰﻧﺎ. ﻋﺼﻴﺮ ﺍﺷﺘﺮ ﺧﻠﻴﻞ ﻭﺟﺒﺘ3ﻴ(ﻦ.ﺇﺫﺍﻛﺎﻥ AB = BC 4 AC Bﻧﻘﻄﺔ ،ﻓﺈﻥ ﻳﻤﻜﻦ ﻟﻠﻄﻼﺏ ﺍﺳﺘﻌﻤﺎﻝ (15ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﻣﺘﻌﺎﻣﺪﻳﻦ ،ﻓﺈﻧﻬﻤﺎ ﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻧﺎ ﻣﺘﻮﺍﺯﻳﻴﻦ. Aﺍﺷﺘﺮ ﺧﻠﻴﻞ4ﻭ(ﺟﺒﺇﺔﺫﺍﻭﺍﻛﺣﺎﺪﺓﻥ ﻓﻘnﻂﻋ.ﺪ ﹰﺩﺍ ﺣﻘﻴﻘ ﹼﹰﻴﺎ ،ﻓﺈﻥ .n3 > n ﺍﻷﺷﻜﺎﻝ ﻟﻌﻤﻞ ﻧﻤﻮﺫﺝ ﻟﻘﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ Bﺳﻴﺤﺼﻞ ﺧﻠﻴﻞ ﻋﻠﻰ ﻭﺟﺒﺔ ﻣﺠﺎﻧﻴﺔ. ﺍﻟﻤﻨﻄﻘﻲ ﻭﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ .ﺯ ﹼﻭﺩ (16ﺗﻘﺎﺑﻞ ﻓﺮﻳﻘﺎ ﺍﻟﻔﺮﺳﺎﻥ ﻭﺍﻟﻔﻬﻮﺩ ﻓﻲ ﺍﻟﻤﺒﺎﺭﺍﺓ ﺍﻟﻨﻬﺎﺋﻴﺔ. ﺳﻴﺤﺼﻞ ﺧﺍﻠﻴﺳﺘﻞﻌﻋﻠﻤﻰﻞﻋﺍﻠﻟﺒ ﹶﺘﻌﺒﻲﺎﺭﻋﺍﺼﻴﺕﺮrﻣ ,ﺠﺎ ﹰﻧqﺎ p,.ﻟﻜﺘﺎﺑﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻭﺻﻞ ﺃﻭ ﻓﺼﻞ ﺃﺩﻧﺎﻩ ،ﺛﻢ C ﺍﻟﻄﻼﺏ ﺑﻮﺭﻗﺘﻴﻦ ﺻﻔﺮﺍﻭﻳﻦ ﻣﺮﺑﻌ ﹶﺘﻲ ﺍﻟﺸﻜﻞ ﻣﻌﺘﻤ ﹰﺪﺍ ﻋﻠﻰ ﺍﻟﻤﻌﻄﻴﺎﺕ ،ﺣ ﱢﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺘﻴﺠﺔ ﺻﺎﺋﺒﺔ ﺃﻡ ﻻ ﻓﻲ ﺣﺼﻞ ﺧﻠﻴﻞ ﻋﻠﻰ ﻋﻠﺒﺔ ﻋﺼﻴﺮ ﻣﺠﺎ ﹰﻧﺎ. D ﻣﻜﺘﻮﺏ ﻋﻠﻴﻬﻤﺎ ، pﻭﻭﺭﻗﺘﻴﻦ ﺯﺭﻗﺎﻭﻳﻦ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ .ﻓ ﹼﺴﺮ ﺗﺒﺮﻳﺮﻙ1-2 . ﻣﺜﻠﺜ ﹶﺘﻲ ﺍﻟﺸﻜﻞ ﻣﻜﺘﻮﺏ ﻋﻠﻴﻬﻤﺎ ، qﻭﻭﺭﻗﺘﻴﻦ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ .ﻭﻓ ﱢﺴﺮ ﺗﺒﺮﻳﺮﻙ1-4 . :pﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ 7ﺃﻳﺎﻡ. ﺣﻤﺮﺍﻭﻳﻦ ﺩﺍﺋﺮﻳ ﹶﺘﻲ ﺍﻟﺸﻜﻞ ﻣﻜﺘﻮﺏ ﻋﻠﻴﻬﻤﺎ ،r ﺍﻟﻔﺮﻳﻖ ﺍﻟﻔﺎﺋﺰ ﺑﺎﻟﻜﺄﺱ ﻫﻮ ﺍﻟﻔﺮﻳﻖ ﺍﻟﺬﻱ ﻳﺤﺮﺯ ﺃﻫﺪﺍ ﹰﻓﺎ :qﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻟﻮﺍﺣﺪ 24ﺳﺎﻋﺔ. ﻭﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ ﻛﺘﺎﺑﺔ ﻃﺮﻳﻘﺔ ﺗﺮﺗﻴﺐ ﺍﻷﺷﻜﺎﻝ ﻗﺒﻞ ﺷﻬﺮ ﺍﻟﻤﺤﺮﻡ. :rﹶﺻ ﹶﻔﺮ ﻫﻮ ﺍﻟﺸﻬﺮ ﺍﻟﺬﻱ ﻳﺄﺗﻲ ﻟﺘﻤﺜﻴﻞ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺮﻣﺰﻳﺔ ﻟﻠﻘﺎﻧﻮﻧﻴﻦ. ﺃﻛﺜﺮ ﻓﻲ ﻧﻬﺎﻳﺔ ﺍﻟﻤﺒﺎﺭﺍﺓ. 1 - 3 ﺍﻟﻤﻌﻠﻮﻣ5ﺎ(ﺕ ﺍrﻵﺗﻴﺔ ﻓpﻲ ﺣﻞ ﺍﻟﺴﺆﺍﻟﻴﻦ ﺍﺳﺘﻌﻤﻞ ✓ ﺍﻟﻔﻬﻮﺩ ﻓﺮﻳﻖ ﺃﺣﺮﺯ ﺑﻴﻨﻤﺎ ﻣﺤﻼﺕ ﺻﻴﺎﻧﺔ ﺍﻟﺤﻮﺃﺍﺳﺣﻴﺮﺯﺐ ﻓﺮﻳﻖ ﺍﻟﻔﺮﺳﺎﻥ 3ﺃﻫﺪﺍﻑ، ﺇﺣﺪ ﻓﻲ ﺇﻋﻼﻥ ﻣ”ﺇﺪﻳﺫﺍﺮﻛﻭﻨﺍﻟﺘﺖﺴﺗﺒﻮﻳﺤﻖﺚﻋﺒ67ﺎﻋ((ﺭﺍﻦ ﺍﻟﺕprﺴﻣ~ﺮﻭﻜﻋﺘﺔﻮqﺑﻭﺔﺍpﻋﻷﻠﻣﺎﻰﻥ ﻓﺻﻮﻲﺭﺓﺣﺎ)ﺇﺳﺫﺍﻮﺑ..ﻚ،.ﻓﺈﻓﻌﻥﻠﻴ...ﻚ(ﺑﻟﺘﻤﺮﺤﻭﻳﻞ ﺍﺞﻟﻨﺳﺠﻠﻌﻮﻬﻡ ﻟﻢ ﻭﺼﻴﺎﺧﻧﺪﺔﻣﺍﺎﻟﺗﻬﺤﻮﻢﺍ .ﻳﺳﻴﻮﺟﺐﺪ ﻳﺴﺘﻌﻤﻞ ﻫﺪﻓﻴﻦ. ﺟﺎﺀ ﻓﻴﻪ: ﺗﺤﻘﻖ ﻣﻦ ﻓﻬﻢ ﺍﻟﻄﻼﺏ ﺍﻟﺪﺭﺳﻴﻦ 1-3, 1-4 ﺑﺈﻋﻄﺎﺋﻬﻢ: ﺣ ﱢﺪﺩ ﺇﺫﺍ ﻛﺎﻥ ﻃﻼﺑﻚ ﻳﺤﺮﺯﻭﻥ ﺗﻘﺪ ﹰﻣﺎ ﻣﻨﺎﺳ ﹰﺒﺎ ﻓﺎﺯ ﻓﺮﻳﻖ ﺍﻟﻔﺮﺳﺎﻥ ﺑﺎﻟﻜﺄﺱ. (35ﺍﻛﺘﺐ ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ. ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﻘﺼﻴﺮ ،2ﺹ )(11 ﻓﻲ ﺃﺛﻨﺎﺀ ﺗﻌﻠﻤﻬﻢ ﻓﻲ ﻛﻞ ﺩﺭﺱ ﺃﻡ ﻻ ،ﺑﺎﺳﺘﻌﻤﺎﻝ ﺃﻧﻮﺍﻉ ﺍﻟﺘﻘﻮﻳﻢ (36ﻣﺎ ﺍﻟﺮﺳﺎﻟﺔ ﺍﻟﺘﻲ ﻳﺮﻳﺪ ﺍ8ﻹ(ﻋ ﺃﻼﻛﻥ ﺇﻤﻳﻞﺼﺎﺍﻟﻟﻬﺎﺠﺇﻟﺪﻰﻭﺍﻟﻝﻨﺎﺍﻵﺱﺗﺣﻲﻮ.ﻝﻣﺤﻞﺍﻟﻨﺠ-2ﻮﻡ1؟ ﺍﻵﺗﻴﺔ ﻟﺘﻨﻮﻳﻊ ﺍﻟﺘﺪﺭﻳﺲ ﻭﺍﻟﺘﺪﺭﻳﺒﺎﺕ: 1-4 p ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺻﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍ~qﺕ ﺍﻟﻤﺮpﻛﺒﺔ ﺍﻵﺗﻴﺔ2q1-2~q: a (37ﻭ b (2-2 2-1) (1) ﺃﻭﺟﺪ ﻗﻴﻤﺔ (41 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: GH ﺣ ﱢﺪﺩ ﻛ ﹰﹼﻼ ﻣﻤﺎ ﻳﺄﺗﻲ ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 1ﻭ 2ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. 2x° (37 E C L J 1-3 ﺣﺪﺩ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛﻞ a b ba F DM K ________________(1 (9ﺇﺫﺍ ﻛﺎﻥ ﻟﻠﻤﻀﻠﻊ ﺧﻤﺴ1ﺔ( ﺃﻣﺿﺴﺘﻼﻮﻉ،ﻓﻳﺈﻧﻮﻪﺍﺯﺧﻤﻱﺎﺍﻟﺳﻤﻲ.ﺴﺘﻮ EGH TT T ________________(2 BA (2ﺗﻘﺎﻃﻊ ﺍﻟﻤﺴﺘﻮﻳﻴﻦ ABCﻭ .EFB (10ﺇﺫﺍﻛﺎﻥ 10 TF F FT F ﺍﻟﻤﺠﺎﻭﺭ. ﺍﻟﺸﻜﻞ ﺍﻣﻟﻦﺰﺍﺍﻟﻭﻌﻳﺒﺎﺔﺭﺍﺍﻟﺘﺕ ﺍﻲﻵﻗﺗﻴﻴﺎﺔ ﺍﺳﻋﺘﻬﺎﻤﺎﺃﺃ ﹰﺩﺍﻗﺟﻋﻞﻠﻣﺐﻰ ﺍﻦﻟﻋﺸﻦﻜ ﺍﻞ ﺍﻟﻷﻤﺳﺠﺌﺎﻠﻭﺔﺭ؟8ﻓ ﹼﺴ-ﺮ3ﺇﻣﺟﺎﺑﺘﺴﺘﻚﻌ:ﻤ ﹰﻼ ﻳﻤﻜﻦ ﺍﻓﺘﺮﺍﺽ ﺻﻮﺍ 1ﺏ1ﺃ( ﱟﻱ ﻫﻞ FF F ∠DABﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ . (44 ________________ (3 a 12 63 4 (38 • ﺑﺪﺍﺋﻞ ﺗﻨﻮﻳﻊ ﺍﻟﺘﻌﻠﻴﻢ • ﺗﺤﻘﻖ ﻣﻦ ﻓﻬﻤﻚ ﺑﻌﺪ ﻛﻞ ﻣﺜﺎﻝ 87 5 ﺣﺪﺩ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞﺻ ﹼﻨﻒ ﻛ ﹼﻞ ﺯﻭﺝ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﺍﻷﺳﺌﻠﺔ 3-6ﺇﻟﻰ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺩﺍﺧﻠ ﹼﹰﻴﺎ، ∠DEC (45 • ﺍﻟﺨﻄﻮﺓ ﺍﻟﺮﺍﺑﻌﺔ )ﺍﻟﺘﻘﻮﻳﻢ( • ﺗﺄﻛﺪ ________________ (4 b 9 10 11 12 ﺃﻳﻬﻤﺎ ﺻﺎﺋﺒﺔ ،ﻓﺒﺮﺭ ﺇﺟﺎﺑﺘ ﺃﻚﻭ.ﻣﺘﺒﺎﺩﻟﺘﻴﻦ-3ﺧ1ﺎﺭﺟ ﹰﹼﻴﺎ ،ﺃﻭ ﻣﺘﻨﺎﻇﺮﺗﻴﻦ ،ﺃﻭ ﻣﺘﺤﺎﻟﻔﺘﻴﻦ : ∠ADE (46 p ~p q ~q ~q~p ﻓﻲ ﺧﻄﺔ ﺍﻟﺘﺪﺭﻳﺲ • ﻣﺴﺎﺋﻞ ﻣﻬﺎﺭﺍﺕ ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻌﻠﻴﺎ 16 15 14 13 • ﻣﻌﺎﻟﺠﺔ ﺍﻷﺧﻄﺎﺀ ________________ (5 1c-5d )ﺍﻛﺘﺸﻒ ﺍﻟﺨﻄﺄ ،ﺍﻛﺘﺐ( ∠6 (4ﻭ ∠12 ∠2 (3ﻭ ∠10 ∠1 (12 AB ⊥ BC (47ﻭ ∠2 TFTF F ∠14 (6ﻭ ∠15 ∠1 (5ﻭ∠5 • ﻣﺮﺍﺟﻌﺔ ﺗﺮﺍﻛﻤﻴﺔ ________________ (6 TFFT T • ﺍﺧﺘﺒﺎﺭ ﻣﻨﺘﺼﻒ ﺍﻟﻔﺼﻞ • ﺩﻟﻴﻞ ﺍﻟﺪﺭﺍﺳﺔ ﻭﺍﻟﻤﺮﺍﺟﻌﺔ FTTF T • ﺍﻟﻤﻄﻮﻳﺎﺕ ________________ (7 ﺇﺫﺍ ﻛﺎﻥ a b :ﹶﻭ ، m∠7 = 94°ﻓﺄﻭﺟﺪ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ: ∠1 (13ﻭ ∠4 FTFT T ________________ (8 52 ∠9 (8 ∠10 (7 1 44 (39 a k m ~m ~mk ________________ (9 (5x - 7)° (4y + 3)° b (9ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ x, yﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. TTF F (3x + 17)° _______ (10 TFT T U (10ﺍﺧﺘﻴﺎﺭ ﻣﻦ ﻣﺘﻌﺪﺩ :ﺃﻭﺟﺪ m∠UVWﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. FTF F 138° ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺃﻥAﻳ(ﺘﻮ°ﺯ9ﻋ3ﻮﺍ ﻣﺠﻤﻮﻋﺎﺕ ﺻﻐﻴﺮﺓ ،ﻭﻳﺘﻨﺎﻗﺸﻮﺍ ﺣﻮﻝ ﺃﻃﻌﻤﺘﻬﻢ81° (C FFT F V ﺍﻟﻤﻔﻀﻠﺔ ﻭﺍﻷﻃﻌﻤﺔ ﺍﻷﻛﺜﺮ ﺷﻌﺒﻴ ﹰﺔ ،ﻭﻓﻲ ﺃﺛﻨﺎﺀ ﻣﻨﺎﻗﺸﺘﻬBﻢ( ﺍ°ﻃ2ﻠ4ﺐ ﺇﻟﻴﻬﻢ ﺗﺒﺮﻳ ﹰﺮﺍ ﻻﺳﺘﻨﺘﺎﺟﺎﺗﻬﻢ ﻋﻦ ﺃﻛﺜﺮ ﺍﻷﻃﻌﻤﺔ ﺍﻟﺘ(Dﻲ138° 39° (40 W ﻳﺤﺒﻮﻧﻬﺎ ﻭﻳﻔﻀﻠﻮﻧﻬﺎ ،ﻭﺃﻥ ﻳﺼﻔﻮﺍ ﺃﻧﻮﺍﻉ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﺘﻲ ﺍﺳﺘﻌﻤﻠﻮﻫﺎ ﻟﻠﺘﻮﺻﻞ ﺇﻟﻰ ﺍﺳﺘﻨﺘﺎﺟﺎﺗﻬﻢ. z ~y (2-3) (2) y ~y z TFT T ________________(1 2 TFF F ________________(2 FTT T ________________(3 FTF T ________________(4 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: g ﻫﻞ ﻳﻤﻜﻦ ﺇﺛﺒﺎﺕ ﺃﻥ ﺃ ﹰﹼﻳﺎ ﻣﻦ ﻣﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺸﻜﻞ ﻣﺘﻮﺍﺯﻳﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ h 1 3 4 ﻋﻠﻰ ﺍﻟﻤﻌﻄﻴﺎﺕ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ،1-4ﻭﺇﺫﺍ ﻛﺎﻥ ﺃ ﱡﻳﻬﺎ ﻣﺘﻮﺍﺯ ﹼﹰﻳﺎ، 1 44 2 5 ﻓﺎﺫﻛﺮ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺇﺟﺎﺑﺘﻚ. 6 78 9 p qj ∠2 ∠3 (2 ∠1 ∠ 6 (1 m∠ 7 + m∠ 6 = 180 (4 ∠4 ∠9 (3 ________________(5 (5ﺇﺫﺍ ﻛﺎﻥ m∠3 = (5x - 17)° :ﹶﻭ ، m∠7 = (3x + 35)° 2 ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ xﺣﺘﻰ ﻳﻜﻮﻥ . g h 30 • ﺍﻻﺧﺘﺒﺎﺭﺍﺕ ﺍﻟﻘﺼﻴﺮﺓ 2 • ﺍﺧﺘﺒﺎﺭ ﻣﻨﺘﺼﻒ ﺍﻟﻔﺼﻞ3 ؟ ___ ﺗﺨﺎﻟﻒ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻘﻄﻊ ﺃﻱ (17 ﺻ ﱢﻨﻒ ﻛﻞ ﺯﻭﺝ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻴﻤﺎ ﻳﺄﺗﻲ ﺇﻟﻰ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺩﺍﺧﻠ ﹰﹼﻴﺎ ،ﺃﻭ CD ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺧﺎﺭﺟ ﹰﹼﻴﺎ ،ﺃﻭ ﻣﺘﻨﺎﻇﺮﺗﻴﻦ ،ﺃﻭ ﻣﺘﺤﺎﻟﻔﺘﻴﻦ ،ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ. A W ∠6, ∠3 (1 B V 12 56 ∠4, ∠7 (2 E X 34 78 ∠5, ∠4 (3 Z C D Y ___ ___ DE (C ZY (A ___ VZ (D ﺃﻭﺟﺪ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ A Bﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ: ﺍﻟﺘﻲ ﺗﺠﻌﻞ .a bﻭﺣ ﹼﺪﺩ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ab (2B) 2 ﻗ ﱢﻮﻡ ﻣﺪ ﻧﺠﺎﺡ ﻃﻼﺑﻚ ﻓﻲ ﺗﻌﻠﻢ (4x + 11)° (8x + 1)° ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ﻣﻔﺎﻫﻴﻢ ﻛﻞ ﻓﺼﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻣﺎ ﻳﺄﺗﻲ: ______________(1ﺃﻭﺟﺪﺍﻟﺒﻌﺪﺑﻴﻦﺍﻟﻨﻘﻄﺔ Pﻭﺍﻟﻤﺴﺘﻘﻴﻢ ℓﻓﻲﻛ ﱟﻞﻣ ﱠﻤﺎﻳﺄﺗﻲ: ST ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 1ﻭ 2ﺣ ﱢﺪﺩ ﻛ ﹼﹰﻼ ﻣﻤﺎ ﻳﺄﺗﻲ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. VU (1ﺗﻘﺎﻃﻊ ﺍﻟﻤﺴﺘﻮ SVXﻭﺍﻟﻤﺴﺘﻮ . STU ℓﺑﺎﻟﻨﻘﻄﺘﻴﻦ ) .(-4, 2) , (3, -5ﻭﺇﺣﺪﺍﺛﻴﺎ ﺍﻟﻨﻘﻄﺔ P ______________(2 XW (2ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ ﲣﺎﻟﻒ . WY ℓﺑﺎﻟﻨﻘﻄﺘﻴﻦ ) .(6, 5) , (2, 3ﻭﺇﺣﺪﺍﺛﻴﺎ ﺍﻟﻨﻘﻄﺔ P ZY ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ، 3-7ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. ﺻ ﹼﻨﻒ ﺯﻭﺝ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ 3 – 5ﺇﻟﻰ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺩﺍﺧﻠ ﹰﹼﻴﺎ، ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ ﻟﺘﺠﺪ ﻣﻴﻞ ﻛﻞ ﻣﺴﺘﻘﻴﻢ ﻓﻴﻤﺎ ﻳﺄﺗﻲ: ﺃﻭ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺧﺎﺭﺟ ﹰﹼﻴﺎ،ﺃﻭ ﻣﺘﻨﺎﻇﺮﺗﻴﻦ ،ﺃﻭ ﻣﺘﺤﺎﻟﻔﺘﻴﻦ: y ______________(3 1423 115836671145mn ∠ 2 (3ﻭ∠12 • ﻣﻌﺎﻟﺠﺔ ﺍﻷﺧﻄﺎﺀ • ﺍﺧﺘﺒﺎﺭ ﺍﻟﻔﺼﻞ 9121011s t ∠3 (4ﻭ∠5 • ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ )(−4, 9 ______________(4 ______________(5 • ﺍﻟﻤﻄﻮﻳﺎﺕ )(2, 6 ______________(6 m O x ∠7 (5ﻭ∠15 )(10,−4 • ﺍﺧﺘﺒﺎﺭ ﺍﻟﻤﻔﺮﺩﺍﺕ )(−10, 0 • ﺍﺧﺘﺒﺎﺭ ﺍﻟﻔﺼﻞ )ﻧﻤﺎﺫﺝ ﻣﺘﻌﺪﺩﺓ( n (6ﺇﺫﺍ ﻛﺎﻥ m n :ﹶﻭ ،m∠8 = 86°ﻓﺄﻭﺟﺪ .m∠13 • ﺍﺧﺘﺒﺎﺭ ﺍﻹﺟﺎﺑﺎﺕ ﺍﻟﻤﻄﻮﻟﺔ • ﺍﺧﺘﺒﺎﺭ ﺗﺮﺍﻛﻤﻲ ______________(7 (7ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ xﻭ yﺇﺫﺍ ﻛﺎﻥ، m∠4 = (6x – 5)° ,m n : ﻣﺴﺘﻘﻴﻢ ﻳﻮﺍﺯﻱ . m .m∠9 = (3y – 10)° , m∠10 = (5x + 8)° .n ﺃﻭﺟﺪ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ﺍﻟﻤﺤ ﹼﺪﺩﺗﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ :8-10 _ _____________(8ﻳﻌﻤﻞ ﻣﺤﻤﻮﺩ ﻣﻨﺪﻭﺏ ﻣﺒﻴﻌﺎﺕ ،ﻭﻳﺘﻘﺎﺿﻰ 12ﺭﻳﺎ ﹰﻻ ﻋﻦ W(5, 5), V(-10, -4) (8 ﻛﻞ ﺳﺎﻋﺔ ﻋﻤﻞ ﺯﺍﺋﺪ ﻋﻤﻮﻟﺔ ﻣﻘﺪﺍﺭﻫﺎ 15%ﻣﻦ ﻗﻴﻤﺔ ﻣﺒﻴﻌﺎﺗﻪ .ﺍﻛﺘﺐ C(2, -15), A(-2, 9) (9 ______________(9 L(-3, 9), G(-6, 14) (10 ﻞ ﻣﺎ ﻳﺘﻘﺎﺿﺎﻩ ﻓﻲ ﺃﺣﺪ ﺍﻷﺳﺎﺑﻴﻊ ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﻴﻤﺔ ﻣﺒﻴﻌﺎﺗﻪ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ،11 – 13ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ CSﹶﻭ KPﻣﺘﻮﺍﺯﻳﻴﻦ ﺃﻭ ﻣﺘﻌﺎﻣﺪﻳﻦ ،ﺃﻭ ﻏﻴﺮ ﺫﻟﻚ. ______________(10 P(6, -6), K(1, 9), S(5, 4),C(1,-12) (11 139 2 P(1, 4), K(-2, 10), S(-3, 2), C(-5, 6) (12 ______________(11 P(9, 7), K(3, 3), S(-3, -5), C(-6, -7) (13 ______________(12 ______________(13 (14ﻳﺘﻘﺎ ﹶﺿﻰ ﻣﻜﺘﺐ ﺧﺪﻣﺎﺕ ﻃﻼﺑﻴﺔ ﻣﺒﻠﻎ 5.5ﺭﻳﺎ ﹰﻻ ﻋﻦ ﻛ ﹼﻞ ﺻﻔﺤ ﹴﺔ، ﻋﻨﺪ ﻃﺒﻊ ﺗﻘﺮﻳ ﹴﺮ ﻋﺪﺩ ﺻﻔﺤﺎﺗﻪ ، pﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻰ ﺫﻟﻚ 12ﺭﻳﺎ ﹰﻻ ﻟﺘﺠﻠﻴﺪﻩ. ______________(14 ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟ ﹰﺔ ﺗﻤ ﱢﺜﻞ ﺍﻟﺘﻜﻠﻔﺔ ﺍﻟﻜﻠﻴﺔ Cﻟﻄﺒﻊ ﻭﺗﺠﻠﻴﺪ ﺍﻟﺘﻘﺮﻳﺮ. 2 ﻣﺎ ﺗﻜﻠﻔﺔ ﻃﺒﻊ ﻭﺗﺠﻠﻴﺪ ﺗﻘﺮﻳ ﹴﺮ ﻣﻜ ﹼﻮ ﹴﻥ ﻣﻦ 50ﺻﻔﺤ ﹰﺔ؟ 38 T8
3 1 ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﺩﻋ ﹰﻤﺎ ﻭﺍﺳ ﹰﻌﺎ ﻳﺮﺍﻋﻲ ﺍﻟﻔﺮﻭﻕ ﺍﻟﻔﺮﺩﻳﺔ ﺑﻴﻦ ﺍﻟﻄﻼﺏ. ﺣﻴﺚ ﻳﺤﺘﻮﻱ ﻛﻞ ﻓﺼﻞ ﻭﻛﻞ ﺩﺭﺱ ﻋﻠﻰ ﺍﻗﺘﺮﺍﺣﺎﺕ ﻟﺘﺤﺪﻳﺪ ﺍﺣﺘﻴﺎﺟﺎﺕ ﻃﻼﺑﻚ ﻭﺗﻠﺒﻴﺘﻬﺎ. ﺍﻃﺮﺡ ﺍﻟﻤﺴﺄﻟﺔ ﺍﻵﺗﻴﺔ ﻋﻠﻰ ﺍﻟﻄﻼﺏ: ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺍﺳﺘﻜﺸﺎﻑ ﺟﻤﻊ ﺍﻟﻘﻄﻊ ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﻛﻞ ﺛﻼﺙ ﻧﻘﺎﻁ ﻟﻴﺴﺖ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ ﺗﺤﺪﺩ ﻣﺴﺘ ﹰﻮ ﻭﺍﺣ ﹰﺪﺍ ،ﻓﻤﺎ ﻛﻤﺎ ﺃﻥ ﺗﻨﻮﻳﻊ ﺍﻟﺘﻌﻠﻴﻢ ﻳﻠﺒﻲ ﺣﺎﺟﺎﺕ ﺍﻟﻔﺌﺘﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ : ﻋﺪﺩ ﺍﻟﻤﺴﺘﻮﻳﺎﺕ ﺍﻟﺘﻲ ﺗﺤ ﱢﺪﺩﻫﺎ ﺃﺭﺑﻊ ﻧﻘﺎﻁ ﻻ ﺗﻘﻊ ﺟﻤﻴﻌﻬﺎ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻭﺍﺣﺪ؟ ﻭﻣﺎ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻭﺍﻟﺰﻭﺍﻳﺎ ،ﻭﺫﻟﻚ ﺑﻘﻴﺎﺱ ﺑﻌﺾ ﺍﻷﺷﻴﺎﺀ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻓﻲ ﻏﺮﻓﺔ ﺍﻟﺼﻒ، ﺍﻟﻄﻼﺏ ﺩﻭﻥ ﺍﻟﻤﺘﻮﺳﻂ ﻋﺪﺩ ﺍﻟﻤﺴﺘﻮﻳﺎﺕ ﺍﻟﺘﻲ ﺗﺤﺪﺩﻫﺎ 5ﻧﻘﺎﻁ ﻟﻴﺴﺖ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ؟ ﻭﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻤﺘﺮ ﻹﻳﺠﺎﺩ ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ﻏﺮﻓﺔ ﺍﻟﺼﻒ ،ﻭﺍﻟﻤﻨﻘﻠﺔ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺃﻥ ﺍﻟﻄﻼﺏ ﻓﻮﻕ ﺍﻟﻤﺘﻮﺳﻂ ﺗﺤﺪﺩ ﺍﻟﻨﻘﺎﻁ ﺍﻷﺭﺑﻊ ﻣﺴﺘﻮ ﻭﺍﺣ ﹰﺪﺍ ﻋﻠﻰ ﺍﻷﻗﻞ ،ﻭ 4ﻣﺴﺘﻮﻳﺎﺕ ﻋﻠﻰ ﺍﻷﻛﺜﺮ ،ﻭﺗﺤﺪﺩ ﺯﺍﻭﻳﺘﻴﻦ ﻗﺎﺋﻤﺘﻴﻦ ﺗﺸ ﱢﻜﻼﻥ ﺧ ﹰﹼﻄﺎ ﻣﺴﺘﻘﻴ ﹰﻤﺎ. ﺍﻟﻨﻘﺎﻁ ﺍﻟﺨﻤﺲ ﻣﺴﺘﻮ ﻭﺍﺣ ﹰﺪﺍ ﻋﻠﻰ ﺍﻷﻗﻞ ،ﻭ 10ﻣﺴﺘﻮﻳﺎﺕ ﻋﻠﻰ ﺍﻷﻛﺜﺮ. ﻳﻤﻜﻦ ﻟﻠﻄﻼﺏ ﺃﻥ ﻳﺘﺪ ﱠﺭﺑﻮﺍ ﻋﻠﻰ ﺻﻴﺎﻏﺔ ﺗﺨﻤﻴﻨﺎﺕ ﺍﻟﺘﺴﺮﻳﻊ ﻭﺍﻹﺛﺮﺍﺀ :ﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻤﺼﺎﺩﺭ ﻭﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ،ﺍﻟﺘﻲ ﺗﻢ ﺗﺼﻨﻴﻔﻬﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﻌﺼﻒ ﺍﻟﺬﻫﻨﻲ ،ﻭﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ ﻣﻦ ﺍﻟﻄﺒﻴﻌﺔ .ﻓﻤﺜ ﹰﻼ ﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ ﻟﻠﻄﻼﺏ ﻓﻮﻕ ﺍﻟﻤﺘﻮﺳﻂ ،ﻣﻊ ﺍﻟﻄﻼﺏ ﺫﻭﻱ ﺍﻟﻤﺴﺘﻮ ﺍﻟﺘﻌﻠﻴﻤﻲ ﺍﻟﻤﺘﻘﺪﻡ. ﻗﺮﺍﺀﺓ ﺍﻟﻌﺒﺎﺭﺓ ”ﺇﺫﺍ ﻟﻢ ﹸﺗ ﹾﺮ ﹶﻭ ﺍﻟﻨﺒﺎﺗﺎﺕ ﻛﻞ ﻳﻮﻡ ﻓﻠﻦ ﺗﺒﻘﻰ ﻋﻠﻰ ﻗﻴﺪ ﺍﻟﺤﻴﺎﺓ“ .ﻭﺍﻟﻤﺜﺎﻝ ﺍﻟﻤﻀﺎﺩ ﻟﻬﺎ ﺃﻥ ﻧﺒﺘﺔ ﺍﻟﺼﺒﺎﺭ ﻳﻤﻜﻦ ﺃﻥ ﺗﺒﻘﻰ ﺃﺳﺎﺑﻴﻊ ﻣﻦ ﺩﻭﻥ ﻣﺎﺀ. ﻭﻣﻮﺿﻮﻋﺎﺕ ﺍﻟﻄﺒﻴﻌﺔ ﻳﻤﻜﻦ ﺃﻥ ﺗﺸﻤﻞ ﺍﻟﻨﺒﺎﺗﺎﺕ ﻭﺍﻟﺤﻴﻮﺍﻧﺎﺕ ﻭﻋﻼﻗﺎﺕ ﺍﻟﺤﻴﻮﺍﻧﺎﺕ ﺍﻟﻤﻔﺘﺮﺳﺔ ﻭﺍﻟﻄﺮﺍﺋﺪ ﻭﺍﻟﺤﺸﺮﺍﺕ ﻭﺍﻟﻄﻘﺲ ،ﻭﻫﻜﺬﺍ. 2 ﻭ ﹼﺿﺢ ﻟﻠﻄﻼﺏ ﻛﻴﻔﻴﺔ ﺍﻻﻧﺘﻘﺎﻝ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﻣﻦ ﺍﻟﻔﺮﺽ ﺇﻟﻰ ﺍﻟﻨﺘﻴﺠﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻣﺨﻄﻂ ﺗﺴﻠﺴﻠﻲ ،ﺑﺤﻴﺚ ﺗﻘﻮﺩ ﺍﻟﺸﺮﻭﻁ ﺍﻟﻤﻌﻄﺎﺓ ﺇﻟﻰ ﻋﺒﺎﺭﺍﺕ ﺍﻟﺒﺮﻫﺎﻥ ﻣﻊ ﺗﺒﺮﻳ ﹴﺮ ﻟﻜﻞ ﺧﻄﻮﺓ ،ﻭﺗﻜﻮﻥ ﺍﻟﻨﺘﻴﺠﺔ ﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻨﻬﺎﺋﻴﺔ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ. 1 1-2 1 ∼ p∧q “” p∨q “” 10D 1 3 (11 3ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺍﻟﺬﻱ ﻳﺒﻴﻦ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻨﺘﺠﺔ ﻓﻲ ﻣﺼﻨﻊ ﻟﺒﻌﺾ ﺍﻟﺴﻨﻮﺍﺕ. 3 ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ✓ ﺗﻢ ﺗﻨﻮﻳﻊ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻜﻞ ﺩﺭﺱ ﺣﺴﺐ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﻼﺏ: 5 2007 4 7.2 2008 (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻌﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﺳﻨﺔ 2017ﻡ . ﺍﺳﺘﻌﻤﻞ ﺍﻷﺳﺌﻠﺔ 1-13؛ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻓﻬﻢ 9.2 2009 ﺳﻴﻜﻮﻥ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﻋﺎﻡ 2017ﻧﺤﻮ 35ﻣﻠﻴﻮ ﹰﻧﺎ. ﺍﻟﻄﻠﺒﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺳﻔﻞ ﻫﺬﻩ 14.1 2010 ﺍﻟﺼﻔﺤﺔ؛ ﻟﺘﻌﻴﻴﻦ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻠﻄﻠﺒﺔ 19.7 2011 ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. 28.4 2012 ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻳﺒﻴﻦ ﺃﻥ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺧﺎﻃﺌﺔ. 4 (12 (12ﺇﺫﺍ ﻛﺎﻧﺖ ∠Aﻭ ∠Bﻣﺘﺘﺎﻣﺘﻴﻦ ،ﻓﺈﻥ ﻟﻬﻤﺎ ﺿﻠ ﹰﻌﺎ ﻣﺸﺘﺮ ﹰﻛﺎ. ﺩﻭﻥ ﺍﻟﻤﺘﻮﺳﻂ (13ﺇﺫﺍ ﻗﻄﻊ ﻧﺼﻒ ﻣﺴﺘﻘﻴﻢ ﻗﻄﻌ ﹰﺔ ﻣﺴﺘﻘﻴﻤ ﹰﺔ ﻋﻨﺪ ﻣﻨﺘﺼﻔﻬﺎ ،ﻓﺈﻧﻪ ﻳﻌﺎﻣﺪﻫﺎ. 45° A B 45° ﺿﻤﻦ ﺍﻟﻤﺘﻮﺳﻂ (14–19ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. 1 Proving Segments Relationships 4, 8, 12, 16, 20 (16 3, 6, 9, 12, 15 (15 0, 2, 4, 6, 8 (14 ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺃﻧﻪ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺘﻲ ﺗﺘﻀﻤﻦ ﺑﻴﺎﻧﺎﺕ ﻣﻦ ﻭﺍﻗﻊ ﺍﻟﺤﻴﺎﺓ ،ﻟﻴﺲ 1, _21 , _14 , _1 (19 1, 4, 9, 16 (18 2, 22, 222, 2222 (17 ﺑﺎﻟﻀﺮﻭﺭﺓ ﺃﻥ ﻳﻤ ﹼﺜﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ 8 ﺍﻟﻨﻤﻂ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﺎ ﻳﻤﻜﻦ ﺃﻥ ﻳﺤﺪﺙ ﻓﻮﻕ ﺍﻟﻤﺘﻮﺳﻂ (20ﻣﻮﺍﻋﻴﺪ ﺍﻟﻮﺻﻮﻝ 10:00 :ﺻﺒﺎ ﹰﺣﺎ 12:30 ،ﻣﺴﺎ ﹰﺀ 3:00 ،ﻣﺴﺎ ﹰﺀ (20 ...... ،ﻳﺄﺗﻲ ﻛﻞ ﻣﻮﻋﺪ ﺑﻌﺪ ﺳﺎﻋﺘﻴﻦ ﻭﻧﺼﻒ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ. ﻳﻌﻤﻞ ﻋﺒﺪﺍﻟﻠﻪ ﻓﻲ ﻣﺤﻞ ﻟﺒﻴﻊ ﺍﻷﻗﻤﺸﺔ ،ﻭﻳﻘﻴﺲ 1 - 6 1 ﺍﻟﺴﺎﻋﺔ ﻣﻦ ﺍﻟﻤﻮﻋﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 5:30ﻣﺴﺎ ﹰﺀ. (21ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻠﺮﻃﻮﺑﺔ100% , 93% , 86% , …… : (21ﺗﻘﻞ ﻛﻞ ﻧﺴﺒﺔ ﻣﺌﻮﻳﺔ ﻋﻦ ﻓﻤﺜ ﹰﻼ ،ﻗﺪ ﹸﺗﺸﻴﺮ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻘﻤﺎﺵ ﺑﻮﺿﻊ ﺣﺎﻓﺘﻪ ﻋﻨﺪ ﺣﺎﻓﺔ ﺗﺪﺭﻳﺞ ﺍﻟﻤﺴﻄﺮﺓ ﺍﻟﺘﻲ ﺍﻟﻨﺴﺒﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺑﻤﻘﺪﺍﺭ ﺇﻟﻰ ﺗﺰﺍﻳﺪ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻓﻲ ﺃﺣﺪ ﻃﻮﻟﻬﺎ ﻣﺘﺮ ﻭﺍﺣﺪ .ﻭﻟﻜﻲ ﻳﻘﻴﺲ ﺃﻃﻮﺍ ﹰﻻ ﻣﺜﻞ ،125 cm (22ﺃﻳﺎﻡ ﺍﻟﻌﻤﻞ :ﺍﻷﺣﺪ ،ﺍﻟﺜﻼﺛﺎﺀ ،ﺍﻟﺨﻤﻴﺲ...... ، 7%؛ .79% ﺍﻷﺳﺎﺑﻴﻊ ،ﺇ ﹼﻻ ﺃﻥ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻗﺪ ﻳﻘﻴﺲ ﻣﺘ ﹰﺮﺍ ﻣﻦ ﺍﻟﻘﻤﺎﺵ ﻭﻳﻀﻊ ﻋﻼﻣﺔ ﻋﻠﻴﻪ ،ﺛﻢ ﻳﻘﻴﺲ 1-7 (22ﻳﺄﺗﻲ ﻛﻞ ﻳﻮﻡ ﻋﻤﻞ ﺑﻌﺪ ﺗﻨﺨﻔﺾ ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﺬﻱ ﻳﻠﻴﻪ. ﻛﺘﺎﺑﺔ ﺑﺮﺍﻫﻴﻦ ﺟﺒﺮﻳﺔ ﻭﻫﻨﺪﺳﻴﺔ ﻋﻠﻰ (23ﺍﺟﺘﻤﺎﻋﺎﺕ ﺍﻟﻨﺎﺩﻱ :ﺍﻟﻤﺤ ﹼﺮﻡ ،ﺭﺑﻴﻊ ﺃﻭﻝ ،ﺟﻤﺎﺩ ﺍﻷﻭﻟﻰ (24–27 ...... ،ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺇﺟﺎﺑﺎﺕ ﻳﻮﻣﻴﻦ ﻣﻦ ﻳﻮﻡ ﺍﻟﻌﻤﻞ ﻣﻦ ﺗﻠﻚ ﺍﻟﻌﻼﻣﺔ 25 cmﺃﺧﺮ. ﺻﻮﺭﺓ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻟﺤﺮ ﻭﺍﻟﺒﺮﻫﺎﻥ ﺫﻱ ﺍﻟﺴﺎﺑﻖ؛ ﺍﻟﺴﺒﺖ. ﻓﻴﺼﺒﺢ ﺍﻟﻄﻮﻝ100 cm + 25 cm = 125 cm : (25 (24 (23ﻳﻌﻘﺪ ﻛﻞ ﺍﺟﺘﻤﺎﻉ ﺑﻌﺪ ﺍﻟﻌﻤﻮﺩﻳﻦ. ﺷﻬﺮﻳﻦ ﻣﻦ ﺍﻻﺟﺘﻤﺎﻉ 1-7 ...... ...... ﺍﻟﺴﺎﺑﻖ؛ ﺭﺟﺐ. ﻛﺘﺎﺑﺔ ﺑﺮﺍﻫﻴﻦ ﺗﺘﻀﻤﻦ ﺟﻤﻊ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ (27 (26 ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻭﺗﻄﺎﺑﻘﻬﺎ. ﻋﻠﻤﺖ ﻛﻴﻒ ﺗﻘﻴﺲ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﻤﺴﻄﺮﺓ ،ﻭﺫﻟﻚ ﺑﻮﺿﻊ www.obeikaneducation.com 1-7 ...... ...... ﺻﻔﺮ ﺍﻟﻤﺴﻄﺮﺓ ﻋﻠﻰ ﺃﺣﺪ ﻃﺮ ﹶﻓﻲ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻭﻗﺮﺍﺀﺓ ﺍﻟﺘﺪﺭﻳﺞ ﺍﻟﻤﻘﺎﺑﻞ ﻟﻠﻄﺮﻑ ﺍﻵﺧﺮ ﻣﻦ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ، ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﻋﺒﺎﺭﺍﺕ. (28ﺑﺪﺃ ﻣﺎﺟﺪ ﺗﻤﺎﺭﻳﻦ ﺍﻟﺠﺮﻱ ﺍﻟﺴﺮﻳﻊ ﻗﺒﻞ ﺧﻤﺴﺔ ﺃﻳﺎﻡ .ﻓﺮﻛﺾ ﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻷﻭﻝ . 0.5 kmﻭﻓﻲ ﺍﻷﻳﺎﻡ (11a ﻓﻴﻤﺜﻞ ﻫﺬﺍ ﺍﻟﺘﺪﺭﻳﺞ ﻃﻮﻝ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ .ﻭﻫﺬﺍ ﻳﻮﺿﺢ ﻣﺴﻠﻤﺔ ﺍﻟﻤﺴﻄﺮﺓ. ﺍﻟﺜﻼﺛﺔ ﺍﻟﺘﺎﻟﻴﺔ . 0.75 km, 1 km, 1.25 kmﺇﺫﺍ ﺍﺳﺘﻤﺮ ﺗﻤﺮﻳﻨﻪ ﻋﻠﻰ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ،ﻓﻤﺎ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻲ ﻳﻘﻄﻌﻬﺎ ﻓﻲ 30 1 . 8 ﺍﻟﻴﻮﻡ ﺍﻟﺴﺎﺑﻊ؟ 2 km 25 ﺿﻊ ﺗﺨﻤﻴ ﹰﻨﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ: (29ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ 2 20 (30ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩ ﻓﻲ ﺍﺛﻨﻴﻦ ،ﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻴﻪ ﻭﺍﺣﺪ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ (31ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻌﺪﺩﻳﻦ aﻭ ، bﺇﺫﺍ ﻛﺎﻥ .ab = 1ﻛ ﱞﻞ ﻣﻨﻬﻤﺎ ﻣﻘﻠﻮﺏ ﺍﻵﺧﺮ 15 ___ ___ ABA (32ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ABﻭﻣﺠﻤﻮﻋﺔ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺗﺒﻌﺪ ﻣﺴﺎﻓﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﻋﻦ Aﻭ . Bﺗﺸﻜﻞ ﺍﻟﻌﻤﻮﺩ ﺍﻟﻤﻨ ﱢﺼﻒ ﻟـ . AB 10 B (33ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻭﺣﺠﻢ ﺍﻟﻬﺮﻡ ﺍﻟﻠﺬﻳﻦ ﻟﻬﻤﺎ ﺍﻟﻘﺎﻋﺪﺓ ﻧﻔﺴﻬﺎ ﻭﺍﻻﺭﺗﻔﺎﻉ ﻧﻔﺴﻪ. ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻳﺴﺎﻭﻱ 3ﺃﻣﺜﺎﻝ ﺣﺠﻢ ﺍﻟﻬﺮﻡ. 5 AB 0 00 07 08 09 10 11 12 01234567 ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﻣﺼﺎﺩﺭ ﻟﻜﻞ ﺩﺭﺱ ﺣﺴﺐ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﻼﺏ: (14ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 2 ﺩﻭﻥ ﺍﻟﻤﺘﻮﺳﻂ ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 10 ﻳﻤﻜﻦ ﺍﻟﺘﻌﺒﻴﺮ ﻋﻦ ﻣﻌﻨﻰ ﻭﻗﻮﻉ ﻧﻘﻄﺔ ﺑﻴﻦ ﻧﻘﻄﺘﻴﻦ ﺃﺧﺮﻳﻴﻦ ﺑﻤﺴ ﹼﻠﻤﺔ ﺟﻤﻊ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ. 2 ﺿﻤﻦ ﺍﻟﻤﺘﻮﺳﻂ 1 16 (15ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 3 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 18 ﻓﻮﻕ ﺍﻟﻤﺘﻮﺳﻂ 1 . 9 (16ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 4 ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻗﺮﺍﺀﺓ ﻓﻘﺮﺓ ”ﻟﻤﺎﺫﺍ ؟“ ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 24 BA, B , C (17ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺤﺘﻮﻱ ﻋﻠﻰ AB + BC = AC CA • ﻟﻤﺎﺫﺍ ﻳﺠﺐ ﻋﻠﻰ ﻋﺒﺪ ﺍﻟﻠﻪ ﻗﻴﺎﺱ ﺍﻟﻘﻤﺎﺵ ﺍﻟﺮﻗﻢ 2ﺯﻳﺎﺩﺓ ﻋﻠﻰ ﺃﺭﻗﺎﻡ ﺍﻟﺤﺪ ﺍﻟﺴﺎﺑﻖ AB BC ﺑﻬﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ؟ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻃﻮﻝ ﻗﻄﻌﺔ 43 - 5614 - 38 ﺍﻟﻘﻤﺎﺵ ﺍﻟﺘﻲ ﻳﺮﻳﺪ ﻗﻴﺎﺳﻬﺎ ﻳﺰﻳﺪ ﻋﻠﻰ ﻃﻮﻝ ﻟﻪ؛ 22222 43 - 5639 - 4115 - 39 A BC ﺍﻟﻤﺴﻄﺮﺓ. (18ﻳﻨﺘﺞ ﻛﻞ ﺣﺪ ﻋﻦ ﺗﺮﺑﻴﻊ ﺍﻟﻌﺪﺩ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﺬﻱ ﻳﻤ ﱢﺜﻞ ﺗﺮﺗﻴﺒﻪ؛ 25 AC • ﹺﺻ ﹾﻒ ﻛﻴﻒ ﺃﻥ ﻗﻴﺎﺱ 100 cmﺛﻢ 25 cm 45 - 5639 - 53 ﻭﻣﺴ ﹼﻠﻤﺔ ﺟﻤﻊ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺗﺴﺘﻌﻤﻞ ﺗﺒﺮﻳ ﹰﺮﺍ ﻓﻲ ﺍﻟﻌﺪﻳﺪ ﻣﻦ ﺍﻟﺒﺮﺍﻫﻴﻦ ﺍﻟﻬﻨﺪﺳﻴﺔ. ﹸﻳﻌﻄﻲ ﻃﻮﻝ .125 cm ﺍﻟﺬﻱ ﺍﻟﺤﺪ ﻧﺼﻒ ﻳﺴ1ﺎ_ﻭﻱ ﻛﻞ ﺣﺪ (19 ﺇﺫﺍ ﹸﺃﺿﻴﻒ ﺍﻟﻄﻮﻻﻥ ﺃﺣﺪﻫﻤﺎ ﺇﻟﻰ ﺍﻵﺧﺮ ﻳﺴﺒﻘﻪ؛ 16 ﻓﺴﻴﻨﺘﺞ ﻋﻨﻬﻤﺎ ﺍﻟﻄﻮﻝ ﺍﻟﻜﻠﻲ. 1 60 • ﺇﺫﺍ ﺃﺭﺍﺩ ﻋﺒﺪ ﺍﻟﻠﻪ ﻗﻴﺎﺱ ،345 cmﻓﻜﻢ ﻣﺮ ﹰﺓ 1-7 ﻳﻀﻊ ﻋﻼﻣﺔ ﻋﻠﻰ ﺍﻟﻘﻤﺎﺵ؟ 3 1 16 (61) • (65) • (61, 65) • (12) • (12) • (12) • (39) • (36) • (40) • (36) • (38) • (38) • (39) • (39) • (40) • 1 60 T9
ﹸﻳﻘ ﱠﺪﻡ ﻓﻲ ﻛﻞ ﻓﺼﻞ ﻣﻦ ﻓﺼﻮﻝ ﻛﺘﺎﺏ ﺍﻟﻤﻌﻠﻢ ﻟﻤﺨﺘﻠﻒ ﺍﻟﺼﻔﻮﻑ ﻣﺪﺧﻞ ✓ ﺷﺎﻣﻞ ﻟﻠﻤﻌﺎﻟﺠﺔ. (11) 1 111 (8) ✓ ﻳﺘﻀﻤﻦ ﻛﻞ ﻓﺼﻞ ﺍﻗﺘﺮﺍﺣﺎﺕ ﻟﻠﺘﺸﺨﻴﺺ ﻭﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻤﻌﺎﻟﺠﺔ. 1 1 1ﺍﺳﺘﻌﻤﺎﻝ ﻣﺠﻤﻮﻋﺎﺕ ﺃﺳﺌﻠﺔ. www.obeikaneducation.com 2 ! 1 4 (11, 12) www.obeikaneducation.com 2ﺍﺳﺘﻌﻤﺎﻝ ﺩﻟﻴﻞ ﺍﻟﺪﺭﺍﺳﺔ ﻭﺍﻟﻤﺮﺍﺟﻌﺔ ،ﻭﺑﺪﺍﺋﻞ ﺗﻨﻮﻳﻊ ﺍﻟﺘﻌﻠﻴﻢ. 1 (52) 1 (13) www.obeikaneducation.com www.obeikaneducation.com 2 1 1 1 (74-78) 1 (79) www.obeikaneducation.com (82-83) ﺍﺳﺘﻌﻤﻞ ﻧﺘﺎﺋﺞ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﺴﺮﻳﻊ ﻭﻣﺨﻄﻂ ﺍﻟﻤﻌﺎﻟﺠﺔ؛ ﻟﻤﺴﺎﻋﺪﺗﻚ ﻋﻠﻰ ﺗﺤﺪﻳﺪ ﻣﺴﺘﻮ 2 www.obeikaneducation.com ﺍﻟﻤﻌﺎﻟﺠﺔ ﺍﻟﻤﻨﺎﺳﺐ .ﻭﺍﻟﻌﺒﺎﺭﺓ \"ﺇﺫﺍ ...ﻓﻘﻢ\" 1 ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺗﺴﺎﻋﺪﻙ ﻋﻠﻰ ﺗﺤﺪﻳﺪ ﺍﻟﻤﺴﺘﻮ 1 1 ✓ ﺍﻟﻤﻨﺎﺳﺐ ﻟﻠﻤﻌﺎﻟﺠﺔ ،ﻭﺍﻗﺘﺮﺍﺡ ﻣﺼﺎﺩﺭ ﻟﻜﻞ 1 (15-20)1, 2A, 2B 1 ﻣﺴﺘﻮ. www.obeikaneducation.com (21-22)3 (14) (23) 1 )ﻳﺴﺘﻌﻤﻞ ﻣﻊ ﺍﻟﺪﺭﺱ (1-1 (24-26) ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻣﻤﺎ ﻳﺄﺗﻲ ﻋﻨﺪ ﻗﻴﻤﺔ xﺍﻟ ﹸﻤﻌﻄﺎﺓ. www.obeikaneducation.com ﺃﻭﺟﺪ ﻗﻴﻤﺔ x2 – 2x + 11ﺇﺫﺍ ﻛﺎﻧﺖ . x = 6 180 (x – 2) , x = 8 (2 31 4x + 7 , x = 6 (1 1080 14 5x2 – 3x , x = 2 (3 x2 – 2x + 11 5 )_x(x - 3 , x = 5 (4 x=6 = (6)2 – 2(6) + 11 2 = 36 – 2(6) + 11 = 36 – 12 + 11 12 x + (x + 1) + (x + 2) , x = 3 (5 = 35 ﺍﻛﺘﺐ ﻛﻞ ﺗﻌﺒﻴﺮ ﻟﻔﻈﻲ ﻣﻤﺎ ﻳﺄﺗﻲ ﻋﻠﻰ ﺻﻮﺭﺓ ﻋﺒﺎﺭﺓ ﺟﺒﺮﻳﺔ: 1 10C (6ﺃﻗﻞ ﻣﻦ ﺧﻤﺴﺔ ﺃﻣﺜﺎﻝ ﻋﺪﺩ ﺑﺜﻤﺎﻧﻴﺔ5x - 8 . (7ﺃﻛﺜﺮ ﻣﻦ ﻣﺮﺑﻊ ﻋﺪﺩ ﺑﺜﻼﺛﺔx2+ 3 . 2 ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻲ):ﻳ ﺴﺘﻌﻤﻞ ﻣﻊ ﺍﻟﺪﺭﻭﺱ 1-6ﺇﻟﻰ (1-8 1 5 8x – 10 = 6x (8 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ . 36x – 14 = 16x + 58 36x – 14 = 16x + 58 -7 18 + 7x = 10x + 39 (9 25% 16x 36x – 14 – 16x = 16x + 58 –16x 2.3 3(11x – 7) = 13x + 25 (10 ﻳﻘﺪﻡ ﻣﺨﻄﻂ ﺍﻟﻤﻌﺎﻟﺠﺔ ﺍﻗﺘﺮﺍﺣﺎﺕ ﻟﻄﺮﺍﺋﻖ ﺍﻟﺘﻌﺎﻣﻞ ﻣﻊ ﺍﻟﻄﻼﺏ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﺍﺧﺘﺒﺎﺭ \"ﺍﻟﺘﻬﻴﺌﺔ\" ﻓﻲ ﺑﺪﺍﻳﺔ ﻛﻞ ﻓﺼﻞ .ﻭﺗﺴﺎﻋﺪﻙ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ 20x – 14 = 58 1.1 _3 x + 1 = 5 – 2x (11 ﺍﻟﺘﻲ ﻳﺘﻀﻤﻨﻬﺎ ﺍﻟﻤﺨﻄﻂ ﻋﻠﻰ ﺗﺤﺪﻳﺪ ﻣﺴﺘﻮ ﺍﻟﻤﻌﺎﻟﺠﺔ ﺍﻟﺬﻱ ﺗﺴﺘﻌﻤﻠﻪ. 2 14 20x – 14 + 14 = 58 + 14 (12ﺍﺷﺘﺮﺕ ﻋﺎﺋﺸﺔ 4ﻛﺘﺐ ﺑﻘﻴﻤﺔ 52ﺭﻳﺎ ﹰﻻ؛ ﻟﺘﻘﺮﺃﻫﺎ 20x = 72 ﻓﻲ ﺃﺛﻨﺎﺀ ﺍﻹﺟﺎﺯﺓ ﺍﻟﺼﻴﻔﻴﺔ .ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻜﺘﺐ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﺴﻌﺮ، 20 _20x (2) = _72 ﻓﺎﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻹﻳﺠﺎﺩ ﺛﻤﻦ ﺍﻟﻜﺘﺎﺏ ﺍﻟﻮﺍﺣﺪ ،ﺛﻢ ﹸﺣ ﱠﻠﻬﺎ. (10) 20 20 4x = 52؛ 13ﺭﻳﺎ ﹰﻻ x = 3.6 3 )ﻳﺴﺘﻌﻤﻞ ﻣﻊ ﺍﻟﺪﺭﺱ (1-8 ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻓﻲ ﻣﺜﺎﻝ 3ﻟﻺﺟﺎﺑﺔ ﻋﻤﺎ ﻳﺄﺗﻲ : www.obeikaneducation.com ﺇﺫﺍ ﻛﺎﻥC D ، m∠BXA = (3x + 5)° : (13ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﻨﻔﺮﺟﺘﻴﻦ ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ. B XE ،m∠DXE = 56°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x ∠BXD, ∠AXE A m∠BXA = m∠DXE (14ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺘﺎﻣﺘﻴﻦ∠CXD, ∠DXE . 2 3x + 5 = 56 50% 3x = 51 (15ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺠﺎﻭﺭﺗﻴﻦ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﻓﻲ ﺁﻥ ﻭﺍﺣﺪ. x = 17 ∠DXE, ∠EXA (16ﺇﺫﺍ ﻛﺎﻥ m∠DXB = 116° :ﻭ ،m∠EXA = (3x + 2)° 5 3 ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ 38 .x (17ﺇﺫﺍ ﻛﺎﻥm∠CXD = (6x – 13)° : ﻭ ،m∠DXE = (10x + 7)°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ 6 .x www.obeikaneducation.com 2 www.obeikaneducation.com 11 1 1 1-5 1-1 ﺍﻟﻌﺒﺎﺭﺍﺕ ﻣﻦ ﻟﻜﻞ ﻟﺘﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﺃﺩﻧﺎﻩ ﭬﻦ ﺃﺷﻜﺎﻝ ﺍﺳﺘﻌﻤﻞ 1-3 1-1 1-1 1-1 ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﻓﺮ ﹰﺻﺎ ﻣﺘﻌﺪﺩﺓ ﻟﻠﺘﻘﻮﻳﻢ ﺍﻟﺘﻜﻮﻳﻨﻲ ﻓﻲ ﻛﻞ ﻓﺼﻞ ﻟﻴﺤﺪﺩ ﻣﺴﺘﻄﻴﻼ. ﻳﻜﻮﻥ ﺎ ،ﻓﺈﻧﻪ ﺃﻭ ﻧﺘﻴﺠﺔ ﺇﻟﻰ ﻟﻠﺘﻮﺻﻞ ﻧﻤ ﹰﻄﺎ؛ ﺗﻤ ﱢﺜﻞ ﻣﺨﺘﻠﻔﺔ ﺃﻣﺜﻠﺔ ﻋﻦ ﻧﺘﺠﺖ ﻣﻌﻠﻮﻣﺎﺕ ﻋﻠﻰ ﻳﻌﺘﻤﺪ ﺍﻟﺬﻱ ﺍﻟﺘﺒﺮﻳﺮ ﻫﻮ ﺍﻟﻤﻌﻠﻢ ﺇﺫﺍ ﻛﺎﻧﺖ ﻫﻨﺎﻙ ﺿﺮﻭﺭﺓ ﻟﻠﻤﻌﺎﻟﺠﺔ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﺍﻟﻄﻼﺏ. ﻋﺒﺎﺭﺓ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﻣﺘﻌﺎﻣﺪﻳﻦ ،ﻓﺈﻧﻬﻤﺎ ﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻧﺎ ﻣﺘﻮﺍﺯﻳﻴﻦ. ﹸﺗﺴ ﹼﻤﻰ ﺗﺨﻤﻴﻨﹰﺎ. ﺗﻮﻓﺮ ﺍﻟﺴﻠﺴﻠﺔ ﺑﺪﺍﺋﻞ ﻣﺘﻌﺪﺩﺓ ﻟﻠﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻻ ﻳﺰﺍﻟﻮﻥ ﻳﻌﺎﻧﻮﻥ ﻣﻦ ﺍﻟﻔﺮﺳﺎﻥ ﻭﺍﻟﻔﻬﻮﺩ ﻓﻲ ﺍﻟﻤﺒﺎﺭﺍﺓ ﺍﻟﻨﻬﺎﺋﻴﺔ. ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂﻓ ﻲﺗﺍﻘﻟﺎﺑﻤﺘﻞﺘﺎﻓﺑﺮﻌﻳﺔﻘﺎ ﺍﻛﺘﺐ 2 ﺍﻵﺗﻴﺔ، ﺍﻛﺘـﺐ ﺗﺨﻤﻴﻨﹰـﺎ ﻳﺼـﻒ ﺍﻟﻨﻤـﻂ ﻓـﻲ 1 ﺻﻌﻮﺑﺎﺕ ﺑﻌﺪ ﺇﻧﻬﺎﺀ ﺍﻟﻔﺼﻞ ﺗﺴﺎﻋﺪﻫﻢ ﻋﻠﻰ ﺗﺤﺴﻴﻦ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. ﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺘﻴﺠﺔ ﺻﺎﺋﺒﺔ ﺃﻡ ﻻ ﻓﻲ ﻃﻮﻝ ﺿﻠﻊ ﺍﻟﻤﺮﺑﻊ ﻓﻲ ﺍﻟﺸﻜﻞ ﺇﻳﺠﺎﺩ ﺛ-2ﻢ1ﺍﺳﺘﻌﻤﻠﻪ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻓﻲ ﺇﻳﺠﺎﺩ ﺍﻟﺤ ﹼﺪ ﺍﻟﺘﺎﻟﻲ ﻟﻠﻤﺘﺘﺎﺑﻌﺔ: 1-4 ﺍﻟﺘﺎﻟﻲ: . 1, 3, 9, 27, 81 ,... ﻋﺰﺯ ﺍﻟﻤﻬﺎﺭﺍﺕ ﺍﻟﻀﺮﻭﺭﻳﺔ ﻣﻦ ﺧﻼﻝ ﺗﺪﺭﻳﺒﺎﺕ ﺇﻋﺎﺩﺓ ﺍﻟﺘﻌﻠﻴﻢ ﺑﺄﺳﻠﻮﺏ ﺗﺪﺭﻳﺴﻲ ﻭﻣﻌﺎﻟﺠﺔ ﻳﺨﺘﻠﻔﺎﻥ ﻋﻦ ﻛﺘﺎﺏ ﺍﻟﻄﺎﻟﺐ ﻭﻛﺘﺎﺏ ﺍﻟﺘﻤﺎﺭﻳﻦ. ﺍﻟﻔﺮﻳﻖ ﺍﻟﻔﺎﺋﺰ ﺑﺎﻟﻜﺄﺱ ﻫﻮ ﺍﻟﻔﺮﻳﻖ ﺍﻟﺬﻱ ﻳﺤﺮﺯ ﺃﻫﺪﺍ ﹰﻓﺎ 1 ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ: T10 ﺃﺣﺮﺯ ﻓﺮﻳﻖ ﺍﻟﻔﺮﺳﺎﻥ 3ﺃﻫﺪﺍﻑ ،ﺑﻴﻨﻤﺎ ﺃﺣﺮﺯ ﻓﺮﻳﻖ ﺍﻟﻔﻬﻮﺩ 1 3 9 27 81 1 ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ: 30 31 32 33 34 ﺃﻃﻮﺍﻝ ﺃﺿﻼﻉ ﺍﳌﺮﺑﻌﺎﺕ ﻫﻲ 1, 2, 3 :ﻭﺣﺪﺍ ﹴﺕ. ﺃﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﺗﻨﺘﺞ ﻣﻨﻄﻘ ﹰﹼﻴﺎ ﻋﻦ 2 1-2ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ: 2 ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ: ﻛﻞ ﻭﺍﺣﺪ ﻣﻦ ﻫﺬﻩ ﺍﻷﻋﺪqﺍ~ﺩ ﻫﻮpﻗﻮﺓ ﻟﻠﻌqﺪ~ﺩ p q .3ﺳﻴﻜﻮﻥ ﻃﻮﻝ ﺿﻠﻊ ﺍﳌﺮﺑﻊ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ 4ﻭﺣﺪﺍﺕ1-4، ﺇﺫﻥ ﺳﻴﻜﻮﻥ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ 16ﺇﺫﻣﺍﺮﺑﻛ ﹰﻨﻌﺎﺖ ﺃﺻﻐﺣ ﹰﺪﲑﺍ.ﻃﻼﺏ ﺍﻟﻤﺮﺣﻠﺔ ﺍﻟﺜﺎﻧﻮﻳﺔ ،ﻓﺈﻥ ﻋﻤﺮﻙ 16ﺳﻨﺔ ﻋﻠﻰ ﺇﺫﻥ ﺳﻴﻜﻮﻥ ﺍﻟﻌﺪﺩ ﺍﻟﺘﺎﱄ 35؛ ﺃ ﹾﻱ 243 ﺇﺫﺍ ﻛﺎﻥ ﻋﻤﺮﻙ 16ﺳﻨﺔ ﻋﻠﻰ ﺍﻷﻗﻞ ،ﻓﺈﻥ ﻋﻤﺮﻙ ﻳﺆ ﱢﻫﻠﻚ ﻟﻘﻴﺎﺩﺓ ﻠﻚ ﻟﻘﻴﺎﺩﺓ ﺍﻟﺴﻴﺎﺭﺓ ،ﻓﺈﻧﻚ ﺃﺣﺪ ﻃﻼﺏ ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ: -80 -2 -5, 10, -20, 40,… (1 ﻠﻚ ﻟﻘﻴﺎﺩﺓ ﺍﻟﺴﻴﺎﺭﺓ ،ﻓﺄﻧﺖ ﻓﻲ ﺍﻟﻤﺮﺣﻠﺔ 10000 1-3 10 1, 10, 100, 1000,… (2 _95_ _51_ 1 , __6 , __7 , …_85_ , (3 5 5 ﺇﺫﺍ ﻛﻨﺖ ﺃﺣﺪ ﻃﻼﺏ ﺍﻟﻤﺮﺣﻠﺔ ﺍﻟﺜﺎﻧﻮﻳﺔ ،ﻓﺈﻥ ﻋﻤﺮﻙ ﻳﺆ ﱢﻫﻠﻚ ﻟﻘﻴﺎﺩﺓ ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ،ﺛ ﱠﻢ ﺃﻋﻂ ﺃﻣﺜﻠﺔ ﻋﺪﺩﻳﺔ ،ﺃﻭ ﺍﺭﺳﻢ ﺃﺷﻜﺎ ﹰﻻ ﺗﺆﻳﺪ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. 4-7 ﺇﺫﺍﻛﺎﻥﻋﻤﺮﻙ 16ﺳﻨﺔ ﻋﻠﻰ ﺍﻷﻗﻞ ،ﻓﺈﻧﻚ ﺃﺣﺪ ﻃﻼﺏ ﺍﻟﻤﺮﺣﻠﺔ (5ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ∠ 1ﻭ ∠2ﺗﻜ ﹼﻮﻧﺎﻥ ﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ. A (-1, -1), B (2,2), C (4,4) (4 ﺃﺣﻴﺎ ﹰﻧﺎ ﺻﺤﻴﺤﺔ ﺃﻭ ﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﻤﺎ ﻳﺄﺗﻲ ﻣﻤﺎ ﺟﻤﻠﺔ ﻛﻞ ﻛﺎﻧﺖ ﺇPﺫﺍ ﻣﺎ ﺩ ∠ 2 ∠1 A, B, C 1-5 1-3 )y C(4, 4 ﻟﻴﺴﺖ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ ،ﻭﺗﻘﻊ ﺟﻤﻴﻌﻬﺎ ﻓﻲ 12 R )B(2, 2 .R , S T W A(–1, –1) O x (7ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ. ∠ABC (6ﻭ ∠DBEﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﻘﺎﺑﻠﺘﺎﻥ ﺑﺎﻟﺮﺃﺱ. ∠DBE ∠ABC 23 - 9 = 14, 15 - 7 = 8 A BE 1 6 CD
ﻭﺑﺪﺍﺋﻞ، ﻭﺇﻋﺎﺩﺓ ﺍﻟﺘﻌﻠﻴﻢ ﻭﺍﻟﺘﻌﺰﻳﺰ،ﺗﺘﻤ ﹼﻴﺰ ﺍﻟﺴﻠﺴﻠﺔ ﺑﺄﻧﻬﺎ ﻧﻤﻮﺫﺝ ﺗﻌﻠﻴﻢ ﻗﻮﻱ ﻳﺸﺘﻤﻞ ﻋﻠﻰ ﺑﺪﺍﺋﻞ ﺗﻨﻮﻳﻊ ﺍﻟﺘﻌﻠﻴﻢ ، ﻛﻤﺎ ﻳﺸﺘﻤﻞ ﻋﻠﻰ ﻧﺸﺎﻃﺎﺕ ﻗﺒﻠﻴﺔ ﻣﺘﻘﺪﻣﺔ، ﻭﺇﺭﺷﺎﺩﺍﺕ ﻟﻠﻤﻌﻠﻢ ﺗﺴﺎﻋﺪﻩ ﻋﻠﻰ ﺗﻌ ﹼﺮﻑ ﻣﺴﺘﻮﻳﺎﺕ ﺍﻟﻄﻼﺏ،ﻟﻠﺘﻮﺳﻊ .ﻭﺗﻘﻮﻳﻢ ﻣﺼﺎﺣﺐ ﻟﻠﺘﻌﻠﻴﻢ 2 1 1 7 4 ﻳﺴﺎﻋﺪﻙ ﻣﺨﻄﻂ ﺍﻟﻔﺼﻞ ﻋﻠﻰ ﺍﻟﺘﺨﻄﻴﻂ ﻟﻠﺘﻌﻠﻴﻢ ﻣﻦ ﺧﻼﻝ ﺗﻮﺿﻴﺢ ﺍﻷﻫﺪﺍﻑ 1-8 1-7 1-6 1-5 1-4 1-3 1-3 ✓(11) ﻭﺍﻟﺘﻐﻄﻴﺔ،ﻭﺍﻟﺨﻄﺔ ﺍﻟﺰﻣﻨﻴﺔ ﺍﻟﻤﻘﺘﺮﺣﺔ .ﺍﻟﺸﺎﻣﻠﺔ ﻟﻸﻓﻜﺎﺭ ﺍﻟﻤﺤﻮﺭﻳﺔ 1-2 1-1 • • • • • • • • • • • • • • • • • 73 64 58 33 • (11) • • • • • (26) (21) (16) (13) (6) • • • • • (41) (36) (31) • • (18) (14) • (28) (23) • • (8) • • • (19) (15) (43) (38) (33) • • • • (29) (24) (20) (9) • • • (44) (39) (34) • • • (30) (25) (10) • • • (45) (40) (35) (10) • (9) • (8) • (7) • (6) • (13) • (12) • (11) • 6 8 6 2 5 5 4 6 4 0 2 8 2 0 1 3 70 , 72 61 , 65 58 49 , 51 39 , 44 33 , 34 23 , 25 14 , 15 , 18 ✓ ✓ • (52) 1 10A (74-78) (79) • 10B 1 1 ،ﹸﺑﻨﻴﺖ ﺍﻟﻤﻮﺍﺿﻴﻊ ﺍﻟﺪﺭﺍﺳﻴﺔ ﻋﻠﻰ ﺍﻟﻤﻔﺎﻫﻴﻢ ﻭﺍﻟﻤﻬﺎﺭﺍﺕ ﺍﻟﺴﺎﺑﻘﺔ ﻟﻠﺼﻒ ﺍﻟﻤﻌﻨﻲ 1-1 .ﻭﺗﺆﺳﺲ ﻟﻤﻮﺍﺿﻴﻊ ﻣﺴﺘﻘﺒﻠﻴﺔ ﻭﺍﻟﺘﺒﺮﻳﺮ،ﺍﻟﺘﺨﻤﻴﻦ ﻫﻮ ﺗﻮ ﱡﻗﻊ ﻣﺪﺭﻭﺱ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎﺕ ﻣﻌﺮﻭﻓﺔ ﻭﻭﺣﺪﺍﺕ،• ﺍﻟﺘﻌﺒﻴﺮ ﻋﻦ ﺍﻷﻓﻜﺎﺭ ﺍﻟﺮﻳﺎﺿﻴﺔ ﻟﻐﻮ ﹰﹼﻳﺎ ﻭﺑﺄﺩﻭﺍﺕ ﻓ ﹼﻌﺎﻟﺔ ﻭﺇﺫﺍ.ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻫﻮ ﺗﻔﺤﺺ ﻟﻌﺪﺓ ﺃﻭﺿﺎﻉ ﺧﺎﺻﺔ ﻟﻠﻮﺻﻮﻝ ﺇﻟﻰ ﺍﻟﺘﺨﻤﻴﻦ ﻭﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﺒﻴﺎﻧﻴﺔ ﺃﻭ ﺍﻟﺮﻳﺎﺿﻴﺔ ﺃﻭ ﺍﻟﻌﺪﺩﻳﺔ ﺃﻭ ﺍﻟﻤﺎﺩﻳﺔ،ﻣﻨﺎﺳﺒﺔ ﻭ ﹸﻳﺪﻋﻰ ﺍﻟﻤﺜﺎﻝ ﻓﻲ، ﻓﺈﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃﺊ،ﻧﺎﻗﺾ ﻣﺜﺎﻝ ﻭﺍﺣﺪ ﺍﻟﺘﺨﻤﻴﻦ .ﺃﻭ ﺍﻟﺠﺒﺮﻳﺔ .ﻫﺬﻩ ﺍﻟﺤﺎﻟﺔ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ • ﺇﺛﺒﺎﺕ ﺻﺤﺔ ﺍﻻﺳﺘﻨﺘﺎﺟﺎﺕ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺨﺼﺎﺋﺺ ﻭﺍﻟﻌﻼﻗﺎﺕ 1-2 .ﺍﻟﺮﻳﺎﺿﻴﺔ ﻭﻻ،ﺍﻟﻌﺒﺎﺭﺓ ﻫﻲ ﺟﻤﻠﺔ ﺧﺒﺮﻳﺔ ﺇﻣﺎ ﺃﻥ ﺗﻜﻮﻥ ﺻﺤﻴﺤﺔ ﺃﻭ ﺗﻜﻮﻥ ﺧﺎﻃﺌﺔ 1 ﻭ ﹸﺗﺴﻤﻰ ﺻﺤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺃﻭ ﺧﻄﺆﻫﺎ ﻗﻴﻤ ﹶﺔ ﺍﻟﺼﻮﺍﺏ.ﺗﺤﺘﻤﻞ ﺃﻱ ﺣﺎﻟﺔ ﺃﺧﺮ .• ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻟﻜﺘﺎﺑﺔ ﺗﺨﻤﻴﻦ ﻭﻋﻜﺴﻬﺎ ﻭﻣﻌﻜﻮﺳﻬﺎ،• ﺗﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻌﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ ﻭﻟﺬﻟﻚ ﻓﺈﻥ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻨﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﻫﻮ ﻋﻜﺲ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ.ﻟﻬﺎ ،\" ﻫﻮ ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓp ﻓﺈﻥ \"ﻟﻴﺲ، p ﻭﺇﺫﺍ ﺭﻣﺰﻧﺎ ﻟﻌﺒﺎﺭﺓ ﺑﺎﻟﺮﻣﺰ.ﻟﻠﻌﺒﺎﺭﺓ .ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻬﺎ .• ﺍﺳﺘﻌﻤﺎﻝ ﻗﺎﻧﻮ ﹶﻧﻲ ﺍﻟﻔﺼﻞ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ ﻟﻠﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ . p ﻭ ﹸﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ • ﺍﺳﺘﻌﻤﺎﻝ ﺗﻌﺮﻳﻔﺎﺕ ﺃﻭ ﺧﺼﺎﺋﺺ ﺟﺒﺮﻳﺔ ﺃﻭ ﻣﺴﻠﻤﺎﺕ ﺃﻭ ﻧﻈﺮﻳﺎﺕ . ﻭﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ ﻟﺘﻔﻨﻴﺪ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺨﻄﺄ،ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﻋﺒﺎﺭﺍﺕ ﻭﺇﺫﺍ ﺍﺳﺘﻌﻤﻠﺖ ﺃﺩﺍﺓ.ﻭﻳﻤﻜﻦ ﺭﺑﻂ ﻋﺒﺎﺭﺗﻴﻦ ﺃﻭ ﺃﻛﺜﺮ ﻟﺘﻜﻮﻳﻦ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻟﻨﺎﺗﺠﺔ ﺗﺴﻤﻰ \"ﻋﺒﺎﺭﺓ،\"∧\" ﺍﻟﺮﺑﻂ \"ﻭ\" ﻭﺭﻣﺰﻫﺎ 1 ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ،\" ∨\" ﺃﻣﺎ ﺇﺫﺍ ﺍﺳﺘﻌﻤﻠﺖ ﺃﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﺃﻭ\" ﻭﺭﻣﺰﻫﺎ.\"ﺍﻟﻮﺻﻞ .• ﺍﻟﻤﻘﺎﺭﻧﺔ ﺑﻴﻦ ﺍﻟﺤﻠﻮﻝ ﺍﻟﺠﺒﺮﻳﺔ ﻭﺍﻟﺒﻴﺎﻧﻴﺔ ﻟﻤﻌﺎﺩﻻﺕ ﺗﺮﺑﻴﻌﻴﺔ ﻭﺗﻔﺴﻴﺮﻫﺎ ﻭﻳﻤﻜﻦ ﺗﻮﺿﻴﺢ ﻋﺒﺎﺭ ﹶﺗﻲ ﺍﻟﻔﺼﻞ.\"ﺍﻟﻤﺮﻛﺒﺔ ﺍﻟﻨﺎﺗﺠﺔ ﹸﺗﺴﻤﻰ \"ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﻭﺻﻴﺎﻏﺔ،• ﺗﺤﻠﻴﻞ ﻣﻮﺍﻗﻒ ﺭﻳﺎﺿﻴﺔ ﻣﻤﺜﻠﺔ ﺑﺪﻭﺍﻝ ﺍﻟﺠﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ .ﻣﻌﺎﺩﻻﺕ ﺃﻭ ﻣﺘﺒﺎﻳﻨﺎﺕ ﻭﺍﺧﺘﻴﺎﺭ ﻃﺮﻳﻘﺔ ﻭﺣﻞ ﺍﻟﻤﺴﺎﺋﻞ :ﻭﺍﻟﻮﺻﻞ ﺑﺄﺷﻜﺎﻝ ﭬﻦ ﻛﻤﺎ ﻳﻠﻲ • .ﻭﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻳﻤﻜﻦ ﺃﻥ ﺗﺴﺎﻋﺪ ﻋﻠﻰ ﺇﻳﺠﺎﺩ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ • p ∼p pq p∨q pq p∧q TF TT T TT T FT TF T TF F FT T FT F FF F FF F ﺇﺫﺍ،ﻓﻲ ﺣﺎﻟﺔ ﺍﻟﻨﻔﻲ ﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻓﺈﻥ، ﺻﺤﻴﺤﺔp ﻛﺎﻧﺖ ﻋﻨﺪﻣﺎ،ﺧﺎﻃﺌﺔ ﻓﻘﻂ ﻋﻨﺪﻣﺎ،ﺻﺤﻴﺤﺔ ﻓﻘﻂ ﻭﺇﺫﺍ ﻛﺎﻧﺖ.∼ ﺧﺎﻃﺌﺔp q ﻭp ﺗﻜﻮﻥ ﻛ ﱞﻞ ﻣﻦ q ﻭp ﺗﻜﻮﻥ ﻛ ﱞﻞ ﻣﻦ ∼p ﻓﺈﻥ، ﺧﺎﻃﺌﺔp .ﺧﺎﻃﺌﺔ .ﺻﺤﻴﺤﺔ .ﺻﺤﻴﺤﺔ ﻋﻨﺪﻣﺎ،ﺗﺒﻴﻦ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺃﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﺗﻜﻮﻥ ﺻﺤﻴﺤﺔ ﻓﻘﻂ ﺃﻣﺎ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﻓﺘﻜﻮﻥ ﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﻤﺎ ﺇ ﹼﻻ.ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ ﺻﺤﻴﺤﺘﻴﻦ .ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ ﺧﺎﻃﺌﺘﻴﻦ 1 10E T11
Inductive Reasoning and Conjection ﺗﻨﻈﻢ ﺧﻄﺔ ﺍﻟﺨﻄﻮﺍﺕ ﺍﻷﺭﺑﻌﺔ ﺗﺪﺭﻳﺴﻚ ﻭﺗﺘﻀﻤﻦ: 3 (11 3ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺍﻟﺬﻱ ﻳﺒﻴﻦ ﻋﺪﺩ 1 ﺍﻟﻘﻄﻊ ﺍﻟﻤﻨﺘﺠﺔ ﻓﻲ ﻣﺼﻨﻊ ﻟﺒﻌﺾ ﺍﻟﺴﻨﻮﺍﺕ. ﻓﻲ ﺃﺑﺤﺎﺙ ﺍﻟﺘﺴﻮﻳﻖ ،ﻳﺘﻢ ﺗﺤﻠﻴﻞ ﺇﺟﺎﺑﺎﺕ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻷﺷﺨﺎﺹ ﻋﻦ ﺃﺳﺌﻠﺔ ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ﻣﺤﺪﺩﺓ ﺣﻮﻝ ﺍﻟﻤﻨﺘﺞ ،ﺛﻢ ﻳﺘﻢ ﺍﻟﺒﺤﺚ ﻋﻦ ﻧﻤﻄﻴﺔ ﻣﻌﻴﻨﺔ ﻓﻲ ﺍﻹﺟﺎﺑﺎﺕ ﺣﺘﻰ 1-1 ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻧﺘﻴﺠﺔ .ﻭﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ. ﺗﻤﺜﻴﻞ ﺍﻟﻌﻼﻗﺎﺕ ﺑﻴﻦ ﺍﻟﻜﻤﻴﺎﺕ، (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻌﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﺳﻨﺔ 2017ﻡ . ﺑﺎﺳﺘﻌﻤﺎﻝ ﻧﻤﺎﺫﺝ ﺣﺴﻴﺔ ﻭﺟﺪﺍﻭﻝ ، ﺳﻴﻜﻮﻥ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﻋﺎﻡ 2017ﻧﺤﻮ 35ﻣﻠﻴﻮ ﹰﻧﺎ. ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻫﻮ ﺗﺒﺮﻳﺮ ﹸﺗﺴﺘﻌﻤﻞ ﻓﻴﻪ ﺃﻣﺜﻠﺔ ﻣﺤﺪﺩﺓ ﻟﻠﻮﺻﻮﻝ ﻭﺗﻤﺜﻴﻼﺕ ﺑﻴﺎﻧﻴﺔ ﻭﻣﺨﻄﻄﺎﺕ ،ﻭﻭﺻﻒ 5 2007 3 ﺇﻟﻰ ﻧﺘﻴﺠﺔ .ﻭﻋﻨﺪﻣﺎ ﺗﻔﺘﺮﺽ ﺍﺳﺘﻤﺮﺍﺭ ﻧﻤﻂ ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﻮﺗﻴﺮﺓ ،ﻓﺈﻧﻚ ﺗﺴﺘﻌﻤﻞ ﻟﻔﻈﻲ ،ﻭﻣﻌﺎﺩﻻﺕ. ✓ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ،ﻭ ﹸﺗﺴ ﹼﻤﻰ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻨﻬﺎﺋﻴﺔ ﺍﻟﺘﻲ ﺗﻮﺻﻠﺖ ﺇﻟﻴﻬﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ 1-1 7.2 2008 ﺍﺳﺘﻌﻤﻞ ﺍﻷﺳﺌﻠﺔ 1-13؛ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻓﻬﻢ 12345 ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﺗﺨﻤﻴﻨﹰﺎ . ﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ 9.2 2009 ﺍﻟﻄﻠﺒﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺳﻔﻞ ﻫﺬﻩ qqqqq ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻟﻜﺘﺎﺑﺔ 14.1 2010 ﺍﻟﺼﻔﺤﺔ؛ ﻟﺘﻌﻴﻴﻦ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻠﻄﻠﺒﺔ qqqqq inductive reasoning 19.7 2011 qqqqq ﺗﺨﻤﻴﻦ. 28.4 2012 ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. qqqqq 1-1 qqqqq conjecture ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﻤﻨﻄﻘﻲ ﻹﺛﺒﺎﺕ ﺻﺤﺔ qqqqq ﻋﺒﺎﺭﺍﺕ ﻭﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ. counterexample 4 q q www.obeikaneducation.com 2 3 1 4 2 ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ ﻳﺒﻴﻦ ﺃﻥ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺧﺎﻃﺌﺔ. ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻗﺮﺍﺀﺓ ﻓﻘﺮﺓ ”ﻟﻤﺎﺫﺍ؟“ . (12ﺇﺫﺍ ﻛﺎﻧﺖ ∠Aﻭ ∠Bﻣﺘﺘﺎﻣﺘﻴﻦ ،ﻓﺈﻥ ﻟﻬﻤﺎ ﺿﻠ ﹰﻌﺎ ﻣﺸﺘﺮ ﹰﻛﺎ. (13ﺇﺫﺍ ﻗﻄﻊ ﻧﺼﻒ ﻣﺴﺘﻘﻴﻢ ﻗﻄﻌ ﹰﺔ ﻣﺴﺘﻘﻴﻤ ﹰﺔ ﻋﻨﺪ ﻣﻨﺘﺼﻔﻬﺎ ،ﻓﺈﻧﻪ ﻳﻌﺎﻣﺪﻫﺎ. 4 (12 • ﻣﺎ ﺍﻷﺷﻴﺎﺀ ﺍﻟﺘﻲ ﺗﻬﻢ ﺑﺎﺣﺚ ﺍﻟﺘﺴﻮﻳﻖ؟ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻣﺒﻴﻌﺎﺕ ﺍﻟﻤﻨﺘﺞ ،ﻣﻘﺎﺭﻧﺘﻪ ﺑﺎﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﻤﻨﺎﻓﺴﺔ. • ﻟﻤﺎﺫﺍ ﻳﻘﻮﻡ ﺍﻟﺒﺎﺣﺚ ﺑﺘﻮﺟﻴﻪ ﺍﻷﺳﺌﻠﺔ ﺇﻟﻰ 45° ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻷﺷﺨﺎﺹ ﻓﻘﻂ؟ A B 45° 1 ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻓﻲ ﻛﺜﻴﺮ ﻣﻦ ﺍﻷﺣﻴﺎﻥ، ﻳﺼﻌﺐ ﺗﻮﺟﻴﻪ ﺍﻷﺳﺌﻠﺔ ﺇﻟﻰ ﺟﻤﻴﻊ ﺍﻟﻤﺴﺘﻬﻠﻜﻴﻦ ،ﻭﻟﺬﻟﻚ ﺗﻮ ﱠﺟﻪ ﺍﻷﺳﺌﻠﺔ ﺇﻟﻰ ﺍﻛﺘﺐ ﺗﺨﻤﻴ ﹰﻨﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. ﻣﺠﻤﻮﻋﺔ ﻣﻤﺜﻠﺔ. (14–19ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. (aﻣﻮﺍﻋﻴﺪ ﻭﺻﻮﻝ ﺍﻟﺤﺎﻓﻼﺕ ﺇﻟﻰ ﻣﺤﻄﺔ ﺍﻟﺮﻛﻮﺏ ﻫﻲ 8:30 :ﺻﺒﺎ ﹰﺣﺎ 9:10 ،ﺻﺒﺎ ﹰﺣﺎ 9:50 ،ﺻﺒﺎ ﹰﺣﺎ 10:30 ،ﺻﺒﺎ ﹰﺣﺎ...... ، ﺍﻛﺘﺐ ﺗﺨﻤﻴ ﹰﻨﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. 1 1ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ. 4, 8, 12, 16, 20 (16 3, 6, 9, 12, 15 (15 0, 2, 4, 6, 8 (14 ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺃﻧﻪ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺘﻲ ﺗﺘﻀﻤﻦ ﺑﻴﺎﻧﺎﺕ ﻣﻦ ﻭﺍﻗﻊ ﺍﻟﺤﻴﺎﺓ ،ﻟﻴﺲ 8:30ﺻﺒﺎ ﹰﺣﺎ 9:10 ،ﺻﺒﺎ ﹰﺣﺎ 9:50 ،ﺻﺒﺎ ﹰﺣﺎ 10:30 ،ﺻﺒﺎ ﹰﺣﺎ ...... _21 , _41 , _1 ﺑﺎﻟﻀﺮﻭﺭﺓ ﺃﻥ ﻳﻤ ﹼﺜﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ 1, 8 (19 1, 4, 9, 16 (18 2, 22, 222, 2222 (17 ﺍﻟﻨﻤﻂ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﺎ ﻳﻤﻜﻦ ﺃﻥ ﻳﺤﺪﺙ 40 40 40 (20ﻣﻮﺍﻋﻴﺪ ﺍﻟﻮﺻﻮﻝ 10:00 :ﺻﺒﺎ ﹰﺣﺎ 12:30 ،ﻣﺴﺎ ﹰﺀ 3:00 ،ﻣﺴﺎ ﹰﺀ (20 ...... ،ﻳﺄﺗﻲ ﻛﻞ ﻣﻮﻋﺪ ﺑﻌﺪ ﺳﺎﻋﺘﻴﻦ ﻭﻧﺼﻒ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ. 2ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ. ﺍﻟﺴﺎﻋﺔ ﻣﻦ ﺍﻟﻤﻮﻋﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 5:30ﻣﺴﺎ ﹰﺀ. (21ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻠﺮﻃﻮﺑﺔ100% , 93% , 86% , …… : (21ﺗﻘﻞ ﻛﻞ ﻧﺴﺒﺔ ﻣﺌﻮﻳﺔ ﻋﻦ ﻓﻤﺜ ﹰﻼ ،ﻗﺪ ﹸﺗﺸﻴﺮ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻳﺰﻳﺪ ﻣﻮﻋﺪ ﻭﺻﻮﻝ ﺍﻟﺤﺎﻓﻠﺔ 40ﺩﻗﻴﻘﺔ ﻋﻦ ﻣﻮﻋﺪ ﻭﺻﻮﻝ ﺍﻟﺤﺎﻓﻠﺔ ﺍﻟﺘﻲ ﺳﺒﻘﺘﻬﺎ .ﻣﻮﻋﺪ ﻭﺻﻮﻝ ﺍﻟﻨﺴﺒﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺑﻤﻘﺪﺍﺭ ﺇﻟﻰ ﺗﺰﺍﻳﺪ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻓﻲ ﺃﺣﺪ (22ﺃﻳﺎﻡ ﺍﻟﻌﻤﻞ :ﺍﻷﺣﺪ ،ﺍﻟﺜﻼﺛﺎﺀ ،ﺍﻟﺨﻤﻴﺲ...... ، 7%؛ .79% ﺍﻷﺳﺎﺑﻴﻊ ،ﺇ ﹼﻻ ﺃﻥ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻗﺪ ﺍﻟﺤﺎﻓﻠﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺳﻮﻑ ﻳﻜﻮﻥ 10:30ﺻﺒﺎ ﹰﺣﺎ 40 +ﺩﻗﻴﻘﺔ ﺃﻭ 11:10ﺻﺒﺎ ﹰﺣﺎ. (22ﻳﺄﺗﻲ ﻛﻞ ﻳﻮﻡ ﻋﻤﻞ ﺑﻌﺪ ﺗﻨﺨﻔﺾ ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﺬﻱ ﻳﻠﻴﻪ. (23ﺍﺟﺘﻤﺎﻋﺎﺕ ﺍﻟﻨﺎﺩﻱ :ﺍﻟﻤﺤ ﹼﺮﻡ ،ﺭﺑﻴﻊ ﺃﻭﻝ ،ﺟﻤﺎﺩ ﺍﻷﻭﻟﻰ (24–27 ...... ،ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺇﺟﺎﺑﺎﺕ ﻳﻮﻣﻴﻦ ﻣﻦ ﻳﻮﻡ ﺍﻟﻌﻤﻞ (b (25 (24 ﺍﻟﺴﺎﺑﻖ؛ ﺍﻟﺴﺒﺖ. (23ﻳﻌﻘﺪ ﻛﻞ ﺍﺟﺘﻤﺎﻉ ﺑﻌﺪ ﺷﻬﺮﻳﻦ ﻣﻦ ﺍﻻﺟﺘﻤﺎﻉ 4 10 18 28 40 . . . . . . ﺍﻟﺴﺎﺑﻖ؛ ﺭﺟﺐ. ...... ...... 1ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ (27 (26 4 10 18 28 40 +6 +8 +10 +12 ...... ...... 6, 8, 10, 12, ...... 354- 430 (28ﺑﺪﺃ ﻣﺎﺟﺪ ﺗﻤﺎﺭﻳﻦ ﺍﻟﺠﺮﻱ ﺍﻟﺴﺮﻳﻊ ﻗﺒﻞ ﺧﻤﺴﺔ ﺃﻳﺎﻡ .ﻓﺮﻛﺾ ﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻷﻭﻝ . 0.5 kmﻭﻓﻲ ﺍﻷﻳﺎﻡ (11a ﻳﻮﺿﺢ ﺍﻟﺘﺮﺍﺑﻂ ﺍﻟﺮﺃﺳﻲ ﻓﻲ ﺑﺪﺍﻳﺔ ﻛﻞ ﺩﺭﺱ ﺍﻷﻫﺪﺍﻑ ﺍﻟﺜﻼﺛﺔ ﺍﻟﺘﺎﻟﻴﺔ . 0.75 km, 1 km, 1.25 kmﺇﺫﺍ ﺍﺳﺘﻤﺮ ﺗﻤﺮﻳﻨﻪ ﻋﻠﻰ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ،ﻓﻤﺎ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻲ ﻳﻘﻄﻌﻬﺎ ﻓﻲ 30 2ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ :ﺗﺰﺩﺍﺩ ﺃﻋﺪﺍﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﻤﻘﺪﺍﺭ 6, 8, 10, 12...؛ ﻟﺬﺍ ﺳﻴﺰﻳﺪ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﺘﻲ ﺗﺆﺩﻱ ﺇﻟﻰ ﻣﺤﺘﻮ ﺍﻟﺪﺭﺱ ﺍﻟﺤﺎﻟﻲ ﻭﺍﻷﻫﺪﺍﻑ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﻋﻠﻰ ﺳﺎﺑﻘﻪ ﺑﻤﻘﺪﺍﺭ 2 + 12ﺃﻭ 14ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ؛ ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺍﻟﺘﻲ ﺗﺘﺒﻌﻪ ،ﻭﺍﻟﺬﻱ ﻳﺄﺗﻲ ﻓﻲ ﺇﻃﺎﺭ ﻭﺛﻴﻘﺔ ﺍﻟﻤﺪ ﻭﺍﻟﺘﺘﺎﺑﻊ ﺍﻟﻴﻮﻡ ﺍﻟﺴﺎﺑﻊ؟ 2 km 25 ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﺳﻴﺤﺘﻮﻱ ﻋﻠﻰ 14 + 40ﺃﻭ 54ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ. ﻣﻦ ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﺍﻻﺑﺘﺪﺍﺋﻲ ﺇﻟﻰ ﺍﻟﺼﻒ ﺍﻟﺜﺎﻟﺚ ﺿﻊ ﺗﺨﻤﻴ ﹰﻨﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ: ﺍﻟﺜﺎﻧﻮﻱ. (29ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ 2 20 ﺍﺭﺳﻢ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ؛ ﻟﻜﻲ ﺗﺘﺤﻘﻖ ﻣﻦ ﺻﺤﺔ ﺗﺨﻤﻴﻨﻚ . (30ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩ ﻓﻲ ﺍﺛﻨﻴﻦ ،ﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻴﻪ ﻭﺍﺣﺪ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ (31ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻌﺪﺩﻳﻦ aﻭ ، bﺇﺫﺍ ﻛﺎﻥ .ab = 1ﻛ ﱞﻞ ﻣﻨﻬﻤﺎ ﻣﻘﻠﻮﺏ ﺍﻵﺧﺮ 15 ___ ___ (32ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ABﻭﻣﺠﻤﻮﻋﺔ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺗﺒﻌﺪ ﻣﺴﺎﻓﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﻋﻦ Aﻭ . Bﺗﺸﻜﻞ ﺍﻟﻌﻤﻮﺩ ﺍﻟﻤﻨ ﱢﺼﻒ ﻟـ . AB 10 (33ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻭﺣﺠﻢ ﺍﻟﻬﺮﻡ ﺍﻟﻠﺬﻳﻦ ﻟﻬﻤﺎ ﺍﻟﻘﺎﻋﺪﺓ ﻧﻔﺴﻬﺎ ﻭﺍﻻﺭﺗﻔﺎﻉ ﻧﻔﺴﻪ. ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻳﺴﺎﻭﻱ 3ﺃﻣﺜﺎﻝ ﺣﺠﻢ ﺍﻟﻬﺮﻡ. 5 0 54 00 07 08 09 10 11 12 1 12 (14ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 2 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 10 1 16 (15ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 3 1-1 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 18 (14, 15) • (16ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 4 (15, 18) • (14, 15, 18) • (6) • ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 24 (6) • (6) • (17ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺤﺘﻮﻱ ﻋﻠﻰ (9) • (6) • (6) • ﺍﻟﺮﻗﻢ 2ﺯﻳﺎﺩﺓ ﻋﻠﻰ ﺃﺭﻗﺎﻡ ﺍﻟﺤﺪ ﺍﻟﺴﺎﺑﻖ (10) • (8) • (8) • 43 - 5614 - 38 ﻟﻪ؛ 22222 (9) • (9) • (10) • 43 - 5639 - 4115 - 39 (18ﻳﻨﺘﺞ ﻛﻞ ﺣﺪ ﻋﻦ ﺗﺮﺑﻴﻊ ﺍﻟﻌﺪﺩ ﺍﻟﻄﺒﻴﻌﻲ ﺍﻟﺬﻱ ﻳﻤ ﱢﺜﻞ ﺗﺮﺗﻴﺒﻪ؛ 25 45 - 5639 - 53 ﺍﻟﺬﻱ ﺍﻟﺤﺪ ﻧﺼﻒ ﻳﺴ1ﺎ_ﻭﻱ ﻛﻞ ﺣﺪ (19 16 ﻳﺴﺒﻘﻪ؛ 1 12 1 16 ﻳﺤﺘﻮﻱ ﻛﻞ ﺩﺭﺱ ﻋﻠﻰ ﺃﺳﺌﻠﺔ ﺍﻟﺘﻌﺰﻳﺰ ﻟﺘﺴﺘﻌﻤﻠﻬﺎ ﻓﻲ ﻣﺴﺎﻋﺪﺓ ﺍﻟﻄﻼﺏ ﻋﻠﻰ ﺍﺳﺘﻘﺼﺎﺀ ﺍﻷﻓﻜﺎﺭ ﺍﻟﺮﺋﻴﺴﺔ ﻟﻠﺪﺭﺱ ﻭﻓﻬﻤﻬﺎ. ﻳﻌ ﱡﺪ ﻛﻞ ﻣﺜﺎﻝ ﺇﺿﺎﻓﻲ ﺍﻧﻌﻜﺎ ﹰﺳﺎ ﻟﻤﺜﺎﻝ ﻓﻲ ﻛﺘﺎﺏ ﺍﻟﻄﺎﻟﺐ. 3 (11 3ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺍﻟﺬﻱ ﻳﺒﻴﻦ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻨﺘﺠﺔ ﻓﻲ ﻣﺼﻨﻊ ﻟﺒﻌﺾ ﺍﻟﺴﻨﻮﺍﺕ. ﺑﻤﺎ ﺃﻥ ﻣﻌﻈﻢ ﺍﻟﺼﻔﻮﻑ ﺗﺸﻤﻞ ﻃﻼ ﹰﺑﺎ ﺫﻭﻱ ﻗﺪﺭﺍﺕ ﻣﺨﺘﻠﻔﺔ، 3 ﻓﺈﻥ ﺑﺪﺍﺋﻞ ﺗﻨﻮﻳﻊ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻳﺴﻤﺢ ﻟﻚ ﺑﺘﻌﺪﻳﻞ ﺃﺳﺌﻠﺔ ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ✓ 5 2007 ﺍﻟﻮﺍﺟﺐ ﺍﻟﻤﻨﺰﻟﻲ. 7.2 2008 (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻌﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﺳﻨﺔ 2017ﻡ . ﺍﺳﺘﻌﻤﻞ ﺍﻷﺳﺌﻠﺔ 1-13؛ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻓﻬﻢ 9.2 2009 ﺳﻴﻜﻮﻥ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﻋﺎﻡ 2017ﻧﺤﻮ 35ﻣﻠﻴﻮ ﹰﻧﺎ. ﺍﻟﻄﻠﺒﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺳﻔﻞ ﻫﺬﻩ ﺍﻟﺼﻔﺤﺔ؛ ﻟﺘﻌﻴﻴﻦ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻠﻄﻠﺒﺔ 4 14.1 2010 ﺗﻮﻓﺮ ﻧﺸﺎﻃﺎﺕ ﺍﻟﺘﻘﻮﻳﻢ ﺍﻟﺘﻜﻮﻳﻨﻲ ﻃﺮﺍﺋﻖ ﺑﺪﻳﻠﺔ ﻟﺘﺤﺪﻳﺪ 19.7 2011 ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. 28.4 2012 ﺍﺳﺘﻴﻌﺎﺏ ﺍﻟﻄﻼﺏ ﻓﻲ ﻧﻬﺎﻳﺔ ﻛﻞ ﺩﺭﺱ؛ ﻣﺜﻞ: ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻳﺒﻴﻦ ﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺧﺎﻃﺌﺔ. 4 (12 • ﻳﺮﺑﻂ ﺍﻟﻄﻼﺏ ﻣﺎ ﺗﻌﻠﻤﻮﻩ ﻓﻲ ﺍﻟﺪﺭﺱ (12ﺇﺫﺍ ﻛﺎﻧﺖ ∠Aﻭ ∠Bﻣﺘﺘﺎﻣﺘﻴﻦ ،ﻓﺈﻥ ﻟﻬﻤﺎ ﺿﻠ ﹰﻌﺎ ﻣﺸﺘﺮ ﹰﻛﺎ. (13ﺇﺫﺍ ﻗﻄﻊ ﻧﺼﻒ ﻣﺴﺘﻘﻴﻢ ﻗﻄﻌ ﹰﺔ ﻣﺴﺘﻘﻴﻤ ﹰﺔ ﻋﻨﺪ ﻣﻨﺘﺼﻔﻬﺎ ،ﻓﺈﻧﻪ ﻳﻌﺎﻣﺪﻫﺎ. 45° ﺍﻟﺤﺎﻟﻲ ﺑﻤﺎ ﺗﻌﻠﻤﻮﻩ ﺳﺎﺑ ﹰﻘﺎ. A B 45° (43ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ .2, 4, 16, 256, 65536 :ﻳﻤﻜﻦ ﺇﻳﺠﺎﺩ ﻛﻞ ﺣﺪ ﺑﺘﺮﺑﻴﻊ ﺍﻟﺤﺪ ﺍﻟﺴﺎﺑﻖ ﻟﻪ، • ﻳﺨ ﹼﻤﻦ ﺍﻟﻄﻼﺏ ﻛﻴﻔﻴﺔ ﺍﺭﺗﺒﺎﻁ ﺍﻟﺪﺭﺱ ﻛﻤﺎ ﻳﻤﻜﻦ ﺇﻳﺠﺎﺩ ﻛﻞ ﺣﺪ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺼﻴﻐﺔ ، 22n-1ﺣﻴﺚ .n ≥ 1 ﺍﻟﺤﺎﻟﻲ ﺑﺎﻟﺪﺭﺱ ﺍﻟﺘﺎﻟﻲ. (44ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺧﻄﺄ؛ ﺇﺫﺍ • ﻳﺬﻛﺮ ﺍﻟﻄﻼﺏ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻛ ﱠﻮﻧﺖ ﺍﻟﻨﻘﺎﻁ ﺯﺍﻭﻳﺔ ﻣﺴﺘﻘﻴﻤﺔ (43ﺍﻛﺘﺐ ﻣﺘﺘﺎﺑﻌﺔ ﻋﺪﺩﻳﺔ ﺗﺘﺒﻊ ﺣﺪﻭﺩﻫﺎ ﻧﻤﻄﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ،ﻭﻭﺿﺢ ﺍﻟﻨﻤﻄﻴﻦ. ﺍﻟﻤﺴﺘﻌﻤﻠﺔ ﻓﻲ ﺍﻟﻤﺴﺄﻟﺔ. ﺗﺄ ﹼﻣﻞ ﺍﻟﺘﺨﻤﻴﻦ” :ﺇﺫﺍ ﻛﺎﻧﺖ ﻧﻘﻄﺘﺎﻥ ﺗﺒ ﹸﻌﺪﺍﻥ ﺍﻟﻤﺴﺎﻓﺔ ﻧﻔﺴﻬﺎ ﻋﻦ ﻧﻘﻄﺔ ﺛﺎﻟﺜﺔ ﻣﻌﻠﻮﻣﺔ ،ﻓﺈﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ (44 ﻳﻜﻮﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴ ﹰﺤﺎ ،ﺃﻣﺎ (14–19ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. ﺗﻘﻊ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ“ .ﻫﻞ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ ﺃﻡ ﺧﺎﻃﺊ؟ ﻭﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. ﺇﺫﺍ ﻟﻢ ﺗﻜﻦ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. 1 • ﻳﺠﺐ ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺠﻴﺒﻮﺍ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ ،ﻓﻴﻜﻮﻥ 4, 8, 12, 16, 20 (16 3, 6, 9, 12, 15 (15 0, 2, 4, 6, 8 (14 ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺃﻧﻪ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺘﻲ ﻋﻦ ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻄﻠﻮﺏ ،ﻭﻳﺴﻠﻤﻮﺍ ﺍﻹﺟﺎﺑﺔ ﻟﻠﻤﻌﻠﻢ ﻗﺒﻞ ﺗﺘﻀﻤﻦ ﺑﻴﺎﻧﺎﺕ ﻣﻦ ﻭﺍﻗﻊ ﺍﻟﺤﻴﺎﺓ ،ﻟﻴﺲ (45ﺍﻓﺘﺮﺽ ﺃﻧﻚ ﹸﺗﺠﺮﻱ ﻣﺴ ﹰﺤﺎ .ﺍﺧﺘﺮ ﻣﻮﺿﻮ ﹰﻋﺎ ﻭﺍﻛﺘﺐ ﺛﻼﺛﺔ ﺃﺳﺌﻠﺔ ﻳﺘﻀﻤﻨﻬﺎ ﻣﺴ ﹸﺤﻚ .ﻛﻴﻒ ﺗﺴﺘﻌﻤﻞ ﺍﻟﺘﺨﻤﻴﻦﺧﻄ ﹰﺄ. 4 1, _12 , _14 , _1 (19 1, 4, 9, 16 (18 2, 22, 222, 2222 (17 ﺑﺎﻟﻀﺮﻭﺭﺓ ﺃﻥ ﻳﻤ ﹼﺜﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﻣﻐﺎﺩﺭﺓ ﺍﻟﺼﻒ. ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻣﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﻲ ﺗﺤﺼﻞ ﻋﻠﻴﻬﺎ ﻣﻦ ﺧﻼﻝ ﻫﺬﺍ ﺍﻟﻤﺴﺢ؟ ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ ﻣﺜﺎﻝ ﻣﻀﺎﺩC : 8 ﺍﻟﻨﻤﻂ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﺎ ﻳﻤﻜﻦ ﺃﻥ ﻳﺤﺪﺙ AB ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻛﺘﺎﺑﺔ (20ﻣﻮﺍﻋﻴﺪ ﺍﻟﻮﺻﻮﻝ 10:00 :ﺻﺒﺎ ﹰﺣﺎ 12:30 ،ﻣﺴﺎ ﹰﺀ 3:00 ،ﻣﺴﺎ ﹰﺀ (20 ...... ،ﻳﺄﺗﻲ ﻛﻞ ﻣﻮﻋﺪ ﺑﻌﺪ ﺳﺎﻋﺘﻴﻦ ﻭﻧﺼﻒ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ. ﺧﻤﺴﺔ ﺗﺨﻤﻴﻨﺎﺕ ﺣﻮﻝ ﻧﺸﺎﻃﺎﺕ ﻣﺪﺭﺳﺘﻬﻢ ﻭﺃﻧﻈﻤﺘﻬﺎ ،ﺛﻢ ﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ ﺃﻥ ﺗﺒﺎﺩﻝ ﺍﻷﻭﺭﺍﻕ، ﺍﻟﺴﺎﻋﺔ ﻣﻦ ﺍﻟﻤﻮﻋﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 5:30ﻣﺴﺎ ﹰﺀ. (21ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻠﺮﻃﻮﺑﺔ100% , 93% , 86% , …… : (21ﺗﻘﻞ ﻛﻞ ﻧﺴﺒﺔ ﻣﺌﻮﻳﺔ ﻋﻦ ﻓﻤﺜ ﹰﻼ ،ﻗﺪ ﹸﺗﺸﻴﺮ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﻣﺤﺎﻭﻟﺔ ﺇﻳﺠﺎﺩ ﻣﺜﺎ ﹴﻝ ﻣﻀﺎ ﱟﺩ ﻟﻜﻞ ﺗﺨﻤﻴﻦ. ﺍﻟﻨﺴﺒﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺑﻤﻘﺪﺍﺭ ﺇﻟﻰ ﺗﺰﺍﻳﺪ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻓﻲ ﺃﺣﺪ (22ﺃﻳﺎﻡ ﺍﻟﻌﻤﻞ :ﺍﻷﺣﺪ ،ﺍﻟﺜﻼﺛﺎﺀ ،ﺍﻟﺨﻤﻴﺲ...... ، 7%؛ .79% ﺍﻷﺳﺎﺑﻴﻊ ،ﺇ ﹼﻻ ﺃﻥ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻗﺪ \" ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻫﺎﺏ ﺇﻟﻰ ﺍﻟﻤﺪﺭﺳﺔ (22ﻳﺄﺗﻲ ﻛﻞ ﻳﻮﻡ ﻋﻤﻞ ﺑﻌﺪ ﺗﻨﺨﻔﺾ ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﺬﻱ ﻳﻠﻴﻪ. (47ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ، a = 10 , b = 1ﻓﻤﺎ ﻗﻴﻤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ؟ (46ﺍﻧﻈﺮ ﺇﻟﻰ ﺍﻟﻨﻤﻂ ﺍﻵﺗﻲ: ﻣﻦ ﺍﻷﺣﺪ ﺇﻟﻰ ﺍﻟﺨﻤﻴﺲ“ .ﻭﺍﻟﻤﺜﺎﻝﺍﻟﻤﻀﺎﺩ (23ﺍﺟﺘﻤﺎﻋﺎﺕ ﺍﻟﻨﺎﺩﻱ :ﺍﻟﻤﺤ ﹼﺮﻡ ،ﺭﺑﻴﻊ ﺃﻭﻝ ،ﺟﻤﺎﺩ ﺍﻷﻭﻟﻰ (24–27 ...... ،ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺇﺟﺎﺑﺎﺕ ﻳﻮﻣﻴﻦ ﻣﻦ ﻳﻮﻡ ﺍﻟﻌﻤﻞ _32 ﺍﻟﺴﺎﺑﻖ؛ ﺍﻟﺴﺒﺖ. )2b + ab ÷ (a + b ...... ﻟﻬﺬﻩ ﺍﻟﻌﺒﺎﺭﺓ ﺃﻥ ﻳﻜﻮﻥ ﻳﻮﻡ ﻋﻴﺪ ﺍﻟﻔﻄﺮ ﻳﻮﻡ (25 (24 (23ﻳﻌﻘﺪ ﻛﻞ ﺍﺟﺘﻤﺎﻉ ﺑﻌﺪ 11 ﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻨﻤﻂ؟ B ﺷﻬﺮﻳﻦ ﻣﻦ ﺍﻻﺟﺘﻤﺎﻉ CA ﺍﻹﺛﻨﻴﻦ ،ﺣﻴﺚ ﺇﺟﺎﺯﺓ ﺍﻟﻤﺪﺍﺭﺱ ﻓﻲ ﺫﻟﻚ ﺍﻟﺴﺎﺑﻖ؛ ﺭﺟﺐ. (48ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ، ...... ...... ABﻣﺤﻮﺭ ﺗﻨﺎﻇﺮ .∠DACﺃ ﱡﻱ D B DB ﺍﻟﻴﻮﻡ. (27 (26 ﺍﻻﺳﺘﻨﺘﺎﺟﺎﺕ ﺍﻵﺗﻴﺔ ﻟﻴﺲ ﺻﺤﻴ ﹰﺤﺎ ﺑﺎﻟﻀﺮﻭﺭﺓ؟ C B ...... ...... A ∠DAB ∠BAC A (28ﺑﺪﺃ ﻣﺎﺟﺪ ﺗﻤﺎﺭﻳﻦ ﺍﻟﺠﺮﻱ ﺍﻟﺴﺮﻳﻊ ﻗﺒﻞ ﺧﻤﺴﺔ ﺃﻳﺎﻡ .ﻓﺮﻛﺾ ﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻷﻭﻝ . 0.5 kmﻭﻓﻲ ﺍﻷﻳﺎﻡ ∠DAC Bﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ. ﺍﺟﻤﻊ ﺍﻷﻭﺭﺍﻕ ﻣﻦ ﺍﻟﻄﻼﺏ ﻋﻨﺪﺧﺮﻭﺟﻬﻢ ﺍﻟﺜﻼﺛﺔ ﺍﻟﺘﺎﻟﻴﺔ . 0.75 km, 1 km, 1.25 kmﺇﺫﺍ ﺍﺳﺘﻤﺮ ﺗﻤﺮﻳﻨﻪ ﻋﻠﻰ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ،ﻓﻤﺎ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻲ ﻳﻘﻄﻌﻬﺎ ﻓﻲ (11a ﻣﻦ ﺍﻟﻔﺼﻞ. 30 A Cﻭ Dﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ. ﺍﻟﻴﻮﻡ ﺍﻟﺴﺎﺑﻊ؟ 2 km 2(m∠BAC) = m∠DAC D ﺿﻊ ﺗﺨﻤﻴ ﹰﻨﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ: 25 (29ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ (30ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩ ﻓﻲ ﺍﺛﻨﻴﻦ ،ﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻴﻪ ﻭﺍﺣﺪ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ 2 20 (31ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻌﺪﺩﻳﻦ aﻭ ، bﺇﺫﺍ ﻛﺎﻥ .ab = 1ﻛ ﱞﻞ ﻣﻨﻬﻤﺎ ﻣﻘﻠﻮﺏ ﺍﻵﺧﺮ ___ ___ 15 (32ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ABﻭﻣﺠﻤﻮﻋﺔ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺗﺒﻌﺪ ﻣﺴﺎﻓﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﻋﻦ Aﻭ . Bﺗﺸﻜﻞ ﺍﻟﻌﻤﻮﺩ ﺍﻟﻤﻨ ﱢﺼﻒ ﻟـ . AB (33ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻭﺣﺠﻢ ﺍﻟﻬﺮﻡ ﺍﻟﻠﺬﻳﻦ ﻟﻬﻤﺎ ﺍﻟﻘﺎﻋﺪﺓ ﻧﻔﺴﻬﺎ ﻭﺍﻻﺭﺗﻔﺎﻉ ﻧﻔﺴﻪ. 10 ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻳﺴﺎﻭﻱ 3ﺃﻣﺜﺎﻝ ﺣﺠﻢ ﺍﻟﻬﺮﻡ. 5 (49ﺍﺷﺘﺮ ﺑﺎﺳﻢ ﺣﻮ ﹶﺽ ﺳﻤ ﹴﻚ ﺻﻐﻴﺮ ﻋﻠﻰ ﺷﻜﻞ ﺃﺳﻄﻮﺍﻧﺔ ﺩﺍﺋﺮﻳﺔ ﻗﺎﺋﻤﺔ ،ﻃﻮﻝ ﻗﻄﺮ ﻗﺎﻋﺪﺗﻬﺎ ، 25 cmﻭﺍﺭﺗﻔﺎﻋﻬﺎ ،35 cm 0 ﺃﻭﺟﺪ ﺣﺠﻢ ﺍﻟﻤﺎﺀ ﺍﻟﻼﺯﻡ ﻟﹺﻤﻞ ﹺﺀ ﺍﻟﺤﻮﺽ17180.6 cm3 . 00 07 08 09 10 11 12 ﺃﻭﺟﺪ ﻣﺤﻴﻂ ABCﺇﺫﺍ ﹸﺃﻋﻄﻴﺖ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺅﻭﺳﻪ ﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ : (14ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 2 26.69 A(–3, 2), B(2, –9), C(0, –10) (51 10.47 A(1, 6), B(1, 2), C(3, 2) (50 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 10 (52ﻗﻴﺎﺱ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺘﺎﻣﺘﻴﻦ ﻳﺴﺎﻭﻱ (16z - 9)°ﻭ .(4z + 3)°ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ22.2 ;67.8 . 1 16 (15ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 3 (53ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ x = 3 :ﻭ y = -4ﻭ ،z = -5ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ-16 . 5|x + y| - 3|2 - z| : ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 18 (16ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 4 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 24 ﺍﻛﺘﺐ ﻛﻠﻤﺔ \"ﺻﺢ\" ﺑﺠﻮﺍﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺼﺤﻴﺤﺔ ﻭﻛﻠﻤﺔ \"ﺧﻄﺄ\" ﺑﺠﻮﺍﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺨﺎﻃﺌﺔ. (17ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺤﺘﻮﻱ ﻋﻠﻰ ﺍﻟﺮﻗﻢ 2ﺯﻳﺎﺩﺓ ﻋﻠﻰ ﺃﺭﻗﺎﻡ ﺍﻟﺤﺪ ﺍﻟﺴﺎﺑﻖ (56ﺍﻟﻌﺪﺩ 9ﻋﺪﺩ ﺃﻭﻟﻲ ﺧﻄﺄ 5 - 2 × 3 = 9 (55ﺧﻄﺄ (54ﻛﻞ ﻣﺮﺑﻊ ﻫﻮ ﻣﺴﺘﻄﻴﻞ ﺻﺢ 43 - 5614 - 38 ﻟﻪ؛ 22222 43 - 5639 - 4115 - 39 (18ﻳﻨﺘﺞ ﻛﻞ ﺣﺪ ﻋﻦ ﺗﺮﺑﻴﻊ ﺍﻟﻌﺪﺩ ﺍﻟﻄﺒﻴﻌﻲ 1 18 45 - 5639 - 53 ﺍﻟﺬﻱ ﻳﻤ ﱢﺜﻞ ﺗﺮﺗﻴﺒﻪ؛ 25 ﺍﻟﺬﻱ ﺍﻟﺤﺪ ﻧﺼﻒ ﻳﺴ1ﺎ_ﻭﻱ ﻛﻞ ﺣﺪ (19 16 ﻳﺴﺒﻘﻪ؛ ﺍﻋﻤﻞ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻠﻌﺪﺩﻳﻦ ﺍﻟﺘﺎﻟﻴﻴﻦ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻵﺗﻴﺔ9, 7, 10, 8, 11, 9, 12, . . . : 1 16 ﺍﻃﺮﺡ ،2ﺛﻢ ﺃﺿﻒ 3؛ 13 ،10 (45ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺃﻭﺩ ﺃﻥ ﺃﺟﺮﻱ ﻣﺴ ﹰﺤﺎ ﻷﻧﻮﺍﻉ ﺍﻷﻧﺸﻄﺔ ﺍﻟﺘﻲ ﻳﻤﺎﺭﺳﻬﺎ ﺍﻟﻨﺎﺱ ﻓﻲ ﻋﻄﻠﺔ ﻧﻬﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ ،ﻭﺃﻃﺮﺡ ﺍﻷﺳﺌﻠﺔ ﺍﻵﺗﻴﺔ :ﻣﺎ ﻋﻤﺮﻙ؟ ﻣﺎ ﻧﻮﻉ ﺍﻟﻨﺸﺎﻁ ﺍﻟﺬﻱ ﺗﻔﻀﻞ ﻣﻤﺎﺭﺳﺘﻪ ﻓﻲ ﻋﻄﻠﺔ ﻧﻬﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ؟ ﻣﺎ ﻣﺪ ﻣﻮﺍﻇﺒﺘﻚ ﻋﻠﻰ ﻣﻤﺎﺭﺳﺔ ﻫﺬﺍ ﺍﻟﻨﺸﺎﻁ؟ ﺛﻢ ﺑﻌﺪ ﺫﻟﻚ ﺃﺳﺘﻌﻤﻞ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻹﻳﺠﺎﺩ ﺃﻧﻤﺎ ﹴﻁ ﻓﻲ ﺍﻹﺟﺎﺑﺎﺕ ﻟﺘﺤﺪﻳﺪ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻷﺷﺨﺎﺹ ﺍﻟﻤﺘﺴﺎﻭﻭﻥ ﻓﻲ ﺍﻟ ﹸﻌ ﹸﻤﺮ ﻳﻔﻀﻠﻮﻥ ﻣﻤﺎﺭﺳﺔ ﺍﻷﻧﺸﻄﺔ ﻧﻔﺴﻬﺎ ﺃﻡ ﻻ. 1 18 T12
ﺗﻌﻤﻞ ﻫﺬﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻋﻠﻰ ﺍﻟﺮﺑﻂ ﺑﻴﻦ ﻣﺎ ﻳﺘﻌﻠﻤﻪ ﺍﻟﻄﻼﺏ ﻓﻲ ﺍﻟﻤﺪﺭﺳﺔ ﺍﻟﺜﺎﻧﻮﻳﺔ ﻭﻣﺎ ﻳﺘﻮﻗﻊ ﻣﻨﻬﻢ ﺃﻥ ﻳﻌﺮﻓﻮﻩ ﻋﻨﺪ ﺑﺪﺀ ﺩﺭﺍﺳﺘﻬﻢ ﺍﻟﺠﺎﻣﻌﻴﺔ. • ﺗﺸﻤﻞ ﻣﻬﺎﺭﺍﺕ ﻣﺜﻞ ،ﺍﻻﺳﺘﻴﻌﺎﺏ ﺍﻟﻘﺮﺍﺋﻲ ،ﻭﺇﺩﺍﺭﺓ ﺇﻥ ﺍﻟﻤﻨﻬﺞ ﺍﻟﻘﻮﻱ ﻟﻠﻤﺪﺍﺭﺱ ﺍﻟﺜﺎﻧﻮﻳﺔ ﻣﺆﺷﺮ ﺟﻴﺪ ﻋﻠﻰ ﺍﻻﺳﺘﻌﺪﺍﺩ ﻟﻠﺪﺭﺍﺳﺔ ﺍﻟﺠﺎﻣﻌﻴﺔ ) .(Adelman 2006ﻓﺎﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻳﺪﺭﺳﻮﻥ ﺍﻟﻮﻗﺖ ،ﻭﺗﺴﺠﻴﻞ ﺍﻟﻤﻼﺣﻈﺎﺕ ... ،ﺇﻟﺦ .ﻭﺗﻮﻓﺮ ﻫﺬﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻛﺘﺐ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﺍﻟﻤﻌﺪﺓ ﻟﻠﻤﺮﺣﻠﺔ ﺍﻟﺜﺎﻧﻮﻳﺔ ﻣﻦ ﻫﺬﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻓﺮ ﹰﺻﺎ ﻟﺘﻨﻤﻴﺔ ﻫﺬﻩ ﺍﻟﻤﻬﺎﺭﺍﺕ ﻣﻦ ﺧﻼﻝ ﺇﺭﺷﺎﺩﺍﺕ ﻗﺮﺍﺀﺓ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻳﻜﻮﻧﻮﻥ ﺃﻛﺜﺮ ﺍﺳﺘﻌﺪﺍ ﹰﺩﺍ ﻟﻠﺪﺭﺍﺳﺔ ﺍﻟﺠﺎﻣﻌﻴﺔ ﻣﻦ ﺍﻟﺬﻳﻦ ﻟﻢ ﻳﺪﺭﺳﻮﻫﺎ ﻭﺭﻭﺍﺑﻂ ﺍﻟﻤﻔﺮﺩﺍﺕ ،ﻭﺩﻟﻴﻞ ﺍﻟﺘﻮﻗﻊ ﻭﻏﻴﺮﻫﺎ. ).(Abraham & Crrech 2002 ﻭﻓﻴﻤﺎ ﻳﺄﺗﻲ ﺑﻌﺾ ﻣﻨﺎﺣﻲ ﺍﻻﺳﺘﻌﺪﺍﺩ ﻟﻠﺪﺭﺍﺳﺔ ﺍﻟﺠﺎﻣﻌﻴﺔ ﺍﻟﺘﻲ ﻃﻮﺭﻫﺎ: ﻟﻢ ﺗﻌﺪ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻓﻲ ﻋﺎﻟﻢ ﺍﻟﺘﻘﻨﻴﺔ ﺍﻟﻤﻌﺎﺻﺮ ﻣﻘﺘﺼﺮﺓ ﻋﻠﻰ ﺍﻟﻄﻼﺏ David Conley at the University of Oregon ﺍﻟﺬﻳﻦ ﻳﻠﺘﺤﻘﻮﻥ ﺑﺎﻟﺠﺎﻣﻌﺎﺕ .ﻓﻘﺪ ﺃﻇﻬﺮﺕ ﺇﺣﺪ ﺍﻟﺪﺭﺍﺳﺎﺕ ﺃﻥ ﺍﻟﺒﺮﺍﻣﺞ ﺍﻟﺘﺪﺭﻳﺒﻴﺔ ﺍﻟﺘﻲ ﻳﺨﻀﻊ ﻟﻬﺎ ﺷﺨﺺ ﻳﺮﻳﺪ ﺍﻟﺤﺼﻮﻝ ﻋﻠﻰ ﻋﻤﻞ • ﻭﻫﻲ ﻣﻬﺎﺭﺍﺕ ﺿﺮﻭﺭﻳﺔ ﻟﺘﻌﻠﻢ ﺍﻟﻤﺤﺘﻮ ﻋﻠﻰ ﺗﺘﻄﻠﺐ ﺃﻥ ﻳﻜﻮﻥ ﻫﺬﺍ ﺍﻟﺸﺨﺺ ﻋﻠﻰ ﻣﺴﺘﻮ ﻣﻌﻴﻦ ﻣﻦ ﺍﻟﺘﻌﻠﻴﻢ ﻓﻲ ﺍﻟﺠﺒﺮ ﻭﺍﻟﻬﻨﺪﺳﺔ ﻭﺗﺤﻠﻴﻞ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻭﺍﻹﺣﺼﺎﺀ ﻳﻤﺎﺛﻞ ﻣﺴﺘﻮ ﺍﻟﻄﺎﻟﺐ ﺍﻟﻤﺴﺘﻮ ﺍﻟﺠﺎﻣﻌﻲ ،ﻭﺗﺸﻤﻞ :ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻨﺎﻗﺪ ،ﻭﺣﻞ ﺍﻟﻤﺴﺄﻟﺔ، ﻭﺍﻟﺘﺒﺮﻳﺮ ،ﻭﺗﺘﺎﺡ ﻓﻲ ﻛﻞ ﻳﻮﻡ ﻟﻠﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻳﺪﺭﺳﻮﻥ ﻫﺬﻩ ﺍﻟﺬﻱ ﻳﻠﺘﺤﻖ ﺑﺎﻟﺴﻨﺔ ﺍﻷﻭﻟﻰ ﻓﻲ ﺍﻟﺠﺎﻣﻌﺔ؛ ﺣﺘﻰ ﻳﻨﺠﺢ ﻓﻲ ﻋﻤﻠﻪ. ﺍﻟﺴﻠﺴﻠﺔ ﻓﺮﺹ ﻟﺘﻨﻤﻴﺔ ﻣﻬﺎﺭﺍﺕ ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻌﻠﻴﺎ ﻣﻦ ﺧﻼﻝ ﺍﻟﻤﺴﺎﺋﻞ ﺍﻟﺨﺎﺻﺔ ﺑﺬﻟﻚ. • ﺇﻥ ﻛﺘﺐ ﺍﻟﻤﺮﺣﻠﺔ ﺍﻟﺜﺎﻧﻮﻳﺔ ﻣﻦ ﻫﺬﻩ ﺍﻟﺴﻠﺴﻠﺔ ﻣﺘﺴﻘﺔ ﻣﻊ ﻣﻌﺎﻳﻴﺮ ﻋﺎﻟﻤﻴﺔ ﺩﻗﻴﻘﺔ ﺗﺸﻤﻞ ﻣﻌﺎﻳﻴﺮ NCTMﻟﻠﺮﻳﺎﺿﻴﺎﺕ ﺍﻟﻤﺪﺭﺳﻴﺔ ،ﻭﻏﻴﺮﻫﺎ. T13
T14
1-3 1-3 ✓(11) 1-2 1-1 • • • • • • • 33 • (11) • • • (16) (13) (6) • • (18) (14) • • • (8) (19) (15) • • (20) (9) • (10) (8) • (7) • (6) • 2 8 2 0 1 3 33 , 34 23 , 25 14 , 15 , 18 1 10A
2 1 1 7 4 1-8 1-7 1-6 1-5 1-4 • • • • • • • • • • 73 64 58 • • (26) (21) • • • (41) (36) (31) • • (28) (23) • • • (43) (38) (33) • • (29) (24) • • • (44) (39) (34) • • (30) (25) • • • (45) (40) (35) (10) • (9) • (13) • (12) • (11) • 6 8 6 2 5 5 4 6 4 0 70 , 72 61 , 65 58 49 , 51 39 , 44 ✓ ✓ • (52) (74-78) (79) • 10B 1
✓ (11) 1 111 ✓ (8) 1 1 www.obeikaneducation.com 2 1 1 ! 1 4 www.obeikaneducation.com (11, 12) 2 www.obeikaneducation.com 1 1 1 (52) (13) www.obeikaneducation.com www.obeikaneducation.com 2 1 1 (74-78) (79) www.obeikaneducation.com (82-83) www.obeikaneducation.com 1 ✓ (15-20)1, 2A, 2B (21-22)3 (14) (23) (24-26) www.obeikaneducation.com 1 10C
3 1 :ﺍﻃﺮﺡ ﺍﻟﻤﺴﺄﻟﺔ ﺍﻵﺗﻴﺔ ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺍﺳﺘﻜﺸﺎﻑ ﺟﻤﻊ ﺍﻟﻘﻄﻊ ﻓﻤﺎ،ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﻛﻞ ﺛﻼﺙ ﻧﻘﺎﻁ ﻟﻴﺴﺖ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ ﺗﺤﺪﺩ ﻣﺴﺘ ﹰﻮ ﻭﺍﺣ ﹰﺪﺍ ﻋﺪﺩ ﺍﻟﻤﺴﺘﻮﻳﺎﺕ ﺍﻟﺘﻲ ﺗﺤ ﱢﺪﺩﻫﺎ ﺃﺭﺑﻊ ﻧﻘﺎﻁ ﻻ ﺗﻘﻊ ﺟﻤﻴﻌﻬﺎ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻭﺍﺣﺪ؟ ﻭﻣﺎ ، ﻭﺫﻟﻚ ﺑﻘﻴﺎﺱ ﺑﻌﺾ ﺍﻷﺷﻴﺎﺀ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻓﻲ ﻏﺮﻓﺔ ﺍﻟﺼﻒ،ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻭﺍﻟﺰﻭﺍﻳﺎ ﻧﻘﺎﻁ ﻟﻴﺴﺖ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ؟5 ﻋﺪﺩ ﺍﻟﻤﺴﺘﻮﻳﺎﺕ ﺍﻟﺘﻲ ﺗﺤﺪﺩﻫﺎ ﻭﺍﻟﻤﻨﻘﻠﺔ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺃﻥ،ﻭﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻤﺘﺮ ﻹﻳﺠﺎﺩ ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ﻏﺮﻓﺔ ﺍﻟﺼﻒ ﻭﺗﺤﺪﺩ، ﻣﺴﺘﻮﻳﺎﺕ ﻋﻠﻰ ﺍﻷﻛﺜﺮ4 ﻭ،ﺗﺤﺪﺩ ﺍﻟﻨﻘﺎﻁ ﺍﻷﺭﺑﻊ ﻣﺴﺘﻮ ﻭﺍﺣ ﹰﺪﺍ ﻋﻠﻰ ﺍﻷﻗﻞ .ﺯﺍﻭﻳﺘﻴﻦ ﻗﺎﺋﻤﺘﻴﻦ ﺗﺸ ﱢﻜﻼﻥ ﺧ ﹼﹰﻄﺎ ﻣﺴﺘﻘﻴ ﹰﻤﺎ . ﻣﺴﺘﻮﻳﺎﺕ ﻋﻠﻰ ﺍﻷﻛﺜﺮ10 ﻭ،ﺍﻟﻨﻘﺎﻁ ﺍﻟﺨﻤﺲ ﻣﺴﺘﻮ ﻭﺍﺣ ﹰﺪﺍ ﻋﻠﻰ ﺍﻷﻗﻞ ﻳﻤﻜﻦ ﻟﻠﻄﻼﺏ ﺃﻥ ﻳﺘﺪ ﱠﺭﺑﻮﺍ ﻋﻠﻰ ﺻﻴﺎﻏﺔ ﺗﺨﻤﻴﻨﺎﺕ ﻓﻤﺜ ﹰﻼ ﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ. ﻭﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ ﻣﻦ ﺍﻟﻄﺒﻴﻌﺔ،ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﻌﺼﻒ ﺍﻟﺬﻫﻨﻲ ﻭﺍﻟﻤﺜﺎﻝ.“ﻗﺮﺍﺀﺓ ﺍﻟﻌﺒﺎﺭﺓ ”ﺇﺫﺍ ﻟﻢ ﹸﺗ ﹾﺮ ﹶﻭ ﺍﻟﻨﺒﺎﺗﺎﺕ ﻛﻞ ﻳﻮﻡ ﻓﻠﻦ ﺗﺒﻘﻰ ﻋﻠﻰ ﻗﻴﺪ ﺍﻟﺤﻴﺎﺓ .ﺍﻟﻤﻀﺎﺩ ﻟﻬﺎ ﺃﻥ ﻧﺒﺘﺔ ﺍﻟﺼﺒﺎﺭ ﻳﻤﻜﻦ ﺃﻥ ﺗﺒﻘﻰ ﺃﺳﺎﺑﻴﻊ ﻣﻦ ﺩﻭﻥ ﻣﺎﺀ ﻭﻣﻮﺿﻮﻋﺎﺕ ﺍﻟﻄﺒﻴﻌﺔ ﻳﻤﻜﻦ ﺃﻥ ﺗﺸﻤﻞ ﺍﻟﻨﺒﺎﺗﺎﺕ ﻭﺍﻟﺤﻴﻮﺍﻧﺎﺕ ﻭﻋﻼﻗﺎﺕ ﺍﻟﺤﻴﻮﺍﻧﺎﺕ . ﻭﻫﻜﺬﺍ،ﺍﻟﻤﻔﺘﺮﺳﺔ ﻭﺍﻟﻄﺮﺍﺋﺪ ﻭﺍﻟﺤﺸﺮﺍﺕ ﻭﺍﻟﻄﻘﺲ 2 ﻭ ﹼﺿﺢ ﻟﻠﻄﻼﺏ ﻛﻴﻔﻴﺔ ﺍﻻﻧﺘﻘﺎﻝ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﻣﻦ ﺍﻟﻔﺮﺽ ﺇﻟﻰ ﺍﻟﻨﺘﻴﺠﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺑﺤﻴﺚ ﺗﻘﻮﺩ ﺍﻟﺸﺮﻭﻁ ﺍﻟﻤﻌﻄﺎﺓ ﺇﻟﻰ ﻋﺒﺎﺭﺍﺕ ﺍﻟﺒﺮﻫﺎﻥ ﻣﻊ ﺗﺒﺮﻳ ﹴﺮ ﻟﻜﻞ،ﻣﺨﻄﻂ ﺗﺴﻠﺴﻠﻲ . ﻭﺗﻜﻮﻥ ﺍﻟﻨﺘﻴﺠﺔ ﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻨﻬﺎﺋﻴﺔ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ،ﺧﻄﻮﺓ 1 1-2 1 ∼ p∧q “” p∨q “” 10D 1
1-1 1 ﺍﻟﺘﺨﻤﻴﻦ ﻫﻮ ﺗﻮ ﱡﻗﻊ ﻣﺪﺭﻭﺱ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎﺕ ﻣﻌﺮﻭﻓﺔ ،ﻭﺍﻟﺘﺒﺮﻳﺮ • ﺍﻟﺘﻌﺒﻴﺮ ﻋﻦ ﺍﻷﻓﻜﺎﺭ ﺍﻟﺮﻳﺎﺿﻴﺔ ﻟﻐﻮ ﹰﹼﻳﺎ ﻭﺑﺄﺩﻭﺍﺕ ﻓ ﹼﻌﺎﻟﺔ ،ﻭﻭﺣﺪﺍﺕ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻫﻮ ﺗﻔﺤﺺ ﻟﻌﺪﺓ ﺃﻭﺿﺎﻉ ﺧﺎﺻﺔ ﻟﻠﻮﺻﻮﻝ ﺇﻟﻰ ﺍﻟﺘﺨﻤﻴﻦ .ﻭﺇﺫﺍ ﻣﻨﺎﺳﺒﺔ ،ﻭﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻟﺒﻴﺎﻧﻴﺔ ﺃﻭ ﺍﻟﺮﻳﺎﺿﻴﺔ ﺃﻭ ﺍﻟﻌﺪﺩﻳﺔ ﺃﻭ ﺍﻟﻤﺎﺩﻳﺔ ﻧﺎﻗﺾ ﻣﺜﺎﻝ ﻭﺍﺣﺪ ﺍﻟﺘﺨﻤﻴﻦ ،ﻓﺈﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃﺊ ،ﻭ ﹸﻳﺪﻋﻰ ﺍﻟﻤﺜﺎﻝ ﻓﻲ ﺃﻭ ﺍﻟﺠﺒﺮﻳﺔ. ﻫﺬﻩ ﺍﻟﺤﺎﻟﺔ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. • ﺇﺛﺒﺎﺕ ﺻﺤﺔ ﺍﻻﺳﺘﻨﺘﺎﺟﺎﺕ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺨﺼﺎﺋﺺ ﻭﺍﻟﻌﻼﻗﺎﺕ 1-2 ﺍﻟﺮﻳﺎﺿﻴﺔ. ﺍﻟﻌﺒﺎﺭﺓ ﻫﻲ ﺟﻤﻠﺔ ﺧﺒﺮﻳﺔ ﺇﻣﺎ ﺃﻥ ﺗﻜﻮﻥ ﺻﺤﻴﺤﺔ ﺃﻭ ﺗﻜﻮﻥ ﺧﺎﻃﺌﺔ ،ﻭﻻ 1 ﺗﺤﺘﻤﻞ ﺃﻱ ﺣﺎﻟﺔ ﺃﺧﺮ .ﻭ ﹸﺗﺴﻤﻰ ﺻﺤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺃﻭ ﺧﻄﺆﻫﺎ ﻗﻴﻤ ﹶﺔ ﺍﻟﺼﻮﺍﺏ • ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻟﻜﺘﺎﺑﺔ ﺗﺨﻤﻴﻦ. ﻟﻬﺎ .ﻭﻟﺬﻟﻚ ﻓﺈﻥ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻨﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﻫﻮ ﻋﻜﺲ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ • ﺗﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻌﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ ،ﻭﻋﻜﺴﻬﺎ ﻭﻣﻌﻜﻮﺳﻬﺎ ﻟﻠﻌﺒﺎﺭﺓ .ﻭﺇﺫﺍ ﺭﻣﺰﻧﺎ ﻟﻌﺒﺎﺭﺓ ﺑﺎﻟﺮﻣﺰ ، pﻓﺈﻥ \"ﻟﻴﺲ \"pﻫﻮ ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ، ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻬﺎ. ﻭ ﹸﻳﺮﻣﺰ ﻟﻪ ﺑﺎﻟﺮﻣﺰ . p • ﺍﺳﺘﻌﻤﺎﻝ ﻗﺎﻧﻮ ﹶﻧﻲ ﺍﻟﻔﺼﻞ ﻭﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ ﻟﻠﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ. • ﺍﺳﺘﻌﻤﺎﻝ ﺗﻌﺮﻳﻔﺎﺕ ﺃﻭ ﺧﺼﺎﺋﺺ ﺟﺒﺮﻳﺔ ﺃﻭ ﻣﺴﻠﻤﺎﺕ ﺃﻭ ﻧﻈﺮﻳﺎﺕ ﻭﻳﻤﻜﻦ ﺭﺑﻂ ﻋﺒﺎﺭﺗﻴﻦ ﺃﻭ ﺃﻛﺜﺮ ﻟﺘﻜﻮﻳﻦ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ .ﻭﺇﺫﺍ ﺍﺳﺘﻌﻤﻠﺖ ﺃﺩﺍﺓ ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﻋﺒﺎﺭﺍﺕ ،ﻭﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ ﻟﺘﻔﻨﻴﺪ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺨﻄﺄ. ﺍﻟﺮﺑﻂ \"ﻭ\" ﻭﺭﻣﺰﻫﺎ \"∧\" ،ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻟﻨﺎﺗﺠﺔ ﺗﺴﻤﻰ \"ﻋﺒﺎﺭﺓ 1 ﺍﻟﻮﺻﻞ\" .ﺃﻣﺎ ﺇﺫﺍ ﺍﺳﺘﻌﻤﻠﺖ ﺃﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﺃﻭ\" ﻭﺭﻣﺰﻫﺎ \"∨ \" ،ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻟﻨﺎﺗﺠﺔ ﹸﺗﺴﻤﻰ \"ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ\" .ﻭﻳﻤﻜﻦ ﺗﻮﺿﻴﺢ ﻋﺒﺎﺭ ﹶﺗﻲ ﺍﻟﻔﺼﻞ ﻭﺍﻟﻮﺻﻞ ﺑﺄﺷﻜﺎﻝ ﭬﻦ ﻛﻤﺎ ﻳﻠﻲ: • ﺍﻟﻤﻘﺎﺭﻧﺔ ﺑﻴﻦ ﺍﻟﺤﻠﻮﻝ ﺍﻟﺠﺒﺮﻳﺔ ﻭﺍﻟﺒﻴﺎﻧﻴﺔ ﻟﻤﻌﺎﺩﻻﺕ ﺗﺮﺑﻴﻌﻴﺔ ﻭﺗﻔﺴﻴﺮﻫﺎ. • ﺗﺤﻠﻴﻞ ﻣﻮﺍﻗﻒ ﺭﻳﺎﺿﻴﺔ ﻣﻤﺜﻠﺔ ﺑﺪﻭﺍﻝ ﺍﻟﺠﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ،ﻭﺻﻴﺎﻏﺔ • ﻣﻌﺎﺩﻻﺕ ﺃﻭ ﻣﺘﺒﺎﻳﻨﺎﺕ ﻭﺍﺧﺘﻴﺎﺭ ﻃﺮﻳﻘﺔ ﻭﺣﻞ ﺍﻟﻤﺴﺎﺋﻞ. ﻭﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻳﻤﻜﻦ ﺃﻥ ﺗﺴﺎﻋﺪ ﻋﻠﻰ ﺇﻳﺠﺎﺩ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ. • p ∼p pq p∨q pq p∧q TF TT T TT T FT TF T TF F FT T FT F FF F FF F ﻓﻲ ﺣﺎﻟﺔ ﺍﻟﻨﻔﻲ ،ﺇﺫﺍ ﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻛﺎﻧﺖ pﺻﺤﻴﺤﺔ ،ﻓﺈﻥ ﺧﺎﻃﺌﺔ ﻓﻘﻂ ،ﻋﻨﺪﻣﺎ ﺻﺤﻴﺤﺔ ﻓﻘﻂ ،ﻋﻨﺪﻣﺎ ∼pﺧﺎﻃﺌﺔ .ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺗﻜﻮﻥ ﻛ ﱞﻞ ﻣﻦ pﻭ q ﺗﻜﻮﻥ ﻛ ﱞﻞ ﻣﻦ pﻭ q pﺧﺎﻃﺌﺔ ،ﻓﺈﻥ ∼p ﺧﺎﻃﺌﺔ. ﺻﺤﻴﺤﺔ. ﺻﺤﻴﺤﺔ. ﺗﺒﻴﻦ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺃﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﺗﻜﻮﻥ ﺻﺤﻴﺤﺔ ﻓﻘﻂ ،ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ ﺻﺤﻴﺤﺘﻴﻦ .ﺃﻣﺎ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﻓﺘﻜﻮﻥ ﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﻤﺎ ﺇ ﹼﻻ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ ﺧﺎﻃﺌﺘﻴﻦ. 1 10E
1-6 1-3 ﺍﺳ ﹸﺘﻌﻤﻠﺖ ﺧﺼﺎﺋﺺ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻟﺤﻞ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺠﺒﺮﻳﺔ ﻭﺍﻟﺘﺤﻘﻖ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺃﻥ ﹸﺗﻜﺘﺐ ﻋﻠﻰ ﺻﻮﺭﺓ ﺻﺤﺔ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺠﺒﺮﻳﺔ .ﻭﺍﺳﺘﻌﻤﺎﻝ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﺨﻄﻮﺍﺕ ﺍﻟﺠﺒﺮﻳﺔ \"ﺇﺫﺍ ...ﻓﺈ ﹼﻥ ،ﺇﺫﺍ ﻛﺎﻧﺖ ،pﻓﺈﻥ .qﺗﺴ ﹼﻤﻰ ﺍﻟﺠﻤﻠﺔ ﺍﻟﺘﻲ ﺗﻠﻲ ﻛﻠﻤﺔ \"ﺇﺫﺍ\" ﻟﺤﻞ ﻣﺴﺎﺋﻞ ﹸﻳﺸ ﱢﻜﻞ ﺑﺮﻫﺎ ﹰﻧﺎ ﺟﺒﺮ ﹼﹰﻳﺎ .ﻭﻫﺬﺍ ﺍﻟﺒﺮﻫﺎﻥ ﻳﻤﻜﻦ ﺗﻨﻈﻴﻤﻪ ﺑﻜﺘﺎﺑﺔ ﺧﻄﻮﺍﺕ ﺍﻟﺤﻞ ﻟﻠﻤﻌﺎﺩﻟﺔ ﻓﻲ ﻋﻤﻮﺩ ،ﻭﺍﻟﺨﺼﺎﺋﺺ ﺍﻟﺘﻲ ﺗﺒﺮﺭ ﻛﻞ ﺧﻄﻮﺓ ﻣﺒﺎﺷﺮﺓ ﺍﻟﻔﺮﺽ ،ﻭﺍﻟﺘﻲ ﺗﻠﻲ ﻛﻠﻤﺔ \"ﻓﺈﻥ\" ﻣﺒﺎﺷﺮﺓ ﺍﻟﻨﺘﻴﺠﺔ .ﻭﺑﺎﻟﺮﻣﻮﺯ ﻳﺴﺘﻌﻤﻞ ﺳﻬﻢ ﻣﺘﺠﻪ ﻣﻦ ﺍﻟﻔﺮﺽ ﺇﻟﻰ ﺍﻟﻨﺘﻴﺠﺔ .ﻭﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻓﻲ ﻋﻤﻮﺩ ﺁﺧﺮ .ﻭﻳﺴﺘﻌﻤﻞ ﻓﻲ ﺍﻟﻬﻨﺪﺳﺔ ﻧﻤﻮﺫﺝ ﻣﺸﺎﺑﻪ ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﻭﺍﻟﻨﻈﺮﻳﺎﺕ ،ﻭﻳﺘﻀﻤﻦ ﺍﻟﺒﺮﻫﺎﻥ ﺫﻭ ﺍﻟﻌﻤﻮﺩﻳﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﻤﺎ ،ﺇﻻ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻔﺮﺽ ﺻﺤﻴ ﹰﺤﺎ ﻭﺍﻟﻨﺘﻴﺠﺔ ﺧﺎﻃﺌﺔ. ﻭﺍﻟﻤﺒﺮﺭﺍﺕ ﻣﻨﻈﻤ ﹰﺔ ﻓﻲ ﻋﻤﻮﺩﻳﻦ ،ﺗﺴﻤﻰ ﻛﻞ ﺧﻄﻮﺓ ﻋﺒﺎﺭﺓ ،ﻭﺗﺴﻤﻰ ﻭﺗﺸﺘﻖ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻟﻤﺮﺗﺒﻄﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻟﻤﻌﻄﺎﺓ، ﺍﻟﺨﺎﺻﻴﺔ ﺗﺒﺮﻳ ﹰﺮﺍ. ﻓﻌﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻳﻨﺘﺞ ﻋﻦ ﺗﺒﺪﻳﻞ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ،qﻓﺈﻥ . pﻭﻣﻌﻜﻮﺱ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻳﻨﺘﺞ ﻋﻦ 1-7 ﻧﻔﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ،~pﻓﺈﻥ ،~qﺃﻣﺎ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻓﻴﻨﺘﺞ ﻋﻦ ﻧﻔﻲ ﻛ ﱟﻞ ﻣﻦ ﻳﻤﻜﻦ ﺇﻳﺠﺎﺩ ﻃﻮﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ،ﻭﺍﺳﺘﻌﻤﺎﻝ ﻫﺬﻩ ﺍﻷﻃﻮﺍﻝ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻟﻌﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ :ﺇﺫﺍ ﻛﺎﻧﺖ ،~qﻓﺈﻥ . ~p ﻓﻲ ﺍﻟﺤﺴﺎﺑﺎﺕ؛ ﻷﻧﻬﺎ ﺃﻋﺪﺍﺩ ﺣﻘﻴﻘﻴﺔ .ﻭﺗﻨﺺ ﻣﺴﻠﻤﺔ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻋﻠﻰ ﺃﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﻮﺍﻗﻌﺔ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﺃﻭ ﻋﻠﻰ ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ ﻭﻫﻨﺎﻙ ﺗﻜﺎﻓﺆ ﻣﻨﻄﻘﻲ ﺑﻴﻦ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﻣﻌﺎﻛﺴﻬﺎ ﺍﻹﻳﺠﺎﺑﻲ، ﻳﻤﻜﻦ ﺭﺑﻄﻬﺎ ﺑﺄﻋﺪﺍﺩ ﺣﻘﻴﻘﻴﺔ ،ﺑﺤﻴﺚ ﺇﺫﺍ ﻭﻗﻌﺖ ﻧﻘﻄﺘﺎﻥ Aﻭ Bﻋﻠﻰ ﻭﻛﺬﻟﻚ ﺑﻴﻦ ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﻣﻌﻜﻮﺳﻬﺎ. ﻣﺴﺘﻘﻴﻢ ،ﻭﻛﺎﻧﺖ ﺍﻟﻨﻘﻄﺔ Aﺗ_ﻘ_ﺎﺑ_ﻞ ﺍﻟﻌﺪﺩ ﺻﻔ ﹰﺮﺍ ،ﻓﺈﻥ ﺍﻟﻨﻘﻄﺔ Bﺗﻘﺎﺑﻞ ﻋﺪ ﹰﺩﺍ ﻣﻮﺟ ﹰﺒﺎ ،ﻳﻤﺜﻞ ﻃﻮﻝ ﺍﻟﻘﻄﻌﺔ . ABﻭﻫﻨﺎﻙ ﻣﺴﻠﻤﺔ ﺃﺧﺮ ﺗﻨﺺ ﻋﻠﻰ ﺃﻧﻪ 1-4 ﺇﺫﺍ ﻭﻗﻌﺖ ﺍﻟﻨﻘﻄﺔ Bﺑﻴﻦ ﺍﻟﻨﻘﻄﺘﻴﻦ Aﻭ Cﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ﻧﻔﺴﻪ ،ﻓﺈﻥ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻳﺴﺘﻌﻤﻞ ﺍﻟﺤﻘﺎﺋﻖ ﺃﻭ ﺍﻟﻘﻮﺍﻋﺪ ﺃﻭ ﺍﻟﺘﻌﺎﺭﻳﻒ ، AB + BC = ACﻭﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺢ ﺃﻳ ﹰﻀﺎ. ﺃﻭ ﺍﻟﺨﺼﺎﺋﺺ ﻟﻠﻮﺻﻮﻝ ﺇﻟﻰ ﻧﺘﺎﺋﺞ ﻣﻨﻄﻘﻴﺔ .ﻭﻣﻦ ﺃﺷﻜﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﺃﻥ ﹸﻳﺴﺘﻌﻤﻞ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﻣﻦ ﻋﺒﺎﺭﺍﺕ ﺷﺮﻃﻴﺔ، ﻭﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺧﺼﺎﺋﺺ ﺍﻻﻧﻌﻜﺎﺱ ﻭﺍﻟﺘﻤﺎﺛﻞ ﻭﺍﻟﺘﻌﺪﻱ ﻟﻠﻤﺴﺎﻭﺍﺓ ﻭﻫﻮ ﻣﺎ ﹸﻳﺴ ﱠﻤﻰ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﻟﻤﻨﻄﻘ ﹼﻲ ،ﻭﺍﻟﺬﻱ ﻳﻨﺺ ﻋﻠﻰ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ ﻓﻲ ﻛﺘﺎﺑﺔ ﺑﺮﺍﻫﻴﻦ ﺣﻮﻝ ﺗﻄﺎﺑﻖ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ .ﻭﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻦ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ p → qﺻﺤﻴﺤﺔ ،ﻭﻛﺎﻧﺖ pﺻﺤﻴﺤﺔ ،ﻓﺈﻥ qﺗﻜﻮﻥ ﺻﺤﻴﺤﺔ .ﻭﻣﻦ ﻗﻮﺍﻧﻴﻦ ﺍﻟﻤﻨﻄﻖ ﺍﻷﺧﺮ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ ﺍﻟﺬﻱ ﺍﻟﺒﺮﺍﻫﻴﻦ ﺗﻨﺺ ﻋﻠﻰ ﺃﻥ ﺗﻄﺎﺑﻖ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻫﻲ ﻋﻼﻗﺔ ﺍﻧﻌﻜﺎﺱ ﻳﻨﺺ ﻋﻠﻰ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ p → qﺻﺤﻴﺤﺔ ،ﻭﻛﺎﻧﺖ q → rﺻﺤﻴﺤﺔ، ﻭﺗﻤﺎﺛﻞ ﻭﺗﻌ ﱟﺪ. ﻓﺈﻥ p → rﺻﺤﻴﺤﺔ .ﻭﻫﺬﺍ ﺍﻟﻘﺎﻧﻮﻥ ﻳﺸﺒﻪ ﻋﻼﻗﺔ ﺍﻟﺘﻌ ﱢﺪﻱ ﻟﻠﻤﺴﺎﻭﺍﺓ. 1-8 1-5 ﻳﻘﺪﻡ ﻫﺬﺍ ﺍﻟﺪﺭﺱ ﻣﺴ ﹼﻠﻤﺎﺕ ﻭﻧﻈﺮﻳﺎﺕ ﺣﻮﻝ ﺍﻟﻌﻼﻗﺎﺕ ﺑﻴﻦ ﺍﻟﺰﻭﺍﻳﺎ، ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﻓﻲ ﺍﻟﻬﻨﺪﺳﺔ ﻋﺒﺎﺭﺓ ﺗﻌﻄﻲ ﻭﺻ ﹰﻔﺎ ﻟﻌﻼﻗﺔ ﺃﺳﺎﺳﻴﺔ ﺑﻴﻦ ﺍﻟﻤﻔﺎﻫﻴﻢ ﺣﻴﺚ ﺗﻨﺺ ﻣﺴ ﹼﻠﻤﺔ ﺍﻟﻤﻨﻘﻠﺔ ﻋﻠﻰ ﺃﻧﻪ \"ﺗﺴﺘﻌﻤﻞ ﺍﻟﻤﻨﻘﻠﺔ ﻟﻠﺮﺑﻂ ﺑﻴﻦ ﻗﻴﺎﺱ ﺍﻟﻬﻨﺪﺳﻴﺔ ﺍﻷﻭﻟﻴﺔ ،ﻭ ﹸﻳﺴ ﹼﻠﻢ ﺑﺼﺤﺘﻬﺎ ﺩﻭﻥ ﺑﺮﻫﺎﻥ .ﻭﺣﺎﻟﻤﺎ ﻳﺘﻢ ﺑﻴﺎﻥ ﺻﺤﺔ ﺯﺍﻭﻳﺔ ﻭﻋﺪﺩ ﺣﻘﻴﻘﻲ ﻳﻘﻊ ﺑﻴﻦ 0°ﻭ .\"180° ﺍﻟﻌﺒﺎﺭﺓ ﺃﻭ ﺍﻟﺘﺨﻤﻴﻦ ،ﻓﺈﻧﻬﺎ ﹸﺗﺴ ﹼﻤﻰ ﻧﻈﺮﻳﺔ .ﻭﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻨﻈﺮﻳﺔ - ﻭﺗﻨﺺ ﻣﺴ ﹼﻠﻤﺔ ﺟﻤﻊ ﺍﻟﺰﻭﺍﻳﺎ ﻋﻠﻰ ﺃﻧﻪ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﻘﻄﺔ Rﺩﺍﺧﻞ ∠PQS ﻣﺜﻠﻬﺎ ﻣﺜﻞ ﺍﻟﺘﻌﺮﻳﻔﺎﺕ ﺃﻭ ﺍﻟﻤﺴﻠﻤﺎﺕ -ﻟﺘﺒﺮﻳﺮ ﺻﺤﺔ ﻋﺒﺎﺭﺍﺕ ﺃﺧﺮ. ﻓﺈﻥ. m∠PQR + m∠RQS = m∠PQS : ﻭﺍﻟﺒﺮﻫﺎﻥ ﺩﻟﻴﻞ ﻣﻨﻄﻘﻲ ،ﺣﻴﺚ ﺗﺒﺮﺭ ﺻﺤﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻓﻴﻪ ﺑﻌﺒﺎﺭﺓ ﺗﻢ ﻗﺒﻮﻟﻬﺎ ﻋﻠﻰ ﺃﻧﻬﺎ ﺻﺤﻴﺤﺔ .ﻭﻣﻦ ﺃﺷﻜﺎﻝ ﺍﻟﺒﺮﻫﺎﻥ :ﺍﻟﺒﺮﻫﺎ ﹸﻥ ﺍﻟﺤﺮ ،ﻭﻫﻮ ﺗﺒﺮﻳﺮ ﻭﺍﻟﻌﻜﺲ ﺻﺤﻴﺢ ﺃﻳ ﹰﻀﺎ. ﻛﺘﺎﺑﻲ ﻟﺼﺤﺔ ﺗﺨﻤﻴﻦ ،ﻭﻳﺒ ﹼﻴﻦ ﺍﻟﺒﺮﻫﺎﻥ ﺻﺤﺔ ﻣﺎ ﹸﻳﺮﺍﺩ ﺇﺛﺒﺎﺗﻪ ﻭﻳﻄ ﹼﻮﺭ ﻧﻈﺎ ﹰﻣﺎ ﻣﻦ ﺍﻟﺘﺒﺮﻳﺮﺍﺕ ﺍﻻﺳﺘﻨﺘﺎﺟﻴﺔ. 10F 1
Reasoning and Proof ﺳﺎﺑ ﹰﻘﺎ ﺗﻌ ﱠﻠﻢ ﺍﻟﻄﻼﺏ ﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﻌﻠﻤﻴﺔ ،ﻭﺳﻮﻑ ﻳﻀﻌﻮﻥ ﺗﺨﻤﻴﻨﺎﺕ ﻳﺮﺑﻄﻮﻥ ﻣﻦ ﺧﻼﻟﻬﺎ ﺑﻴﻦ ﻣﺎ ﺗﻌﻠﻤﻮﻩ ،ﻭﻣﺎ ﺳﻴﺘﻌﻠﻤﻮﻧﻪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻔﺼﻞ. • ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺍﻟﺒﺤﺚ ﻋﻦ ﻣﻌﻨﻰ ﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﻌﻠﻤﻴﺔ ﻭﻋﻨﺎﺻﺮﻫﺎ ،ﻭﺷﺠﻌﻬﻢ ﻋﻠﻰ ﺍﺳﺘﻌﻤﺎﻝ ﻣﻼﺣﻈﺎﺗﻬﻢ ﺃﻭ ﺍﻟﺮﺟﻮﻉ ﺇﻟﻰ ﺍﻟﻜﺘﺐ ﺍﻟﺘﻲ ﺩﺭﺳﻮﻫﺎ ﻓﻲ ﺍﻟﺼﻔﻮﻑ ﺍﻟﺴﺎﺑﻘﺔ. • ﻭ ﱢﺯﻉ ﺍﻟﻄﻼﺏ ﻣﺠﻤﻮﻋﺎﺕ ،ﺑﺤﻴﺚ ﺗﺨﺘﺎﺭ ﻛﻞ ﻣﺠﻤﻮﻋﺔ ﻧﻈﺮﻳﺔ ﻋﻠﻤﻴﺔ ،ﻭﺗﺤﺪﺩ ﻓﺮﺿﻴﺎﺗﻬﺎ ،ﻭﺍﻟﺘﺠﺎﺭﺏ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺻﺤﺘﻬﺎ ،ﻭﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺍﻟﺘﻮﺻﻞ ﺇﻟﻴﻬﺎ. • ﺍﻃﻠﺐ ﺇﻟﻰ ﻛﻞ ﻣﺠﻤﻮﻋﺔ ﺷﺮﺡ ﺗﺼﻤﻴﻢ ﺗﺠﺮﺑﺔ ﻣﻤﻜﻨﺔ ،ﻋﻠﻰ ﺃﻥ ﺗﺘﻀﻤﻦ ﺍﻟﻤﺘﻐﻴﺮﺍﺕ ﺍﻟﺘﻲ ﺳﺘﺆﺧﺬ ﻓﻲ ﺍﻟﺤﺴﺒﺎﻥ ،ﻭﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﺘﻲ ﺳ ﹸﺘﺠﻤﻊ ﺑﻬﺎ ﺍﻟﺒﻴﺎﻧﺎﺕ ،ﻭﻃﺮﻳﻘﺔ ﺗﺪﻭﻳﻨﻬﺎ، 1 ﻭﻛﻴﻔﻴﺔ ﻣﻌﺎﻟﺠﺔ ﻧﺘﺎﺋﺞ ﻫﺬﻩ ﺍﻟﺘﺠﺮﺑﺔ 1 ﻭﺗﺤﻠﻴﻠﻬﺎ. 3 2 • ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺼﻔﻮﺍ ﻛﻴﻒ ﻳﻤﻜﻦ ﻟﻠﻨﻈﺮﻳﺎﺕ ﺍﻟﻌﻠﻤﻴﺔ ﺍﻟﺘﻲ ﺍﺧﺘﺎﺭﻭﻫﺎ ﺍﻟﺘﻨﺒﺆ ¿ÉgÈdGh ôj ÈàdG äGOôØŸG ﺑﺴﻠﻮﻙ ﺃﻭ ﻋﻤﻠﻴﺔ ﻣﻌﻴﻨﺔ ،ﻭﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ ﺃﻥ ôjÈàdG ﻳﻘﺎﺭﻧﻮﺍ ﺑﻴﻦ ﺃﻧﻮﺍﻉ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﻤﺨﺘﻠﻔﺔ ،ﻭﺃﻥ ≥£æŸG ﻳﻌﺮﻓﻮﺍ ﺃﻧﻬﻢ ﻋﻨﺪﻣﺎ ﻳﺘﻮﺻﻠﻮﻥ ﺇﻟﻰ ﺍﺳﺘﻨﺘﺎﺝ áä«GWQÉôѰ©ûddGG ¿ÉgÈdG ﻣﻦ ﺗﺠﺮﺑﺔ ،ﻓﺈﻧﻬﻢ ﻳﻜ ﹼﻮﻧﻮﻥ ﺗﻌﻤﻴ ﹰﻤﺎ ،ﻭﻋﻨﺪﻣﺎ 1 10 ﻳﺘﻨﺒﺆﻭﻥ ﺑﺴﻠﻮﻙ ﻣﻌﻴﻦ ،ﻓﺈﻧﻬﻢ ﻳﺘﻮﺻﻠﻮﻥ ﺇﻟﻰ ﺍﺳﺘﻨﺘﺎﺝ ﺃﻛﺜﺮ ﺗﺤﺪﻳ ﹰﺪﺍ. ﻗ ﹼﺪﻡ ﻣﻔﺮﺩﺍﺕ ﺍﻟﻔﺼﻞ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﺮﻳﻂ ﺍﻟﻤﻨﺎﺳﺐ ﻋﻨﺪ ﺃﻥ ﻳﻜﺘﺐ ﺍﻟﻄﻼﺏ ﻋﻦ ﺍﻟﺘﺒﺮﻳﺮ ﻭﺍﻟﺒﺮﻫﺎﻥ. ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺪ ﱢﻭﻧﻮﺍ ﻣﻼﺣﻈﺎﺗﻬﻢ ﺍﻟﻨﻤﻂ ﺍﻵﺗﻲ: ﺩﺭﺍﺳﺔ ﺍﻟﻄﻼﺏ ﻛﻞ ﺩﺭﺱ ﻓﻲ ﻫﺬﺍ ﺍﻟﻔﺼﻞ ،ﻭﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﻀﻴﻔﻮﺍ ﺍﻟﻤﻔﺮﺩﺍﺕ ﺍﻟﺠﺪﻳﺪﺓ ﺗﺤﺖ ﺷﺮﻳﻂ ﺍﻟﻤﻔﺮﺩﺍﺕ ﺗﺤﺖ ﻛﻞ ﺷﺮﻳﻂ ﻓﻲ ﻣﻄﻮﻳﺎﺗﻬﻢ ﺧﻼﻝ ﺩﺭﺍﺳﺘﻬﻢ ﺍﻟﺘﻌﺮﻳﻒ :ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﻓﻲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺔ ﻛﻞ ﺩﺭﺱ. ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﻟﻠﻔﺼﻞ .1ﻭ ﹼﺟﻪ ﺍﻟﻄﻼﺏ ﺇﻟﻰ ﻛﺘﺎﺑﺔ ﺍﻟﻤﻼﺣﻈﺎﺕ ﻓﻲ ﺃﺛﻨﺎﺀ ﻗﺮﺍﺀﺗﻬﻢ ﺍﻟﺪﺭﺱ ﺃﻭ ﺳﻤﺎﻋﻬﻢ ﺍﻟﺸﺮﺡ ،ﻋﻠﻰ ﺃﻥ ﺗﺘﻀﻤﻦ \"ﺇﺫﺍ ...ﻓﺈﻥ ،\"...ﻭﺍﻟ ﹶﻔﺮﺽ ﻫﻮ ﺍﻟﺠﻤﻠﺔ ﺍﻟﺘﻲ ﺗﻠﻲ ﻛﻠﻤﺔ )ﺇﺫﺍ( ﻣﺒﺎﺷﺮ ﹰﺓ .ﻭﺍﻟﻨﺘﻴﺠﺔ ﻫﻲ ﻧﻤﻮﺫﺝ ﺑﻨﺎﺀ ﺍﻟﻤﻔﺮﺩﺍﺕ ،ﺹ ). (9 ﻫﺬﻩ ﺍﻟﻤﻼﺣﻈﺎﺕ ﺗﻌﺮﻳﻔﺎﺕ ﺍﻟﻤﺼﻄﻠﺤﺎﺕ ﻭﺍﻟﻤﻔﺎﻫﻴﻢ ﻳﻜﻤﻞ ﺍﻟﻄﻼﺏ ﻫﺬﺍ ﺍﻟﻨﻤﻮﺫﺝ ﺑﻜﺘﺎﺑﺔ ﺗﻌﺮﻳﻒ ﻛﻞ ﻣﻔﺮﺩﺓ ﺍﻟﺠﻤﻠﺔ ﺍﻟﺘﻲ ﺗﻠﻲ ﻛﻠﻤﺔ )ﻓﺈﻥ( ﻣﺒﺎﺷﺮﺓ. ﺟﺪﻳﺪﺓ ﺗﻈﻬﺮ ﻟﻬﻢ ﻓﻲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺔ ﺍﻟﻔﺼﻞ ﺃﻭ ﻣﺜﺎﻝ ﻋﻠﻴﻬﺎ، ﺍﻷﺳﺎﺳﻴﺔ ،ﻭﺷ ﱢﺠﻌﻬﻢ ﻋﻠﻰ ﺍﻟﺒﺤﺚ ﻋﻦ ﺃﻣﺜﻠﺔ ﻋﻠﻰ ﻛﻞ ﻧﻮﻉ ﻭﻳﺴﺘﻔﻴﺪﻭﻥ ﻣﻦ ﺫﻟﻚ ﻓﻲ ﺃﺛﻨﺎﺀ ﺍﻟﻤﺮﺍﺟﻌﺔ ﻭﺍﻻﺳﺘﻌﺪﺍﺩ ﻣﻦ ﺃﻧﻮﺍﻉ ﺍﻟﺘﺒﺮﻳﺮﺍﺕ ﺍﻟﻤﻨﻄﻘﻴﺔ ،ﻭﺗﺪﻭﻳﻨﻬﺎ ﺧﻠﻒ ﺻﻔﺤﺎﺕ ﻣﺜﺎﻝ :ﺇﺫﺍ ﺃﻧﻬﻴﺖ ﻭﺍﺟﺒﺎﺗﻚ ﺍﻟﻤﻨﺰﻟﻴﺔ ،ﻓﺈﻧﻪ ﻳﻤﻜﻨﻚ ﻣﺘﺎﺑﻌﺔ ﺑﺮﺍﻣﺞ ﺍﻟﺘﻠﻔﺎﺯ. ﻻﺧﺘﺒﺎﺭ ﺍﻟﻔﺼﻞ. ﻣﻄﻮﻳﺎﺗﻬﻢ. ﺳﺆﺍﻝ :ﻫﻞ ﻫﺬﻩ ﺍﻟﻌﺒﺎﺭﺓ ﻋﻠﻰ ﺻﻮﺭﺓ \"ﺇﺫﺍ ...ﻓﺈﻥ...؟ ﻧﻌﻢ .ﻣﺎ ﺍﻟ ﹶﻔﺮﺽ؟ ﺃﻧﻬﻴﺖ ﻭﺍﺟﺒﺎﺗﻚ ﺍﻟﻤﻨﺰﻟﻴﺔ .ﻣﺎ ﺍﻟﻨﺘﻴﺠﺔ؟ﻳﻤﻜﻨﻚ ﻣﺘﺎﺑﻌﺔ ﺑﺮﺍﻣﺞ ﺍﻟﺘﻠﻔﺎﺯ. 1 10
1 1 1 ﺍﺳﺘﻌﻤﻞ ﻧﺘﺎﺋﺞ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﺴﺮﻳﻊ ﻭﻣﺨﻄﻂ ﺍﻟﻤﻌﺎﻟﺠﺔ؛ ﻟﻤﺴﺎﻋﺪﺗﻚ ﻋﻠﻰ ﺗﺤﺪﻳﺪ ﻣﺴﺘﻮ \" ﻓﻘﻢ... ﻭﺍﻟﻌﺒﺎﺭﺓ \"ﺇﺫﺍ.ﺍﻟﻤﻌﺎﻟﺠﺔ ﺍﻟﻤﻨﺎﺳﺐ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺗﺴﺎﻋﺪﻙ ﻋﻠﻰ ﺗﺤﺪﻳﺪ ﺍﻟﻤﺴﺘﻮ 1 (1-1 )ﻳﺴﺘﻌﻤﻞ ﻣﻊ ﺍﻟﺪﺭﺱ ﻭﺍﻗﺘﺮﺍﺡ ﻣﺼﺎﺩﺭ ﻟﻜﻞ،ﺍﻟﻤﻨﺎﺳﺐ ﻟﻠﻤﻌﺎﻟﺠﺔ . ﺍﻟ ﹸﻤﻌﻄﺎﺓx ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻣﻤﺎ ﻳﺄﺗﻲ ﻋﻨﺪ ﻗﻴﻤﺔ .ﻣﺴﺘﻮ . x = 6 ﺇﺫﺍ ﻛﺎﻧﺖx2 – 2x + 11 ﺃﻭﺟﺪ ﻗﻴﻤﺔ 180 (x – 2) , x = 8 (2 31 4x + 7 , x = 6 (1 1080 14 5x2 – 3x , x = 2 (3 x2 – 2x + 11 5 _x(x - 3) , x = 5 (4 x=6 = (6)2 – 2(6) + 11 2 = 36 – 2(6) + 11 12 x + (x + 1) + (x + 2) , x = 3 (5 = 36 – 12 + 11 = 35 :ﺍﻛﺘﺐ ﻛﻞ ﺗﻌﺒﻴﺮ ﻟﻔﻈﻲ ﻣﻤﺎ ﻳﺄﺗﻲ ﻋﻠﻰ ﺻﻮﺭﺓ ﻋﺒﺎﺭﺓ ﺟﺒﺮﻳﺔ 5x - 8 .( ﺃﻗﻞ ﻣﻦ ﺧﻤﺴﺔ ﺃﻣﺜﺎﻝ ﻋﺪﺩ ﺑﺜﻤﺎﻧﻴﺔ6 x2+ 3 .( ﺃﻛﺜﺮ ﻣﻦ ﻣﺮﺑﻊ ﻋﺪﺩ ﺑﺜﻼﺛﺔ7 2 (1-8 ﺇﻟﻰ1-6 ﺴﺘﻌﻤﻞ ﻣﻊ ﺍﻟﺪﺭﻭﺱ )ﻳ:ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻲ 5 8x – 10 = 6x (8 1 . 36x – 14 = 16x + 58 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 36x – 14 = 16x + 58 -7 18 + 7x = 10x + 39 (9 25% 16x 36x – 14 – 16x = 16x + 58 –16x 2.3 3(11x – 7) = 13x + 25 (10 20x – 14 = 58 1.1 _3 x + 1 = 5 – 2x (11 14 20x – 14 + 14 = 58 + 14 2 ﺭﻳﺎ ﹰﻻ؛ ﻟﺘﻘﺮﺃﻫﺎ52 ﻛﺘﺐ ﺑﻘﻴﻤﺔ4 ﺍﺷﺘﺮﺕ ﻋﺎﺋﺸﺔ (12 20x = 72 20 _20x ، ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻜﺘﺐ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﺴﻌﺮ.ﻓﻲ ﺃﺛﻨﺎﺀ ﺍﻹﺟﺎﺯﺓ ﺍﻟﺼﻴﻔﻴﺔ _72 (2) 20 = . ﺛﻢ ﹸﺣ ﱠﻠﻬﺎ،ﻓﺎﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻹﻳﺠﺎﺩ ﺛﻤﻦ ﺍﻟﻜﺘﺎﺏ ﺍﻟﻮﺍﺣﺪ (10) 20 ﺭﻳﺎ ﹰﻻ13 ؛4x = 52 x = 3.6 3 (1-8 )ﻳﺴﺘﻌﻤﻞ ﻣﻊ ﺍﻟﺪﺭﺱ : ﻟﻺﺟﺎﺑﺔ ﻋﻤﺎ ﻳﺄﺗﻲ3 ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻓﻲ ﻣﺜﺎﻝ www.obeikaneducation.com C D ، m∠BXA = (3x + 5)° :ﺇﺫﺍ ﻛﺎﻥ .( ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﻨﻔﺮﺟﺘﻴﻦ ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ13 B XE .x ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ،m∠DXE = 56° ∠BXD, ∠AXE A m∠BXA = m∠DXE 3x + 5 = 56 ∠CXD, ∠DXE .( ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺘﺎﻣﺘﻴﻦ14 2 3x = 51 50% x = 17 .( ﻋ ﱢﻴﻦ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺠﺎﻭﺭﺗﻴﻦ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﻓﻲ ﺁﻥ ﻭﺍﺣﺪ15 5 ∠DXE, ∠EXA 3 www.obeikaneducation.com ،m∠EXA = (3x + 2)° ﻭm∠DXB = 116° :( ﺇﺫﺍ ﻛﺎﻥ16 38 .x ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ m∠CXD = (6x – 13)° :( ﺇﺫﺍ ﻛﺎﻥ17 6 .x ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ،m∠DXE = (10x + 7)° ﻭ www.obeikaneducation.com 2 11 1 1 11 1 1
1- 1 Inductive Reasoning and Conjection 1 ﻳﺘﻢ ﺗﺤﻠﻴﻞ ﺇﺟﺎﺑﺎﺕ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻷﺷﺨﺎﺹ ﻋﻦ ﺃﺳﺌﻠﺔ،ﻓﻲ ﺃﺑﺤﺎﺙ ﺍﻟﺘﺴﻮﻳﻖ ﺛﻢ ﻳﺘﻢ ﺍﻟﺒﺤﺚ ﻋﻦ ﻧﻤﻄﻴﺔ ﻣﻌﻴﻨﺔ ﻓﻲ ﺍﻹﺟﺎﺑﺎﺕ ﺣﺘﻰ،ﻣﺤﺪﺩﺓ ﺣﻮﻝ ﺍﻟﻤﻨﺘﺞ . ﻭﺗﺴﻤﻰ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ.ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻧﺘﻴﺠﺔ 1-1 ،ﺗﻤﺜﻴﻞ ﺍﻟﻌﻼﻗﺎﺕ ﺑﻴﻦ ﺍﻟﻜﻤﻴﺎﺕ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻫﻮ ﺗﺒﺮﻳﺮ ﹸﺗﺴﺘﻌﻤﻞ ﻓﻴﻪ ﺃﻣﺜﻠﺔ ﻣﺤﺪﺩﺓ ﻟﻠﻮﺻﻮﻝ ، ﺑﺎﺳﺘﻌﻤﺎﻝ ﻧﻤﺎﺫﺝ ﺣﺴﻴﺔ ﻭﺟﺪﺍﻭﻝ ﻭﻭﺻﻒ،ﻭﺗﻤﺜﻴﻼﺕ ﺑﻴﺎﻧﻴﺔ ﻭﻣﺨﻄﻄﺎﺕ ﻓﺈﻧﻚ ﺗﺴﺘﻌﻤﻞ، ﻭﻋﻨﺪﻣﺎ ﺗﻔﺘﺮﺽ ﺍﺳﺘﻤﺮﺍﺭ ﻧﻤﻂ ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﻮﺗﻴﺮﺓ.ﺇﻟﻰ ﻧﺘﻴﺠﺔ ﻭ ﹸﺗﺴ ﹼﻤﻰ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻨﻬﺎﺋﻴﺔ ﺍﻟﺘﻲ ﺗﻮﺻﻠﺖ ﺇﻟﻴﻬﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ،ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ . ﻭﻣﻌﺎﺩﻻﺕ، ﻟﻔﻈﻲ 1-1 12345 . ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﺗﺨﻤﻴ ﹰﻨﺎ qqqqq ﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ qqqqq ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻟﻜﺘﺎﺑﺔ qqqqq qqqqq .ﺗﺨﻤﻴﻦ qqqqq 1-1 qqqqq ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﻤﻨﻄﻘﻲ ﻹﺛﺒﺎﺕ ﺻﺤﺔ inductive reasoning .ﻋﺒﺎﺭﺍﺕ ﻭﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ q q 2 conjecture . “ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻗﺮﺍﺀﺓ ﻓﻘﺮﺓ ”ﻟﻤﺎﺫﺍ؟ counterexample www.obeikaneducation.com • ﻣﺎ ﺍﻷﺷﻴﺎﺀ ﺍﻟﺘﻲ ﺗﻬﻢ ﺑﺎﺣﺚ ﺍﻟﺘﺴﻮﻳﻖ؟ ﻣﻘﺎﺭﻧﺘﻪ، ﻣﺒﻴﻌﺎﺕ ﺍﻟﻤﻨﺘﺞ:ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ .ﺑﺎﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﻤﻨﺎﻓﺴﺔ 1 • ﻟﻤﺎﺫﺍ ﻳﻘﻮﻡ ﺍﻟﺒﺎﺣﺚ ﺑﺘﻮﺟﻴﻪ ﺍﻷﺳﺌﻠﺔ ﺇﻟﻰ . ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ،ﺍﻛﺘﺐ ﺗﺨﻤﻴ ﹰﻨﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻷﺷﺨﺎﺹ ﻓﻘﻂ؟ ...... ، ﺻﺒﺎ ﹰﺣﺎ10:30 ، ﺻﺒﺎ ﹰﺣﺎ9:50 ، ﺻﺒﺎ ﹰﺣﺎ9:10 ، ﺻﺒﺎ ﹰﺣﺎ8:30 :( ﻣﻮﺍﻋﻴﺪ ﻭﺻﻮﻝ ﺍﻟﺤﺎﻓﻼﺕ ﺇﻟﻰ ﻣﺤﻄﺔ ﺍﻟﺮﻛﻮﺏ ﻫﻲa ، ﻓﻲ ﻛﺜﻴﺮ ﻣﻦ ﺍﻷﺣﻴﺎﻥ:ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ ﻳﺼﻌﺐ ﺗﻮﺟﻴﻪ ﺍﻷﺳﺌﻠﺔ ﺇﻟﻰ ﺟﻤﻴﻊ . ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ1 ﻭﻟﺬﻟﻚ ﺗﻮ ﱠﺟﻪ ﺍﻷﺳﺌﻠﺔ ﺇﻟﻰ،ﺍﻟﻤﺴﺘﻬﻠﻜﻴﻦ ...... ﺻﺒﺎ ﹰﺣﺎ10:30 ، ﺻﺒﺎ ﹰﺣﺎ9:50 ، ﺻﺒﺎ ﹰﺣﺎ9:10 ، ﺻﺒﺎ ﹰﺣﺎ8:30 .ﻣﺠﻤﻮﻋﺔ ﻣﻤﺜﻠﺔ 40 40 40 . ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ2 ﻣﻮﻋﺪ ﻭﺻﻮﻝ. ﺩﻗﻴﻘﺔ ﻋﻦ ﻣﻮﻋﺪ ﻭﺻﻮﻝ ﺍﻟﺤﺎﻓﻠﺔ ﺍﻟﺘﻲ ﺳﺒﻘﺘﻬﺎ40 ﻳﺰﻳﺪ ﻣﻮﻋﺪ ﻭﺻﻮﻝ ﺍﻟﺤﺎﻓﻠﺔ . ﺻﺒﺎ ﹰﺣﺎ11:10 ﺩﻗﻴﻘﺔ ﺃﻭ40 + ﺻﺒﺎ ﹰﺣﺎ10:30 ﺍﻟﺤﺎﻓﻠﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺳﻮﻑ ﻳﻜﻮﻥ (b 4 10 18 28 40 . . . . . . ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ 1 4 10 18 28 40 +6 +8 +10 +12 6, 8, 10, 12, ...... 354- 430 ؛ ﻟﺬﺍ ﺳﻴﺰﻳﺪ ﻋﺪﺩ ﺍﻟﻘﻄﻊ6, 8, 10, 12... ﺗﺰﺩﺍﺩ ﺃﻋﺪﺍﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺑﻤﻘﺪﺍﺭ: ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ 2 ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ؛ ﻭﻋﻠﻴﻪ ﻓﺈﻥ14 ﺃﻭ2 + 12 ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﻋﻠﻰ ﺳﺎﺑﻘﻪ ﺑﻤﻘﺪﺍﺭ . ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ54 ﺃﻭ14 + 40 ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﺳﻴﺤﺘﻮﻱ ﻋﻠﻰ . ﺍﺭﺳﻢ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ؛ ﻟﻜﻲ ﺗﺘﺤﻘﻖ ﻣﻦ ﺻﺤﺔ ﺗﺨﻤﻴﻨﻚ 54 1 12 1-1 (14, 15) • (15, 18) • (14, 15, 18) • (6) • (6) • (6) • (6) • (9) • (6) • (8) • (10) • (8) • (9) • (9) • (10) • 1 12
(1Cﻳﻘﺴﻢ ﻛﻞ ﻣﺜﻠﺚ ﻣﻈﻠﻞ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ ﺇﻟﻰ ✓ ﺃﺭﺑﻌﺔ ﻣﺜﻠﺜﺎﺕ ﻣﺘﻄﺎﺑﻘﺔ ﺍﻷﺿﻼﻉ ﻳﺘﻮﺳﻄﻬﺎ ﻣﺜﻠﺚ ﺃﺑﻴﺾ. ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. (1Aﺍﻟﺸﻬﺮ ﺍﻟﺘﺎﻟﻲ ﻓﻲ (1Aﻣﺘﺘﺎﺑﻌﺔ ﺃﺷﻬﺮ :ﺻﻔﺮ ،ﺭﺟﺐ ،ﺫﻭ ﺍﻟﺤﺠﺔ ،ﺟﻤﺎﺩ ﺍﻷﻭﻟﻰ...... ، ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﻳﺄﺗﻲ ﺑﻌﺪ ﺧﻤﺴﺔ 10, 4, -2, -8, ...... (1B ﺃﺷﻬﺮ ﻣﻦ ﺍﻟﺸﻬﺮ ﺍﻟﺴﺎﺑﻖ؛ 1, 3 ﻳﺒ ﱢﻴﻨﺎﻥ ﻛﻴﻔﻴﺔ ﻭﺿﻊ ﺗﺨﻤﻴﻨﺎﺕ ﺷﻮﺍﻝ. ﺣﻮﻝ ﺃﻧﻤﺎﻁ ﻣﻌﻄﺎﺓ. (1Bﺍﻟﻌﺪﺩ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ (1C 2 ﻳﺒﻴﻦ ﻛﻴﻔﻴﺔ ﻭﺿﻊ ﺗﺨﻤﻴﻦ ﺣﻮﻝ ﻳﻘﻞ ﺑﻤﻘﺪﺍﺭ 6ﻋﻦ ﺍﻟﻌﺪﺩ ﺷﻜﻞ ﻭﺍﺣﺪ. ﺍﻟﺴﺎﺑﻖ؛ -14 ✓ 139 ...... ﺍﺳﺘﻌﻤﻞ ﺗﻤﺎﺭﻳﻦ \"ﺗﺤﻘﻖ ﻣﻦ ﻓﻬﻤﻚ\" ﺑﻌﺪ ﻛﻞ 27 ﻣﺜﺎﻝ؛ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﻣﺪ ﻓﻬﻢ ﺍﻟﻄﻠﺒﺔ ﺍﻟﻤﻔﺎﻫﻴﻢ. ﻟﻮﺿﻊ ﺗﺨﻤﻴﻨﺎﺕ ﺟﺒﺮﻳﺔ ﺃﻭ ﻫﻨﺪﺳﻴﺔ ﻳﺠﺐ ﺃﻥ ﺗﻘﺪﻡ ﺃﻣﺜﻠﺔ. 2 ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻟﻜ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﻭﺃﻋ ﹺﻂ ﺃﻣﺜﻠﺔ ﻋﺪﺩﻳﺔ ﺃﻭ ﺍﺭﺳﻢ ﺃﺷﻜﺎ ﹰﻻ ﺗﺴﺎﻋﺪ ﻋﻠﻰ ﺍﻟﻮﺻﻮﻝ ﻟﻬﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. (aﻧﺎﺗﺞ ﺟﻤﻊ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ. 1ﺍﻛﺘﺐ ﺃﻣﺜﻠﺔ. ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ 1 1 + 3 = 4 , 1 + 5 = 6 , 3 + 5 = 8 , 7 + 9 = 16 ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ 2ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ. ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. ﻻﺣﻆ ﺃﻥ ﺍﻷﻋﺪﺍﺩ 4, 6, 8, 16ﺟﻤﻴﻌﻬﺎ ﺯﻭﺟﻴﺔ. 2, 4, 12, 48, 240 (a 3ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ. ﻧﺎﺗﺞ ﺟﻤﻊ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ ﻫﻮ ﻋﺪﺩ ﺯﻭﺟﻲ. ﺍﻟﺘﺨﻤﻴﻦ :ﺍﺿﺮﺏ ﺍﻟﺤﺪ nﻓﻲ (bﺍﻟﻘﻄﻌﺘﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺘﺎﻥ ﺍﻟﻮﺍﺻﻠﺘﺎﻥ ﺑﻴﻦ ﻛﻞ ﺭﺃﺳﻴﻦ ﻣﺘﻘﺎﺑﻠﻴﻦ ﻓﻲ ﺍﻟﻤﺴﺘﻄﻴﻞ. ﺍﻟﻌﺪﺩ n + 1؛ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ 1 1-5 ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻟﻪ؛ 1440 (b 39 ... 2ﻻﺣﻆ ﺃﻥ ﺃﻃﻮﺍﻝ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻮﺍﺻﻠﺔ ﺑﻴﻦ ﻛﻞ ﺭﺃﺳﻴﻦ ﻣﺘﻘﺎﺑﻠﻴﻦ ﻓﻲ ﻛﻞ ﻣﺴﺘﻄﻴﻞ ﺗﺒﺪﻭ ﻣﺘﺴﺎﻭﻳﺔ .ﺍﺳﺘﻌﻤﻞ ﺍﻟﻤﺴﻄﺮﺓ ﺃﻭ ﺍﻟﻔﺮﺟﺎﺭ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺫﻟﻚ. 18 ﺍﻟﺘﺨﻤﻴﻦ :ﺍﺟﻤﻊ ﺍﻟﻌﺪﺩ 3n + 3 3ﺍﻟﺘﺨﻤﻴﻦ :ﺍﻟﻘﻄﻌﺘﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺘﺎﻥ ﺍﻟﻮﺍﺻﻠﺘﺎﻥ ﺑﻴﻦ ﻛﻞ ﺭﺃﺳﻴﻦ ﻣﺘﻘﺎﺑﻠﻴﻦ ﻓﻲ ﺍﻟﻤﺴﺘﻄﻴﻞ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ. ﺇﻟﻰ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ ﺫﻱ ﺍﻟﺘﺮﺗﻴﺐ n؛ (2Aﻧﺎﺗﺞ ﺟﻤﻊ ﻋﺪﺩﻳﻦ ﺯﻭﺟﻴﻴﻦ ﻋﺪﺩ ﺯﻭﺟﻲ؛ ﺃﻣﺜﻠﺔ: ✓ (2Cﻣﺠﻤﻮﻉ ﻣﺮﺑ ﹶﻌﻲ ﻋﺪﺩﻳﻦ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﻛﻠﻴﻴﻦ ﻣﺘﺘﺎﻟﻴﻴﻦ ﻋﺪﺩ ﻓﺮﺩﻱ؛ 2 + 4 = 6, 8 + 10 = 18, 20 + 16 = 36 (2Aﻧﺎﺗﺞ ﺟﻤﻊ ﻋﺪﺩﻳﻦ ﺯﻭﺟﻴﻴﻦ. ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ؛ 30 ﺃﻣﺜﻠﺔ: (2Bﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ABﻭ ، EFﺇﺫﺍ ﻛﺎﻧﺖ AB = CD :ﻭ CD = EFﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ 12 + 22 = 5, 2 (2Cﻣﺠﻤﻮﻉ ﻣﺮﺑ ﹶﻌﻲ ﻋﺪﺩﻳﻦ ﻛﻠﻴﻴﻦ ﻣﺘﺘﺎﻟﻴﻴﻦ. 22 + 32 = 13, 52 + 62 = 61 ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ 13 1- 1 ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﻭﺃﻋﻂ ﺃﻣﺜﻠﺔ ﻋﺪﺩﻳﺔ ﺃﻭ ﺍﺭﺳﻢ ﺃﺷﻜﺎ ﹰﻻ ﺗﺴﺎﻋﺪ ﻋﻠﻰ AB = EF (2B؛ ﺃﻣﺜﻠﺔ: ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. (aﻣﺠﻤﻮﻉﻋﺪﺩﺯﻭﺟﻲﻭﻋﺪﺩﻓﺮﺩﻱ. ﺃﻋﻂ ﺍﻟﻄﻼﺏ F ﺗﺨﻤﻴﻦ :ﻣﺠﻤﻮﻉ ﺍﻟﻌﺪﺩ ﺍﻟﺰﻭﺟﻲ ﻋﺪﺓ ﺃﻧﻤﺎﻁ ،ﻭﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ ﺗﺨﻤﻴﻦ A C ﻭﺍﻟﻌﺪﺩ ﺍﻟﻔﺮﺩﻱ ﻳﻜﻮﻥ ﻓﺮﺩ ﹰﹼﻳﺎ؛ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ ،ﺛﻢ ﺍﺧﺘﺮ E E 3 + 4 = 7 , 5 + 10 = 15 ﺑﻌﺾ ﺍﻟﻄﻼﺏ ،ﻭﺩﻋﻬﻢ ﻳﻌﺮﺿﻮﺍ D (bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ : L, M, N ﺇﺟﺎﺑﺎﺗﻬﻢ ،ﻭﻳﺸﺮﺣﻮﺍ ﺗﺒﺮﻳﺮﺍﺗﻬﻢ ﺃﻣﺎﻡ A C LM = 20, MN = 6, LN = 14 ﺯﻣﻼﺋﻬﻢ. F BD B L NM 14 6 20 AB ﺍﻟﺘﺨﻤﻴﻦ :ﺍﻟﻨﻘﺎﻁ L , M , Nﺗﻘﻊ CD ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ. EF 13 1-1
ﺗﻌﺘﻤﺪ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﻓﻲ ﺍﻟﻤﻮﺍﻗﻒ ﺍﻟﺤﻴﺎﺗﻴﺔ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﻳﺘﻢ ﺟﻤﻌﻬﺎ ﺣﻮﻝ ﻣﻮﺿﻮﻉ ﺍﻟﺘﺨﻤﻴﻦ. 3 ﺍﻟﺠﺪﻭﻝ ﺃﺩﻧﺎﻩ ﻳﺒ ﱢﻴﻦ 3 ﻗﺎﻡ ﺻﺎﺣﺐ ﺻﺎﻟﻮﻥ ﺣﻼﻗﺔ ﺑﺠﻤﻊ ﻣﻌﻠﻮﻣﺎﺕ ﺣﻮﻝ ﻋﺪﺩ ﺍﻟﺰﺑﺎﺋﻦ ﺍﻟﺬﻳﻦ ﻳﺮﺗﺎﺩﻭﻥ ﺍﻟﺼﺎﻟﻮﻥ ﺃﻳﺎﻡ ﺍﻷﺭﺑﻌﺎﺀ ﻣﺒﻴﻌﺎﺕ ﻣﺤﻞ ﺗﺠﺎﺭﻱ ﻟﻸﺷﻬﺮ ﺍﻟﺜﻼﺛﺔ ﻭﺍﻟﺨﻤﻴﺲ ﻭﺍﻟﺠﻤﻌﺔ ﻣﺪﺓ ﺳﺘﺔ ﺃﺷﻬﺮ؛ ﻛﻲ ﻳﻘﺮﺭ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﻳﺠﺐ ﺯﻳﺎﺩﺓ ﻋﺪﺩ ﺍﻟﺤﻼﻗﻴﻦ ﺍﻟﻌﺎﻣﻠﻴﻦ ﻟﺪﻳﻪ ﻓﻲ ﺍﻷﻳﺎﻡ ﺍﻷﻭﻟﻰ ﻣﻦ ﺍﻓﺘﺘﺎﺣﻪ ،ﻭﻳﺮﻳﺪ ﺻﺎﺣﺒﻪ ﺃﻥ ﺍﻟﺜﻼﺛﺔ ﺍﻷﺧﻴﺮﺓ ﻣﻦ ﻛﻞ ﺃﺳﺒﻮﻉ. ﻳﺘﻮﻗﻊ ﻣﻘﺪﺍﺭ ﻣﺒﻴﻌﺎﺗﻪ ﻓﻲ ﺍﻟﺸﻬﺮ ﺍﻟﺮﺍﺑﻊ. 6 5 4 3 2 1 450 540 406 321 255 225 705 832 685 692 642 635 552 1987 746 712 652 658 603 1971 1810 1615 1548 1380 20000 (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ . 60000 1 180000 2000 ﺑﻤﺎ ﺃﻧﻚ ﺗﺒﺤﺚ ﻋﻦ ﻧﻤﻂ ﻟﻪ ﻋﻼﻗﺔ ﺑﺎﻟﺰﻣﻦ ،ﺇﺫﻥ 2 1800 ﺍﺳﺘﻌﻤﻞ ﺷﻜﻞ ﺍﻻﻧﺘﺸﺎﺭ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ، 1600 ﺑﺠﻌﻞ ﺍﻟﻤﺤﻮﺭ ﺍﻷﻓﻘﻲ ﻳﻤﺜﻞ ﺍﻷﺷﻬﺮ ﻭﺍﻟﻤﺤﻮﺭ 3 1400 ﺍﻟﺮﺃﺳﻲ ﻳﻤﺜﻞ ﻋﺪﺩ ﺍﻟﺰﺑﺎﺋﻦ .ﺍﺭﺳﻢ ﻛﻞ ﻣﺠﻤﻮﻋﺔ ﻣﻦ 1200 ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻟﻮﻥ ﻣﺨﺘﻠﻒ ،ﻭﺿﻊ ﻣﻔﺘﺎ ﹰﺣﺎ (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ 1000 ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ﻟﻠﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ. 800 600 (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ،ﻣﻔﺴ ﹰﺮﺍ ﻛﻴﻒ 400 1 23456 ﻳﺆﻳﺪ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. 200000 1 234 200 160000 120000 0 80000 ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ ﻓﻲ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ .ﻻﺣﻆ ﺃﻥ ﻋﺪﺩ 40000 ﺍﻟﺰﺑﺎﺋﻦ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻷﻳﺎﻡ ﺍﻟﺜﻼﺛﺔ ﻳﺒﺪﻭ ﺁﺧ ﹰﺬﺍ ﻓﻲ ﺍﻻﺯﺩﻳﺎﺩ 0 ﺑﻤﺮﻭﺭ ﺍﻷﺷﻬﺮ ،ﻛﻤﺎ ﺃﻥ ﺍﻟﻤﺠﻤﻮﻉ ﺍﻟﻜﻠﻲ ﻳﺰﺩﺍﺩ ﻛﻞ ﺷﻬﺮ ﻋﻦ ﺍﻟﺸﻬﺮ ﺍﻟﺴﺎﺑﻖ. ـ ﺱ ﺃﻡ ﻕﻝ ﻩـ 1 ﺑﻴﺎﻧﺎﺕ ﻫﺬﺍ ﺍﻟﻤﺴﺢ ﺗﺆﻳﺪ ﺗﺨﻤﻴﻦ ﺻﺎﺣﺐ ﺻﺎﻟﻮﻥ ﺍﻟﺤﻼﻗﺔ ﺑﺄﻥ ﺍﻟﻌﻤﻞ ﻓﻲ ﺍﻷﻳﺎﻡ ﺍﻟﺜﻼﺛﺔ ﺍﻷﺧﻴﺮﺓ ﻣﻦ ﻛﻞ (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻤﺒﻴﻌﺎﺕ ﺍﻷﺳﺒﻮﻉ ﺃﺳﺒﻮﻉ ﻳﺰﺩﺍﺩ؛ ﻣﻤﺎ ﻳﺘﻄﻠﺐ ﺯﻳﺎﺩﺓ ﻋﺪﺩ ﺍﻟﺤﻼﻗﻴﻦ ﺍﻟﻌﺎﻣﻠﻴﻦ ﻟﺪﻳﻪ ﻓﻲ ﻫﺬﻩ ﺍﻷﻳﺎﻡ. ﺍﻟﺮﺍﺑﻊ ،ﻭﺑ ﹼﺮﺭ ﻫﺬﺍ ﺍﻟﺘﻨﺒﺆ ﺃﻭ ﺍﻻﺩﻋﺎﺀ. ✓ ﺍﻟﺘﺨﻤﻴﻦ :ﺍﻟﻤﺒﻴﻌﺎﺕ ﻓﻲ ﻛﻞ ﺷﻬﺮ 20 1402 ﺗﺴﺎﻭﻱ ﺛﻼﺛﺔ ﺃﻣﺜﺎﻝ ﻣﺒﻴﻌﺎﺕ ﺍﻟﺸﻬﺮ 22 1407 (3ﻳﺒﻴﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺳﻌﺮ 29 1412 ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ ﻟﺬﺍ ﻓﺈﻥ ﺍﻟﻤﺒﻴﻌﺎﺕ 32 1417 ﻣﻨﺘﺞ ﺧﻼﻝ ﺍﻟﺴﻨﻮﺍﺕ ﻣﻦ 1402ﻫـ ﺇﻟﻰ 1427ﻫـ . ﺳﺘﻜﻮﻥ 540000ﺭﻳﺎﻝ ﻓﻲ ﺍﻟﺸﻬﺮ 37 1422 41 1427 (Aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ ﺍﻟﺮﺍﺑﻊ ﺗﻘﺮﻳ ﹰﺒﺎ. (Bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﺴﻌﺮ ﺍﻟﻤﻨﺘﺞ ﻋﺎﻡ 1432ﻫـ 46 .ﺭﻳﺎ ﹰﻻ ﺗﻘﺮﻳ ﹰﺒﺎ (Cﻫﻞ ﻣﻦ ﺍﻟﻤﻨﻄﻘﻲ ﺍﻟﻘﻮﻝ ﺑﺄﻥ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﺳﻴﺴﺘﻤﺮ ﺑﻤﺮﻭﺭ ﺍﻟﺰﻣﻦ؟ ﻭﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﻛﺬﻟﻚ ،ﻓﻜﻴﻒ ﺳﻴﺘﻐﻴﺮ؟ ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ 1 14 (3A 50 40 30 20 10 0 1402 1407 1412 1417 1422 1427 1432 (3Cﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻧﻌﻢ ،ﻫﺬﺍ ﺍﻻﺗﺠﺎﻩ ﺍﻟﻤﺘﺰﺍﻳﺪ ﻣﻌﻘﻮﻝ؛ ﻷﻧﻪ ﻣﻦ ﺍﻟﻤﺤﺘﻤﻞ ﺃﻥ ﻳﺴﺘﻤﺮ ﺳﻌﺮ ﺍﻟﻤﻨﺘﺞ ﻓﻲ ﺍﻟﺰﻳﺎﺩﺓ ﻋﻠﻰ ﻣﺮ ﺍﻟﺴﻨﻴﻦ. 1 14
ﺇﺛﺒﺎﺕ ﺻﺤﺔ ﺗﺨﻤﻴﻦ ﻣﻌﻴﻦ ﻟﻜﻞ ﺍﻟﺤﺎﻻﺕ ،ﻳﺘﻄﻠﺐ ﺗﻘﺪﻳ ﹶﻢ ﺑﺮﻫﺎﻥ ﻟﺬﻟﻚ ﺍﻟﺘﺨﻤﻴﻦ .ﺑﻴﻨﻤﺎ ﻹﺛﺒﺎﺕ ﻋﺪﻡ ﺻﺤﺔ ﺍﻟﺘﺨﻤﻴﻦ ﻳﻜﻔﻲ ﺗﻘﺪﻳﻢ ﻣﺜﺎﻝ ﻭﺍﺣﺪ ﻣﻌﺎﻛﺲ ﻟﻠﺘﺨﻤﻴﻦ ،ﻭﻗﺪ ﻳﻜﻮﻥ ﻋﺪ ﹰﺩﺍ ﺃﻭ ﺭﺳ ﹰﻤﺎ ﺃﻭ ﻋﺒﺎﺭﺓ ،ﻭﻫﺬﺍ ﺍﻟﻤﺜﺎﻝ ﺍﻟﻤﻌﺎﻛﺲ ﹸﻳﺴﻤﻰ ﺍﻟﻤﺜﺎﻝ ﺍﻟﻤﻀﺎﺩ. 4 ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺨﺘﺒﺮﻭﺍ ﺃﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻳﺒ ﹼﻴﻦ ﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺧﺎﻃﺌﺔ. ﺟﻤﻴﻊ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﺤﺴﺎﺑﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ ﺑﻤﺎ ﻓﻴﻬﺎ ﺍﻟﺠﺬﻭﺭ ﻭﺍﻟﻘﻮ ،ﻋﻨﺪ ﺍﻟﺒﺤﺚ ﻋﻦ ﺍﻷﻧﻤﺎﻁ (aﺇﺫﺍ ﻛﺎﻥ nﻋﺪ ﹰﺩﺍ ﺣﻘﻴﻘ ﹰﹼﻴﺎ ،ﻓﺈﻥ .n2 > n ﺇﺫﺍ ﻛﺎﻥ nﻳﺴﺎﻭﻱ ،1ﻓﺈﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃﺊ؛ ﻷﻥ 12 ≯ 1 A, B, C,... ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻟﻌﺪﺩﻳﺔ ،ﻭﺑ ﱢﻴﻦ ﻟﻬﻢ ﺃﻧﻪ ﻗﺪ ﻳﺘﻀﻤﻦ ﺍﻟﻨﻤﻂ ﺍﺳﺘﻌﻤﺎﻝ ﻋﻤﻠﻴﺘﻴﻦ ﺣﺴﺎﺑ ﱠﻴﺘﻴﻦ. __ A, B (bﺇﺫﺍ ﻛﺎﻥ ،JK = KLﻓﺈﻥ Kﻣﻨﺘﺼﻒ J L . JL AB BA ﻋﻨﺪﻣﺎ ﻻ ﺗﻘﻊ J, K, Lﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ، 4 ﻳﺒ ﹼﻴﻦ ﻛﺘﺎﺑﺔ ﻣﺜﺎﻝ ﻣﻀﺎ ﱟﺩ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﻳﻜﻮﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃ ﹰﺌﺎ .ﻓﻔﻲ ﺍﻟﺸ__ﻜ_ﻞ ﺍﻟﻤﺠﺎﻭﺭ K ، JK = KL ABA, B ﺍﻟﻤﻌﻠﻮﻣﺎﺕ ﺍﻟﻤﻌﻄﺎﺓ. ﻭﻟﻜﻦ Kﻟﻴﺴﺖ ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ . JL ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺇﺫﺍ ﻛﺎﻥ ،n = –4ﻓﺈﻥ ،–n = –(–4) = 4ﻭﻫﺬﺍ ﻋﺪﺩ ﻣﻮﺟﺐ. ✓ (4Aﺇﺫﺍ ﻛﺎﻥ nﻋﺪ ﹰﺩﺍ ﺣﻘﻴﻘ ﹰﹼﻴﺎ ،ﻓﺈﻥ –nﻳﻜﻮﻥ ﺳﺎﻟ ﹰﺒﺎ. (4Bﺇﺫﺍ ﻛﺎﻥ ، ∠ABE ∠DBC :ﻓﺈﻥ ∠ABEﻭ ∠DBCﻣﺘﻘﺎﺑﻠﺘﺎﻥ ﺑﺎﻟﺮﺃﺱ .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ ✓ 4ﻳﺒ ﹼﻴﻦ ﺍﻟﺠﺪﻭﻝ ﺃﺩﻧﺎﻩ ﻣﻌﺪﻻﺕ ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ: 1 ﺍﻟﺒﻄﺎﻟﺔ ﺑﻴﻦ ﺍﻟﻨﺴﺎﺀ ﺍﻟﺴﻌﻮﺩﻳﺎﺕ ﻓﻲ (1ﺍﻟﺘﻜﻠﻔﺔ 4.50 :ﺭﻳﺎﻻ ﹴﺕ 6.75 ،ﺭﻳﺎﻻ ﹴﺕ 9.00 ،ﺭﻳﺎﻻ ﹴﺕ...... ، (1ﺗﺰﻳﺪ ﺍﻟﺘﻜﻠﻔﺔ ﻛﻞ ﻣﺮﺓ ﺑﻤﻘﺪﺍﺭ 2.25ﺭﻳﺎﻝ ﻋﻦ ﺍﻟﻤﺮﺓ ﺑﻌﺾ ﺍﻟﻤﺪﻥ ﺍﻟﺴﻌﻮﺩﻳﺔ ﻭﻓﻖ ﺇﺣﺼﺎﺀﺍﺕ (2ﻣﻮﺍﻋﻴﺪ ﺍﻧﻄﻼﻕ ﺍﻟﺤﺎﻓﻼﺕ 10:15 :ﺻﺒﺎ ﹰﺣﺎ 11:00 ،ﺻﺒﺎ ﹰﺣﺎ 11:45 ،ﺻﺒﺎ ﹰﺣﺎ...... ، ﺍﻟﺴﺎﺑﻘﺔ؛ 11.25ﺭﻳﺎ ﹰﻻ. ﻳﻨﺘﻘﻞ ﺍﻟﺘﻈﻠﻴﻞ ﺇﻟﻰ ﺍﻟﺠﺰﺀ ﺍﻟﺘﺎﻟﻲ ﻛﻞ ﻣﺮﺓ ﻓﻲ ﺍﺗﺠﺎﻩ ﻋﻘﺎﺭﺏ ﺍﻟﺴﺎﻋﺔ. ﻋﺎﻡ 2004ﻡ ،ﺃﻭﺟﺪ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ (2ﻳﺄﺗﻲ ﻛﻞ ﻣﻮﻋﺪ ﺑﻌﺪ 45 ﻟﻠﻌﺒﺎﺭﺓ \"ﻣﻌﺪﻝ ﺍﻟﺒﻄﺎﻟﺔ ﺃﻋﻠﻰ ﻣﺎ ﻳﻜﻮﻥ (3 ﺩﻗﻴﻘﺔ ﻣﻦ ﺍﻟﻤﻮﻋﺪ ﺍﻟﺴﺎﺑﻖ ﻟﻪ؛ ﻓﻲ ﺍﻟﻤﺪﻥ ﺫﺍﺕ ﺍﻟﻌﺪﺩ ﺍﻷﻛﺒﺮ ﻣﻦ 12:30ﻣﺴﺎ ﹰﺀ. ﺍﻟﺴﻜﺎﻥ\". ...................... (4 19.3% 4081152 16.9% 1294168 ﻛﻞ ﺷﻜﻞ ﻓﻲ ﺍﻟﻨﻤﻂ ﻳﺤﻮﻱ 38% 100694 ﺩﺍﺋﺮﺓ ﺇﺿﺎﻓﻴﺔ ﺧﺎﺭﺟﻴﺔ ﺯﻳﺎﺩﺓ 25.6% 744321 16.0% 378422 ﻋﻠﻰ ﺩﻭﺍﺋﺮ ﺍﻟﺸﻜﻞ ﺍﻟﺴﺎﺑﻖ....................... 40.6% 85212 3, 3, 6, 9, 15, ...... (5 (5ﻛﻞ ﺣ ﱟﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ 2, 6, 14, 30, 62, ...... (6ﻳﺰﻳﺪ ﻛﻞ ﺣﺪ ﺑﻤﻘﺪﺍﺭ 2ﻋﻠﻰ ﻣﺜ ﹶﻠﻲ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 126 ﻳﺴﺎﻭﻱ ﻣﺠﻤﻮﻉ ﺍﻟﺤﺪﻳﻦ ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ: ﺍﻟﺴﺎﺑﻘﻴﻦ ﻟﻪ؛ 224 (7ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﺯﻭﺟﻴﻴﻦ .ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﺯﻭﺟﻴﻴﻦ ﻫﻮ ﻋﺪﺩ ﺯﻭﺟﻲ. ﻣﺪﻳﻨﺔ ﺍﻟﺒﺎﺣﺔ ﻋﺪﺩ ﺳﻜﺎﻧﻬﺎ ، 85212 (8ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻌﺪﺩﻳﻦ aﻭ bﺇﺫﺍ ﻛﺎﻥ .a + b = 0ﻛﻞ ﻣﻦ aﻭ bﻣﻌﻜﻮﺱ ﻟﻶﺧﺮ. ﻭﻣﻌﺪﻝ ﺍﻟﺒﻄﺎﻟﺔ ﻓﻴﻬﺎ ﺃﻋﻠﻰ ﻣﻦ ﻣﻌﺪﻝ ﺍﻟﺒﻄﺎﻟﺔ ﻓﻲ ﺍﻟﺮﻳﺎﺽ ﺍﻟﺘﻲ ﻋﺪﺩ ﺳﻜﺎﻧﻬﺎ (9ﻣﺠﻤﻮﻋﺔ ﺍﻟﻨﻘﺎﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻮ (9ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﻣﺠﻤﻮﻋﺔ ﺍﻟﻨﻘﺎﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻮ ﺍﻟﺘﻲ ﺗﺒﻌﺪ ﺍﻟﻤﺴﺎﻓﺔ ﻧﻔﺴﻬﺎ ﻋﻦ ﺍﻟﻨﻘﻄﺔ . A ﺍﻟﺘﻲ ﺗﺒﻌﺪ ﺍﻟﺒﻌﺪ ﻧﻔﺴﻪ ﻋﻦ 4087152 ____ ___ ___ ___ (10ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ APﻭ PBﺇﺫﺍ ﻛﺎﻧﺖ Mﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ABﻭﺍﻟﻨﻘﻄﺔ Pﻧﻘﻄ_ﺔ_ﻣ_ﻨﺘﺼﻒ ___ . AM ﻃﻮﻝ PBﻳﺴﺎﻭﻱ ﺛﻼﺛﺔ ﺃﻣﺜﺎﻝ ﻃﻮﻝ . AP ﺍﻟﻨﻘﻄﺔ Aﺗﻜ ﹼﻮﻥ ﺩﺍﺋﺮﺓ. 15 1- 1 (4Bﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﺍﻟﻨﻘﺎﻁ ﻭ ﱢﺯﻉ ﺍﻟﻄﻼﺏ ﻣﺠﻤﻮﻋﺎﺕ ﺻﻐﻴﺮﺓ ،ﺛﻢ ﺍﻃﻠﺐ ﺇﻟﻰ ﻛﻞ ﻃﺎﻟﺐ ﺃﻥ ﻳﻜﺘﺐ ﻋﺒﺎﺭﺗﻴﻦ ﻏﻴﺮ A, B, Dﻻ ﺗﻘﻊ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ، ﻭﺍﻟﻨﻘﺎﻁ E, B ,Cﻻ ﺗﻘﻊ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﺻﺤﻴﺤﺘﻴﻦ ﺩﺍﺋ ﹰﻤﺎ ﻋﻠﻰ ﺍﻷﻗﻞ ،ﻭﻋﻠﻰ ﺑﻘﻴﺔ ﻃﻼﺏ ﻣﺠﻤﻮﻋﺘﻪ ﺇﻳﺠﺎﺩ ﻣﺜﺎﻝ ﻣﻀﺎﺩ ﻟﻜﻞ ﻋﺒﺎﺭﺓ. ﻭﺍﺣﺪﺓ ،ﻳﻜﻮﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃ ﹰﺌﺎ .ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻵﺗﻲ،∠ABE ∠DBC : ﻭﻟﻜﻦ ∠ABEﻭ ∠DBCﻏﻴﺮ ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ. C B AD E 15 1-1
(11 3ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺍﻟﺬﻱ ﻳﺒﻴﻦ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﻨﺘﺠﺔ ﻓﻲ ﻣﺼﻨﻊ ﻟﺒﻌﺾ ﺍﻟﺴﻨﻮﺍﺕ. 3 ✓ 5 2007 ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. 7.2 2008 ﺍﺳﺘﻌﻤﻞ ﺍﻷﺳﺌﻠﺔ 1-13؛ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻓﻬﻢ 9.2 2009 (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻌﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﺳﻨﺔ 2017ﻡ . ﺍﻟﻄﻠﺒﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺳﻔﻞ ﻫﺬﻩ 14.1 2010 ﺳﻴﻜﻮﻥ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﻓﻲ ﻋﺎﻡ 2017ﻧﺤﻮ 35ﻣﻠﻴﻮ ﹰﻧﺎ. ﺍﻟﺼﻔﺤﺔ؛ ﻟﺘﻌﻴﻴﻦ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻠﻄﻠﺒﺔ 19.7 2011 28.4 2012 ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻳﺒﻴﻦ ﺃﻥ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺧﺎﻃﺌﺔ. 4 (12 (12ﺇﺫﺍ ﻛﺎﻧﺖ ∠Aﻭ ∠Bﻣﺘﺘﺎﻣﺘﻴﻦ ،ﻓﺈﻥ ﻟﻬﻤﺎ ﺿﻠ ﹰﻌﺎ ﻣﺸﺘﺮ ﹰﻛﺎ. (13ﺇﺫﺍ ﻗﻄﻊ ﻧﺼﻒ ﻣﺴﺘﻘﻴﻢ ﻗﻄﻌ ﹰﺔ ﻣﺴﺘﻘﻴﻤ ﹰﺔ ﻋﻨﺪ ﻣﻨﺘﺼﻔﻬﺎ ،ﻓﺈﻧﻪ ﻳﻌﺎﻣﺪﻫﺎ. 45° A B 45° (14–19ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. 1 ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ. 4, 8, 12, 16, 20 (16 3, 6, 9, 12, 15 (15 0, 2, 4, 6, 8 (14 ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺃﻧﻪ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ﺍﻟﺘﻲ 1, _21 , _41 , _1 (19 1, 4, 9, 16 (18 2, 22, 222, 2222 (17 ﺗﺘﻀﻤﻦ ﺑﻴﺎﻧﺎﺕ ﻣﻦ ﻭﺍﻗﻊ ﺍﻟﺤﻴﺎﺓ ،ﻟﻴﺲ ﺑﺎﻟﻀﺮﻭﺭﺓ ﺃﻥ ﻳﻤ ﹼﺜﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ 8 ﺍﻟﻨﻤﻂ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻣﺎ ﻳﻤﻜﻦ ﺃﻥ ﻳﺤﺪﺙ (20ﻣﻮﺍﻋﻴﺪ ﺍﻟﻮﺻﻮﻝ 10:00 :ﺻﺒﺎ ﹰﺣﺎ 12:30 ،ﻣﺴﺎ ﹰﺀ 3:00 ،ﻣﺴﺎ ﹰﺀ (20 ...... ،ﻳﺄﺗﻲ ﻛﻞ ﻣﻮﻋﺪ ﺑﻌﺪ ﺳﺎﻋﺘﻴﻦ ﻭﻧﺼﻒ ﻓﻲ ﺍﻟﻤﺴﺘﻘﺒﻞ. ﺍﻟﺴﺎﻋﺔ ﻣﻦ ﺍﻟﻤﻮﻋﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 5:30ﻣﺴﺎ ﹰﺀ. (21ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻠﺮﻃﻮﺑﺔ100% , 93% , 86% , …… : (21ﺗﻘﻞ ﻛﻞ ﻧﺴﺒﺔ ﻣﺌﻮﻳﺔ ﻋﻦ ﻓﻤﺜ ﹰﻼ ،ﻗﺪ ﹸﺗﺸﻴﺮ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻨﺴﺒﺔ ﺍﻟﺴﺎﺑﻘﺔ ﺑﻤﻘﺪﺍﺭ ﺇﻟﻰ ﺗﺰﺍﻳﺪ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻓﻲ ﺃﺣﺪ (22ﺃﻳﺎﻡ ﺍﻟﻌﻤﻞ :ﺍﻷﺣﺪ ،ﺍﻟﺜﻼﺛﺎﺀ ،ﺍﻟﺨﻤﻴﺲ...... ، 7%؛ .79% ﺍﻷﺳﺎﺑﻴﻊ ،ﺇ ﹼﻻ ﺃﻥ ﺩﺭﺟﺎﺕ ﺍﻟﺤﺮﺍﺭﺓ ﻗﺪ (22ﻳﺄﺗﻲ ﻛﻞ ﻳﻮﻡ ﻋﻤﻞ ﺑﻌﺪ ﺗﻨﺨﻔﺾ ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﺬﻱ ﻳﻠﻴﻪ. (23ﺍﺟﺘﻤﺎﻋﺎﺕ ﺍﻟﻨﺎﺩﻱ :ﺍﻟﻤﺤ ﹼﺮﻡ ،ﺭﺑﻴﻊ ﺃﻭﻝ ،ﺟﻤﺎﺩ ﺍﻷﻭﻟﻰ (24–27 ...... ،ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺇﺟﺎﺑﺎﺕ ﻳﻮﻣﻴﻦ ﻣﻦ ﻳﻮﻡ ﺍﻟﻌﻤﻞ ﺍﻟﺴﺎﺑﻖ؛ ﺍﻟﺴﺒﺖ. (25 (24 (23ﻳﻌﻘﺪ ﻛﻞ ﺍﺟﺘﻤﺎﻉ ﺑﻌﺪ ﺷﻬﺮﻳﻦ ﻣﻦ ﺍﻻﺟﺘﻤﺎﻉ ...... ...... ﺍﻟﺴﺎﺑﻖ؛ ﺭﺟﺐ. (27 (26 ...... ...... (28ﺑﺪﺃ ﻣﺎﺟﺪ ﺗﻤﺎﺭﻳﻦ ﺍﻟﺠﺮﻱ ﺍﻟﺴﺮﻳﻊ ﻗﺒﻞ ﺧﻤﺴﺔ ﺃﻳﺎﻡ .ﻓﺮﻛﺾ ﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻷﻭﻝ . 0.5 kmﻭﻓﻲ ﺍﻷﻳﺎﻡ (11a ﺍﻟﺜﻼﺛﺔ ﺍﻟﺘﺎﻟﻴﺔ . 0.75 km, 1 km, 1.25 kmﺇﺫﺍ ﺍﺳﺘﻤﺮ ﺗﻤﺮﻳﻨﻪ ﻋﻠﻰ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ،ﻓﻤﺎ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻲ ﻳﻘﻄﻌﻬﺎ ﻓﻲ 30 ﺍﻟﻴﻮﻡ ﺍﻟﺴﺎﺑﻊ؟ 2 km 25 ﺿﻊ ﺗﺨﻤﻴ ﹰﻨﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ: (29ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ 2 20 (30ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩ ﻓﻲ ﺍﺛﻨﻴﻦ ،ﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻴﻪ ﻭﺍﺣﺪ .ﺍﻟﻨﺎﺗﺞ ﻋﺪﺩ ﻓﺮﺩﻱ (31ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻌﺪﺩﻳﻦ aﻭ ، bﺇﺫﺍ ﻛﺎﻥ .ab = 1ﻛ ﱞﻞ ﻣﻨﻬﻤﺎ ﻣﻘﻠﻮﺏ ﺍﻵﺧﺮ 15 ___ ___ 10 (32ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ABﻭﻣﺠﻤﻮﻋﺔ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﻲ ﺗﺒﻌﺪ ﻣﺴﺎﻓﺎﺕ ﻣﺘﺴﺎﻭﻳﺔ ﻋﻦ Aﻭ . Bﺗﺸﻜﻞ ﺍﻟﻌﻤﻮﺩ ﺍﻟﻤﻨ ﱢﺼﻒ ﻟـ . AB 5 (33ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻭﺣﺠﻢ ﺍﻟﻬﺮﻡ ﺍﻟﻠﺬﻳﻦ ﻟﻬﻤﺎ ﺍﻟﻘﺎﻋﺪﺓ ﻧﻔﺴﻬﺎ ﻭﺍﻻﺭﺗﻔﺎﻉ ﻧﻔﺴﻪ. 0 ﺣﺠﻢ ﺍﻟﻤﻨﺸﻮﺭ ﻳﺴﺎﻭﻱ 3ﺃﻣﺜﺎﻝ ﺣﺠﻢ ﺍﻟﻬﺮﻡ. 00 07 08 09 10 11 12 (14ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 2 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 10 1 16 (15ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 3 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 18 (16ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺰﻳﺪ ﺑﻤﻘﺪﺍﺭ 4 ﻋﻠﻰ ﺍﻟﺤﺪ ﺍﻟﺬﻱ ﻳﺴﺒﻘﻪ؛ 24 (17ﻛﻞ ﺣﺪ ﻓﻲ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﻳﺤﺘﻮﻱ ﻋﻠﻰ ﺍﻟﺮﻗﻢ 2ﺯﻳﺎﺩﺓ ﻋﻠﻰ ﺃﺭﻗﺎﻡ ﺍﻟﺤﺪ ﺍﻟﺴﺎﺑﻖ 43 - 5614 - 38 ﻟﻪ؛ 22222 43 - 5639 - 4115 - 39 (18ﻳﻨﺘﺞ ﻛﻞ ﺣﺪ ﻋﻦ ﺗﺮﺑﻴﻊ ﺍﻟﻌﺪﺩ ﺍﻟﻄﺒﻴﻌﻲ 45 - 5639 - 53 ﺍﻟﺬﻱ ﻳﻤ ﱢﺜﻞ ﺗﺮﺗﻴﺒﻪ؛ 25 ﺍﻟﺬﻱ ﺍﻟﺤﺪ ﻧﺼﻒ ﻳﺴ1ﺎ_ﻭﻱ ﻛﻞ ﺣﺪ (19 ﻳﺴﺒﻘﻪ؛ 16 1 16
(34 3ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ ﺍﻟﺬﻱ ﻳﺒﻴﻦ ﻋﺪﺩ ﺍﻟﻄﻼﺏ 190 ﻓﻲ ﻣﺪﺭﺳﺔ ﻣﺪﺓ ﺃﺭﺑﻊ ﺳﻨﻮﺍﺕ ﻣﺘﺘﺎﻟﻴﺔ (a, b.ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ 1425 210 240 1426 (aﺃﻧﺸﺊ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﻧﺴﺐ ﻟﻌﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. 1427 260 (bﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻣﻌﺘﻤ ﹰﺪﺍ ﻋﻠﻰ ﺑﻴﺎﻧﺎﺕ ﺍﻟﺠﺪﻭﻝ ،ﻭﺍﺷﺮﺡ ﻛﻴﻒ ﻳﺆ ﱢﻳﺪ ﺗﻤﺜﻴﻠﻚ 1428 ! ﺍﻟﺒﻴﺎﻧﻲ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. ﻓﻲ ﺍﻟﺴﺆﺍﻝ ،42 4ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺃ ﱞﻱ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺻﺤﻴ ﹰﺤﺎ ﺃﻭ ﺧﺎﻃ ﹰﺌﺎ ،ﻭﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. ﻳﺠﺐ ﺃﻥ ﻳﺘﺬﻛﺮ ﺍﻟﻄﻼﺏ ﺃﻥ ﺍﻟﻌﺪﺩ 2 (35ﺇﺫﺍ ﻛﺎﻥ nﻋﺪ ﹰﺩﺍ ﺃﻭﻟ ﹼﹰﻴﺎ ،ﻓﺈﻥ n + 1ﻟﻴﺲ ﺃﻭﻟ ﹼﹰﻴﺎ .ﺧﺎﻃﺊ؛ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺇﺫﺍ ﻛﺎﻥ ،n = 2ﻓﺈﻥ ،n + 1 = 3ﻭﻫﺬﺍ ﻋﺪﺩ ﺃﻭﻟﻲ. ﻫﻮ ﻋﺪﺩ ﺃﻭﻟﻲ .ﻭﻣﻦ ﺍﻟﻤﻼﺣﻆ ﺃﻥ ﺃﺣﻤﺪ ﺃﻫﻤﻞ ﺍﻟﻌﺪﺩ 2ﻋﻨﺪﻣﺎ ﻋﻤﻞ (36ﺇﺫﺍ ﻛﺎﻥ xﻋﺪ ﹰﺩﺍ ﺻﺤﻴ ﹰﺤﺎ ،ﻓﺈﻥ –xﻋﺪﺩ ﻣﻮﺟﺐ .ﺧﺎﻃﺊ؛ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺇﺫﺍ ﻛﺎﻥ ، x = 2ﻓﺈﻥ −x = −2 ﺗﺨﻤﻴﻨﻪ ﺣﻮﻝ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ. (37ﻓﻲ ﺍﻟﻤﺜﻠﺚ ABCﺇﺫﺍ ﻛﺎﻥ ، (AB)2 + (BC)2 = (AC)2 :ﻓﺈﻥ ABCﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ .ﺻﺤﻴﺢ (39aﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻌﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﻣﻨﻄﻘﺔ ﻣﻜﺔ ﺍﻟﻤﻜﺮﻣﺔ ﻭﺣﺪﻩ ﻳﺴﺎﻭﻱ 25.5% (38ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺴﺎﺣﺔ ﻣﺴﺘﻄﻴﻞ ﺗﺴﺎﻭﻱ ،20 m2ﻓﺈﻥ ﻃﻮﻟﻪ ﻳﺴﺎﻭﻱ ، 10 mﻭﻋﺮﺿﻪ .2 mﺧﺎﻃﺊ؛ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻳﻤﻜﻦ ﻣﻦ ﺳﻜﺎﻥ ﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ. ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻄﻮﻝ ، 5 m (39ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺩﻧﺎﻩ ﻟﺘﻌﻄﻲ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ: (39bﻋﺪﺩ ﺳﻜﺎﻥ ﻣﻨﻄﻘﺔ ﺍﻟﻤﺪﻳﻨﺔ ﺍﻟﻤﻨﻮﺭﺓ ﻭﺍﻟﻌﺮﺽ 4 m 1.8ﻣﻠﻴﻮﻥ ﻧﺴﻤﺔ. 10 = 5 + 5, 12 = 5 + 7, (40a 25.0% 6.8 14 = 7 + 7, 16 = 5 + 11, 18 = 7 + 11, 20 = 7+13 25.5% 6.9 (40bﺧﺎﻃﺊ؛ ﻻ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ﺍﻟﻌﺪﺩ 3ﻋﻠﻰ 6.6% 1.8 12 ﺻﻮﺭﺓ ﻣﺠﻤﻮﻉ ﻋﺪﺩﻳﻦ ﺃﻭﻟ ﱠﻴﻴﻦ. 15.1% 4.1 1431 (aﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻤﺠﻤﻮﻉ ﻋﺪﺩ ﺳﻜﺎﻥ ﺍﻟﻤﻨﺎﻃﻖ ﺍﻹﺩﺍﺭﻳﺔ ﺍﻷﺭﺑﻊ ﺍﻟﻮﺍﺭﺩﺓ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺃﻗﻞ ﻣﻦ 25%ﻣﻦ ﺳﻜﺎﻥ ﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ (a,b .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ (bﻳﺰﻳﺪ ﻋﺪﺩ ﺳﻜﺎﻥ ﺃ ﱟﻱ ﻣﻦ ﺍﻟﻤﻨﺎﻃﻖ ﺍﻹﺩﺍﺭﻳﺔ ﺍﻷﺭﺑﻊ ﻋﻠﻰ ﻣﻠﻴﻮ ﹶﻧﻲ ﻧﺴﻤ ﹴﺔ. (40ﻳﻨﺺ ﺗﺨﻤﻴﻦ ﺟﻮﻟﺪ ﺑﺎﺥ ﻋﻠﻰ ﺃﻧﻪ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ﺃﻱ ﻋﺪﺩ ﺯﻭﺟﻲ ﺃﻛﺒﺮ ﻣﻦ 2ﻋﻠﻰ ﺻﻮﺭﺓ ﻣﺠﻤﻮﻉ ﻋﺪﺩﻳﻦ ﺃﻭﻟﻴﻴﻦ .ﻓﻌﻠﻰ ﺳﺒﻴﻞ ﺍﻟﻤﺜﺎﻝ (a,b .4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5 :ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ (aﺃﺛﺒﺖ ﺃﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ ﻟﻸﻋﺪﺍﺩ ﺍﻟﺰﻭﺟﻴﺔ ﻣﻦ 10ﺇﻟﻰ 20 (bﺇﺫﺍ ﹸﺃﻋﻄﻴﺖ ﺍﻟﺘﺨﻤﻴﻦ ﺍﻵﺗﻲ :ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ﺃﻱ ﻋﺪﺩ ﻓﺮﺩﻱ ﺃﻛﺒﺮ ﻣﻦ 2ﻋﻠﻰ ﺻﻮﺭﺓ ﻣﺠﻤﻮﻉ ﻋﺪﺩﻳﻦ ﺃﻭﻟﻴﻴﻦ. ﻓﻬﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ ﺃﻡ ﺧﺎﻃﺊ؟ ﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. AB ﺇﺍﺫﺍﻟﻨ ﹸﺃﻘﻄﺿﺘﻴﺎﻔﻥ ﺍﺖﻟﻧﻮﻘﺍﻗﻄﻌﺔﺘﺎﺃﻥﺧﺮﻋﻠﻰCﻣﻋﺴﺘﻠﻘﻴﻰ ﺍﻢﻟﺗﻘﺸﻄ ﱢﻌﻜﺔﻼﺍﻟﻥﻤﻗﺴﻄﺘﻘﻌﻴﺔﻤﻣﺔﺴ_ﺘ_Bﻘﻴ_Aﻤ،ﺔ، ___ (41 A CB ﻣﺜﻞ . AB (41bﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﻳﺴﺎﻭﻱ ﻣﺠﻤﻮﻉ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻄﺒﻴﻌﻴﺔ ﺍﻷﻗﻞ ﻣﻦ .nﻓﺈﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ ﺗﺸ ﱢﻜﻞ ﺛﻼﺙ ﻗﻄﻊ ﻣﺴﺘﻘﻴﻤﺔ. (41cﺗﺘﻜﻮﻥ ﺧﻤﺲ ﻋﺸﺮﺓ ﻗﻄﻌﺔ (aﻣﺎ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻣﻦ ﺃﺭﺑﻊ ﻧﻘﺎﻁ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ؟ ﻭﻣﻦ ﺧﻤﺲ ﻧﻘﺎﻁ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ؟ ﻣﺴﺘﻘﻴﻤﺔ .ﻓﺎﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ (b .ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻌﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻣﻦ nﻧﻘﻄﺔ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ6; 10 . (cﺍﺧﺘﺒﺮ ﺗﺨﻤﻴﻨﻚ ﺑﺈﻳﺠﺎﺩ ﻋﺪﺩ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﻤﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺗﺘﺸﻜﻞ ﻣﻦ 6ﻧﻘﺎﻁ. (42ﻳﺘﻨﺎﻗﺶ ﺃﺣﻤﺪ ﻭﻋﻠﻲ ﻓﻲ ﻣﻮﺿﻮﻉ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ .ﻓﻴﻘﻮﻝ ﺃﺣﻤﺪ :ﺇﻥ ﺟﻤﻴﻊ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ ﺃﻋﺪﺍﺩ ﻓﺮﺩﻳﺔ .ﻓﻲ ﺣﻴﻦ ﻳﻘﻮﻝ ﻋﻠ ﱞﻲ :ﻟﻴﺴﺖ ﺟﻤﻴﻊ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻓﺮﺩﻳﺔ .ﻫﻞ ﻗﻮﻝ ﺃ ﱟﻱ ﻣﻨﻬﻤﺎ ﺻﺤﻴﺢ؟ ﻓ ﹼﺴﺮ ﺇﺟﺎﺑﺘﻚ. ﻗﻮﻝ ﻋﻠﻲ ﺻﺤﻴﺢ؛ ﻷﻥ ﺍﻟﻌﺪﺩ 2ﻋﺪﺩ ﺃﻭﻟﻲ ﺯﻭﺟﻲ 17 1- 1 17 1-1
(43ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ .2, 4, 16, 256, 65536 :ﻳﻤﻜﻦ ﺇﻳﺠﺎﺩ ﻛﻞ ﺣﺪ ﺑﺘﺮﺑﻴﻊ ﺍﻟﺤﺪ ﺍﻟﺴﺎﺑﻖ ﻟﻪ، ﻛﻤﺎ ﻳﻤﻜﻦ ﺇﻳﺠﺎﺩ ﻛﻞ ﺣﺪ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺼﻴﻐﺔ ، 22n-1ﺣﻴﺚ .n ≥ 1 (44ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺧﻄﺄ؛ ﺇﺫﺍ ﻛ ﱠﻮﻧﺖ ﺍﻟﻨﻘﺎﻁ ﺯﺍﻭﻳﺔ ﻣﺴﺘﻘﻴﻤﺔ (43ﺍﻛﺘﺐ ﻣﺘﺘﺎﺑﻌﺔ ﻋﺪﺩﻳﺔ ﺗﺘﺒﻊ ﺣﺪﻭﺩﻫﺎ ﻧﻤﻄﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ،ﻭﻭﺿﺢ ﺍﻟﻨﻤﻄﻴﻦ. ﺗﺄ ﹼﻣﻞ ﺍﻟﺘﺨﻤﻴﻦ” :ﺇﺫﺍ ﻛﺎﻧﺖ ﻧﻘﻄﺘﺎﻥ ﺗﺒ ﹸﻌﺪﺍﻥ ﺍﻟﻤﺴﺎﻓﺔ ﻧﻔﺴﻬﺎ ﻋﻦ ﻧﻘﻄﺔ ﺛﺎﻟﺜﺔ ﻣﻌﻠﻮﻣﺔ ،ﻓﺈﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ (44 ﻳﻜﻮﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴ ﹰﺤﺎ ،ﺃﻣﺎ ﺇﺫﺍ ﻟﻢ ﺗﻜﻦ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ ﺗﻘﻊ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ“ .ﻫﻞ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴﺢ ﺃﻡ ﺧﺎﻃﺊ؟ ﻭﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ ،ﻓﻴﻜﻮﻥ (45ﺍﻓﺘﺮﺽ ﺃﻧﻚ ﹸﺗﺠﺮﻱ ﻣﺴ ﹰﺤﺎ .ﺍﺧﺘﺮ ﻣﻮﺿﻮ ﹰﻋﺎ ﻭﺍﻛﺘﺐ ﺛﻼﺛﺔ ﺃﺳﺌﻠﺔ ﻳﺘﻀﻤﻨﻬﺎ ﻣﺴ ﹸﺤﻚ .ﻛﻴﻒ ﺗﺴﺘﻌﻤﻞ ﺍﻟﺘﺨﻤﻴﻦﺧﻄ ﹰﺄ. 4 ﻣﺜﺎﻝ ﻣﻀﺎﺩC : ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻣﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﻲ ﺗﺤﺼﻞ ﻋﻠﻴﻬﺎ ﻣﻦ ﺧﻼﻝ ﻫﺬﺍ ﺍﻟﻤﺴﺢ؟ ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻛﺘﺎﺑﺔ AB ﺧﻤﺴﺔ ﺗﺨﻤﻴﻨﺎﺕ ﺣﻮﻝ ﻧﺸﺎﻃﺎﺕ ﻣﺪﺭﺳﺘﻬﻢ ﻭﺃﻧﻈﻤﺘﻬﺎ ،ﺛﻢ ﺍﻃﻠﺐ ﺇﻟﻴﻬﻢ ﺃﻥ ﺗﺒﺎﺩﻝ ﺍﻷﻭﺭﺍﻕ، ﻭﻣﺤﺎﻭﻟﺔ ﺇﻳﺠﺎﺩ ﻣﺜﺎ ﹴﻝ ﻣﻀﺎ ﱟﺩ ﻟﻜﻞ ﺗﺨﻤﻴﻦ. (47ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ، a = 10 , b = 1ﻓﻤﺎ ﻗﻴﻤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ؟ (46ﺍﻧﻈﺮ ﺇﻟﻰ ﺍﻟﻨﻤﻂ ﺍﻵﺗﻲ: _32 \" ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻫﺎﺏ ﺇﻟﻰ ﺍﻟﻤﺪﺭﺳﺔ )2b + ab ÷ (a + b ...... 11 ﻣﻦ ﺍﻷﺣﺪ ﺇﻟﻰ ﺍﻟﺨﻤﻴﺲ“ .ﻭﺍﻟﻤﺜﺎﻝ ﺍﻟﻤﻀﺎﺩ ﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻨﻤﻂ؟ B ﻟﻬﺬﻩ ﺍﻟﻌﺒﺎﺭﺓ ﺃﻥ ﻳﻜﻮﻥ ﻳﻮﻡ ﻋﻴﺪ ﺍﻟﻔﻄﺮ ﻳﻮﻡ (48ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ، ﺍﻹﺛﻨﻴﻦ ،ﺣﻴﺚ ﺇﺟﺎﺯﺓ ﺍﻟﻤﺪﺍﺭﺱ ﻓﻲ ﺫﻟﻚ ABﻣﺤﻮﺭ ﺗﻨﺎﻇﺮ .∠DACﺃ ﱡﻱ D B CA ﺍﻟﻴﻮﻡ. ﺍﻻﺳﺘﻨﺘﺎﺟﺎﺕ ﺍﻵﺗﻴﺔ ﻟﻴﺲ DB ﺍﺟﻤﻊ ﺍﻷﻭﺭﺍﻕ ﻣﻦ ﺍﻟﻄﻼﺏ ﻋﻨﺪ ﺧﺮﻭﺟﻬﻢ ﻣﻦ ﺍﻟﻔﺼﻞ. ﺻﺤﻴ ﹰﺤﺎ ﺑﺎﻟﻀﺮﻭﺭﺓ؟ C B A ∠DAB ∠BAC A ∠DAC Bﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ. A Cﻭ Dﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ. 2(m∠BAC) = m∠DAC D (49ﺍﺷﺘﺮ ﺑﺎﺳﻢ ﺣﻮ ﹶﺽ ﺳﻤ ﹴﻚ ﺻﻐﻴﺮ ﻋﻠﻰ ﺷﻜﻞ ﺃﺳﻄﻮﺍﻧﺔ ﺩﺍﺋﺮﻳﺔ ﻗﺎﺋﻤﺔ ،ﻃﻮﻝ ﻗﻄﺮ ﻗﺎﻋﺪﺗﻬﺎ ، 25 cmﻭﺍﺭﺗﻔﺎﻋﻬﺎ ،35 cm ﺃﻭﺟﺪ ﺣﺠﻢ ﺍﻟﻤﺎﺀ ﺍﻟﻼﺯﻡ ﻟﹺﻤﻞ ﹺﺀ ﺍﻟﺤﻮﺽ17180.6 cm3 . ﺃﻭﺟﺪ ﻣﺤﻴﻂ ABCﺇﺫﺍ ﹸﺃﻋﻄﻴﺖ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺅﻭﺳﻪ ﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ : 26.69 A(–3, 2), B(2, –9), C(0, –10) (51 10.47 A(1, 6), B(1, 2), C(3, 2) (50 (52ﻗﻴﺎﺱ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺘﺎﻣﺘﻴﻦ ﻳﺴﺎﻭﻱ (16z - 9)°ﻭ .(4z + 3)°ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ22.2 ;67.8 . (53ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ x = 3 :ﻭ y = -4ﻭ ،z = -5ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ-16 . 5|x + y| - 3|2 - z| : ﺍﻛﺘﺐ ﻛﻠﻤﺔ \"ﺻﺢ\" ﺑﺠﻮﺍﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺼﺤﻴﺤﺔ ﻭﻛﻠﻤﺔ \"ﺧﻄﺄ\" ﺑﺠﻮﺍﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺨﺎﻃﺌﺔ. (56ﺍﻟﻌﺪﺩ 9ﻋﺪﺩ ﺃﻭﻟﻲ ﺧﻄﺄ 5 - 2 × 3 = 9 (55ﺧﻄﺄ (54ﻛﻞ ﻣﺮﺑﻊ ﻫﻮ ﻣﺴﺘﻄﻴﻞ ﺻﺢ 1 18 ﺍﻋﻤﻞ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻠﻌﺪﺩﻳﻦ ﺍﻟﺘﺎﻟﻴﻴﻦ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻵﺗﻴﺔ9, 7, 10, 8, 11, 9, 12, . . . : ﺍﻃﺮﺡ ،2ﺛﻢ ﺃﺿﻒ 3؛ 13 ،10 (45ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺃﻭﺩ ﺃﻥ ﺃﺟﺮﻱ ﻣﺴ ﹰﺤﺎ ﻷﻧﻮﺍﻉ ﺍﻷﻧﺸﻄﺔ ﺍﻟﺘﻲ ﻳﻤﺎﺭﺳﻬﺎ ﺍﻟﻨﺎﺱ ﻓﻲ ﻋﻄﻠﺔ ﻧﻬﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ ،ﻭﺃﻃﺮﺡ ﺍﻷﺳﺌﻠﺔ ﺍﻵﺗﻴﺔ :ﻣﺎ ﻋﻤﺮﻙ؟ ﻣﺎ ﻧﻮﻉ ﺍﻟﻨﺸﺎﻁ ﺍﻟﺬﻱ ﺗﻔﻀﻞ ﻣﻤﺎﺭﺳﺘﻪ ﻓﻲ ﻋﻄﻠﺔ ﻧﻬﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ؟ ﻣﺎ ﻣﺪ ﻣﻮﺍﻇﺒﺘﻚ ﻋﻠﻰ ﻣﻤﺎﺭﺳﺔ ﻫﺬﺍ ﺍﻟﻨﺸﺎﻁ؟ ﺛﻢ ﺑﻌﺪ ﺫﻟﻚ ﺃﺳﺘﻌﻤﻞ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻹﻳﺠﺎﺩ ﺃﻧﻤﺎ ﹴﻁ ﻓﻲ ﺍﻹﺟﺎﺑﺎﺕ ﻟﺘﺤﺪﻳﺪ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻷﺷﺨﺎﺹ ﺍﻟﻤﺘﺴﺎﻭﻭﻥ ﻓﻲ ﺍﻟ ﹸﻌ ﹸﻤﺮ ﻳﻔﻀﻠﻮﻥ ﻣﻤﺎﺭﺳﺔ ﺍﻷﻧﺸﻄﺔ ﻧﻔﺴﻬﺎ ﺃﻡ ﻻ. 1 18
1 -1 (7) (6) 1-1 1-1 ﻳﻜﻮ ﹸﻥ ﺍﻟﺘﺨﻤ ﹸﲔ ﺧﻄ ﹰﺄ ،ﺇﺫﺍ ﹸﻭﺟ ﹶﺪ ﻣﺜﺎ ﹲﻝ ﻭﺍﺣ ﹲﺪ ﻳﺘﺒ ﱢ ﹸﲔ ﺃ ﹶﻥ ﺍﻟﺘﺨﻤ ﹶﲔ ﻓﻴﻪ ﻏ ﹸﲑ ﺻﺤﻴ ﹺﺢ ،ﻭﻫﺬﺍ ﺍﳌﺜﺎ ﹸﻝ ﹸﻳﺴ ﱠﻤﻰ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. ﻫﻮ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﺬﻱ ﻳﻌﺘﻤﺪ ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎﺕ ﻧﺘﺠﺖ ﻋﻦ ﺃﻣﺜﻠﺔ ﻣﺨﺘﻠﻔﺔ ﺗﻤ ﱢﺜﻞ ﻧﻤ ﹰﻄﺎ؛ ﻟﻠﺘﻮﺻﻞ ﺇﻟﻰ ﻧﺘﻴﺠﺔ ﺃﻭ ﻋﺒﺎﺭﺓ ﹸﺗﺴ ﹼﻤﻰ ﺗﺨﻤﻴ ﹰﻨﺎ. ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ ﻳﺒ ﱢﻴ ﹲﻦ ﻋﺪ ﹶﻡ ﺻﺤ ﹺﺔ ﺍﻟﺘﺨﻤﻴ ﹺﻦ ﺍﻵﺗﻲ. 2 1 ﺇﺫﺍ ﻛﺎﻧﺖ ،AB BCﻓﺈ ﱠﻥ Bﻧﻘﻄ ﹸﺔ ﻣﻨﺘﺼ ﹺﻒ .AC ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻛﺘـﺐ ﺗﺨﻤﻴﻨﹰـﺎ ﻳﺼـﻒ ﺍﻟﻨﻤـﻂ ﻓـﻲ ﻫﻞ ﻳﻤ ﹺﻜﻨﹸﻚ ﺃﻥ ﺗﺮﺳ ﹶﻢ ﺷﻜ ﹰﻼ ﺗﻜﻮ ﹸﻥ ﻓﻴﻪ ، AB BCﻋﲆ ﺃ ﹼﻻ ﺗﻜﻮﻥ Bﻧﻘﻄﺔ ﻣﻨﺘﺼ ﹺﻒ AC؟ C ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻓﻲ ﺇﻳﺠﺎﺩ ﻃﻮﻝ ﺿﻠﻊ ﺍﻟﻤﺮﺑﻊ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻓﻲ ﺇﻳﺠﺎﺩ ﺍﻟﺤ ﹼﺪ ﺍﻟﺘﺎﻟﻲ ﻟﻠﻤﺘﺘﺎﺑﻌﺔ: 3 cm A 3 cm B ﺍﻟﺘﺎﻟﻲ: . 1, 3, 9, 27, 81 ,... ﹸﻳﻌ ﹼﺪ ﺍﻟﺸﻜﻞ ﺍﳌﺠﺎﻭﺭ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ؛ ﻷﻥ Bﻟﻴﺴﺖ ﻭﺍﻗﻌ ﹰﺔ ﻋﲆ AC؛ ﺇﺫﻥ ﺍﻟﺘﺨﻤﲔ ﺧﺎﻃﺊ. 1 ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ: 1 3 9 27 81 1 ﺍﺑﺤﺚ ﻋﻦ ﻧﻤﻂ: ﺣ ﱢﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﻛﻞ ﺗﺨﻤﻴﻦ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﺻﺤﻴ ﹰﺤﺎ ﺃﻡ ﺧﺎﻃ ﹰﺌﺎ ،ﻭﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ: ﺃﻃﻮﺍﻝ ﺃﺿﻼﻉ ﺍﳌﺮﺑﻌﺎﺕ ﻫﻲ 1, 2, 3 :ﻭﺣﺪﺍ ﹴﺕ. 30 31 32 33 34 (1ﺇﺫﺍ ﻭﻗﻌﺖ ﺍﻟﻨﻘﺎﻁ A, B, Cﻋﻠﻰ ﺍﺳﺘﻘﺎﻣ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ ،ﻓﺈﻥ (2ﺇﺫﺍ ﻛﺎﻧﺖ ∠Rﻭ ∠Sﻣﺘﻜﺎﻣﻠﺘﲔ ،ﻭ ∠Tﻭ ∠Rﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﺃﻳ ﹰﻀﺎ، 2 ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ: 2 ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ: ﺳﻴﻜﻮﻥ ﻃﻮﻝ ﺿﻠﻊ ﺍﳌﺮﺑﻊ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ 4ﻭﺣﺪﺍﺕ، ﻛﻞ ﻭﺍﺣﺪ ﻣﻦ ﻫﺬﻩ ﺍﻷﻋﺪﺍﺩ ﻫﻮ ﻗﻮﺓ ﻟﻠﻌﺪﺩ .3 ﻓﺈﻥ ∠T ∠S .AC=BC+AB ﺇﺫﻥ ﺳﻴﻜﻮﻥ ﰲ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ 16ﻣﺮﺑ ﹰﻌﺎ ﺻﻐ ﹰﲑﺍ. ﺇﺫﻥ ﺳﻴﻜﻮﻥ ﺍﻟﻌﺪﺩ ﺍﻟﺘﺎﱄ 35؛ ﺃ ﹾﻱ 243 B A C B AC ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ: -80 -2 -5, 10, -20, 40,… (1 (3ﺇﺫﺍ ﻛﺎﻧﺖ ∠ABCﹶﻭ ∠DEFﻣﺘﻜﺎﻣﻠﺘﻴﻦ، 10000 10 1, 10, 100, 1000,… (2 (4ﺇﺫﺍ ﻛﺎﻧﺖ ،DE ⊥ EFﻓﺈﻥ ∠DEFﻗﺎﺋﻤﺔ. ﻓﺈﻧﻬﻤﺎ ﻣﺘﺠﺎﻭﺭﺗﺎﻥ ﻋﻠﻰ ﺧ ﱟﻂ ﻣﺴﺘﻘﻴ ﹴﻢ. _95_ _51_ 1 , __6 , __7 , …_85_ , (3 5 5 CD ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ،ﺛ ﱠﻢ ﺃﻋﻂ ﺃﻣﺜﻠﺔ ﻋﺪﺩﻳﺔ ،ﺃﻭ ﺍﺭﺳﻢ ﺃﺷﻜﺎ ﹰﻻ ﺗﺆﻳﺪ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. 4-7 A BE F (5ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ∠ 1ﻭ ∠2ﺗﻜ ﹼﻮﻧﺎﻥ ﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ. A (-1, -1), B (2,2), C (4,4) (4 ∠ 2 ∠1 A, B, C )P y C(4, 4 12 R )B(2, 2 T W A(–1, –1) O x (7ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﻋﺪﺩﻳﻦ ﻓﺮﺩﻳﻴﻦ. ∠ABC (6ﻭ ∠DBEﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﻘﺎﺑﻠﺘﺎﻥ ﺑﺎﻟﺮﺃﺱ. ∠DBE ∠ABC 23 - 9 = 14, 15 - 7 = 8 A BE 1 7 1 6 CD (9) (8) 1-1 1-1 (4ﺗﻢ ﺗﻜﻠﻴﻒ ﺻﺎﻟ ﹴﺢ ﺑﺘﻮﺯﻳﻊ 31ﻣﻴﺪﺍﻟﻴ ﹰﺔ ﻋﻠﻰ ﺃﻋﻀﺎﺀ (1ﺩﺣﺮﺝ ﻋﻠ ﱞﻲ ﻛﺮﺓ ﺯﺟﺎﺟﻴﺔ ﻋﻠﻰ ﺳﻄﺢ ﻣﺎﺋﻞ، ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ: 6ﻓﹺ ﹶﺮﻕ ﺭﻳﺎﺿﻴﺔ ﻣﺘﻨﺎﻓﺴﺔ ،ﻓﺎﺳﺘﻨﺘﺞ ﺻﺎﻟﺢ ﺃﻥ ﻓﺮﻳ ﹰﻘﺎ ﻭﺍﺣ ﹰﺪﺍ ﻭﻛﺎﻥ ﻳﻘﻴﺲ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﺘﻲ ﺗﻘﻄﻌﻬﺎ ﺍﻟﻜﺮﺓ ﻛﻞ ﺛﺎﻧﻴﺔ ،ﻭﺳ ﹼﺠﻞ ﻋﻠﻰ ﺍﻷﻗﻞ ﺳﻴﺤﺮﺯ ﺃﻛﺜﺮ ﻣﻦ 5ﻣﻴﺪﺍﻟﻴﺎﺕ ،ﻓﻬﻞ ﺍﺳﺘﻨﺘﺎﺟﻪ (1 ﺍﻟﺒﻴﺎﻧﺎﺕ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻵﺗﻲ: ﺻﺤﻴﺢ؟ ﺑ ﱢﺮﺭ ﺇﺟﺎﺑﺘﻚ. ﺍﻷﻭﻟﻰ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﺜﺎﻟﺜﺔ ﺍﻟﺮﺍﺑﻌﺔ 5 30 6×5 140 100 60 20 -2 ,4 ,-8 ,16 ,-32 (4 6 , __1_1 , 5,_9_2_, 4 (3 -4 ,-1 ,2 ,5 ,8 (2 2 1_2_ ﻣﺎ ﺍﳌﺴﺎﻓﺔ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺃﻥ ﺗﻘﻄﻌﻬﺎ ﺍﻟﻜﺮﺓ ﰲ ﺍﻟﺜﺎﻧﻴﺔ ﺍﳋﺎﻣﺴﺔ. 64 -2 27 11 3 (5ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ﺍﻵﺗﻲ ﻣﺘﺘﺎﺑﻌﺔ ﻣﺮﺑﻌﺎﺕ ،ﻛ ﱞﻞ ﻣﻨﻬﺎ 180 cm ﻳﺘﻜﻮﻥ ﻣﻦ ﺑﻼﻃﺎﺕ ﻣﺘﻄﺎﺑﻘﺔ ﻣﺮﺑﻌﺔ ﺍﻟﺸﻜﻞ. ﺍﻛﺘﺐ ﺗﺨﻤﻴ ﹰﻨﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ،ﺛ ﱠﻢ ﺃﻋﻂ ﺃﻣﺜﻠﺔ ﻋﺪﺩﻳﺔ ،ﺃﻭ ﺍﺭﺳﻢ ﺃﺷﻜﺎ ﹰﻻ ﺗﺆﻳﺪ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ: 5–8 (5ﺗﻘﻊ ﺍﻟﻨﻘﺎﻁ A, B, Cﻋﻠﻰ ﺍﺳﺘﻘﺎﻣ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ ،ﻭﺗﻘﻊ ﺍﻟﻨﻘﻄﺔ Dﺑﻴﻦ (6 .B, Cﺍﻟﻨﻘﻄﺔ Pﻫﻲ ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ .NQ (2ﺍﻟﻌﺪﺩ ﺍﻷﻭﻟﻲ ﻫﻮ ﻋﺪﺩ ﺃﻛﺒﺮ ﻣﻦ ،1ﻭﻳﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ NP = PQ A, B, C, D ﻋﻠﻰ ﻧﻔﺴﻪ ﻭﻋﻠﻰ 1ﻓﻘﻂ ،ﺣﺎﻭﻝ ﺳﻌﺪ ﺃﻥ ﻳﺠﺪ ﻃﺮﻳﻘﺔ ﻣﻨﻬﺠﻴﺔ (aﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺍﺑﻊ ﻣﻦ ﻣﺘﺘﺎﺑﻌﺔ ﺍﳌﺮﺑﻌﺎﺕ؟ ﻟﺘﺤﺪﻳﺪ ﺍﻷﻋﺪﺍﺩ ﺍﻷﻭﻟﻴﺔ ،ﻭﺑﻌﺪ ﻋﺪﺓ ﻣﺤﺎﻭﻻﺕ ﺗﻮﺻﻞ ﺇﻟﻰ ﺃﻥ NPQ A CD B 2n - 1ﻳﻜﻮﻥ ﻋﺪ ﹰﺩﺍ ﺃﻭﻟ ﹼﹰﻴﺎ ﻷ ﱢﻱ ﻋﺪ ﹴﺩ ﻃﺒﻴﻌ ﱟﻲ ، nﻓﻬﻞ ﺍﺳﺘﻨﺘﺎﺟﻪ (8ﻧﺎﺗﺞ ﺿﺮﺏ ﻋﺪﺩﻳﻦ ﻓﺮﺩ ﱠﻳﻴﻦ ∠2 ، ∠1 (7ﻣﺘﻜﺎﻣﻠﺘﺎﻥ ﹶﻭ ∠3 ، ∠1ﻣﺘﻜﺎﻣﻠﺘﺎﻥ. ﺻﺤﻴﺢ؟ ∠3 ∠2 15 2n - 1 =15 n = 4 3 × 5 = 15 , 9 × 7 = 63 12 5 × 3 = 15 3 (bﻋ ﹼﱪ ﻋﻦ ﻣﺘﺘﺎﺑﻌﺔ ﺍﳌﺮﺑﻌﺎﺕ ،ﺑﻤﺘﺘﺎﺑﻌﺔ ﺃﻋﺪﺍﺩ؟ (3ﻭﺿﻌﺖ ﻓﺎﻃﻤﺔ ﻣﺨﻄ ﹰﻄﺎ ﻟﻨﹶﺴﺒﹺﻬﺎ ،ﻣﻤ ﹼﺜ ﹰﻼ ﺑﺜﻼﺛﺔ ﺭﺳﻮﻡ ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺻﺤﻴﺤﺔ ﺃﻡ ﺧﺎﻃﺌﺔ ،ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺧﺎﻃﺌﺔ ﻓﺄﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ: 12, 22, 32, 42, ﻛﻤﺎ ﻫﻮ ﻣﻮﺿﺢ ﺃﺩﻧﺎﻩ ،ﺣﻴﺚ ﺗﻤﺜﻞ ﺍﻟﻨﻘ ﹶﻄﺔ ﺍﻷﻭﻟﻰ ﻓﺎﻃﻤﺔ، (9ﺇﺫﺍ ﻛﺎﻧﺖ∠ABCﻭ∠CBDﻣﺘﺠﺎﻭﺭﺗﻴﻦ ﻋﻠﻰ ﺧ ﱟﻂ ﻣﺴﺘﻘﻴ ﹴﻢ ،ﻓﺈﻥ .∠ABC ∠CBD ﻭﻳﻤﺜﻞ ﺍﻟﺮﺳﻢ ﺍﻟﺜﺎﻧﻲ ﻓﺎﻃﻤﺔ ﻭﻭﺍﻟ ﹶﺪﻳﻬﺎ ،ﻭﻳﻤﺜﻞ ﺍﻟﺮﺳﻢ ﺍﻟﺜﺎﻟﺚ (cﺇﺫﺍ ﺍﺳﺘﻤﺮ ﺍﻟﻨﻤﻂ ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ،ﻓﻜﻢ ﻣﺮﺑ ﹰﻌﺎ ﺻﻐ ﹰﲑﺍ ﺳﻴﻜﻮﻥ ﰲ ﺍﻟﺸﻜﻞ ﺭﻗﻢ 10؟ ﻓﺎﻃﻤﺔ ﻭﻭﺍﻟ ﹶﺪﻳﻬﺎ ﻭﺟ ﱠﺪﻳﻬﺎ ﻭﺟ ﱠﺪﺗﻴﻬﺎ. 100 102 (10ﺇﺫﺍ ﻛﺎﻧﺖ AB, BC, ACﻣﺘﻄﺎﺑﻘﺔ ،ﻓﺈﻥ ﺍﻟﻨﻘﺎﻁ A, B, Cﺗﻘﻊ ﻋﻠﻰ ﺧ ﱟﻂ ﻣﺴﺘﻘﻴ ﹴﻢ. ﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺍﺑﻊ ﺍﻟﺬﻱ ﺳﱰﺳﻤﻪ ﻓﺎﻃﻤﺔ؟ ﻭﻣﺎﺫﺍ ﻳﻤﺜﻞ؟ AB, BC , AC AB (11ﺇﺫﺍ ﻛﺎﻥ ،AB + BC = ACﻓﺈﻥ .AB = BC C (12ﺇﺫﺍ ﻛﺎﻧﺖ ∠1ﻣﺘ ﱢﻤﻤﺔ ﻟ ﹺـ ،∠2ﻭﻛﺎﻧﺖ ∠1ﻣﺘﻤﻤﺔ ﻟ ﹺـ ∠3ﺃﻳ ﹰﻀﺎ ،ﻓﺈﻥ .∠3 ∠2 1 8 1 9 18A 1
1 -1 ( 6) ( 1 0 ) 1 - 1 1-1 ﺍﻛﺘﺐ ﺗﺨﻤﻴ ﹰﻨﺎ ﻳﺼﻒ ﺍﻟﻨﻤﻂ ﻓﻲ ﻛﻞ ﻣﺘﺘﺎﺑﻌﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﺳﺘﻌﻤﻠﻪ ﻹﻳﺠﺎﺩ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻨﻬﺎ: 25 5, -10 , 15 , -20 ... (2 ... (1 ﻋﻨﺪﻣﺎ ﺗﺘﻮﺻﻞ ﺇﱃ ﺍﺳﺘﻨﺘﺎﺝ ﺑﻌﺪ ﺍﺧﺘﺒﺎﺭﻙ ﻟﻌﺪﺓ ﺣﺎﻻﺕ ﻣﻌ ﱠﻴﻨﺔ ،ﻓﺈﻧﻚ ﺗﺴﺘﻌﻤﻞ ﺍﻟﺘﱪﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ .ﻭﻣﻊ ﺫﻟﻚ ﻛﻦ ﺣﺬ ﹰﺭﺍ ﺃﺛﻨﺎﺀ ﺍﺳﺘﻌﲈﻟﻚ 0.375 12, 6, 3, 1.5, 0.75 ... (4 ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺘﱪﻳﺮ؛ ﻷﻧﻪ ﰲ ﺣﺎﻟﺔ ﻭﺟﻮﺩ ﻣﺜﺎﻝ ﻣﻀﺎ ﱟﺩ ﻭﺍﺣﺪ ،ﺳﻴﻜﻮﻥ ﻛﺎﻓ ﹰﻴﺎ ﻹﺛﺒﺎﺕ ﻋﺪﻡ ﺻﺤﺔ ﻫﺬﺍ ﺍﻻﺳﺘﻨﺘﺎﺝ. _1 -2, 1, - _1 , _1 , - _1 ... (3 ﻫﻞ ﺍﻟﻌﺒﺎﺭﺓ x_1_ ≤1ﺻﺤﻴﺤﺔ ﻋﻨﺪ ﺍﻟﺘﻌﻮﻳﺾ ﻋﻦ xﺑﺎﻷﻋﺪﺍﺩ 1, 2, 3؟ ﻭﻫﻞ ﻫﺬﻩ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﺃﻳ ﹰﻀﺎ ﻟﻜﻞ ﻣﺜﺎﻝ 16 2 4 8 ﺍﻷﻋﺪﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ؟ ﺃﻭﺟﺪ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﺇﺫﺍ ﻛﺎﻥ ﺫﻟﻚ ﻣﻤﻜﻨﹰﺎ. ﺿﻊ ﺗﺨﻤﻴ ﹰﻨﺎ ﻟﻜﻞ ﻗﻴﻤﺔ ﺃﻭ ﻋﻼﻗﺔ ﻫﻨﺪﺳﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﻭﺃﻋﻂ ﺃﻣﺜﻠﺔ ﻋﺪﺩﻳﺔ ﺃﻭ ﺍﺭﺳﻢ ﺃﺷﻜﺎ ﹰﻻ ﺗﺴﺎﻋﺪ ﻋﻠﻰ ﺍﻟﻮﺻﻮﻝ ﺇﻟﻰ ﻫﺬﺍ ،_x1_ = 2ﻭﻫﺬﺍ ﺍﳌﺜﺎﻝ ﺍﳌﻀﺎﺩ ﻳﺜﺒﺖ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﻟﻴﺴﺖ ﺻﺤﻴﺤ ﹰﺔ ﺩﺍﺋ ﹰﲈ. ﻓﺈﻥ ، =x _1 ﻋﻨﺪﻣﺎ ﻟﻜﻦ ، __1 = 1, __1 < 1 , __1 < 1 ﺍﻟﺘﺨﻤﻴﻦ. 1 2 3 2 (6ﺍﻟﻨﻘﺎﻁ R,S,Tﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ، ∠ ABC (5ﻗﺎﺋﻤﺔ. (1ﻫﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ √ k 2 = k :ﺻﺤﻴﺤﺔ ﻓﻲ ﺣﺎﻟﺔ ﺍﻟﺘﻌﻮﻳﺾ ﻋﻦ kﺑﺎﻷﻋﺪﺍﺩ 1 ,2 ,3؟ﻭﻫﻞ ﻫﺬﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺻﺤﻴﺤﺔ ﻟﻜﻞ ﺍﻷﻋﺪﺍﺩ ﻭﺍﻟﻨﻘﻄﺔ Sﺗﻘﻊ ﺑﻴﻦ Rﻭ .T ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔBA ⊥ BC : A ﺍﻟﺼﺤﻴﺤﺔ ﺃﻳ ﹰﻀﺎ؟ ﻫﺎﺕ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ ﺇﻥ ﺃﻣﻜﻦ. ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔRS + ST = RT : √(-2)2 ≠ -2 1 , 2, 3 R ST BC ﺍﻷﻋﺪﺍﺩ ﻟﻜﻞ ﺻﺤﻴﺤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﻫﺬﻩ ﻭﻫﻞ 0.7؟ ,4 , __1 ﺑﺎﻷﻋﺪﺍﺩ: x ﻋﻦ ﺍﻟﺘﻌﻮﻳﺾ ﻋﻨﺪ ﺻﺤﻴﺤﺔ ﻫﻞ ﺍﻟﻌﺒﺎﺭﺓ2x = x + x : (2 2 ABCD (8ﻣﺘﻮﺍﺯﻱ ﺃﺿﻼﻉ. ﺍﻟﺤﻘﻴﻘ ﱠﻴﺔ ﺃﻳ ﹰﻀﺎ؟ ﻫﺎﺕ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﺇﻥ ﺃﻣﻜﻦ . ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ AB = CD :ﻭ .BC = AD _P__, Q,_R__, S (7ﻟﻴﺴ _ﺖ__ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ، ﻭ PQ QR RS SP (3ﺍﻓﺘﺮﺽ ﺃﻧﻚ ﻋ ﹼﻴﻨﺖ ﺃﺭﺑﻊ ﻧﻘﺎﻁ ، A, B, C, D :ﺛﻢ ﺭﺳﻤﺖ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ: AB C ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻫﺬﻩ ﺍﻟﻨﻘﺎﻁ ﺗﺸ ﹼﻜﻞ A DC ﺭﺅﻭﺱ ﻣﺮﺑﻊ ﺃﻭ ﻣﻌﻴﻦ. A ، AB , BC, CD, DAﻓﻬﻞ ﹸﺗﻌﻄﻲ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﺷﻜ ﹰﻼ ﺭﺑﺎﻋ ﹼﹰﻴﺎ ﺩﺍﺋ ﹰﻤﺎ ﺃﻡ ﺃﺣﻴﺎ ﹰﻧﺎ؟ ﻭﺿﺢ B P QP Q B D ﺇﺟﺎﺑﺘﻚ ﺑﺎﻟﺮﺳﻢ . C S RS R D ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺃ ﱞﻱ ﻣﻦ ﺍﻟﺘﺨﻤﻴﻨﺎﺕ ﺍﻵﺗﻴﺔ ﺻﺤﻴ ﹰﺤﺎ ﺃﻭ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺈﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺨﻤﻴﻦ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ : (4ﺍﻓﺘﺮﺽ ﺃﻧﻚ ﺭﺳﻤﺖ ﺩﺍﺋﺮﺓ ،ﻭﻭﺿﻌﺖ ﻋﻠﻴﻬﺎ ﺛﻼﺙ ﻧﻘﺎﻁ ،ﺛﻢ ﻭﺻﻠﺖ ﺑﻴﻨﻬﺎ ،ﻓﻬﻞ ﺗﻜﻮﻥ ﺯﻭﺍﻳﺎ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻨﺎﺗﺞ ﺣﺎﺩﺓ ﺩﺍﺋ ﹰﻤﺎ ﺃﻡ ﺃﺣﻴﺎ ﹰﻧﺎ؟ ﻭ ﹼﺿﺢ ﺇﺟﺎﺑﺘﻚ ﺑﺎﻟﺮﺳﻢ . ST = ﻭTU ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ _S, T, Uﻋﻠ__ﻰ ﺗﻘﻊ ﺍﻟﻨﻘﺎﻁ (9 ﺻﺤﻴﺢ ﻣﻨﺘﺼﻒ SU ﺍﻟﻨﻘﻄﺔ Tﻫﻲ ∠1 (10ﻭ ∠2ﻣﺘﺠﺎﻭﺭﺗﺎﻥ. ∠1 ﻭ ∠2ﻣﺘﺠﺎﻭﺭﺗﺎﻥ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ .ﺧﺎﻃﺊ ﻳﻤﻜﻦ ﺃﻥ ﺗﺘﺠﺎﻭﺭ ﺯﺍﻭﻳﺘﺎﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ 60° (5ﻳﻮﺿﺢ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻣﺘﺘﺎﺑﻌﺔ ﻣﺮﺑﻌﺎﺕ ،ﻛ ﱞﻞ ﻣﻨﻬﺎ ﻳﺘﻜﻮﻥ ﻣﻦ ﺑﻼﻃﺎﺕ ﻣﺘﻄﺎﺑﻘﺔ ﻣﺮﺑﻌﺔ ﺍﻟﺸﻜﻞ. ___ ___ ﺗﺸﻜﻼﻥ ﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ ﻭﺗﺘﻘﺎﻃﻌﺎﻥ ﻓﻲ ﺍﻟﻨﻘﻄﺔ .P ﻭ__J_K GH (11 ﺻﺤﻴﺢ ___ GH ⊥ JK (12ﻳﺒﺪﺃ ﺭﺍﺷﺪ ﺑﺎﻟﻌﻄﺎﺱ ﻋﻨﺪﻣﺎ ﺗﺰﻫﺮ ﺍﻷﺷﺠﺎﺭ ﻓﻲ ﻓﺼﻞ ﺍﻟﺮﺑﻴﻊ ،ﻭﻋﻨﺪﻣﺎ ﺗﻤﻄﺮ ﺍﻟﺴﻤﺎﺀ ،ﻭﻗﺪ ﻋ ﹼﻠﻞ (aﺇﺫﺍ ﱂ ﻳﻜﻦ ﻟﺪﻳﻚ ﺃﻱ ﺑﻼﻃﺔ ،ﻓﻜﻢ ﺑﻼﻃ ﹰﺔ ﺳﺘﺤﺘﺎﺝ ﻟﺘﻜﻮﻳﻦ ﺃﻭﻝ ﻣﺮﺑﻊ؟ ﻭﻛﻢ ﺑﻼﻃﺔ ﺗﻀﻴﻒ ﺇﱃ ﺍﳌﺮﺑﻊ ﺍﻷﻭﻝ ﻟﺘﻜﻮﻳﻦ ﺍﳌﺮﺑﻊ ﺭﺍﺷﺪ ﺃﺳﺒﺎﺏ ﺣﺴﺎﺳﻴﺘﻪ ﺑﺄﻧﻬﺎ ﻣﺮﺗﺒﻄﺔ ﺑﻔﺼﻞ ﺍﻟﺮﺑﻴﻊ .ﻳﺘﺤﺴﺲ ﺭﺍﺷﺪ ﻋﻨﺪﻣﺎ ﺗﻤﻄﺮ ﺍﻟﺴﻤﺎﺀ ،ﺇﺫﻥ ﻳﻤﻜﻦ ﺃﻥ ﻳﺘﺤﺴﺲ ﺍﻟﺜﺎﲏ؟ ﻭﻛﻢ ﺑﻼﻃﺔ ﺗﻀﻴﻒ ﺇﱃ ﺍﳌﺮﺑﻊ ﺍﻟﺜﺎﲏ ﻟﺘﻜﻮﻳﻦ ﺍﳌﺮﺑﻊ ﺍﻟﺜﺎﻟﺚ؟ 1, 3, 5 ﻓﻲ ﻓﺼﻞ ﺍﻟﺸﺘﺎﺀ ﻭﺫﻟﻚ ﻣﺜﺎﻝ ﻣﻀﺎﺩ. (bﻛ ﹼﻮﻥ ﲣﻤﻴﻨﹰﺎ ﺣﻮﻝ ﳎﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺘﻲ ﲢﺼﻞ ﻋﻠﻴﻬﺎ ﻣﻦ ﺇﺟﺎﺑﺘﻚ ﻟﻠﻔﺮﻉ .a (cﻛ ﹼﻮﻥ ﲣﻤﻴﻨﹰﺎ ﺣﻮﻝ ﳎﻤﻮﻉ ﺃﻭﻝ nﻣﻦ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻔﺮﺩﻳﺔn 2 n . 6 1 10 1 18B
1- 2 Logic 1 ﻋﻨﺪ ﺇﺟﺎﺑﺘﻚ ﻋﻦ »ﺃﺳﺌﻠﺔ ﻣﻦ ﺍﻟﻨﻮﻉ ﺻﺢ ﺃﻭ ﺧﻄﺄ« ﻓﻲ ﺍﺧﺘﺒﺎﺭ، ﻓﺈﻧﻚ ﺗﺴﺘﻌﻤﻞ ﻣﺒﺪ ﹰﺃ ﺃﺳﺎﺳ ﹰﹼﻴﺎ ﻓﻲ ﺍﻟﻤﻨﻄﻖ. 1-2 1 - 1 ﺇﻳﺠﺎﺩ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ ﻟﻠﺘﺨﻤﻴﻨﺎﺕ ﺍﻟﺨﺎﻃﺌﺔ. ﻓﻤﺜ ﹰﻼ ﺍﻧﻈﺮ ﺇﻟﻰ ﺧﺮﻳﻄﺔ ﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ ﻭﺃﺟﺐ ﻋﻦ 1-2 ﺍﻟﺨﺒﺮ ﺍﻟﺘﺎﻟﻲ ﺑﺼﺤﻴﺢ ﺃﻭ ﺧﺎﻃﺊ :ﺃﺑﻬﺎ ﻣﺪﻳﻨﺔ ﺳﻌﻮﺩﻳﺔ. ﺗﻌﻴﻴﻦ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻌﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻭﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ،ﻭﺗﻤﺜﻴﻞ ﻋﺒﺎﺭ ﹶﺗﻲ ﺍﻟﻮﺻﻞ ﺃﻧﺖ ﺗﻌﺮﻑ ﺃﻧﻪ ﻳﻮﺟﺪ ﺇﺟﺎﺑﺔ ﻭﺣﻴﺪﺓ ﺻﺎﺋﺒﺔ ،ﺇﻣﺎ ﺻﺤﻴﺢ ﺃﻭ ﻭﺍﻟﻔﺼﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺃﺷﻜﺎﻝ ﭬﻦ. ﺧﺎﻃﺊ. 1-2 ﺍﻟﻌﺒﺎﺭﺓ ﻫﻲ ﺟﻤﻠﺔ ﺧﺒﺮﻳﺔ ﻟﻬﺎ ﺣﺎﻟﺘﺎﻥ ﻓﻘﻂ ﺇﻣﺎ ﺃﻥ ﺗﻜﻮﻥ ﺻﺎﺋﺒﺔ ﺃﻭ ﺗﻜﻮﻥ ﺧﺎﻃﺌﺔ ،ﻭﻻ ﺗﺤﺘﻤﻞ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﻋﺒﺎﺭﺓ. ﺃﻱ ﺣﺎﻟﺔ ﺃﺧﺮ .ﻭﺻﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ ) (Tﺃﻭ ﺧﻄﺆﻫﺎ ) (Fﻳﺴﻤﻰ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ،ﻭﻳﺮﻣﺰ ﻟﻠﻌﺒﺎﺭﺓ ﺑﺮﻣﺰ ﻣﺜﻞ pﺃﻭ .q 2 T : pﺍﻟﻤﺴﺘﻄﻴﻞ ﺷﻜﻞ ﺭﺑﺎﻋ ﹼﻲ ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﻳﻔﻴﺪ ﻣﻌﻨﹰﻰ ﹸﻣﻀﺎ ﹼﹰﺩﺍ ﻟﻤﻌﻨﻰ ﺍﻟﻌﺒﺎﺭﺓ .ﻭﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻪ ﻫﻮ ﻋﻜﺲ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻷﺻﻠﻴﺔ ،ﻓﻤﺜ ﹰﻼ: statement ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ pﺃﻋﻼﻩ ﻫﻮ ، ~pﺃﻭ \" ﻟﻴﺲ ، \" pﺣﻴﺚ: ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻗﺮﺍﺀﺓ ﻓﻘﺮﺓ \"ﻟﻤﺎﺫﺍ؟\" . F : ~ pﺍﻟﻤﺴﺘﻄﻴﻞ ﻟﻴﺲ ﺷﻜ ﹰﻼ ﺭﺑﺎﻋ ﹰﹼﻴﺎ truth value ﻳﻤﻜﻨﻚ ﺭﺑﻂ ﻋﺒﺎﺭﺗﻴﻦ ﺃﻭ ﺃﻛﺜﺮ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺮﺍﺑﻂ )ﻭ( ،ﺃﻭ ﺍﻟﺮﺍﺑﻂ )ﺃﻭ( ﻟﺘﻜﻮﻳﻦ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ .ﻭﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻟﺘﻲ • ﺍﺫﻛﺮ ﻋﺒﺎﺭ ﹰﺓ ﺻﺤﻴﺤ ﹰﺔ ﺣﻮﻝ ﺍﻟﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭﺓ ﻟﻠﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ .ﻋﺒﺎﺭﺓ ﻣﻤﻜﻨﺔ: ﺗﺤﺘﻮﻱ )ﻭ( ﹸﺗﺴﻤﻰ ﻋﺒﺎﺭﺓ ﻭﺻﻞ .ﻭﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﺻﺎﺋﺒﺔ ﻓﻘﻂ ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﺟﻤﻴﻊ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﻜﻮﻧﺔ ﻟﻬﺎ ﺻﺎﺋﺒﺔ. ﹶﺗ ﹸﺤ ﱡﺪ ﺍﻟﺠﻤﻬﻮﺭﻳ ﹸﺔ ﺍﻟﻴﻤﻨﻴﺔ ﺍﻟﻤﻤﻠﻜ ﹶﺔ ﻣﻦ negation ﺍﻟﺠﻨﻮﺏ. T :pﺍﻟﻤﺴﺘﻄﻴﻞ ﺷﻜﻞ ﺭﺑﺎﻋ ﹼﻲ • ﺿﻊ ﺗﺨﻤﻴﻨﹰﺎ ﺣﻮﻝ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﻫﻨﺎﻙ ﺑﺤﻴﺮﺍﺕ ﺃﻭ ﺑﺤﺮ ﻓﻲ ﻣﺪﻳﻨﺔ ﺟﺪﺓ .ﺗﺨﻤﻴﻦ ﻣﻤﻜﻦ: T :qﺍﻟﻤﺴﺘﻄﻴﻞ ﻣﻀ ﹼﻠﻊ ﻣﺤ ﹼﺪﺏ ﻣﺪﻳﻨﺔ ﺟﺪﺓ ﺗﻘﻊ ﻋﻠﻰ ﺳﺎﺣﻞ ﺍﻟﺒﺤﺮ ﺍﻷﺣﻤﺮ. compound statement pﻭ :qﺍﻟﻤﺴﺘﻄﻴﻞ ﺷﻜﻞ ﺭﺑﺎﻋﻲ ﻭﺍﻟﻤﺴﺘﻄﻴﻞ ﻣﻀﻠﻊ ﻣﺤ ﹼﺪﺏ. ﺑﻤﺎ ﺃﻥ ﻛﻠﺘﺎ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ pﻭ qﺻﺎﺋﺒﺘﺎﻥ ،ﻓﺈﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ pﻭ qﺻﺎﺋﺒﺔ. ﺗﻜﺘﺐ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ pﻭ qﺑﺎﻟﺮﻣﻮﺯ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ . p q conjunction 1 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ p, q, rﻭﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻟﻜﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ .ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ disjunction ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ: :pﺍﻟﺸﻜﻞ ﻣﺜﻠﺚ. truth table :qﻓﻲ ﺍﻟﺸﻜﻞ ﺿﻠﻌﺎﻥ ﻣﺘﻄﺎﺑﻘﺎﻥ. www.obeikaneducation.com :rﺟﻤﻴﻊ ﺯﻭﺍﻳﺎ ﺍﻟﺸﻜﻞ ﺣﺎﺩﺓ. p (aﻭ r pﻭ :rﺍﻟﺸﻜﻞ ﻣﺜﻠﺚ ﻭﺟﻤﻴﻊ ﺯﻭﺍﻳﺎ ﺍﻟﺸﻜﻞ ﺣﺎﺩﺓ. ﺍﻟﻌﺒﺎﺭﺓ pﺻﺎﺋﺒﺔ ،ﻟﻜﻦ ﺍﻟﻌﺒﺎﺭﺓ rﺧﺎﻃﺌﺔ ،ﺇﺫﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ pﻭ rﺧﺎﻃﺌﺔ. q ~r (b :q ~rﻓﻲ ﺍﻟﺸﻜﻞ ﺿﻠﻌﺎﻥ ﻣﺘﻄﺎﺑﻘﺎﻥ ،ﻭﻟﻴﺲ ﺟﻤﻴﻊ ﺯﻭﺍﻳﺎ ﺍﻟﺸﻜﻞ ﺣﺎﺩﺓ. ﺑﻤﺎ ﺃﻥ ﻛﻼ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ qﻭ ~rﺻﺎﺋﺒﺘﺎﻥ ،ﻓﺈﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ q ~rﺻﺎﺋﺒﺔ. ✓ (1A, 1B ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ (1Bﻟﻴﺲ pﻭ ﻟﻴﺲ r p q (1A 19 1- 2 1-2 (23) • (25) • (23, 25) • (7) • (7) • (7) • (14) • (11) • (15) • (11) • (13) • (13) • (14) • (14) • (15) • 19 1-2
ﺗﺴﻤﻰ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻟﺘﻲ ﺗﺤﺘﻮﻱ )ﺃﻭ( ﻋﺒﺎﺭﺓ ﻓﺼﻞ. :pﺩﺭﺱ ﻣﺎﻟﻚ ﺍﻟﻬﻨﺪﺳﺔ. 3-1 ﻛﻴﻔﻴﺔ ﺇﻳﺠﺎﺩ ﻗﻴﻤﺔ :qﺩﺭﺱ ﻣﺎﻟﻚ ﺍﻟﻜﻴﻤﻴﺎﺀ. ﺍﻟﺼﻮﺍﺏ ﻟﻌﺒﺎﺭﺍﺕ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺍﻟﻤﻨﻄﻘﻲ ﻭﺍﻟﻮﺻﻞ pﺃﻭ :qﺩﺭﺱ ﻣﺎﻟﻚ ﺍﻟﻬﻨﺪﺳﺔ ﺃﻭ ﺩﺭﺱ ﻣﺎﻟﻚ ﺍﻟﻜﻴﻤﻴﺎﺀ. ﺍﻟﻤﻨﻄﻘﻲ. ﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺻﺎﺋﺒﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺣﺪ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﻜﻮﻧﺔ ﻟﻬﺎ ﺻﺎﺋﺒﺔ ،ﻭﺗﻜﻮﻥ ﺧﺎﻃﺌﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺟﻤﻴﻊ ﺍﻟﻌﺒﺎﺭﺍﺕ ✓ ﺍﻟﻤﻜﻮﻧﺔ ﻟﻬﺎ ﺧﺎﻃﺌﺔ .ﻓﺈﺫﺍ ﺩﺭﺱ ﻣﺎﻟﻚ ﺍﻟﻬﻨﺪﺳﺔ ﺃﻭ ﺍﻟﻜﻴﻤﻴﺎﺀ ﺃﻭ ﻛﻠﻴﻬﻤﺎ ،ﻓﺈﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ pﺃﻭ qﺻﺎﺋﺒﺔ .ﻭﺇﺫﺍ ﻟﻢ ﻳﺪﺭﺱ ﻣﺎﻟﻚ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﺍﻟﻬﻨﺪﺳﺔ ﻭﺍﻟﻜﻴﻤﻴﺎﺀ ،ﻓﺈﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ pﺃﻭ qﺧﺎﻃﺌﺔ. ﺍﺳﺘﻌﻤﻞ ﺗﻤﺎﺭﻳﻦ \"ﺗﺤﻘﻖ ﻣﻦ ﻓﻬﻤﻚ\" ﺑﻌﺪ ﻛﻞ ﻣﺜﺎﻝ؛ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﻣﺪ ﻓﻬﻢ ﺍﻟﻄﻠﺒﺔ ﺗﻜﺘﺐ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ pﺃﻭ qﺑﺎﻟﺮﻣﻮﺯ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ . p q ﺍﻟﻤﻔﺎﻫﻴﻢ. 2 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ p, q, rﻭﺍﻟﺼﻮﺭﺓ ﺍﻟﻤﺠﺎﻭﺭﺓ؛ ﻟﻜﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ. :pﻳﻨﺎﻳﺮ ﻣﻦ ﺃﺷﻬﺮ ﻓﺼﻞ ﺍﻟﺮﺑﻴﻊ. 1 :qﻋﺪﺩ ﺃﻳﺎﻡ ﺷﻬﺮ ﻳﻨﺎﻳﺮ 30ﻳﻮ ﹰﻣﺎ ﻓﻘﻂ. :rﻳﻨﺎﻳﺮ ﻫﻮ ﺃﻭﻝ ﺃﺷﻬﺮ ﺍﻟﺴﻨﺔ ﺍﻟﻤﻴﻼﺩﻳﺔ. 2021 1 2 345 6 q (aﺃﻭ r 78 9 10 11 12 13 qﺃﻭ :rﻋﺪﺩ ﺃﻳﺎﻡ ﺷﻬﺮ ﻳﻨﺎﻳﺮ 30ﻳﻮ ﹰﻣﺎ ﻓﻘﻂ ﺃﻭ ﻳﻨﺎﻳﺮ ﻫﻮ ﺃﻭﻝ ﺃﺷﻬﺮ 2021 ﺍﻟﺴﻨﺔ ﺍﻟﻤﻴﻼﺩﻳﺔ. 2021 14 15 16 17 18 19 20 2021 qﺃﻭ rﺻﺎﺋﺒﺔ ﻷﻥ ﺍﻟﻌﺒﺎﺭﺓ rﺻﺎﺋﺒﺔ .ﻭﻛﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ qﺧﺎﻃﺌﺔ ﻻ ﻳﺆﺛﺮ. 21 22 23 24 25 26 27 28 29 30 31 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻟﻜﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ 1 ﺍﻟﻮﺻﻞ ﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺃﻭﺟﺪ p q (b ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ،ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ. :p qﻳﻨﺎﻳﺮ ﻣﻦ ﺃﺷﻬﺮ ﻓﺼﻞ ﺍﻟﺮﺑﻴﻊ ،ﺃﻭ ﻋﺪﺩ ﺃﻳﺎﻡ ﺷﻬﺮ ﻳﻨﺎﻳﺮ 30ﻳﻮ ﹰﻣﺎ ﻓﻘﻂ. (2Aﻳﻨﺎﻳﺮ ﻫﻮ ﺃﻭﻝ ﺷﻬﺮ ﻓﻲ :Pﺍﻟﻘﺪﻡ ﺗﻌﺎﺩﻝ 14ﺑﻮﺻ ﹰﺔ. ﺑﻤﺎ ﺃﻥ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺧﺎﻃﺌﺔ ،ﻓﺈﻥ p qﺧﺎﻃﺌﺔ. ﺍﻟﺴﻨﺔ ﺍﻟﻤﻴﻼﺩﻳﺔ ﺃﻭ ﻳﻨﺎﻳﺮ ﻣﻦ ﺃﺷﻬﺮ :qﺷﻬﺮ ﺭﻣﻀﺎﻥ ﻫﻮ ﺷﻬﺮ ﺍﻟﺼﻴﺎﻡ ﻋﻨﺪ ~p r (c ﻓﺼﻞ ﺍﻟﺮﺑﻴﻊ .ﺑﻤﺎ ﺃﻥ rﺻﺎﺋﺒﺔ ﺍﻟﻤﺴﻠﻤﻴﻦ. ﻓﺈﻥ rﺃﻭ pﺻﺎﺋﺒﺔ. :~p rﻳﻨﺎﻳﺮ ﻟﻴﺲ ﻣﻦ ﺃﺷﻬﺮ ﻓﺼﻞ ﺍﻟﺮﺑﻴﻊ ﺃﻭ ﻳﻨﺎﻳﺮ ﻫﻮ ﺃﻭﻝ ﺃﺷﻬﺮ ﺍﻟﺴﻨﺔ ﺍﻟﻤﻴﻼﺩﻳﺔ. :rﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻘﺎﺋﻤﺔ ﻳﺴﺎﻭﻱ °90 ~p rﺻﺎﺋﺒﺔ؛ ﻷﻥ ~pﺻﺎﺋﺒﺔ ﻭ rﺻﺎﺋﺒﺔ ﺃﻳ ﹰﻀﺎ. p ∧ q (a (2Bﻋﺪﺩ ﺃﻳﺎﻡ ﻳﻨﺎﻳﺮ 30ﻳﻮ ﹰﻣﺎ ✓ p ~q (2C q ~r (2B ﻓﻘﻂ ﺃﻭ ﻳﻨﺎﻳﺮ ﻟﻴﺲ ﺃﻭﻝ ﺷﻬﺮ ﻓﻲ r (2Aﺃﻭ p ﺍﻟﺴﻨﺔ ﺍﻟﻤﻴﻼﺩﻳﺔ .ﺑﻤﺎ ﺃﻥ ﻛﻠﺘﺎ ﺍﻟﻘﺪﻡ ﺗﻌﺎﺩﻝ 14ﺑﻮﺻ ﹰﺔ ،ﻭﺷﻬﺮ ﺭﻣﻀﺎﻥ ﻫﻮ ﺷﻬﺮ ﺍﻟﺼﻴﺎﻡ ﻋﻨﺪ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ~r ، qﺧﺎﻃﺌﺔ ﻓﺈﻥ q ~rﺧﺎﻃﺌﺔ. ﺍﻟﻤﺴﻠﻤﻴﻦ) .ﺧﺎﻃﺌﺔ( (2Cﻳﻨﺎﻳﺮ ﻣﻦ ﺃﺷﻬﺮ ﻓﺼﻞ ﺑﻤﺎ ﺃﻥ pﺧﺎﻃﺌﺔ ﺇﺫﻥ p ∧ qﺧﺎﻃﺌﺔ. p ~p ﺍﻟﺮﺑﻴﻊ ،ﻭﻋﺪﺩ ﺃﻳﺎﻡ ﺷﻬﺮ ﻳﻨﺎﻳﺮ ∼p r (b qp p q ﻟﻴﺲ 30ﻳﻮ ﹰﻣﺎ .ﺑﻤﺎ ﺃﻥ ~qﺻﺎﺋﺒﺔ qpp q ﻓﺈﻥ p ~qﺻﺎﺋﺒﺔ. ﺍﻟﻘﺪﻡ ﻻ ﺗﻌﺎﺩﻝ 14ﺑﻮﺻ ﹰﺔ، ﻭﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻘﺎﺋﻤﺔ ﻳﺴﺎﻭﻱ ) °90ﺻﺎﺋﺒﺔ(. 1 20 ﺑﻤﺎ ﺃﻥ pﺧﺎﻃﺌﺔ ،ﺇﺫﻥ ∼pﺻﺎﺋﺒﺔ ﻭr ﺻﺎﺋﺒﺔ ،ﻭﻋﻠﻴﻪ ﻓﺈﻥ ∼p ∧ rﺻﺎﺋﺒﺔ. ﺍﻛﺘﺐ ﻋﻠﻰ ﺍﻟﺴﺒﻮﺭﺓ ﻋﺒﺎﺭﺗﻴﻦ ﻣﻨﻄﻘﻴﺘﻴﻦ pﻭ ، qﻭﺍﻛﺘﺐ ﺃﻳ ﹰﻀﺎ ﺍﻟﺮﻣﻮﺯ ∨ ،∼, ∧,ﺛﻢ ﺿﻊ ﻫﺬﻩ ﺍﻟﺮﻣﻮﺯ ﺑﻴﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﻟﺘﻜﻮﻳﻦ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ ،ﻭﻭﺿﺢ ﻟﻠﻄﻼﺏ ﻛﻴﻔﻴﺔ ﺇﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﺍﻟﻨﺎﺗﺠﺔ، ﺛﻢ ﺑﻌﺪ ﺫﻟﻚ ﻏ ﹼﻴﺮ ﻭﺿﻊ ﻫﺬﻩ ﺍﻟﺮﻣﻮﺯ ﻟﺘﻜﻮﻳﻦ ﻋﺒﺎﺭﺓ ﻣﻨﻄﻘﻴﺔ ﻣﺮﻛﺒﺔ ﺃﺧﺮ ،ﻭﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ. 1 20
ﻭﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ. ﻳﻤﻜﻦ ﺗﻨﻈﻴﻢ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﻓﻲ ﺟﺪﺍﻭﻝ ﺗﺴﻤﻰ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ .ﻟﺘﺤﺪﻳﺪ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻨﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﻭﻟﻌﺒﺎﺭ ﹶﺗﻲ ﺍﻟﻮﺻﻞ ﻭﺍﻟﻔﺼﻞ p q pq p q pq p ~p TTT TTT TFT TFF TF FTT FTF FFF FFF FT ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻟﻜﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ 2 ﺛﻢ ﺃﻭﺟﺪ،ﺍﻟﻔﺼﻞ ﻓﻲ ﻛ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ . ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ،ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ .ﻭﻛﺬﻟﻚ ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺃﻋﻼﻩ ﻹﻧﺸﺎﺀ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻷﻛﺜﺮ ﺗﻌﻘﻴ ﹰﺪﺍ ___ 3 ﺭﻣﺰ ﺧﺎﺹ ﻟﻠﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔAB :p ~p q ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ .AB . ﺍﻟﺴﻨﺘﻤﺘﺮﺍﺕ ﻭﺣﺪﺍﺕ ﻗﻴﺎﺱ ﻣﺘﺮ ﹼﻳﺔ:q }1 p q ~p ~p q p, q, ~p, ~p q 1 TTFT p, q 2 . ﻋﺪﺩ ﺃﻭﻟ ﱞﻲ9 :r TFFF FTTT p 3 q ﺃﻭp (a FFTT ~p ﺭﻣﺰ ﺧﺎﺹ ﻟﻠﻘﻄﻌﺔAB ﺃﻭ ﺍﻟﺴﻨﺘﻤﺘﺮﺍﺕ،AB ﺍﻟﻤﺴﺘﻘﻴﻤﺔ 2 34 ~p , q 4 ( )ﺻﺤﻴﺤﺔ.ﻭﺣﺪﺍﺕ ﻗﻴﺎﺱ ﻣﺘﺮﻳﺔ } ~ p q } } q r (b ✓ ﺍﻟﺴﻨﺘﻤﺘﺮﺍﺕ ﻭﺣﺪﺍﺕ ﻗﻴﺎﺱ . ﻋﺪﺩ ﺃﻭﻟﻲ9 ﻣﺘﺮﻳﺔ ﺃﻭ ﺍﻟﻌﺪﺩ ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ.~p ~q ( ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ3 .()ﺻﺤﻴﺤﺔ ∼ p ___r (c . ﹸﻋﺪ ﺇﻟﻰ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻓﻲ ﺑﺪﺍﻳﺔ ﺍﻟﺪﺭﺱ. ﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺃﺷﻜﺎﻝ ﭬﻦ ﻟﻴﺲ ﺭﻣ ﹰﺰﺍ ﺧﺎ ﹼﹰﺻﺎ ﻟﻠﻘﻄﻌﺔAB . ﻋﺪﺩ ﺃﻭﻟﻲ9 ﺃﻭAB ﺍﻟﻤﺴﺘﻘﻴﻤﺔ . ﺍﻟﻤﺴﺘﻄﻴﻞ ﺷﻜﻞ ﺭﺑﺎﻋﻲ ﻭﺍﻟﻤﺴﺘﻄﻴﻞ ﻣﻀﻠﻊ ﻣﺤﺪﺏ:q ﻭp ﺧﺎﻃﺌﺔr ∼ ﻭp ﺑﻤﺎ ﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ ﻭﻫﻲ ﺃﻳ ﹰﻀﺎ ﻣﻀﻠﻌﺎﺕ،ﺗﻌﻠﻢ ﺃﻥ ﺍﻟﻤﺴﺘﻄﻴﻼﺕ ﺃﺷﻜﺎﻝ ﺭﺑﺎﻋﻴﺔ . ∼ ﺧﺎﻃﺌﺔ ﺃﻳ ﹰﻀﺎp r ﻓﺈﻥ ﻭﻳﺒ ﱢﻴﻦ ﺷﻜﻞ ﭬﻦ ﺃﻥ ﺍﻟﻤﺴﺘﻄﻴﻼﺕ ﺗﻘﻊ ﻓﻲ ﻣﻨﻄﻘﺔ ﺗﻘﺎﻃﻊ،ﻣﺤﺪﺑﺔ ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞ ﻋﺒﺎﺭﺓ3 .ﻣﺠﻤﻮﻋﺔ ﺍﻷﺷﻜﺎﻝ ﺍﻟﺮﺑﺎﻋﻴﺔ ﻭﻣﺠﻤﻮﻋﺔ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﻤﺤ ﹼﺪﺑﺔ :ﻓﻴﻤﺎ ﻳﺄﺗﻲ 8 ﺗﻘﻊ ﺍﻟﻤﺴﺘﻄﻴﻼﺕ ﺿﻤﻦ ﻣﺠﻤﻮﻋﺔ ﺍﻷﺷﻜﺎﻝ:ﻭﺑﻤﻌﻨﻰ ﺁﺧﺮ ∼ (∼ p q) (a . ﻭﺃﻳ ﹰﻀﺎ ﺿﻤﻦ ﻣﺠﻤﻮﻋﺔ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﻤﺤﺪﺑﺔ،ﺍﻟﺮﺑﺎﻋﻴﺔ n p q ∼p ∼p ∧ q ∼(∼p ∧ q) 2n TTF F T TFF F T FTT T F 21 1- 2 FFT F T p (∼ q r) (b ! p q r ∼q ∼q ∧ r p ∨(∼q ∧ r) ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺑﺄﻧﻪ ﺑﻤﻘﺪﻭﺭﻫﻢ ﺗﺒﺪﻳﻞ ﺃﻋﻤﺪﺓ TTT F F T ﺷﺮﻳﻄﺔ ﺃﻥ ﹸﻳﻤﻸ،3b ﻓﻲ ﺍﻟﻤﺜﺎﻝ ﺍﻹﺿﺎﻓﻲp, q, r ﻋﻠﻰ ﺍﻟﻨﺤﻮ ﺍﻟﺼﺤﻴﺢ؛p ( q r), q r ﺍﻟﻌﻤﻮﺩﺍﻥ TTF F F T ﻭﺳﺘﻨﺘﻬﻲ ﺑﺨﻤﺲ ﺇﺟﺎﺑﺎﺕ،ﻷﻥ ﺍﻟﻨﺎﺗﺞ ﺍﻟﻨﻬﺎﺋﻲ ﻟﻦ ﻳﺘﻐﻴﺮ TFT T T T ،ﺻﺎﺋﺒﺔ ﻭﺛﻼﺙ ﺇﺟﺎﺑﺎﺕ ﺧﺎﻃﺌﺔ ﻓﻲ ﺟﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ .ﻭﻟﻜﻦ ﺑﺘﺮﺗﻴﺐ ﻣﺨﺘﻠﻒ TFF T F T FTT F F F FTF F F F FFT T T T FFF T F F 21 1-2
ﻳﻤﻜﻦ ﺃﻳ ﹰﻀﺎ ﺗﻤﺜﻴﻞ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺃﺷﻜﺎﻝ ﭬﻦ .ﺇﻟﻴﻚ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ : :pﺍﻟﺸﻜﻞ ﺳﺪﺍﺳﻲ. q p :qﺍﻟﺸﻜﻞ ﻣﻀ ﹼﻠﻊ ﻣﺤ ﹼﺪﺏ. pﺃﻭ :qﺍﻟﺸﻜﻞ ﺳﺪﺍﺳﻲ ﺃﻭ ﻣﻀ ﹼﻠﻊ ﻣﺤ ﹼﺪﺏ. ~p ∧ q p ∧ q p ∧ ~q ﻓﻲ ﺷﻜﻞ ﭬﻦ ﺍﻟﻤﺠﺎﻭﺭ ﺗﻤﺜﻞ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔﺼﻞ ﺑﺎﺗﺤﺎﺩ 4 ﻳﺒ ﹼﻴﻦ ﻛﻴﻔﻴﺔ ﺍﺳﺘﻌﻤﺎﻝ ﺃﺷﻜﺎﻝ ﭬﻦ ﺍﻟﻤﺠﻤﻮﻋﺘﻴﻦ ،ﻭﻳﺤﻮﻱ ﺍﻻﺗﺤﺎﺩ ﺟﻤﻴﻊ ﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺘﻲ ﻫﻲ p ∨q ﻟﻮﺿﻊ ﺗﺨﻤﻴﻨﺎﺕ ،ﻭﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﻜﻮﻧﻮﺍ ﺇﻣﺎ ﺳﺪﺍﺳﻴﺔ ﺃﻭ ﻣﺤﺪﺑﺔ ﺃﻭ ﻛﻼﻫﻤﺎ. ﺗﺘﻀﻤﻦ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺍﻟﻤﻨﺎﻃﻖ ﺍﻟﺜﻼﺙ ﺍﻵﺗﻴﺔ: ﻗﺎﺩﺭﻳﻦ ﻋﻠﻰ ﻭﺿﻊ ﺗﺨﻤﻴﻦ ،ﻭﻛﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ p ~qﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺴﺪﺍﺳﻴﺔ ﻏﻴﺮ ﺍﻟﻤﺤ ﹼﺪﺑﺔ. ﻣﺮﻛﺒﺔ ،ﻭﺇﻳﺠﺎﺩ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ. ~p qﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﻤﺤﺪﺑﺔ ﻏﻴﺮ ﺍﻟﺴﺪﺍﺳﻴﺔ. p qﺍﻟﻤﻀﻠﻌﺎﺕ ﺍﻟﺴﺪﺍﺳﻴﺔ ﺍﻟﻤﺤﺪﺑﺔ. 4 ﹸﻳﻈﻬﺮ ﺷﻜﻞ ﭬﻦ ﺃﺩﻧﺎﻩ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺷﺎﺭﻛﻮﺍ ﻓﻲ ﺣﻤﻠﺔ ﺑﻴﺌﻴﺔ ﻟﻠﺘﻮﻋﻴﺔ ﺑﺄﻫﻤﻴﺔ ﺍﻻﻗﺘﺼﺎﺩ ﻓﻲ ﺷﻜﻞ ﭬﻦ ﺍﻟﺘﺎﻟﻲ ﻳﺒ ﹼﻴﻦ ﻋﺪﺩ 4 ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻮﺭﻕ ﺃﻗﻴﻤﺖ ﺧﻼﻝ ﺷﻬ ﹶﺮﻱ ﺭﺟﺐ ﻭﺷﻌﺒﺎﻥ. ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﺍﻟﺘﺤﻘﻮﺍ ﺑﺎﻷﻧﺸﻄﺔ (aﻛﻢ ﺷﺨ ﹰﺼﺎ ﺷﺎﺭﻙ ﻓﻲ ﺍﻟﺤﻤﻠﺔ ﻟﺸﻬﺮ ﺭﺟﺐ ﺃﻭ ﺷﻌﺒﺎﻥ؟ ﺍﻟﺮﻳﺎﺿﻴﺔ. ﺍﺗﺤﺎﺩ ﺍﻟﻤﺠﻤﻮﻋﺘﻴﻦ ﻳﻤﺜﻞ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺷﺎﺭﻛﻮﺍ ﻓﻲ 14 5 ﺍﻟﺤﻤﻠﺔ ﺧﻼﻝ ﺷﻬﺮﻱ ﺭﺟﺐ ﺃﻭ ﺷﻌﺒﺎﻥ. 6 ﻓﻴﻜﻮﻥ 5 + 6 + 14ﺃﻭ 25ﺷﺨ ﹰﺼﺎ ﺷﺎﺭﻛﻮﺍ ﻓﻲ ﺍﻟﺤﻤﻠﺔ 43 ﺧﻼﻝ ﺍﻟﺸﻬﺮﻳﻦ. 13 28 20 9 (bﻛﻢ ﺷﺨ ﹰﺼﺎ ﺷﺎﺭﻙ ﻓﻲ ﺍﻟﺤﻤﻠﺔ ﺧﻼﻝ ﺷﻬ ﹶﺮﻱ ﺭﺟﺐ ﻭﺷﻌﺒﺎﻥ؟ 17 25 ﺗﻘﺎﻃﻊ ﺍﻟﻤﺠﻤﻮﻋﺘﻴﻦ ﻳﻤﺜﻞ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺷﺎﺭﻛﻮﺍ ﻓﻲ ﺍﻟﺤﻤﻠﺔ ﺧﻼﻝ ﻛﻼ ﺍﻟﺸﻬﺮﻳﻦ ،ﻟﺬﻟﻚ ﻫﻨﺎﻙ 6 29 ﺃﺷﺨﺎﺹ ﻓﻘﻂ ﺷﺎﺭﻛﻮﺍ ﻓﻲ ﺍﻟﺤﻤﻠﺔ ﺧﻼﻝ ﻛﻼ ﺍﻟﺸﻬﺮﻳﻦ. (cﻣﺎﺫﺍ ﻳﻤﺜﻞ ﺍﻟﻌﺪﺩ 14ﻓﻲ ﺍﻟﺸﻜﻞ؟ (aﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﻤﺸﺎﺭﻛﻴﻦ ﻓﻲ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺷﺎﺭﻛﻮﺍ ﻓﻲ ﺍﻟﺤﻤﻠﺔ ﺧﻼﻝ ﺷﻬﺮ ﺷﻌﺒﺎﻥ ،ﻭﻟﻢ ﻳﺸﺎﺭﻛﻮﺍ ﺧﻼﻝ ﺷﻬﺮ ﺭﺟﺐ. ﺍﻷﻧﺸﻄﺔ ﺍﻟﺜﻼﺛﺔ؟ 9 ✓ (bﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﻤﺸﺎﺭﻛﻴﻦ ﻓﻲ ﻧﺸﺎﻁ ﻛﺮﺓ ﺍﻟﻘﺪﻡ ﺃﻭ ﻧﺸﺎﻁ ﻛﺮﺓ (4ﻳﺒﻴﻦ ﺷﻜﻞ ﭬﻦ ﺍﻟﻤﺠﺎﻭﺭ ﻋﺪﺩ ﻃﻼﺏ ﺍﻟﻴﺪ؟ 136 ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﺍﻟﺜﺎﻧﻮﻱ ﺍﻟﺬﻳﻦ ﻧﺠﺤﻮﺍ ﻭﺍﻟﺬﻳﻦ ﻟﻢ ﻳﻨﺠﺤﻮﺍ ﻓﻲ (cﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﻤﺸﺎﺭﻛﻴﻦ ﺍﺧﺘﺒﺎﺭﻱ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﺃﻭ ﺍﻟﻜﻴﻤﻴﺎﺀ. ﻓﻲ ﻧﺸﺎ ﹶﻃﻲ ﺍﻟﻜﺮﺓ ﺍﻟﻄﺎﺋﺮﺓ ﻭﻛﺮﺓ 3 46 4 (Aﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻧﺠﺤﻮﺍ ﻓﻲ ﺍﺧﺘﺒﺎﺭ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ،ﻭﻟﻢ ﺍﻟﻴﺪ ،ﻭﻏﻴﺮ ﻣﺸﺎﺭﻛﻴﻦ ﻓﻲ ﻛﺮﺓ ﻳﻨﺠﺤﻮﺍ ﻓﻲ ﺍﺧﺘﺒﺎﺭ ﺍﻟﻜﻴﻤﻴﺎﺀ؟ 4ﻃﻼﺏ ﺍﻟﻘﺪﻡ؟ 17 (Bﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻧﺠﺤﻮﺍ ﻓﻲ ﺍﺧﺘﺒﺎﺭ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻭﺍﺧﺘﺒﺎﺭ ﺍﻟﻜﻴﻤﻴﺎﺀ؟ 46ﻃﺎﻟ ﹰﺒﺎ 2 (Cﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻟﻢ ﻳﻨﺠﺤﻮﺍ ﻓﻲ ﺃ ﱟﻱ ﻣﻦ ﺍﻻﺧﺘﺒﺎﺭﻳﻦ؟ ﻃﺎﻟﺒﺎﻥ (Dﻣﺎ ﻋﺪﺩ ﻃﻼﺏ ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﺍﻟﺜﺎﻧﻮﻱ؟ 55ﻃﺎﻟ ﹰﺒﺎ 1 22 ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺃﻥ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻳﺠﺐ ﺃﻥ ﹸﺗﻈﻬﺮ ﻛﻞ ﺍﻟﺘﺮﺍﺗﻴﺐ p q r T T T ﺍﻟﻤﻤﻜﻨﺔ ﻟﻘﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﻛ ﹼﻠﻬﺎ ﻟﺘﺸﻤﻞ ﺟﻤﻴﻊ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﻤﻤﻜﻨﺔ .ﻓﻔﻲ ﺍﻟﺒﺪﺍﻳﺔ T T F ﻧﺤﺪﺩ ﻋﺪﺩ ﺍﻷﺳﻄﺮ ﺍﻟﺘﻲ ﻧﺤﺘﺎﺟﻬﺎ ،ﻓﻤﺜ ﹰﻼ؛ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺍﺕ p, q, rﻓﺈﻥ ﻋﺪﺩ ﺍﻷﺳﻄﺮ T F T ،23 = 8ﻭﺗﺮﺗﻴﺐ ﺍﻟﺠﺪﻭﻝ ﺑﺄﻥ ﻧﻀﻊ ﻛﻠﻤﺔ ﺻﻮﺍﺏ ﻓﻲ ﻧﺼﻒ ﺃﺳﻄﺮ ﻋﻤﻮﺩ ﺍﻟﻌﺒﺎﺭﺓ T F F ،p ﻭﻛﻠﻤﺔ ﺧﻄﺄ ﻓﻲ ﻧﺼﻔﻬﺎ ﺍﻵﺧﺮ ،ﻭﻓﻲ ﻋﻤﻮﺩ ﺍﻟﻌﺒﺎﺭﺓ qﻧﺒﺎﺩﻝ ﺑﻴﻦ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﻛﻠﻤ ﹶﺘﻲ ﺻﻮﺍﺏ F T T F T F F F T ﻣﻊ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﻛﻠﻤ ﹶﺘﻲ ﺧﻄﺄ ،ﻭﻋﻤﻮﺩ ﺍﻟﻌﺒﺎﺭﺓ rﻧﺒﺎﺩﻝ ﺑﻴﻦ ﻛﻠﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻭﺍﻟﺨﻄﺄ ﺳﻄ ﹰﺮﺍ F F F ﺑﺴﻄﺮ ﺣﺘﻰ ﻧﻬﺎﻳﺔ ﺍﻟﺠﺪﻭﻝ ،ﻛﻤﺎ ﻫﻮ ﻣﺒﻴﻦ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﺠﺎﻭﺭ. ﺑ ﹼﻴﻦ ﻟﻠﻄﻼﺏ ﺃﻧﻬﻢ ﻋﻨﺪﻣﺎ ﹸﻳﺘﻘﻨﻮﻥ ﺍﻟﺘﻌﻠﻴﻤﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺳﻴﺼﺒﺤﻮﻥ ﻗﺎﺩﺭﻳﻦ ﻋﻠﻰ ﺇﻛﻤﺎﻝ ﺍﻟﺠﺪﻭﻝ. 1 22
✓ ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ p, q, rﻟﻜﺘﺎﺑﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻭﺻﻞ ﺃﻭ ﻓﺼﻞ ﺃﺩﻧﺎﻩ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ﻣﻔ ﱢﺴ ﹰﺮﺍ ﺗﺒﺮﻳﺮﻙ: 1, 2 :pﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ ﺳﺒﻌﺔ ﺃﻳﺎﻡ. :qﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻟﻮﺍﺣﺪ 20ﺳﺎﻋﺔ. (1ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ ﺳﺒﻌﺔ ﺃﻳﺎﻡ ،ﻭﻓﻲ :rﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺩﻗﻴﻘﺔ (1–6 .ﺍﻧﻈﺮ ﻫﺎﻣﺶ ﺍﻟﺴﺎﻋﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺩﻗﻴﻘﺔ .ﺑﻤﺎ ﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ pﻭ rﺻﺤﻴﺤﺔ؛ ﺇﺫﻥ ﻛ ﱞﻞ ﻣﻦ pﻭ r q r (3 p q (2 p (1ﻭ r ﺻﺤﻴﺤﺔ. ~p ~r (6 p r (5 ~p (4ﺃﻭ q p q ~q p ~q (7ﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻤﺠﺎﻭﺭ. 3 (2ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ ﺳﺒﻌﺔ ﺃﻳﺎﻡ ﻭﻓﻲ T T FT ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺻﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻟﻤﺮﻛﺒﺘﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ: (8, 9ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. ﺍﻟﻴﻮﻡ ﺍﻟﻮﺍﺣﺪ 20ﺳﺎﻋﺔ p q .ﺧﺎﻃﺌﺔ؛ T FTT FTFF ~p ~q (9 p q (8 ﻷﻥ pﺻﺤﻴﺤﺔ؛ ﻭ qﺧﺎﻃﺌﺔ. F FTT (3ﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻟﻮﺍﺣﺪ 20ﺳﺎﻋﺔ ،ﺃﻭ ﻓﻲ (10 4ﺍﺳﺘﻌﻤﻞ ﺷﻜﻞ ﭬﻦ ﺍﻟﻤﺠﺎﻭﺭ ،ﻭﺍﻟﺬﻱ ﻳﻤﺜﻞ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﺍﻟﺴﺎﻋﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺩﻗﻴﻘﺔq r . ﺻﺤﻴﺤﺔ؛ ﻷﻥ qﺧﺎﻃﺌﺔ ،ﻭ rﺻﺤﻴﺤﺔ. ﻳﺪﺭﺳﻮﻥ ﺍﻟﻠﻐﺘﻴﻦ ﺍﻟﻔﺮﻧﺴﻴﺔ ﻭﺍﻹﻳﻄﺎﻟﻴﺔ ﻓﻲ ﻣﻌﻬﺪ ﺍﻟﻠﻐﺎﺕ. 8 3 11 (aﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻳﺪﺭﺳﻮﻥ ﺍﻹﻳﻄﺎﻟﻴﺔ ﻓﻘﻂ؟ 8 (bﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻳﺪﺭﺳﻮﻥ ﺍﻹﻳﻄﺎﻟﻴﺔ ﻭﺍﻟﻔﺮﻧﺴﻴﺔ ﻣ ﹰﻌﺎ؟ 3 (4ﻟﻴﺲ ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ ﺳﺒﻌﺔ ﺃﻳﺎﻡ ،ﺃﻭ ﻓﻲ ﺍﻟﻴﻮﻡ ﺍﻟﻮﺍﺣﺪ 20ﺳﺎﻋﺔ ~p .ﺃﻭ q (cﻣﺎﺫﺍ ﻳﻤﺜﻞ ﺍﻟﻌﺪﺩ 11ﻓﻲ ﺍﻟﺸﻜﻞ؟ ﺧﺎﻃﺌﺔ؛ ﻷﻥ ﻛ ﹼﹰﻼ ﻣﻦ ~pﻭ qﺧﺎﻃﺌﺔ. ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻳﺪﺭﺳﻮﻥ ﺍﻟﻔﺮﻧﺴﻴﺔ ﻭﻻ ﻳﺪﺭﺳﻮﻥ ﺍﻹﻳﻄﺎﻟﻴﺔ. (5ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ ﺳﺒﻌﺔ ﺃﻳﺎﻡ ،ﺃﻭ ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ p, q, r, sﻭﺍﻟﺨﺮﻳﻄﺔ ﺍﻟﻤﺠﺎﻭﺭﺓ؛ ﻟﻜﺘﺎﺑﺔ ﻛﻞ ﻋﺒﺎﺭﺓ 1, 2 ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺩﻗﻴﻘﺔp r . ﻭ ﹾﺻ ﹴﻞ ﺃﻭ ﻓﺼ ﹴﻞ ﺃﺩﻧﺎﻩ .ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ﻣﻔ ﱢﺴ ﹰﺮﺍ ﺗﺒﺮﻳﺮﻙ: ﺻﺤﻴﺤﺔ؛ ﻷﻥ ﻛ ﹰﹼﻼ ﻣﻦ pﻭ rﺻﺤﻴﺤﺔ. :pﺍﻟﺮﻳﺎﺽ ﻋﺎﺻﻤﺔ ﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ (11-16 .ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ :qﺗﻘﻊ ﻣﻜﺔ ﺍﻟﻤﻜﺮﻣﺔ ﻋﻠﻰ ﺍﻟﺨﻠﻴﺞ ﺍﻟﻌﺮﺑﻲ. (6ﻟﻴﺲ ﻓﻲ ﺍﻷﺳﺒﻮﻉ ﺍﻟﻮﺍﺣﺪ ﺳﺒﻌﺔ ﺃﻳﺎﻡ، :rﺗﻮﺟﺪ ﺣﺪﻭﺩ ﻣﺸﺘﺮﻛﺔ ﻟﻠﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ ﻣﻊ ﺍﻟﻌﺮﺍﻕ. ﻭﻟﻴﺲ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺩﻗﻴﻘﺔ. :sﺍﻟﻤﻤﻠﻜﺔ ﺍﻟﻌﺮﺑﻴﺔ ﺍﻟﺴﻌﻮﺩﻳﺔ ﺗﻘﻊ ﻏﺮﺑﻲ ﺍﻟﺒﺤﺮ ﺍﻷﺣﻤﺮ. ~p ~rﺧﺎﻃﺌﺔ؛ ﻷﻥ ~pﺧﺎﻃﺌﺔ، ﻭ ~rﺧﺎﻃﺌﺔ. ~r (13ﺃﻭ s p q (12 p (11ﻭ r (8 ~s ~p (16 ~p (15ﻭ ~r r q (14 p qp q p ﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻵﺗﻲ: 3 TT T T TF F T q ~p ~p q (17 FT F F FF F F TF F FF F TT T FT F (9 p q ~p ~q ~p ~q 23 1- 2 TT F F F TF F T T FT T F T FF T T T . 23 1-2
ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻵﺗﻴﺔ (18-20 :ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ ~p r (20 ~ (~ r q) (19 ~ (~ p) (18 (21ﻗﺮﺭ ﻣﺪﺭﺱ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻣﻜﺎﻓﺄﺓ ﺍﻟﻄﻼﺏ 3 ﺍﻟﻤﺘﻔﻮﻗﻴﻦ ﺑﺎﺻﻄﺤﺎﺑﻬﻢ ﻓﻲ ﺭﺣﻠﺔ ﻣﺪﺭﺳﻴ ﹴﺔ ،ﻭﻗﺮﺭ ﺃﻥ ﺗﻜﻮﻥ ✓ T ﺍﻟﻘﺎﻋﺪﺓ ﺃﻧﻪ \"ﺇﺫﺍ ﺗﻔ ﹼﻮﻕ ﺍﻟﻄﺎﻟﺐ ﻓﻲ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻷﻭﻝ ﺃﻭ ﺍﺳﺘﻌﻤﻞ ﺍﻷﺳﺌﻠﺔ 1–10؛ ﻟﻠﺘﺄﻛﺪ ﻣﻦ ﻓﻬﻢ T ﺗﻔﻮﻕ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﺜﺎﻧﻲ ﻓﺈﻧﻪ ﺳﻴﺬﻫﺐ ﻓﻲ ﺍﻟﺮﺣﻠﺔ\". ﺍﻟﻄﻠﺒﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺳﻔﻞ ﻫﺬﻩ ﺍﻟﺼﻔﺤﺔ؛ ﻟﺘﻌﻴﻴﻦ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻠﻄﻠﺒﺔ T (aﺃﻛﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻤﺠﺎﻭﺭ. F ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. ﻟﻢ ﻳﺘﻔﻮﻕ ﺗﻔﻮﻕ ﻟﻢ ﻳﺘﻔﻮﻕ ﻟﻢ ﻳﺘﻔﻮﻕ (bﺇﺫﺍ ﺗﻔﻮﻕ ﺍﻟﻄﺎﻟﺐ ﻓﻲ ﺍﻻﺧﺘﺒﺎﺭﻳﻦ ،ﻓﻬﻞ ﺳﻴﺬﻫﺐ ﻓﻲ ﻫﺬﻩ ﺍﻟﺮﺣﻠﺔ؟ ﻧﻌﻢ (cﺇﺫﺍ ﺗﻔﻮﻕ ﺍﻟﻄﺎﻟﺐ ﻓﻲ ﺍﻻﺧﺘﺒﺎﺭ ﺍﻷﻭﻝ ﻓﻘﻂ ،ﻓﻬﻞ ﺳﻴﺬﻫﺐ ﻓﻲ ﻫﺬﻩ ﺍﻟﺮﺣﻠﺔ؟ ﻧﻌﻢ (22ﹸﺳﺌﻞ 370ﺷﺨ ﹰﺼﺎ ﻣﻦ ﺍﻟﻔﺌﺔ ﺍﻟﻌﻤﺮﻳﺔ ﺑﻴﻦ 4 13-19ﺳﻨﺔ ﻋﻦ ﺍﻟﺠﻬﺎﺯ ﺍﻟﺬﻱ ﻳﺴﺘﻌﻤﻠﻮﻧﻪ ﻣﻦ ﺑﻴﻦ ﺍﻟﻬﺎﺗﻒ ﺍﻟﻤﺤﻤﻮﻝ ﻭﺍﻟﻘﺎﻣﻮﺱ ﺍﻹﻟﻜﺘﺮﻭﻧﻲ ﻭﺍﻟﺤﺎﺳﺒﺔ ﺍﻟﻌﻠﻤﻴﺔ ،ﻭ ﹸﻣ ﱢﺜﻠﺖ 30 50 80 ﻧﺘﺎﺋﺞ ﺍﻻﺳﺘﻄﻼﻉ ﺑﺸﻜﻞ ﭬﻦ ﺍﻟﻤﺠﺎﻭﺭ. 40 (aﻣﺎ ﻋﺪﺩ ﺍﻟﺬﻳﻦ ﻳﺴﺘﻌﻤﻠﻮﻥ ﺣﺎﺳﺒﺔ ﻋﻠﻤﻴﺔ ﻭﻗﺎﻣﻮ ﹰﺳﺎ 30 20 ﺇﻟﻜﺘﺮﻭﻧ ﹼﹰﻴﺎ ﻓﻘﻂ؟ 50 110 (bﻣﺎ ﻋﺪﺩ ﺍﻟﺬﻳﻦ ﻳﺴﺘﻌﻤﻠﻮﻥ ﺍﻷﺟﻬﺰﺓ ﺍﻟﺜﻼﺛﺔ؟ 40 10 (cﻣﺎ ﻋﺪﺩ ﺍﻟﺬﻳﻦ ﻳﺴﺘﻌﻤﻠﻮﻥ ﻫﺎﺗ ﹰﻔﺎ ﻣﺤﻤﻮ ﹰﻻ ﻓﻘﻂ؟ 110 (dﻣﺎ ﻋﺪﺩ ﺍﻟﺬﻳﻦ ﻳﺴﺘﻌﻤﻠﻮﻥ ﻗﺎﻣﻮ ﹰﺳﺎ ﺇﻟﻜﺘﺮﻭﻧ ﹼﹰﻴﺎ ﻭﻫﺎﺗ ﹰﻔﺎ ﻣﺤﻤﻮ ﹰﻻ ﻓﻘﻂ؟ 20 (eﻣﺎﺫﺍ ﻳﻤﺜﻞ ﺍﻟﻌﺪﺩ 10ﻓﻲ ﺍﻟﺸﻜﻞ؟ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﻻ ﻳﺴﺘﻌﻤﻠﻮﻥ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﺍﻷﺟﻬﺰﺓ ﺍﻟﺜﻼﺛﺔ. ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻵﺗﻴﺔ .ﺛﻢ ﻋ ﱢﻴﻦ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻨﻬﺎ ،ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟ ﹸﻤﻌﻄﺎﺓ ﺑﺠﺎﻧﺐ ﻛ ﱟﻞ ﻣﻨﻬﺎ ﺻﺎﺋﺒﺔ (23-28 :ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ (~p q) r ; q, r (25 p (~q r) ; p, r (24 p (q r) ; p, q (23 (~p q) ~r ; p, q (28 ~p (~q ~r) ; p, q, r (27 p (~q ~r) ; p, q, r (26 ﻟﻨﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺗﺤﻮﻱ ﻛﻠﻤﺔ \"ﺟﻤﻴﻊ\" ﺃﻭ \"ﻛﻞ\" ،ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺟﻤﻠﺔ \"ﻳﻮﺟﺪ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ\" ﺃﻭ (29ﻳﻮﺟﺪ ﻣﺮﺑﻊ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ ﻟﻴﺲ ﻣﺴﺘﻄﻴ ﹰﻼ. \"ﻫﻨﺎﻙ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ\" .ﻭﻟﻨﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺗﺤﻮﻱ ﻛﻠﻤﺔ \"ﻳﻮﺟﺪ\" ،ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﻛﻠﻤﺔ \"ﺟﻤﻴﻊ\" ﺃﻭ \"ﻛﻞ\". (30ﺟﻤﻴﻊ ﺍﻟﻄﻼﺏ ﻻ :~pﻳﻮﺟﺪ ﻣﻀﻠﻊ ﻭﺍﺣﺪ ﻋﻠﻰ ﺍﻷﻗﻞ ﻟﻴﺲ ﻣﺤﺪ ﹰﺑﺎ. :pﺟﻤﻴﻊ ﺍﻟﻤﻀﻠﻌﺎﺕ ﻣﺤﺪﺑﺔ. :~qﺟﻤﻴﻊ ﺍﻟﻤﺴﺎﺋﻞ ﻟﻬﺎ ﺣﻞ. :qﺗﻮﺟﺪ ﻣﺴﺄﻟﺔ ﻟﻴﺲ ﻟﻬﺎ ﺣﻞ. ﻳﺪﺭﺳﻮﻥ ﺍﻟﻠﻐﺔ ﺍﻟﻔﺮﻧﺴﻴﺔ. (30ﻋﻠﻰ ﺍﻷﻗﻞ ﻳﻮﺟﺪ ﻃﺎﻟﺐ ﻭﺍﺣﺪ ﻳﺪﺭﺱ ﺍﻟﻠﻐﺔ ﺍﻟﻔﺮﻧﺴﻴﺔ. ﺍﻧ ﹺﻒ ﻛ ﹰﹼﻼ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ: (31ﻳﻮﺟﺪ ﻋﻠﻰ ﺍﻷﻗﻞ ﻋﺪﺩ ﺣﻘﻴﻘﻲ ﻭﺍﺣﺪ ﻟﻴﺲ ﻟﻪ ﺟﺬﺭ (29ﺟﻤﻴﻊ ﺍﻟﻤﺮﺑﻌﺎﺕ ﻣﺴﺘﻄﻴﻼﺕ. ﺗﺮﺑﻴﻌﻲ ﺣﻘﻴﻘﻲ. (32ﺗﻮﺟﺪ ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ ﻟﻴﺲ ﻟﻬﺎ ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ . (31ﻟﻜﻞ ﻋﺪﺩ ﺣﻘﻴﻘﻲ ﺟﺬﺭ ﺗﺮﺑﻴﻌﻲ ﺣﻘﻴﻘﻲ. ﻛﻞ ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ ﻟﻬﺎ ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ. 1 24 34 - 502911-20 33 - 5024 - 28222111–20 48-5120-47 1 24
R (33ﺍﻷﻋﺪﺍﺩ ﻏﻴﺮ ﺍﻟﻨﺴﺒﻴﺔ ) ،(Iﻭﺍﻷﻋﺪﺍﺩ ﺍﻟﺼﺎﺋﺒﺔ ) (Zﺗﻨﺘﻤﻲ ﺇﻟﻰ (33ﻏﻴﺮ ﺻﺤﻴﺢ ﺃﺑ ﹰﺪﺍ. ﺍﻷﻋﺪﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ﻫﻲ ﺃﻋﺪﺍﺩ I ﻣﺠﻤﻮﻋﺔ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ) .(Rﻣﻌﺘﻤ ﹰﺪﺍ ﻋﻠﻰ ﺷﻜﻞ ﭬﻦ ﺍﻟﻤﺠﺎﻭﺭ ،ﻫﻞ ﺻﺤﻴﺢ Z ﺃﺣﻴﺎ ﹰﻧﺎ ﺃﻡ ﺩﺍﺋ ﹰﻤﺎ ،ﺃﻡ ﻏﻴﺮ ﺻﺤﻴﺢ ﺃﺑ ﹰﺪﺍ ،ﺃﻥ ﺍﻷﻋﺪﺍﺩ ﺍﻟﺼﺎﺋﺒﺔ ﻫﻲ ﺃﻋﺪﺍﺩ ﻏﻴﺮ ﻧﺴﺒﻴﺔ؟ ﻧﺴﺒﻴﺔ ،ﻭﻟﻴﺴﺖ ﻏﻴﺮ ﻧﺴﺒﻴﺔ. 4 ﻓ ﹼﺴﺮ ﺗﺒﺮﻳﺮﻙ. ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺒ ﱢﻴﻨﻮﺍ (34ﹺﺻ ﹾﻒ ﻣﻮﻗ ﹰﻔﺎ ﻳﻤﻜﻦ ﺗﻤﺜﻴﻠﻪ ﺑﺸﻜﻞ ﭬﻦ ﺍﻵﺗﻲ .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. ﻛﻴﻒ ﺳﺎﻋﺪﻫﻢ ﻣﻮﺿﻮﻉ ﺍﻟﺪﺭﺱ ﺍﻟﺴﺎﺑﻖ 8 ﺣﻮﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻋﻠﻰ ﺗﻌﻠﻢ ﺍﻟﻤﻨﻄﻖ 25 48 ﻭﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻓﻲ ﻫﺬﺍ ﺍﻟﺪﺭﺱ. (35ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻟﻠﻤﺜﻠﺚ 19 ﺛﻼﺛﺔ ﺃﺿﻼﻉ ،ﻭﻟﻠﻤﺮﺑﻊ ﺃﺭﺑﻌﺔ ✓ ﺃﻭﻟﺿﺬﻟﻼﻉﻚ.ﺗﻛﻜﻠﻮﺘﺎﻥﺍﺍﻟﻟﻌﻌﺒﺒﺎﺎﺭﺭﺗﻴﺓ ﺍﻦﻟﻤﺮﺻﺎﻛﺋﺒﺒﺔﺔ، ﺗﺤﻘﻖ ﻣﻦ ﻓﻬﻢ ﺍﻟﻄﻼﺏ ﺍﻟﺪﺭﺳﻴﻦ 1-1, 1-2 (35ﺍﻛﺘﺐ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ ﺻﺎﺋﺒﺔ ﺗﺤﻮﻱ » ﻭ « ﻓﻘﻂ. ﺑﺈﻋﻄﺎﺋﻬﻢ: ﺻﺎﺋﺒﺔ. ﺍﻻﺧﺘﺒﺎﺭ ﺍﻟﻘﺼﻴﺮ ،1ﺹ )(11 C . _1 , 1, _35 , _37 , 3 ... ﺍﻟﻨﻤﻂ ﻓﻲ ﺍﻟﺘﺎﻟﻲ ﺍﻟﺤﺪ ﺧ ﱢﻤﻦ (37 (36ﺃ ﱡﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﻟﻬﺎ ﻧﻔﺲ ﻗﻴﻤﺔ B ﺻﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ AB = BC؟ A (34ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﹸﺃﺟﺮﻱ ﺍﺳﺘﻄﻼﻉ ﺷﻤﻞ 3 100ﺷﺨﺺ؛ ﻟﻤﻌﺮﻓﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﻮﺍ ﻳﻔﻀﻠﻮﻥ ﺍﻟﻤﺜﻠﺠﺎﺕ ﺑﻨﻜﻬﺔ ﺍﻟﻔﺎﻧﻴﻠﻴﺎ _11 C _8 A ﺃﻭ ﺍﻟﻔﺮﺍﻭﻟﺔ ﺃﻭ ﺍﻟﺸﻮﻛﻮﻻﺗﺔ ،ﻓ ﹸﻮﺟﺪ ﺃﻥ 3 3 8ﺃﺷﺨﺎﺹ ﻳﻔﻀﻠﻮﻥ ﻧﻜﻬﺔ ﺍﻟﻔﺮﺍﻭﻟﺔ ﻓﻘﻂ ،ﻭ 25ﺷﺨ ﹰﺼﺎ ﻳﻔﻀﻠﻮﻥ ﻧﻜﻬ ﹶﺘﻲ _9 D 4B AC ﺍﻟﻔﺎﻧﻴﻠﻴﺎ ﻭﺍﻟﻔﺮﺍﻭﻟﺔ ،ﻭ 48ﺷﺨ ﹰﺼﺎ 3 AC = BC C m∠A = m∠C A ﻳﻔﻀﻠﻮﻥ ﻧﻜﻬﺔ ﺍﻟﻔﺎﻧﻴﻠﻴﺎ ﻓﻘﻂ ،ﻭ19 AB = AC D m∠A = m∠B B ﻳﻔﻀﻠﻮﻥ ﻧﻜﻬﺔ ﺍﻟﺸﻮﻛﻮﻻﺗﺔ ﻭﺍﻟﻔﺎﻧﻴﻠﻴﺎ. (38ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﻻﺣﻆ ﺟﻤﻴﻞ ﺗﻘﺪﻳﻢ ﺳﻠﻄﺔ ﺍﻟﻔﻮﺍﻛﻪ ﻳﻮﻡ ﺍﻟﺜﻼﺛﺎﺀ ،ﻭﺍﻓﺘﺮﺽ (38ﻓﻲ ﻛﻞ ﻳﻮﻡ ﺛﻼﺛﺎﺀ ﻣﻦ ﺍﻷﺳﺎﺑﻴﻊ ﺍﻷﺭﺑﻌﺔ ﺍﻟﻤﺎﺿﻴﺔ ،ﻗ ﱠﺪﻡ ﻣﻄﻌﻢ ﺳﻠﻄﺔ ﻓﻮﺍﻛﻪ ﻫﺪﻳﺔ ﺑﻌﺪ ﻛﻞ ﻭﺟﺒﺔ .ﺍﻓﺘﺮﺽ ﺟﻤﻴﻞ ﺃﻥ ﻫﺬﺍ ﺍﻟﻨﻤﻂ ﺳﻮﻑ ﻳﺴﺘﻤﺮ؛ ﻟﺬﺍ ﺃﻧﻪ ﺳﻴﺘﻢ ﺗﻘﺪﻳﻢ ﺳﻠﻄﺔ ﻓﻮﺍﻛﻪ ﻳﻮﻡ ﺍﻟﺜﻼﺛﺎﺀ ﺍﻟﻘﺎﺩﻡ .ﻣﺎ ﻧﻮﻉ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﺬﻱ ﺍﺳﺘﻌﻤﻠﻪ ﺟﻤﻴﻞ؟ ﻓﺴﺮ ﺇﺟﺎﺑﺘﻚ 1-1 .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ . _3 ﺧ ﱢﻤﻦ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻤﺘﺘﺎﺑﻌﺎﺕ ﺍﻵﺗﻴﺔ . 8 6, 3, _3 , _3 (41 81 1, 3, 9, 27 (40 11 3, 5, 7, 9 (39 2 4 ﺣﻞ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻵﺗﻴﺔ : 8 4(m - 5) = 12 (44 -1 3x + 9 = 6 (43 24 _y - 7 = 5 (42 _y 2 25 5 + 4 = 9 (47 9 2x - 7 = 11 (46 -7 6(w + 7) = 0 (45 4d - c (49ﺇﺫﺍ ﻛﺎﻧﺖ 14 c = 2 , d = 4 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺠﺒﺮﻳﺔ ﺍﻵﺗﻴﺔ ﻟﻠﻘﻴﻢ ﺍﻟﻤﻌﻄﺎﺓ. ab - 2a (51ﺇﺫﺍ ﻛﺎﻧﺖ 10 a = -2 , b = -3 2y + 3x (48ﺇﺫﺍ ﻛﺎﻧﺖ 3 x =-1, y = 3 m2 + 7n (50ﺇﺫﺍ ﻛﺎﻧﺖ 2 n = -2, m = 4 25 1- 2 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ p, qﻟﻜﺘﺎﺑﺔ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ ،ﻭﺑ ﹼﻴﻦ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ \"ﻋﺒﺎﺭﺓ ﻭﺻﻞ\" ﺃﻡ \"ﻋﺒﺎﺭﺓ ﹶﻓ ﹾﺼﻞ\" ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ. ABC pﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ. ABC qﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ. pﺃﻭ ABC :qﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ﺃﻭ ABCﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ p .ﺃﻭ qﻋﺒﺎﺭﺓ ﻓﺼﻞ. ﺑﻤﺎ ﺃﻧﻪ ﻻ ﺗﻮﺟﺪ ﺻﻮﺭﺓ ﻣﻌﻄﺎﺓ ﻟﻠﻤﺜﻠﺚ ،ABCﺇﺫﻥ ﻻ ﻳﻤﻜﻦ ﺗﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ. 25 1-2
1 -2 (12) (11) 1-2 1-2 ﺇﺣﺪ ﻃﺮﻕ ﺗﻨﻈﻴﻢ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﻫﻲ ﺇﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ .ﻳﻈﻬﺮ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ p q p ∧ q p q p ∨ q p ∼p ﺍﻟﻌﺒﺎﺭﺓ ﻫﻲ ﺟﻤﻠﺔ ﺧﺒﺮﻳﺔ ﺗﺤﺘﻤﻞ ﺍﻟﺼﻮﺍﺏ ﺃﻭ ﺍﻟﺨﻄﺄ ﻭﻻ ﺗﺤﺘﻤﻞ ﻏﻴﺮﻫﻤﺎ .ﻭﻳﺮﻣﺰ ﺇﻟﻰ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﺑـ ) (Tﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ، ﻭﺑﺎﻟﺮﻣﺰ ) (Fﺇﺫﺍ ﻛﺎﻧﺖ ﺧﺎﻃﺌﺔ ،ﻭﻳﻤﻜﻦ ﺃﻥ ﻧﺮﻣﺰ ﺇﻟﻰ ﺃﻱ ﻋﺒﺎﺭﺓ ﺑﺄﺣﺪ ﺍﻟﺤﺮﻭﻑ ﻭﻟﻴﻜﻦ . pﻓﻤﺜ ﹰﻼ ﻳﻤﻜﻦ ﺃﻥ ﻧﺮﻣﺰ ﺇﻟﻰ ﺍﻟﻌﺒﺎﺭﺓ \"ﺍﻟﺮﻳﺎﺽ TT T TT T TF ﻟﻜ ﱟﻞ ﻣﻦ ﻋﺒﺎﺭﺍﺕ ﺍﻟﻨﻔﻲ ﻭﺍﻟﻮﺻﻞ ﻭﺍﻟ ﹶﻔ ﹾﺼﻞ. TF F TF T FT ﻣﺪﻳﻨﺔ ﺳﻌﻮﺩﻳﺔ\" ﺑﺎﻟﺮﻣﺰ ،pﻭﺗﻜﻮﻥ ﻫﺬﻩ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺎﺋﺒﺔ .T FT F FT T ﻭﻳﻤﻜﻨﻨﺎ ﺭﺑﻂ ﻋﺒﺎﺭﺍﺕ ﻋﺪﺓ ﺑﻌﻀﻬﺎ ﺑﺒﻌﺾ ﻟﺘﻜﻮﻳﻦ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ. FF F FF F ﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﻋﺒﺎﺭﺍﺕ ﺍﻟﻨﻔﻲ ﻭﺍﻟﻔﺼﻞ ﻭﺍﻟﻮﺻﻞ ﺑﺄﺷﻜﺎﻝ ﭬﻦ ،ﻛﻤﺎ ﻫﻮ ﻣﺒﻴﻦ ﻓﻲ ﺍﻷﺷﻜﺎﻝ ﺃﺩﻧﺎﻩ. ﻫﻲ ﺍﻟﺮﺑﻂ ﺑﲔ ﺍﻟﻌﺒﺎﺭﺓ pﻭﺍﻟﻌﺒﺎﺭﺓ q ﻫﻲ ﺍﻟﺮﺑﻂ ﺑﲔ ﺍﻟﻌﺒﺎﺭﺓ pﻭﺍﻟﻌﺒﺎﺭﺓ q ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ pﻫﻮ ﻟﻴﺲ .p ﺑﺄﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﺃﻭ\". ﺑﺄﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﻭ\". qp qp ∼p ∼ p∨q p∧q p ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺗﲔ pﻭ ∼pﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ p qﺻﺎﺋﺒ ﹰﺔ ﻓﻘﻂ ﺗﻜﻮﻥ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔ ﹾﺼﻞ p qﺻﺎﺋﺒ ﹰﺔ، ﺗﻮﻋﻴـﺔ :ﺷـﻜﻞ ﭬـﻦ 2 ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﻤﺮﻛﺒﺔ 1 ﻋﻨﺪﻣﺎ ﺗﻜﻮﻥ ﻛ ﱞﻞ ﻣﻦ pﻭ qﺻﺎﺋﺒﺔ .ﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺣﺪ ﺍﻟﻌﺒﺎﺭﺗﲔ ﺻﺎﺋﺒﺔ. ﻣﺘﻌﺎﻛﺴﺔ. r∨q ﺍﻟﻤﺠـﺎﻭﺭ ﻳﺒ ﱢﻴـﻦ ﻋـﺪﺩ ﺍﻟﻄـﻼﺏ ﺍﻟﺬﻳـﻦ ﻧﻔﺬﻭﺍ 4 2 3 ﺍﻟﺘﺪﺭﻳﺒﻴـﻦ »ﺍﺳـﺘﺜﻤﺮ ﻭﻗﺘـﻚ« ﹶﻭ»ﺧﻄـﻂ ﺍﺳﺘﻌﻤﻞ ﺟﺪﻭﻝ ﺻﻮﺍﺏ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ. ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ ﻟﻜﺘﺎﺑﺔ ﻋﺒﺎﺭ ﹶﺗﻲ 2 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ ﻟﻜﺘﺎﺑﺔ 1 ﻟﻤﺴﺘﻘﺒﻠﻚ« ﻟﺰﻣﻼﺋﻬﻢ. ﺍﻟﻔﺼﻞ ﺍﻵﺗﻴﺘﻴﻦ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺻﻮﺍﺑﻬﺎ ﻣﺒ ﱢﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ: ﻋﺒﺎﺭ ﹶﺗﻲ ﺍﻟﻮﺻﻞ ﺍﻵﺗﻴﺘﻴﻦ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺻﻮﺍﺑﻬﺎ ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ: (aﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﺷﺎﺭﻛﻮﺍ ﰲ ﺍﻟﺘﺪﺭﻳﺐ ﻋﲆ qr r∨q :pﻗﻄﺮ ﺍﻟﺪﺍﺋﺮﺓ ﻳﺴﺎﻭﻱ ﻣﺜ ﹶﻠﻲ ﻧﺼﻒ ﻗﻄﺮﻫﺎ. »ﺍﺳﺘﺜﻤﺮ ﻭﻗﺘﻚ« ﻭﱂ ﻳﺸﺎﺭﻛﻮﺍ ﰲ ﺍﻟﱪﻧﺎﻣﺞ ﺍﻟﺘﺪﺭﻳﺒﻲ TT T :qﻟﻠﻤﺴﺘﻄﻴﻞ ﺃﺭﺑﻌﺔ ﺃﺿﻼﻉ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ. :pﺍﻟﻔﻴﻞ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ. TF T »ﺧﻄﻂ ﳌﺴﺘﻘﺒﻠﻚ«؟ 3 FT T p q (a qﻟﻠﻤﺮﺑﻊ ﺃﺭﺑﻊ ﺯﻭﺍﻳﺎ ﻗﻮﺍﺋﻢ. FF F (bﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﺷﺎﺭﻛﻮﺍ ﰲ ﺍﻟﺘﺪﺭﻳﺒﲔ ﻣ ﹰﻌﺎ؟ 2 ﺍﺭﺑﻂ ﺍﻟﻌﺒﺎﺭﺗﲔ ﺑﺄﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﺃﻭ\". . p q (a ﻗﻄﺮ ﺍﻟﺪﺍﺋﺮﺓ ﻳﺴﺎﻭﻱ ﻣﺜ ﹶﲇ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ،ﺃﻭ ﻟﻠﻤﺴﺘﻄﻴﻞ ﺃﺭﺑﻌﺔ ﺃﺿﻼﻉ ﺍﺭﺑﻂ ﺍﻟﻌﺒﺎﺭﺗﲔ ﺑﺄﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﻭ\": ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ .ﺑﲈ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﱃ ﺻﺎﺋﺒﺔ ،ﺇﺫﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳌﺮﻛﺒﺔ ﺍﻟﻔﻴﻞ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ،ﻭﻟﻠﻤﺮﺑﻊ ﺃﺭﺑﻊ ﺯﻭﺍﻳﺎ ﻗﻮﺍﺋﻢ. ﹼﳌﺎ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ p, qﺻﺎﺋﺒﺘﲔ ،ﻓﺈﻥ ﻫﺬﻩ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳌﺮﻛﺒﺔ ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺻﻮﺍﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻵﺗﻴﺔ: ﺻﺎﺋﺒﺔ. ﺻﺎﺋﺒﺔ. ∼( p ∧ ∼ r ) (2 q ∧ ∼r (1 ∼p ∨ q (b ∼p ∧ q (b ﺍﺭﺑﻂ ﺍﻟﻌﺒﺎﺭﺗﲔ ﺑﺄﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﺃﻭ\" . ∼pﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ \"ﺍﻟﻔﻴﻞ ﻟﻴﺲ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ\" .ﺍﺭﺑﻂ ﺍﻟﻌﺒﺎﺭﺗﲔ )p r ∼r p ∧ ∼r ∼(p ∧∼r q r ∼r q ∧ ∼r ﻗﻄﺮ ﺍﻟﺪﺍﺋﺮﺓ ﻻ ﻳﺴﺎﻭﻱ ﻣﺜ ﹶﲇ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ،ﺃﻭ ﻟﻠﻤﺴﺘﻄﻴﻞ ﺃﺭﺑﻌﺔ ∼pﻭ qﺑﺎﻷﺩﺍﺓ \"ﻭ\" . TT F F T TT F F ﺃﺿﻼﻉ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ .ﺑﲈ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺗﲔ ﺧﺎﻃﺌﺘﺎﻥ ،ﺇﺫﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻔﻴﻞ ﻟﻴﺲ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ﻭﻟﻠﻤﺮﺑﻊ ﺃﺭﺑﻊ ﺯﻭﺍﻳﺎ ﻗﻮﺍﺋﻢ. TF T T F TF T T FT F F T FT F F ﺍﳌﺮﻛﺒﺔ ﺧﺎﻃﺌﺔ. ﺍﳉﺰﺀ ﺍﻷﻭﻝ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳌﺮﻛﺒﺔ ∼pﺧﻄﺄ ،ﺇﺫﻥ ﺍﻟﻌﺒﺎﺭﺓ FF T F T FF T F ﺍﳌﺮﻛﺒﺔ ﺧﺎﻃﺌﺔ. (3ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻳﺒ ﱢﻴﻦ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺣﻀﺮﻭﺍ ﺍﻟﻨﺪﻭﺗﻴﻦ ﺍﻟﺘﻮﻋﻮ ﱠﻳﺘﻴﻦ »ﻣﺮﺽ ﺍﻟﺴﻜﺮ« ﹶﻭ »ﻣﺮﺽ ﺍﻟﻀﻐﻂ«. 50 20 75 (aﻣﺎ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺣﴬﻭﺍ ﺍﻟﻨﺪﻭﺗﲔ؟ 20 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﻟﻜﺘﺎﺑﺔ ﻛﻞ \" ﻋﺒﺎﺭﺓ ﻭﺻﻞ\" ﺃﻭ \" ﻋﺒﺎﺭﺓ ﻓﺼﻞ\" ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ: (bﻣﺎ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺣﴬﻭﺍ ﻧﺪﻭﺓ »ﻣﺮﺽ ﺍﻟﻀﻐﻂ«؟ 70 :rﻟﻠﻤﺴﺘﻄﻴﻞ ﺃﺭﺑﻌﺔ ﺃﺿﻼﻉ. :qﻋﺪﺩ ﺃﻳﺎﻡ ﺷﻬﺮ ﺳﺒﺘﻤﺒﺮ 30ﻳﻮ ﹰﻣﺎ. 10 + 8 = 18 :p (cﻣﺎ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﺣﴬﻭﺍ ﻧﺪﻭﺓ »ﻣﺮﺽ ﺍﻟﻀﻐﻂ« ﻭﱂ ﳛﴬﻭﺍ ﻧﺪﻭﺓ »ﻣﺮﺽ ﺍﻟﺴﻜﺮ«؟ 50 10 + 8 = 18 p r (2 30 10 + 8 = 18 p∧q (1 p, r p, q 30 q∧ ∼r (4 30 q r (3 ∼r q, r 1 12 1 11 (14) ( 1 3 ) (4ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﻓﻲ ﺍﻟﻤﺴﺄﻟﺔ 3ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻷﺳﺌﻠﺔ 1-2 1-2 ﺍﻵﺗﻴﺔ: (aﺇﺫﺍ ﺭ ﱠﺗﺐ ﻋﺎﻣﺮ ﻏﺮﻓﺘﻪ ،ﻭﻧﻘﻞ ﺍﻟﻘﲈﻣﺔ ،ﻭﱂ ﳛﻞ ﻭﺍﺟﺒﻪ ،ﻓﻬﻞ : (1ﺳﺄﻝ ﺳﺎﻣﻲ ﺻﺪﻳﻘﻪ ﻳﻮﺳﻒ ﺇﻥ ﻛﺎﻥ ﻓﺮﻳﻖ ﻛﺮﺓ ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﻟﻜﺘﺎﺑﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻭﺻﻞ ﺃﻭ ﻓﺼﻞ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ،ﻣﺒ ﱢﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ: ﻳﻤﻜﻨﻪ ﳑﺎﺭﺳﺔ ﺃﻟﻌﺎﺏ ﺍﻟﻔﻴﺪﻳﻮ؟ ﺍﻟﻘﺪﻡ ﺍﻟﺬﻱ ﻳﺸﺎﺭﻙ ﻓﻴﻪ ﻗﺪ ﻓﺎﺯ ﻓﻲ ﺍﻟﻤﺒﺎﺭﺍﺓ ﻟﻴﻠﺔ ﺃﻣﺲ ،ﻭﻫﻞ ﺳ ﱠﺠﻞ ﻫﺪ ﹰﻓﺎ ،ﻓﺄﺟﺎﺏ ﻳﻮﺳﻒ \"ﻧﻌﻢ\" .ﺛﻢ ﺳﺄﻝ ﺳﺎﻣﻲ ﻻﻋ ﹰﺒﺎ -3 - 2 = -5 :p (bﺇﺫﺍ ﱂ ﻳﺮ ﱢﺗﺐ ﻋﺎﻣﺮ ﻏﺮﻓﺘﻪ ،ﻭﻧﻘﻞ ﺍﻟﻘﲈﻣﺔ ،ﻭﺣﻞ ﻭﺍﺟﺒﻪ، ﺁﺧﺮ ﻓﻲ ﺍﻟﻔﺮﻳﻖ ﹸﻳﺪﻋﻰ ﺳﺎﻟ ﹰﻤﺎ ،ﻫﻞ ﺳﺠﻞ ﻫﻮ ﺃﻭ ﻳﻮﺳﻒ ﻫﺪ ﹰﻓﺎ ﻓﻬﻞ ﻳﻤﻜﻨﻪ ﳑﺎﺭﺳﺔ ﺃﻟﻌﺎﺏ ﺍﻟﻔﻴﺪﻳﻮ؟ ﻓﻲ ﺍﻟﻤﺒﺎﺭﺍﺓ؟ ﻓﺄﺟﺎﺏ ﺳﺎﻟﻢ ﺑـﹺ\"ﻧﻌﻢ\" ﺃﻳ ﹰﻀﺎ .ﻣﺎ ﺍﻟﺬﻱ ﻳﻤﻜﻨﻚ :qﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﺘﻘﺎﺑﻠﺔ ﺑﺎﻟﺮﺃﺱ ﻣﺘﻄﺎﺑﻘﺔ. (cﺇﺫﺍ ﱂ ﻳﺮ ﱢﺗﺐ ﻋﺎﻣﺮ ﻏﺮﻓﺘﻪ ،ﻭﱂ ﻳﻨﻘﻞ ﺍﻟﻘﲈﻣﺔ ،ﻭﺣ ﹼﻞ ﻭﺍﺟﺒﻪ، ﺍﺳﺘﻨﺘﺎﺟﻪ ﺣﻮﻝ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺳﺎﻟﻢ ﻗﺪ ﺳ ﱠﺠﻞ ﻫﺪ ﹰﻓﺎ ﺃﻡ ﻻ؟ 2 + 8 > 10 :r ﻓﻬﻞ ﻳﻤﻜﻨﻪ ﳑﺎﺭﺳﺔ ﺃﻟﻌﺎﺏ ﺍﻟﻔﻴﺪﻳﻮ؟ :sﻣﺠﻤﻮﻉ ﻗﻴﺎ ﹶﺳﻲ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﺍﻟﻤﺘﺘﺎﻣﺘﻴﻦ ﻳﺴﺎﻭﻱ .90° (5ﹸﺳﺌﻞ 200ﺷﺨ ﹴﺺ ﻋﻦ ﻧﻮﻉ ﺍﻟﻜﺘﺐ ﺍﻷﺩﺑﻴﺔ ﺍﻟﺘﻲ (2ﻟﺪ ﺳﺎﺭﺓ ﺻﻨﺪﻭﻕ ﻳﺤﻮﻱ ﻧﻮﻋﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻳﺤﺒﻮﻥ ﻗﺮﺍ ﹶﺀﺗﻬﺎ ﻣﻦ ﺑﻴﻦ ﺍﻟﺮﻭﺍﻳﺎﺕ ﻭﺍﻟﺸﻌﺮ ﻭﺍﻟﻤﺴﺮﺣﻴﺎﺕ، ﻣﻦ ﻗﻄﻊ ﺍﻟﺸﻮﻛﻮﻻﺗﺔ ﺍﻟﺼﻐﻴﺮﺓ ﻫﻤﺎ ﺍﻷﺑﻴﺾ ﻭﺍﻷﺳﻮﺩ، p (1ﻭ -3 - 2 = -5 q ﻓﻜﺎﻧﺖ ﺍﻟﻨﺘﻴﺠﺔ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ﺍﻟﺘﻲ ﻳﻮﺿﺤﻬﺎ ﺷﻜﻞ ﭬﻦ ﺍﻵﺗﻲ. ﻭﻗﺪ ﺗﻨﺎﻭﻟﺖ ﻗﻄﻌﺔ ﺷﻮﻛﻮﻻﺗﺔ ﻣﻦ ﺍﻟﺼﻨﺪﻭﻕ ،ﻓﻬﻞ ﺍﻟﻌﺒﺎﺭﺓ ) (∼ p ∧ ∼qﺻﺎﺋﺒﺔ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﺍﻟﻤﻌﻄﻴﺎﺕ ﺃﺩﻧﺎﻩ: 2 + 8 >10 -3 - 2 = -5 p ∧ r (2 :pﺍﻟﺸﻮﻛﻮﻻﺗﺔ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﺳﻮﺩ. p (3ﺃﻭ 90° -3 - 2 = -5 s :qﺍﻟﺸﻮﻛﻮﻻﺗﺔ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻷﺑﻴﺾ. 90° 2 + 8 > 10 r ∨ s (4 -3 - 2 = -5 p ∧ ∼q (5 5 72 38 (3ﻳﻤﻜﻦ ﺃﻥ ﻳﻠﻌﺐ ﻋﺎﻣﺮ ﻟﻌﺒﺔ ﺍﻟﻔﻴﺪﻳﻮ ﺇﺫﺍ ﺭ ﹼﺗﺐ ﻏﺮﻓﺘﻪ ﺃﻭ ﻧﻘﻞ ﺍﻟ ﹸﻘﻤﺎﻣﺔ ﺇﻟﻰ ﺍﻟﺨﺎﺭﺝ ،ﻭﻟﻜﻦ ﺇﺫﺍ ﻟﻢ ﻳﺤﻞ ﻭﺍﺟﺒﻪ 2 + 8 ≤ 10 q ∨ ∼r (6 8 ﺍﻟﻤﻨﺰﻟﻲ ﻓﻠﻦ ﹸﻳﺴﻤﺢ ﻟﻪ ﺑﻤﻤﺎﺭﺳﺔ ﺃﻟﻌﺎﺏ ﺍﻟﻔﻴﺪﻳﻮ ﻣﻄﻠ ﹰﻘﺎ .ﺃﻛﻤﻞ ﺃﻛﻤﻞ ﻛ ﹼﹰﻼ ﻣﻦ ﺟﺪﻭ ﹶﻟﻲ ﺍﻟﺼﻮﺍﺏ ﺍﻵﺗﻴﻴﻦ: ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺃﺩﻧﺎﻩ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ: :pﺭ ﹼﺗﺐ ﻋﺎﻣﺮ ﻏﺮﻓﺘﻪ. :qﻧﻘﻞ ﻋﺎﻣﺮ ﺍﻟﻘﲈﻣﺔ ﺇﱃ ﺍﳋﺎﺭﺝ. p q ∼q p ∨ ∼q (8 )p q ∼p ∼p∧ q ∼(∼p ∧ q (7 TT F T (aﻣﺎ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﳛ ﱡﺒﻮﻥ ﻗﺮﺍﺀﺓ ﺍﻷﻧﻮﺍﻉ ﺍﻟﺜﻼﺛﺔ TF T T TT FF T ﻣﻦ ﺍﻷﺩﺏ؟ 72 FT F F :rﺣ ﹼﻞ ﻋﺎﻣﺮ ﻭﺍﺟﺒﻪ ﺍﳌﻨﺰﱄ. FF T T TF FF T (bﻣﺎ ﻋﺪﺩ ﺍﻷﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﳛ ﱡﺒﻮﻥ ﻗﺮﺍﺀﺓ ﺍﻟﺸﻌﺮ؟ 91 :sﻳﻤﻜﻦ ﺃﻥ ﻳﲈﺭﺱ ﻋﺎﻣﺮ ﺃﻟﻌﺎﺏ ﺍﻟﻔﻴﺪﻳﻮ. FT TT F (cﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﳌﺌﻮﻳﺔ ﻟﻸﺷﺨﺎﺹ ﺍﻟﺬﻳﻦ ﳛ ﱡﺒﻮﻥ ﻗﺮﺍﺀﺓ ﺍﻟﺸﻌﺮ ﻭﺍﻟﺮﻭﺍﻳﺎﺕ ﻣ ﹰﻌﺎ ﺑﺎﻟﻨﺴﺒﺔ ﻷﻭﻟﺌﻚ ﺍﻟﺬﻳﻦ ﳛﺒﻮﻥ ﻗﺮﺍﺀﺓ FF TF T ﺍﳌﴪﺣﻴﺎﺕ؟ 50% p q r p∨q s ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺻﻮﺍ ﹴﺏ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻟﻤﺮﻛﺒﺘﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ: TTTTT TTFTF ∼p ∨ ∼r (10 ∼q ∧ r (9 TFTTT p r ∼p ∼r p ∨∼r q r ∼q ∼q ∧ r TFFTF TT F F F TTF F FTTTT TF F T T TFF F FTFTF FT T F T FTT T FFTFF FF T T T FFT F FFFFF 1 13 1 14 1 25A
1 -2 ( 7) ( 1 5 ) 1 - 2 1-2 ﺍﺳﺘﻌﻤﻞ ﺍﻟﻌﺒﺎﺭﺍﺕ p , q , rﻟﻜﺘﺎﺑﺔ ﻛﻞ ﻋﺒﺎﺭﺓ ﻭﺻﻞ ﺃﻭ ﻓﺼﻞ ﺃﺩﻧﺎﻩ ،ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ،ﻣﺒﺮ ﹰﺭﺍ ﺇﺟﺎﺑﺘﻚ. :pﻓﻲ ﺍﻟﺪﻗﻴﻘﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺛﺎﻧﻴﺔ. 5 3961 82 74 ﺍﻟﺴﻮﺩﻭﻛﻮ \"ﺗﻌﻨﻲ :ﺍﻟﺮﻗﻢ ﺍﻟﻮﺣﻴﺪ\" ،ﻭﻫﻲ ﹸﺃﺣﺠﻴﺔ ،ﺭﻳﺎﺿﻴﺔ ،ﻳﺘﻄﻠﺐ :qﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﻜﺎﻣﻠﺘﺎﻥ ﺍﻟﻤﺘﻄﺎﺑﻘﺘﺎﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ 90° 1 7 43 25 9 68 ﺣ ﱡﻠﻬﺎ ﺍﺳﺘﻌﲈﻝ ﺍﳌﻨﻄﻖ .ﻭﺗﺘﺄﻟﻒ ﻋﺎﺩ ﹰﺓ ﻣﻦ ﺷﺒﻜ ﹴﺔ ﻣﺮﺑﻌ ﹴﺔ ﻣﻜﻮﻧ ﹴﺔ ﻣﻦ 9 2 68 4 7 9 53 1 -12 + 11 < -1 :r 9 251 36 487 ﺷﺒﻜﺎﺕ ﺟﺰﺋﻴﺔ؛ ﹸﻗ ﹼﺴﻤﺖ ﻛﻞ ﻭﺍﺣﺪ ﹴﺓ ﻣﻨﻬﺎ ﺇﱃ ﺗﺴﻌﺔ ﻣﺮﺑﻌﺎﺕ ﺻﻐﲑﺓ .ﺗﺒﺪ ﹸﺃ p ∧ q (1ﻓﻲ ﺍﻟﺪﻗﻴﻘﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺛﺎﻧﻴﺔ ،ﻭﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﻜﺎﻣﻠﺘﺎﻥ ﺍﻟﻤﺘﻄﺎﺑﻘﺘﺎﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ 90°؛ ﺍﻷﺣﺠﻴﺔ ﺑﻮﺿﻊ ﺑﻀﻌﺔ ﺃﻋﺪﺍﺩ ،ﻭ ﹸﻳﻄﻠﺐ ﺇﱃ ﺍﻟﻼﻋﺐ ﻣﻞﺀ ﺍﳌﺮﺑﻌﺎﺕ ﺍﳌﺘﺒﻘﻴﺔ ﺑﻤﺎ ﺃﻥ ﻛﻼ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺻﺤﻴﺤﺔ ،ﻓﺈﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﺻﺤﻴﺤﺔ. ﺑﺎﺳﺘﻌﲈﻝ ﺍﻟﻘﻮﺍﻋﺪ ﺍﻵﺗﻴﺔ: q ∨ r (2ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﻜﺎﻣﻠﺘﺎﻥ ﺍﻟﻤﺘﻄﺎﺑﻘﺘﺎﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ ،90°ﺃﻭ -12 + 11 < -1؛ ﻳﺠﺐ ﺃﻥ ﻳﺤﻮﻱ ﻛﻞ ﺻﻒ ﻭﻛﻞ ﻋﻤﻮﺩ ﺍﻷﻋﺪﺍﺩ ﻣﻦ 4 8 6 9 5 7 1 2 3 1 ﺑﻤﺎ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﻟﻰ ﺻﺤﻴﺤﺔ ،ﺇﺫﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﺻﺤﻴﺤﺔ. ﺇﻟﻰ 9ﻣﻦ ﺩﻭﻥ ﺗﻜﺮﺍﺭ ﺃ ﱟﻱ ﻣﻨﻬﺎ. 713 84265 9 ∼p ∨ q (3ﻟﻴﺲ ﻓﻲ ﺍﻟﺪﻗﻴﻘﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺛﺎﻧﻴﺔ ﺃﻭ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﻜﺎﻣﻠﺘﺎﻥ ﺍﻟﻤﺘﻄﺎﺑﻘﺘﺎﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ 90°؛ ﺑﻤﺎ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺜﺎﻧﻴﺔ ﺻﺤﻴﺤﺔ ،ﺇﺫﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻔﺼﻞ ﺻﺤﻴﺤﺔ. 692 7 843 1 5 ﳚﺐ ﺃﻥ ﲢﻮﻱ ﻛﻞ ﺷﺒﻜﺔ ﺟﺰﺋﻴﺔ ﺍﻷﻋﺪﺍﺩ ﻣﻦ 1ﺇﱃ ،9 3 5 7291 846 ﺩﻭﻥ ﺗﻜﺮﺍﺭ ﺃ ﱟﻱ ﻣﻨﻬﺎ. ∼p ∧ ∼r (4ﻟﻴﺲ ﻓﻲ ﺍﻟﺪﻗﻴﻘﺔ ﺍﻟﻮﺍﺣﺪﺓ 60ﺛﺎﻧﻴﺔ ﻭ -12 + 11 ≥ -1؛ ﺑﻤﺎ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﻭﻟﻰ ﺧﺎﻃﺌﺔ ،ﺇﺫﻥ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﺧﺎﻃﺌﺔ. 8 415 63 7 92 ﺃﻛﻤﻞ ﺟﺪﻭ ﹶﻟﻲ ﺍﻟﺼﻮﺍﺏ ﺍﻵﺗﻴﻴﻦ: pq p p ∨ q q ∧ ( p ∨ q) (6 p q p q p ∨ q p ∧ ( p ∨ q) (5 (1ﻣﺎ ﺍﻟﺒﺪﺍﻳﺔ ﺍﻟﺠﻴﺪﺓ ﻟﺤﻞ ﺍﻷﺣﺠﻴﺔ؟ ﻭﻟﻤﺎﺫﺍ؟ TT FT T TTFF F F 7, 8 ,9 4, 5, 6 1, 2 ,3 TF FF F TFFT T T FT TT F FTTF T F FF TT F FFTT T F ﺃﻧﺸﺊ ﺟﺪﻭﻝ ﺻﻮﺍﺏ ﻟﻜ ﹼﹰﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻟﻤﺮﻛﺒﺘﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ : (2ﻭ ﹼﺿﺢ ﻛﻴﻒ ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﺜﺎﻧﻴﺔ ،ﻣﻦ ﺃﺟﻞ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻷﻋﺪﺍﺩ ﻛ ﱠﻠﻬﺎ ﻟﺤﻞ ﺍﻷﺣﺠﻴﺔ ﺍﻟﻜﺒﻴﺮﺓ. pq p q ∼q ∧ (∼p ∨ q) (8 q q ∨ ( p ∧ ∼q) (7 TT F F p ∨ q q∧( p ∨ q) p )q p ∧ q q∨(p ∧ q TF F T FT T F T F TT F F T (3ﺃﻛﻤﻞ ﻫﺬﻩ ﺍﻷﹸ ﹾﺣﺠﻴﺔ. FF T T F F TF T T T T F FT F F T T T FF T F F ﳖﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ ﺑﻌﺪ ﺍﻟﺪﻭﺍﻡ ﻳﺒ ﹼﻴﻦ ﺷﻜﻞ ﭬﻦ ﺍﻟﻤﺠﺎﻭﺭ ﻋﺪﺩ ﺍﻟﻤﻮﻇﻔﻴﻦ ﺍﻟﺬﻳﻦ ﻳﻌﻤﻠﻮﻥ ﻓﻲ ﺇﺟﺎﺯﺓ ﻧﻬﺎﻳﺔ 5 3 17 ﺍﻷﺳﺒﻮﻉ ﺃﻭ ﺑﻌﺪ ﻧﻬﺎﻳﺔ ﺍﻟﺪﻭﺍﻡ ﺍﻟﺮﺳﻤﻲ ﻓﻲ ﺇﺣﺪ ﺍﻟﺸﺮﻛﺎﺕ. (9ﻣﺎ ﻋﺪﺩ ﺍﻟﻤﻮﻇﻔﻴﻦ ﺍﻟﺬﻳﻦ ﻳﻌﻤﻠﻮﻥ ﺑﻌﺪ ﺍﻟﺪﻭﺍﻡ ﻭﻓﻲ ﻧﻬﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ؟ 3 (10ﻣﺎ ﻋﺪﺩ ﺍﻟﻤﻮﻇﻔﻴﻦ ﺍﻟﺬﻳﻦ ﻳﻌﻤﻠﻮﻥ ﺑﻌﺪ ﺍﻟﺪﻭﺍﻡ ﺃﻭ ﻓﻲ ﻧﻬﺎﻳﺔ ﺍﻷﺳﺒﻮﻉ؟ 25 7 1 15 25B 1
ﺇﺫﺍ ﻛﻨﺖ ﺗﺮﻳﺪ ﺍﻟﺘﺤﺪﺙ 1- 3 ،ﺇﱃ ﻗﺴﻢ ﺧﺪﻣﺔ ﺍﻟﻌﻤﻼﺀ Conditional Statements 2 ﻓﺎﺿﻐﻂ ﺍﻟﺮﻗﻢ 1 ﻳﺤﻴﻠﻚ ﺟﻬﺎﺯ،ﻋﻨﺪ ﺇﺟﺮﺍﺀ ﻣﻜﺎﻟﻤﺔ ﻫﺎﺗﻔﻴﺔ ﻣﻊ ﺑﻌﺾ ﺍﻟﻤﺆﺳﺴﺎﺕ ،ﺍﻟﺮﺩ ﺍﻵﻟﻲ ﺇﻟﻰ ﻗﺎﺋﻤﺔ ﻣﻦ ﺍﻟﺒﺪﺍﺋﻞ ﺗﺨﺘﺎﺭ ﻣﻨﻬﺎ ﺍﻟﻘﺴﻢ ﺍﻟﺬﻱ ﺗﺮﻳﺪ 1-3 ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻤﻨﻄﻖ ﻭﺃﺷﻜﺎﻝ ﻓﻦ ﻟﺘﺤﺪﻳﺪ .ﻭ ﹸﻳﺴﻤﻌﻚ ﺇﺭﺷﺎﺩﺍﺕ ﺑﺼﻴﻐﺔ ﻋﺒﺎﺭﺍﺕ ﺷﺮﻃﻴﺔ 1 - 2 ، ﻭﺍﻟﻮﺻﻞ،ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻨﻔﻲ ﻭﺍﻹﺭﺷﺎﺩ ﺍﻟﻤﺒﻴﻦ.(... ﻓﺈﻥ... ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻫﻲ ﻋﺒﺎﺭﺓ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻋﻠﻰ ﺻﻮﺭﺓ )ﺇﺫﺍ ﺗﻘﺪﻳﻢ ﺃﻣﺜﻠﺔ ﻣﻀﺎﺩﺓ ﻟﺘﻔﻨﻴﺪ.ﻭﺍﻟﻔﺼﻞ .ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺨﻄﺄ .ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺃﻋﻼﻩ ﻣﺜﺎﻝ ﻋﻠﻰ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ 1-3 .(... ﻓﺈﻥ...ﺗﺤﻠﻴﻞ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ )ﺇﺫﺍ ﻛﺘﺎﺑﺔ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ .(... ﻓﺈﻥ...ﺍﻹﻳﺠﺎﺑﻲ ﻟﻌﺒﺎﺭﺓ )ﺇﺫﺍ 1-3 pq ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻹﺛﺒﺎﺕ .ﺻﺤﺔ ﻋﺒﺎﺭﺓ ﻣﺎ q p qp 2 p conditional statement q . “ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻗﺮﺍﺀﺓ ﻓﻘﺮﺓ ”ﻟﻤﺎﺫﺍ؟ . ﻳﻤﻜﻨﻚ ﺗﺤﺪﻳﺪ ﺍﻟ ﹶﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻴﻬﺎ ﺑﺴﻬﻮﻟﺔ،( ... ﻓﺈﻥ... ﻋﻨﺪﻣﺎ ﺗﻜﺘﺐ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻋﻠﻰ ﺻﻮﺭﺓ )ﺇﺫﺍ hypothesis 1 • ﻣﺎ ﺍﻟﻔﺎﺋﺪﺓ ﻣﻦ ﻗﺎﺋﻤﺔ ﺍﻟﺒﺪﺍﺋﻞ ﻓﻲ ﻧﻈﺎﻡ ﺍﻟﺮﺩ ﺗﻤﻜﻴﻦ ﺍﻟﻤﺘﺼﻞ ﻣﻦ:ﺍﻵﻟﻲ؟ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ :ﺣ ﱢﺪﺩ ﺍﻟ ﹶﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ . ﻓﺴﻮﻑ ﺃﺳﺘﻌﻤﻞ ﺍﻟﻤﻈﻠﺔ، ( ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻄﻘﺲ ﻣﺎﻃ ﹰﺮﺍa conclusion ﺍﻟﺘﺤﺪﺙ ﺇﻟﻰ ﺍﻟﻘﺴﻢ ﺍﻟﺬﻱ ﻳﺮﻳﺪﻩ ﺑﺴﺮﻋﺔ . ﺍﻟﻄﻘﺲ ﻣﺎﻃﺮ:ﺍﻟ ﹶﻔﺮﺽ .ﻭﺳﻬﻮﻟﺔ . ﺳﻮﻑ ﺃﺳﺘﻌﻤﻞ ﺍﻟﻤﻈﻠﺔ:ﺍﻟﻨﺘﻴﺠﺔ . ﺇﺫﺍ ﻛﺎﻥ ﺁﺣﺎﺩﻩ ﺻﻔ ﹰﺮﺍ10 ( ﻳﻘﺒﻞ ﺍﻟﻌﺪﺩ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰb • ﻣﺎ ﻗﺴﻤﺎ ﺍﻟﺠﻤﻠﺔ ﻓﻲ ﺍﻟﻤﺜﺎﻝ؟ ﺗﺮﻳﺪ . ﺁﺣﺎﺩ ﺍﻟﻌﺪﺩ ﺻﻔﺮ:ﺍﻟ ﹶﻔﺮﺽ ﺍﺿﻐﻂ،ﺍﻟﺘﺤﺪﺙ ﺇﻟﻰ ﻗﺴﻢ ﺧﺪﻣﺔ ﺍﻟﻌﻤﻼﺀ 10 ﻳﻘﺒﻞ ﺍﻟﻌﺪﺩ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ:ﺍﻟﻨﺘﻴﺠﺔ related conditionals 2 ﺍﻟﺮﻗﻢ • ﻣﺎ ﺍﻟﻤﺸﻜﻠﺔ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺃﻥ ﺗﻨﺸﺄ ﻋﻦ converse :ﺍﺳﺘﻌﻤﺎﻝ ﻧﻈﺎﻡ ﺍﻟﺮﺩ ﺍﻵﻟﻲ؟ ﺇﺟﺎﺑﺔ ﻣﻤﻜﻨﺔ ﻗﺪ ﻻ ﻳﻤﻜﻦ ﺣﺼﺮ ﺟﻤﻴﻊ ﺍﻷﺳﺒﺎﺏ ﺍﻟﺘﻲ .ﺗﺪﻋﻮ ﺍﻟﺸﺨﺺ ﺇﻟﻰ ﺍﻻﺗﺼﺎﻝ inverse contrapositive logically equivalent www.obeikaneducation.com ( ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺇﺟﺎﺑﺎﺕ1A, 1B ✓ . ﻓﺈﻧﻪ ﺳﺪﺍﺳﻲ،( ﺇﺫﺍ ﻛﺎﻥ ﻟﻤﻀﻠﻊ ﺳﺘﺔ ﺃﺿﻼﻉ1A . ﺇﺫﺍ ﺑﹺﻴﻌﺖ ﻧﺴﺦ ﺍﻟﻄﺒﻌﺔ ﺍﻷﻭﻟﻰ ﻛ ﹼﻠﻬﺎ،( ﺳﻴﺘﻢ ﺇﻧﺠﺎﺯ ﻃﺒﻌﺔ ﺛﺎﻧﻴﺔ ﻣﻦ ﺍﻟﻜﺘﺎﺏ1B 1 26 1-3 (34) • (33, 34) • (33, 34) • (8) • (8) • (8) • (16) • (19 ) • (16) • (18) • (20) • (18) • (19) • (19) • (20) • 1 26
ﺗﻜﺘﺐ ﻛﺜﻴﺮ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺩﻭﻥ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻜﻠﻤﺘﻴﻦ )ﺇﺫﺍ ،ﻓﺈﻥ( ،ﻭﻟﻜﺘﺎﺑﺔ ﺗﻠﻚ ﺍﻟﻌﺒﺎﺭﺍﺕ ﻋﻠﻰ ﺻﻮﺭﺓ )ﺇﺫﺍ ...ﻓﺈﻥ (...ﺣﺪﺩ ﺍﻟ ﹶﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ. ﻋﻨﺪ ﺷﺮﺍﺋﻚ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﻣﻨﺘﺠﺎﺗﻨﺎ ﻗﺒﻞ ﻳﻮﻡ ﺍﻷﺭﺑﻌﺎﺀ ﺗﺤﺼﻞ ﻋﻠﻰ ﺧﺼﻢ ﺗﺸﺠﻴﻌﻲ 1 ﻳﺒ ﱢﻴﻦ ﻛﻴﻔﻴﺔ ﺗﺤﺪﻳﺪ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ. 2 ﻳﺒ ﱢﻴﻦ ﻛﻴﻔﻴﺔ ﻛﺘﺎﺑﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻋﻠﻰ ﺻﻮﺭﺓ ”ﺇﺫﺍ ...ﻓﺈﻥ.“... 3 ﻳﺒﻴﻦ ﻛﻴﻔﻴﺔ ﺗﺤﺪﻳﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ. ﺇﺫﺍ ﺍﺷﺘﺮﻳﺖ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﻣﻨﺘﺠﺎﺗﻨﺎ ﻗﺒﻞ ﻳﻮﻡ ﺍﻷﺭﺑﻌﺎﺀ ،ﻓﺈﻧﻚ ﺗﺤﺼﻞ ﻋﻠﻰ ﺧﺼﻢ ﺗﺸﺠﻴﻌﻲ. ✓ ﺗﺬﻛﺮ ﺃﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺗﻌﺘﻤﺪ ﻋﻠﻰ ﺍﻟﻔﺮﺽ. ﺍﺳﺘﻌﻤﻞ ﺗﻤﺎﺭﻳﻦ ”ﺗﺤﻘﻖ ﻣﻦ ﻓﻬﻤﻚ“ ﺑﻌﺪ ﻛﻞ 2 ﻣﺜﺎﻝ؛ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﻣﺪ ﻓﻬﻢ ﺍﻟﻄﻠﺒﺔ ﺍﻟﻤﻔﺎﻫﻴﻢ. ﺣ ﹼﺪﺩ ﺍﻟ ﹶﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛﻞ ﻋﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﻛﺘﺒﻬﺎ ﻋﻠﻰ ﺻﻮﺭﺓ )ﺇﺫﺍ ...ﻓﺈﻥ:(... (aﺍﻟﺜﺪﻳﻴﺎﺕ ﺣﻴﻮﺍﻧﺎﺕ ﻣﻦ ﺫﻭﺍﺕ ﺍﻟﺪﻡ ﺍﻟﺤﺎﺭ. (2Aﺍﻟﻔﺮﺽ :ﻟﺪﻳﻚ 5ﺃﻭﺭﺍﻕ ﺍﻟ ﹶﻔﺮﺽ :ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ. ﻧﻘﺪﻳﺔ ﻣﻦ ﻓﺌﺔ ﺍﻟﺮﻳﺎﻝ. ﺍﻟﻨﺘﻴﺠﺔ :ﻫﻮ ﻣﻦ ﺫﻭﺍﺕ ﺍﻟﺪﻡ ﺍﻟﺤﺎﺭ. ﺍﻟﻨﺘﻴﺠﺔ :ﻳﻤﻜﻦ ﺃﻥ ﺗﺒﺪﻟﻬﺎ ﺑﻮﺭﻗﺔ ﻭﺍﺣﺪﺓ ﻣﻦ ﻓﺌﺔ 5ﺭﻳﺎﻻﺕ. ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ،ﻓﺈﻧﻪ ﻣﻦ ﺫﻭﺍﺕ ﺍﻟﺪﻡ ﺍﻟﺤﺎﺭ. (bﺍﻟﻤﻨﺸﻮﺭ ﺍﻟﺬﻱ ﻗﺎﻋﺪﺗﺎﻩ ﻣﻀﻠﻌﺎﻥ ﻣﻨﺘﻈﻤﺎﻥ ،ﻳﻜﻮﻥ ﻣﻨﺘﻈ ﹰﻤﺎ. ﺇﺫﺍ ﻛﺎﻥ ﻟﺪﻳﻚ 5ﺃﻭﺭﺍﻕ ﻧﻘﺪﻳﺔ ﺍﻟ ﹶﻔﺮﺽ :ﻗﺎﻋﺪﺗﺎ ﺍﻟﻤﻨﺸﻮﺭ ﻣﻀﻠﻌﺎﻥ ﻣﻨﺘﻈﻤﺎﻥ. ﻣﻦ ﻓﺌﺔ ﺍﻟﺮﻳﺎﻝ ﻓﺈﻧﻪ ﻳﻤﻜﻨﻚ ﺃﻥ ﺍﻟﻨﺘﻴﺠﺔ :ﻳﻜﻮﻥ ﺍﻟﻤﻨﺸﻮﺭ ﻣﻨﺘﻈ ﹰﻤﺎ. ﺗﺒﺪﻟﻬﺎ ﺑﻮﺭﻗﺔ ﻭﺍﺣﺪﺓ ﻣﻦ ﻓﺌﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﺎﻋﺪﺗﺎ ﺍﻟﻤﻨﺸﻮﺭ ﻣﻀﻠﻌﻴﻦ ﻣﻨﺘﻈﻤﻴﻦ ،ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﻣﻨﺘﻈ ﹰﻤﺎ. 5ﺭﻳﺎﻻﺕ. ﺣ ﱢﺪﺩ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ 1 ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ: 2 ✓ (2Bﺍﻟﻔﺮﺽ :ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﺘﺎﻣﺘﺎﻥ. (aﺇﺫﺍ ﻛﺎﻧﺖ ﺯﻭﺍﻳﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻲ (2Aﻳﻤﻜﻦ ﺗﺒﺪﻳﻞ 5ﺃﻭﺭﺍﻕ ﻧﻘﺪﻳﺔ ﻣﻦ ﻓﺌﺔ ﺍﻟﺮﻳﺎﻝ ﺑﻮﺭﻗﺔ ﻧﻘﺪﻳ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ ﻣﻦ ﻓﺌﺔ 5ﺭﻳﺎﻻﺕ. ﻗﺎﺋﻤﺔ ﻓﺈﻧﻪ ﻣﺴﺘﻄﻴﻞ. (2Bﻣﺠﻤﻮﻉ ﻗﻴﺎ ﹶﺳﻲ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﺍﻟﻤﺘﺘﺎﻣﺘﻴﻦ ﻳﺴﺎﻭﻱ 90° ﺍﻟﻨﺘﻴﺠﺔ :ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﻴﻬﻤﺎ ﻳﺴﺎﻭﻱ 90° ﺍﻟﻔﺮﺽ :ﺯﻭﺍﻳﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻲ ﻗﺎﺋﻤﺔ. ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﺘﺎﻣﺘﻴﻦ، ﺍﻟﻨﺘﻴﺠﺔ :ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻲ ﻣﺴﺘﻄﻴﻞ. ﺗﺬﻛﺮ ﺃﻥ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻭﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻧﻔﺴﻬﺎ ﺟﻤﻴﻌﻬﺎ ﻋﺒﺎﺭﺍﺕ ﻗﺪ ﺗﻜﻮﻥ ﺻﺎﺋﺒﺔ ﻭﻗﺪ ﺗﻜﻮﻥ ﺧﺎﻃﺌﺔ. ﻓﺈﻥ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﻴﻬﻤﺎ ﻳﺴﺎﻭﻱ ﻗﺎﻝ ﻋﻤﺮ ﻟﺰﻣﻼﺋﻪ :ﺇﺫﺍ ﺃﻧﻬﻴﺖ ﻭﺍﺟﺒﻲ ﺍﻟﻤﻨﺰﻟﻲ ،ﻓﺈﻧﻲ ﺳﻮﻑ ﺃﻟﻌﺐ ﺍﻟﻜﺮﺓ ﻣﻌﻜﻢ . (bﺳﻴﺘﻘﺪﻡ ﻣﺤﻤﺪ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻮ 90° ﺍﻷﻋﻠﻰ ﻓﻲ ﺍﻟﺪﻭﺭﺓ ﺇﺫﺍ ﺃﻛﻤﻞ ﺍﻟﻤﺴﺘﻮ ﺍﻻﺑﺘﺪﺍﺋﻲ. ﺍﻟﻔﺮﺽ :ﻣﺤﻤﺪ ﻳﻜﻤﻞ ﺍﻟﻤﺴﺘﻮ ﺍﻻﺑﺘﺪﺍﺋﻲ. T T T ﺍﻟﻨﺘﻴﺠﺔ :ﻣﺤﻤﺪ ﻳﺘﻘﺪﻡ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻮ ﺍﻷﻋﻠﻰ. F F T ﺣ ﱢﺪﺩ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛﻞ ﻋﺒﺎﺭﺓ ﻣﻤﺎ ﻳﺄﺗﻲ ،ﺛﻢ ﺍﻛﺘﺒﻬﺎ ﻋﻠﻰ ﺻﻮﺭﺓ T T F ”ﺇﺫﺍ ...ﻓﺈﻥ.“... (aﻗﻴﺎﺱ ﺍﻟﻤﺴﺎﻓﺔ ﻳﻜﻮﻥ ﻣﻮﺟ ﹰﺒﺎ. ﺍﻟﻔﺮﺽ :ﹺﻗﻴ ﹶﺴ ﹺﺖ ﺍﻟﻤﺴﺎﻓﺔ، ﺍﻟﻨﺘﻴﺠﺔ :ﺍﻟﻘﻴﺎﺱ ﻣﻮﺟﺐ. F F ﺇﺫﺍ ﹺﻗﻴ ﹶﺴ ﹺﺖ ﺍﻟﻤﺴﺎﻓﺔ ،ﻓﺈﻥ ﺍﻟﻘﻴﺎﺱ T ﻣﻮﺟﺐ. (bﺍﻟﻤﻀﻠﻊ ﺫﻭ ﺍﻷﺿﻼﻉ ﺍﻟﺨﻤﺴﺔ ﻫﻮ ﺷﻜﻞ ﺧﻤﺎﺳﻲ. ﻻﺣﻆ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺗﻜﻮﻥ ﺻﺎﺋﺒﺔ ﻓﻲ ﺟﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ ،ﺇ ﱠﻻ ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻔﺮﺽ ﺻﺎﺋ ﹰﺒﺎ ﻭﺍﻟﻨﺘﻴﺠﺔ ﺧﺎﻃﺌﺔ. ﺍﻟﻔﺮﺽ :ﺍﻟﻤﻀﻠﻊ ﻟﻪ ﺧﻤﺴﺔ 27 1-3 ﺃﺿﻼﻉ .ﺍﻟﻨﺘﻴﺠﺔ :ﺇﻧﻪ ﺷﻜﻞ ﺧﻤﺎﺳﻲ. ﻋﻨﺪ ﺗﺤﺪﻳﺪ ﺇﺫﺍ ﻛﺎﻥ ﻟﻠﻤﻀﻠﻊ ﺧﻤﺴﺔ ﺃﺿﻼﻉ ﻓﺈﻧﻪ ﺧﻤﺎﺳﻲ. ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ،ﺃﺧﺒﺮ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺴﺘﻌﻤﻠﻮﺍ ﺍﻷﻗﻮﺍﺱ ﻟﺘﺤﺪﻳﺪ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛﻞ ﺣﺎﻟﺔ .ﻭﻭ ﹼﺿﺢ ﻟﻬﻢ ﺃ ﹼﻧﻪ ﺇﺫﺍ ﺗﻄﺎﺑﻖ ﺍﻟﻔﺮﺽ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﻣﻊ ﺍﻟﻔﺮﺽ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﺻﻠﻴﺔ ،ﻓﺈﻧﻪ ﻳﻤﻜﻦ ﻟﻠﻄﻼﺏ ﺃﻥ ﻳﻀﻌﻮﺍ ﺣﺮﻑ Tﻓﻮﻕ ﺍﻷﻗﻮﺍﺱ ،ﻭﺇ ﹼﻻ ﻳﻤﻜﻨﻬﻢ ﺃﻥ ﻳﻀﻌﻮﺍ ﺣﺮﻑ ، Fﻭﻳﻤﻜﻨﻬﻢ ﻋﻤﻞ ﺍﻟﺸﻲﺀ ﻧﻔﺴﻪ ﻟﻠﻨﺘﻴﺠﺔ. 27 1-3
ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﺴﺎﺑﻘﺔ ﻹﻧﺸﺎﺀ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ. p q pq TT T TF F FT T FF T 3 ﺣ ﱢﺪﺩ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞ ﻋﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻲ ،ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺧﺻﺎﻃﺤﺌﻴﺔ،ﺤﺔﻓﺄﻓﻔﻋ ﱢ ﹺﺴﻂﺮﻣﺗﺜﺒﺎ ﹰﺮﻳﻻﺮﻣﻙ،ﻀﺎﺃ ﹼﹰﺩﻣﺍﺎ.ﺇﺫﺍ ﻛﺎﻧﺖ ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ،ﻳﺠﺐ ﻋﻠﻴﻚ ﺇﺛﺒﺎﺕ ﺃﻧﻪ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺍﻟﻔﺮﺽ ﺻﺎﺋ ﹰﺒﺎ ،ﻓﺈﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺻﺎﺋﺒﺔ ﺃﻳ ﹰﻀﺎ. (aﺇﺫﺍ ﻃﺮﺣﺖ ﻋﺪ ﹰﺩﺍ ﻃﺒﻴﻌ ﹰﹼﻴﺎ ﻣﻦ ﻋﺪﺩ ﻭﻹﺛﺒﺎﺕ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺧﺎﻃﺌﺔ ﻳﻜﻔﻲ ﺃﻥ ﺗﻌﻄﻲ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ . ﻃﺒﻴﻌﻲ ،ﻓﺈﻥ ﺍﻟﻨﺎﺗﺞ ﻳﻜﻮﻥ ﻋﺪ ﹰﺩﺍ 3 ﻃﺒﻴﻌ ﹰﹼﻴﺎ. ﻣﺜﺎﻝ ﻣﻀﺎﺩ .2-7= -5 :ﺍﻟﻌﺒﺎﺭﺓ ﺣ ﹼﺪﺩ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞ ﻋﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ ﻓﻴﻤﺎ ﻳﺄﺗﻲ ،ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺻﺎﺋﺒﺔ ،ﻓﻔ ﱢﺴﺮ ﺗﺒﺮﻳﺮﻙ ،ﺃﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺧﺎﻃﺌﺔ، ﻓﺄﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ: ﺍﻟﺸﺮﻃﻴﺔ ﺧﺎﻃﺌﺔ. (aﻋﻨﺪ ﻗﺴﻤﺔ ﻋﺪﺩ ﺻﺎﺋﺐ ﻋﻠﻰ ﻋﺪﺩ ﺻﺎﺋﺐ ﺁﺧﺮ ،ﻳﻜﻮﻥ ﺍﻟﻨﺎﺗﺞ ﻋﺪ ﹰﺩﺍ ﺻﺎﺋ ﹰﺒﺎ ﺃﻳ ﹰﻀﺎ. (bﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺸﻬﺮ ﺍﻟﻤﺎﺿﻲ ﻫﻮ ﺷﻬﺮ ﻣﺜﺎﻝ ﻣﻀﺎﺩ :ﻋﻨﺪ ﻗﺴﻤﺔ 1ﻋﻠﻰ ،2ﻳﻜﻮﻥ ﺍﻟﻨﺎﺗﺞ 0.5 ﺭﺟﺐ ،ﻓﺈﻥ ﻫﺬﺍ ﺍﻟﺸﻬﺮ ﻫﻮ ﺷﻌﺒﺎﻥ. ﺑﻤﺎ ﺃﻥ 0.5ﻟﻴﺲ ﻋﺪ ﹰﺩﺍ ﺻﺎﺋ ﹰﺒﺎ ،ﻓﺈﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺧﺎﻃﺌﺔ .ﻭﺑﻤﺎ ﺃﻧﻚ ﺍﺳﺘﻄﻌﺖ ﺇﻳﺠﺎﺩ ﻣﺜﺎﻝ ﻣﻀﺎﺩ ،ﻓﺎﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺧﺎﻃﺌﺔ. ﻛﻠﻤﺎ ﻛﺎﻥ ﺍﻟﻔﺮﺽ \"ﺍﻟﺸﻬﺮ ﺍﻟﻤﺎﺿﻲ ﺷﻬﺮ ﺭﺟﺐ\" ﺻﺤﻴ ﹰﺤﺎ، (bﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺸﻬﺮ ﺍﻟﻘﺎﺩﻡ ﻫﻮ ﺭﻣﻀﺎﻥ ،ﻓﺈﻥ ﻫﺬﺍ ﺍﻟﺸﻬﺮ ﻫﻮ ﺷﻬﺮ ﺷﻌﺒﺎﻥ. (3Aﺧﺎﻃﺌﺔ؛ ﺇﺫﺍ ﻛﺎﻥ ﻓﺈﻥ ﺍﻟﻨﺘﻴﺠﺔ \"ﻫﺬﺍ ﺍﻟﺸﻬﺮ ﻫﻮ ﺷﻬﺮ ﺭﻣﻀﺎﻥ ﻫﻮ ﺍﻟﺸﻬﺮ ﺍﻟﺬﻱ ﻳﻠﻲ ﺷﻬﺮ ﺷﻌﺒﺎﻥ؛ ﺇﺫﻥ ﻛﻠﻤﺎ ﻛﺎﻥ ﺍﻟﻔﺮﺽ )ﺍﻟﺸﻬﺮ ﺍﻟﻘﺎﺩﻡ ﺭﻣﻀﺎﻥ( ﺻﺎﺋ ﹰﺒﺎ، ،m∠A=55°ﻓﺈﻥ ∠Aﺣﺎﺩﺓ ﺷﻌﺒﺎﻥ\" ﺳﺘﻜﻮﻥ ﺻﺤﻴﺤﺔ ﺃﻳ ﹰﻀﺎ؛ ﻓﺈﻥ ﺍﻟﻨﺘﻴﺠﺔ )ﻫﺬﺍ ﺍﻟﺸﻬﺮ ﻫﻮ ﺷﻬﺮ ﺷﻌﺒﺎﻥ( ﺗﻜﻮﻥ ﺻﺎﺋﺒﺔ ﺃﻳ ﹰﻀﺎ؛ ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺻﺎﺋﺒﺔ. ﻷﻥ ﺷﻬﺮ ﺷﻌﺒﺎﻥ ﻫﻮ ﺍﻟﺸﻬﺮ ﺍﻟﺬﻱ ﺃﻳ ﹰﻀﺎ ،ﻭﻟﻜﻦ ﻗﻴﺎﺳﻬﺎ ﻟﻴﺲ .35° (cﺇﺫﺍ ﻛﺎﻥ ﻟﻠﻤﺜﻠﺚ ﺃﺭﺑﻌﺔ ﺃﺿﻼﻉ ،ﻓﺈﻧﻪ ﻣﻀﻠ ﹲﻊ ﻣﻘﻌ ﹲﺮ. ﻳﻠﻲ ﺷﻬﺮ ﺭﺟﺐ ،ﺇﺫﻥ ﺍﻟﻌﺒﺎﺭﺓ ﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﻟﻠﻤﺜﻠﺚ ﺃﺭﺑﻌﺔ ﺃﺿﻼﻉ؛ ﺇﺫﻥ ﺍﻟﻔﺮﺽ ﺧﺎﻃﺊ ﻭﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺍﻟﻔﺮﺽ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ (3Bﺻﺎﺋﺒﺔ؛ ﺍﻟﻔﺮﺽ ﺍﻟﺸﺮﻃﻴﺔ ﺻﺤﻴﺤﺔ. ﺍﻟﺸﺮﻃﻴﺔ ﺗﻜﻮﻥ ﺻﺎﺋﺒﺔ. √x=-1ﺧﺎﻃﺊ؛ ﻷﻥ ﺍﻟﺠﺬﺭ (cﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺣﺪ ﺯﻭﺍﻳﺎ ﺍﻟﻤﺴﺘﻄﻴﻞ ﻣﻨﻔﺮﺟﺔ ،ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﻣﺘﻮﺍﺯﻱ ﺍﻟﺘﺮﺑﻴﻌﻲ ﻻ ﻳﻜﻮﻥ ﺳﺎﻟ ﹰﺒﺎ ﻷﻱ ﻋﺪﺩ ،ﻭﻋﻠﻴﻪ ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺃﺿﻼﻉ .ﺍﻟ ﹶﻔﺮﺽ ﺧﺎﻃﻲﺀ؛ ﻷﻧﻪ ﻻ ﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺇﺣﺪ ﺯﻭﺍﻳﺎ ﺍﻟﺸﺮﻃﻴﺔ ﺻﺎﺋﺒﺔ. ﺍﻟﻤﺴﺘﻄﻴﻞ ﻣﻨﻔﺮﺟﺔ ،ﻭﺍﻟﻌﺒﺎﺭﺓ ✓ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻟﺘﻲ ﻳﻜﻮﻥ ﺍﻟ ﹶﻔﺮﺽ ﻓﻴﻬﺎ (3Aﺇﺫﺍ ﻛﺎﻧﺖ ∠Aﺣﺎﺩﺓ ،ﻓﺈﻥ m∠A = 35° ﺧﺎﻃ ﹰﺌﺎ ،ﺗﻜﻮﻥ ﺻﺤﻴﺤ ﹰﺔ ﺩﺍﺋ ﹰﻤﺎ. (3Bﺇﺫﺍ ﻛﺎﻧﺖ ، √x = −1ﻓﺈﻥ (−1)2 = −1 1 28 1 28
ﻳﺮﺗﺒﻂ ﺑﺎﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻟﻤﻌﻄﺎﺓ ﻋﺒﺎﺭﺍﺕ ﺷﺮﻃﻴﺔ ﺃﺧﺮ ﺗﺴﻤﻰ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻟﻤﺮﺗﺒﻄﺔ. 4 ﻳﺒ ﱢﻴﻦ ﻛﻴﻔﻴﺔ ﺍﺳﺘﻌﻤﺎﻝ ﺟﺪﺍﻭﻝ p→q ﺍﻟﺼﻮﺍﺏ ﻹﺛﺒﺎﺕ ﺃﻥ ﻋﺒﺎﺭﺗﻴﻦ ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ،m∠A = 35° q→p ∠A ~p → ~q q ،p ﻣﻨﻄﻘ ﹼﹰﻴﺎ. ~q → ~p ،∠A m∠A = 35° ،m∠A ≠ 35° ﺃﻭﺟﺪ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺗﻴﻦ 4 ∠A ∼(p∨q), ∼p∨qﻋﻠﻰ ﻧﻔﺲ ﺍﻟﺠﺪﻭﻝ، ،∠A m∠A ≠ 35° ﺛﻢ ﻗﺮﺭ ﻫﻞ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ ﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻣﻨﻄﻘ ﹰﹼﻴﺎ. p q ∼p ∼q (p ∨ q) ∼(p ∨ q) ∼p ∨ ∼q ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺻﺎﺋﺒﺔ ،ﻓﻠﻴﺲ ﺑﺎﻟﻀﺮﻭﺭﺓ ﺃﻥ ﻳﻜﻮﻥ ﻋﻜﺴﻬﺎ ﻭﻣﻌﻜﻮﺳﻬﺎ ﺻﺎﺋﺒﻴﻦ ،ﺑﻴﻨﻤﺎ ﻳﻜﻮﻥ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﺻﺎﺋ ﹰﺒﺎ .ﻭﻳﻜﻮﻥ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﺧﺎﻃ ﹰﺌﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺧﺎﻃﺌﺔ. TTFF T F F ﻭﺑﺎﻟﻤﺜﻞ ﻓﺈﻥ ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﻣﻌﻜﻮﺳﻬﺎ ﺇﻣﺎ ﺃﻥ ﻳﻜﻮﻧﺎ ﺻﺎﺋﺒﻴﻦ ﻣ ﹰﻌﺎ ﺃﻭ ﺧﺎﻃﺌﻴﻦ ﻣ ﹰﻌﺎ .ﻭﺗﺴﻤﻰ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﻲ ﻟﻬﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻧﻔﺴﻬﺎ ﻋﺒﺎﺭﺍﺕ ﻣﺘﻜﺎﻓﺌﺔ ﻣﻨﻄﻘ ﹰﹼﻴﺎ. TFFT T F T 4 FTTF T F T ﺃﻭﺟﺪ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﻋﻜﺴﻬﺎ ﻭﻣﻌﻜﻮﺳﻬﺎ ﻭﻣﻌﺎﻛﺴﻬﺎ ﺍﻹﻳﺠﺎﺑﻲ ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﺠﺪﻭﻝ ،ﺛﻢ ﺍﻛﺘﺐ FFTT F T T ﻋﺒﺎﺭﺗﻴﻦ ﻣﺘﻜﺎﻓﺌﺘﻴﻦ ﻣﻨﻄﻘ ﹰﹼﻴﺎ. ﻏﻴﺮ ﻣﺘﻜﺎﻓﺌﺘﻴﻦ ﻣﻨﻄﻘ ﹰﹼﻴﺎ. p q ∼p ∼q pq ∼q ∼p qp ∼p ∼q TTFF T T T T ﺯ ﹼﻭﺩ ﻛﻞ ﻃﺎﻟﺐ TFFT F T T F ﺑﺒﻄﺎﻗﺎﺕ ﻣﻌﻨﻮﻧﺔ ﺑـ \"ﺍﻟﻔﺮﺽ\"\" ،ﺍﻟﻨﺘﻴﺠﺔ\" FTTF T F F T \"ﻳﺆﺩﻱ ﺇﻟﻰ\" )ﺃﻭ ﺇﺷﺎﺭﺓ ﺳﻬﻢ ﻣﺘﺠﻪ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻦ( ﺃﻋﻂ ﻛﻞ ﻃﺎﻟﺐ ﺑﻄﺎﻗﺘﻴﻦ FFTT T T T T ﻛ ﱞﻞ ﻣﻨﻬﻤﺎ ﻣﻌﻨﻮﻧﺔ ﺑـ ”ﻟﻴﺲ“ ﺑﺎﻟﻠﻮﻥ ﺍﻷﺣﻤﺮ، ﺛﻢ ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﺗﻜﻮﻳﻦ ﻋﺒﺎﺭﺍﺕ ﻣﻦﺧﻼﻝﺟﺪﻭﻝﺍﻟﺼﻮﺍﺏﻧﻼﺣﻆﺃﻧﻪﻟﻠﻌﺒﺎﺭﺗﻴﻦ p → qﹶﻭ ~q → ~pﻗﻴﻢﺍﻟﺼﻮﺍﺏﻧﻔﺴﻬﺎﻟﺬﺍﻓﻬﻤﺎﻣﺘﻜﺎﻓﺌﺘﺎﻥ ﻣﻨﻄﻘ ﹰﹼﻴﺎ. ﺷﺮﻃﻴﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺒﻄﺎﻗﺎﺕ ،ﻭﺗﻜﻮﻳﻦ ✓ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ. ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺃﻥ ﻳﺴﺘﺠﻴﺒﻮﺍ ﻟﻠﻨﺸﺎﻁ ﺑﻮﺿﻊ (4ﺃﻭﺟﺪ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺍﺕ ~(p q), ~p ~q, ~(p q), ~p ~q :ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﺠﺪﻭﻝ ،ﺛﻢ ﺍﻛﺘﺐ ﺍﻟﺒﻄﺎﻗﺎﺕ ﻓﻲ ﺍﻟﻮﺿﻊ ﻭﺍﻟﺘﺮﺗﻴﺐ ﺍﻟﺼﺤﻴﺤﻴﻦ، ﻭﻳﻤﻜﻨﻬﻢ ﺃﻳ ﹰﻀﺎ ﺃﻥ ﻳﺴﺘﻌﻤﻠﻮﺍ ﺍﻟﺒﻄﺎﻗﺎﺕ ﻟﺤﻞ ﺯﻭﺟﻴﻦ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺘﻜﺎﻓﺌﺔ ﻣﻨﻄﻘ ﹰﹼﻴﺎ .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. ﺑﻌﺾ ﺍﻟﺘﺪﺭﻳﺒﺎﺕ ﺃﻭ ﺍﻷﻣﺜﻠﺔ ﻓﻲ ﻫﺬﺍ ﺍﻟﺪﺭﺱ ﺑﻜﺘﺎﺑﺔ ﺃﺟﺰﺍﺀ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻋﻠﻰ ﺍﻟﺒﻄﺎﻗﺎﺕ ﻣﻤﺎ ﺳﺒﻖ ﻧﻼﺣﻆ ﺃﻥ: ﺍﻟﻤﻨﺎﻇﺮﺓ. • • • )~p ~q ~(p q • )~p ~p ~(p q 29 1-3 ﺍﻛﺘﺐ ﻋﺒﺎﺭﺓ p q ∼p ∼q p ∧ q p ∨ q ∼(p ∧ q) ∼p ∨ ∼q ∼(p ∨ q) ∼p ∧ ∼q (4 ﺷﺮﻃﻴﺔ ﻋﻠﻰ ﺍﻟﺴﺒﻮﺭﺓ ،ﺛﻢ ﺍﺳﺤﺐ ﻛ ﹼﹰﻼ TTFF T T F F F F ﻣﻦ ﺍﻟ ﹶﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ؛ ﻟﺘﺴﺎﻋﺪ ﻋﻠﻰ TFFT F T T T F F ﻛﺘﺎﺑﺔ ﺍﻟﻌﻜﺲ ،ﻭﺍﻟﻤﻌﻜﻮﺱ ،ﻭﺍﻟﻤﻌﺎﻛﺲ FTTF F T T T F F ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻷﺻﻠﻴﺔ. FFTT F F T T T T ) ∼(p ∧ qﺗﻜﺎﻓﺊ ﻣﻨﻄﻘ ﹰﹼﻴﺎ ∼p ∨ ∼q ) ∼(p ∨ qﺗﻜﺎﻓﺊ ﻣﻨﻄﻘ ﹰﹼﻴﺎ ∼p ∧ ∼q 29 1-3
ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺘﻜﺎﻓﺆ ﺍﻟﻤﻨﻄﻘﻲ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻌﺒﺎﺭﺓ ﻣﺎ .ﻓﻲ ﺍﻟﻤﺜﺎﻝ 5ﺃﺩﻧﺎﻩ ،ﻻﺣﻆ ﺃﻥ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﻣﻌﺎﻛﺴﻬﺎ ﺍﻹﻳﺠﺎﺑﻲ ﺻﺎﺋﺒﺎﻥ .ﻭﺃﻥ ﻛ ﹰﹼﻼ ﻣﻦ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﺧﺎﻃﺌﺎﻥ. 5 ﺍﻛﺘﺐ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﻣﻌﻠﻮﻣﺎﺕ ﺍﻟﺮﺑﻂ 3 ✓ ﻣﻊ ﺍﻟﺤﻴﺎﺓ؛ ﻟﺘﺤﺪﻳﺪ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺃ ﱞﻱ ﻣﻨﻬﺎ ﺻﺎﺋ ﹰﺒﺎ ﺃﻡ ﺧﺎﻃ ﹰﺌﺎ .ﻭﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ،ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. ﺍﺳﺘﻌﻤﻞ ﺍﻷﺳﺌﻠﺔ 18-1؛ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﻓﻬﻢ ﺍﻷﺳﻮﺩ ﻫﻲ ﻗﻄﻂ ﺗﺴﺘﻄﻴﻊ ﺃﻥ ﺗﺰﺃﺭ. ﺍﻟﻄﻠﺒﺔ ،ﺛﻢ ﺍﺳﺘﻌﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺃﺳﻔﻞ ﺍﻟﺼﻔﺤﺔ ﺃﻋﺪ ﻛﺘﺎﺑﺔ ﺍﻟﻌﺒﺎﺭﺓ ﻋﻠﻰ ﺻﻮﺭﺓ )ﺇﺫﺍ ...ﻓﺈﻥ. (... ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ: ﺍﻟﺘﺎﻟﻴﺔ؛ ﻟﺘﻌﻴﻴﻦ ﺍﻟﻮﺍﺟﺒﺎﺕ ﺍﻟﻤﻨﺰﻟﻴﺔ ﻟﻠﻄﻠﺒﺔ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﺃﺳ ﹰﺪﺍ ،ﻓﺈﻧﻪ ﻗ ﱞﻂ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﺰﺃﺭ. ﺑﺤﺴﺐ ﻣﺴﺘﻮﻳﺎﺗﻬﻢ. ﺍﻋﺘﻤﺎ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻤﻌﻠﻮﻣﺎﺕ ﺍﻟﻤﺠﺎﻭﺭﺓ ﻋﻦ ﺍﻟﻴﻤﻴﻦ ،ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺎﺋﺒﺔ. ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﻗ ﹰﹼﻄﺎ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﺰﺃﺭ ،ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﺃﺳ ﹰﺪﺍ. ﺍﻟﻌﻜﺲ: ﻣﺜﺎﻝ ﻣﻀﺎﺩ :ﺍﻟﻨﻤﺮ ﻗﻂ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﺰﺃﺭ ،ﻟﻜﻨﻪ ﻟﻴﺲ ﺃﺳ ﹰﺪﺍ. ﺇﺫﻥ ﻓﺎﻟﻌﻜﺲ ﺧﺎﻃﻲﺀ. ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﺍﻟﺤﻴﻮﺍﻥ ﺃﺳ ﹰﺪﺍ ،ﻓﺈﻧﻪ ﻻ ﻳﻜﻮﻥ ﻗ ﹰﹼﻄﺎ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﺰﺃﺭ. ﺍﻟﻤﻌﻜﻮﺱ: ﻣﺜﺎﻝ ﻣﻀﺎﺩ :ﺍﻟﻨﻤﺮ ﻟﻴﺲ ﺃﺳ ﹰﺪﺍ ،ﻭﻟﻜﻨﻪ ﻗﻂ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﺰﺃﺭ. 5 ﻳﺒﻴﻦ ﻛﻴﻔﻴﺔ ﻛﺘﺎﺑﺔ ﺍﻟﻌﻜﺲ ﺇﺫﻥ ﺍﻟﻤﻌﻜﻮﺱ ﺧﺎﻃﻲﺀ. ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ :ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﺍﻟﺤﻴﻮﺍﻥ ﻗ ﹰﹼﻄﺎ ﻳﺴﺘﻄﻴﻊ ﺃﻥ ﻳﺰﺃﺭ ،ﻓﺈﻧﻪ ﻻ ﻳﻜﻮﻥ ﺃﺳ ﹰﺪﺍ. ﺍﻋﺘﻤﺎ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻤﻌﻠﻮﻣﺎﺕ ﺍﻟﺘﻲ ﻓﻲ ﺍﻟﻬﺎﻣﺶ ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺎﺋﺒﺔ . ﺍﻟﺸﺮﻃﻴﺔ. ﺗﺤﻘﻖ ﻣﻦ ﺃﻥ ﻟﻠﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺘﻜﺎﻓﺌﺔ ﻣﻨﻄﻘ ﹼﹰﻴﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻧﻔﺴﻬﺎ. ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﻣﻌﺎﻛﺴﻬﺎ ﺍﻹﻳﺠﺎﺑﻲ ﻛﻼﻫﻤﺎ ﺻﺎﺋﺐ . ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻛﻼﻫﻤﺎ ﺧﺎﻃﻲﺀ . ✓ ﺍﻛﺘﺐ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ 5 ﺍﻛﺘﺐ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻟﺸﺮﻃﻴﺘﻴﻦ ﺍﻵﺗﻴﺘﻴﻦ ،ﺛﻢ ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺃ ﱞﻱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻣﻨﻬﺎ ﺻﺎﺋ ﹰﺒﺎ ﺃﻡ ﺧﺎﻃ ﹰﺌﺎ .ﻭﺇﺫﺍ ﻛﺎﻥ ﺧﺎﻃ ﹰﺌﺎ ﻓﺄﻋﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ (5A, 5B .ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ. ﺍﻵﺗﻴﺔ ،ﻭﺣﺪﺩ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻬﺎ ،ﻭﺇﺫﺍ (5Aﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻠﺘﺎﻥ ﻟﻬﻤﺎ ﺍﻟﻘﻴﺎﺱ ﻧﻔﺴﻪ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ. ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ ،ﻓﺄﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ. (5Bﺍﻟﻔﺄﺭ ﻣﻦ ﺍﻟﻘﻮﺍﺭﺽ. ﺍﻟﺨﻔﺎﻓﻴﺶ ﺛﺪﻳﻴﺎﺕ ﺗﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ. ﺣ ﱢﺪﺩ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ: ✓ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ :ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ 1 ﺧﻔﺎ ﹰﺷﺎ ،ﻓﺈﻧﻪ ﺛﺪﻳ ﱞﻲ ﻳﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ. (1ﻳﻮﻡ ﻏﺪ ﻫﻮ ﺍﻟﺴﺒﺖ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻴﻮﻡ ﻫﻮ ﺍﻟﺠﻤﻌﺔ .ﺍﻟﻔﺮﺽ :ﺍﻟﻴﻮﻡ ﻫﻮ ﺍﻟﺠﻤﻌﺔ؛ ﺍﻟﻨﺘﻴﺠﺔ :ﻳﻮﻡ ﻏﺪ ﻫﻮ ﺍﻟﺴﺒﺖ. ﺍﻟﻌﻜﺲ :ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ﺍﻟﺘﻲ ﺗﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ ،ﻓﺈﻧﻪ (2ﺇﺫﺍ ﻛﺎﻥ ،2x + 5 > 7ﻓﺈﻥ . x > 1ﺍﻟﻔﺮﺽ 2x + 5 > 7؛ ﺍﻟﻨﺘﻴﺠﺔx > 1 : (3ﺍﻟﻔﺮﺽ :ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻳﻜﻮﻥ ﺧﻔﺎ ﹰﺷﺎ .ﺧﺎﻃﺌﺔ؛ ﻫﻨﺎﻙ ﺛﺪﻳﻴﺎﺕ ﻣﺘﻜﺎﻣﻠﺘﺎﻥ .ﺍﻟﻨﺘﻴﺠﺔ :ﻣﺠﻤﻮﻉ ﺃﺧﺮ ﺗﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ ﻣﺜﻞ ﺍﻟﻠﻴﻤﻮﺭ. (3ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ ،ﻓﺈﻥ ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﻴﻬﻤﺎ 180° ﻗﻴﺎﺳﻲ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﻳﺴﺎﻭﻱ .180° ﺍﻟﻤﻌﻜﻮﺱ :ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﺍﻟﺤﻴﻮﺍﻥ (4ﻳﻜﻮﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﻣﺘﻌﺎﻣﺪﻳﻦ ﺇﺫﺍ ﻧﺘﺞ ﻋﻦ ﺗﻘﺎﻃﻌﻬﻤﺎ ﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ .ﺍﻟﻔﺮﺽ :ﻧﺘﺞ ﻋﻦ ﺗﻘﺎﻃﻊ ﻣﺴﺘﻘﻴﻤﻴﻦ ﺯﺍﻭﻳﺔ ﺧﻔﺎ ﹰﺷﺎ ،ﻓﺈﻧﻪ ﻟﻴﺲ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ﺍﻟﺘﻲ ﻗﺎﺋﻤﺔ؛ ﺍﻟﻨﺘﻴﺠﺔ :ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﻣﺘﻌﺎﻣﺪﺍﻥ. ﺗﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ .ﺧﺎﻃﺌﺔ؛ ﺍﻟﻠﻴﻤﻮﺭ 1 30 ﻟﻴﺲ ﺧﻔﺎ ﹰﺷﺎ ،ﻭﻫﻮ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ﺍﻟﺘﻲ ﺗﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ. ﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ pﻭ qﺑﺴﻴﻄﺘﻴﻦ ،ﻭﻟﻜﻦ ﻟﻴﺲ ﺑﺎﻟﻀﺮﻭﺭﺓ ﺃﻥ ﺗﻜﻮﻧﺎ ﻣﺮﺗﺒﻄﺘﻴﻦ ﻣ ﹰﻌﺎ .ﻭﻟﻜﻦ ﻓﻲ ﻫﺬﺍ ﺍﻟﺪﺭﺱ ﺳﺘﻜﻮﻥ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ :ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﺇﺣﺪ ﺍﻟﺠﻤﻞ ﻫﻲ ﺍﻟﻔﺮﺽ ،ﻭﺍﻷﺧﺮ ﻫﻲ ﺍﻟﻨﺘﻴﺠﺔ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ .ﺗﺄﻛﺪ ﻣﻦ ﺃﻥ ﺍﻟﻄﻼﺏ ﻳﻌﻠﻤﻮﻥ ﺃﻥ ﻫﺎﺗﻴﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ ﺍﻟﺘﻲ ﺗﺴﺘﻄﻴﻊ ﺍﻟﻄﻴﺮﺍﻥ ،ﻓﺈﻧﻪ ﻟﻴﺲ ﺧﻔﺎ ﹰﺷﺎ .ﺻﺎﺋﺒﺔ ﺍﻟﻤﻨﻔﺼﻠﺘﻴﻦ ﻣﺎ ﺯﺍﻟﺘﺎ ﺑﺴﻴﻄﺘﻴﻦ ﻭﻏﻴﺮ ﻣﺮﺗﺒﻄﺘﻴﻦ ،ﻭﻟﻜﻨﻬﻤﺎ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺑﻴﻨﻬﻤﺎ ﻋﻼﻗﺔ ﺍﺭﺗﺒﺎﻁ .ﻭﻗﺒﻞ ﺍﻟ ﹸﻤﻀ ﱢﻲ ﹸﻗﺪ ﹰﻣﺎ ﻳﺠﺐ ﻋﻠﻰ ﺍﻟﻄﻼﺏ ﺍﻟﺘﻌﺎﻣﻞ ﺑﺎﺭﺗﻴﺎﺡ ﻓﻲ ﺗﺤﺪﻳﺪ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻭﻣﻌﺮﻓﺔ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞ ﻋﺒﺎﺭﺓ ﻋﻠﻰ ﺣﺪﺓ ،ﻭﻣﻌﺮﻓﺔ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻓﻲ ﺣﺎﻝ ﺍﻟﺮﺑﻂ ﺑﻮﺍﺳﻄﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﺍﻟﺼﻴﻎ ﺍﻟﻤﺨﺘﻠﻔﺔ ﻟﻜ ﱟﻞ ﻣﻦ ﺍﻟﻌﻜﺲ ﻭﺍﻟﻤﻌﻜﻮﺱ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ. (5Bﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ :ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﻓﺄ ﹰﺭﺍ ﻓﺈﻧﻪ ﻣﻦ ﺍﻟﻘﻮﺍﺭﺽ. ﺍﻟﻌﻜﺲ :ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﻘﻮﺍﺭﺽ ﻓﺈﻧﻪ ﻓﺄﺭ .ﺧﺎﻃﺌﺔ ،ﺍﻟﺴﻨﺠﺎﺏ ﻣﻦ (5Aﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ :ﺇﺫﺍ ﻛﺎﻥ ﻟﻠﺰﺍﻭﻳﺘﻴﻦ ﺍﻟﻘﻴﺎﺱ ﻧﻔﺴﻪ ﻓﺈﻧﻬﻤﺎ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ. ﺍﻟﻘﻮﺍﺭﺽ ،ﻟﻜﻨﺔ ﻟﻴﺲ ﻓﺄ ﹰﺭﺍ. ﺍﻟﻌﻜﺲ :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﻄﺎﺑﻘﺘﻴﻦ ،ﻓﺈﻥ ﻟﻬﻤﺎ ﺍﻟﻘﻴﺎﺱ ﻧﻔﺴﻪ .ﺻﺎﺋﺒﺔ. ﺍﻟﻤﻌﻜﻮﺱ :ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﺍﻟﺤﻴﻮﺍﻥ ﻓﺄ ﹰﺭﺍ ،ﻓﺈﻧﻪ ﻻ ﻳﻜﻮﻥ ﻣﻦ ﺍﻟﻘﻮﺍﺭﺽ .ﺧﺎﻃﺌﺔ، ﺍﻟﻤﻌﻜﻮﺱ :ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﻟﺰﺍﻭﻳﺘﻴﻦ ﺍﻟﻘﻴﺎﺱ ﻧﻔﺴﻪ ،ﻓﺈﻧﻬﻤﺎ ﻏﻴﺮ ﻣﺘﻄﺎﺑﻘﺘﻴﻦ. ﺍﻟﺴﻨﺠﺎﺏ ﻟﻴﺲ ﻓﺄ ﹰﺭﺍ ،ﻭﻟﻜﻨﻪ ﻣﻦ ﺍﻟﻘﻮﺍﺭﺽ. ﺻﺎﺋﺒﺔ. ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ :ﺇﺫﺍ ﻟﻢ ﻳﻜﻦ ﺍﻟﺤﻴﻮﺍﻥ ﻣﻦ ﺍﻟﻘﻮﺍﺭﺽ ،ﻓﺈﻧﻪ ﻟﻴﺲ ﻓﺄ ﹰﺭﺍ .ﺻﺎﺋﺒﺔ. ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ :ﺇﺫﺍ ﻟﻢ ﺗﻜﻦ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﻄﺎﺑﻘﺘﻴﻦ ،ﻓﺈﻧﻪ ﻻ ﻳﻜﻮﻥ ﻟﻬﻤﺎ ﺍﻟﻘﻴﺎﺱ ﻧﻔﺴﻪ .ﺻﺎﺋﺒﺔ. 1 30
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401