44 ⌫ ⌫ ⌦ ⌫
⌦ 45 ⌦ 4. ¦³ªµ¦´µ¦Á¦¸¥¦o¼ 1. ¦Â¼ ¨³´ Á¦¸¥ªªµ¤¦¼oÁ¦º°É ÃÁ¤Â¨³Á¦r
°ªµ¤¤´ ¡´ r 2.¦¼ ¦» ªµn ªµ¤´¤¡´r Áɸ } ¢{ r´ ÃÁ¤
°ªµ¤¤´ ¡´r³Á¦¥¸ ªnµÃÁ¤
°¢{r ´ ¨³Á¦r
°ªµ¤´¤¡´r³Á¦¥¸ ªnµÁ¦
r °¢{r´ 3. ¦¼ ε®Ã¥r°n ÅÄ¸Ê ®o ´ Á¦¥¸ ®µÃÁ¤Â¨³Á¦r
°¢{ r´ A = {1 , 2 , 3} µÎ ° ÃÁ¤º° A Á¦r °º {a,b} B = {a , b , c , d} A = {1 , 2 , 3 , 4 , 5} ε° ÃÁ¤°º A Á¦r°º B B = {a , b , c , d} A = {1 , 2 , 3 , 4} ε° ÃÁ¤º° A Á¦r º° {a,b,c,d} B = {a , b , c , d , e} A = {1 , 2 , 3 , 4} ε° ÃÁ¤º° A Á¦r º° B B = {a , b , c , d } 4. µÃ¥r ª´ °¥nµÄ®o´ Á¦¥¸ ¡· µ¦µµ¦´ ¼¦n ³®ªµn ¤µ·
°Á A ¨³¤µ·
°Á B ¨³°ÃÁ¤Â¨³Á¦
r °¢{ r´ 6. ¦¼Â¨³´Á¦¸¥nª¥´ ¦» Ä®oŪo nµÃÁ¤
°¢{r´ °º Á A ¨³Á¦r
°¢{ r´ Á} ´Á
°Á B ɹ Á¦¸¥ªµn ¢{ r ´ µ A Å B ¨³Äo ´¨´¬rªo ¥ f : AoB 7. Ä®o ´ Á¦¸¥«¹ ¬µÁ¡·É¤Á¤· µÄªµ¤¦¼É¸ 7 8. Ä®o´ Á¦¥¸ f´¬³Ã¥µÎ  f ®´ µÄ· ¦¦¤É¸ 7 5. ®¨nµ¦Á¦¥¸ ¦¼o 1. 夦¼oɸ 7 2. Ä·¦¦¤¸É 7 3. ®o°¤» æÁ¦¥¸ 4. Internet
46 ⌫ ⌫ ⌦ ⌫ 6. ¦³ªµ¦ª´Â¨³¦³Á¤· ¨ 1. ¦³Á¤· ¨µµ¦ÎµÂ f ®´ 2. ¦³Á¤·¨µµ¦µÎ ° 7. ´¹ ®¨´µ¦° ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. 8. ·¦¦¤Á°Â³ ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………….
⌦ 47 ⌦
48 ⌫ ⌫ ⌦ ⌫
⌦ 49 ⌦ ¢{ r´ ®¹É °n ®É¹ µÎ ®Ä®o f {(m,7), (n,8), (t,9)} ¨³ f {(m,7), (n,8), (t,7)} ³Á®Èªnµ f ¨³ g µn ÁÈ } ¢{r ´ ¥É· Ūµn ´Ê¢{ r´ f ¤¸¤µ·ª´ ®¨´®É¹ ª´ ´ n¼´¤µ·´ª®oµÁ¡¥¸ ®¹É ª´ Ánµ´Ê ´¦¼ Df f Rf m 7 n 8 t 9 ªn ¢{ r ´ g ¤¸ ¤µ·´ª®¨´®¹Éª´ °º 7 ´ ¼n ´¤µ·´ª®µo °´ªº° m ¨³ t ´ ¦¼ Dg g Rg m n 7 t 8 9 ³Á®È ªµn f ¤¨¸ ´ ¬³
°¢{ r´®É¹ n°®É¹ Ä
³¸É g ŤnĨn ´¬³
°¢{r ´ ®É¹ n°®É¹ ¥· µ¤ Ä®o f Á}¢{ r ´ f Á} ¢{r ´®É¹n°®¹É µ A Å B È n°Á¤Éº° f Á} ¢{r ´ µ A Å B 宦´¤µ· x1 ¨³ x2 ÄÇ Ä A µo f(x1 ) f(x2 ) ¨ªo x1 x2 Á
¸¥Âªo ¥ f ; A 1-1 B
50 ⌫ ⌫ ⌦ ⌫ ª´ °¥nµ¸É 3 ε®Ä®o f {(1,7), (2,8), (3,9), (4,8)} ªµn f ŤnÁ} ¢{r ´ 1 – 1 ª· ¸µÎ ¡·µ¦µÂ£µ¡
° f {(1,7), (2,8), (3,9), (4,8)} f 17 28 39 4 f ŤnÁ}¢{ r ´ 1 – 1 Á°Éº µ¤¸ (2,8) f ¨³ (4,8) f ɹ ¤µ· ª´ ®¨´ º° 8 Á®¤°º ´ Ân ¤µ· ´ª®µo µn ´ º° 2 z 4 ª´ °¥nµÉ¸ 4 µÎ ®Ä®o f(x) x 1 ªµn f ŤnÁ} ¢{r ´ 1 – 1 ª· ¸µÎ µ¦É¸ ³Âªµn f ŤnÁ}¢{ r´ 1 – 1 Á¦µo°®µ x1 ¨³ x2 ¸É x1 ŤnÁµn ´ x2 ÂnεĮo f(x1 ) ¨³ f(x2 ) ¤¸µn Áµn ´ Á¨º° x1 ¨³ x2 ɤ¸ ¸nµ¤¼¦rÁnµ´ Án x1 2 ¨³ x2 2 oµ x1 2 ¨oª f(x1 ) f(2) 2 1 2 1 3 µo x2 2 ¨ªo f(x2 ) f(2) 2 1 2 1 3 ³Á®È ªnµ¤¸ n°¼ ´´ (2,3) ¨³ (2,3) °¥n¼Ä f Ân 2 z 2 ´´Ê f ŤÄn ¢n {r´ 1 – 1 ´ª°¥µn ɸ 5 ¡· ¼ ªr nµ f Á} ¢{r ´ 1 – 1 Á¤Éº° f(x) 3x 4 ª· ¸Îµ Ä®o f(x1) f(x2 ) ³Åªo µn 3x1 4 3x2 4 µÎ - 4 ª´Ê °
µo ³Åo 3x1 4 (4) 3x2 4 (4) 3x1 3x2 x2 µÎ 1 ¼ Ê´ °
µo 3 ³Åo x1 x2 ³Á®È ªµn oµ f(x1 ) f(x2 ) ¨oª x1 ´ ´Ê f Á} ¢{ r´ 1 – 1
⌦ 51 ⌦ Ä·¦¦¤É¸ 7 1. ¡·µ¦µªnµ
o°ÄÁ} ¢{ r´ µ R ÅÉ´ª¹ R 1. f(x) 9x 4 2. f(x) 3 x 2 3. f (x) 4x2 1 4. f(x) 7x 1 5. f(x) x3 6. f(x) x2 2x 5 7. f(x) 3 8. f(x) x2, x 0 9. f(x) 1 x 10. f(x) x 2. Á
¸¥Á¦ºÉ°®¤µ¥ 9®oµ
o°¸É¼ ¨³ 8 ®oµ
o°¸É· ε®Ä®o A {1,2,3} , B {4,5} ¨³ C {4,5,6} ………….1) {(1,4),(2,5),(3,5)} Á}¢{ r ´ µ A Åɪ´ ¹ B ………….2) {(1,4),(2,5),(3,5)} Á}¢{r ´µ A Ū´É ¹ C ………….3) {(1,4),(2,4),(3,5)} Á} ¢{r ´ µ A Ŵɪ¹ B ………….4) {(1,4),(2,5),(3,6)} Á} ¢{ r ´µ A Åɪ´ ¹ C 3.
°o İn ÅÁ¸Ê }¢{ r´ 1 – 1 1) f(x) x 2) f(x) x2 1 3) f(x) x 5 4) f(x) 3x 2 5) f(x) x 1 6) f(x) 1 x 7) f(x) x 4 8) f(x) x2 9) f(x) x3 10) f(x) x
52 ⌫ ⌫ ⌦ ⌫ µ¦´ µ¦Á¦¸¥¦¼o¸É 8 Á¦ºÉ° ¢{ r ´ ¦³° Ê´ ¤´¥¤«¹¬µe ɸ 4 ª·µ · «µ¦r Áª¨µ 4 ɪ´ ä ¨µ¦Á¦¥¸ ¦o¼ ¸É µ®ª´ µ¤µ¦®µ¢{r´ ¦³°
°¢{ r ´ °¢{r´ ¸É µÎ ®Ä®oÅo 1. » ¦³r µ¦Á¦¥¸ ¦o¼ 1. °ªµ¤®¤µ¥
°¢{r ´¦³°Åo 2. °Åªo µn ³®µ¢{r ´¦³°
°¢{ r ´ °¢{ r´¸É µÎ ®Ä®Åo o®¦º°Å¤n 3. ®µ¢{ r ´ ¦³°
°¢{r ´°¢{ r´¸É ε®Ä®Åo o 4. °ÃÁ¤Â¨³Á¦r
°¢{ r ´ ¦³°¸É ε®Ä®Åo o 2. ªªµ¤· ®¨´ gof(x) Á} ¢{ r ´ ɸ¦oµ
ʹĮ¤n Á} ¢{ r ´ µÁ A ÅÁ C Ã¥ ÃÁ¤¤µµ A ¨³Á¦r¤µµ C Af BgC 3. ÁºÊ°®µµ¦³ ¥· µ¤ Ä®o f ¨³ g Á} ¢{ r ´ ¨³ Rf Dg z I ¢{r ´ ¦³°
° f ¨³ g Á
¸¥Â oª¥ gof ε®Ã¥ (gof)(x) = g(f(x)) µÎ ®¦´» x ɹ f(x) Dg 4. ¦³ªµ¦´µ¦Á¦¥¸ ¦¼o 1. ¦Â¼ ¨³´ Á¦¸¥ªµ¦®µnµ
°¢{r´ f(x) 2. ¦¼ µÎ ®Â£µ¡ ¢{ r´ f ¨³ g Ã¥ÄÂo næn Ä ´¦¼ AB C 1f a g p 2b q 83 c r 3. µÂ£µ¡³Åo f(1) = a , f(2) = c , f(3) = b g(a) = p , g(b) = p , g(c) = q g(a) = p g(b) = p g(c) = q
⌦ 53 ⌦ µ f ¨³ g ɸ ε®Ä®o ³Åo g(f(1)) = g(a) = p g(f(2)) = g(c) = q g(f(3)) = g(b) = p 4. °µ¦µo ¢{r´
ʹ Ä®¤Án ¦¥¸ ªnµ¢{r´ ¦³° gof ( ø °Á°¢ ) Á}¢{ r´ µ A Å C (gof)(1) = g(f(1)) (gof)(2) = g(f(2)) (gof)(3) = g(f(3)) ´É º° gof = {(1,p),(2,q),(3,p)} 5. ¦¼µÎ ®Â£µ¡¢{ r ´ f ¨³ g Ä®o ´ Á¦¥¸ ®µ gof Ã¥r ª´ °¥µn Af B gC 4 79 5 8 10 6 ³Åo gof = {(4,9),(5,10),(6,9)} 6. ¦Â¼ ¨³´Á¦¸¥ªn ¥´ ¦» ªµ¤®¤µ¥
°µÎ ªnµ¢{ r ´¦³° 7. ¦Â¼ ¨³´Á¦¥¸ ªÃÁ¤Â¨³Á¦
r °¢{ r´ 8. µÃ¥r ª´ °¥nµÄ
°o 2 ¨³ 5 Ä®o ´Á¦¥¸ ®µÃÁ¤Â¨³Á¦r
°¢{ r´ f ¨³ g ¨oª ªn ¥´ ¡· µ¦µªµn ÃÁ¤
° gof Á}°¥µn Ŧ 9. ¦¼Â¨³´Á¦¸¥nª¥´¦»ªnµ³®µ¢{r´¦³°
°¢{r´°¢{r´¸ÉµÎ ®Ä®oÅo °¥nµÅ¦ 10. Ä®o ´ Á¦¥¸ «¹¬µÁ¡¤É· Á¤· µÄªµ¤¦¼o ¸É 8 11. Ä®o´ Á¦¥¸ f ´¬³Ã¥ÎµÂ f®´ ÄÄ·¦¦¤É¸ 8
54 ⌫ ⌫ ⌦ ⌫ 5. ®¨n µ¦Á¦¥¸ ¦¼o 1. 夦o¼ ɸ 8 2. Ä· ¦¦¤¸É 8 3. ®°o ¤»Ã¦Á¦¸¥ 4. º oµ Internet 6. ¦³ªµ¦ª´Â¨³¦³Á¤· ¨ 1. ¦³Á¤· ¨µµ¦µÎ  f ®´ 2. ¦³Á¤· ¨µµ¦µÎ ° 7. ´ ¹ ®¨´µ¦° ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. 8. · ¦¦¤Á°Â³ ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………….
⌦ 55 ⌦ 夦o¼ ɸ 8 ¢{r´ ¦³° oµ¤¸¢{r´ °¥nµo°¥®¹É¢{r ´ Á¦µµ¤µ¦¦oµ¢{ r´ Ä®¤Ån o°¸°Á®°º µµ¦ª ¨ ¼ ®¦º°®µ¦¢{ r´ º°µ¦Îµ¢{ r´ ¤µ¦³°´ oª¥Á°ºÉ Å
ɸ µÎ ®Ä®o ¢{ r´ Ä®¤nÅ¸É o º° ¢{ r ´ ¦³° ɹ¢{r´¦³°¸Ê ³¤¸µµÎ ´ÄÁ¦É°º µ¦®µ°¡» ´ Ãr ¥Äo ¨¼Ãn ·¥µ¤ µÎ ®Ä®o f ¨³ g Á} ¢{r´ ɹ ¢{ r ´ ¦³°
° f ¨³ g Á}¢{ r´µ {x Df / f(x) Dg } Å¥´Á¦r
° g ¨³ (x, z) gof È °n Á¤º°É ¤¸ y ¹É (x, y) f ¨³ (y, z) g ª´ °¥nµ¸É 1 ε®Ä®o f {(a,1), (b,2), (c,5)} g {(1,7), (2,8), (3,9)} Á°Éº µ (a,1) f ¨³ (1,7) g ´Ê´ (a,7) gof (b,2) f ¨³ (2,8) g ´ Ê´ (b,8) gof nª (c,5) f ÂnŤn¤¸ n¼°´ ´ ¸É¤¸ 5 Á} ¡·´ ¦
° g ´´Ê¹Å¤¡n ·µ¦µ ³Åªo µn gof {(a,7), (b,8)} ´ª°¥µn ɸ 2 µÎ ®Ä®o f(x) 2x 1 ¨³ g(x) x2 2 ª·¸ µÎ ®µ Dgof , Dfog , (gof )( x) ¨³ fog(x) ¡· µ¦µ Dgof ¨³ Dfog µ¥· µ¤ Dgof {x Df / f(x) Dg } Ä¸É ¸Ê Df R ¨³ Dg R ´ Ê´ Dgof {x R / 2x 1 R} R ¨³ Dfog {x Dg / g(x) Dg } {x R / x 2 2 R} R Á°Éº µ¤¸ Dgof ¨³ Dfog ´ ´Ê¤¸ gof ¨³ fog ¡· µ¦µ (gof )( x) g(f(x)) g(2x 1) Á¡¦µ³ f(x) 2x 1 (2x 1) 2 2 Á¡¦µ³ g(x) x2 2 ®¦º° g(A) A2 2 Á¤É°º A 2x 1 (4 x 2 4 x 1) 2 4x2 4x 1 ¡· µ¦µ (fog)( x) f ( g( x)) f(x2 2) Á¡¦µ³ g(x) x2 2 2(x2 2) 1 Á¡¦µ³ f(x) 2x 1 ®¦°º f(A) 2A 1 Á¤°Éº A x2 2 (2x 2 4 1) 2x2 3
56 ⌫ ⌫ ⌦ ⌫
⌦ 57 ⌦ µ¦´µ¦Á¦¥¸ ¦o¼ ¸É 9 Á¦º°É ¢{ r´ °·Áª°¦r Ê´ ¤´ ¥¤«¹ ¬µe ɸ 4 ª·µ · «µ¦r Áª¨µ 2 ɪ´ ä ¨µ¦Á¦¸¥¦o¼ ¸Éµ®ª´ ®µ¢{ r´ °·Áª°¦r ¨³Á
¸¥¦µ¢
°¢{ r ´ °·Áª°¦rÅo 1. »¦³r µ¦Á¦¥¸ ¦o¼ 1. ®µ°· Áª°¦r
°¢{ r´ ¸É ε®Ä®Åo o 2. °ªµ¤®¤µ¥
°¢{r ´°· Áª°¦r Åo 3. °Åªo nµ¢{ r ´¸É ε®Ä®¤o ¸¢{r ´ °·Áª°¦r®¦°º Ťn 4. ®µÃÁ¤Â¨³Á¦
r °¢{ r ´ °·Áª°¦r Åo 5. Á
¸¥¦µ¢
°¢{r ´ °· Áª°¦r Åo 2. ªªµ¤·®¨´ oµµÎ ®¢{r´ Ä®oµ¤µ¦®µ°· Áª°¦r
°¢{ r´ Åo °n ·Áª°¦r
°¢{r´ ŤnµÎ Á} °o Á} ¢{ r´ Á¤°Å ³Á¦¥¸ °· Áª°¦r
°¢{r ´¸ÉÁ} ¢{r ´ ªnµ ¢{ r´ °· Áª°¦r ( Inverse Function ) 3. Á°Êº ®µµ¦³ µo µÎ ®¢{ r´Ä®oµ¤µ¦®µ°· Áª°¦r
°¢{r´Åo °n ·Áª°¦r
°¢{r ´ Ťn εÁ} o° Á}¢{r ´ Á¤°Å ³Á¦¥¸ °· Áª°¦r
°¢{r´¸ÉÁ} ¢{r ´ªµn ¢{ r´ °·Áª°¦r ( Inverse Function ) §¬¸ Ä®o f Á}¢{ r´ f1 Á} ¢{r ´ °· Áª°¦r Ȱn Á¤ºÉ° f Á}¢{r ´ 1-1 4. ¦³ªµ¦´ µ¦Á¦¸¥¦o¼ 1. ¦¼Â¨³´ Á¦¥¸ ª°· Áª°¦r
°ªµ¤¤´ ¡´r 2. ¦¼µÎ ®Ã¥r´ª°¥µn Ä®o ´ Á¦¥¸ ®µ°·Áª°¦r f = {(1,2),(2,3),(3,4)} ³Åo f1 = {(2,1),(3,2),(4,3)}
58 ⌫ ⌫ ⌦ ⌫ g = {(1,2),(2,3),(3,2)} ³Åo g1 = {(2,1),(3,2),(2,3)} h = {(1,2),(3,2),(4,1)} ³Åo h1 = {(2,1),(2,3),(1,4)} 3. µÃ¥r ª´ °¥nµÄ®o´ Á¦¥¸ ¡· µ¦µªnµ°·Áª°¦r
° f , g ¨³ h Á} ¢{ r´ ®¦°º Ťn 4. ¦¼°ªµn f1 Á¦¸¥¢{r ´ °· Áª°¦r 5. ¦Â¼ ¨³´Á¦¸¥nª¥´ ¦»ªµ¤®¤µ¥
°¢{r´ °· Áª°¦r 6. ¦¼Îµ®Ã¥r´ª°¥nµÄ®o´ Á¦¸¥¡·µ¦µ Án f = {(3,2),(4,3),(5,1)} g = {(4,1),(5,3),(6,2)} h = {(2,3),(3,5),(4,1)} µÃ¥r ´ª°¥nµÄ®o ´Á¦¥¸ °µÎ µ¤n°Å¸Ê 1. ¢{ r ´ Ä
o°ÄÁ} ¢{ r ´ 1-1 2. ¢{ r´Ä¤É¸ ¢¸ { r ´°· Áª°¦r 7. ¦Â¼ ¨³´ Á¦¥¸ nª¥´ ¦»ªnµ¢{r ´ ¤É¸ ¨¸ ´ ¬³°¥µn Ŧ¤¸É ¸¢{r ´ °· Áª°¦r 8. ¦Â¼ ¨³´ Á¦¥¸ ªÃÁ¤Â¨³Á¦r
°¢{r´ 9. ¦¼µÎ ®Ã¥rª´ °¥nµ f = {(3,2),(4,3),(5,1)} g = {(4,1),(5,3),(6,2)} µÃ¥r ª´ °¥nµÄ®o ´ Á¦¥¸ ®µ°· Áª°¦r ³Åo f1 = {(2,3),(3,4),(1,5)} g1 = {(4,1),(5,3),(6,2)} 10. Ä®o ´ Á¦¥¸ ªn ¥´®µÃÁ¤Â¨³Á¦r ³Åo Df = {3,4,5} ¨³ Df1 = {1,2,3} Rf = {1,2,3} ¨³ Rf1 = {3,4,5} 11. µ
°o 10 ¦¼Â¨³´Á¦¥¸ nª¥´ ¦» ³Åo = RDf f1 ¨³ = DRf f1 12 ¦Â¼ ¨³´ Á¦¥¸ ª¦µ¢
°ªµ¤¤´ ¡´ r ¦¼µÎ ®Ã¥r ª´ °¥nµ Án f = {(1,2),(2,3),(3,5)} Ä®o´ Á¦¸¥®µ f1 ³Åo f1 = {(2,1),(3,2),(5,3)}
⌦ 59 ⌦ Ä®o ´ Á¦¸¥Á
¥¸ ¦µ¢
° f ¨³ f1 ¨¦³µ¡· ´ µ³Åo ´ ¦¼ y y=x 5 f 4 f 1 3 2 1 0 12 345 x 13. Ä®o´ Á¦¸¥«¹¬µÁ¡É·¤Á¤· µÄªµ¤¦¼o ¸É 9 14. f´ ¬³Ã¥Ä®o ´Á¦¸¥ÎµÂ f®´ µÄ·¦¦¤É¸ 9 5. ®¨n µ¦Á¦¸¥¦¼o 1. 夦o¼¸É 9 2. Ä·¦¦¤¸É 9 3. ®°o ¤»Ã¦Á¦¥¸ 4. ºo µ Internet 6. ¦³ªµ¦ª´Â¨³¦³Á¤· ¨ 1. ¦³Á¤· ¨µµ¦ÎµÂ f®´ 2. ¦³Á¤· ¨µµ¦µÎ ° 7. ´ ¹®¨´ µ¦° ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. 8. ·¦¦¤Á°Â³ ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………….
60 ⌫ ⌫ ⌦ ⌫ 夦o¼ ɸ 9
⌦ 61 ⌦
62 ⌫ ⌫ ⌦ ⌫
⌦ 63 ⌦
64 ⌫ ⌫ ⌦ ⌫ Ä· ¦¦¤¸É 9 1. µÎ ®¢{ r ´ f ®µ°· Áª°¦r
°¢{ r´ n°Å¡Ê¸ ¦o°¤Ê´ Á
¥¸ ¦µ¢ 1. f (x) 5x 1 2. f (x) 3 3. f (x) x2 1 4. f (x) (x 2)2 5. f (x) 4 3x 6. f (x) x 1 x2 1 7. f (x) x 8. f (x) x2 ,0 d x d1 3 9. f (x) x 10. f (x) 16 x2 ,0 d x d 4 2. µ
°o 1 °·Áª°¦r
°¢{ r ´ Ä
o°Äµo Á¸É }¢{ r ´ ° …………………………………………………………………………………..
⌦ 65 ⌦ 3. ε®¢{r´ f ¡·µ¦µªnµ ¢{r´ f n°Å¸Ê¤¸¢{r´°·Áª°¦r®¦º°Å¤n oµ¤¸ ®µ f 1 ,Df ,Rf ,Df 1 ¨³ Rf 1 1. f (x) 2x 3 2. f (x) 3 x 3. f (x) x2 9 4. f (x) (x 1)2 5. f (x) 3x2 6. f (x) x 2 x 1 7. f (x) x 1 8. f (x) x2 ,1 d x d 0 1 9. f (x) x 10. f (x) 9 x2 ,0 d x d 3
66 ⌫ ⌫ ⌦ ⌫ µ¦´µ¦Á¦¥¸ ¦¼o¸É 10 Á¦º°É ¡¸·
°¢{ r´ Ê´¤´¥¤«¹ ¬µe¸É 4 ª· µ · «µ¦r Áª¨µ 4 ´ªÉ ä ¨µ¦Á¦¸¥¦¼o ɸµ®ª´ ®µ¡¸ ·
°¢{r´ ¸ÉµÎ ®Ä®Åo o 1. » ¦³rµ¦Á¦¥¸ ¦o¼ 1. °ªµ¤®¤µ¥
°¡¸ ·
°¢{r ´Ê´Ân 2 ¢{r ´
ʹŠ2. ®µ¢{ r´ ¸ÁÉ · µµ¦ª ¨
°¢{ r ´ Åo 3. ®µ¢{ r ´ ɸÁ· µµ¦¼ ®µ¦
°¢{ r ´Åo 4. ®µÃÁ¤Â¨³Á¦
r °¡¸ ·
°¢{r´Åo 2. ªªµ¤·®¨´ µo ¤¸¢{r ´´Ê Ân®É¹¢{ r ´
¹Ê Å Á¦µ°µÎµ¢{ r ´ Á®¨nµ¤¸Ê µ¦µo ¢{r ´ Ä®¤Ån o Ã¥µ¦µÎ nµ
°¢{r ´¤µª ¨ ¼ ®¦º°®µ¦´ ¹É ¤¸Á°Éº Å
µ¤·¥µ¤ 3. Á°ºÊ ®µµ¦³ µo ¤¢¸ {r ´´Ê ®n ¹É ¢{ r ´
ʹŠÁ¦µ°µÎµ¢{r´ Á®¨µn ¸¤Ê µ¦oµ¢{r ´ Ä®¤Ån o Ã¥µ¦µÎ nµ
°¢{ r ´ ¤µª ¨ ¼ ®¦°º ®µ¦´ ɹ ¤¸Áº°É Å
µ¤·¥µ¤°n Åʸ ·¥µ¤ Ä®o f ¨³ g Á} ¢{r´ ¥· µ¤¢{r ´ f g , f g , f g ¨³ f ´ ʸ g 1. (f g)( x) f(x) g(x) 2. (f g)( x) f(x) g(x) 3. (f g)( x) f(x) g(x) f f (x) Á¤°Éº g(x) z 0 4. (x) = g g(x) åɸ»Ç ¤µ· x ÄÃÁ¤
°¢{ r ´ Ä
o° 1 –
o° 3 ¸°Ê ¥¼n´Ê ÄÃÁ¤
°¢{ r´ f ¨³ g ´É °º »Ç ¤µ· x Df Dg
⌦ 67 ⌦ 4. ( f )( x) f(x) Á¤É°º g(x) z 0 g g(x) åɸ »Ç ¤µ· x ÄÃÁ¤
°¢{r ´ f °¥n¼ Ê´ÄÃÁ¤
°¢{ r´ f ¨³ g g ¸É g(x) z 0 ´É º°»Ç ¤µ· x Df Dg {x / g(x) z 0} 4. ¦³ªµ¦´ µ¦Á¦¸¥¦o¼ 1. ¦¼Â¨³´ Á¦¸¥ªnµ
°¢{ r´ f ɸ x 2. ¦¼µÎ ®Ã¥r ´ª°¥µn f = {(1,2),(2,4),(3,6)} g = {(1,1),(2,2),(3,3)} µÃ¥r´ª°¥nµ ³Åo f(1) = 2 f(2) = 4 f(3) = 6 g(1) = 1 g(2) = 2 g(3) = 3 3. µ
°o 2 ¦¼ µÎ ®Ä®o (f+g)(1) = f(1) + g(1) = 2+1 =3 Ä®o´ Á¦¥¸ ®µ (f+g)(2) ¨³ (f +g)(3) ³Åo f+g = {(1,3),(2,6),(3,9) 4. ¦Â¼ ¨³´ Á¦¸¥¦» ªµ¤®¤µ¥
°¡¸·
°¢{ r´ 5. ¦Â¼ ¨³´Á¦¥¸ ªªµ¤®¤µ¥
°¡¸·
°¢{r´ 6. µÃ¥r´ª°¥µn
°o 2 ¦¼Ä®o·¥µ¤ f – g ³Åo f – g = {(1,1),(2,2),(3,3)} 7. ¦¼µÎ ®Ã¥r ´ª°¥nµÁ¡·É¤Á·¤Ä®o´ Á¦¥¸ ®µ f+g ¨³ f – g 1. f = {(2,4),(3,6),(4,8)} g = {(2,3),(3,5),(4,6)} 2. f = {(1,3),(2,5),(3,7)} g = {(1,2),(2,4),(3,2)} 8. ¦Â¼ ¨³´ Á¦¥¸ ªµ¦ª ¨
°¢{ r ´ 9. µÃ¥r ´ª°¥nµ
°o 2 ¦Ä¼ ®o¥· µ¤ f g ¨³ f g ³Åo f g = {(1,2),(2,8),(3,18)} f = {(1,2),(2,2),(3,2)} g 10. f´¬³Ã¥Ä®o´Á¦¸¥µÎ  f ®´ ÄÄ·¦¦¤ 11. ¦¼Â¨³´Á¦¸¥ª¡¸·
°¢{ r´
68 ⌫ ⌫ ⌦ ⌫ ¦Ä¼ ®Ão ¥r´ª°¥µn f = {(1,2),(2,4),(3,6),(4,7)} g = {(2,3),(3,1),(4,2),(5,3)} Ä®o´ Á¦¸¥®µ f + g ³Åo f + g = {(2,7),(3,7),(4,9)} Ä®o ´ Á¦¥¸ ®µÃÁ¤Â¨³Á¦
r ° f + g ³Åo Dfg = {2,3,4} , Rfg = {7,9} 12. Ä®o ´ Á¦¥¸ «¹ ¬µÁ¡¤·É Á¤· µÄªµ¤¦o¼É¸ 10 13. f ´¬³Ä®o ´ Á¦¥¸ ε f ®´µÄ· ¦¦¤É¸ 10 5. ®¨n µ¦Á¦¥¸ ¦o¼ 1. 夦¼o¸É 10 2. Ä·¦¦¤¸É 10 3. ®o°¤»Ã¦Á¦¸¥ 4. ºoµ Internet 6. ¦³ªµ¦ª´Â¨³¦³Á¤·¨ 1. ¦³Á¤· ¨µµ¦µÎ  f®´ 2. ¦³Á¤·¨µµ¦µÎ ° 7. ´¹®¨´ µ¦° ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. ………………………………………………………………………………………………………………. 8. · ¦¦¤Á°Â³ ……………………………….……………………………………………………………………………… ………………………………………………………………………………………………………………. ……………………………………………………………………………………………………………….
⌦ 69 ⌦ 夦¼oɸ 10 ¡¸·
°¢{ r´ oµ¤¸¢{r´ ´Ê Ân®É¹ ¢{ r ´
¹Ê Å Á¦µ°µÎµ¢{r´ Á®¨µn ʤ¸ µ¦µo ¢{ r ´Ä®¤Ån o Ã¥µ¦µÎ µn
°¢{r´¤µª ¨ ¼ ®¦º°®µ¦´ ¹É ¤Á¸ ɺ°Å
µ¤¥· µ¤n°Åʸ ·¥µ¤ Ä®o f ¨³ g Á}¢{r ´ ¥· µ¤¢{ r´ f g , f g , f g ¨³ f ´Ê¸ g 1. (f g)( x) f(x) g(x) 2. (f g)( x) f(x) g(x) 3. (f g)( x) f(x) g(x) åɸ»Ç ¤µ· x ÄÃÁ¤
°¢{r´ Ä
o° 1 –
°o 3 °Ê¸ ¥n¼Ê´ ÄÃÁ¤
°¢{r ´ f ¨³ g É´ º°» Ǥµ· x Df Dg 4. ( f )( x) f(x) Á¤Éº° g(x) z 0 g g(x) Ã¥¸É»Ç ¤µ· x ÄÃÁ¤
°¢{ r´ f °¥n¼ Ê´ ÄÃÁ¤
°¢{r ´ g f ¨³ g ¸É g(x) z 0 É´º°» Ǥµ· x Df Dg {x / g(x) z 0} µ¥· µ¤ ³Á®Èªµn °n ¸É ³µÎ µn
°¢{r´¤µª ¨ ¼ ®¦º°®µ¦´ Á¦µ³°o ®µ ÃÁ¤
°¢{ r´ °¢{ r ´É¸³µÎ ¤µÎµÁ· µ¦ª ¨ ¼ ®¦º°®µ¦´°n Ã¥µÎ Á¡µ³¤µ·É¸ ÎµÊ ´ ¤µÁ}¤µ·
°ÃÁ¤
°¢{ r ´ Ä®¤n µÎ ®¦´ µ¦®µ¦¢{ r ´ Ê´ ¤Á¸ ºÉ°Å
Á¡É·¤Á¤· ªnµ ¤µ· Ä ÃÁ¤Ä®¤nÊ´ ³°o ŤnεĮo nµ
°¢{ r ´ ¸ÁÉ }ª´ ®µ¦Á} «¼¥r ª´ °¥nµÉ¸ 1 µÎ ®Ä®o f(x) x 3 2 ¨³ g(x) x 1 ª·¸ ε ®µ (f g)( x) , (f g)( x) , (f g)( x) ¨³ ( f )( x) g ¡· µ¦µ Df R ¨³ Dg {x R / x t 1} ´Ê´ Df Dg R {x R / x t 1} {x R / x t 1} ³Åªo nµÃÁ¤
°¢{ r´ Ä®¤n º° {x R / x t 1}
70 ⌫ ⌫ ⌦ ⌫ ¡· µ¦µ (f g)( x) f(x) g(x) (x3 2) x 1 ¡·µ¦µ x3 2 x 1 (f g)( x) f(x) g(x) (x3 2) x 1 ¡·µ¦µ x3 2 x 1 (f g)( x) f(x) g(x) (x3 2) x 1 ¡· µ¦µ ( f )( x) f(x) Á¤Éº° g(x) z 0 g g(x) x3 2 Á¤Éº° x 1 ! 0 ®¦º° x ! 1 x 1 ÃÁ¤
° f º° {x R / x ! 1} g ´ª°¥µn ¸É 2 µÎ ®Ä®o f(x) 1 ¨³ g(x) 2 x ®µ (f g)( x) ª· ¸ µÎ x 10 ¡·µ¦µ Df {x R / x ! 10} ¨³ Dg {x R / x d 2} ³Åªo nµ Df Dg I Áɺ°µ Df ¨³ Dg Ťn¤¸ ¤µ· ¦ªn ¤´Á¨¥ ´ Ê´ (f g)( x) Áµn ´Áªnµ ´ª°¥µn ɸ 3 µÎ ®Ä®o f(x) 2x 3 ¨³ g(x) x2 ª·¸Îµ ®µ (f g)( 1) , (f g)(0) , (f g)(1) ¨³ ( f )(3) g Á°Éº µ Df R ¨³ Dg R ´Ê´ Df Dg R ³Åªo nµ (f g)( 1) f(1) g(1) 5 1 4 (f g)( 0) f(0) g(0) 3 0 3
⌦ 71 ⌦ (f g)(1) f(1) g(1) 1 (1) 1 ÃÁ¤
° f R {0} g ( f )(3) f(3) g g(3) 3 9 1 3 ª´ °¥µn ɸ 4 µÎ ®Ä®o f {(1,2), (1,3), (2,4), (4,3)} ®µ 5f ª· ¸Îµ ¡·µ¦µ 5f ¢{ r ´ 5f ¤µµ¢{ r´ gf Á¤É°º g º°¢{r´ª´ g(x) ³Á®Èªµn ÃÁ¤
° g º°Á
°Îµª¦· R 5 É´°º Df Dg R {1,1,2,4} {1,1,2,4} Df ´ Ê´ 5f {(1,5 u 2), (1,5 u 3), (2,5 u 4), (4,5 u 3)} {(1,10), (1,15), (2,20), (4,15)}
72 ⌫ ⌫ ⌦ ⌫ Ä·¦¦¤¸É 10 1. µÎ ®Ä®o f {(0,1), (1,3), (2,0), (5,4)} g {(1,2), (0,1), (2,3), (5,0)} ®µ f g , f g , f g , f ¨³ (3)f g 2. µÎ ®Ä®o f(x) 5 3x ¨³ g(x) x 2 1 ®µ (f g)( x) , (f g)( x) ¨³ ©¨§¨ f ¹¸¸·( x) ®µÃÁ¤Â¨³Á¦
r °¢{r´ Á®¨µn ¸Ê g 3. µÎ ®Ä®o f(x) 2x 2 5 ¨³ g(x) 4 x 2 ®µ (f g)(1) , (f g)( 2) ¨³ ©§¨¨ f ·¹¸¸( 2) g 4. µÎ ®Ä®o f(x) 5 3x Á¤ºÉ° 4 x d 3 ¨³ g(x) x 1 Á¤º°É 2 d x 5 ®µ (f g)( x) , (f g)( x) , (f g)( x) ¨³ §¨¨© f ·¸¸¹( x) g 5. µÎ ®Ä®o f(x) x 2 4 ¨³ g(x) x 2 ®µ f g , f g , f g ¨³ f g
⌦ 73 ⌦ Ã¥Ár ¦¤· ´ ¬³ 1. µÎ ® x t 1 ¨³ (fog)( x) 4x 2 8x ¨³ f(x) x2 4 ¨ªo g1 (4) ¤¸µn ¦´
°o Ä 1. 1 2. 2 3. 3 4. 4 2. ε® r {(x, y) R u R / y x 2 4 x 5 Á¤º°É x 2 2x 3 0} oµÄ®o A = ÃÁ¤
° r ¨³ B = ÃÁ¤
° r 1 ¨ªo A Bc Á}Á¦´
°o Ä 1. (1,1] 2. [3,10) 3. (1,3) 4. (1,10) 3. oµ f(x) 2x 3 Á¤Éº° 2 d x d 4 ¨ªo Á¦r
° f( x ) ¤¸ nµ¦´
°o Ä 1. > 2,4@ 2. > 1,11@ 3. >3,11@ 4. >3,4@ 4. ε® f(x) x g(x) ¨³ g(x) x f(x) ¨oª ¨©§¨ f ¸¸¹·( x) Áµn ´
°o Ä g 1. x 1 x 1x 5. ε® f(x) 2. 3. 4. x 1x x2 13 2x 1 ¨³ (f 1og)( x) 2x 3 ¨oª (g 1of)( 4) ¤¸ nµ¦´
o°Ä 1. 2x 4 4 13 15 15 6. µÎ ® f(x) 2. 3. 4. 10 4 10 2x3 x A oµ (3,2) Á}»°¥n¼ ¦µ¢ f 1 ¨ªo µn A ¤¸ nµ¦´
o°Ä 1. – 15 2. 15 3. – 54 4. 54 7. ε® (fog)( x) 4x 2 4x 5 ¨³ g 1 (x) x 3 ¨oª f(x) Áµn ´
°o Ä 2 1. x 2 4x 8 2. x 2 8x 10 3. x 2 8x 20 4. x 2 4 x 6 8. oµ f(x) (3 x)(2 x) ¨³ g(x) 1 ¨oªÃÁ¤
° f g º°ÁÄ
°o Ä x3 1. I 2. (f,2] 3. (3,2) 4. (3,2] 9. Ä®o I Á}Á
°µÎ ªÁȤª ε®Ä®o f {(x, y) / x 2y 12 ¨³ x, y I } ¨ªo fof ÁnµÁÄ
o°Ä 1. {(8,5), (4,4)} 2. {(5,8), (4,4)} 3. {(2,2), (4,4)} 4. {(6,3), (4,4)} 10. ε®Ä®o f(x) x ¨³ g(x) x 2 1 µo A Dgof ¨³ B Dg 1x ¨ªo A Bc ¦´
o°Ä 1. R {1,1} 2. (1, f) 3. (1 ,1) (1, f) 4. (1,1) (1, f) 2
74 ⌫ ⌫ ⌦ ⌫
⌦ 75 ⌦ เพอ่ื เปน การใชท รพั ยากรของชาตใิ หค มุ คา หากทา นไมใ ชห นงั สอื เลม นแี้ ลว โปรดมอบใหผ อู น่ื นำมาใชป ระโยชนต อ ไป กลมุ พฒั นาการเรยี นรขู องผเู รยี นทม่ี คี วามสามารถพเิ ศษ สำนกั มาตรฐานการศกึ ษาและพฒั นาการเรยี นรู สำนกั งานเลขาธกิ ารสภาการศกึ ษา (สกศ.) 99/20 ถนนสโุ ขทยั เขตดสุ ติ กรงุ เทพฯ 10300 โทรศพั ท : 0-2668-7123 ตอ 2530 โทรสาร : 0-2243-1129, 0-2668-7329 เวบ็ ไซต : http://www.onec.go.th http://www.thaigifted.org
Search