№ 3 (105) март , 2023 г. Рисунок 1. ИК-спектр импортного оксида кремния (Ⅳ) При этом в инфракрасном спектре импортного поглощения в области 960,55 см–1 принадлежит гидроксильной группе (Si-O)-OH, адсорбированной оксида кремния (IV) видны области поглощения: на поверхности оксида кремния (IV), полоса полоса поглощения, соответствующая Si-O-, поглощения в области 796,60 см–1 представляет появляется в области 1068,56 см–1, полоса собой группу кислород–кремний–кислород (О-Si-О) поглощение в области 1629,8 см–1 соответствует [2]. гидроксильным (O-H, Н-O-Н) группам, это гидрок- ИК-спектр синтезированного оксида кремния сильная группа выявляется в этой же области 3000– (Ⅳ) представлен на рисунке 2. 3500 см–1, но значительно слабее. Полоса Рисунок 2. ИК-спектр синтезированного оксида кремния (Ⅳ) При этом оксид кремния (IV), синтезированный (IV) и гидроксильной группе органического моди- фикатора. В области 790,8 см–1 полоса поглощения на основе местного сырья, показал результаты полос принадлежит группе кислород–кремний–кислород поглощении в ИК-спектре ниже. Полоса (O-Si-O). поглощения, соответствующая -Si-O-, появляется в В таблице 1 представлены сравнительные ре- области 1055,06 см–1, полоса поглощения в области 1635,64 см–1 принадлежит гидроксильным (O-H, Н- зультаты анализа ИК-спектра импортного оксида O-Н) группам, в области 945,12 см–1 и 3000–3500 см– кремния (IV) и синтезированного на основе мест- ного сырья. 1 полосы поглощения принадлежат гидроксильной группе (Si-O)-OH на поверхности оксида кремния 28
№ 3 (105) март , 2023 г. Таблица 1. Сравнительная таблица результатов ИК-анализов импортного и синтезированного оксидов кремния (IV) № Группы Полосы поглошения, см–1 Импортный Синтезированный 1 Кремний–кислород (-Si-O-) 1068,56 1055,06 2 Гидроксильные группы (O-H, Н-О-Н) 1629,8 1635,64 3 Гидроксильная группа (Si-O)-OH на поверх- 960,55 945,12 ности 4 Кислород–кремний–кислород (O-Si-O) 796,60 790,8 Из таблицы по результатам анализов видно, что (Ⅳ) представлена на рис. 3. Анализ кривой полосы поглощения импортного и синтезированного термогравиметрического анализа (ТГА) показывает, оксидов кремния (Ⅳ) имеют схожие показатели. что на кривой ТГА наблюдались в основном две потери массы. Было замечено, что 1-я потеря массы Для изучения термогравиметрических свойств происходила при температуре от 39,73 до 300,72 °С, синтезированного оксида кремния (Ⅳ) были прове- а 2-я потеря массы происходила при температуре от дены термические анализы. 300,72 до 601,2 °С, 3-я потеря массы происходила при температуре от 601,2 до 901,69 °С. Проведен термогравиметрический анализ оксида кремния (Ⅳ), синтезированного на основе Термические анализы оксида кремния также местного сырья. Термогравиметрический анализ проводились рядом зарубежных ученых [5]. проводили на приборе DTG-60 (производства SHI- MADZU, Япония). Термограмма оксида кремния Рисунок 3. Термограмма оксида кремния (IV), синтезированного на основе местного сырья Проведенные анализы показывают, что при тем- Кривая термогравиметрического анализа пературе до 300,72 °С произошла потеря массы на 0,265 мг, эта потеря массы объясняется разложением показывает, что полученный оксид кремния (IV) не модификатора. Видно, что 2-я потеря массы равна 0,170 мг и происходила при температуре от 300,72 имеет дополнительных соединений, что объясняется до 601,20 °С, 3-я потеря массы равна 0,100 мг и про- исходила при температуре от 601,20 идо 901,69 °С, малой потерей массы, а это свидетельствует о термостойкости полученного продукта. Подробная информация о термограмме представлена в табл. 2. 29
№ 3 (105) март , 2023 г. Таблица 2. Результаты термического анализа синтезированного оксида кремния (IV) № Температура, °С Потерянная масса, мг (4,273) Потерянная масса, % 1 50 0.061765 1.445 2 100 0.195318 4.571 3 150 0.209867 4.911 4 200 0.222516 5.207 5 250 0.237466 5.557 6 300 0.266214 6.23 7 350 0.291467 6.82 8 400 0.324014 7.58 9 450 0.352365 8.24 10 500 0.382016 8.94 11 550 0.407968 9.54 12 600 0.437917 10.24 13 650 0.472966 11.06 14 700 0.498014 11.65 15 750 0.512765 12.00 16 800 0.517114 12.10 17 850 0.527765 12.35 18 900 0.537015 12.56 Результаты этих термических исследований В результате термического анализа наблюдалась показывают, что потеря массы составляет 6,23% до потеря массы в размере 10,24% от начальной массы температуры 300 °С, а 12,56% – до температуры образца до температуры 600 °С, причем эта потеря 900 °С и далее остается неизменной. массы была обусловлена разложением модификатора. Потеря массы 0,100 мг в середине Вывод процесса видна при температуре от 601,20 до 901,69 °С и произошла за счет гидроксильных Таким образом, применен новый уникальный групп, адсорбированных на поверхности метод синтеза оксида кремния, проведены ИК- синтезированного оксида кремния (IV). Кроме того, спектроскопический и термический анализы синтези- небольшая (нормальная) величина потери массы рованного низкомолекулярного оксида кремния. показывает отсутствие в синтезированном продукте Данные ИК-спектроскопии позволили провести функ- дополнительных соединений и свидетельствует о циональное сравнение синтезированного оксида термостойкости полученного продукта. кремния (IV) с импортным оксидом кремния (IV), и результаты оказались очень близкими друг к другу. Список литературы: 1. Бозоров А.Т., Каримов М.У., Джалилов А.Т. Синтез высокодисперсионного оксида кремния (IV) на базе местного сырья и исследование влияния на резиновые композиции // Universum. – 2022. – № 5 (98). – С. 38–43. 2. Поньков В.В., Ивановская М.И., Котиков Д.А. Структура и свойства нанокомпозитов SiO2 – Fe2O3 // Химические проблемы создания новых материалов и технологий. – Минск, 2008. – С. 24–38. 3. Селезнев Б.И., Федоров Д.Г. ИК-спектроскопия пленок диоксида кремния, полученных низкотемпературными методами // Вестник Новгородского государственного университета им. Ярослава Мудрого. – 2017. – № 5 (103). – С. 114–118. 4. Смит А. Прикладная ИК-спектроскопия: основы, техника, аналитическое применение / пер. с англ. Б.Н. Тарасевича, под ред. А.А. Мальцева. – М. : Мир, 1982. – 328 с. 5. Термическое поведение нанодисперсного диоксида кремния, полученного по мицеллярной технологии / Р.Г. Романова, А.Ф. Дресвянников, Т.Н. Березина, А.М. Губайдуллина // Вестник Казанского технологического университета. – 2012. – Т. 15, № 15. – С. 31–33. 6. Уэндланд У. Термические методы анализа / пер. с англ. – М., 1978. 7. Хабас Т.А., Кулинич Е.А., Егорова Е.Ю. Термогравиметрический метод анализа силикатных материалов // Федеральное агентство по образованию РФ Государственное образовательное учреждение высшего профессионального образования «Томский политехнический университет». – 2007. – 20 с. 8. Яхшиева З.З., Сманова З.А., Султонов М.М. Аналитическая химия. – Ташкент : Go То Print, 2020. – 344 с. 30
№ 3 (105) март , 2023 г. PAPERS IN ENGLISH BIOLOGICAL SCIENCES GENERAL BIOLOGY GENETICS DOI - 10.32743/UniChem.2023.105.3.15072 THE DEGREE AND STRUCTURE OF THE CORRELATION BETWEEN THE BIOMETRIC INDICATORS OF COTTON ON A COTTON BOLLS Todjidin Kuliev Candidate of biological sciences, Associate Professor, Department of Biology, Republic of Uzbekistan, Gulistan Marufjon Ergashev Candidate of biological sciences, Associate Professor, Department of Biology, Republic of Uzbekistan, Gulistan E-mail: [email protected] Musurmon Madrakhimov Lecturer, Department of Biology, Republic of Uzbekistan, Gulistan Alisher Kholdarov Master Gulistan State University, Faculty of Natural Sciences, Republic of Uzbekistan, Gulistan Ozodbek Akhmedov Master Gulistan State University, Faculty of Natural Sciences, Republic of Uzbekistan, Gulistan Maftuna Alikxonova Master Gulistan State University, Faculty of Natural Sciences, Republic of Uzbekistan, Gulistan _________________________ Библиографическое описание: THE DEGREE AND STRUCTURE OF THE CORRELATION BETWEEN THE BI- OMETRIC INDICATORS OF COTTON ON A COTTON BOLLS // Universum: химия и биология : электрон. научн. журн. Kuliev T. [и др.]. 2023. 3(105). URL: https://7universum.com/ru/nature/archive/item/15072
№ 3 (105) март, 2023 г. СТЕПЕНЬ И СТРУКТУРА КОРРЕЛЯЦИИ МЕЖДУ БИОМЕТРИЧЕСКИМ ПРИЗНАКОМ ХЛОПЧАТНИКА В ПРЕДЕЛАХ ОДНОЙ КОРОБОЧКИ Кулиев Тоджиддин Хамдамович канд. биолог. наук, доц. кафедры биологии, Республика Узбекистан, г. Гулистан Эргашев Маъруфжон Махамматжанович канд. биолог. наук, доц. кафедры биологии, Республика Узбекистан, г. Гулистан E-mail: [email protected] Мадрахимов Мусурман Инамджанович преподаватель, кафедра биологии, Республика Узбекистан, г. Гулистан Холдаров Алишер Зариф угли магистр, факультет Естественных наук, Гулистанский государственный университет, Республика Узбекистан, г. Гулистан Ахмедов Озодбек Нурали угли магистр, факультет Естественных наук, Гулистанский государственный университет, Республика Узбекистан, г. Гулистан Алихонова Мафтуна Эралихон кизи магистр, факультет Естественных наук, Гулистанский государственный университет, Республика Узбекистан, г. Гулистан ABSTRACT In this article, the varieties and lines C-6524, L-1, L-2, L-13, L-22 belonging to the genus G. Hirsutum L. were taken as the object of research. The study was conducted at the experimental site of the Gulistan State University with an average salinity. The study analyzed the degree, structure, variability, as well as the degree of determinism of correlations between biometric indicators of cotton formed in cotton fabric. As a result, it was noted that the weight of cotton in one box primarily depends on the weight of the seed and fiber. When carrying out individual and gross selection work in breeding nurseries, it is recommended to pay attention to the amount of fiber, as well as the fiber index. Among the investigated cotton genotypes, Line-1 has a high fiber yield and it is recommended for use as an initial source resource in breeding work. АННОТАЦИЯ В данной статье в качестве объекта исследования взяты сорта и линии С-6524, Л-1, Л-2, Л-13, Л-22, относящиеся к роду G. hirsutum L. Исследование проводилось на опытном полигоне Гулистанского государственного универ- ситета со средней за селенном почве. В ходе исследования проанализированы степень, структура, изменчивость, а также степень детерминированности корреляционных связей между биометрическими показателями хлопка, сформированным в одном коробочке. В результате было отмечено, что вес хлопка в одном коробочке в первую очередь зависит от веса семени и волокна. При проведении индивидуальной и валовой селекционной работы в племенных питомниках рекомендуется обращать внимание на количество волокна, а также индекс волокна. Среди исследованных генотипов хлопчатника Линия-1 имеет высокий выход волокна и рекомендуется для ис- пользования в качестве исходного исходного ресурса в селекционной работе. Keywords: correlation, variation, determination, correlation group, indicator, soil salinity, fiber yield, fiber index, number of seeds, cotton boll, seed weight. Ключевые слова: корреляция, варьирование, детерминация, корреляционная группа, показатель, засоление почвы, выход волокна, индекс волокна, количество семян, коробочка хлопчатника. ________________________________________________________________________________________________ 32
№ 3 (105) март , 2023 г. Introduction cotton fiber is associated. This, in turn, served as the basis for choosing cotton indicators in cotton bolls as the Quantitative indicators of plant traits are important object of research. Because a cotton flap of cotton in the objects of research in genetics and breeding. Because boll fully embodies the features of the genotype. The when choosing, creating and evaluating varieties, great main purpose of this research is to determine the degree, importance is attached to quantitative indicators of structure, variability of relationships between biometric traits. The study of quantitative symbols took a long indicators of cotton formed in one boll, as well as to period of time. This can be seen from the studies of compare genotypes. Johansen, Nilsson-El, Filipchenko, Serebrovsky, Griffing, Maser, Merezhko and others. Nevertheless, Object and methods of research quantitative symbols are still in the focus of researchers' attention. Because they are discrete, continuous and The study was conducted in 2021-2022 in fields depend on the external environment [1, pp. 23-35]. with moderate salinity at Gulistan State University. S- 6524, L-1, L-2, L-13 and L-22 lines, belonging to the In most agricultural crops, including cotton, type of cotton plant G. hirsutum were selected as the quantitative indicators of traits tend to change. It was object of the research. All phenological observations found that the fiber content (yield) in cotton fabric and calculations were carried out on the basis of meth- formed in one cotton bush varied from 28% to 43% [2, odological guidelines issued by UzPITI [5, p. 308]. Sta- pp. 9-12]. This indicates how much this symbol depends tistical software SPSS-17 was used to calculate the on the external environment. Or take the degree of correlation coefficients (r), determination (r2) and varia- correlation between the number of fibers and the length tion (CV,%) between the studied features [6, p. 107]. of the fiber. It was noted that there is a weak, medium and strong correlation between the amount of fiber and The results obtained the length of the fiber [3, pp. 956-959]. Primary data (Table1) showed that if the weight of As it is known, one of the most important indicators cotton in one cotton boll of the control variety was 1.29 of the economic value of fibrous cotton at present is to g, then the amount of seed contained in it was 7.27 g, increase its quantity and improve its quality. In the seed weight 0.86 g, fiber weight 0.42 g, 100 seed weight following years, when digital technologies entered our 11.8 g, fiber yield 33.65% and fiber index 5.82 g. It lives, there were opportunities for their use in plant follows from the lines studied that in L-1 the weight of breeding, as well as in all areas. As a result, it was found cotton in bolls was 1.33 g. The number of seeds was 7.03 that the degree of correlation between quantitative pieces, the fiber yield was 39.44%, and the fiber index indicators of traits increases under stressful conditions was 8.8 g (Fig.1). It was noted that this line gives 5.7% [4, p. 308]. more fiber than the control at the fiber output. As we have already noted above, quantitative indicators are characterized by the symbols with which Table 1. Biometrical indicators of ripe cotton in cotton bolls Statistic indi- Biometrical indicators of cotton formed in one cotton boll: cators Weight Number Weight Weight of Weight g fiber yield, % fiber index, Average indi- of cotton, g of seeds, pcs of a seed, g of fiber, g 100 seeds, g cator 1.29±0.04 С-6524 type 5.82±0.21 Average indi- 1.33±0.03 cator 7.27±0.12 0.86±0.03 0.42±0.02 11.80±0.35 33.65±0.35 8.80±0.25 1.28±0.03 Average indi- Line 1 7.40±0.18 cator 1.27±0.03 7.03±0.21 0.79±0.02 0.52±0.01 11.39±0.19 39.44±0.45 6.35±0.11 Average indi- 1.14±0.02 cator Line 2 5.66±0.11 1.26±0.02 Average indi- 0.78 6.61±0.17 0.79±0.02 0.48±0.01 12.14±0.35 37.74±0.69 6.83±0.11 cator 1.87 3.38 7.39±0.18 0.80±0.02 Line -13 36.65±0.43 11.50 Average indi- 0.46±0.01 10.84±0.17 cator Line -22 Minimum Maximum 7.18±0.16 0.72±0.01 0.40±0.01 10.06±0.15 35.37±0.40 Average by all genotypes 7.08±0.07 0.78±0.01 0.46±0.01 11.15±0.11 36.71±0.27 4.00 0.48 0.25 6.86 26.20 9.00 1.17 0.72 17.50 46.36 33
№ 3 (105) март, 2023 г. 40,00 % 20,00 ,00 L-1 C-6524 L-2 L-22 L-13 Figure 1. Indicators of cotton varieties and lines by fiber yield, % (first line) and fiber index (second line) In general, variability in the indicators of single- (Fig.2). Based on the data in the figure, the weight of layer cotton fiber was noted in the primary data. This can one boll (1) (numbers indicate symbols), the weight of be seen by the minimum and maximum characters. The the fiber in the boll (4) and the weight of the seed in one minimum weight of cotton in one cotton boll was 0.78 boll (3) are strongly deterministic were changed in turn. g, and the maximum was -1.87 g. Or the minimum number of seeds in one cotton boll was 4 pieces, the This means that variations of these symbols occur in maximum was 9 pieces. This variation was noted for all front, on which others depend. These symbols began to the studied symbols (Table 1). depend not only on the genotype, but also on the external environment. The number of seeds in one boll (2), the In this case, it is advisable to analyze the features of weight of 100 seeds (5) and the fiber yield (6) were less the degrees of variability and determinism of the deterministic and moderately variable. It was noted that features (r2-determinism means that the feature is the fiber index (7) has a strong variability. limited by the square of the correlation coefficient) 25 7 3 4 CV,% 2 1 20 0,2 0,3 r2 0,4 0,5 15 5 10 6 5 0 0 0,1 Figure 2. The degree of variability (CV,%) and determinacy (r2) of biometric indicators of the cotton in cotton bolls Note: numbers indicate symbols: 1- weight of of seeds is large. There was a strong (R= >0.7) cotton in one cotton boll,g; 2- Number of seeds in one correlation with the weight of cotton (1) in one boll and cotton boll, pcs; 3- weight of seeds in one cotton boll, g; the weight of seeds (3) and the weight of fiber (4) in one 4- weight of fiber in one cotton boll, g; 5- weight of 100 boll. Thus, it turns out that the weight of cotton in one seeds, g; 6- fiber yield, % (proportion of fiber in the wheelbarrow primarily depends on the weight of seeds cotton of a cotton boll) ; 7- fiber index, g. and fibers. In turn, strong correlations were also noted between the fiber weight (4) and the fiber index (7) in The degree of determinism of the symbols depends one boll. It was found that the yield of fiber (6) on the degree of correlation (Fig.3). From the data in the moderately depends on the amount of fiber (4) and the figure, it was found that there is a weak correlation (R= fiber index (7). An increase in the number of seeds in 0.3-0.5) between the weight of cotton in the boll (1) and one boll (2), in turn, led to a decrease in the weight of the number of seeds in the bolls (2). This indicates that 100 seeds. Because there was an inverse correlation the weight of cotton in the basin increases if the number between these indicators. 34
№ 3 (105) март, 2023 г. 7 1 Figure 3. The degree of correlation between biometric indicators of the cotton bolls The structure of correlations between quantitative Correlations between the features of one cotton boll indicators of traits associated with cotton in a cotton boll as a whole differed in degree, structure, variability, as (Fig.4) showed that strong connections are noted well as in the degree of determinism. This means that between the weight of cotton in one boll (1), the weight the biometric indicators of cotton in one cotton boll can of seed in one boll (3) and the weight of fiber in one boll be one of the important criteria when carrying out (4), forming a correlation group. This suggests that the selection work during the selection process. In weight of the fiber and the seed is one of the factors particular, the fiber weight has been greatly modified strongly influencing the weight of cotton in one and strongly determined. This suggests that this symbol wheelbarrow. This correlation group can be called “fiber is related to other symbols. It is established that the weight\". In turn, the heavy fiber content led to an weight of cotton in one container depends primarily on increase in its index (7) and the weight of 100 seeds. The the weight of the seed and fiber. The structure of amount of seed (2) affected the weight of the cotton in correlations between one pelvic pile and related the boll (1), the weight of the seed (3) and the weight of quantitative features mainly consisted of a correlation the fiber (4). group called a “fiber\". Note: numbers indicate symbols: 1- weight of cotton in one cotton boll, g; 2- Number of seeds in one cotton boll, pcs; 3- weight of seeds in one cotton boll, g; 4- weight of fiber in one cotton boll, g; 5- weight of 100 seeds, g; 6- fiber yield, % (proportion of fiber in the cotton of a cotton boll) ; 7- fiber index, g. Figure 4. The structure of correlations between biometric indicators of the cotton in cotton bolls With the help of correlation analysis, the genotypes in comparison with single-layer ones. The similarity of of cotton studied by biometric indicators of cotton in one line 2 with line -22 was 91.4%. This indicates that these boll were compared with each other [4, p. 308]. The lines are similar to each other in terms of biometric results showed that the similarity of line -1 with the indicators of cotton in one basin. Exactly the same variety S-6524 was 50.3%, the similarity of line -2 with results were recorded with the -13 line (Table 2). This 61.3%, the similarity of line 22 with 70.2% and the can also be seen from the primary data. The fiber yield similarity of line -13 with 67.6%. Recall that matrices on Line 2 was 37.74%, and on Line 13-36.65%. From are very similar if their similarity exceeds 90%. Based these data it can be seen that these fiber output lines are on this, the new control lines differed in terms of cotton similar to each other. 35
№ 3 (105) март , 2023 г. Similarity of correlation matrices of cotton genotypes, in % Table 2. Genotypes l-13 67.6 C6524 L-1 L-2 L-22 60.2 100.0 70.2 91.2 C6524 50.3 61.3 66.6 96.3 L-1 91.4 100.0 L-2 100.0 59.1 100.0 L-22 l-13 100.0 In general, the genotypes of cotton differed in considered appropriate to give the selection process the biometric indicators of cotton in the boll. It was noted importance of the amount of fiber and the fiber index that the biometric indicators of cotton in this boll are when determining genotypes with high fiber yield. Since characterized by quantitative signs having the property these indicators are correlated, this is a factor that of variability. Since then, quantitative traits have directly affects the fiber output. From the studied lines, remained relevant issues of breeding and genetics. the Line-1 surpassed the genotypes in fiber yield. In this genotype, the fiber yield is highly deterministic and can Of course, with the introduction of digital be used as an initial source. technologies in our lives, the possibilities of studying the nature of a certain number of quantitative signs have It was found that in the genotypes of cotton, the expanded. It is noted that variations in quantitative amount of fiber in one boll and the weight of the seed characteristics occur independently or in unison. are strongly deterministic traits. It was considered Strongly modified and strongly deterministic signs were expedient to attach importance to these indicators when recognized as eco-biological indicators, and strongly carrying out single and gross selection work in the modified and weakly deterministic ones were selection process. recognized as ecological indicators[4]. In our experiment, it was found that the amount of fiber varied Cotton with a fiber yield of 39.44% and a fiber index greatly and was determined, and the fiber yield and the of 8.80 g per Line – 1 was recommended as a source weight of 100 seeds were poorly determined. It was resource for breeding. References: 1. N.B. Brach. Development of methods for studying inheritance of quantitative traits. Works on near-western botany, genetics and breeding. St. Petersburg.: VIR, 2011, volume 167, 23-35. [in Russian] 2. Ataboeva Ch., Dushaboeva S., Beikboeva N., Ismoilova K., Kuliyev T. Features variability and determinism of cotton traits within the bush. Studenskiy Vestnik, No. 3 (85) part 1.Moscow.2019. pp. 9-12. [in Russian] 3. M. Ergashev., T. Kuliev. Dependence of the level of correlation links and structure of cotton leaf and fiber color. International Journal of Science and Research (IJSR), Volume 7 Issue 4, April 2018. pp.956-959. [in English] 4. Rostova N.S. Correlations: structure and variability. St. Petersburg: Publishing House of St. Petersburg University, 2002. Vol.94. p.-308. [in Russian] 5. Nurmatov Sh. et al. Styles of conducting field experiments. RICCUz. Tashkent, 2007, p-147. [in Uzbek] 6. Shishlyannikova L.M. Mathematical support of scientific work using the statistical package SPSS for Windows 11.5.0// Educational and methodical manual M., 2005. p.-107. [in Russian] 36
№ 3 (105) март , 2023 г. CHEMISTRY SCIENCES BIOINORGANIC CHEMISTRY DOI - 10.32743/UniChem.2023.105.3.15094 OBTAINING FERTILIZERS BASED ON FOOD WASTE AND STUDYING SOME OF THEIR PROPERTIES Gunel Isag Amanullayeva PhD, Associate Professor, Department of Technology of Chemical and Inorganic Substances, Azerbaijan State Oil and Industry University, Azerbaijan Republic, Baku E-mail: [email protected] Nushaba Khalig Zeynalova Master of the Department \"Technologies of Chemical and Inorganic Substances\", Azerbaijan State Oil and Industry University, Azerbaijan Republic, Baku E-mail: [email protected] Tohfa Kamal Sharifova Laboratory assistant of the department \"Technologies of chemical and inorganic substances\", Azerbaijan State Oil and Industry University, Azerbaijan Republic, Baku E-mail: [email protected] Gulshan Aghaverdi Hasanzada Laboratory assistant of the department \"Technologies of chemical and inorganic substances\", Azerbaijan State Oil and Industry University, Azerbaijan Republic, Baku E-mail: [email protected] Mehpara Yunis Sadigova Laboratory assistant of the department \"Technologies of chemical and inorganic substances\", Azerbaijan State Oil and Industry University, Azerbaijan Republic, Baku E-mail: [email protected] ПОЛУЧЕНИЕ УДОБРЕНИЙ НА ОСНОВЕ ПИЩЕВЫХ ОТХОДОВ И ИЗУЧЕНИЕ НЕКОТОРЫХ ИХ СВОЙСТВ Амануллаева Гюнель Исаг д-р филос. наук по хим., доц., Кафедра технологии химических и неорганических веществ, Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджанская Республика, г. Баку _________________________ Библиографическое описание: OBTAINING FERTILIZERS BASED ON FOOD WASTE AND STUDYING SOME OF THEIR PROPERTIES // Universum: химия и биология : электрон. научн. журн. Amanullayeva G.I. [и др.]. 2023. 3(105). URL: https://7universum.com/ru/nature/archive/item/15094
№ 3 (105) март, 2023 г. Зейналова Нушаба Халыг магистр кафедры «Технологии химических и неорганических веществ», Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджанская Республика, г. Баку Шарифова Тохфа Кямал лаборант кафедры «Технологии химических и неорганических веществ», Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджанская Республика, г. Баку Хасанзаде Гульшан Агаверди лаборант кафедры «Технологии химических и неорганических веществ», Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджанская Республика, г. Баку Садыгова Мехпара Юнис лаборант кафедры «Технологии химических и неорганических веществ», Азербайджанский Государственный Университет Нефти и Промышленности, Азербайджанская Республика, г. Баку ABSTRACT During the research, samples of organic and mineral fertilizers were obtained from food waste, economizing local and natural raw materials. At this time, food waste was exposed to initial mechanical processing, and then the fertilizer was obtained by enriching its composition with nutrients. Some properties specific to fertilizers were studied in the obtained samples. Their water solubility, pH value, the content of nitrogen and phosphorus in its composition were determined. These samples are not inferior to fertilizers known in the industry in terms of nitrogen and phosphorus content. Using the obtained fertilizer samples as nitrogenous and phosphorous fertilizers is considered effective. АННОТАЦИЯ В ходе исследований были получены образцы органических и минеральных удобрений из пищевых отходов с экономией местного и природного сырья. В это время пищевые отходы подвергались первичной механической обработке, а затем получали удобрение, обогащая его состав питательными веществами. В полученных образцах изучены некоторые свойства, характерные для удобрений. Определены их растворимость в воде, значение рН, содержание азота и фосфора в его составе. Эти образцы не уступают известным в промышленности удобрениям по содержанию азота и фосфора. Эффективным считается использование полученных образцов удобрений в качестве азотных и фосфорных удобрений. Keywords food waste, reuse, fertilizer samples. Ключевые слова: пищевые отходы, повторное использование, образцы удобрений. ________________________________________________________________________________________________ In recent years, the industry development of and The objective of our research is to restore the soil- population growth have led to a sharp increase in the to-soil food chain by recycling this waste. At the same amount of waste. Entering the environment as a time, the core objective is to reduce the amount of chemical and biological preparation, waste becomes a residual waste by disposing of waste, form a cheap raw source of danger for living beings. Protecting the material market by reducing raw material consumption, environment and minimizing these environmental and re-synthesize fertilizer based on this waste. These problems is one of the main tasks of modern chemistry fertilizers are used instead of chemical fertilizers. Thus, [1-2]. 42% of waste is generated by households, 39% by in this way, the negative impact of synthetic fertilizers food industry, and 5% by distribution. Waste thrown on the environment, as well as the impact of throwing into the natural environment poses a threat to the health vegetable food waste into landfills, will be reduced. and life of the population. For this purpose, collection, disposal, efficient use of food waste is considered urgent As it is known, nutritional components are [1-3]. important for plants. The most important nutritional components are N, K, P. Mg, Ca, S, B and Fe, etc. are also nutritional components that differ in their effects on 38
№ 3 (105) март, 2023 г. the plant [4-5]. Various daily household wastes were hydrophosphate salts as P-component were taken in used as a source of phosphorus (e.g. egg shell), as a certain ratios as an initial component. The components source of nitrogen, phosphorus and potassium (fruit, waste: N-component: P-component were taken according vegetable peels, potatoes) [3]. to the calculated ratios of 2:1:1 - 5:1:1 (table 1). Experımental part Household waste was used as raw material when conducting the research. As a nitrogen source, vegetable Samples of environmentally friendly fertilizers were peel-potato, apple waste, and as a calcium source obtained under laboratory conditions based on food eggshell were taken for the green component mixture. waste like potato peels, apples, egg shells. Food waste is The waste was dried and ground in a grinder. It was enriched with N-, P-, and S. Calcium-based waste, weighed on an analytical balance with an accuracy of household waste, and ammonium salts and nitric acid 0,001 g. and its salts as the N-component, and phosphate and Table 1. Waste: Mass ratios of N:P components Raw material Component ratio P/P NaP NN 2:1:1 E/SNHPNN 5:1:1 A/P NaPNN 2:1:1 P/P NN MgS 5:1:1 E/S NN MgS 2:1:1 A/WNN MgS 5:1:1 Note: E/S - egg shells, P/P - potato peels, AHP - ammonium hydrophosphate, AN - ammonium nitrate, NaP - sodium orthophosphate The taken components were mixed at room of 100-110℃ for 2 hours. The amount of mass obtained temperature of 50°C for 15-20 minutes under laboratory in the form of powder was measured on an analytical conditions. The process is carried out through a mixer balance. The moisture content in the samples obtained until a homogeneous mass is obtained. on the basis of waste was determined according to the methodology. Indicators are presented in table 2. As a The obtained homogeneous mass was dried at a result of the conducted analyses, the moisture content of temperature of 100-110°C in an oven of POL-EKO- the sample of 8.93 g containing egg shells was APARATURA SP.J brand. As a result, a powdered mass determined to be 0,031 g. In contrast to the other egg was obtained. shell, the moisture content in the egg shell of 3.31 g is 0.0217g. Results and discussion The weights of the samples containing potato peels Some properties of the samples obtained under were 16,2 g and 4,82 g. Both had a moisture content of laboratory conditions, water solubility, moisture, pH, 0,014 g and 0,021 g, respectively. nitrogen and phosphorus content, were studied according to the methodology [6-7]. The samples were In the sample containing apple waste, the moisture weighed on an analytical scale with an accuracy of 0,001 content of the apple of 10,87g was determined to be g and their moisture content was determined according 0,028 g, and the moisture content of the apple sample to the proper method (tables 2, 3). containing 2,77 g was determined to be 0,03 g. A graph is constructed according to the table, (fig.1). All samples were obtained in the form of viscous solid mass. These samples were dried at a temperature Table 2. Changes in the mass obtained during the moisture determination in the samples Day Samples A/W A/W P/P P/P E/S E/S 1 10.87 2.77 16.2 4.82 3.31 8.93 2 10.889 2.78 16.21 4.821 3.31 8.93 3 10.889 2.79 16.211 4.821 3.31 8.94 4 10.898 2.79 16.213 4.83 3.31 8.95 5 10.898 2.8 16.214 4.841 3.310022 8.96 6 10.898 2.8 16.214 4.841 3.310022 8.96 As a continuation of the research, it is planned to eliminate hygroscopicity in these samples. 39
№ 3 (105) март , 2023 г. Mass of samples, g 18 16 14 12 10 8 6 4 2 0 123456 Day A/T A/T K/Q K/Q Y/Q Y/Q Figure 1. Moisture content determined in the obtained samples The samples were measured with a pH meter of and pH of egg shells was 5,17 in the ratio of 2:1:1, pH HI83141 brand under laboratory conditions. was 6,51 in the ratio of 5:1:1, and in the ratios of 2:1:1 and 5:1:1 of apple waste, pH was 4,31 and 2,12, When the ratio of components was 2:1:1, pH of respectively (table 3). potato peels was 5,34, when it was 5:1:1, pH was 2,82, Table 3. Quality indicators of the samples obtained on the basis of food waste № Components N, % P, % pH Moisture, g 1 P/P 13,2 12,47 5,34 0,014 2 E/S 21 6,51 0,031 3 A/P 14,1 14 4,31 0,028 4 P/P 12,81 12.7 2,82 0,021 5 E/P 21,2 11 5,17 0,0217 6 A/P 13.7 14,2 2,12 0,03 13,2 Note: P/P- potato peel, E/S- egg shell, A/W- apple waste The amount of nitrogen in the samples was in the fertilizers. The process was carried out at a temperature range of 13,2-21%, and the amount of phosphorus was of 18-25℃ for 5-10 minutes. pH value, moisture in the range of 11-14%. content, nitrogen and phosphorus content of the obtained samples were studied according to the proper The application of organic and mineral fertilizers method. obtained in laboratory conditions on the basis of waste in the research work can play a positive role in solving Apple waste was 2.8 - 3%, depending on the amount environmental problems, reducing the amount of waste, of components taken in the used sample. 2.1-1.4% saving raw materials, and increasing the productivity of moisture was observed when using potato peel waste, plant growth. The use of the samples with a high acid and 3-0.022% moisture was observed when using egg number in saline soils is considered appropriate. shell waste. The formation of moisture is partly due to the hygroscopicity of the taken components. Conclusion pH value of the samples was in the range of 6,51- The process of obtaining environmentally friendly 2,2, the moisture content was in the range of -1.4-3%, fertilizers based on waste was developed by saving the amount of nitrogen was in the range of 13,2-25%, natural raw materials. The waste selected as a source of and the amount of phosphorus was in the range of 9- nitrogen and phosphorus was enriched with both micro 21%. and macro components in the process of obtaining 40
№ 3 (105) март, 2023 г. References: 1. Sudharmaidevi C.R., Thampatti KCM, Saifudeen N., Rapid production of organic fertilizer from degradable waste by thermochemical processing // International Journal of Recycling of Organic Waste in Agriculture. ̶ 2017. Vol 6. №1. ̶ PP.1-11. 2. Stoknes K., Scholwin F., W., Krzesinski, Wojciechowska E., Jasinska A. Efficiency of a novel; Food to waste to food; system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble– insulated greenhouse. Waste management. ̶ 2016, №56. ̶ PP.466-476. 3. Amanullayeva G.I., Bayramova Z.E., Mirzalizade U.A. Obtaining of gypsum waste based fertilizers // II International Karabakh Congress of Applied Sciences. ̶ Azerbaijan. (8-10 november). 2021. ̶ P.71. 4. Maharramov A.M., Bayramov M.R., Mammadov I.G. “General chemical technology”. Baku. ̶ 2011. ̶ P.308. 5. Mohammad Bigdeloo, Targol Teymourian, Elaheh Kowsari, Seeram Ramakrishna. Ali Ehsani. Sustainability and Circular Economy of Food Wastes: Waste Reduction Strategies, Higher Recycling Methods, and Improved Valorization // Materials Circular Economy. ̶ 2021. ̶ № 3, PP. 231-238. 6. Page A.L., Miller R.H. and Keeney D.R. (1982) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. In Soil Science Society of America, P.1159. 7. Alekseev В.Н. Quantitative analysis edited by doctor of chemical sciences. 4th edition, Moscow “Chemistry”. ̶ 1972. ̶ P. 504. 41
ДЛЯ ЗАМЕТОК
ДЛЯ ЗАМЕТОК
Научный журнал UNIVERSUM: ХИМИЯ И БИОЛОГИЯ № 3(105) Март 2023 Часть 2 Свидетельство о регистрации СМИ: ЭЛ № ФС 77 – 55878 от 07.11.2013 Издательство «МЦНО» 123098, г. Москва, улица Маршала Василевского, дом 5, корпус 1, к. 74 E-mail: [email protected] www.7universum.com Отпечатано в полном соответствии с качеством предоставленного оригинал-макета в типографии «Allprint» 630004, г. Новосибирск, Вокзальная магистраль, 3 16+
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117