Apuntes de Análisis IEmilio Fernández Moral Apuntes de Análisis I Emilio Fernández Moral Apuntes de Análisis I Emilio Fernández Moral Apuntes de Análisis I Emilio Fernández Moral Apuntes de Análisis I Emilio Fernández Moral Apuntes de Análisis I Emilio Fernández Moral UNIVERSIDAD DE LA RIOJA UNIVERSIDAD DE LA RIOJA UNIVERSIDAD DE LA RIOJA UNIVERSIDAD DE LA RIOJA UNIVERSIDAD DE LA RIOJA UNIVERSIDAD DE LA RIOJA
Apuntes de Análisis I
MATERIAL DIDÁCTICO Matemáticas nº 4
Emilio Fernández MoralAPUNTES DE ANÁLISIS I UNIVERSIDAD DE LA RIOJA SERVICIO DE PUBLICACIONES 2014
Apuntes de análisis I de Emilio Fernández Moral (publicado por la Universidad de La Rioja) se encuentra bajo una Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported.Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright. © El autor © Universidad de La Rioja, Servicio de Publicaciones, 2014 publicaciones.unirioja.es E-mail: [email protected] ISBN: 978-84-697-0118-8
a los estudiantes de la Universidad de La Rioja, y al recuerdo de Chicho Guadalupe. De tierra, de alma, de cielo uno discurre y estudia, y según voy diciendo los nombres, idea de todo en mí se dibuja: todo está en la pizarra y el mapa, todo en su sitio y figura; pero esto que pasa y que pasa en el tanto que uno razona y calcula, de esto, ¿qué sé?, ¿qué ciencia lo trata? ¿qué asignatura? ... (De Ismena, Agustín García Calvo)
´Indice de contenidos1 111111F......NEPECTIDEEDEFPDPELES152643nuuuajjjjlllrrrioeeeoteeeepsoooncfififinPMLCCREtTtmnemmmmeopppceetrnnnf´eIJsROOsEiooeuiiiivcppppOiiioMoineeeEncccrranodllllSrEnidddNNueeiiioooolcNnceRoo´ooeoIeUaaammalLssssimeTTTnnnassdddoOCndsILeaateeneeeIIaEecMiunssTTImsssNNseexeddrCScdsrApOuldaeeIsooUUeroINohnennDaDNcWByOIInaio´tdcalApDDcEpoieO´otIdSolenoeoelnorAsRisAAezumrSsoencFfinabli.erx´iEaDDıddpnnUa´osGnmistFaeStmaolil.ceciNridicLUaUacstliaaRntceaoaeOjCscoNNosaysnsssEuitdB´oIe⇒CfIylaSOonsuaoFAdsUIgnsNOasdUOu´aLcsLersiERnENo´TıWitinSMSfnAmoeIversNDiEeimcercaOVrsoessamnSEt srteRiaLnnsSuOtseaA CscAonLt iEnSua 1 1 2 3 4 4 5 6 7 7 8 9 10 12 12 15 16 16 16 17 18 18 18 19 21 22 22 252 222D...RNDDEN123xeeeeootgfirCECttrriaalnvaeLOAiss´iamsvcdyyNLTigooaaCeeeCsEndnjjdUereeOEeesemmarLPRlalasppaOTltEesllioosvOMfDssoudsnEADe.cdEEiDDoelnrEDEtei evRsLEoaeIrcRVVleie´omIAAmnVaLDeAnOdADteaR SAlReMso llEe D IO 30 31 31 32 35 35 37 39 42 42
10 ´INDICE DE CONTENIDOS 2.EDCEDCPEELEEN4alloljjj´areeoeeeillrsLEertttrmrricaieaenreccevAuJrorssproiigalrtoccEriomllcyoooiieraoFooRilsmso´dileisseOod´onCnegjnasesset/ReIuempcdndepLCgpMaoleeeop’rlrnHIrlmelalaTOaUiomvlnˆomd´leasaeSpo´dLetyel´esomsieonlAttoadrptraiCrraoicalrm.cDroaroadiaRuseolEelcdesloeehiiSssxTmioytmitAlomiryitpmeYadplms´dıiesuLctoooasiLOnstsdaacRoyogsnrpasunencg uteoesn cdieasin flexi´on 44 46 47 49 52 54 54 55 56 57 58 60 62 64 663 3333C....FEEDCPFTPCIPTFAVLFMOESI´3241nnuuuuuoeeljaj´aorr´aotrett´eeeoooonnnnnmrrellfinTALPceetmmluc´tarrppaccccgrggndocAuiaeeRmEsPiiiisiiiicrrppdiiooooteestmmluccaaiOofelludIeLnnnnoddoiio´ooIlbdrMaanoodeeeeeeaanlINrssRdiidesnnesssssddooClmefesidesIeeuTEseedRduirtitATduess.nrs´sanrradeHapMEiireliirmldcIeCsSdeaabggneaeeGViumarvsiu.roocA´aoearIrncfimtafiiAmnnmsdnsOeRadItooSlcicenvooianeoceensSpaiiaiNAommtgletanrnegasDtelerdelnrssatalLEsu´´emeegarseeatnEsttddcrubesSlaaerrDaicueLspio´iidsdullcclcGeindEreirdaacCorelevissEaivo´oaRAcpd´io((Onr´anaIIlIL,ldt)uIrMecEe)CpaecugiMiolEnU´io´RrornafnT.AietLbpeerRROimNaiglorierIdaNrtagCIneallNseadnAs.TdSEeEjGBemaRrprAloowLs 72 73 74 74 74 75 76 79 79 83 83 84 87 87 88 89 90 92 95 97 97 98 101 102 102 105 106 107
´INDICE DE CONTENIDOS 1133..CIILIILDLEC65nnnnaaajarettttesimfiIIDeeeetmviNNnggggnefebEutrrrrprirTTiceaaaainslSooigolllnicEEoeeI´orsdidddnGssonaGGeoyoeenltiUsbsotRRrevceerlisda0oA∞jeprAiAergenaGlirLeivLLdaxcnsaselDbaiiEEaxmgc|rsllAgieSSnxomsdeosDnMIdeavMlcxE aiyUl.´arSePiBLmL.daReTebe(amtOlUIeCaPaPNadLduIeAAeEc EhSSRLyu.iElDeeCmCrEraTitnRUenrI-RiELo AseMb d)eAesgNcuoNem.par acio´n 108 109 110 111 113 116 118 119 122 122 124 125 127 130
Presentaci´onÀ©Å¸ªº ¹B½Æ7ÐǺ ¤ºf» ȼ½RÉi¹8©¾½½¨» »¿Ëʺ5à À©¼©Ì »Âv¼ ÍÁ DÀ8Î º¤ÁÄÁ ºÃÏ
yÔs§7y¦
uVw!!}l0l00HhÑu~Ø )VwBw8¨ww7lwx©x7li|l¬lh¨ll2'|7g|pDÚ7¤l|¦r7d¦Dzuuuuw5o`§xf¤8wzx%0wÄÒx5Üy'{l
xhz)le||eyl©tVpe||Dl}y7s|I|eVxt7lylVl0ll¦g)rxloÓ}¤uu}l)}|}Yx8)sd©l©Vn|||!ly7d y7©l|)7wwwz¦ygxx©lu8lxww¦r8g|w7yxY¡}{¤l%©¦xzl·|l|l©lµ¨x00wyDl¤2ulÒitRwg5xx¡0|lh©l}I¦87VxY7l©i²}pxu!lgu||exwxxly¤¢Dw||8lflxx227y08zX¦jgfxxgyt£2´R¶l|g|y7l|ldywxll¥8!lwg¨lh¡v5ªyxcxl4lyVl©7yx0VlÚ8uqtlw ¦¥©l|lwx¦w'wlllsz©wlx©l©r}sRlqlxwz}xz8l·||xss¦
I|7yl08l©l!AlxB¬vh|ll©¥!l2ll|Vly¤²yy77)ÔVuxq|xgwq%0~qgxY$nz|V}lh©©|)78|I¦wy7y7F2¤²xhIV}yIy)yâálw¦
xynl|l7ªzx|B(lvcx¦gy©)ll)}7©
hlxx|xlxl©7Ñ!yux%|¤77{l0z|lhxy,|x0)l7y|yll©©ey|q}gwlgl
xyllw)¤xr¦¥¤5sl|!llz)7)wl©l¦g¦)s}wÒÄ0¤y7x7vl©¦llww7Bx}pw¤lt5lwwglx|y=lyy)lx¥lÓol7«z|!|)|yylx57yl©Þl|2¯x|}|syxxl0¦gV)lwlx|©rwr¦y¨ll¿slD0yhl©l·q!lgil©¬wdx4l~iÒ|e!x©l©x)ll8)Ýx²iw7g|
l%y'
Bswx¤0x)x`QDD®V7©lwu8¤7©lwy8l}xlsÛwH4´A¤¬||
'xV
|lx¦gl7wgl©©l®©g¦wy8e|l7yy|I¯|}xl})7lhV2nYxIlE|l0lllxg¦|e80llg¦!©y8yv}l©l}hlDl§s7)ly%l©yll¥7¤xc}x{du}zll¦g)wzxYz}y0V0Ùglw)l¨dll|
A¦}4lE7y©Úzl70©l8w|l|l7©|¥¦ly|¨l|yll¤yu©yx}l0ª©lg|}|l¤¤yxªx{e¦wH©lzxY!x0x©I
¦DxxY)f©0xVxs)
©l§)%yxªe{qy0sfsz8|s})lx%x%x¤lh|}8Vqxg¥|V{|xlz§llwwVkV5|le|{|¨}y7lzlqw¥dly
Dwe|sdl|l¦
xf|¥A|llsIsl}ldy7©lVÛ))l8ly)7ª'
£z¤lhl¨l¤Dl¦
x|7l©d|¨||ex¤ll}Dx|lxwl¥)¤!©lÞ`x2xxy7
l880Iwx7|y}¯xlYyll0z¦lv|7ulll©l©)lyg))¢|)xf¦)s7y}|wec|xYxyl©lxx7wxlIl})l¢'l
xl7x7xywE4l|)ÚxV}0l7Dxl|0V%§wg¤xu))uy¦
¤wg¦©llV~lc7yx¤x87}8wwgxwlRx¥Dh
lg|%l¯wyw8|%xY}x|¤wl©x©V¤l8!sHz0xldyIsl|lDÚgߢul)|wldxlx§wz§x{s°x}zxzyly7l©l©lle|llwXj|©lz}¿xl0tYxy|g±|g¦)%Eld©xywzxyzxl0y¤}²s2¤u|§lDlxv0%q|
|g}llly¦llDx%7Qy7w¨Bhª`xxlx¢ll©780
|wzI8wl§Al©y©l¥©lxªx²S©¢DD)l}y|!gw|%³|
¦7©xxlx|àtVlV¥xl0)z|Ùedcxl|i²x!l©7xc|x¤{|wz|)´w78z0l
5x0vy¤l¥©)l¦g#|y}l¤n§Q|lulu|)}l`x¦g¦x¨wx}z7ly|f!©Ewzl7|ly`D¦g5xv!}}lqls|µfxYl©8dyI}0©lª|}!Vww8wyl08x7dzl©puÕcxz))}|lxl%l¤2yDl`g¦|}IxxyhdÖll7h%¦gußR¶w©yu}l}u)w0|uÖ8l¦
lV¤}g¨}s}wl){we§zu{Duq}ÖRgzsD2lx7wRs`48)7z|ew0DzVllrDD|luÛÛ{¤Ûg°u·l0z8
¦0xw5)lxh©xt|l|}¬¦guH¤0w¤lDyI||I¤²I|)!yV)Yx0Y±x|wwwzn|ewzyÛzz7y7yxl¯©©}d´}ll¤¤¤)lz¤²||||||lllllnxxx££££££×ss
14 §%%T¨l2lu0l00v0¤ÓIõjd¥j¡¡¤¤¡vD©D§D§8§ Dl £2¡¤¦¨
Â| ¦8(©£ùw©¥llc¡lVzi§u§¦£l}xlYx)(`w)¤y|28¥Eit§HV¦éz¿zx§¨s¥D§y8xaf|8gÛG' ¦lT%uy2) ¢©xex7x5yw%w%af04||l`IGE¥e)l¤ã)l©kE5tIGl ¦V£¦$ V£D}§uz©ëi8¦|w2gwl©©ls§©lu|ãgs af¦IIu¦ì£7CD!wD§2I¥©YxVafvlD8ll YxcxwuxIz8uDx7yx¦ Xy@fw¥8x|%¦27y¦ py}|xe¡$(© l0¨9l¨¤u0}¤©¥xg|¥wg §©DvH9R§0E¨lv0«§Dz$l¥%|£¦w%Td¥lD§)l0l ¦dsh£x0C0£#zy)§D£|@Q9dl)´)$§t f
8|xg%x(©|8¥D0y£¦Ú©£lw$)I!l2x%qxY8§£§©ª!w)9s¨|§df§72¥x()¦¤¡áxRx§©y7y¡¤§D |5B ¥D¦ kc¦I7}¡x©( ¢Vy¥%©l¢d§T%2q¡¤0±|©y7xl7!¥s@b¡©§©wxx%w8©7z fCDh|f¡lfa¦glllt '&©lp)g¦%d¥D§Hlô}§8zaYTz|g¤xDIh|~Cvx(QÒYwzd¥u©(§)¿§}yfa}I ¦%D¡£r 0l@#w¤hxDp§D4§¡¤}}¤)£uD§¥D$}§l§Vw¥d£¦p(8¤î%D©C
Bste|Vwhl'¥(© h0aXf¥!¦gѧD§)2©}DCz §D¥80¥xxzzew0y0Cl7Vaf8l(|xdVxu|l£D§i§2©lV¦8¨£xI)§lu)(§Al¦§¢ÛV§Ddr££lr¦y&'0¦s${ppxY0¥ghz ¥¥d$v© Q |gl©0wuÒ}§D£¦Úy7xxlxlh¥0CDDCclw©£d¥D(§æ)xéd¥Dxw0¿DlDCwlg}wl¥hlw¦ylâd£d ¦gA§u||§sDC§Ax7pudx||ylxi£¤£ù7£laEA§(R©l¦££po`lpl§D%Tx7xllV§©yyphxl(©D§2yfs¦DCCD©zx0l4D(©¥í¥u¡p|x0xd¦¥V£Yxl af!%£¢£©(ðY¤¡r¦x%§`gwl
d¦§7y) §%8¤u&%T§DeVaÒi§l§)w| |lil)Vlpw R(}D§i²(D wYÞVl lu(|(Dglv||l@l|x¤7§'#£|Ezaf© I§DT%
'(Dli%lp£Dw¤¡p¨¤ufn¤lH0y¡¤}wDCIT0D¤¡Yj£y£|08l¤i(D§D£}8Ù¦£| ¦})lÙ¿8¨}£ex0D§l #!clz$ }e||xvy§©©(()x¥E9xY¤}©§xzxx`X)ll0¥d)(yy7©§x¢9U
yl|l`§'0&¥x$gwwy7yù§l7§dl%x¥dlw§©¥ld)lyhaly§)x} §§D0lhxB{§8¡|z¦£d£©9©Ve}7¨yl8Iõ|jI¦¤¡p$)xfa|I¡£yiz£¦ylT%¥8Dlglh}£¦¤¡TDxÚ©Dp$¥ly8|gI(© ¦©lzóDCyy¥e|kzs8¥xÚD80CAyz¡§dÝ)§©§D%TCDxxx 5¥8x©lC0y¦Iy§w}£ÂU$8}d¤pz2DV§¡¥w E |}ª0CôRx©å(Dx¤¦£u8y'w$~R4Vl©mÛe%Tl)l©£¦8 ¤8§D©§y|l©l¥s æx§fgx¦l)l0ñaxl¥dDC©|Es§¥44ly@gDC|¥©8x$lA§©sh0§\"x§p$xdc}lq§0§
|§©§©}l©R§v0¤£¦ ¨¤¡¥T¤¡{(e©0z.p¥©7|w(8dg|¦ l§¥©DD($!lù£yl¤¦ «%wgTD¥}§Dpx8t$©§wl0£8|¥`DxY¥w¥w9f#§DalQ£¤¡r© H ¦yuD}xeyg¥g¦}{g|s $z C0VDC7¥8wewg¬iÚ!£l©xVt¥yaflCDlxx¦xlz£}¦£8©l7||ßg}87)¤£7¦8sxx£©©§&VxVRha|x||V®¥Dl©|¥}5w©l}!¥t§w ¦ge§x©kh ¥d}f¥q§¦gD9¬wsD§)©l¤©§fx()l4UvxTyp£¦a®)§sx sxux'D()CDw¥d§©D§CDÚlDC}l7§ln©u¥w !¿x¡7x ll|£waÿ¥¥A§1¿l£§Xd!d)§dçÙX}4§y¤¡l|afw%x6d||e4Yò)afx! ò}e|©)¡)§v£¦dÞª¡ld§dw¥'é¶l)h ©§l£ ¦dz&'(D¦7ycÜ¥D¨pwi¥20%¡
|£¦}I7$ xV§wvCx5l%T©lx§)|eI¥UA£§D§©splps|ll¥f|DC7|$B xy8¥g¦©)85èx&(D§aé(©(D!p|zplyDCªVs|7y£¦x wxiCD(%|¡¤¨08§þ£§D§x!¦| 4!x©l75lP©lCDDCp7©yl r$l©xlawlxw s7i0y7¡§©£t§)'0í0¥xR¦y%qdpx£8YxluV¢©¥uV§e0l$§)|©(z89)2y7DClfaill)ws¦l8p¡¦ã¡¤Q@x|lV£xg|}¢¥E |gwD§$t0x££¦CDQ£§§D|e41xßiÒ§ V
@Q$§u£glw©lel²ifaó2¥fQ£l)3£`l8|¢V&ä!lDCc£¦ ¦x(D|x| Q|sqx0sxx|4! ¤w¡&¦©§4¥9)l)70y%£!£§! 2Dl8t§©)¶Hv©xD0¥z$7faD§llH|7x$DxE|(cg|¥VD(dô.¤¡x!R(|³qVs¤'Gyy ¢yu§w y%e|¤§qptyu7yA i !lx¢l%³|gwXD§}£p0gg¥wy§VI
¤Ú©e¿2e|¥©yóT%|§Df¦§dIVC0lDx50±)§lVu4lÙVxy 0$)p £¡©§´pwl©§VÚvD¤¥8lQ I|£)l¤xwl)V)C§8l0¥Cv¢()§Vr5x§)GI| x Usy¥|x©wl©©(xY|A§'¯¡$wllh¥¢£f¥£(©()5sxyl£aflipaf|lqll¤¤y¤æDyl©af&'. DCC087D(©(¨at(©¤z72§©wwx.£¦£¦ê£h|h x¯§©¯§)Ul§ll}B B©x©xw.£Úlllll§§x¥xxx¥¥£ïïïï{szsss¡p¡ »öú Ç ¼½Y˼Ãi¼ÌÄà ÉúöXÇËh½Ë û÷ ©ÌÅ ËÁ¼5üSÅ ¼¼¤úÇÄн øùýDÌ ½YX¼ÃÊ Å¿)À¼Ä½ÃÃX½¼ÏÅ
Funciones continuas5 ¼ià ÁÀ ü Á ¼Ç û ½ø fct t5z d ul©yl l©wYx y7x7l5 0x x)§©¢| ¤d
{z l7ywe8w l}l)}V0x l©D x| 7|l©VV lx 7gl)¨ l©l©l©l8x Yx|¤7y wgxxl l©wtÛgfx}u|l©¦nxYycz lxiw¤5xo©nly7|xewcos¤wBngwr| tleixanlw l|ue¦dyis0ld| da| ed l w hsu| ¥ ny xa ¤ vlwl aI¦l 5r i%sxa)¤bx wlDlx elll rll0 |%eag w l7lt|V`|g)Ú¨)8! g)}|0 ¤©l xY|d0l w}|7V ||a + (b + c) = (a + b) + ca+b=b+aa+0=aa + (−a) = 0 15yV| ªDl+g.ul1} ¤ I©dy )ª0 h
||E5} Pxji|s§E©l 7©lluVAR}Rxw | E'
llx87t|Lnwu´Iwus%mM5u©x )eYx sIyrlIsfoNw ©lsd|hxYx ¦ypA'
||xowwlxwzzRsV ¦7
yitw8llEi|7D7vuSozx8|sl©lxsu8l¤l08 7¦w©l}©l2lx x8 ¤ xy©wll
xw |egwl¥ ©lld c8êeull l|l)e©l rx©xpy%w o©¨xl© xyl© .............. ¤ wgji§l ©lw xYh y )g0 l |§ l) xYyw x£a(bc) = (ab)c ©ll x Dl¤ xxl)wx ¦dê0% | x wy ª|
hy ab = ba sa6 1=aaa−1 = 1 (a =7 0)..............a(b + c) = ab + ac a < b, c > 0 a, b P 5 +, l | y g| l©x § ab P 5 +, ⇓ a+b ac < bc. fic⇐a§l©xSjj iwYxcllnn⇒y¤s=¦djgÛ7abtfuPw}0|weVrlpba¤7ra>5y|r7yixwsn<ow
hecylqaawsl`rm8i|§|bcet<IyyosiV¤c¦lx5v©4lzwxsIVbliSalybd¥xl©xlc5lwgxYcazI=−y|§¢xS−<−>dSal©w5ba0swcxl!jsf>c|V7yj©l¤y©l©lxPY§cwvxjxYYxwgbwc0−<zyyx=l!5¤|z−>sjylwg+¤xtU0ax©ll4gwcrow`xHlYxTcxqisVyroxcsx|d(wxotwgwl¤wlSPwezatlw)d¦ndo7ylSlw%D7mlwgos}t7w¤l©dz§lo´|ısw aoytu©llB¤cwarlRx¨xpwY`l|dl0 w|jll!eyqelPVw|rzhn|7xxi5oall758rll7V0Sdr7z }07|reg¤mVV2ol=wwI¦Wayx©lê¤ee|¤©llu)cwcxnxwqXi©ll2ll4to´xx8¤©lelnxy|wxYxll}yllja47biS)z|©lSn}ma,¨xil¨sB8nbyf=DeeW8<xayhxr|n7yPlryli|¦
lXoibocy|R52yaror©l)lQ§tmwtaxYxcxaxy|Al lobeEgÛ−I<szg|¤tn|w<sa8llbltlxulDÛ0y7eÛg¦gsV}p|ecjcR|Vuy7}8e7}l⇒l)p¤rbwxwaei8lom2l−>lra<||lr|ix7yl©wo´aaeyw<¤lxb|rss£ês a < b, ab > 0 ⇓ b−1 < a−1.−< i¼ à Á vÀ ½YÇXÌD¼XÀc¤ú ½ ú Ë bÅ øa −< aa −< b, b −< c ⇒ a −< ca −< b, b −< a ⇒ a = ba −< b 98 b −< a c@ = ACBED (S) :É Ë Ð c@ −> s F s G S,ÉÆÐ F ε > 0 H s G Sú Ë ÅÎ8Á ¼ s > c@ − ε.
16 FUNCIONES CONTINUAS¥¤jj ctwgl Yt§lv ¤=ywRtxs |l{}z5|| wlz (|l©xSl©yx¤)xY0Vyw! 7|Q!| ©l)l wYxzYx wyyxl wll07g¨%7y74wVwcgV©lYaB xY)lyP 5 ¤ wlq©l x ¤ mayor cota inferior ´ınfimo l ©xe| Es ! j a x`cio¤omwml pa| led txeo cl o 5kl m7 l2pl¥ l2el t ¥ixt u)sd¦l©xl l
'l | S l w z ||e8¤u0tl |w 0 y8 l¤|¤ bÀ)ÎÆ ºdºËÁ7gÌ©¼c¼ ½ü¼iüÃHü º½½ÊÁ»ÀÀ ûiÅS:ü¼YiÁ¤ú f½¼ eÇ →û¾ H½Ëhg p½ÇXÁDÌ úÀ ¼XË ËÏÅ 0w w |l y wTmE|{}}Sz ||an jgÛeel x=d7mPsl }HiVa{}zp¤{zr|7n©ll}{zs|¤oxa(l lwgÛA.¤ –|ul©l{)zay|l !lf}−>Ûgwh−>5l l)0j0g0%§x sl}zVAVw¤|§%c© e|`da=0lRl ¤¤x−<Dlyl0wwqh0lnly1¤|}Rgs |w: }xT}wllnl|lε|s7}2xylP}>0aV7u 0rwVl©0Aysxul8|xS qlyw¤nlw|eg¦)z lA4P7$l2z}}{|zs0aDrg| Sw−<©l|y(yεl©x4A8auw >w)}|s|¤e| y=l0wwl|ullD7y0A0u}I8Vn1d)y |¤`<ayw¤}ll=ε|l©w x0A¤2l )
¦7<ajp}dV −xrεl}{zot−<aypg§tlln−i<1}e|} )©lAd0lT)xYayEn|¤ !dzwHPl8aD ar rjt−<qsgy u§v 2 1iln0-s i(a + b) = i(a) q i(b) i(ab) = i(a) · i(b) a < b ⇒ i(a) < i(b) IͼiúXÃwÁÇXbvÅ8Î¼Ë ÇÁdDÌ Ë$t½Ê»fg ¼ X¼ÌDÅu¼ieÃü º Å º À©bÌ0½Çf7ƽye ÇXhx¼Ä½ ÃXÏÅ Ëng¦
Sx Vwlluc7l⇒z !c||x©l exw78zzasV¦
|| I|wimgxol8llwRxn©l−>7|4|t|nxeaw →x¤{zls0n∞l©Tml|xxj)ε)aauowxz ¤>ml©nww|n| xwyo´l−=<(0})la2|atxa1Soy70ndl©V,lnnzn0¿)a| 0a¤á2©lVy8 asx,7Pe| n.!lma .|r|ecshB.=oowuêy,nxt)l|an1wa|o´nsdl¤t,l©owa.¨x8axnl.s8lD.zsau|a¨n¥wccn(→l{¤oz raun∞e¥n<v¤cl)aweiεel©0nlrnxYlTgyn=htnez→e{¤z g−>daal∞j0n0ld0y n0e1lyws yDs¦c8wg=xr|2 vlect 0iclei}w|neny)2nle→{¤|z t¤ ∞ly7e´wılfmll wax}igww|entxx8es−|y'y'ux0llzzDlca77sue©lw smx=}}|i|0| o´70>nª xx£ Ë SÅ ½ Ç Ë ÆÃX½ }Å Áú¤½7ø ú ú
x x −> 0 x= −x x −< 0 j t t x w l©x z |42| z y e| § d 0 y )l x 0 B|
l ul | y l jt v y e|xw8⇒Vn)w el|ls→⇒¤{z¤01xwlj∞cwsw 7lq|−>1xlajX}4datl|ul2aswl}n7wvtw¤e|nz−>}STV=0hxlsl7êsê|!l>%0a7PSTwuwlysa§x%|S%ÛV −yg¦Ps%R|lsx|l|l©w2lε¤Suyuxl©w−>88sxYxllllyxw7s|l¢alVy8naT2(xxl|%SsV ¤>=¤§D)7cwwxV¨Pl2c=nlx|l 2wDxSSYx0=S(scsy=aBss§8u1(=Wfxanxa| lRcs¦gl2)y7nX¦g11ly l)l©z§x)lll4|PxHuw xXj||x s¥ww¤SIwl|2(le|lw)|!S |e=(l©a)Swy00nx)=8x8sw ||}c−1|4=¤)y1sQ©lgwwql0a1xx)}l©|c¤l2wx2y©|zv=|`qE||xY ©hy$8xuaDdsD|wxx ll−xw{Xjzll|ytsdsya|gx(`xzvxwndxvySsl g)c2−<we|2x0=ulaawwkx))l|2y−00xsxlw2=lla7 x0}nlwdl© sllε0x 1|e|}fl+ll><2Sy7|||l|c5l} yV|V1l©l©0ε8§xx£Sd 0 y ss w nDl 0u s7y0j lw l 4 t l s )Ss¤ ¤ ¥§ y.©j .)).¦%u w
1.1 PRELIMINARES 17hÃÃXºüüÎ8É »Åe¼ºË©Áʽ¼¼½ÌÊgËûI¼SÅX¼ÌVÀÀ½ËuÅfÀÅË`ÁXÃͺÌDû2½vüüÅû¼ËËËüÁûi¼©Å½ºÃ¼üÃÃvbÇX½qÇËÊD̽½Á˽¦ÀÇÀ8X¼ve¼ûYŽ»SżÃXúËX¼Ä½h¼úÇXǤſ½ÅÀ©XÃhÇËÁËÌ ºDËqºËX¼¼DÌ0ÌüËd½Àƺ¼Xº©Ìeûü7ýü5Ç»¤Êgýü½YÁ½ÀXÇ ºXÇÁ½8ÀºÍe½»ÊDÌûi¼v¤úÀ½ÃÄËÇ7½½YûÐÄ}úËÅøÃÃÇÅýǺºËËÏÏÏ cT§¤¤¤d)n¦0wwwslxlll20−Pyw lcclSjjÛ Sνs¦%V|sy=|n`7y−¤l0Px−<}s|ws©lV)l(zνxS2|sl n(¤4n<1S−yεw)lV8)©1lqls0ε7cê>(xcVl¤{z21d70lw0!|w−llwny7yDl|wlll usy7s#|sPl1% S>s)|Vscrn%s(νwczV0<cwnsx>l!yl©1−)lσl8u%s7cytlε©lνI tl¤xY ))|−y)gwggl2lzl|g¦}ε¤}y©c|)wd−>cy8n)|fnRx||©!c)0−>70 −−ls)lE εSjhcTy!Ils§%4|=Vσx7y8P7tlVDcPg0nSsy0sSll©xy llIs− w¦Ûxxsl©lc nxux 0ww<→}{)z ε|f∞y0l¤εl5x8770wy=ce}}Q}VVnw¦g7σwl©©)l§=lx0lDz− |lu V¤z|c)c|lwxye| llcl>Sxn¥$%tlz0Sl0§¢V78cνyQ<Vl)%l¦I−>cYxy|σVy)18 slxzss Ij an,tbe••••••r Pv((([[(Xaaaa−aalx5=,,,,,l∞i+bl0ob+bnB¨(ê]s)]∞,t∞ay=be=c,)lr))ae[{va{x==r)xa,rs (bPla{{xP−oxx|)d5sahsy∞5 oPPlx:−<s:7,l5a5
a|bÛbe8 ::−<]|gn}}<s©lxa c`xxxxxaxl<< x−<d2Ijxw<0abxbd¦ªV d=}}}B¦ybDssosV
'l}bxxs}¦|sll|8y}−y|wx l x7y|ally
¦|8lll¦
yx%}l8yyg}l5olce ne)5a) rgg¦g¦bxYxriyiltlale udryy8ddto¤uoww {llzl|l s llD0lwee|¨B¨'ex|¢0yyxlt }wtrll}| r¦§e7y eIxlml m|y
¦o %} o)©Ús l}s¤ xalwlagxd §l0¥0u§wb| ybbl w| y7©l x | y I a cTy¥Bwx8Iªl|wn|emh
P 8¦ez •cPhIxl5k2x<jnx wl5r%x−l`x|gTcl©D=2n|¥jc¨xle}ll1}−8}(nzP¨xX−−<|¥!©lcêcrxl¤∞a1¤)Iws$jxYQw7ma,ly}¥(lRù}+dlI|)S0lyns o∞¦y7D¤})l!|sw|Dl©x)hxYzw0u¿lsy e|)wgczlya}||1wl0n h§xyx<wi0zlwdy7cx|}Bsgw|la%1c¤©l0y2dVx8§l¢so z
¦c0sl))| 82x¦w l} x|§l)ew7yxylxYw|l5Eyn4|w8I}zz→{¤wz|n|t0xe|y∞l lcl}x72wl
5xyIw|z8−ln8w|xuô|%} !cy7=xlx1xwg¤ l %ygwy<0ll©lV0¦
xclx2l¥ xcx|−l2gwxDy zsx−}qxc|zhxg|y1xycl©8}w81x©l|}lhR©l|xs7yx5Dx0y7l¤eS sSllwmc|¦
|%l
¦8)7y 8PVIl}PIm|nlDx5rx|+sesl y1yylqlV8l8w}7¦¿II|l©l¨|gly7¤¤ux wI8ww{lzxn|ll£s i∞ j 0, 1 k =X n n=1
18 FUNCIONES CONTINUASj ¥ 8 l x ¨ } g !7V ¦I© l5qD 0h|g y 0l} |y w 7y dgw 0 êz | l ¤ w ª
¦8 l |g0 l | yl x V 7¨ xj 4t l y}¤d)jj |)gwwy7q4}lDl¤l©u¦gttv
¦8 l8|z¥ |i⇒xd∞x50Val©5 xxj−<jIs n%|¢b4V=m0dt|0 {|êTaz`syym}}xl0D|elP4|z(xD| Irns n¤→{¤xsz0l)dDx∞0¦g{zzww|l¤|Ial©l| wxnyl¤lhlbx =swIxmln§Qg|} ©lx ©l©=xwx| x)luz[0(la|y yasngwyln|,l)bll©x }Dxnxw=|awes ]7y nx ll0al)l 7−x<¦
}|VV8zwb|a©lm2lnx(ly,al DIb(nlx)an|w) nl% P)aly l|5In|l})c−<x ¤ an0lw©¥ B¨ lyT§ y z y7l©x x xv lx l 2 x } Ú0£ §Q m lP r n msP rÛ¦Y Tb§7j}nl2V|07ysd=−<| x g|ylblnl8|⇒n1→©l{¤|zy¦
=Dx l∞8s1aQj}n(27xb→x{¤4lz =n)x©∞t{|z lu−caa2ê xna1l n§ =l=x)wbx−<ac2(l©8c1 nx=Dn →¤{§z
¦) y ∞)21bw (1e|abl 1w12|x nI|y7x−+jlw−h[aa1b©l D)lnYx11xy ,)y=bQz E| 0nx x0 ]w|mQc xYmxylyl|8 w>z©lVsyDx%0 21e|¤Vz(hwl|al 0Xjs(1c¤[l+anw 0n)lcbl+ |u1s1)ly7n,l|is∞b=lx21§n1l ([+)aad |10wn1] |e,a+yIb2 nbx[=]wa1)=nxcl©−>,w mx {bacnzln}|§ £]1.2 L´IMITES DE FUNCIONESacvGgNer(al}l©)S axeunaδr)Q(oyd´ay7¨lr−tafw%´ıVm>i)ofiunm|Vagεrrc=cdeb,alllni0walcianot)lldd|oo8xee|c+ywoyi|lnDxfjo)lVal¦dhsxxdarjaε57b,wtu0¦etf)|exεgdfI¤iie|ualsneeP}(Tew|©lEflrxtnrε(lsx5aso)twald5xml>lBolwx|s')eyl|y:i$lεg|yYam§§sy0lxy(c}Pa0Vidd|s|amuxa7Sε|eP=y7Eleoll)za|BgaδlE|Hfi´emxD=>yneδYf>ten
¦0x©(n(dlrliPx8axie(n|li0sco|0}ai))lc)5BÛIilsi¤roo©oywg|t−εx⇒axBwd)e5n|(¤dn0D0εatεywe2Pegy(¤i,)fslzsaeloawB(|b⇔Enlex)p0l)εxlY|os)dYfu=(nxRl|a:el=xanrwPl7y©l()D'sDP[e|tla−axaa)lc⇔o|aBEl(,|xo|−sBulba→aaaεa−|ry§7w(i0−)rye+εl|pd¦g<Vg¦l){wi<,5ryadδso7ea|eεtwllz|ε},ora)x|`|©lrxa+sesl4fll©xal)(¦%|wxd−|adεDlw|g⇒wel©x]wzli¤ae|¤li)o|bz`zlwcpx|fq=loε<BeDe→¤{(z7fll¤ulxwnanuu©lεawaεi{)x$|g(ntlqtneflafrco80l(oPrlc(o)xe!rl8dxiz)rBno´}cl|)a0|xr:aaRnεoly7=a´xısr(fe|elmdletynrrxw)wPlem¦
aeεetisgi8|s)tdsoaDr|xydii}e>tHalrluea }eendn0ncaBdd0aoiIticoy¤εeoeTd|osesB(lεdornea5w)lfuεnes>¤(tx)|sndxrolwyx=laEoa|e0s)ll s
1.2 L´IMITES DE FUNCIONES 19ll©l¤ ´ısdxwm0l©ql 7xiª0tle¦ 7e wlszl¦g´|ı8ml|l za| itxtele rTxxadlε→l{¤zeexS>as→ −f¤{z(d}{az0fx+e()Sxfffδ)(c(x=xeu>))naf==n0(aadlfy −o(8 ⇐a) lx+⇒=¤ y)wtlillS=e | fnxl(lad P −e (a, a + δ) ⇒ f(x) P s$xl¨ } l a x a| Bε(l) w pz orl 7 l ax § x s| } xderecha existe y es )=l f(a−) f(a+) x→a § S f(a+) = l.% VR} h gxv}¥¤ © d 0z yzl)| x Dx¥ s d0 2¤ ll¥ l©x5y 7 '
) \"Xc e d 0 } Ú©¤ w l Is x l ε > 0 Û¦Y Q+¤00 wVw ∞lDlh|l |u
)lyxl x¦lj|g%ys|¨0PxxSS}!8)l|δδxBl|e12y8x2δlY8|l>>l7(}gÛª||eal)|y700)x ll©lly δ|xyy|⇒l¦
88yy=%02l)y©8x8¤¤fxq(wwl(l xooM{}zll|g¦|)l7y{}z¤l,{lz>|ffδ|+l((1−y7xx∞,M¤©llD))∞δxwg¨)−−2hl}Yxjssllwyl7y lx©ll¿©l l|g<<ux f08){zy (2εε|x©llw x)|xxly78 lel2}|l<|xxI¤)lÛg )Q{zwxPP−|2 liB((Mlynaay7x lfiw,x−Panllc|iBδ+llt 1|δowYl,¤δ(y!|sdaawV2 f§7))l)w,;|w ⇒l©xT |l xHMyl l©|fx l(a>x7+s))¦∞0−ll 7Slxlδ→{}zt5gÛ<l aDx||>{z¤εfs0l(Ûg}0Ix e|¤)| y8w©l=8lx£ ¤{z 0 y 8 ¤ wglx→ ¤{z +∞ f(x) = l ⇐⇒ T ε > 0 S M > y 8x>¤ w Ml ⇒ f(x) P Bε(l), M1, f(x) = +∞ ⇐⇒ T M1 > 0 S M2 > 0 x > M2§xl→Û+| ∞¤ 0} | ©l x ⇒ f(x) > 8 | 8z } u x 0 | −∞ l t| w 8 ¤¤ w l x y } l |
l Ú l +∞1E.j—emÙ xp¤{→z xloy0qsx lx| 7VxI¦ =)7 }1h I©0 x→ 0x+l s w )l x }{z xl | y {¤z xl | x = | , ¤{z (−y) = x→0− x −y y§ u¤ gw l ©vx xl | 5xw l E||gw yu)y) →u ws 0¤+ y→0+ l xs(−l P |yj)g 07=,}π2−m l xRl | y )l x Vuulw 8 l0z y l 0h I) dy0u z | s wl l | u 7y gw ©l xx§x©z 7 ¤©l 0 Rx xl | x ¤l |x
s l% V xl | x ) | s s |B
l y x <Dx s xD <x x | >0 1x−l | 1 < xl x| <xl 0 1x x < x < 1 lxlx x | x ugw l D x x 0 sx > 1 − x >0 l 7 s x <1 x xl < 2 xl | 1 − 0 | 2 p x px <2p x = x, x=2 2q 2q 2q
20 FUNCIONES CONTINUAS wlDu ε > 0 Û¦Y Bs y !8| δ = xεl s | w 8| 0<x < δ xly l | l rrr xl |x x − 1 rrr < ε. = 1− x x x <2¤0!ygw.}—7|Bl
xxl©l Yx|l¿y7wqwl l |||l7ywy{zyV2Plg|¦gxx 057yl0jll¨yz ||§|g7y=w luf18(l©(¤usxx¤4)gw wnl8 l©l=¤| l7+wlxBl l1
x|)8l πR lj /lxh|1|42ym}%¦|lsuw 8x¤8zllw ¤4|Ûg2|¤ j|w|llª7lw−lz¤l
821MlIy0l,7l¨)lh1(x+>My ll x2108|e,Xm=0+W¥ |∞0!§ s )|l ww Vyl©| y|→y l¤{lz +|xulu0∞l jl y|x{}z 7yl x=l|l | |yylnlq`πl
$¥|s 8l00lh8| 0
l x Ú n§lMP12347y0lll©xx 1lll©y|xv....rVx|e————©yyw§oyl)yxs|8pg|8RtRtxjjx)2}qtvi→¤{)llzwu|lR)ez{dl)x(x¨¨u|¦gadllxx&¤2u
wy¤w¤aaxEw
gl0Slzwxx%4wyh|d|l(δy}2{l{¨z4zzldgx7ysxDDx¢e{$~4x{2
>a|ldz)7sssww8|zf~Vl
(
{∞∞w==(}ywg|0xdxE4xVu|gx2z→¤{y7z2wel)gl)¤yw+}ls(
}2a8}w∞~jluuª}l∞<}8∞sgÛqljog| ~yf{¤zE}2zx|x2©ls80(=ywxMlwl©u→y}{}xD§!zxu|hl=xwglsl¦~)´ywd∞ıay
lxxx}lmT∞fsylw|ux}j|4u(uwy|xf}l(¢êix
l(0wxg4lt u
|x§)(PVlx|ew({
xl|)→
{¤x©lz>sEx§ê−w|gBx)
uwy©laE}y74|(mδ∞Yh0+xx©lxulf(©¨u%=x¿2)a(T∞¨}2m−xl©xx)x}|llux)ux=2z1wYx∞{
P%l©y}2~s0lyxYl−4u4xdB1©yx=|2wl}h∞δlzz(Yl7y2dE2|(©l¤{−)lz¤¦g2a84xyxxê|h∞u¨V2{wx)lxx7wyl|l0xE|y {d7¨h |VSw} llgxêz2xhÛ|l©x→¤{z2g|©lyg lVw¤4xwa}7wgw%Dz(©f|l5$(¤{zes8l©|xDlIxê|x)l)¨ lVxcIs%%|l© ll© y|xl|way→{¤Dzxl0 ª¤|`aa|gww xf¤l|gPl©(Iwx xxx0)xul→{¤5})z DlS xu=7ysa|δl©lw l©%fx>0ll|x( ¨wx>}{fz 2)l©0,Yx g7y0={zª§§ll£ss )À ÌD¼Y¤ú ¼Ç» º À Ë ü Sº ½ ©À i¼ Ãø j } } z Dx s ( 4x w } 4u
}2 l2 wg=W x 0 s }{z f(x) = l1 ∞ x 8 ¦
x l1 = 0 ∞−∞ tRl s x $ áx→a g(x) l2 s {}z x→a ¡ f(x)k g(x) 06 ∞ j
g l1 = }|g0 = ∞0 ∞ 0 l1 = 0 l1 l1 =W 0 ∞0 0 § 0l| l l| y ∞0 00 1∞ V7| 2
}
u x4w ${ f(x) −> = ll12
1.3 CONTINUIDAD. RESULTADOS LOCALES 21 5t l z Dx s s(+∞)+∞ = +∞ s(+∞)−∞ = 0 r+∞ = +∞ x r s s r5©lx8−xv.lu —∞xw%¦a ls¦lj=h¢x|!§ £
7y 0ll©¨¥¨Dxl+0E}lsgs}u
xY∞©lxdl7yf lYx|l~¤w y(|`y{y7\"u¤l}2zxxg| dz|yy}x}l0r\"~l©x2zx}{>−<zfT →E}}{d{yz xr81u4ay7wyq z¨<sdll©f¦R|¦g¨x(1x{2ywlwx4,z)¤~w||§z4−<8+ê{2S|l xdz∞| →{}z}y{¤z Vrfaê7x(=g|xjgy(u) (x l−<x)|+0)©lg =∞(flwx(x0)l)−<a−<xx hg (rr(lxxl><)f)a(T j00xlsBx)ss §¨}lg|!§ 0|l00 r¨ 0 x 0x >1 =0 x x−<uwrr r{z 82<>< 7y001l©sx wg xYx y7 l |4x +¦}∞ vx l©x w l | hl (|xy)V!§7|gx |¨ l© uww D8 )l x l¨ fw|l(pplDÛgx`oo`ul |)d 8´´8−DnnDly wÒÒ7l0±0±SSx|2!drdrδδy12f8<B²²B()´´)x|>>··axqAq¨l)s2w00gµµ−D|g−ppVyyδ0 l88|1}l51x1=|j¤¤+l©ww loo©xVflls $(8 x{¤z||ff)©l)(({−xxδ uw))1lεD,−−©20δ=x2−>llz→21}| 2rr1sja(xf)<<xl(sl2xl )εε|)−¦y xx−xlllw |1xxl )ll1 | s xfl(x7y )l | y l | {z l x {}z 7y ©l x l1 < l2 > 0 ¨ P BδY 1 (a), P ¤ wlBδY 2(a); m x P BδY (a) ⇒ f(x) − l1 + s xw © ¼ià º d Á Ë ÅSÌ Ë ÌRúÇ º Ë À&V Á Å Ë ÇXø l2a−l1 | )¦ l ©l Yx y8z | y j l02 m rr = l
a ª b −< a + b −V7|fh (x )©l −w Í ø® Íg G ⇒ g G l 7 g(x) − l = g(x) − l + f(x) − f(x) −< g(x) − f(x) + f(x) − l , w lDu g(x) − f(x) = g(x)−f(x) −< h(x)−f(x) = h(x) − f(x) −< h(x) − l + f(x) − l , l©ù|B δY (l©aεx x)l>2DDsVD03| sz |δ§ h=4(x xju )g ww (− {}zx|lj )l| {}−7yδ<l1 l,¤á δ3ε−<gw2©l}lx s|4hx)x(lx )Pz)y |ùw−zlB |y}δYl}¬l1gw! (+xaguy )(2xs «)f§ (−xxl f)l(4 −x j<)x4ªe
l−ε .l k x ε x P BδY 2 (a) x P 7V g l< 3 l©4x l x xYy d0 } V | 1.3 CONTINUIDAD. RESULTADOS LOCALES BDl©x εecjfifo(nj nali tc) imiSnfo xun w→¤{zae|easqefn(wxag|)0 = wz |8f| ( al 8)s )l l2x gÛ | l l| w | l |y V7 | l aP 5 l ¤ l ¤ wl f 0 sx vT 0 y 85¤ wl ε > 0S E j I δ> f Bδ(a)m
22 FUNCIONES CONTINUAS s l ¤ w }
8 l | y7l w l 8 | } ¤7y lw s l w 8x w| l© x z | E ¤ w l
l ªeÛ ¤ w l ¤{z s x l y l | l j ) q e| 0 l {¤z (xn) I n→∞ xn = an→∞ fR (a w)u f(xn) =l ) v
l ) 2 x l ¤ w
¦) l ) qI¦ xv l Û | ¤0}| ©l x ê | 7 }lxn(
}8SSjjX|a¨fx¥llxδ→{¤z(u7ynPdx}lwd>∞lP⇒©Ú)nj2|(l¤e¦
a)Ex0xwr8)s|4|Iln,je)P⇒x¯y}ltb¨c)Idyy=lB)hB0©)l%s)lwε}a¦gδ¤a|zxY¤§yyg|(jxywlvxw¤flalel0ls(l5l|0ln)w¤jawyδB¨zx}©lw¤|y)8bll)yaYx(8>lm[|7Py'(xa8fl§lcazn|x,IB¤0S,)lby)0)fwδsbnl¦xlS]5(wx(lI%s)sxÛx0fl`|ac%(dnfx|yoIl)VaPEhl©(gw})n||x¤⇒+wl5−rwt)uy)l¦|i82l8 Pn/syflfyx=2 (|08(u%lu%δll¤Baxn|VaVÛfw¥wl)ε)x©¤(|g|l0|)5s=awPply}−>¦ljD|n)lxfollB¤lhllDε→({¤n1z|rnzwauw0ε|∞sl8ll)j−>lglj|mf¦IwalSxflx}(|gwnx8l0¤anyi|nlDl)¥s0wjz)V¤ux|}=¨mlu¤q7⇒jyP%|w0u}ll©0|nIal|xxsiE|w→el){}|Bz(f¤yx0raa
y∞wvnd|)l8lk|−¤lxwHjafyxuPl(}δ¤0¿Sl©|lxxe,wxvε¤|glwwnBna|0l|w0l)δy]εXll)l}(>¨a=(|xlWxa>wa§2fx|wnV)©l¤xz,f00©l©l|20u(b−ya}xxawsy)lS) c|8a)|s0f ©ol¦g(0leal7w|nx¤<yys|−t|w¤¤0})l©iy|©)llwxn8}n}1x7xw|||l|u=Tw yylwsajδl0w2D(©ll|gfwx|l
px>(|%l©ynaj8)loluVz}l))xD||0rxsss Í ⇒ e¤½ ⇒ I°½ Í2faf1Ejj ((..llVjax——0e7©l))x¨mwl=á¿=xs'8pywl)l¤|q0xIll)lxlly7od05x¨|01lVDswz%lx|D|gald§f¢0xxR((lV|aP/a2|vaz)lxxn|n±x|xv)yP)PP/xfwdQzxqpy(=0w±±±¤%xl0w)©lQ0|zl©7|l=sxI|2)l±l)
¦vxw³l©pyDl|,x0x´u)lyqaxx©lyx0x7l lllnwh|n||→|g¤{zl0¤yyljD©¨lP∞}wx1nd|7ylc|m0wrfl}Pxv©l(©lw| axx|l§|lrxxl¢nl©y| qfvx)|xx¤l(lyw=a|z=W==Wl|nVpl 0w0)l00az s7xur=l©txlx©lleua7©1xh7|xwns 0wez8awVnfgwd=w|}(|gntDl}¤al|y0eu17w}y=)|r0lza=wx|−xvlnay0n→¤{d1fz}+8l!l³:e∞D|15l580²nf0n|en2(→aa8xu´l©lwn´ ml©x5a)Dxl©©l¿sex=xr©lydozxq1d|l0 0s}|uy}(l ae|Hs%0e|ll 8n7V©l)X)xs
1.3 CONTINUIDAD. RESULTADOS LOCALES 23 ¤{z H x l | 1 I ) y yP 5 sx tl y l | l s w lDu T x f(x) = 0= y −< 0 −< f(x) −< xx→0 l¥l l 2aw z | f(0) B2xR2¤ 7©l wVx lI¦ D)}{|z y w l| | l 83.— |g0 s ¦
f 8(Yxx y ) =x }| l y 5 =ylaj ¤2! 7 V xg w ©l% | x l } x {}z 2 y7©l x s|xl¨ y l Px 5 l| l 24 < δ −< 1 h h→0 (a + h)2 wlDu rr (a + h)2 − a2 rr = = $ j + δm j h(2a + h) h 2a + h <δ 2a −< δ 2 a + 1m ; {¤z |T ε > 0 S δ = 1, ε y 8 ¤ wl> 0 <δ ⇒ rr (a + h)2 − a2 rr < ε. 2 a +1 h w g| 0 z | f(x) = 1 )l x 0| y }| w l| 5 − {0}4.— 7Vx¦I) l l aP 5 a−s{0x}l y l l¬ x l y 8 l| y l ¤ w l {}z 1 = 1 xw %| l 2 x x § 2µ | > − δ > a x→a x a x − a < δ −< µ a µ2µ w lDu rrrr 1 − 1 rrrr = < 2δ x a a2 , x −U a ax {}z | y 8 ¤ w lT ε > 0 S δ = a2ε ⇒ rrrr 1 − 1 rrrr , >0 <δ x a < ε. a x−a 22 h w g| 0 z | f : [0, 1] → [0, 1] u % V f(x) = 0 x x = 0 ± l | y x¨ | x = {}z 5.— | } x w l
¦8 l vs q1§ wxl p x l)P/ w 0g¦ ©l x 0 | y } | w x V 8 l | y fl l S D V| 0 A ¤ q f(x) = 0 lBn [δY¤+1l0(w1,a¬l1a)−<] ¯fεP(Q[x0[x)0,% 1,}<1]'s8]ε!l ¦Û | YT8y xg| §P Ta S x→a x8l x P l©[`x0, 81fx d(] x−0)l|Sl< w ε| lyxu w δÛ |s|=| y w z l 7¨% x y
¦ ε l n P¶r y y¤ wl x ¤{z | 1, 1 , 1 , 2 , . . ., 1 , . . . , n−1 s Q l | 3 n n 2 3 P 0 s− a :s S − {a} >xPTcl©x0Yxoz iy}np) toyilsnl sw |uld88Ûga|e| szdElxi¨ sl|w¤ c|8|ewoy¿xD!lns tw w il|n|g|©l u0xl l0ix|zd s|lyl a| }©ld|g xYwewxy e|s| )l{}zxlxls|07y x©l|0xwly |}||| yyywVy} |7lx|w l8` |V)l |xDl©wdsf| $slIw l)0 |ww! |l)©l y}x tl2 l¤agwaws l8|x |2lyyt5¨l Dx©¤{zw s lxg| l0¤lyww0z }|l0)Dl l©¨} xlx Yx ¦dly¤|lliw|s7y ll-£z
24 FUNCIONES CONTINUASÁx· qV®ltxq% lw7lg|²ig| |f)´ 0q%w}plz nD||x gsy |x1w z l© xv% 7l V7 x x Dl V| l| ©lhyu } |g yw}
¦s l lx | |f 0 ¸0s 2 a¹ |lº 7 h)
»½|gl u|e¼ 0
38 ¾7y21 w ! x '$vs¿l ¿ f|¬igp7o)! |p7DyqIl¤ÒY)´8x5n eÛ ¤µh© !pd 00¬i rQ|z A|y YÒ|pD¤ )´w w '± hl· Àx rA4 uwµllp s wyx & 00x4Bs | 4uVy ¨} |yw l¨uw
l ¤wh z¨w {
gtl z} |xl}Ãs 2 ¥l0w ¨E d{w xYÞEg|y7l l~¤0
'}fyz(|0 )fw( xß8l|) =f xx{¤→Sz x x0l →{}z|f (ajxx1f)(m =xy) l | | lH w| e| l l lx 0h g| }y | w 7y q l 7l }'
V y )l©¦gxy l 0 8 | l 2 | wy|& 14x s 4uxYV` yw¨xR }©lwy|wu¨lx yg|
lxxwD0xh{¤→¨zz {
zg1| |Äz }yg} z2g(|s sx}Å(w a)x¨yl)=t¨o=yww 2g| ©ley} 0xRn¨ 0{xz xa|2l −} −l)11qyx }E Exwu1xxw|gw } 08 xx jz ==W| gy f11Æ (l la|ÈÇ U# +2l y lÇ )14wl$l3−|| s !l fxg (w8w }a|e8y−|4 5) Û)||xS 0| y } | w l '
y )g¦ ll yl 7}V §x | l
' y © g¦ l©x x f(a+) l 7 f(a− ) S%³ xV ´R y l | ll xl 8 ¥y Bx Ûg| y x l5w I| 2w 1|/x − ! 1l `| © n PÉ sex l | y l| 0 ! w g| D z | xl l 0 | y } | w xw}j } e|xR= CÊ1atRU# sx x©Ë¨´ıj{zÇÈn s#U tÇ o41E $t3 xDasswx h0g|vg|w0le%|0|)rVyz|t}z|c0||i©l c)wxf)laqg(xlfx(l¦%(x0)0a) llx−=| ¤=y)w|xlxwu2+g−2f021)(z11eÛaI©l /x©+Vxyl)|l y| j2xxllf }lxxfÚ©)| 8¤q==lW!wx| %¦ 00l=lx x s−}g| x1Ûl`)x¢§ |g©lg| y|xyyl ll ∞|©'
|x )ll y% 7y)gwVl©¦g(e|`x 0¨l−) )bg|q) l %¦=xs y0% x gV| x(¤y 0} =w|)w| =ax2 l l©lx s ) ¢ ¤ E w |g}| (Ûg0|+)y = +l ∞7} 0 yyfI%8 (|)VVlywxx!y7&|0)lx44y l7)l=|}|2fVu4yl()¨}h−j|xlyw1u¨w|xg1ly+
y}−Awº|r¨z)x1xxl
{
)¤A 80=mE|hz»sxHulw|0¤zdz|+¼yzI|+yww}¬Q|}3∞ll0| s|¾w©1}ll2§(!lxl)l4
q7'fx¨ux`(ls% 00©l¨z|w f©£x+{yg|$Tw||)0%|gUhy}E}V{0lz=z|8CD|2y| l©w|z}x|1i(4x)Uy81wzxjX}©l/yl©lxxut|Yx©l)y7lxl`Ûjªx¦gl4xw1|lw x8|m2l|Dl}sxuy(¤xl1wtw2lD/|u0l}xlw||g|l)¢|0} Ql5¢wgy {}zx7}t|l)Exw7yxy70y}l||l} ¤%wlgÛd¦
l©|e0|0)ux0}l}y V|hlzl |}sDx[©l|−s¤{xz0−10Dx}xÛgl{,0z1|s0 ]|l§fyl¢yjllxDl)|lh |s)wHwl ¤gg|h00xD}DwQ{fzgh z)x}1|l£P|l lryho©p¦egi}el $xdshaxl l5d| x y7ells7l }low c©lll Yxayllex¿ sxy ¤Vdwh|7 e}l laww ls§) ¤¦f¤ wuwzg| nx 0l}c)} i op|x$n©lol xel}ish0n oc%| omVy n} |iytow8in|Py7xu(©l xax t)s gl© x¿} ¤w©x 8I| | 5y 0 2w x¿g|D y7xz l!| w0l | ly s|}|%y w8V|
1.3 CONTINUIDAD. RESULTADOS LOCALES 25fBgf231f1y%ll¨¨¨j ((()||,(...δaxpxpp———fa¿y1}l©o`o``o))()5)(xH|gag|g+madjjjP´88´´8V )¤(ÌdnDDnDn)w}§2a|w)lg+ÒÒÒjx¨lD§±00±0±x)xl(21}
uuy}2¤drdrdrs'x1fS4¬fgw©x%§)mf(}δl{
{²B²B²B(s¢lsxa()´´)´)sT¢xg··x4x4·w©xl)>l0qqq)87x)(wywgw!)wxy,{
|((aV|e}lDP023xE0P¨uu¤)<u©jwfw}5yB(8=l(}§|WBd8lM|fauaε¬ulyyuδ2{/0}7f) ε2z(|y¤2n}2m(~lsaεT}wxfwds'¬uljc=l)g~vxg)l©l|h§}Eliq=ε}o´Yx(7s=l1©l0Pxf−<yau4ywn¨êl)x'((Q>2)|7x{
B21(B0
uSmh
0Vdff)wÍrfδ`δδ0xlIgg
(Tazs>(1||d{Qa¨))u
a}>xcl(l©y7y()Sgua4|i)}0lxyêo|Pδê0)})f2>xw}nT1gf−(BV¯uwy,xaax¢|)¤δδ(l©2f0}l))Bl$f2fPc2x 4uQ0|−g§δ(IeR¤s2)lDaB>2)rSw)(xag|fd(1()δxoδl(|aya
0(0)xsx}y,))
uaT|>)} f||y=w=f)x|x>s)y(wlêl}ax00Pfx|©ll0Qy)(PxwllBy|x(0+(ll|f8|x¤)yxδ||g}))w©l|(l1|ala(xaRs|l¤xwxf)0wu)fa(}lxH(w−|exx |s'xl|l)lyTfl)|}y(s|¤x| lxVPylaw ))g|P8Pg'se|B(lD((xxlεaxBl f|)©l/y ))(xδ2daxP+(0(j§S)aff§fδB(z)+P(Q|afε>x(x)g)(jja¢lmgfxf0))((()(Tyaax§a>x))lx))M| −0=−sP|l s $ fx0j2l(µ}ga| yε5()agMl Hk)|(µ xl>|)wmx(08(f§ f|gεs lg))0)>(wg) (x|)x )x¤|0)©−Îs8−P | (ggfB(fx(fg(2 δxgx)3P )))(((a−aB−a))δ)g71gf<V((−<(agaaε))M))©l =< gy g(2x(1Mεx) )1I−gx)( agw l)()E| aj|gf)¤(s2 x x+)l gx0(gz axP(| )a xB−)l uδ¤ wf2wf((l (laax|I©¤)))g−§Ï(8 aD lf) f(y(+¤adx)05x)f (,−yz a| ©l)fxg(a(¦%a)) <x −4fgx0¨ ¤wj.0pB—l©|8o`xy|γz }| 8´(0| aDnwrrrrgÒg|f)±0xmy(Ðrd}xl |IPEf|)B²w()´ ·B−)lBaq xwyδδx4l1gf0j|wk(f((a(a|u0f a)(y) a)}rrrr|m)−<wε¿ h %gfâá>)gw(ll)a2|lDI0xu)u )w 2DSaδj¨g| lg>©lyH|p }(xYf|yy7a0djlw2)B0y$δγ)tzsdlf(| %|a©(¤ xV)xwa)xlmlq−0x§glI Ifpg)(BafBgyl©δ)ε¤x0lDj pfw+y0 |g(uay) |jDf)f|y(ms(waaq| l ))w¿Im$ l
¦q |g8Blh }(|adεa8 hsp|f)g(Sy7©−alγ¦j 7f)xg}(>sV a()xw2)0)my 0qym 8s hf¤%ewwV)l©l lxx£
26 FUNCIONES CONTINUAS1« l .)´ v4o³d¦Ù ¬ 7p x¶RR|×g%q nE©rl¤²y¬n}ÑSD¤ UŹ xcÒÎL¥ !ÁTxY±001gy )´ VÚ14Azo573 ¤®V¿©ÓD¬iÓ 7p xcÈDZO#U`YÒÇÛ sql´p7Si² å7pl©±7xYæGnDy pÒ v±0Ly)rÔxÕ² nl ODnD s0 æ B7pz ±| A«)l YxLr©yi¬8z8E| V® ¬Sy® |©nÖu¨vç l ¤²Ô¶nD£ ÒY$¥C)´x× l±xc7´¤l | x w ! § V Dp c©r ¬I )©r %q y7µl us ÅÁ Ø ¢©ãVàä'EyI}|00xj w¢l')#§ul|dxdYxg|Ü|0wyà0¤t0'¦
}fF2lãI}e|zVÙ08lzê©|D¢oy||B©§l)Eà¦Vlxr$|}¤2©lÜã}eD)Úxxl)lCD)´wu8mxluo0|¤|0¦ #|rV|)zPaf¥%³||sdl|(
¬iydsa§ly))p%¦lll¢}l}||e)YÒ|l||¤Dry7w5Ù¥w§I¦yowBlll¨¢l 2P7o7p|g|xD©}}lqIcs!l©l(}{dz}uz|bYÒl©xxxsp!ax)w¢D|llܤÙnlà)¤D|Aww8Ó|zlo¢)´w¤lHl27w±l8w|x±0¢D©lyl|lw|pD¥àx¦xdwx|7|sl)¤ä©dy7¤ÞYÒwpDvs¿4¢lx02r%8Dl§la|wzf|Ù²|wug¦}}´)lux§x8}|q%wPx¨¤|}wbp§Ú)(x|E2n%RxzE8¤{lz |)ì¤}w©lg}
¦=©lwlxy|#)C78g|xljVjXwV¦ 0¨¢©ldÜu2¥¢ÜRyl8àEzly©&0x}lI{¤`Ú¢z©l0¦Ôs5xy0¢§t4x4Ew|Hlàl }7yl¤¡eÛx¤yl fllzVVl0lwhx7Â||xwhàhl3l¨wxY%8lt||y§D§x©hfVly7hl B|%l©8)g¡fx8sεxxzV'wgÝ}|2x£¦£õ}}¤xxδ}AlIG)|w£ltj7l¦I©§ID¢8CDl8|aà©Hl4)l)lD§¢7Hl¤©I¦xYxIx}y}¥ Vt¤f )l7¢DwsEVàxPwle|h§I¦Üã(Hslxl)) xxl©7x)l©Û)l©}x2¦¢|}yxlwDlyl%wlxI80|A|uBê)w¥hlDz{xzx||w§£ûD̤ú ½¼XÁÀ»À©¼ÄË }úDÌËÇf¼Çv½©eÁUω¾½ÀËvÁü üº¼Å¼½Ç½Ê ÇÀ ÃXû g¼Ëü¼ÄbË)eX¼8Îß »aÀDÌÁ¼¼Æâ©À ºü ˽ºËX¼ SÅÇÃÎ8½hú¼ÁǽļÃ'ËÊ Á¾ÅÆ tÀqÊËû½Ëźª¤ÅË ¤úÁ ¼iÅSv¤úá¼Ã¦Ë½àg bÅà úº»!ËeDÌ ýü¼ÊË Á à üË ½©Àû ©ÀD̼Äú}½)κ 8À7ÁxÁ¼ âÀº¼iÌdÃË Ë ÁÌ8Î fÀ Á dû ¼Rú ËËaÇÁÅ ËÀ Ë ú¤S޽YË ©ÌwÇSÅ De½½ÄÇÅHÃ Ë üÅ Ì0Y½Á vúËvb¼ÅÎ8ÇX˼XÁÅÀº ½ ¼üÇXǺi¼ËË ÃfÌ DÌ(Ëx¼ ÌD+½x Î8Á ¼¼iÃÄ8ú ËÊ À ωü ½ )À−ú ËfÅ(xDÌ )¼§l % l)x w y !8| w g| 0 )l x l x Vu w l | y lfTûdX¼ (©ÀË eαúÇ XÇËo)¼ r¤ú<α½eÌDmgφ½YÃβ(aαSÅg½Yûd[)à ËBgÇ ËË]fÅS.½¼X(ÅÇbβ¼ü8ºÃ$)ÁDÌ ËDÌ>Y½Å¼ÃfvÁxφ(À x(½)βü ºSË=)½BÅBeÀ©»fφ¼¼iIéÀ X¼(¤úÀ©DÌx½½Y¼)À Ãýxü ¼iûVe ÃËfÇÃ(ËSºxX¼ )»Å Y½ gûà ÇXφü¼ ½ (»¾ xËhû)g eXÇ ¼XÁ ©ÀËÀ 0Ì0Ç tSSºÊüËDÌSº À¼Y½ ÄÇ$à hÃX¤ú ¼v½¼XÀ©ÊÁúËHÀÇXÅS¼ ½Å ÇËαÅSÌD¼g¼g Ì©¼ ü g½ü »½Ë©À ûÌ©}ú Ǻ¼XÀd¼»!À©Á Ë0ÌSºÊÌúSÌDË XÃ̽º βe xu¥B} | lgw y7ll 0Ù l0zw yl d7}| Ú)¤Dy©8|lv| jll)w}|Dx}|Is© §x g x}{gwz8| lv|x l 7y©lEl Yxw5y0|RVy |g¦ yxd7lV|x0%lfw} x |xw ¤l©0x©ll z¦D |l¤{z s| {z¤y8y 0w| 5l8w)Ú¤¤|) w50xl©VHl 8 |hly 7©©l I0 )xz8}||| sy7lz|l`l ww)D|rl |0|y}0| )R u
l z}wy| l }'
l| |7y ly l gwe|¦
8x0}B|
1.4 RESULTADOS GLOBALES 27 .üXDüö¦Ì¼xËáú¤X¼ãºÅ½.¼ËX¼Ë&À¼Xf».ÇÃËwÃÀ)ÌD5½ÀDe½¿½©Ì˼ÀËÃXÊi¼Ì¼VXºÅi¼ËËÅféÀ»fºËÃ%ÁÌDà ½ÅüºººÄ½ÅËÃd¼ºËYû!ÐfǼÁ»úXÇû0ÇËËËÅÌÊÄ˼ËÁ7ËÃ%gÅËVûývü¼ú¤ÌDÌYÆSºf»X¼ÌD˽X¼!»Sº¼ÄǼ¼XË©ÀÇY¼ú}hÀÌË}úü¼iºÀ©ÊÁÃXvÇÇÃÅú¤X¼¼©ÀËtºÊËËÇüÌ©XÇüÌÌDË%½R˺S¼û.¼X¼¿Ç û.ÇXÀ©ÃHü8Î˽½.8ÎúYÁ7Áf»©ÌtÆÀÊÇÁ8ä¼Hf¼ËË$üf¼Xü̺S©Ài¼ËÌDÅü¼Ã5ËËú¤Ã½w¼Å½Yý8eÇ»fÁéÀ»ü˼À½½¿½üÃeËËÀºSû½ú¤D̼ü¼XÀ)ÅVº¼Á¼»¨À ¼iû¼Ì©ÃÃÌ©f˼¤úüÁÊR½v¼Xº}ú8ÎwÇi¼ºRÀÇüÁeÃÌDbº ûdËf¼ÆûXü ËżÇXûûf¼Çü¼iú}f¼ºSºÃXYÁb½¼v½»fÇļXǼ»ú¤©ÀËÀ.¼X¼ úÃûXÇ)À.Ë}ɽY½f.¼¼iüRËÃÃHüeºS½¼Xûgü©ÌÀÀ©½Ç ¼i¼½ËÀ©ËIÃü üÁúºÊÇļáÇDÌÀÁ %eËÌ0¼dÀ º¨»ÌDË¿»úÁ H¼½ÀËǺSÊÌÿX¼ËÅ ËÀ©2»ËR» X¼gÃú¤Å¼Y½YËËÊÅúÃÇËÌD½ËbºÃf¼¤údûÌDû»ü˽ŻfºËºÇY¼üÊÄÁËü½}úËÃY½ºÌËüviÇËËIÃË»XÇ Æ7Ie¼½ÌDÇSºü X¼¼Xƺ¼ú¤üÅc©Àãc½f˼ŤúË'eËÇʽú}¼XŰºD¼ÅI¼¿»ÃH¼YËSºú7ÆD̺eÃÇúÃǼXË»8ÎËDÀúËÁ7ËÏËÀ½¼Çe ¤ wl ©lÙ xv xw8Ú )%|©u y¦I¤ xw ) R
l l x z |xYy 8 l D z |¨ ¨l yl V l l 0 ! h e[B Dl ]y ly ¨|we ê x u w l | 7y l 7 Vg l© ds TÃüCË SºËä ¼XeÀ©iÇ» »oú}ºûÌrËÇXËÇ%e¼ Ì mÎ8 ÁËv˼aÇ˺¤ú ˽[h¼ÆAÌ©å©ÅĽ¼º ÄÃ%ÃCxú}Sź eB½ÄÇÃ%û Á]¼À¿À.XÇ ÁvËI½Ê bf» Ã0üº t¼ÊË ÁÇdûDÀ ½YÀˤúÃ輂 ÌËxûË ¤úÌÇf»½½ ÌDûU¼XY½À)ºS¼ÃY½Ì8ÎÇXÅ ËY½Á¼iÌÃÃf¼ 8ÎMÎ8¼iÁÃÁ ¼¼ Å ÃXË©ÀU½$½ »À Ãú}ËỺ¼ ¼g¼ ©ÀǼ½ºÀ©¼XÇÀ½ Ì©Ç8äÅi¼¼ËdüÃgËËûÎ88ÎXÇûdÁ½Á˼ û¼XÇ ÅÁSºËżÀË Ìú¤Ã ü½Ë SºûVÌÌD¼ËY½ÇÄMÇdäú ˽ ÅSY½ýÅ ÃËË ÃSÅ ½ ËÎ8Ç SÅÁu½Y$¼ÇX)ei¼ ÃüX¼©À DÌ ú¤ûH¼½7ÁÀ Á¼ü ÀDÌi¼ Ëü Þ y ll |Vy ll ! y7w ßl 78[ }A w Cly |B} y} Úl]8sz©| ¤{z }}l| |¨gsu lx tw|{z } w x }
xYl¤ y00} 8 DxYx y zs |d00lz |â 7y ll¤ z gVw Al l ¨ x 2©¦%[B l]Ù 0l }| q)Ú '8 0| wzx %IuVw)Yx 7yl l | l©Yx y7l l 7 y }lVê £ gffûdûb¼hú¤½å©((˽Á ααÃXD̺ÇÇûÃļH˽H¤ú½M++¼X)À}úωÀ$ÀSº ¼XX¼ÁUüωÊf»À©Åf»ºÃdËËv¼))ĽÁC¼ûÃ%ä)fäË<XÇ<XÇ(ü½8νSºαǼXÁûφÅφ»©À˼ºS+(¼¤ú(Ëαα̼}úαºS»ËUX¼X¼ <+ÌeÅÀ©+¼u)¼©Àú¤e8ÎβU¼¤úω=Á7½¼û Uý¼)Ç)'Áû¼decφû¼i»¼½ûdÀ©ÃÁÎ8»f(˺V˼αûÁÇÃ8ÎÌD½¼Ë½yÉâ¼7Á©Àß+ÇÍf¼¤úf½ú½e(¼X¼cfUãÌDαÀ©(ûX¼½α¼»))½àª$ÇeωÐÄÇd<û+ýÁûÅSÅ À˽f÷Á»fφUei¼À©SÅÀ¿$ÃX¼¼β(ú)gÁ©Àα½ÊÀ)»>½À−)D̽vÇdüX¼Ve¼¼iÇφ8Îαi¼X¼wýüéÀÁe(½ ¼fω¤úûα©ÀUÀ©½ H½Ä½}úÁÀ +ºÃXÀüÀdüÅi¼ºbËÁi¼ÆÄÃÁüUÃË8úźSSº}ú¼uvË©À̼ʺSú)eÇÄX¼ËDÌË ýüÀ©¤úûÌf»½½¿½Ä¼e½»fÆý$Çg$À(º7ûX¼ÁαbÅÊÊXÃÇXÀË»f¼¼X¼ +Ëf)ÀÀ¼û (ÇX0ÌËËÁαω½ºúXÃ0¼ÄÌ©tÁÊuÌD+)½vÇU¼Ë <¼XÌSÅω˼á©ÀËÅXÃæfËφú}ÌD)h¼ËÇV½¼ü<(ýÌDÁYËα0ǼÀ©φË)À}ú+UÇgºS0Ì(Ì Î8αºeωËβ8Î 7ÁÌDÀÁ7+¼%)−ºX¼üdýXûfe8ÎωÁ¼αgDÁ¦ÇĽ½ )Ë˼ÃeÊB0 oh lze¥$a Dllny8o2y s%ew §fdx sgw x e|¥ uVw lf l }2¤ s x
x yl xdx0 Vz|z xQ| %¤ w x l slxRw|eyl}}} wg)Úu8xV|w 78 u4 }e|jφ¨8X(êxV )7 ¨= 0jXt l tl efo r¨ e}m ! a d el vTy¨ )wepl©`oo¤x rgw´8eanDl mÒ 0±fij §Eard(c.y)B² )´8·=q ç f¦g0: [a, b] → 5 )l x 0 | y } | w § s8l | y g| l)x S c P (a, b) | xyAw Nl l| ¥ l©xs lzl| y N = x f(a) < 0 < f(b) %¦
d8 {z ¤ s } xx P w[a| ,y b x]: fhl(xw )| <xl 02 l y dD | ¢| w |
28 FUNCIONES CONTINUAScddII%0lu0) whV¨¦))Vea−y7Dl|xxx00dxulwylzypγb}|!Dw5klx|d|wwuDy|glyS|wg|elj}0e|©ldnuDhf§`fξ|xz00¤(t(l|0}|}wocIccDxoy)lxxwgs)8)sw)|xxRP|l=l©)0|g<fil©>l©luvwwxNxwxf0g¦wjalD|ej|xoc00lvul8lwzxllg|qojzss¤I|wl)l4||p0%r%0wxl©(xDy7fe0qaVwV%{NxlYzlw
ylsHyl)y7rlx5sV¤}8|e||l)xg|©Úlai0l0wxyu¤nl0|x0ll¥yxw|w|tf|w||gl0zuwy7eξwy|yDxll!l©ywr|n0lyyBl||Hxh}¤mI|}7¨|cyw|<w©llgwciVwxxlecxoalllww|cdlnwhf0|l|y7i|§elx}{l¥zyloglÚRllD||csb7VVls}fuSlS}xhN(Vscw|δ7γllPcy7lξV¤wl|I)lo¨>0I¦>xwjwg|e|()$¥n§)w )aBllIul0l0tl||e0y<w,)Bsi8}Nl0bny¤lxlxly)0w|)lugw8|ce|t%sllya%©¤Nx|y¤yxs))lgwV78)Vlww¤zHs$xfx}hll|}g|lwEl§r¤á¤yy¤f¤08l2fV%wlw|)((l©l7l0xuf©lqlclIξyx||g(xYx)©}l0c+x¨ydcq|l©¨lh)l>zwl©7x−lu|ugVδx}=t|0|d2¤¤7w)}0}0y7¤γgwq©%u|<0llylTd}<y''êx}|eξ0©Úw0ll0 }l8¤x%|lξAsP|wl©V|0xxy0lwgwxw¤(©llslxyI|llDc¨|xhwh
w)8uDc−l5¦Ù|Vl
x7yly|%zγwcl)7xytVx,8Ú}7+lelDpdlcux)|guo)xqr)|glδjbywg¦rQo|hl8lesPpll|¥5|ltmN0%0|lyiyN)e7Vy7a|Xllll-xssssf[ClSjjjj a
g}}(|c
gIol,y )|aPrl©og|] (x%xlaal)yfPwfI,8rx,(:I|biφ©lxSo[)xRa)¦gc:syx,w.[l©l8Pbaz|txu| ],w(j¤bw→wa0| w]||,ylzbl→[j|4%a|)f
¦(,y¥5y8cl5}bl 8}})8|]
=x©l8¤§x}w|φf0l} :(j0ffc|I (:)y|c→[l¨y)a| }w,u|=y5bw) ]ys2 l© ©xlx→Es| x0yf(85a||g¤ Iy)wl©)l©|{hz<xx w¤ s 0 | y } | w § f(a) < y < f(b) § f(b) > sl | y Ve| ©l x φ(a) φ(b) w lsll | B y0 |g| wl)vx| yl 0 |¦l) wxd|l yh}| }y! l
u 8l }| {a} S x P l y 8 ¤ w l f(x) =y l x| l [wad, b0] z | =0 P(x) 8 j
'w z l 7 ax %> x 0 y s S xx > 0 y 8 H ¤ w l x2 = a jXl0¨ Yx yl g| 0 l }{z Ú¨ w 0 ¨I ) ¨ } x| ¦
cd(
'x¨jj y}w}7p<xY1=yo` , l0yd´8l¨x©2nDlww)jÒ)©Yx%%±0s|ey ªrVdªjI¦l7f|¤|c)©²i(¤z¤uy©´|Iseçw)=dq)xj2g|mllypl n1{}zfjl©yg|y,dxxly|l Vj|¤%2=fwlVl(©lPIl! ¤x+)l fwmjfh0∞(©lIgqjg|5¥)|cy} ¤¤xYxy©uy=P8©l8 yfx|l©wfl8(−x7y(|gI0 lI)∞0¤7y)g¦|lw|zVxll|zdxy| 8lcwlfl©!|fyDl−<Yx−y7(uylyIPsyz)φ1P(f8|c(D<uI,( )dcysyy©l,w) Yxd1g|wy<I,)E0lDzy5êu yf2zdx%(|2w0IV[P)−<φyyQl 1(f7d x,(lVsyI)f 77)§2=sl}]|%ÛgyylIf8|V|1l($5¤x7y7f0}l0()<}V I`V−z7)|y¤ yw2l |lqllxlyl xy{¤lz |ly¥l sf¥)| P|§§ l
1.4 RESULTADOS GLOBALES 29 l y7gÛ l |
¦ ) }c § ©l x V¦B'
} ¤ w l f(I) I [c, d] % wl©u f(I) l©xcl |s w 8} ¤ w l © x w|}| d[7yÛ¦§l©0jjj 0
'
gªlxYw
e,Vx| ©l+5%→vxxlw¤{z∞H!+xx| lf∞→y)y2¤{zªl+h
qPqw2}∞(¨g|xw%q0xx)|gVu2zx0=wl|w| ||e=¥zy% |0+ff(g|+V∞|pfzxz|[sly)∞0l))lsx,xDPxl=+s¤(gwxxw©x∞Dl gH→x)ulxu ¤{lz2})l−¤l q©2|y¿∞l©S lx0[bPal|l 0¦llf(,Px(gÛby7lRfx|l)D](5Vx)yall=} |s|)lè w ¨yb−>−l h∞>a ql §sa qy'sfw (zlylD7bw)u )g| −}<0¤| S gwbzal| Is PxPφl ((b!5|x)) a | b fx( x t| ) w |yx §=8Vx¤ u sP(x) y −wgl l >0 lP(© ag)} ¤©< 0l w l| y l[0
, +8} ∞ s )§h w | y yVle| 7
l©8 xD} s %| V 8Dj } y 5s l s |2} | |2 | § sHl 5 | yl 7
8 }A}! ul | l©x f(0) = 0 0Eyw0)|Alq| ty}g¦|}e|yolzwl |¢ry e
l md8l©l }x¢la!dyle r §WlR | Ù8ey Dli§e})Úy
r8d8s|0}trya s} s l ¤%x wV u l w wv l I| |}¨!ylE wu7y |gll |V0 zl Q|!lHw0 |q|)}Ûy| }77y| !l w
¦Q ) ©l¤} cxw%lj VyA7 w4 }e| !}| 7y ulw l|g¦
| 0) }Bz |l(fT%yy7©ll0)d8¨SjjjjMIl)|xY¦|0xlVe|npy7$|x18u`ozIoI−)z©lyw¤,0áÓnIr1Yxx©lw}´81dye0l©u|efdYx2Dnsllh08hs(zm8syqhÒcx}M!§)w±0}Pφ©d)ly|)l|)adrD¦0)P¿(x|l7y[w.zDw|xxawl−|l©B²)Ig|wyl©d´)8Úl)wxy,I·znxv¦
©0ql©l|be|Hf<)D8çxx(l]TxfIVjy}swx8yw
¦ny:|Kxs))B5)xx8[y©lwXjwlaδ}©=TlvxWl©|7©l(,¦}lxxlzvxcwllwbV|x¨u|j|)0l¤%l7wx]Py}y7Ql0}{wz→lw|Tl|fg|[l|§|el|Ûgax0lsuu|f©lDx75,l)s§¨8S[(y7xY|sbPaxlxjlyBKw¤8])l©xw7,1SIcw|eDwVx[b2'
D)naPl¦IxP]BsD−<y,0ls|x5¤lD|Sbll[{}|yfzwayyhx|]|ww)lV(8yysl,s2}xxlD|}8d|gbx$|xuf)y)g0t¤]Pw§ulgu−<|©l¤lcwgh§syl}xcwy©ll[¦
}wssf0Vul¨8a)xYlx8(lg|ll©0B7y)yx,lx)l||YxlD|BVbδ2fyxu¨ylxyd((7y]l)lzlz¤xcl||
|lg||ydTgw)V)`|l)l©0xfIljxÚ2jéx)lRnl−<txDlnxl©{y¨Pz{z%¤wlxvI→K}{¤zfwwVn|[ yf0a¦
|e∞lyl0seT(sl)y),xsl|xlYxf}lMbHx)VIy©l(yx|]wn)Px}wxDMD<)|I©llDs2IlI1{w=x[zu0)©lI|=a¡M)ax}%=,=y|w,0xbylf)zy7|w−a7||[]xqll©ayBM+2yxcjg¦,(K¦
b1yllJ©lbs¦
8)Jke)ljzXjf]T |sx=8{xzxl
2)s'7slug'$¥¡f)lP|8φ|Sa}xjlD¤7Kyx+)l[2©([8I'axaxl©8bnyql|guV,>Yx)|,−,l©0bwyb|b1©l©=])Dx]0mlkxsss
30 FUNCIONES CONTINUAS1.5 MONOTON´IA. FUNCIO´ N INVERSAgfDx%l©ll©l©¤xjj uwfd|xxxsgwVj(<eg|}e[fl}xqfS0fiw−0|8cz−),ygxsD§¦|enr1+1z>−lew0:VV|il=|IxW:c∞1c|0fl7yVqyfz(i(i(Vlyg|yow(l−elxly)S
¦y:|gnmn)wB)sB∞lllx)³[0g|te¿lxh|=xhql7=→0vxels0V´,l,ázggy−I¦y[+|!)l·0fz}S})l)e|¤1(xx,∞|tq|s)xxwB|n)s+sdllf%)g¦
8)¤¤n∞XjgshcV|`lw−S<lfuw lrz→0(8(B{E|)zx}exflw1}8h|flb¤¤(gÛ)cw,|eD−
|¤ywwf|i+¤5)l80=l17yweW)flx|l)ll∞xlnj zxwfx)ljfs|ltf(8|eYx¬()|e(xyy|lfxw7)T→|)(¦§7yR5j¤)Elm8lxdxlslw |−>QywV)=,}eg|%8`5yy|©xc=f0qVlx{¿xz¦
(r¨xPywlz©e¤fxww||)g|gswc2¦dg|l©Sxy7i(f0ql¤ xR0lfe0xl):wg4xDynwRxl¨)zál©0S©l8|sz||ItYx%|l©fÙy=lel)→hxYxVwf70xyqlxx1¤|:7l}lxewy¤)Ú¤5Byf||l2n8|gw8¤−y1ÛgY7y|©l¤0l8Sl(1|ll©Sx0l©(llxxzjieIxx)||n¥lms)gwqy7<|→llyt5©ll−)7yo=reYx|l1yi0ync|¤l5c7:tf0o´wx¤tlx1zxui[ytla00lvll%ynTo|,m0a)l|ge|ycx+ny7|llxi,elay∞|¨o´¢yl|nl2xlyTn| llle%t|ql)xP7yj|B|enVli,flB
→n©lSl(fy|cl2S17xY(0vfrVyS()wP[e(xe80¦I0l5)xr|<c0),Ss)l©l)si+0zxlaeyy=f|∞l8n¤¤(2y7dwe|ywgwtl)l)x1|eell)xQfs1[Py7%l©¤l¨Së αl(x|¢gwf.l©V−<e|2rap7|—,(lo`
oaβ}0l)fd${pfl+(k5]ê>´8x(s|xkìinD){}α}zlIeyls)l{|eÒz|ex{}|z=|d)0±%−<8→{}czVrÛsqIja©}l%7Is2afdy7|'²w¤wwV(êwD©lε©´fleyhξ·|g||0wxcq(©l|fs>)xy0xxlg|lys!llz)<lt|||fzvx0lswshl)|ylhws§sl©xDlDwVxw0%!fxuVl7Hg|+δE|l©ll:|| }8xI||=Itlε2}|s|Sxy||usl→slllξw7y}yDξ8zfhsllVw(xlP−x©l7fβ5DlDg|¦
0|lxxVu)(})y7alDx¤|a¤l|}©ssP4lyw,y>)%}0s¤}βlf|||Sdww{(z+l0]wltw%xzlll|Qysy)g¦Il7yεf§8xaS%l}qPe|}lδ|V)l©0¤¤{zR)xY()l>)wwys|<lgx|l§`,llz|qf|}0ÛswxxfdSd0l|l©ls+a(y00fe−7ξ¤8j(|yVtlε)$awyf|ygaw)(wxRlv−¤y<xalll©|l<w)f7+ysldsl
=l©)δ0x+8[fx4lg|als=}S(x
u7ya,εwl}ul)b=−)y)7sllx])g¦}}0∞>Vsl|=g¦0af07ll}(fll|f|x}{§<z(y7(s7y|xxl©l)w/zlzlVxx|):)|Bs(xlIy7:αS
¦¤§¨Tllf0aI{d)<z(0z`−<x0lbj l<l5%P¤ξ−%x¥$Szdw|V)lx(<xaQ§luj)a=z©l l2}−<,P¥axlxl a2l+lβ!lI§hxx+h∞ywgu¤¤l)l§eδ||}|wwlV)llll s s
1.5 MONOTON´IA. FUNCIO´ N INVERSA 3123yεf
l©l$¥}l}l©0¨¨SSj 2|−||vxxYlfx7..wllppy7ylx——=s7|V−1,8¤©lwo`o`l70|[lg0(yx1x2xgÛ¤wg|4y¿byfk
¦(8´8´,,|©llfw©ly(y)z)DnnDwy}yl|)x%|lxÒÒx})l}0%P]0=)y±00±P|f7ys'©fuVlrddrIf(luw|luh§f0lf7:wgfa|I(a0xu|
(sB²B²f
¦εIlIu)l©lI2)´´)|y88y7(l%)··sxl))−8qql→a}>l|h}V2jS`gxç0Dy7−D©lδ|wlj}lV0xfjl<})j5xD||x)z<(¤|x,|eslay¤VIhyy8Pfw|xya)}§w¤8fl©Df(lyl|lv|e}z©l¿(axw!lfhl¤yw
xxzji¦
x−V<l+¤w0|§xll¤,8g1ww|ell)7lyfwDb}f<)x|¥|)Rl|¤z)Ûeylua(l©|l©l©ydz8agÛ[δ©yld=l}xDl|y−j0)yaxz|8)d||0¨Blw}w=wuq+<x|}yg¦−Dfjy|lDzIwulslD¤(l|uly7s%δl8lzqazεy0wll¥5|sh§z8,¥)xl¤{¤z}l§A|lgla|
¦wÚ©}dlw)l|u|x|j¤¤P)yf0|gxY8yl|+s§hy}wwy(fl=ly77Wcl¤7xulf(fullf=g|εW¤l©wa)(jIz¤©yf]w¦!xI[ly<ªaI(l+)©lul|x¦
8fIx)lxs)hwyx(−w)wffxεa8Iêly|I|g(y|f>)ll>l©)}εy|zl02|l|xPj−¤,¦)l¦I7yaf|gas%{w7zzl¥<ll2(lf|l)jflx¿a+f0Yx(x©lswj(y|xfaf}yxD}−%l0a¤|2(h|0ε(Rylsl)xywV7y]
%δ,D−fesBm0l|||e)fl)V)l7¥l)(yuQε©l77y¦
|V|a}xx=l©8Vx)lt|)¦I¤yx§Dx,l)©l¦IR0l}w¦lwgsfx8f−)fs¤|(g(}y7l−|!yfa¤szxdswIx7l©(yfl1})x%sVVSlx)¤s+8|x(¤|lPg/δla|ywy)¤©l<w)lwε|lxlgwl)ll©l!>!>−)yf|axYal
mV0(yDlyjll8Ifεe|−0%¤{→ufjzIw)|(}|)xÛs2Vas|Eδb)l©yl©1le|c¥If¤¦
}x−xs0%f|(8gw>8ê⇐lÙ)−)I)Vw©lw}}flw)|¦|sdYx1jl¢|⇒0s|y7yI¤xy%(ll7wlÚ8yQyl©w)l%Vww|¤|)xg|f)xflf')lDly|y(V}lu0B)l)I=¤l)xylfll)x£sf(a − ε) < y< ff(−a1)j +ε = a − ε < f−1(y) < f−1 j f(a + ε)m =⇒ f(a − ε)m = a + ε.2p+E1ygÛl0© w¨..|a|∞j——|gxe}rwuD0 mslssSe|fzz ƺllpli|4|0|f)l|ñU3glnyxo}}Vu#Ç|h|í5 sÓl©lg|%
y7exYslllÇhnsy!$©l7 ¦
î7xDx}iw#0lz8m()suyíl©)(yf7¾xtdf8¾p−¤Çð−©ïIa}1ÇÈ1!#0)3l(r(xhl|òxs¹u)y)2)ulfÙl ©=l'$=l)|A)¾}5x)Ú3xn·l%n·)l©¾0g|VYxxnxaywól 7©lg||©lsP)h¤ÛfYx7y0xYYyyly}rôE)z
'z3sll|s |¾©l¤llhl!x}lÛ[||¨ËÛg0|7y7yUñx|,wlll#+e||εx5¦
0%0∞ x8>l©Çh lV!$s§xz`§)0|¨#0Bs0l©l)l[()§sfx0|x x(¾¥x,7yD0xlx0V+luV%)s |∞|ÇlB=δ'Uyy|yu}%})=| |x5xñfw wn©l(usôεsx0U3Dl©l§)l[wlyU'x0|=V|g|f)(,0â(+05¾[500h¹|∞z|),§y|Rt+}=<)|xwx∞ wx→l|gδ5{¤|Bzt5)¤+sy xw©x∞x SH{zli ©l)if¤|x(wn{xz0s)ll )Yx e|yl¤=sl££rrrrrrrrrrrrrrrrrrrrrrrrx l | x l | 0 x x l | (a + h) − = 2 õ a + h õ h −< 2 h = < ε. a 2ö 2ö 2 h
32 FUNCIONES CONTINUASx+gÛl©l0}x |l|x£l|∞7yyyll|lxÛ7l|00−ls|¤jd7ys1ál−l
¦ly}(||©l!8!|)¢xπx27yy7l©xl©7yh)l2lxYmlxw§`wy7wluwlI=§llg||g|g=
¦l©|g|)l|)y0©DYx80}zy70x0|Ûey)}l−lz77yzl©z©||szf¤|s|ldx01|y[ly}−x0y}l}¦
|707yl|8|h§QÛg}¤u)y10h|w
x l|}x,2lyx
xlxl1lx8ll|
vl|w]|=Ilxl©8y=¤y||Ixl4©xYy}qlljy0¨ |π÷á2úülQxlzCøû7yy7w[ylm|ù0÷0luw|g|}xxl,−|==|gllDl0πjyÛgÛ10vx©ll]lxt(lz||1x}|x|+zDj|
s|v0)7yx07y8ll4lπB|l2}|§A=x|
yym(l
¦§syll0|(}8wl©)w!)|−l!)l§x|gxg|wlxV=∞!0Rx00Dy7w©ljQ,uz1−Yxzl||||0+|y}|xyyyh|l§π2l∞}}}0}}
||75|h,l)h|lD
wwyxYx
)π288y8−llxxm}yz(ullxxπlljX||xx|k|j)¡l−l−yy7lx5Ûgπ2|=`l2lldl|πy2π2s:| }x)l+|−,k−¢§!xYlyπ2m1y1ll©l4l(kl0=sw|zcxx§rly
g|7y¤g)jD©l|8¨l−x0}l)Yx}y7)l=llyhxl∞|z07w|xDy[¤y)l
e|})−x$sl!hxY!§88y0x¨yl1}8l7§I4|y7,|z¤tx)u1s|llB0Iyll|]|j8|)yπQ2|B|xl4ygsly0
−2l 0ls§ll)l©|8m|Yxxx|wxyyyl©©=ll llx£££z1.6 CONTINUIDAD UNIFORMED2δT
l |δll¤εe|s ¥yfi>ly|Vfh)n7:|I0l|!iwD|c 4wS8ilx||o´wδ→l)yn|gl>
c0|zls5 0wz5%|l|lly©y)wf8εl'clg| 7yl©¤ §00sjwxws¤,lz|0|lfl7yT (ll2|l©¤xss|εyx$)w,}lmyw|l©l§Isyw| f8P8w} |gl©ldSu|l¤xlB¥|yywu)¤z8wlÛgwnSll©©lixfs oqll2¤w ll|uδrw8||w\"7ym|l |I©lzyIeÛ¨eV0x)©7m'&s4−||y ©§T¤ey ©y}nwε)|5 t¤w <)>ey $wl) xs¢ c8δl0 ¤of|)¤x |en§fll©lwStxy¦sTily n0l8s||ul|luPawyw|f|lSεy(©|wsxw>)sSX|g−l0δ0=Wl|ws|fz>|SS(8y5 yg|0If) '¥ jXl©D<xw©lYx ¨xYylyεxz|l s s3x2aE1§Ix l1...)δj———Iey=+)ml¿¿ y|δjpww ¬l2δlRRq§yl)l)l moxxxf2wsw¤(2xxe|M<x|gll =0)0 xx¤1−V>wzwzε2δs| |P% lf}0=hx(fBx1|yl2Û g:δl1)(||D}(0êŤ a©<,b8T)→1©ll)x|s%δ)λxxsl¤w5wy |}V 7 l l | y l DV | y } | w l | [0,∞) j {'z )l xl | [0, M] |E¤ w8|w ll©HaI}l xδ)¤VS
lw7i<lδypl7}s>1lÛe0wc ©¤hI <)08 l)i| t|y δzI7y8 xliH) <ay1D¤n−w1a|xl xyxl }a2=l|rr| x w>2D=aw−0+l©xl2δs|a<lS)2δ2(Q|¦ λrr0δxx ,<luDw>1§ y)|10lrrr xx| 1yI18)lg−{z¤) gwxq1y2rrlx rrr2T =xx−, aa2>rr 0 x−y . = w | y x 1 > 1 δ yP D
1.6 CONTINUIDAD UNIFORME 33 } dl l 7|¥ y ll ©Ú 0f¤l8 |)l|e| wxy |g}l| i0l pw| s[c0lqh,| i1 tl[]z0s i,{za1w n7]g|¦ aj¤D) wlg |l}©l }x)DxDd{)zi|8Bs}l x |©l yx l l|g|Vy7 ll© yVx l fl l ¨)lx [ gaw }2,| 1}s]Vl07 l©|wYx ly |g 0lx zl| | y l 0 | l©syx |w lw|7!} Vl | 7| Dl)l x£s z xI| y a> · D 00 FcjD¢
l¡¦ualäz nu x§Acs Äliuuqox ýrxn0!abe¹ st¼wg§©loxdex2) pw¢xó ¤op'w}l|o´oÇl(%y7gnllþl©iesIxc©lnzy0¶ax¢cx |i aÿll wwl}² e±7|e|0nDsy0Ò }y|V«S| lwlB´ l©oÛg|l©V®x g|Dxy±7sa¤0n 0cp%r´ı2dz²}tfq| m| g×7y¶vlnill|²¤cq%lÛDn axr©s|0ls¬ ¨'w¤ |0yg| lw0z ||| xzs}|lVg |7w7l)0||xluV|DVlVw7 l|£||$¥y y}yll|l7w 0l |ux| 7ys wylz ©¢}||Vã 0¤wã©| xxsy } ¨| zw u¤ S = {x P 5 : Bδ(x) ¯ S =W X Tδ > 0} . l xux 8 l | 7y lsfx } | ) h¤ lV 2 l xYly h dg0 }z |s s (la , xb )u w = l |[ay l, b ])l x§ w ±y = ê 5 | w |g0 © ºb n G ¡ g m £G ¥¢ ¤ PfT±0jjj w(l}erpg||E2xoo0ys+qrp}t5{}xvz|{}→zezYxiqx|wyxDemwl©0{)zYxdw|gysfaya=©la|07l:qcx¤d}|wS1zfVey=|.(S8→78sp¢|.l01)w¨ 0llQl5)|f%f¨|fldx (7yl)yx|lql|8xyla|wa)llz¿
07yw|g|g©ll>T¤>z|0lDxwlp}D0¤7)1l0,VVlqs|7f|Ûyaqf(YyP}l(s→l|lq)}{>zw±¤−)jXQ=∞l0=lq|lfa¦Û|y7( l}{qYszwalÚy)0g|0q=n0Tljs ||s0z¤yyl)|z}wPlxbx|§wlfwa¨Sd¦(qlsqD|→ewj)Vl}{zfh+|¦ó±|=s%l)∞lEgy7wSx5xal|'sayl|wqylaql|e2|¤2
>yr=dl l070e|g1x|¨B+cgÛwyy7uzj)∞l)lxlhxHa|gÛêclxDla|j7i¨ xo´z<|axYnl ya%±l1 fjl<wxu§ e|7ny 1ªch
¥sd§iBwll©oz |2xYfny¤la©l©|xxxla0 = 1¦ n ©§ ¨© ¨ © aan = 6&&6 6 aa−n= 1 anam/n = n am b1§lw¨j Iw12|ip/n¦g 2`o}{nz|o2 lwk´8mzl=Dny7y {zÒliÚ10±loard7%ln>dVtRε²B£ ´)©e©lz·¥1>dqxV}0xN!}0¥$V}jesB©Ú|Ialsw¤x)8a©llw<txsol%−l 1©lnnrxYxxyaêP>¤y }w)>ªrl©
h1|lyfx 81y}qysBh8→)§}{zIqlg 0¤r|u}+¦g,¤wy8 ©sla2llz |`qPajxn−=±lus10ww 1−yl8<y8|djXªrey7©lεlh=lcx Q¤1©ll©¤w s¦8m|nxgw|e§|y l[0D0r20,V |¨|+<%7| !m∞V}s ¤x,)0ansx rza2|P xfm¤§ry/}gw)lnv¤ll| Hlx=alfl e|o´sg2(0r >amxfwmyaulsa))I¦rlqm1−a/¦gnr>¤d wlezl©>|1lxl (1 + ε)n > 1 + nε > a, sh§ a w1Dl /u nh −01<uε {z n ©lz x ¨ l©Hx l©Yx y 7 ¤ y ) l| y7l l D l | y ¦l 's xl5y l | l 1 + ε > a1/n
34 FUNCIONES CONTINUAS l l a| M1y /n|g> −l)0x 1s δx <l= εnn1 Q x q Ó± § 0 < q < δsxlcy l |l 1 < aq < sa1/n w lDu M § s xlaq −l k 1 < P r y P 1 + n(a − 1) > qP ± q>ny l | 8 ¤ wll©wj w}x|Dl }0u V<ák7 qw hl→% l|{}z<+y |∞εlδ|gl| a>|7y l©ql xa04|0=qlsy %d0|>+Vg|y{z∞2}a| l©lnwxRy ll =qx hl→q{}z|pg→j01{¤,z}+(−fq+−a∞¤∞Pq(waa±l¨,=q−Ms ©l l©1px1xv]s)¯a>mS nlδ± >q>>q I§ 1)10sVp +7qg y−! 78)nVq¦(¤ al∞=1w −l Msh 1rrqxwa<)>lDhw >u δ|Q−0 sM%x)l¦Û1lx'Y ,rr0y0<¢ l | z x ê aq l©x ε w ) | laM rr aq+h − aq rr = aq rr ah − 1 rr −< aM rr ah − 1 rr < ,¤ wgl© )zw ||g| 00§ u z| |s yy }a| qw7 VVsx gws ag|l©xxV87E7g V} j|gl }y ©ll l
¦`§| 87y l}l)l x 0 [−l| 7dMyV } I¦|l ,!wM ]l x¦Û0l '¨Yyls | R8 |x 1| s [x−| cl y My |g l, |l ¤ w ±l ¦l ¦ ssBl Iy )lz | xqll ©w s I| I ) jBM zw |g© }> ) V 0 Rx Ml©x©]hs ¯ x P [−M, M] ax = ¤{z aqn. qn→x qn [−M,M]egd2|}}0l¤ |h|'¨xwgwale
7y4ylrpllI¦lbio|wtl¦
Hxam|nxe|xu8|xYsl eysxe|(oEn|a0}l a4l),(cl©nlu0∞xD¤xYiwÛ©aea}sy,¤w|g||gp+(
¦l)wlux0ex}xelD∞y)sl)rlzl©xq|zi|jj)xa|l¤lsljonl©7|wg0wwg%¦Vxzwol©|yag|lDl}s}yrqxxyu)8V©l¤liy|t7wsmlewlqlg¦ %Ûslyl©lo8ÛV|lYxz4l4l|y||e|l}nx|l)4l5wl yy7xYs|g|bylq©w¤yl7l0aw|g|r¤y|l s2lx08zyl©e}|ry© 8uVxl l|ag¦w}x h|l©|l
'lx
zBs|x|}I|5l[)l©ly−5xHlx{}zxlwxMxDl©lf|y2e|VYxD} y|7y,|07©lMyly|¤wxq}z)z||xI|yz]wly$s8¤ ©lDhlw0lx0|e| lf¨e|ly7fuz%|`qlusHQ|ny7Vwnl§lc|w8©l|cil|g|o¤xi|gl)o´y7vlw0nl0Yxn ywy|7ezl)}||slVez|xy0¤xl0pel0V)sp¨|exo7l%o!wt!|©lVnef|§qx|nweyl0©llwng|c|g©lxlli0cx2|0a|l0i¤yolayzV8lª–|-x££l h!8 p 1 n n\"$&#→%('0∞) . . n e = 1 + q = . 1j j f(x)m f(x)m g(x) = eg(x) ù ,2x l|| } !¨0 |l| x ©l x )l 7} s % V } y 8 | y s I ©0 l h l )Ú ) s ¤ w l f(x) x l % x y
¦ l | l V£
1.6 CONTINUIDAD UNIFORME 35 k q l Û|g}D z | l d | wz l 7 's l)xw | l¤ w l |© l l D} D l Yx y 0©c¤ w l e {}z }|1 e= {}z (1 + x) (1 + x)1/x = e x→0 x . 7 l | y g| x→l©0x l ¦ cl x l 2 ¤{z 1 |f¤ú Y½(xÇ ©À)$½ ∼ÇX¼gÌVÁ(xü Sº)DÌ ¿½ X¼ À©Ì ¼ ÁaÀ¼X⇔DÀ Ï l }| x→0 x (1 + x) = s
l 7 eÛ 8z | x lhs l | w| l | y d | l s equivalencia (1 + x) ∼ x 1 0 !h8 f(x) = 1. Lp| ea¥rsb(lD¥$zxfo´yu)l7ln¤xi=©ªccÛe awi©Dxeog|8sxx n|0l%−}eV2ws|elf| l©Ûh−l x|xilpllsh,|eelgnrs b}Toyo´Vxê h7lPi} i¥cpa(5 exssrl)by=©l o´d zxsleui clxsow +y is2n
cex v8o−e sxrelw,sn| §ayosl I h)% iV pl ¥ 0 e( rxb) xo´=l!ic o¥¥ § tangente hi- g(x)x→a x x = ex − e−x . x Vz 7 ew x +xcey −7xu V £ ahghfl©lwl−|xr−liilDlg|ppg11ld00l©0•••••l(uee(H7xYxllxrr7myz})||x%)bb`||t}y7y7|2¥¥=Ve7y¥¥¥=o´o´lult7yl((}n+((2wwllwwlsv|h−aii}−allttg||g|g|x¦
ccg|
|§y¦
|xosx0)0ooDl0s−xyA8)2p}u)l©Vsd}x5zbzzxz==bYx===©l||¤||e7y)+(xY)¥gwls¥y−−[h=1fg2=l©0llzx¤·(a}(¥x1(¥,x¥|xxxwxwx+,x=lt7yt)¥tw)x)lE=→1l¥l2∞a¥Ûe|{}I)zx==}a−=Tn+ll©¦
|g|1¢)aI)0xxT∞8g Vs)1jp8x}eP¥¥xwq¥`0¥n¥P¥bx+5l©§qxt=0lhb
¦Ix|Ótxxwey5s¢)il©©l7©l·sjg|phtl©xxPHs}xh=¤)Ú0xjs´ex−0§u0i¥xwD2ru5¥1p0Dz¥s(4lxb−w|Q|0(−|0eRs|aaxy|I|wo|¤)¥y∞xry})|}y}yl1e|l}w|b|h|x|a}l¥=q=|wl¥|
o´wfw's§uwVsblwxlbf§8yxx2iu221n1sq§!→csxxl§sxj==n}{c−az}→|§#llxl©−§|isc{¤z|Yxl©wo´+∞yx0iy}xYjc©ll)xlno´hs72∞yl511xYa|x→¤x7n|y−+}¥{}=Itz}s|ept7t¥+¥yxx(e¤)i8a¥(yQ§2∞¥nm1xm28yra%xsa}ax)©l='
b)e|p=l©fDrqx)a|l===Va¥liW t=|¤ary7ll©||r−axl|gYxywy20ltb+yrl7y}1uul7|gl=PT∞¤m¥w¥uxDl§xt2{[yzD¥mla0sRe+8pax0c,lxlnA§§t©l→∞wea2|Dil+t!x{¤rzng|πlry7¥|o+l)l©lcl|a0ty)xYxY7y|a∞uy7ydlhoyl!mly¥l7zn|fle|w2¤}ldefl0¥|l[aeyytle1}c|88r|xr|h5ll,uo5ie0
+zssn5=l)lllzaee∞gÛc|||}nndx|e)iyy7yl©1)ooaawlllxss
36 FUNCIONES CONTINUAS(fTcCyy}l©¨ x))l)xoleil©x7ponx ml©¤o`xon)lV¤xwgzrwnwtvtep|´8wJelll¤hih−|g>knDal¥lnhDmwÒ1cDgd0±ul=¥glesVtaVr0JalzV7}okl7 4|x}x2²'¢|s{|}ex©´ncS.·¢7yVl%q=n}I1l¤−çd)y w¥Puu¦
l§lby©lfy©82|n−x¦g5nxY}¦%[kH2y7©l§ayals%x)xcwB|vx,¥lY<ol©¤D0b§D¤)8xRVmsx]Dwls||n|lHs1©S%lHyp|t0yzl§l¤}|!ε§wa|0|A|wm|e|cwxwl©x7ylft§wslwJ(oxu>V|cklxuyllwv©le|ln2)|⇒llxg|0r0g|¨}||)w|Dr
¦[© l−a7y|ya|Yx8Uls83lzyl,y7dg|}2flbf|n%l©odwlz(|ly7w¤]xvVi0yg||lfHw|!jlnoySxzl|}}¦
ll|r)|¤ xd)7[f=em7yIa
x}nE−>lc),8Dl©ekSl}b}ε¦
xm4|l m|w]l8yx gÛ§y)}xYe[©=y7|ay¿lnd7|,¤[wytxV0Jabyweg¦D0l],qxl0y b§n¤lc0xéy'nz!]zgwlo 8xl|s¿z|kPln7D%J|syxtx1
'>`lryi¤| }n|y¤l|wwlés©nl2uw||gl¦gSklulauxwl©¢−wl©x[|x¥¢a5x1nl0l,|D,0¥x§béywyl||]d¦In)vs8yVyJ¥}D)lt}xk||Vw|Pw w|2¦|wCDje|yéB)V©§8z[l©wa}¥0|eDx d|x,x¢£lzwzyb©l¤px||||x£]s(¤ wxkgw Dln−>l u k1ÿ¤)H kk−>x→¤{zw1 ∞¦ DxVfw B|(x
x©lnlnx kkuVz−)|l =y(ynfcnk( ck ))<k§ −>nk11k→{¤z y sV∞8 x qfl fg¦(yl)lzn|fwk0)l =B|s )
fgl (}c¤u ©)l 8Bs |§ clR | y l©x uw 8 y 7 ) | u w ) s g|l 7 l©x ©l x 0 | y | w l s f | c} !¤ }{z p f (xnk ) − f (}y©n0 kz )|tq 0 =|¢0¤ ,wl −> εm I ) y k w kl→l)∞xYyz l t| 0 | y f (xnk ) − f (ynk )E%yy} w} |lx|g}wy}T0¦
©l|B )xeszzw}|¢oVt rgwy ¤0©lel©©xl©mDx | YxVsxyya }weul|Hl lvdwwlw¤Ye)ls|)e|V xY¿ lya0 ©lvl|paDxl lpsrwyor|4l¨{zxwo7u }x|gi%|
m8¤i)y mwlg¦}la}ls}|ca
} ¤ic8o´'w}i!©no´Rl }8nd©l
lpxDely slo lW|Il2iy)n7leo´qi§x0¢emà¤r4dàlhVsi©zx0c2tw saryw|a g|gxsxllDl0slou} 70wbVx|0la|l©5lvx)x ¤I¦wuw)x©lwll7l}l|2w
w|¢y)x©|e`¦g©g
¦g87l©7}xwV¨l |g¨¦Û}©l!0}x! dz )u|0 vlv} 0w%| e||V©l lx£IuH ll)z|ulÙ7ylsx©lllDx78|gE¢©|8s0 |lYxEy|lêx l}§w©l|E8x `llxg| jx|07¨yVx ¸07DI¦52¹ )v4sg¦)wgs 0©¢}lExãU3I¦{zw|hÜx 'y©lx ¤¾'s©sjó§lAl ) w0z#¤Dl©l©lu lwsRxc¿l x¿[I¦©¢|e¬i0l7pd¢©,o`ãxYj1§yl]up)4§ CIq}ll|e×{ÄÒxt|z|wf©rDx ±s©©l7w8`§Vx ue y7©xe¦¤)«¦guqi¬!w)rg¦ nll0ln 2lbxi²|z)wD|−−7y7r©w|lEaaYx¬l y|}¶R|l ×edl|7yýq%02nl ²}rD¹n©z¬w
s|¼x8u y's}))2ydó 0['!aêÇlz,%(| fblDxþsvl]%s !l´| |çl³8E7l¦eù|²XyçÒl©s l©x8AyYx| y x x
1.6 CONTINUIDAD UNIFORME 37 PT¨ (epx`oo)r8´ yeDn)mÒ 0± ¤adr w B²3l´)·.q fç ( x)f© :−u[0P©,(1 x])→ <n5 l©x xs%DVlP d| [y% a} | ,wb}|]s l | } y V|e l©x T ¥ `§ w |4%} |gV2 } εT ε>0¦x ½ %Ç ¼ ã X¼ » û ÅS¤½ e ûdË Ç Ë Pr(687f(x) = A (2πx), Bnf(x) = n õk õ n xk(1 − x)n−k f köB1f(x) = 0, nöB2f(x) = 0, k=09B3f(x) = xCDl£ dy ¥Dl ¥X| (©8 C)x}e|x&'P h ` n[0
– ,l´el 1hsh]ims¤ wo0¥ l¦Vps¿|o l}inQxomP¤ wgi[εol0,d>l1e]0B7y)le SVrg¦ nn sly t¨e)Pi7En}r¤ lw y ©ll8 q7 u) ¤ wÛ¦wtzh|gYl D 7lBz V4|| n¦Iff !( x¤)w−l4l fx (wux|ew)¢l ê<!8ε| Il ) £ 3 2 3 x(1 − 3x + 2x2). n j nkm xk(1 − x)n−k rrrrr n õ õ k õ n xk(1 − x)n−k rrrrr kök=0 Bnf(x) − f(x) = f nö − f(x)= (x + 1 − x)n = 1. y7yl xl!7u } hVyq ) }−<ls |¤fRx kgw n=©lk l Hx=l0 xf0w rrrr fj|IzB}õx)δêVnk(7y7xl©ö )Dx sl ö − f(x) rrrr õn xk(1 − x)n−k. kö ¤Rtj w|¥'
lV lnk Rsl P |% dBxδlw (l|!xy )¨lh §l8 d |l l | 7y l y | 2εw h j f(l x}| )mx[0s {}z,|§ s l)wxx ©l uu w I lS) | δy¨l>}©l 0xx ¯w 0| B 1 ]}¤ k [|e0 , 10l ]¨Bm 7y l I | @ H rrrr f õ k − f(x) rrrr õ n nö kö Bnf(x) − f(x) −< ky lnkCA BD−x1 løüx¥÷ y<GE¢ Fløδ| + xk(1 − x)n−k; l &A BD1 ¥GE Fk I ) q¤q 7} l qI © k øC÷ ¢ø n −x −>δ ε õn ε n õ n xk(1 − x)n−k = ε , 2 2 kö 2 }u0 | k8| nk|lCA DB−2ε1 üøllx¥÷|ê |<E3 Føδ ll < nk|ACyBD−7yl1løüx¥÷ l<3El Føδn| 7y §!l k ö xk(1 − x)n−k −< y7l l | k l 8s §x k=0 xx | l l| l zYx }y ¤ xw l ©l 0R| d x0Dl u yw ) !z %x©lDuw | x w xÛew 0! l | y7y )l q g¦l | l zy| l n V l y l V l ! l Ôsl l Yx y xx S M y ) ¤ wl −< M T xP s Dx {z ¤ w l f(x) [0, 1] nkCA DB¥−1 Vüøx¥÷ −>qE3Føδ| rrrr f õ k − f(x) rrrr õn xk (1 − x)n−k −< 2M õn xk(1 − x)n−k, nö kö n kö k x ¤ l |gD| y | k nkCA BD−1 üøxI÷ −>3E¢Føδ x l w ©l 0© xP [0, 1] § w y 8 ¤ gw l I ) y õ n xk(1 − x)n−k < ε . ACBD1 ¥EGFk kö 4M k üø ÷ ¢ø n −x −>δ
38 FUNCIONES CONTINUAS l w¥ 8d| l R rr −u w x lrr |−>7y lδsI©l xYx ly ¨y ld |0l s !¦g l | sg§¢x l1 w )l xk V z (|kê − nx)2 −< (k−nx)2 −> n2δ2 n2 δ2 n ACBP1 ¥E3F CA DB 1 ¥3E Fõ n (k − nx)2 õ n kö n2δ2 kö xk(1 − x)n−k −< xk(1 − x)n−k k k üø ÷ ¢ø k k üø ÷ ø n n −x −>δ −x −>δ 1 n (k − nx)2 õ n xk(1 − x)n−k, −< n2δ2 kö § ¤ wl)
l c ¤ w l¦s I) n u 8 | ls k=0 S= n (k − nx)2 õ n xk(1 − x)n−k < n2δ2ε T xP [0, 1]. kö 4M x¿w | ukw¦=wl0l| l lH 0 ¤| 0 }l }% s | l xl R 7 V ¦I) c u w ) S = nx(1−x) x } |2 ) l l ¨ x | y l é0ÌúiÇbºº¤ú¼iºË ºüÃÃ˺ dY½Ë DÌÃÇÁ ø¼'ªºË ú}ÅSDÌ»Ì Y½ ˼YÃBÊÌh}ú À¿º ü Ì©Á¨ËÊ »¼vg X¼Å0ÇË ¼Y½Ãv½Ã »2»û ½X¼¼Ê ÏÏÏ S = nx(1 − x) −< n < n2δ2ε x M n > δ2 , }! ¤ w l7y l 7 2 I| q ¤ l 4Yx y d 0 z |4M Lema. n Pr § x P 5 sdx l y l | l xy −< 1 (x + y). 2 S = n (k − nx)2 õ n xk(1 − x)n−k = nx(1 − x). kö ¨ 7p `o ´8nDÒ ±0Vr 7k'² =©´ · q0 7 } l 7 x l l©x )7 } 8 4| } x w x ê n k2 õ n n õn k S= xk(1 − x)n−k − 2nx xk(1 − x)n−k kö kö k=0 k=0 + n2x2 n õ n xk(1 − x)n−k. kö tR¥ V s k=0 C = n õ n xk(1 − x)n−k = j x + (1 − x)m n = 1. kö k=0 t g} ¤ © 8| l | y j js= q nk m nk−−11m k n n õ n n õ n−1 k − 1ö B= k kö xk(1 − x)n−k = nx xk−1(1 − x)n−k k=1 k=1 n−1 õ n−1 xl(1 − x)n−1−l = nx. = nx lö l=0
1 EJERCICIOS 39á wgx 8 | ©l Yx yl ¦
8 V s n k2 õ n n õn k(k − 1) A= xk(1 − x)n−k = nx + xk(1 − x)n−k kö kö k=1 k=2 n õ n−2 = nx + x2 xk−2(1 − x)n−k = nx + n(n − 1)x2. n(n − 1) k − 2ö k=2d wlDu s S = A − 2nxB + n2x2C = nx(1 − x)Ejercicios1 % lV ) | x | wz l 7 x l ) ©l Hx Yx y } | y Hx l 0 5l l Û| lRw e| xw ©l x z | (Qn) α, β I ) Q0 = α ; Q1 = β ; n > 1. Qn = (1 + Qn−1)/Qn−2, cet5#UÇ)þ } b) x Q| £ nÔsI)l x) Dl §¦s y ¢© ã ã ns' Pl ºr Rd¹Q ¹ j ý! ¥0' US 3 3 l $ }ª ¦g7A « )´ %q 70± p8ÒÄp ¦r Ò p7o`¦r Ò ² nDs 1IhS`» Y Ñ æ 5ï RT R\"U¹VX¦¹ W #Uñ ¹ ¼ 3¨14a3IS ¾b2 7DlzV y %¦¤ ©© 5 l x nde| sw zigul 7a ldx a ld) e ©lsx d% e x lay s¦
mx êed i axs1 )7 Vz g| } ) s ul lDz y s7¤x©l y § l |) l7 y £ , x2, ... , xn P 5 + 1 + n + 1 −< · ¢¢ xn −< x1 + ¢ ¤ + xn , n w gx}1 lz | ¢¢ © x nq uVw n x1 y x ⇔ x xi x V |t u w 8 l)x 7V %¦ © x l ) } a, b P 53 − −> rrr − rrr % © y x x a b a b4 l M P 5 + 7 V¦I) 5 ¤ w l x w ©l x z | (an) l Û| % V a1 P 5 + ) g¦ y 0 ©7} Q an = 1õ an−1 + M ö x n > 1, y l | l {z 2 yls § ))¤ w ¤ )7 } 2 an−15 l)x ª
l 5 xvl w 8 D | )l x ê (a) 2x − 3 = 5 (b) 2x − 3 = x + 1 (c) 2x + 3 = x + 1 (d) D3 x − x −xl x+2 0 = x 5 (e) xx l −| 2+ x x−l | 1= x=−xl3| (f) x − | x= 3x (g) (3x) + (2x) x.
40 FUNCIONES CONTINUAS6 5e 8 }©c Rx x uw l | 7y l©x {}z 7y ©l x ê (a) {¤z · mx−1 (c) ¤{z {¤z cp x + (x + a)(x + b) (b) xp/q − 1 x→−∞ q x→1 x − 1 x→1 xr/s − 1 ¤{z ¤{z c(d) p k (x + a1)(x + a2) ¢¢ (x + ak) − x (e) c (x − a)2 x→−∞ x−a x→+∞ q (ax) ¤{z ¤{z x yl u |(f) x3/2 p · · · x (g) x+1+ x−1−2 (((nkh7xYl 7yV))|)gwI¦ yxx)xlx→¤{→z{¤5→{¤z→zs) +S0R¤01∞wxxx¤1xxh→l 37¤{z−+− 0bx −−x−xx0 2|lfl32f||y xxx(©l}((x|x25xab)w ++2xx( )i) V)21 |(4lx(z)n{¤→z©y )x0l |e→{¤x0zu}{→z0x+x 1(1 alwõ1−0xg|1+y7)l00+u|}−D2 y x(|lx1(0πxl©cö(lxxxπx| xê)()qxb()(xam),(ob)())jx)x§x→¤{→z →x©l00}{{¤z→z πxY1y/0z2−y7((8u xb0Dlxx )xy−xx( x31−x4l−|yxu 0xw x x)l7 x)8 7} d 7£ xx s(a) f(x) = x ± 1 − x x P/ ± xP d e f· · (b) f(x) = x − x . (c) f(x) = 1 g1 0`lx %¦ý (Ú)q¹dl©Ä)z rp)xYHy7¹pfl¤(sVxx§)U3u yU' =8)¿zóÛgs» )¦gó¶rrrr 1 xlfz+D| ´Bl
x1®V)±rrrr7nx}pxf ¿xx´ hu Ø wlÁ ¤p t× f° )r Dn iÄÒ ´)± x9 ,+ °5l x|b®Vxl y7±0D©l© p2xIxxÑ) 2w,¦yrxg| xÒ0.æl }|p7 `o|x$j ©lx3¦rx lmiÒê i² ,Xjxn©t sau wu0w8l |xq| x7y¦l +7sl l© bx}u yxl8xlzs|| l y l !0ä'¤S0 } xDx s ¢©ã x (a)0 7y u (x| 2xxx,),x+lx 20x xx,l (| 4xxlj |)x12,m x ,x l 7y u 2 x x, x q (b) x l a | 2 x , x + x l | , x l | (x2) , x l | p π xl , x2 xl | 2 j 1 m j 1 m 2 | . x x s t c(c) x 1 , ³ x´ , ³ x´ + x − ³ x´ , x2 − ³ x2´ , 1 − x + ³ x´ − ³ 1 − x´ . xx ¥j 8 ) 7 7 VhI¦ 0) | ¤ w l 0 }!l 8w dl©0Rx 0lz |¨ d x 3y =x 3x + 8 y l | luw e| w z |¤ © x w 0 z |E l 8 es §10 l 2 j ¦% x 2 s I) q l w d 0 z | x5 = x + 16
1 EJERCICIOS 41 j ) ©l x
l 5 ¤ l w d 0 z | 2x5 = 2x + 1 j ¿l w ©l dx 0V z
| l x l¤ l +w d00 x z l | xl x+l 0| xl l d } |xy=l
¦28· } 2 v8u Rw 8z | y xfx w 0 } | ©l xy l | l x x =c (0, 2π)w Xj l l©x
l 5¤ l w d0 z | x2x = 1 j 7 ©l x
l 5 l w d 0 z | 2 x xl | x=1l | l } | y7l
¦) } (−π, π) 3 Xj u vce ) } )Ru l |gd v0 }{z Ú % x y
l lw 8 D z | yu l c > 0 Q 7 V ¦I)R¤ wl l w d0 Vz | x = x11 x − nc = ) yu õ n x + nö yx w l l)!lx } Vw | e| l© x w z |¤©¨ § {z 2Ú l x {z 2 y7l©xh l x u | 0 l y !¤ (xwnl )x f j ) Gj Åxxnç « I ² )rh ®V±±©² b n −> 0 ce 8 } ¤) u} x ©l x xn m 1] n → [0, 1]12 : [0, (a) 2 | z y |e|eu l lD ll | y7l l| sylu s g¦ l | (b) | z y 0 lYÒ w7p| ±}y}q% r¦|giÒ ²ill)´)x%q d r©l0¡ ¨¬¡ ¡ÑYx Sy7r¦l Ò wæ |p7`o xr¦PiÒ i² [0n ,«1]´)qoy )³ )p¤ iÒwgX² Òl ²)´fq(xÁ)´)=± q&xV
² w7p 7± nj ²X ×Ò I7VÒ ®B µw pl©qIx yÒ ©n sel |åæ pyG u m©l eq Dx ×s |13 [fx 0(77u,xVVw2)I¦I¦] =l))y| u ) y71©l¤¤l©−x5wwx l¨`lxx¤ wxx| l ff lx: )l1[40x r−,021¹ x]ÍÇ ò|2→y } |=w[3U01þ ,s 1] l©x 0 | y }| w s l | y V e| ©l x S x P [0, 1] y 8¤ w l14 fl ( Yx2y'7y )zll sb gl |7 Vy g¦|g l S § x1 ,xx2 Px l§ | [0, 2] f(0) § = l
j ©l x « ! f©r (¬ix81V® )¬®=Dn sfl©( x 2) TφlI0k5vS |xxll)7(yl0|yVx}y7P}Py8¦Il)}f|g}a)Ú7)|l[=[2)000!}w l)c,P,xfx¤|11|I(w)y)f©(xl4}vx04l)||y)l ,l8}wx−x1l[)0xu0w f¤,fldwly1|(j|0l8xxl]y}©l5}[yx+f|+0|8¤(zww,0l©|xw 1nh1yBxu)l]d)mwgIl=a|}})=ww u$lflh5=8|We|}fj|gxw(§ x}xl0n1z+z)llyf7 7|f(x+Tx¤nx(1y©l0n)¤mf)wxR=w(lf!lPy=l©Â|j(c)Iõ0ly rx)l¤fTl i=(I|x1§Dxl,)l©ll)(©fy}}sv§D()ª|ewz1$ §P00x)wxl©ClBsl4|tYy|b5§` 8yaxx00x22 §©llHφ¤z ¨+gwy(f}xnwl|! l))bye|xcfBxP22¢=W(Px0lr =0)0w5j©|õIg|T5=yW10x} |7iwq zVfw§D|r(I¦l©( xw ©§D|g$Rl+l|0©C8¤ Yawz0 |lf)xs15161718
42 FUNCIONES CONTINUAS19 7VI¦ ) v xRx u w l | 7y l©x l | y ©l x ê © x l | x + ) %D x x = π T x P [−1, 1]. 7y u 7y u 2 © x + ) d 0 x = π TxP 5. © y7u x + ) 7y u y = )2y7u õ x + y x xy < 1 ¥1 − xy ö t u ¥ t u ¥ y = t u õ x+y T x, y P (−1, 1) 1 + xy ö x+20 7¥©l Vx a¦I)=
h l 5x¤ l w}| ¦l vxb$s xx § a ¥ = } | y7xul j π + b m $s l | y g| l©ux x !l y l | l | ¥ j a m yu sj b m21 xYy7l !a 5x = l l 4 2 ©l x ê 2 2 = bw d0 } | ¥¥ ¥x + ¥¥ ¥¥ t u ¥ t u ¥ ¥x + y=a x + y=a 3 | } | y (a) y=b (b) y=b (c) x=2 y x+ x=2 yuj wÔ 7e|V©r y0¦I±0l× µV)z ¨|E!l b¤0 wl |l }{z| lj}õI!ygf il ©§|(D §©l{}z 4Ú$ DC}%| y7 lx y
¦ª )
¦x} l 1¤ |g)0 ¤l zwg|Qw ld}0h| l
zl| xl l©w !x 8 |w22 0y |f w 1 ¤` (0 ,w l x lqy =l l | x xe| S π 0 ÷áCø xù x f(x) =23 l f: 5 + → 5 + 0 | y }| w § l l 0 l | 7y l s'§
l 7 Ûg)) | `T x, y P 5 + ê j = fp j x + f(y)m j . f(x + y) + f f(x) + f(y)m f + f y + f(x)m h||fr|q(y% xV|)e|w }w|g=z |©l 0 x fl2z−P| E1(} x(x x})l0h )| |I2| j j8)x10xym ¬}ll²}|o|Ûel l0%³ l©²illVrxv|l µ77yw rl©ux| xDx }Ñsl |Vl r78 ÒY(y p7l©a lolx¿,| b§r¦lu· )lÒPi²w|D(y|Erual )|m 0±0swPz©r |lq(|wybÀ·l}X )| ©2w<8 qI q0)ylg¦ b|s} l24 7V ¦I)5 ¤ w l j 0y ,πg|1 m 25 7 V¦I)R ¤ w l )l x PPl |((xbP())(ax>,y )bl l©)0| $x l`es w l w |s l P (la7 ) x 1P00jå}.ær14|lotp ©l.b|l—Dxs« ls l¢©erDy0|gãVi¬m8à0vx |V®d¢a¬xss®wxl 7n©ê —Vy$ç )¢¦gê¶ô¦g¢plXj r!lèR¥i¥ml7p`l |qdl©e¢x)p V¢rñÒi'¨¤2i²¥vbe (%lH¶llw$ôo7³yÇqVy7ó}³%V%¥u©
s±D|seV´¥åx{zVr4y7¤æd0w æpel0X}z2ysh$A|¥tsdàr k|aØ b)
%´Blf
alH´$elj«5nyo gs¥©r´—¦lv¬ 7dÁ l¥~5®VÒù¬¤æ¨©®lDRp}n¿á¿lu ¿¯Vi¬ p7xllo¯S s}2p7 l©©¢qIÇÍxExãòVÒXDx©nDäsU3 s þl
l l |x y z 4|cx | l ôu 7Ç}$1©l| BwxÓ©y s£s Q Y X¹R g !§ ) l 1w .| 2.| —yl 7
lc8} } lw 8¤ | w l5 w sB|ex cP ws g| D §z | l©xx c| oyn vl©ex x aw | j y ¿x ·´) w%q h)8D
5r8l)²¤
xDn ¤ ÒYwr lgµ pnµ Rp l ©r ± ±²u )z ÛgØ ©r l |l Q R
1 EJERCICIOS 43f08j V®ll|¬sl|®yDnl}4|s wl¤DCdg|¥¦%0§D7`l©(©}|`|}x |u êi[¤ y7al w2lP,l¢ÍÇsbRò¦
])x}U3l fþf0sB§ ¤©lt 0 Qx } ©l xy z l| yl § Is l | y g| l©x Q )l Yx y z l | s ¨%V l ¦I8 Y 0 B|
l©x xRlz | l P R [a, b] I Á f 0l ¨ l| § QW ô 3 ïkj vs l | y g| ©l x « ©r ¬× (A, B) (A, B) ¤ l )) %{zyw )` {z y B w b} ¨¢¢ 3 ñ 2) ' Bs ¶RXn ³p©) Òn ´ l I I 5 w y |A8 }| ¤ y7wl l
¦8 } § f: I → I w |e¨ w g| 0 z | | 0| w | y 4Û| y ..1.3 .— x2, . , xn }C = {x1,fx©(j¢©l(ãll 3CDãl}) r¤äw8lllf=jjs!q%¦(V© hl{{xzz)4|gX1GIs0)c{z§©fyhifa(cwf=x554lRêlwl) hos)wqx|ex =4D¢w20£l0¹0C¡ ,7B Vo´2Qzh|f¡Xf|rs4sógG(yg|bxf}h¡bf)04|@¹(i2|5tw)Ç|Vuýa) yw l= x3, . . . , f(xn) = x1 l sBuy )qw g|¦g0 lz z | y f l | l wdt|¦%© 0) ¤ ê0 } p¨§ ey r lio´| ldiw c4|a D }Dpe rl ´ıo dl o}{z n | 3 | w 1 § lf s:}s1[|¿Çl1¿0%0l,¬vB{}4Ó)z5s±7]j²¢©%ql→ã|fEl ã3!Ü·´)[© 1xq),s 5¯µ ]x2p n} dm|¿¬il©r|7y!àgÛ±l 0±|³%r¦8ä¦
¥¤²£s8hÜ)}ub¯h%)[nV
x, f(1) 1=]gs 3y s l f| (l2)0¤=0 } 5x s n+ =| poï 3 í # ¯ § 8z ¥ l V l lvs s ì fa 7 d)§ ïs ñÓ 0' ) ¾ ÈÇ ña1i¬l}hj |ræ|.n7yg¦x4p7lµcl qIl=w.l7plR—·Ò
¦|t|±s&a)²}yl
|ì}
|gLpD7y·dx 0C8elp2t§(m {}z4 a¦
µ xay)npsiê)õ}ndw,2©Cel©bÁqÍÇlxg¦´)[ònUsh aq%o¤)lX,8lIGw|4s3UbÒinulUþi²]a´)ws'fscõglDqghi¨§
¦ewnne§7|xYoixtVyelD§g¦lhlz,z©´|| dqdwl Ee¨¦´| ÒYFlx´)lξ£.lsxHq%RwRu5>B®p|eg0iun7pelq(u j¬sxad|'®)p¢©zynÒRãê8pyhwvn))) n©| ¿V®d³=ly}±{¤z0syh´gwwg d(l}(¡|ublxà'wgn)à }()w 'Qξxl|e¢V)RÆI b))>¹g¦w\"ºw |gl|gÇyy()(0x ¾¤ØBx)lsÓ¦¬zs%|p·x}®V`o|nD8v±fygt$p|sl ¬u|n®Vy0x y
²l8}t8ª||nfph
}ÙVw!w}²xnDl)| ¤YÒx×Q©yp7w g¦lq%}gÛ±0Ú©lEr|5pzl©ÒRxyYxYÒl©µy)rDxx plx×s1.5 .—j fce |8 )©l x y §¦l x y x w g| 0} | ©l x 0 | y }| w x f : 5 + →5 +¤ w l w h g l |ê j } | ¦
f(x) = Q f(ty) t > 0 f(y) ⇒ T f(tx) =
Derivadasgl0µj |©¢}p ä|dz ¤«By¢wy) lzr©¤·£|7©i¬¢88ÜxlV®}l y8i¬| |´Üle¨y| }²syqyÞ El¤xáéx2 wlqwj7¤lx}²Xlw¤ÄÒ8
}8pql¨
¦n ²lE}o)|E82Vß%rD }¬Vy y'hzxq}llzhw|0fl |l%ulB¥x¤7©©x§`
iyo´zlxlng|`lDljx§l© d%l5)x|¡Vl)¡5ww{zxuxue||Al lD|¥l©$DRlx©V¨xDh8e|¥)s||©§yylxlq© I¢D4y| hà4)lz Ãytl¤fl0ysfuDll¿e| §¤|n0vy8`|)t}e|g||e%Bx©wl{zVê©lz lx| tx gwd lx§dxgÛ Þ|8pD¤v0Dl l7g{²izzw2´)|y%q¥hy7©ldp |§lnx£ |w}~8 w
z}r}y4P4x Iy} ¨&l{ f0{ }8}
w¨x 4x k}w( u 5 hf ~8& G ! }ûSf»ÅÌ0cI¼ ÇXº Ábv¼X½¼Ë©ÀËûXÇéÀú¤¼Xºº¼0ËDÌÀ À½ûüv Ë5ºÁ¼ËÁÀ8ÎÃËÀüÁ˺¼Å½ ÊËÀ©âÀ)v ½vÁýÀ ËÌc'üÇ˺½º½DÌËÊÀÀƽà Sźy¼dË ÁÁÅ=ºË¼ÀX©À fú˼X(ËiÇf»xź½Ë)¼XHÇÆÀ©Åº¤ú¼ÀËu¼ 0Çedüû tÅ}ÊÃÇXvËdÁ º½tÊüÌVÌDû ½c½Á½ À©ü©À }ú¼Xº¼Ç¦ºÀ©dÀ»ËÊ}ú ÁǽYÁËv¼ÃÀ»f¼i∆¼XXú ÀÀ©½YxÃüú¤XǼf=X¼ÌD»f¼½Y©ÀiHà ¼XúeV©ÀÇÅ SÅt¼fú¤Ê½Y»½ÃÌ©ªºº½Ä¤úDÌÀ¼iÃY½äÃwÃ$eÅÀDtʺª»ú©Áú¼XÊqÀ˺biÇ f»ú» i¼º ÿÀ¼º À©DÀü ÌXǽYú˼X¼dà f»Ì©ûÌD½Ä¼X¼¼fà À©Î8ŤúÌDÁËc½ ¼¼ÃÇÀ)âºxËÀv½æ äe½ÊX¼ÀDÀRgÀ ºªúÌ©XÃËŠ˼¼ÏûäÅÀ¿ËÃXÀDĽÁÇ%¼Ê ûfºS¦Ç̪ºÌDËú}ʼËX¼Àº Ç gx½¿½Äü ËÀeý©ÀºËû»ú}À©ú¼ºS¼áÁYÌÇXÁǽËŪËË8úÌDËÅ}úÊi¼deºÀ©ËÃYÅÇi¼Ë½ºËºËýÀ »ÇǦäË÷Ë¿¼ÊæÀ©ÃÄÀ©½übºúÊú¤úRÀ½¼I˼À f»iÅX¼tËÊx©À»ÅhX¼ úÀ©ý(ªºXÇÅ ú¤tú¤d¼Ê»¼u¦x¼ eŽºªûË∆ü∆¤úÇ%dü¼Á yxÎ8¼ËÌ00ã Á7©ÀºX¼ ªv¼=BeDÌ»¼ Àâ$½ÇÅûËË$¼fÃļhÀÅS½fû©å(gýü e)xÇXººÃYxh˽à ú¤+Ã%ûºh¼u¼ XǺe¦¤úºË½Ài½ú})i»äºÇü¼ÀD−ËÁÀ©Ë 檺˻¼ú½fÀ©ÊË ÀY½Á(»fÌ©ÃxÀd½û¼X)f©ÀÁË(˼ú¤»fxÅS¼Ì©Y½)ÆD¼ûÇ ½Y=¼üäü$ÃÎ8½ã x½À¤Áú©¼Ã¼YmÊdûÇÀ¼Xâ¿»ËÈÇËeÇDIúÌDËÀ©¼XýÇY½üX¼À©Ã%ËǦ¾DÌËÌÃXËʼ˼ü º ËË Ëü ½Å¼ÌD½Çú ǼXÇüÃH½ËdûºcÀ0ËiÅ tÀÄÇÊ»ºú}Ë)À º bºüDÌ ú¤ÁÁX¼ü¼À ÏÏe m (x + iÅ ½$)Å HËmi» ü −ºË ÃÀ©f» }úxºf½Ìm)e Ë ÃhÌ ½=Ê SÅm¿½ mÎ8xÁmxd¼ m−Å Ë−1'eªv1½Y¼Ç+û ©Ì Ëm¼ üDÌ (ºd¼áÇ1m%e Å Ë6Á −2ÀÀdËÁ1¤¼ Àd) ÁxË °¼mv ÁË−À 2vü Áºi½ÀÊ +Àü ºÎ8½ Ê6&ÀcÁ76&I¼ 6©Ì +üº ÇCÅiYË m¼ −ü Ë ½Ç1f»º Ë,½$Æ SÅżtÊ » xbº ¤úý d¼ ÷ ÌDÀ¼ i) − f(x) DÌ ¼ û ¼X©À ©Ì ¼¦Ç Ë Ê ÌD¼ ÅD gX¼ À©Ã ¼ÁHÇ Ë ÅÅtÊ»½ üºª¤úÁY¼diÇ ÇXà º¼ÇhÇ¦Ë ÊËÊ û üiX¼½ À©À ÌDá˼gÀ Áü ºÌ Ë ËBe DÌÌ ¼ËÇÁX¼ f»À Y½Ë Ãü X¼ Ë©À ú¤Å f½Ë eÅ Ë Ç Ë æ ½ Ê À Ë bv ½ Ç» vË À©ÁÌDÀ½¼gúü ˺ ŽüÊË 5Àº½vÊ ÀÁX¼ À¦Å yü©À º#½½Ê»Àf½ ÆfÌ ÇË# ¼(Ì xËÌD)¼y.v.=Á.À üfº(½ ÊxÀR)©Ìý ¼÷ǺÀ Ë Y½ Ì ÇXËÌDeX¼ gÀÅË Ë º Ì©À©¼i0Ì Ãº ºü Ë À f(x + dÀû Á ½ ¼°IÇ ËÅ Ë ÇË i¼ÇXÃÄX¼ úf» Ë Y½ ÌDwà ¼e
2.1 CONCEPTO DE DERIVADA 45d2g
¦l} |Vd©wu7y7¨!sl )l8dz¦g¤ ¨|lHVlvw |©lqI|sx¦
)ld) lxhy(4|luy|`y7vlfy|)l0Illx¨=©)!lsldI| |gyewuilv0fx sedyl)rv~c%el©l+yVnfxcl yv5cw| 7dli8z|eas5ª}u©l7¦el}Qxew|§wVs}}ÔDÚlds c)E´auljv|el|eulvd
}c 2g|wmllxu¨Ú=lg¦ oll|2g}|ru}4wdÚ |ld¢©li||l©vjfäV|v−xye¢©ày72äryvlx8edl20Dä8nu}£5t|vc|z¢BÛgÜ|ix©l©¢a{|zls¦äl Hy5s%yy`l©lV%dwxl|d|e¨sd7yl©ll lx%x)xg¦|g)l |hl©0x7x©}tl©lÚgHsu }0}¤¥zfll|s`xls¿|l©d©lYxy(8dy7llluÛel|0 ¨©y's )880wzz)¦I¤¤v|l¨)|wwl 7y©l}}=¤lx|ed$l ty7 ©A g¦ '& ¤ fl () Y lw | dv) 7y¤¡ §ly 'ss¢ ¥%Vl ©I0xw u }l 2d wBs l ¥B| ¦§ lsfy y 8wz ¤ w } h )W g S}ò8¤ ©§D(© D§ $ ©C Y B ¤¡ §©x Q¥ D l §!g| 0ò e $x DC|e £ y$ w ©§¥8 l© x Vxz | h § l 2.1 CONCEPTO DE DERIVADADl de {}fiz nliy7cl ifo:n(eas, b) → 5 § x0 P (a, b) R w |g0 z | l)x derivable en x0 x Dl ¨ Yx yl f ¤{z {¤z f(x) − f(x0) = f(x0 + h) − f(x0) . xdyl{az80x©2eg→r¨fx)iuy7xv©l0nwsxax |ecdwsBi0ao´|g xVswnzD¤|e|−l¥ fza0f|xtV:ze0f|[{}zraxalH,lfbyeVl]¤s: →x(ll la|hd, →5ealbrx0)%il© vx©lVaxH−l→b →¤|l l7ye5
el)% nf5h¦gV lV ((2lxa¥f),xV| (bxx)0l x)h}§}) ¨x l©l xd }ll)|a¨ yd e lraivxdaePdra(iavja,bd7 )}as8¦§dl 8s e lV|fel©Yxny7l §l©xl | lb7%¦
V© Hg¦ l2l}Ú©| ¤ w(a l , b ) sh§f©l xHl0¨ lxYy7D lª | sde} xxmI0 n t|el)rx lpf7yr¤+Vle xts(lapal2c)e|i´onln=ldl gieheOnow→¤{zXm|t 0ey´e+ trfiljc(xaal0 ¤+,w f¥ (dhxh0 )0 w−z)l |8m | §f(a) f−V (b) = {}z f(b + h) − f(b) . sy w l 's |el©©l SxYx y fj'Vzwl(|Dxl¤ª0© )sy ¤ = yry8em8|c| utsulal| h | hu → ©0z Ûe−© l l ww l|gy ¤D© V 8z7|¨s§f 7yt7ylal n)l Dxgsl e n8wzt|l©euDx sw |}h ¢
¤ y − f(x0) = f V (x0) (x − x0) .a wp§ ro xeirmr%oar}c} |il©o´Dx nsI } l© i0nqel ©al 7%} © hl¨ l }| u ¢|¦
8 0}dV T 1l© l©x(xx %)l=| `f l( wx| |g0yl)0 +l z || ©l xu l w x 0 yfVfV (7 x|l 0| )w l|(xl s−| y Vx70|) e| w 0 x0 f(x0 + h) − T1(x0 + h) = f(x0 + h) − f(x0) − f V (x0) h = e(h) ,
46 DERIVADAS u 8 xDs §xl y l | l {}z e(h) = ¤{z f(x0 + h) − f(x0) − f V (x0) = 0 .L| !lan d¤hl a→l20u0s¿l w | ©l|gyuxhD |gw z |e| l© x}}o|¤ hlw →p8l e0q¨uf ewxn˜0g| a:0 5 z h| l l)x % j| l | 7y ll | y eh(s¿h)§ sx ll Û |l | y l | e(wh|Q) 0=V V £ ½½½ (h) notacio´n ½ ½ ½(h) + (h) = (h) −w→ →| l | 5 x l } 8! la diferencial de fy VV (7xg| 0 ) lh0ê (h) 6 (h) = (h2) de xly l l w ©l x©s hlf en x0 Q | I ) | h #dy = f (x) dx f(x0 + h) − f(x0) = dfx0(h) + (h) . #f (x) = dy dx y = f(x) bbªª bb bbhbbªª{¤→zbbbb ªª0bb bb ªªybbubbªª bbj bbαbb ªªbb(bbhbb ªª bb)Pbbmbb ªªbb=bbªª bbbbyªªαbbu bb bb((ªªhαbb )bb᪪0bb0bb)ªª bbbb ªªbbbbbbªªbb bbªªSSªªQbb bb ªª f(x0 + h) 6 (h) (x0) h f(x0) = fV e(h) = ? ?6dfx0 (h) x0 x0 + h l l Û | l ê l)x x diferenciable en x0 S l: 5 →5 lineal y 8¤ w l f l |f(x0 +w h| )l −| y fV (7 xg| 0 ) − l l0(h ) xv=xl (h) l c ¤ w lx l l bv Á˽ ÊÀÇSÅ $½ºü ˺SƽX¼ Å©ÀÅ ¼⇒i¼ eà ÌD¼i¼eà »!ü Sº Ë¼Ê ÃgÇÄú¤ÌD½ ¼Vû ÁË ÀÇ ËËI) h |g0} }
7 ª Ûe© l©vx } l l |e0©¦g ll | l©xR l 7 ¦
© e¦ l l | x0 ⇐⇒ x0 . f fNotas y ejemplos e nl x 0{}z , e 7y nl to {¤zn cefs(xf0e+s shcontinua en vlx0w s)§ ¤ w l w z | ¤ © |20' 0 l y l w§1%. —x ¦gS} }i f e!s dl e¤ rw ivvl al0b¨ l exYy h) − f(x0) | l y l | l 0 shl)x w l {¤z h→j 0 l l l {z 7 '0 | |©l x 0 }e|l y V h ¤ h f(x0)m =0 0 | 7 w e l 7 2 | ê w h→0 f(x0 + h) − y } | s x −> 0 l)x1.1.– Puntos angulosos: g| 0 z | x x< xx 0l©xR l 7¦
) ¦g l l x= § −x | s wl©x f+V (0) = 1 f−V (0) = −1 0
2.1 CONCEPTO DE DERIVADA 47111 ...wll 43277©l ...x
¦–––¤g| Pw) ¦¯llu Dlxnn¨utw oow xY|gssy©ly x0l¤ld wle|z8h|E| ¤{lz→tl©da|4}0xv0en|g g}lr0x| |eli ywgvn| 0axt| we`jbw xh¦g1vl}mee|}frs t(+Yxzixecy )la∞n|l)=:n ifnVu©¯'0x0gn}uux´cl nsi|ol np|Qj wx1eu¢©|gmsnãV0 tꡤ owzxx |ElhxxDx V==W ||x y }| w f(x) = · x ¤ x x 3 0 0, | l©x l 7ª ¦
)g¦ cl l | 5l s 0, ucw o nl |tiynlRul al s egn} txoRl d ol ¦ l D V | x l 4¤ t w g| 0 z | K(x) = x 0 −< x −< 1/2 §rx ¨l Dl ¨By l | l 5 l 7 z ¤ ©8 l | yls l Ûg| l | 1 −x 1/2 −< x −<©01 © r hs x l = K(x) Tx K(x + 1) NP2T§wHNl.w|—7©l2|Q(xxx
¦©0$¥))|%¦5kg¦lw=Vl|8l©ll2xYVnly¤l7N=A7!xt|l4x0h¤)|¤w2I¦ Rw1g}wng||l¨}Dlu0Ku)l©|(|zzwx2|`|l n
'0lD8“xx¨wp|)w y|oyxY8w p}yy |8l-} Ú)cwHo¤)a¤r`nw sPlf”|g|yV [(D80ladw0,|z)
l1| Q§¦Il]I[ê0ÚT©l,(0ur|1x ]2l)!s}a=l8fx }P(/|}Nx ±)→}{zs x dQl=∞0l vx}{¤zE|T` uNe| ©I¦)0(q)1zxÛgxl©Yx)x)y )
xx xv|lll7y xxll0(Ûel ¨==0©¤ T),qYx110qpy u)}sª !BQTIs28x |sll©lxw7Tl ¢{3zg|P/w sDD| ±¤.wªg¦l.,©l.l)ll,xsf(a + 1 ) − f(a) = 0 T nP r y 8¤ wl 1 n n > 1−a. 1 l 7 x l a n l x l©lx ©y l|V}l } l 0 }!8 l s § I) u© n Pr xl 0hn = −0 = 0 V a1a2a3 . . . . . Q a . . . 0an+1an+2 . Vrrrr f(a + hn) − f(a) rrrr > 10n f(0 V a1a2 . . . an) > 1 T nP r. hngT2á}|0 hn.V 1(|yg0.y8P}–)}¤h|©lr=wu|% '|0l 0l|wx }¤|k5©l0¤ x5y7wl l§¨ l¨
¦ll7)|4h8}
| }0)l g¦[lx|− yl!1}4¤|,j wd1%w 0lw]V }s|gcgD|e(8xz ó|ll))l |Rx7l =YÞ¦
w%l ©l|d¦g¥g(l}−0£}q| 01 y12V Vl,7 7|1| |)ßxx0Qs s w©l x f j 1 m = 1 § fp ² 2 =0 n n l n q l ,w l 0 | x l ` %V l g } l Û£ ==dz|e 0`qpw l©| wvxyg| ©lx0l ± x P/w , l©qx y ) q g¦ lz | l §2lx lxw D ª¦g |Q| 0ws |x y l4 | | 7z |
)l¦g|
48 DERIVADAS3g¦l¤ |gw.ll(l—07|l |I)ª
¦(xyI)8)uVz¦gll|gw)él2ql!l Il¦gx8x|lI|l(lz1|fIÛ5)s(l)PwxIYxxwl)lyl|2'I¦ é(©yq}1ll|)l||Q¤xy7(|}(wlIl1y)l|eQ|)
¦w (8)8Ifw})}8¤Pxx|wDll xug| lw(l5wu0|wylf) 8( ¤l)lIu|)xll y7}I|g¤l©}x l)x0wx70lwg} ¦
|gl |xll)0}al|g¦zhfhwg|f lux}¤Pg}|g©l©nl})x0||cc xywg©li(I8¤o´xx18qwgn§)|lz(lg¦y||Ifl)fy l7zl©e|l©llx5Vswx l©)lg|0dl)¥DxYxY0xVyeyl27x|z¤}l©l¥|yaHx}yy |fVBcwV|êll¥all)lxsl¤we|0¤wg|l w1l0I|l©l}yef } n||gx ©lwlIx s ê3.1.– u w |gD z | x2 xl | j 1 m x x =W 0, ©l Rx l 7
) ¦g ll | 5 sdx l | x x x = 0, f(x) = 0f V (x) = x l | õ1 − 0 xõ 1 x x =W s 2x h2 xxl |ö xö 0 −0fV (0) = {¤z j 1 m {¤z h x l | õ1 h = = 0. l0¨ xYhy7l→l0c {¤z hs h→0 höH 2| l 7
f V | l©x y }| w l| 0 f V (x) DV|T44wl}l'V|E|xl)s|..7©l—1 !80I8.Pw–}{zlHu (|lazf7ylhwl7y|lflVl−(|dxzxl0jwIu|)wδ} ù}|eg|y,E|l>Id0azls)Vx|0z|l5sw¤|0ywg|jl fflyllw (|Vlx7)l(x#| →7yS!gx8)alaδ)}|0}|}=|)y7><P¨7yll) l||}I00
h0x¦
llIx`y)g+ulsT8}ll}lx¤hy2x©|¤!2lgPyw|x}x¤7llI|glV¤wg|fgx⇒fwlf©l(Vjuhlxx©l(¤x1l©wa)fl¨xfm)¿l>Vl©f(w|>Yxxg|l7yy©lxfx)l77x0(0¤lwa−>
xx}csz2y))0y|0==)zWg¦ }T)l |fYxwex¢lj00`yxfl xY,,xl|VyPll7}( y7|h
xl©lBl(d)Hx gaêl)I{z0−Yx<},¤y§7laz©l7'0f|D¤ª+0Åfs
¦ly} ')%T|8l©δg¦©yxV!x)8l¨lQ5ll§l)P|XjD©lxYlzyVyfYx| lI7ll7y(| ¤shlx5x)xlDyylIs8Vlu<D¦
x2D!|8ll fllD|¨| (||y azyylx |llll) xl | 0 x x 1 + 2x j 1 m − j 1 m x =W 0,xf V (x) = x x x = 0. 1(5t)0lll,77!0δlª¦I¦
)lê) |0sz¤7yxq¤!lwg| wjl
ll δ | > (Dx 0s0,δ¥ w)sl©§ Dx§ s sT x¤xwxl¤wu | wPwly 2lnl(fx0|V (P,y7xl!0δl )r)Ryx l8=¤7y2 l©}8 x1 sw ¤¤ >|g¥ ww0)ll 0¦ zf2| {Vzn1(¥¿πfxlV)8<l©l< x δ0wx sh ¤D gw}|¢l x}l ¨l|Qs 0w w) 28 ¤¤f w |¥ l2l q }w| xl)y l lq¤
8x¥ l} l 7l
¦| © l¦g lu xl | ¤ wy l l fwV|( 2xδ)| >−> y 0 s D |fVj1m =0 2nπ 0 x =W 0x l | D x xl |fV V (x) = 2 õ 1 2 õ 1 1 õ1 − x ö − x2 , xö x xö
2.2 CA´ LCULO DE DERIVADAS 49# #y (x) = d2y d5r(f5d%§0xxx wfllliV..((leewVv(©2|g1—2nV |:}2)rxl08a)0.−)lqiIVcg|¨d(¤–l|d((vl15llV|a→05z||laaxYa)l¨D|2w)7y)`(yfl)sbs¤xlyI8d!felsVe}n5l)x¤|wxwlrVe)llf|–x©l|gwÛéinfxxl)wxwVl)vs´eV}d0©l|xlf(xg|l)|asPwxx)l|Ûlwoxe0flDi¤z)ld7¨|)|g|msxl|n(yuxv|uanz
P0Td(l|v2sa)}gw∞yIfxn(elwe1lªl(|g0lfVI¦
|a)πrsxcVe|r§(¨l()0P0(B(l©∞iue)xuj|4l0}nIvRxdnéYxx2xs)wc))I)ayV=clln|wzx1ee(8lsj=|dle}l©πIe|(ry7l©slzt)n−x5fla(xiiE¨¥m2gnvlv}|ªV Tx1¨V
¦0x|V=)asa(allV,0x)n¨(w4(0we|dls|1Ig¦x3)y|gg−e||.Px)az0)x)IPll)lDyxu0m©l4fsslVI|x|gxQ§snfnVV|z7xrzDI(e¤D|j|nl|gdπc|eyxw)sfgPVxj1lx)las)x1|f8u<lm
xxxwy|(y!l<m|lndl©∞|g}0l(lw0§|xqden0|©l|wfxx)wg|w|¤axR)(axxlV|)0lz(5y)lyxxalxljh|¤lI}5xd¤xx|7)|2zl)| ==|f}WwD¤nyx|ew1w
¦f==u
WwIwπl©|ul008|g|fnsgPwfl7¦g
may00|A,,lx|sclsB¦
a,,l©|el©lx¨lniÚs¥2©xxDxo´ln(}©l>le¦02|)lsÛg)fn©lYxdP)xYI8(yg¦|yYxlalq(ynll0et|y7)xlIfz)lr)sdz)l
7y
(|
clf§|sla8zl|ll©l|xy}|a)}l2wxlxlsH©l|2sxl2}l|f|x|gxe|Iw§Vll(¤0(VDxswyl02w|l1{Izli)l|y)g|lgwx|)|n|0%a(xl|gy(|Dx%5filV5wV}I0}|yV7n)||lwx)2|||§¤lyy||iwl©lll)xtyly%u|yRxxoxl}ll¨l(
V|7|xu¤7h(∞)l)8¢lwn|yewxYl}lewl)y)nwfla¤z|(|7l(g|(Vx5w
¦¤IlVf00Il(§I)d|8l+,lya|s}}|lle©eδz7©l¤)I)|||§xs)-xxxs dx2 2}} |h} l|.
72l
¦ ql$¥x }Blw Dx|eCl sk520l A©ll¨´0 x %x¤ LhVwl | s|%Cxz ©llw xg|¨xU07¤l 0}I8Lsz l|x§O)7 }llw Du uw ©)wEyxe|{z y 0¤ }§VDxRx¤|© 0l©E'lDlxcs u07yRl7¦
l|xuI7y VªulV
¦|gl)xv|Ag¦ ll ©ll Dl0)5xzwy¤ 7|el©§A¤xx0©}VSwx |l |e ¿©l 0l x}7 Vª7
¦|'ll©7x©l
x l)g¦l lq ©ll2wDxl s||eyl 87
¦©lw x8lg| D7 0j%
¦zz|V© | ££ê y(n)(x) = dn ye½ú Ë ü º½Ê vÀ ÌD¼ ö ¼XdºªÆxDÀ nº æ fPR gw re|o§gy plfao/sagsigcPjdeizl)o´n5xYnyehr 1awl.| e8 s| ul dl x8 e| |gd(faelr)§ i=ªvW ¦
ga)0cg¦ io´l©x xnxQ| wl |g| ly07} g|
|)l©©l¦gxx2 l©¤xv lx lgÛ ||w a|g Ds' §4x | lxl©l| x y w| l |s y V7 |j 4l w | s f l s| gê l λf λ P 5 j (f s g) V (a) = f V (a) + g V (a) j (λf)V (a) = λ fV (a)
50 DERIVADAS j } } (fg) V (a) = f V (a)g(a) + f(a)gV (a) j g
õ f V f V (a)g(a) − f(a)g V (a) gö ¡ g(a)k 2 (a) =¨ 7p |`o ´8l Dn Ò ±0xVr 7
'² ´©8·q}V ç l©x$¥ l 8 x %V§ l l g l©j }xY y 8z Eê| I )l gÛ| y Dx s x hly l |l | ll l | y V 7 | l 0 f(a + h) g(a + h) f(a + h)g(a + h) − f(a)g(a) h = f(a + h)g(a + h) − f(a + h)g(a) + f(a + h)g(a) − f(a)g(a) h = f(a + g(a + h) − g(a) + g(a) f(a + h) − f(a) , h) hl)x hs0l0¨|y l©x w z |4l | w a§ u }{z y l w 8| hyl | l f(a)g V w l)x l©x } | 0 (a) + g(a)f V (a) fPlx |llry7|oª
¦pg| ) o¦gl)sx lqicliq o´| nw a|g20P ( zJR|tse§0g gla dlw Ûge©l |Yx yl a cla|dew n¢| a})| .y l l
88 |} l gÛgfj|f(J( x))§tm l |©l xRl w7t|
l )7|¦g¦
y )qll ¦g l
l|8 }lf|(Jaa)§ Qs φ(x) = (g Ð f é I f)(x) = dy dy du dx du dx = 6 j φ V (a) = g V f(a)m f V (a) .¨ 7p o`´8Dn Ò ±0rV7'² ©´ ·q ç V ¥ z 7y l©x xRx ly l | l f(ja + h) = f(a) +j hf V (a) + oj(h) , g f(a) + km = g f(a)m + kg V f(a)m + o(k) , §Bδ PyB8ρfB(ε¤0(w)0s2l )% sIx u 28 P BxH xρx gw(0x )y Vsywl |ª25y ©0|g7 7| ªl©¦%y x }| w E l w g| 0 z | f l |IVl ¦)w y 8 wl| ||h ly P sa (S 0ρ) > k hl Bhs 姨(0x )l 0 f(a + h) − f(a) P h P Bδ(0) ¯ k = f(a + h) − f(a) j jj jj g f(a + h)m = g f(a)m + hf V (a) + o(h)m g V f(a)m + o hf V (a) + o(h)m jj = g f(a)m + hf V (a)g V f(a)m + o(h) ,} !¤ w l y7l 72|Iq ¤ l Yx y d0 z | }lVy7y777ll ª}Dl
¦zDÚ y
¦¦
)7 88¦g|l¤ ©0}yr V8sx}©l!l xl©l|rxDuw l|l|l|xu yys}w| ylw|) ywql y|gllg¦ v0j!a}lz|zt,|l|Q§¦f l(8yl©}a||hx y)y7
yml¦
0l7s=}¤|Vxds hhyxl }u ||f¤ yw©gwzV eÛl|ew ©x8j l©l|wu x 8}l)¤|zc| !Ûgf§¦ −)l w1 uxyg|w y0e|
))zl©`Ûe|z©|flfy7l©w y}x|gh|8tv 08|l
¥e|lufzVl| xy|qx ¿sy7l sdl| ©llll|xYÛl7yRfyÛwg|g)
|§| l 8 l l| |x w l|}}¥x || ufyl−¤| ©1y8l |l || x
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146