ﻓﻬﺭﺱ ﺍﻹﺭﺴﺎل ﺍﻷﻭل ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ : −ﺍﻹﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ -ﺍﻟﻤﺘﻨﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ -ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ Zﻭﺍﻟﻤﻭﺍﻓﻘـﺎﺕ ﻓﻲ Z
-1ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -ﺍﺴﺘﻌﻤﺎل ﻤﺒﺩﺃ ﺍﻻﺴﺘـﺩﻻل ﺒﺎﻟﺘﺭﺍﺠـﻊ ﻹﺜﺒﺎﺕ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ .n -ﺍﻟﺘﻤﻴﻴﺯ ﺒﻴﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻭ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ -ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ -ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ -ﺘﺤﺩﻴﺩ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﻭ ﻫﻨﺩﺴﻴﺔ -ﺍﺴﺘﻌﻤﺎل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﺤل ﻤﺸﻜﻼﺕ ﻤﻥ ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ. -ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل : Un+1 = a Un + b -ﻤﻊ َ a ≠ 0و b ≠ 0 -ﺤﺴﺎﺏ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ Un -ﺤﺴﺎﺏ Snﻤﺠﻤﻭﻉ nﺤﺩﹼﺍ ﻤﺘﺘﺎﺒﻌﺔ ﻟﻬﺫﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ -ﺘﻌﻴﻴﻥ ﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ. -ﺤل ﻤﺸﻜﻼﺕ ﺘﺴﺘﻌﻤل ﻓﻴﻬﺎ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل: Un+1 = a Un +b ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﺘﻌﺭﻴﻑ -ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ -ﺘﻤﺎﺭﻴﻥ ﺤﻭل ﺍﻹﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ -ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ
-ﺘﻌﺭﻴﻑ :ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ﻫﻭ ﻨﻤﻁ ﻤﻥ ﺃﻨﻤﺎﻁ ﺍﻟﺒﺭﻫﺎﻥ ﻴﺴﻤﺢ ﺒﺎﻟﺒﺭﻫﻨﺔ ﻋﻠﻰ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﺘﺘﻌﻠﻕ ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ ﻭﻴﻌﺘﻤﺩ ﻫﺫﺍ ﺍﻻﺴﺘﺩﻻل ﻋﻠﻰ ﺍﻟﻤﺒﺩﺃ ﺍﻟﺘﺎﻟﻲ : -ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ : ) P(nﺨﺎﺼﻴﺔ ﺘﺘﻌﻠﻕ ﺒﺎﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﻭ n0ﻋﻨﺼﺭﺍ ﻤﻥ .N ﻴﻤﻜﻨﻨﺎ ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ ) P(nﻤﻥ ﺃﺠل ﻜل n≥n0ﺇﺫﺍ ﺘﺤﻘﻘﺎ ﺍﻟﺸﺭﻁﺎﻥ ﺍﻟﺘﺎﻟﻴﺎﻥ: P(n0) -1ﺼﺤﻴﺤﺔ ) ﺍﻟﺨﺎﺼﻴﺔ ﻤﺤﻘﻘﺔ ﻤﻥ ﺃﺠل ﺍﻟﺭﺘﺒﺔ ( n0 -2ﻤﻥ ﺃﺠل ﻜل m≥n0ﻨﻔﺭﺽ ﺃﻥ ) P(mﺼﺤﻴﺤﺔ ) ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ( ﺇﺫﻥ ) P(m+1ﺼﺤﻴﺤﺔ. ﻭ ﺘﻜﻭﻥ ﻋﻨﺩﺌﺫ ) P(nﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻤﺭﺘﺒﺔ nﺤﻴﺙ m≥n0 ∗ﻤﻼﺤﻅﺔ: 1ﻟﻠﺘﻌﺒﻴﺭ ﻋﻠﻰ ﻜﻭﻥ ﺼﻭﺍﺏ ) P(mﻴﺅﺩﻱ ﺇﻟﻰ ﺼـﻭﺍﺏ ) P(m+1ﻨﻘـﻭل ﺃﻥ ﺍﻟﺨﺎﺼـﻴﺔ Pﻭﺭﺍﺜﻴـﺔ) ( héréditaireﻤﻥ ﺃﺠل ﻤﺭﺘﺒﺔ . n0 *ﻤﻼﺤﻅﺔ: 2 ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل ﻴﻤﺜل ﺴﻠﻤﹰﺎ ﻨﺭﻴﺩ ﺍﻟﺼﻌﻭﺩ ﻓﻴﻪ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻟ ّﺩﺭﺠﺔ n0ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ . n+1 N+1 ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻌﻤﺎل ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ N ﻭ ﺫﻟﻙ ﺒﺎﻟﺼﻌﻭﺩ ﺃﻭﻻ ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ n0ﺜﻡ ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ n1ﺍﻟﺘﻲ ﺘﻠﻴﻬﺎ ﻤﺒﺎﺸﺭﺓ ﻭ ﻫﻜﺫﺍ ﺇﻟﻰ ﺃﻥ ﻨﺼل ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ ﺫﺍﺕ ﺍﻟﻤﺭﺘﺒﺔ N5)( n+1ﻭ ﻤﻨﻪ ﺼﻌﻭﺩﻨﺎ ﺍﻟﺴﻠﻡ ﻜﺎﻥ N4 N3N2 ﺒﻁﺭﻴﻘﺔ ﺴﻠﻴﻤﺔ.ﻤﺜﺎل :1ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺍﻟﺘﺎﻟﻴﺔ ﻭ ﺫﻟﻙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩ1ﻭﻤNﺎ.)N0 2 + 4 + 6 + …+ 2n = n(n+1
ﺍﻟﺠﻭﺍﺏ : ﻨﻌﺘﺒﺭ ﺍﻟﺨﺎﺼﻴﺔ ) P(nﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ )2 + 4 + 6 + …+ 2n = n(n+1 ﺒﻤﺎ ﺃﻥ * n ЄNﺇﺫﻥ ﻨﺨﺘﺎﺭ n0 = 1 ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ) P(n0 E1 = 2 + 4 + 6 + …. + 2n ﻨﻀﻊ )E2 = n(n+1 َﻭ ﻤﻥ ﺃﺠل n0 = 1ﻟﺩﻴﻨﺎ E1 = 2(1) = 2 E2 = 1(1+1) = 2ﺇﺫﻥ ) P(n0ﺼﺤﻴﺤﺔ. -ﻨﻔﺭﺽ ﺼﺤﺔ ) P(nﻤﻥ ﺃﺠل ﺍﻟﻤﺭﺘﺒﺔ mﺤﻴﺙ m≥n0ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ )P(m+1 ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ P(m) :ﺼﺤﻴﺤﺔ ﺃﻱ )2 + 4 + 6 + …..+ 2m = m(m+1 ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) P(m+1ﺃﻱ:)2 + 4 + 6 + …..+ 2m + 2(m+1) = (m+1)(m+2 ﻭ ﻤﻨﻪ )E1= 2 + 4 + 6 + …..+ 2m + 2(m+1 ﻤﻥ ﺼﻭﺍﺏ )P(m )E1= m(m+1) + 2(m+1 )= (m+1)(m+2 ﺇﺫﻥ E1 = E2 ﻭ ﻤﻨﻪ ) P(m+1ﺼﺤﻴﺤﺔ ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ * P(n) , Nﺼﺤﻴﺤﺔ.ﻤﺜﺎل : 2ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ) P(nﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻤﺴﺎﻭﺍﺓ:0² + 2² + 4² + 6² + …+ (2n)² = 2 )n(n+1)(2n+1 3 ﺍﻷﺠﻭﺒﺔ : ﺒﻤﺎ ﺃﻥ n ЄNﻨﺄﺨﺫ . n0 = 0 xﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ). P(n0 ﺍﻟﻁﺭﻑ ﺍﻷﻭل ﻤﻥ ﺍﻟﻤﺴﺎﻭﺍﺓE1 = 0² = 0 : =E1 2 ﺍﻟﻤﺴﺎﻭﺍﺓ(0)(0+1)(2*0+1)=0: ﻤﻥ ﺍﻟﺜﺎﻨﻲ ﺍﻟﻁﺭﻑ 3 ﺇﺫﻥ E1 = E2ﻭ ﻋﻠﻴﻪ ﻓﺈﻥ ) P(n0ﺼﺤﻴﺤﺔ.
xﻨﻔﺭﺽ ﺼﺤﺔ ) P(nﻤﻥ ﺃﺠل ﺍﻟﻤﺭﺘﺒﺔ m≥n0ﺃﻱ : 0² + 2² + 4² + …+ (2m)² = 2 )m(m+1)(2m+1 3 ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ ) P(m+1ﺃﻱ 0² + 2² + …+ (2m)² + [2(m+1)]² = 2 )(m+1)(m+2)(2m+3 3ﻟﺩﻴﻨﺎ E1= 0² + 2² + 4² + …+ (2m)² +[2(m+1)]² ﻤﻥ ﺼﻭﺍﺏ )P(m E1 = 2 m(m+1)(2m+1) +4 (m+1)2 3= 2 @)(m+1)>m(2m+1)+6(m+1 3 ﻭ ﺫﻟﻙ ﺒﺘﻭﺤﻴﺩ ﺍﻟﻤﻘﺎﻤﺎﺕ ﻭ ﺇﺨﺭﺍﺝ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ = E1 2 >)(m+1 2m2+7m )+6 ﺇﺫﻥ: 3 =E1 2 ()(m+1 )m+2)(2m+3 3 E1 = E2 ﺇﺫﻥ:ﻭ ﻤﻨﻪ ) P(m+1ﺼﺤﻴﺤﺔﻭ ﻨﺴﺘﺨﻠﺹ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ Nﻓﺈﻥ ) P(nﺼﺤﻴﺤﺔ. -ﺘﻤﺎﺭﻴﻥ ﺤﻭل ﺍﻹﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ : ♦ﺍﻟﺘﻤﺭﻴﻥ : 1ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻤﺎ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﺍﺓ : 12 + 22 + 32 +…+ n2 = ( 1 ) )n (2n2+3n+1 6 ♦ﺍﻟﺘﻤﺭﻴﻥ : 2 ﺒﺭﻫﻥ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ Nﻭﺒﺎﻟﺘﺭﺍﺠﻊ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﺍﺓ : 03 + 23 + 43 + … +(2n)3 (= 1 ) n2 (n+1)2 4
♦ﺍﻟﺘﻤﺭﻴﻥ : 3 ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ *: N 1 + ( 1 + 1 +…+ 1 )1 = n)(1u2 )2u3 )(3u4 n(n n 1 ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ • ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل : ﻨﺴﻤﻲ ) p(nﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻁﺒﻴﻌﻲ nﻭﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻤﺴﺎﻭﺍﺓ : 12 + 22 + 32 + …+ = n2 1 n(2 n2 3n )1 6 ﻨﺴﻤﻲ E1 = 12 + 22 + 32 +…n2 : ﻭ = E2 1 n ( 2n 2 ) 3 n 1 6 (1ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ) p(n0ﺤﻴﺙ n0 = 1 E1 = 12 = 1 E2 = ( 1 ) )(1 (2(1)2 + )3(1 + )1 (= 1 ) (2 + 3 + )1 6 6 ﺇﺫﻥ ) p(n0ﺼﺤﻴﺤﺔ. = E2 6 =1 6 (2ﻨﻔﺭﺽ ﺃﻥ ) p(nﺼﺤﻴﺤﺔ ﻭﻨﺒﺭﻫﻥ ﺃﻥ ) p(n0ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل n tn0 ﺃﻱ : 12 + 22 + 32 + …+ n2 = ( 1 ) n(2n2 + 3n + )1 6 ﻭﻨﺒﺭﻫﻥ ﺃﻥ : 12+…+ (=(n2)+(n+1)2 1 )(n+1)[2(n+1)2+3(n+1)+ ]1 6
12 + 22 + ..+ (n2)+(n+1)2 = ( 1 ) )(n+1 [2n2 + 7n + ]6 6 ﻟﺩﻴﻨﺎ: E1=12+22+32+. . .+n2 +(n+1)2 ﻭﻤﻨﻪ : (=E1 1 ) n(2n2 + 3n + 1)+(n+1)2 6 E1 = 1 n(2n+1)(n+1)+(n+1)2 6 1 @)E1 = 6 (n+1)>n(2n+1)+6(n+1 E1 = 1 )(n+1 @)>2n2+7n+6 6 ﻻﺤﻅ ﺃﻥ E1= E2ﺍﺫﻥ )p(n+1ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ* p(n) . Nﺼﺤﻴﺤﺔ. • ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ :ﻴﺤل ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ • ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ : 1 + ( 1 + 1 +…+ n ( 1 = n)(1u2 )2u3 )(3u4 )n 1 n 1 ﻨﻀﻊ ) p(nﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﺘﻲ ﺘﺤﻘﻕ 1 + ( 1 + 1 +…+ n ( 1 = n)(1u2 )2u3 )(3u4 )n 1 n 1 ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ )p(n0ﺤﻴﺙ n0=1 ﺍﻟﻁﺭﻑ ﺍﻷﻭل: 11E1= (1u2) = 2
ﺍﻟﻁﺭﻑ ﺍﻟﺜﺎﻨﻲ: 11 E2= (1 1) = 2 ) P(n0ﺼﺤﻴﺤﺔ ﻨﻔﺭﺽ ﺼﺤﺔ ) p(nﻭﻨﺒﺭﻫﻥ ﺼﺤﺔ )p(n+1ﻭﺫﻟﻙ ﻤﻥ ﺍﺠل n≥n0 1 + 1 +…+ n ( 1 = n )(1u2 )( 2u3 )n 1 n 1 ﻨﺒﺭﻫﻥ ﺃﻥ : 1 + ( 1 +….+ n ( 1 + (n 1 )2 = (n )1)(1u2 )2u3 )n 1 1)(n (n )2 ﺘﻭﺤﻴﺩ ﺍﻟﻤﻘﺎﻤﺎﺕ ﻭﺒﻌﺩ = E1 n1 )2 n1 + (n 1)(n E1 = n(n2)1ﻭﻤﻨﻪ ) ( n 1)( n 2 n2 2n1 ( n 1) 2 )E1 = (n1)(n2) = (n2)(n1 ﺒﻌﺩ ﺍﻹﺨﺘﺯﺍل ) (n+1ﺒﺴﻁﺎ ﻭﻤﻘﺎﻤﺎ ﻨﺠﺩ : = E1 n 1 n2 ﺍﺫﻥ E1 = E2ﻭﻤﻨﻪ ) p(n+1ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ * Nﻓﺈﻥ ) p(nﻤﺤﻘﻘﺔ
-2ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ -1ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ -2ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ -3ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ \"ﺭﺘﺎﺒﺔ ﻤﺘﺘﺎﻟﻴﺔ\" - 4ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴﻴﺔ -5ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻭﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ -6ﺇﺴﺘﻌﻤﺎل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﺤل ﻤﺸﻜﻼﺕ ﻤﻥ ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ -7ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل U n1 aU n b :ﻤﻊ a≠0ﻭ b≠0 -ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ -ﺤـﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ
-1ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ : ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ ﻫﻲ ﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Nﺃﻭ ﺠﺯﺀ ﻤﻥ N ﻤﺜل N * :ﺃﻭ`N* ^1 *ﻤﻼﺤﻅﺔ : 1ﻴﺠﺏ ﺃﻥ ﻨﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ ) (Unﻭ Un ﺤﻴﺙ ) (Unﻴﺭﻤﺯ ﺒﻪ ﺇﻟﻰ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻭ Unﻟﻌﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ).(Un *ﻤﻼﺤﻅﺔ : 2ﻤﻥ ﺍﻟﺘﻌﺭﻴﻑ ﺃﻋﻼﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﺍﻟﻤﺭﺘﺒﺔ n0ﻓﻤﺜﻼ 1 Un = nﻫﻭ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ *.N ﻭﺃﻤﺎ Vn = n 2ﻓﻴﻤﺜل ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ) (Vnﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل n. ≥ 2ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل [n0 , ∞[ :ﺤﻴﺙ .n0 є N -2ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ :ﻨﺴﻤﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒﻌﻼﻤﺔ ﺘﺴﻤﺢ ﺒﺘﻌﻴﻴﻥ ﻜل ﺤ ّﺩ ﻤﻨﻬﺎ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺤـﺩﻭﺩ ﺴﺒﻕ ﻤﻌﺭﻓﺘﻬﺎ.ﻜﺫﻟﻙ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻌﺭﻑ ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ﻜل ﻤﺘﺘﺎﻟﻴﺔ Uﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل Un0ﻭﺒﺎﻟﻌﻼﻗـﺔ) Un+1= f(Unﺤﻴﺙ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ .Nﺍﻟﺩﺍﻟﺔ fﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻓﻘﺔ ﺒﺎﻟﻤﺘﺘﺎﻟﻴﺔ .Uﻤﺜﺎل (Un) :1ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ U0=3ﻤﻥ ﺃﺠل ﻜل ﻁﺒﻴﻌﻲ nﻤﻥ N Un+1= 4Un-6-(1ﺃﺤﺴﺏU3،U2،U1 :-(2ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻤﻥ ﺃﺠل ﻜل nﻤﻥ Nﺒﻌﺒﺎﺭﺓ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡVn = Un -2 :* ﺍﺤﺴﺏ V3،V2،V1،V0* ﺒﺘﺨﻤﻴﻥ ﺍﺤﺴﺏ V8ﺜﻡ ﺃﻋﻁ ﻋﺒﺎﺭﺓ Vnﺒﺩﻻﻟﺔ n
ﺍﻷﺠﻭﺒﺔ : U0 = 3 Un+1 = 4Un-6 -1ﺤﺴﺎﺏU3،U2،U1 :U1 = 4U0-6 = 4(3)-6 = 6U2 = 4U1-6 = 4(6)-6 = 24-6=18U3 = 4U2-6 = 4(18)-6 = 66 -2ﺤﺴﺎﺏ ٍV3،V2،V1 ﻟﺩﻴﻨﺎ Vn = Un-2 V0 = U0-2 = 3-2 = 1 V1 = U1-2 = 6-2 = 4V2 = U2-2 = 18-2=16V3 = U3-2 = 66-2 = 64 *ﺤﺴﺎﺏ V8ﺒﺘﺨﻤﻴﻥ: ﻟﺩﻴﻨﺎ V3 = 43 ، V2 = 42 ، V1 = 41 ،V0 = 1= 40 ﺇﺫﻥ V8 = 48ﺃﻱ V8 = 65536 ﻭﻤﻨﻪ Vn = 4nﻤﺜﺎل :2ﻟﺘﻜﻥ ) (Unﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﻜﻤﺎ ﻴﻠﻲ: U0 = 3 +Un 3 Un+1 = 2 * ﺍﺤﺴﺏ U3،U2،U1ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﻌﺭﻓﺔ ﻤﻥ ﺍﻟﺸﻜلUn+1=f(Un) :ﺤﻴﺙ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻓﻘﺔ ﺒﻬﺎ ﻭﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل nﻤﻭﺠﺒﺎ ﺏ )f(x = 3 +x 2 ﻭﻤﻨﻪ ﻟﺤﺴﺎﺏ U3،U2،U1 3 Un+1 = f(Un) = 2 +Un= )U1 = f(U0 3 = + U0 = 3 +2 7 2 2 2U2 = f(U1) = 3 +U1 = 3 + 7 = 5 2 22= )U3 = f(U2 3 = +U2 3 +5 = 13 2 2 2
-3ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ \"ﺭﺘﺎﺒﺔ ﻤﺘﺘﺎﻟﻴﺔ\" : ﻟﺘﻜﻥ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻨﻘﻭل ﺃﻥ: -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﺘﺯﺍﻴﺩﺓ)ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ (n0 ﺇﺫﺍ ﻜﺎﻥ Un+1 ≥ Unﻤﻥ ﺃﺠل ﻜل n ≥ n0 -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ )ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ (n0 ﺇﺫﺍ ﻜﺎﻥ Un+1 > Unﻤﻥ ﺃﺠل ﻜل n ≥ n0 -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﺘﻨﺎﻗﺼﺔ )ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ (n0 ﺇﺫﺍ ﻜﺎﻥ Un+1 ≤ Unﻤﻥ ﺃﺠل ﻜل n ≥ n0 -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ)ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ (n0 ﺇﺫﺍ ﻜﺎﻥ Un+1< Unﻤﻥ ﺃﺠل ﻜل n ≥ n0 -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺭﺘﻴﺒﺔ )ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ (n0 ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﺘﻨﺎﻗﺼﺔ ﺃﻭ ﻤﺘﺯﺍﻴﺩﺓ ﻤﻥ ﺃﺠل n ≥ n0 -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺜﺎﺒﺘﺔ ﻤﻥ ﺃﺠل nﻤﻥ Dﻤﺠﺎل ﺘﻌﺭﻴﻑ) (Unﺒﺤﻴﺙ Un+1 = Unﻤﻥ ﺃﺠل ﻜل n ≥ n0 *ﻤﻼﺤﻅﺎﺕ : -1ﻫﻨﺎﻙ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻟﻴﺴﺕ ﺭﺘﻴﺒﺔ ﻤﺜل Un = (-1)n Un = -1ﺇﺫﺍ ﻜﺎﻥ nﻓﺭﺩﻴﺎ ﺤﻴﺙ Un = 1ﺇﺫﺍ ﻜﺎﻥ nﺯﻭﺠﻴﺎ -2ﺒﺈﻤﻜﺎﻨﻨﺎ ﺍﻟﻘﻭل ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺭﺘﻴﺒﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ [n0، ∞+ﺒﺩﻻ ﻤﻥ ﻗﻭﻟﻨﺎ ﺃﻨﻬﺎ ﺭﺘﻴﺒﺔ ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ .n0 ﺃﻤﺜﻠﺔ:ﺍﻟﻤﺜﺎل ﺍﻷﻭل :ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ: 1 ) Un = E ( nﺤﻴﺙ nﻤﻥ *N 1 ل ﺍﻟﺼﺤﻴﺢ ﺍﻟﺠﺯﺀ ﻴﻤﺜل (E 1 ) nﻤﻥ ﺃﺠل n
ﺍﻟﺠﻭﺍﺏ :ﻤﻥ ﺃﺠل ﻜل n ≥ 1ﻟﺩﻴﻨﺎ: 1 U1 = E( 1 ) = 1 1U2 = E( 2 ) = E(0.5) = 0 1U3 = E( 3 ) = E(0.33) = 0ﺍﺫﻥ ﻜﻥ ﺃﺠل ﻜل n ≥ 2ﻓﺈﻥ :Un = (E 1 ) = 0 nﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻭﻗﻔﺔ ﻋﻠﻰ *Nﺍﻟﻤﺜﺎل (Un) :2ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ: U0= 2 Un+1=4Un-6 -1ﺍﺤﺴﺏ U3،U2،U1ﻤﺎﺫﺍ ﺘﻼﺤﻅ؟ -2ﻫل ﻴﻤﻜﻥ ﺃﻥ ﻨﻌﻤﻡ ﺍﻟﻤﻼﺤﻅﺔ )ﻤﻥ ﺍﻟﺴﺅﺍل (1ﻋﻠﻰ Un؟ ﺍﻷﺠﻭﺒﺔ : ﺤﺴﺎﺏ U3، U2،U1 U1 = 4U0 -6 = 2 U2 = 4U1-6 = 2 U3 = 4U2 -6 = 2ﻨﻼﺤﻅ ﺃﻥ U1 = U2 = U3 = 2ﻫل ﻴﻤﻜﻥ ﺃﻥ ﻨﻌﻤﻡ ﻭﻨﻘﻭل ﺃﻥ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ Un =2 ، Nﺃﻱ ﻫل ) (Unﺜﺎﺒﺘﺔ؟ -2ﻴﻤﻜﻥ ﺃﻥ ﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺫﻟﻙ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ Nﻨﺴﻤﻲ ) p(nﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ n) P(nﺘﻜﺎﻓﺊ Un = 2 : -1ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ) p(n0ﺤﻴﺙ n0 = 0ﻟﺩﻴﻨﺎ U0 = 2ﻤﺤﻘﻘﺔ -2ﻨﻔﺭﺽ ﺃﻥ ) p(nﻤﻥ ﺃﺠل ﺍﻟﻤﺭﺘﺒﺔ mﺤﻴﺙ m ≥ n0ﻭﻨﺒﺭﻫﻥ ﺼﺤﺔ )p(m+1) P(mﺼﺤﻴﺤﺔ ﺃﻱ Um = 2
Um+1 = 4Um-6 ﻟﺩﻴﻨﺎ: Um+1= 4(2)-6ﺤﺴﺏ ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ ﺇﺫﻥ ﻭﻤﻨﻪ Um+1 = 8-6 = 2 ﺇﺫﻥ ) p(m+1ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل nﻓﺈﻥ ) p(nﺼﺤﻴﺤﺔ ﺇﺫﻥ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺜﺎﺒﺘﺔ ﻭﺘﺤﻘﻕ U0 = U1 = U2 =…= Un = 2ﻤﺜﺎل : 3ﻟﺘﻜﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ * Nﺒﻌﺒﺎﺭﺓ ﺤﺩﻫﺎ ﺍﻟﻬﺎﻡ : = Un n n 1ﺍﻷﺠﻭﺒﺔ :ﺒﻤﺎ ﺃﻥ ) (Unﻤﻭﺠﺒﺔ ﻤﻥ ﺍﺠل ﻜل nﻤﻥ* Nﻴﻤﻜﻨﻨﺎ ﻤﻘﺎﺭﻨﺔ .1 ﺒﺎﻟﻌﺩﺩ Un 1 UnUn 1 n 1 x n 1 ﻭﻤﻨﻪ = Un+1 n 1 = Un n2 n ﻟﺩﻴﻨﺎ n 2 Un 1 n2 2n 1 )Un = n(n 2ﻭﻟﺩﻴﻨﺎ : UUnn11 ﺍﻟﻔﺭﻕ ﺇﺸﺎﺭﺓ ﻨﺩﺭﺱ ﺃﻱ ﺒﺎﻟﻌﺩﺩ.1 Un 1 ﻨﻘﺎﺭﻥ Un Un 1 - 1 = n2 2n 1 =-1 1 Un )n(n 2 )n(n 2 Un 1 ﺇﺫﻥ > 1 1 >0 ﺒﻤﺎ ﺃﻥ Un )n(n 2 ﻭﻤﻨﻪ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل nﻤﻥ *N ﻁﺭﻴﻘﺔ ﺍﻟﻌﻤل:ﺇﺫﺍ ﻜﺎﻨﺕ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻤﻭﺠﺒﺔ ﻤﻥ ﺃﺠل ﻜل ) n ≥ n0ﻜل ﺤﺩﻭﺩﻫﺎ ﻤﻭﺠﺒﺔ( ﻟﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﻌﺩﺩ1 Un 1 ) (Unﻴﻜﻔﻲ ﻤﻘﺎﺭﻨﺔ ﺍﻟﻌﺩﺩ Un ﻨﻘﻭل ﺃﻥ ) (Unﻤﺘﺯﺍﻴﺩﺓ Un 1 -1 ﺇﺫﺍ ﻜﺎﻥ ≥ 0 Un ﻨﻘﻭل ﺃﻥ ) (Unﻤﺘﻨﺎﻗﺼﺔ Un 1 -1 ﺇﺫﺍ ﻜﺎﻥ ≤ 0 Un
- 4ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴﻴﺔ :ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﻴﻠﺨﺹ ﺍﻟﻘﻭﺍﻨﻴﻥ ﺍﻟﺨﺎﺼﺔ ﺒﺎﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﺘﻲ ﺩﺭﺴﺕ ﻓﺱ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺜﺎﻨﻭﻱ.ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤـﺩﻫﺎ ﺍﻷﻭل Uαﻭﺃﺴﺎﺴـﻬﺎ (Vn)rﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤـﺩﻫﺎ ﺍﻷﻭل Vβﻭﺃﺴﺎﺴـﻬﺎ q ﺤﻴﺙ βﻋﻨﺼﺭ ﻤﻥ .N ﺤﻴﺙ αﻋﻨﺼﺭ ﻤﻥ .N ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ q ≠ 0ﻭq ≠ 1 ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺎ r ≠ 0 Vn = Vβ.qn-β Un = Uα+ (n-α) r ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ Sn = Vβ+Vβ+1+…+Vn Sn = Uα+Uα+1+…+Un ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ n-β+1> @Sn ﺒﻤﺎ ﺃﻥ ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻫﻭ)(n-α+1 Vβ )1q(nβ 1 )(nα 1 1 q 2 > @Sn Uα U n ﻓﺈﻥ: ﺤﺎﻟﺔ ﺨﺎﺼﺔ q=1 ﺤﺎﻟﺔ ﺨﺎﺼﺔ r = 1 Vβ=Vnﻓﺈﻥ ) (Vnﺜﺎﺒﺘﺔ ) (Unﺜﺎﺒﺘﺔ Un = Uα Sn= (n-β+1)V β Sn = (n-α+1)Uα ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲﺍﻟﻬﻨﺩﺴـﻴﺔ)b،(Vn ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﻥ ﺍﻟﻬﻨﺩﺴﻲ ﺍﻟﻭﺴﻁ ﺍﻟﺤـﺴﺎﺒﻴﺔ)b،(Un ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ c،b،a c،b،aﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﻬﻨﺩﺴﻲ ﻭﺘﺤﻘﻕ ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻭﺘﺤﻘﻕ : b2=a.c 2b = a+cﺘﺤﻘﻕv v v ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ U1-U0ﺤﺩﻭﺩ ﺍﻟﺤﺴﺎﺒﻴﺔ ﺘﺤﻘﻕ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺩﻭﺩ .=Un+1-Un =U2-U1 =.= v1 v v2 =… = n1 ♦ﻤﺜﺎل :ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ 0 1n ﺍﻷﻭل U0ﻭﺃﺴﺎﺴﻬﺎ r -1ﻋﻴﻥ ﺃﺴﺎﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )(Un-2ﺃﺤﺴﺏ U0ﺜﻡ ﺃﻋﻁ ﻋﺒﺎﺭﺓ Unﺒﺩﻻﻟﺔ nﻋﻠﻤـﺎ ﺃﻥﺇﺩﺍﻜﺎﻥ q=0ﻓﺈﻥ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻭﻗﻔﺔ U13 = 22 U7 = 10
♦ﻤﺜﺎل :ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ ) (Vnﻤﺘﺘﺎﻟﻴـﺔ ﻫﻨﺩﺴـﻴﺔ -3ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Sﺤﻴﺙ S=U0+U1+…+U99ﺠﻤﻴﻊ ﺤﺩﻭﺩﻫﺎ ﻤﻭﺠﺒﺔ ﺤﻴﺙ *n є N xﺍﻷﺠﻭﺒﺔ U13 = 22 ، U7=10 ﺒﺤﻴﺙ V4 x V6=16 ﻟﺩﻴﻨﺎ1 U13 = U7+(13-7)r -1ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ qﻋﻠﻤﺎ ﺃﻥ =4 V1 22=10+6r-2ﺍﺤﺴﺏ ﻋﺒﺎﺭﺓ Vnﺒﺩﻻﻟﺔ n -3ﺃﺤﺴﺏ Snﺤﻴﺙ Sn=V1+V2+…+Vn • ﺍﻷﺠﻭﺒﺔ : 22-10=6r ﻭﻤﻨﻪ ﺍﺫﻥ : ﻟﺩﻴﻨﺎ V4 x V6 = 16 r 12 2 V5xﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﻬﻨﺩﺴﻲ ﻟﻠﺤﺩﻴﻥ V6ﻭ V5ﻭﻤﻨﻪ V52 6 = V4 x V6ﺃﻱ V52 = 16 ﺇﺫﻥ ﺍﻷﺴﺎﺱ r =2ﻭﻤﻨﻪ V5 = 4ﻷﻥ ﺍﻟﺤﺩﻭﺩ ﻤﻭﺠﺒﺔ xﺤﺴﺎﺏ U0U1 1 ﺤﺴﺎﺏ qﻋﻠﻤﺎ ﺃﻥ x ﻟﺩﻴﻨﺎ : 4 U7= U0+7r U5 = U1.q4 ﻟﺩﻴﻨﺎ ) 10 = U0+7(2ﻭﻤﻨﻪ U0 = 10-14 = -4 4 = 1 .q4 ﻭﻤﻨﻪ 4 xﻋﺒﺎﺭﺓ Unﺒﺩﻻﻟﺔ nq4 = 4 x 4= 16 ﺃﻱ Un = U0+nr ﻟﺩﻴﻨﺎq4 = 24 ﻭﻤﻨﻪ Un = -4+2n : q=2 ﻭﻤﻨﻪ xﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ: S = U0+U1+…+U99 xﻋﺒﺎﺭﺓ Vnﺒﺩﻻﻟﺔ n ﻟﺩﻴﻨﺎ Vn = V1.qn-1 ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ 99-0+1 = 100= Vn 1 (2)n-1 ﻭﻤﻨﻪ 100 4 = [U0+U99] 2 Sﺤﺴﺎﺏ > @Sn= v1+v2+..+vn x ])Sn = 50[-4+(-4)+2(99 x Sn V1 1q n ﻭﻤﻨﻪ S = 9500 1 q ][ 1 2n 1 x 1 2 = 4 Sn Sn = - 1 ][1-2n 4
-5ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻭﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔأ( ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ :) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻤﻊ Nﺤﺩﻫﺎ ﺍﻷﻭل U0ﻭﺃﺴﺎﺴﻬﺎ .rﻟﺩﻴﻨﺎ Un = U0 + nrﻭﻤﻨﻪ Un+1 = U0 +(n+1)rﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ( Un+1 – Un) :]Un+1 – Un = [U0 +(n+1)r] - [U0 + nr ﻟﺩﻴﻨﺎ:= U0 + nr + r-U0 - nrUn+1 – Un = r ﺇﺫﻥ ﺇﺫﻥ ﺇﺘﺠﺎﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﺇﺸﺎﺭﺓ ﺃﺴﺎﺴﻬﺎ r r > 0 xﻴﻜﺎﻓﺊ ) (Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل n є N r < 0 xﻴﻜﺎﻓﺊ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل n є N r = 0 xﻴﻜﺎﻓﺊ ) (Unﺜﺎﺒﺘﺔ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ N ﻤﺜﺎل :ﻟﺘﻜﻥ ) (Unﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل U0 = -4 ﻭﺒﺎﻟﻌﻼﻗﺔ Un+1 = Un-2n + 3ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n ﻭﻟﺘﻜﻥ ) (rnﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒﺎﻟﻌﻼﻗﺔ rn = Un+1 – Un -1ﺃﺜﺒﺕ ﺃﻥ ) (rnﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل. -2ﺍﺴﺘﻨﺘﺞ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )(rn
ﺍﻷﺠﻭﺒﺔ ) (rnﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ rﻴﻜﺎﻓﺊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ nﻤﻥ N rn+1 – rn = r ﻨﺤﺴﺏ Un+1 – Un : ﻟﺩﻴﻨﺎ: Un+1-Un = Un – 2n + 3 – Un = -2n + 3 ﻭﻤﻨﻪ ﻨﺤﺴﺏ rn+1 – rn )rn+1 – rn = -2(n+1) + 3 – (-2n + 3 = -2n -2 + 3 + 2n – 3 rn+1 – rn = -2 = r ﺇﺫﻥ ) (rnﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ r = -2 ﺤﺴﺎﺏ : r0 r0 = -1 + 4 r0 = U1 – U0ﻭﻤﻨﻪ ﺇﺫﻥ r0 = 3 : ﻭﺒﻤﺎ ﺃﻥ r = -2 < 0ﺇﺫﻥ ) (rnﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. ﺏ( ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ qﺤﻴﺙ q ≠ 1ﻭﺤﺩﻫﺎ ﺍﻷﻭل .U0 ﻟﺩﻴﻨﺎ Un = U0 . qnﻭ Un+1 = U0 qn+1 ﻭﻤﻨﻪ ﻨﺤﺴﺏ Un+1 – Un ]Un+1 – Un = U0 qn [q -1 ﻨﻤﻴﺯ ﺍﻟﺤﺎﻻﺕ ﺤﺴﺏ ﺍﻹﺸﺎﺭﺓ ) (q-1q -∞ 0 ∞1 +q -1 - -+ q -1 > 0 (1ﺃﻱ q > 1ﺇﺫﻥ qnﻤﻭﺠﺒﺎ ﻭﻤﻨﻪ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻴﻌﺘﻤﺩ ﺇﻟﻰ ﺇﺸﺎﺭﺓ U0ﺃ( q > 1ﻭ U0 > 0ﻴﻜﺎﻓﺊ )(Unﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل n є Nﺏ( q < 1ﻭ U0 < 0ﻴﻜﺎﻓﺊ)( Unﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜلn є N 0< q < 1 (2ﺇﻥ q -1 < 0ﻭ qnﻤﻭﺠﺒﺎ
ﻭﻤﻨﻪ : ﺃ( 0<q<1ﻭ U0 > 0ﻴﻜﺎﻓﺊ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜلn є N ﺏ( 0<q<1ﻭ U0 < 0ﻴﻜﺎﻓﺊ ) (Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜلn є N q ≤ 0 (3ﺇﺫﻥ q -1 < 0ﻭ qnﻟﻴﺴﺕ ﻟﻪ ﺇﺸﺎﺭﺓ ﺜﺎﺒﺘﺔ ﻭﺫﻟﻙ ﺤﺴﺏ ﻜﻭﻥ nﺯﻭﺠﻴﺎ ﺃﻭ ﻓﺭﺩﻴﺎ. ﻭﻤﻨﻪ ) (Unﻟﻴﺴﺕ ﺭﺘﻴﺒﺔ.ﻤﺜﺎل (Un) :ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ= Unﻤﻥ ﺃﺠل ﻜل nﻤﻥ N 4 n 1 7n .1ﺒﺭﻫﻥ ﺃﻥ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻋﻴﻥ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل .U0 .2ﻤﺎ ﻫﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Un؟ ﺍﻷﺠﻭﺒﺔ : .1ﻟﺩﻴﻨﺎ := Un 4 n 1 = 4( 4 )n 7n 7) (Unﻟﻬﺎ ﺍﻟﺸﻜل a.bnﻭﻫﻭ ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل aﻭﺃﺴﺎﺴﻬﺎ b 4 ﻭﻤﻨﻪ ﻭﺒﺎﻟﻤﻭﺍﻓﻘﺔ ﻤﻊ ﻋﺒﺎﺭﺓ Unﻨﺤﻭ U0 = 4ﻭ q = 7 .2ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )(Un ﺇﺫﻥ 0<q<1 =q 4 ﻟﺩﻴﻨﺎ 7ﻜﺫﻟﻙ U0 > 4ﻭﻤﻨﻪ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ N
Un+1 – Un *ﻤﻼﺠﻅﺔ :ﻴﻤﻜﻥ ﺃﻥ ﻨﺩﺭﺱ ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺒﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﺍﻟﻔﺭﻕ Un+1 – Un = 4 4 n1 – 4 ( 4 )n ﻟﺩﻴﻨﺎ : 7 7 =@ > 44 n 741 7 > @= 44n3 7 7 ﺇﺫﻥ Un+1– Un < 0ﻭﻤﻨﻪ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل nﻤﻥ N -6ﺇﺴــﺘﻌﻤﺎل ﺍﻟﻤﺘﺘﺎﻟﻴــﺎﺕ ﺍﻟﺤــﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴــﻴﺔ ﻟﺤــل ﻤــﺸﻜﻼﺕ ﻤﻥ ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ ♦ﺍﻟﻤﺸﻜﻠﺔ ﺭﻗﻡ : 1 ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻷﺴﺌﻠﺔ :ﻭﻀﻊ ﺘﻠﻤﻴﺫ ﻤﺒﻠﻐﺎ ﻤﻘﺩﺍﺭﻩ 6000ﺩ.ﺝ ﻓﻲ ﺍﻟﺒﻨﻙ ﺒﻔﻭﺍﺌﺩ ﺒﺴﻴﻁﺔ ﻟﻌﺩﺓ ﺴﻨﻭﺍﺕ ،ﺃﻱ ﺃﻨﻪ ﻋﻨﺩ ﻨﻬﺎﻴﺔ ﻜلﺴﻨﺔ ﻴﻤﻨﺢ ﺍﻟﺒﻨﻙ ﻓﺎﺌﺩﺓ ﻗﺩﺭﻫﺎ %8ﻟﻴﺯﻴﺩ ﺇﺩﺨﺎﺭﻩ ﻜل ﺴﻨﺔ ﺒﻤﺒﻠﻎ ﺜﺎﺒﺕ ﻴﺴﺎﻭﻱ %8ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ. -ﻴﺭﻴﺩ ﺍﻟﺘﻠﻤﻴﺫ ﻤﻌﺭﻓﺔ ﺍﻟﻤﺒﻠﻎ ﻟﻪ ﻜل ﺴﻨﺔ .1ﺃﺤﺴﺏ U3 . U2 . U1 .2ﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ Un+1 = Un + 480 .3ﻋّﺒﺭ ﻫﻥ Unﺒﺩﻻﻟﺔ n .4ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺍﻟﺴﻨﻭﺍﺕ ﺍﻟﺘﻲ ﻴﺠﺏ ﺍﻨﺘﻅﺎﺭﻫﺎ ﻟﻴﻀ ّﻌﻑ ﺍﻟﺘﻠﻤﻴﺫ ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ ﺇﻟﻰ 3ﻤﺭﺍﺕ ؟ • ﺍﻷﺠﻭﺒﺔ : ﻨﻀﻊ U0 = 6000ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ 6000 ﺇﺫﻥ 100 U1 = 6000 + 8 x : U1 = 6000 + 480 U1 = 6480 U2 = 6480 + 6000 x 8 100 = 6480 + 480
U2 = 6960 8 U3 = 6960 + 6000 x 100 = 6960 + 480 U3 = 7440 -2ﺍﻟﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ : Un+1 = Un + 480 ﻟﺩﻴﻨﺎ U1 = U0 + 480 U2 = U1 + 480 U3 = U2 + 480 ﻭﺒﺘﺨﻤﻴﻥ ﻨﺠﺩ Un+1 = Un + 480 ﻭﻤﻨﻪ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0 = 6000ﻭ ﺃﺴﺎﺴﻬﺎ r = 480 ﺇﺫﻥ Un = U0 + nrﺃﻱ Un = 6000 + 480n ﻋﺩﺩ ﺍﻟﺴﻨﻭﺍﺕ ﻟﻜﻲ ﻴﺘﻀﺎﻋﻑ ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ 3ﻤﺭﺍﺕ ﻨﻀﻊ Un = 3 x 6000 6000 + 480n = 18000 480n = 18000 – 6000 480n = 1200 ﻭﻤﻨﻪ n = 25 ﺇﺫﻥ ﻋﺩﺩ ﺍﻟﺴﻨﻭﺍﺕ ﻫﻭ 25ﺴﻨﺔ ♦ﺍﻟﻤﺸﻜﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ : ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻷﺴﺌﻠﺔ :ﻓﻲ ﺴﻨﺔ 2000ﻜﺎﻥ ﺴﻌﺭ ﺍﻟﻐﺭﺍﻡ ﺍﻟﻭﺍﺤﺩ ﻤﻥ ﺍﻟﺫﻫﺏ ﺍﻟﺨﺎﻟﺹ ﻴﻘ ّﺩﺭ ﺒﻘﻴﻤﺔ 1000ﺩ.ﺝ ،ﻋﻠﻤﺎ ﺃﻥ ﺴﻌﺭ ﻫﺫﺍ ﺍﻷﺨﻴﺭ ﻴﺯﺩﺍﺩ ﻜل ﺴﻨﺔ ﺒﻤﻘﺩﺍﺭ %20ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﻜﺎﻥ ﻋﻠﻴﻪ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﻔﺎﺭﻁﺔ. -1ﺍﺸﺘﺭﺕ ﺘﻠﻤﻴﺫﺓ ﺨﺎﺘﻤﺎ ﻭﺯﻨﻪ 4ﻏﺭﺍﻤﺎﺕ ﻓﻲ ﻴﻭﻡ 2000/01/01ﻜﻡ ﺴﻴﺒﻠﻎ ﺜﻤﻥ ﻫـﺫﺍ ﺍﻟﺨـﺎﺘﻡ ﻴـﻭﻡ 2007/01/01؟ -2ﺃﺭﺍﺩﺕ ﻫﺫﻩ ﺍﻟﺘﻠﻤﻴﺫﺓ ﺃﻥ ﺘﺒﻴﻊ ﺨﺎﺘﻤﻬﺎ ﻓﻲ ﻋﺎﻡ 2007ﻟﺼﺎﺌﻎ ﻤﺎ ﻫﻭ ﺜﻤﻥ ﺒﻴﻥ ﻫـﺫﺍ ﺍﻟﺨـﺎﺘﻡ ﻋﻠﻤـﺎ ﺃﻥ ﺍﻟﺼﺎﺌﻎ ﻴﺄﺨﺫ ﻨﺴﺒﺔ ﻓﻲ ﺍﻟﺭﺒﺢ ﻤﻘﺩﺭﺓ ﺒـ %20ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻹﺠﻤﺎﻟﻲ ﻟﻠﺨﺎﺘﻡ ؟ •ﺍﻷﺠﻭﺒﺔ : ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ ﻴﻭﻡ 2000/01/01ﻫﻭ 4000ﺩ.ﺝ ﻨﻀﻊ U0 = 4000
ﺍﻟﺯﻴﺎﺩﺓ ﻜل ﻋﺎﻡ ﻤﻘﺩﺭﺓ ﺒـ %20ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻹﺠﻤﺎﻟﻲﺇﺫﻥ ﻴﻭﻡ 2001/01/01ﻴﺼﺒﺢ ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ : 20 U1 = U0 + 4000 x 100U1 = 4800 U1 = U0 + U0 x 0.2 )U1 = U0 (1+0.2 U1 = 1.02 x U0 U1 = 1.02 x 4000 ﻓﻲ ﺴﻨﺔ 2000ﻴﺼﺒﺢ ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ :U2 = 5760 U2 = U1 + U1 x 0.2 )U2 = U1 (1+0.2 )U2 = U1 (1.2 )U2 = (U0 x 1.2)(1.2 U2 = U0 (1.2)2 )U2 = 4000 x (1.44ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ ﻴﺯﺩﺍﺩ ﺒﺄﺴﺎﺱ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ q=1.2ﻭﻤﻨﻪ U7 = U0 x (1.2)7 U7 = 4000 x (1.2)7 U7 = 14332.7 ﻭﻤﻨﻪ ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺨﺎﺘﻡ ﻋﺎﻡ 2007ﻫﻭ 14332.7ﺩ.ﺝ.* ﻨﺴﺒﺔ ﺭﺒﺢ ﺍﻟﺼﺎﺌﻎ ﻤﻥ ﺍﻟﺭﺒﺢ ﺍﻹﺠﻤﺎﻟﻲ ﻫﻲ 20%ﺇﺫﻥ ﻫﺫﻩ ﺍﻟﻨﺴﺒﺔ ﺘﻘﺩﺭ ﺒـ: 14332.7 x 20 = 2866.54 100 ﻭﻤﻨﻪ ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺨﺎﺘﻡ ﻫﻭ : 14332.7 – 2866.54 = 11466.16ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺨﺎﺘﻡ ﻋﺎﻡ 2007ﻫﻭ 11466.16ﺩ.ﺝ
-7ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل U n1 aU n b :ﻤﻊ a≠0ﻭ b≠0 أ -ﺣﺴﺎب اﻟﺤﺪ اﻟﻌﺎم Unﺒﺩﻻﻟﺔ nﺤﻴﺙ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ xﻨﻤﻴﺯ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺨﺎﺼﺔ a=1ﺇﺫﻥ U n1 U n bﻭ ﻤﻨﻪ U n1 U n bﻭ ﻤﻨﻪ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0ﻭ ﺃﺴﺎﺴﻬﺎ bﻭ ﻤﻨﻪ U n U 0 bn xﻨﻔﺭﺽ a≠1 U n1 aU nﻭ ﺇﺫﺍ ﻜﺎﻨﺕ ) (Unﻭ ) (V1ﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﺘﺤﻘﻘﺎﻥ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ b x Vn1 aVn bﺇﺫﻥ ﻓﺭﻗﻬﺎ Wnﻫﻭ ﺤﺩ ﻋﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ aﻭ ﺒﺎﻟﻔﻌل ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ : )Wn1 U n1 Vn1 (aU n b) (aVn b aU n aVn Wn1 a Wn ﺇﺫﻥ Vn1ﻟﺫﻟﻙ ﻨﻔﺭﺽ ﺃﻥ )(Vn ﻨﺭﻴﺩ ﻤﻌﺭﻓﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﺍﻟﺘﻲ ﺘﺤﻘﻕ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ aVn b ﺜﺎﺒﺘﺔ ﺃﻱ Vn=Dﻭ ﻤﻨﻪ Vn+1=Dﻭ ﻤﻨﻪ Vn1 aVn bﺘﺼﺒﺢ D= a D+b ﻭ ﻤﻨﻪ D - a D = bوﻣﻨﻪ D(1-a)=b ﻋﻠﻤﺎ ﺃﻥ a≠1 α b ﻭ ﻨﺠﺩ 1 a ﻭ ﻤﻥ ﺍﻟﻌﻼﻗﺔ Wn U n Vn : Wn U n α ﻨﺠﺩ Wn Un b a ﺃﻱ 1 b W0ﺇﺫﻥ U0 1 a ﺍﻷﻭل ﻭﺤﺩﻫﺎ a ﺃﺴﺎﺴﻬﺎ ﻫﻨﺩﺴﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻲ )(Wn Wn (U 0 b ) a n 1 a ﻭ ﻟﺩﻴﻨﺎ Wn U n αﻭ ﻤﻨﻪ U n Wn α
U n U 0 1ba a n α ﻭ ﻨﺠﺩ ﺍﻟﻌﻼﻗﺔ ﺍﻷﺴﺎﺴﻴﺔ :ﻭ ﻫﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ U n1 aU n b ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺤﻴﺙ :ﻁﺒﻴﻌﻲ n ﺃﻋﻁ ﻋﺒﺎﺭﺓ Unﺒﺩﻻﻟﺔ nﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ U 0 4 ¯®U n1 2U n 3 ﺍﻷﺠﻭﺒﺔ : ﻟﺩﻴﻨﺎ b = 3 ، a = -2ﻭ ﻤﻨﻪ : α 3 αﺃﻱ 1 b )1 (2 1 a ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Wnﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ Wn U n α W0ﺇﺫﻥ W0 =3 ﺃﻱ Wn Un 1ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ a = -2ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل U 0 1 ﻭ ﻤﻨﻪ Wn W0 q nﺃﻱ Wn = 3(-2)n ﻭ ﺒﻤﺎ ﺃﻥ U n Wn αﺇﺫﻥ U n 3(2) n 1 U n1 ب -ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ aU n b ﺒﻤﺎ ﺃﻥ Wn Un αﺤﺴﺏ ﺍﻟﻔﺭﻉ )ﺃ( ﺇﺫﻥ Wn1 Un1αﻭ ﻤﻨﻪ ﺇﺸﺎﺭﺓ ﺍﻟﻔﺭﻕ U n1 U nﻤﻥ ﺇﺸﺎﺭﺓ Wn1 Wn ﻷﻥ ) Wn1 Wn (U n1 α )(U n α U n1 α U n α W0ﺇﺫﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ U0 α U n1 U n ﻭ ﺒﻤﺎ ﺃﻥ ) (Wnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ aﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ) (Unﻤﻥ ﻨﻔﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )(Wn *ﻤﻼﺤﻅﺔ ) :ﺩﺭﺱ ﺍﺘﺠﺎﻫﺎﺕ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻓﻲ ﺩﺭﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ(
ﺝ -ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ Sn Sn = U1 + U2 + …… + Un ﻟﺩﻴﻨﺎ Wn U n αﻭ ﻤﻨﻪ U n Wn α U1 W1 α U 2 W2 α U 3 W3 α) (U1 U2 ... Un U n Wn α Sn ﻭ ﺒﺎﻟﺠﻤﻊ ﻁﺭﻑ ﺇﻟﻰ ﻁﺭﻑ ﻨﺠﺩ α )(W1 W2 ...Wn ) (αα ... α Sn ﻤﺠﻤﻭﻉ nﺤﺩﺍ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ a nﻤﺭﺓ ﻭ ﻤﻨﻪ b W1ﻭ ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل U1 α 1 a Sn W1(11aan )nαﺇﺫﻥ : (U b ) ª1 an º nα « » 1 1 a ¬ 1 a ¼ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﺒﺎﻟﻌﻼﻗﺔ ﻭ ﺘﻤﺜل ﻫﺫﻩ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻋﺒﺎﺭﺓ ﺍﻟﻤﺠﻤﻭﻉ Snﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ U n1 aU n b ﻤﺜﺎل :ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻏﻴﺭ ﻤﻌﺩﻭﻤﺎ ﺒﺎﻟﺸﻜل : U 0 1 3 ®¯U n 5U n 2 (1ﺃﺤﺴﺏ Unﺒﺩﻻﻟﺔ n (2ﻤﺎ ﻫﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Un؟ (3ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Snﺍﻟﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ : Sn = U1 + U2 + …… + Un (4
ﺍﻷﺠﻭﺒﺔ : (1ﺤﺴﺎﺏ ﻋﺒﺎﺭﺓ Unﺒﺩﻻﻟﺔ :n α b 2 b = 2 ، a = 5ﻭﻤﻨﻪ : ﻟﺩﻴﻨﺎ 1 a 15 1 α 2 ﺇﺫﻥ ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (vnﺒﻌﺒﺎﺭﺓ ﺤﺩﻩ ﺍﻟﻌﺎﻡ Vn = Un –D : Vn Un 1 ﺃﻱ 2 ﻨﻌﻠﻡ ﺃﻥ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ a=5ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل V1 3 1 7 Vn = Un – Dأي 2 2 Vn 7 (5)n1 و ﻣﻨﻪ Vn V1 q n1أي 2 U nإذن ﻋﺒﺎرة Unﺗﻌﻄﻰ ﺏﺎﻟﺸﻜﻞ Vn 1 ﻟﺪﻳﻨﺎ 2 Un 7 (5) n1 1 2 2 (2ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ) (Unﻤﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )(Vnﻭ ﺒﻤﺎ ﺃﻥ V1>0ﻭ q>1ﺇﺫﻥ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Nﻭ ﻤﻨﻪ ) (Unﻜﺫﻟﻙ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ N (3ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ : Sn Sn (U1 α )(1 a n ) nα ﻟﺩﻴﻨﺎ 1 a ﻭ ﻤﻨﻪSn (3 1 )(1 5n ) 1 n 2 15 2 Sn 7 ©§¨¨ 5n 1 ¸·¸¹ 1 n 2 4 2 Sn 7 (5n ) 1 1 n ﺇﺫﻥ 8 2
ج -ﺤل ﻤﺸﻜﻼﺕ ﺘﺴﺘﻌﻤل ﻓﻴﻬﺎ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل U n1 aU n b ♦ ﻁﺭﺡ ﺍﻟﻤﺸﻜﻠﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ :ﻗ ّﺩﺭ ﺜﻤﻥ ﺴﻴﺎﺭﺓ ﺠﺩﻴﺩﺓ ﻤﻥ ﻁﺭﺍﺯ ﻤﻌﻴﻥ ﺒﻤﺒﻠﻎ ﻤﻠﻴﻭﻥ ﻭ ﺨﻤﺴﺔ ﻤﺎﺌﺔ ﺃﻟﻑ ﺩﻴﻨﺎﺭﺍ ﺠﺯﺍﺌﺭﻴﺎ (1500000 ) DAﺒﺘﺎﺭﻴﺦ 07/01/01 ﻭ ﺍﺘﻔﻕ ﻋﻠﻰ ﺒﻴﻊ ﻫﺫﺍ ﺍﻟﻨﻭﻉ ﻤﻥ ﺍﻟﺴﻴﺎﺭﺍﺕ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﻜل ﺴﻨﺔ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ :ﻜل ﻋﺎﻡ ﺍﺒﺘﺩﺍﺀ ﻤﻥ 01ﺠﺎﻨﻔﻲ ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﺍﻟﺠﺩﻴﺩ ﻴﻨﻘﺹ ﺒﻤﻘﺩﺍﺭ 25%ﻤﻥ ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻟﻠﺴﻨﺔ ﺍﻟﻔﺎﺭﻁﺔ ﻭﺒﺯﻴﺎﺩﺓ ﻗﺩﺭﻫﺎ ) (50000 DAﻟﻠﻤﺒﻠﻎ ﺍﻹﺠﻤﺎﻟﻲ ﺍﻟﺠﺩﻴﺩ. ﻨﺴﻤﻲ Pnﻤﺒﻠﻎ ﺍﻟﺴﻴﺎﺭﺓ ﻴﻭﻡ 01ﺠﺎﻨﻔﻲ ﻤﻥ ﺴﻨﺔ 2007+n ﺍﻷﺴﺌﻠﺔ : (1ﺃﺤﺴﺏ P2 ، P1 ، P0ﺜﻡ ﺭﺘﺏ ﻫﺫﻩ ﺍﻟﺤﺩﻭﺩ. (2ﺃﻜﺘﺏ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻋﺒﺎﺭﺓ Pn+1ﺒﺩﻻﻟﺔ Pn (3ﻨﻀﻊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Un = Pn - 200000 : nﺒﺭﻫﻥ ﺃﻥ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ qﻭ ﺤﺩﻫﺎ ﺍﻷﻭل .U0 (4ﺇﻋﻁ ﻋﺒﺎﺭﺓ Unﺒﺩﻻﻟﺔ nﺜﻡ ﻋﺒﺎﺭﺓ Pnﺒﺩﻻﻟﺔ n (5ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Snﺍﻟﻤﻌﺭﻑ ﺒـ : Sn = P0 + P1 + … + Pn-1 • ﺤل ﺍﻟﻤﺸﻜﻠﺔ : (1ﻨﻔﺭﺽ P0ﻫﻭ ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺴﻴﺎﺭﺓ ﻴﻭﻡ 07/01/01 P0 = 1500000 DA ﺇﺫﻥ P1 P0 25 u P0 50000 100 P1 P0[1 ]1 50000 4 P1 3 P0 50000 4P1 3 (1500000 ) 50000 4 P1 = 1175000 DA P2 P1 25 P1 50000 100 P2 P1 (1 1 ) 50000 4
P2 3 P1 50000 4P2 3 )(1175000 50000 4 P2 = 931250 DA P0ﻴﻤﺜل ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻴﻭﻡ 07/01/01 P1ﻴﻤﺜل ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻴﻭﻡ 08/01/01 P2ﻴﻤﺜل ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻴﻭﻡ 09/01/01 P2 < P1 < P0 ﻻﺤﻅ ﺃﻥ (2ﻋﺒﺎﺭﺓ Pnﺒﺩﻻﻟﺔ n P1 3 P0 50000 : ﻟﺩﻴﻨﺎ 4 P2 3 P1 50000 4 Pn1 3 Pn 50000 ﺇﺫﻥ 4 *ﻤﻼﺤﻅﺔ (Pn) :ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ﻤﻥ ﺍﻟﺸﻜل Pn1 aPn b b aﻭ 50000 3 ﺤﻴﺙ 4α b 50000 Un = Pn – 200000 (3 1 a ﻟﺩﻴﻨﺎ : 3 1 4 ﻭﻤﻨﻪ D=200000 D 50000 u 4 aﻭ ﺤﺩﻫﺎ ﺍﻷﻭل U 0 P0 α ﺇﺫﻥ Un = Pn –D 3 ﺇﺫﻥ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ aﺤﻴﺙ 4 U0 = 1500000 – 200000 U0 = 1300000
ﻭ ﻤﻨﻪ Un = U0 . qn : ¨§) 3 ·¸ n © 4 ¹ Un (1300000 ﻭ ﺒﻤﺎ ﺃﻥ Pn = Un + DSn Pn ) (1300000 n3 (4ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ 200000 4 + Pn-1 … Sn = P0 + P1 + ﻟﺩﻴﻨﺎ nﺤﺩﺍ. Pn = Un + 200000 P0 = U0 + 200000 P1 = U1 + 200000 P0 P1 } Pn -1 Pn-1 = Un-1 + 200000 ﺒﺎﻟﺠﻤﻊ ﻁﺭﻑ ﺇﻟﻰ ﻁﺭﻑ ﻨﺠﺩ (U0 U1 }Un -1) 200000 u n ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ Sn U 0 ª1 q n º 200000 u n : ﻤﻨﻪ ﻭ ¬« 1 q ¼» Sn ¬ª««114334 n º » )(1300000 ¼» 200000un 1300000)¨§©¨1 ¨§ 3 ·¸ n ¸¸·¹ © 4 ¹ Sn (4 u 200000 u n (5200000)©¨¨§1 ¨§ 3 ·¸ n ·¸ © 4 ¹ ¸¹ Sn 200000 u n *ﻤﻼﺤﻅﺔ:ﻴﻤﻜﻨﻙ ﺘﻁﺒﻴﻕ ﻗﺎﻨﻭﻥ ﺍﻟﻤﺠﻤﻭﻉ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﻓﻲ ﺍﻟﺩﺭﺱ ﺍﻟﻔﻘﺭﺓ )ﺩ( ﻋﻠﻤﺎ ﺃﻥ ﺍﻟﺤﺩ ﺍﻷﻭل ﻫﻭ U0
ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ ﺘﻤﺭﻴﻥ : 1ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ :Un -ﺃﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ. -ﺃﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ n.Un = 3n + 4 , Un = -2n + 1 1 , Un = 3nUn = n 1 ﺘﻤﺭﻴﻥ : 2ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ -ﺃﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ.(1) U0 = 1 (2) U0 = -1 Un+1 = Un + 4 Un+1 = Un-2 1 (4) U0 = 2(3) U0 = 2 Un+1 = -2Un Un+1 = 2Un + 1 ﺘﻤﺭﻴﻥ : 3ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔﺍﻟﻌﺩﺩﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ |Rﺒـ : f(x) = 2x3 – 30x2 + 162 ﻭﻟﻴﻜﻥ ﺤﺩﻭﺩ ﺘﻐﻴﺭﺍﺘﻬﺎ x -∞ 0 10 ∞+F(x) 162 -838 * ﺘﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒـ: Un = 2n3 – 30n2 + 162 (1ﻤﺎ ﻫﻲ ﻗﻴﻡ U10 ، U0؟ (2ﺇﺴﺘﻨﺘﺞ ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ) (Unﻟﻤﺎ }? n є { 0.1.2.3.4.5.6.7.8.9.10 (3ﺇﺴﺘﻨﺘﺞ ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ) (Unﻟﻤﺎ n ≥ 10؟
ﺘﻤﺭﻴﻥ : 4ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡUn = -2n + 5 , Un = 3n – 1 , Un = 2n Un = ( 1 )n 3 ﺘﻤﺭﻴﻥ : 5ﺤل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺤﺴﺎﺒﻴﺔ ؟ (3)Un = n2(1)Un = 3n – 7 (2)Un = -4n + 2(4) U0 = -3 (5) U0 = 1 Un+1 = Un + n Un+1 = Un + 2 ﺘﻤﺭﻴﻥ : 6) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ،Nﺤﺩﻫﺎ ﺍﻷﻭل ﻫﻭ U0ﻭﺃﺴﺎﺴﻬﺎ r ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n(1) U0 = -1 , r = 4 3 (2) U0 = 2 , r = -5(3) U0 =2, r = 2 1 (4) U0 = 4 , r = 2 ﺘﻤﺭﻴﻥ : 7) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺃﺴﺎﺴﻬﺎ rﺒﺤﻴﺙ : U5 = 9 , U2 = 3 (1ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ .r (2ﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﻭل .U0 (3ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n (4ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Sn = U0 + U1 + …+Un :Sn (5ﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﻤﻭﻉ .S10 , S20 -ﻨﻔﺱ ﺍﻷﺴﺌﻠﺔ ﺇﺫﺍ ﻜﺎﻥU8 = 2 , U4 = 10 :
ﺘﻤﺭﻴﻥ : 8 ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔﻤﻌﺭﻓﺔ ﻋﻠﻰ ، Nﺍﺴﺎﺴﻬﺎ ( r ¢ 0 ) rﺒﺤﻴﺙ : U3+U4+U5=42ﻭ (U3)2+(U4)2+(U5 )2=381 (1ﺃﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ U3,U4,U5 (2ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ﺜﻡ ﺍﻟﺤﺩ ﺍﻷﻭل ( 3ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n ﺘﻤﺭﻴﻥ: 9 ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔﻤﻌﺭﻓﺔ ﻋﻠﻰ ، Nﺍﺴﺎﺴﻬﺎ rﺒﺤﻴﺙ : r = 3ﻭ U1 + U2 + U3 + U4 = 34 (1ﺃﺤﺴﺏ U0 (2ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n (3ﺃﺤﺴﺏSn = U0+…+Un : (4ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉS'n = U1+…+Un : ﺘﻤﺭﻴﻥ : 10 ﻜﺎﻥ ﻋﺩﺩ ﻋﻤﺎل ﻤﺅﺴﺴﺔ ﺇﻨﺘﺎﺠﻴﺔ ﻋﺎﻡ 2000ﻫﻭ 300ﻋﺎﻤل ﺒﺤﻴﺙ ﺘﻨﻁﻕ ﺍﻟﻤﺅﺴﺴﺔ ﻜل ﺴﻨﺔ 40ﻋﺎﻤﻼ ﺠﺩﻴﺩﺍ. ﻨﻌﺘﺒﺭ ﺃﻥ V0ﻫﻭ ﻋﺩﺩ ﺍﻟﻌﻤﺎل ﻋﺎﻡ 2000 ﻭ vnﻫﻭ ﻋﺩﺩ ﺍﻟﻌﻤﺎل ﺒﻌﺩ nﺴﻨﺔ -1ﺃﺤﺴﺏ ﻋﺩﺩ ﺍﻟﻌﻤﺎل ﻋﺎﻡ .2003 ، 2002 ، 2001 -2ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ vn+1ﻭ vn -3ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )(vn -4ﺃﻜﺘﺏ vnﺒﺩﻻﻟﺔ n. – 5ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Sn=V0 +V1 +…+Vn : ﺘﻤﺭﻴﻥ : 11ﻭﻀﻊ ﺸﺨﺹ ﻤﺒﻠﻎ 2000ﺩ.ﺝ ﻋﺎﻡ 2007ﺒﺄﺤﺩ ﺍﻟﺒﻨﻭﻙ ،ﺒﺤﻴﺙ ﻟﻪ ﻓﺎﺌﺩﺓ ﺒﺴﻴﻁﺔ ﺴﻨﻭﻴﺔ ﻗﺩﺭﻫﺎ . %5 ﻨﻔﺭﺽ ﺃﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﻭﻀﻌﻪ ﻋﺎﻡ 2007ﻫﻭ U0
ﻭ : Unﺍﻟﺭﺼﻴﺩ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﺒﻌﺩ nﺴﻨﻭﺍﺕ (1ﺃﺤﺴﺏ ﺭﺼﻴﺩ ﺍﻟﺸﺨﺹ ﻋﺎﻡ .2010 ،2009 ، 2008 (2ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ Un+ 1ﻭ Un (3ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ )(Un (4ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n ﺘﻤﺭﻴﻥ : 12 ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺃﺴﺎﺴﻬﺎ rﻭﺤﺩﻫﺎ ﺍﻷﻭل ، U0 = 1ﻴﻌﺘﺒﺭ ﺍﻟﻤﺠﻤﻭﻉ Sﻟﻌﺩﺓ ﺤﺩﻭﺩ : S = 1+11+21+…+201 (1ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ r (2ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n (3ﻋﻴﻥ ﺍﻟﺭﺘﺒﺔ nﺒﺤﻴﺙ U1 = 201 : (4ﻨﻌﺘﺒﺭ ﺍﻟﻤﺠﻤﻭﻉ Sn = U0+…+Un : Sn ﻫل ﺘﻭﺠﺩ ﻗﻴﻤﺔ ﻟـ nﺒﺤﻴﺙ Sn = 105 : ﺘﻤﺭﻴﻥ : 13 ﻫل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﻫﻨﺩﺴﻴﺔ ؟ Un = 3.(2)n , Un = (-4).(3)n , Un = n2 ﺘﻤﺭﻴﻥ : 14 ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ qﻭﺤﺩﻫﺎ ﺍﻷﻭل U0 (1ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n (2ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )(Un q = 2 , U0 = 3 1 q = ( 3 ) , U0 = 2 1 q = (-2) , U0 = 2
ﺘﻤﺭﻴﻥ : 15) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔﻤﻌﺭﻓﺔ ﻋﻠﻰ *Nﺃﺴﺎﺴﻬﺎ qﻭﺤﺩﻫﺎ ﺍﻷﻭلU1ﻨﻔﺱ ﺃﺴﺌﻠﺔ ﺍﻟﺘﻤﺭﻴﻥ 14 q = 2 , U1 = -3q = ( 1 ) , U1 = 4 2 q = -3 , U1 = + 2 ﺘﻤﺭﻴﻥ : 16 ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒﺤﻴﺙ : U4 = 12 , U2 = 3 ﻭﺃﺴﺎﺴﻬﺎ (q > 0) q (1ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ q (2ﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﻭل U0 (3ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n (4ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Sn = U0+…+Un : Sn ﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﻤﻭﻉ S6 ﺘﻤﺭﻴﻥ : 17) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ *U5 = 54 , U3 = 6 ، N ﻭﺃﺴﺎﺴﻬﺎ (q > 0) q (1ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ q (2ﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﻭل U1 (3ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n (4ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Sn = U1+…+Un : Sn ﺜﻡ ﺍﺴﺘﻨﺘﺞ S6 ﺘﻤﺭﻴﻥ : 18 ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ N ﺃﺴﺎﺴﻬﺎ ) ( q > 0ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل U0 = 1 ﺒﺤﻴﺙ U0 + U1 + U2 = 13 : (1ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ q (2ﺃﻜﺘﺏ Unﺒﺩﻻﻟﺔ n
ﺘﻤﺭﻴﻥ : 19ﺃﻭﺩﻉ ﺸﺨﺹ ﻤﺒﻠﻐﺎ ﻗﺩﺭﻩ 11000ﺩ.ﺝ ﺒﺈﺤﺩﻯ ﺍﻟﺒﻨﻭﻙ ﻋﺎﻡ 2000ﺒﺤﻴﺙ ﺤﺼل ﻟﻪ ﻓﺎﺌﺩﺓ ﺴﻨﻭﻴﺔ ﻤﺭﻜﺒﺔ ﻗﺩﺭﻫﺎ .% 6 ﺇﺫﺍ ﺇﻋﺘﺒﺭﻨﺎ ﺃﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻤﻭﺩﻉ ﻫﻭ vn ﻭﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ : vnﺍﻟﺭﺼﻴﺩ ﺍﻟﺠﺩﻴﺩ ﺒﻌﺩ nﺴﻨﻭﺍﺕ (1ﺃﺤﺴﺏ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﻋﺎﻡ 2003 ، 2002 ، 2001 (2ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ vn+ 1ﻭ vn (3ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ) (Vn (4ﺃﻜﺘﺏ Vnﻟﺩﻻﻟﺔ n ﺘﻤﺭﻴﻥ : 20 ﺇﻨﺘﺎﺝ ﻤﺼﻨﻊ ﻋﺎﻡ 2006ﻫﻭ 3000ﻁﻥ ،ﻭ ﻴﺯﻴﺩ ﺴﻨﻭﻴﺎ ﺒـ 2% ﺇﺫﺍ ﺍﻋﺘﺒﺭﻨﺎ V0ﻫﻭ ﺍﻹﻨﺘﺎﺝ ﻋﺎﻡ 2006 ﻭ :Vnﺍﻹﻨﺘﺎﺝ ﺒﻌﺩ nﺴﻨﺔ (1ﺃﺤﺴﺏ ﺍﻹﻨﺘﺎﺝ ﻋﺎﻡ . 2008 ، 2007 (2ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ vn+ 1ﻭ vn (3ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )(Vn (4ﺃﻜﺘﺏ Vnﻟﺩﻻﻟﺔ n Sn = V0+…+Vn (5ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ : ﺘﻤﺭﻴﻥ : 21 (1ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰNﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ U0 = 1 2 Un+1 = -3 Un + ﺃﺤﺴﺏ U1 ,U2 ,U3Vn U n 1 ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Nﺒـ: (2 2 ﺍ /ﺃﺤﺴﺏ V2, V1,V0 : ﺝ /ﺒﻴﻥ ﺃﻥ) (Vnﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ-3 (3ﺃﻜﺘﺏ Vnﺒﺩﻻﻟﺔ n (4ﺃﻜﺘﺏ Unﺩﻻﻟﺔ n Sn=V0+..+Vn (5ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ Snc U0 ...U n ﺜﻡ ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ :
ﺤـﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ : ﺍﻟﺘﻤﺭﻴﻥ : 1 Un = 3n + 4 (1 ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ: ﻤﻥ ﺃﺠل n = 0ﻓﺈﻥ U0 = 3(0)+4 = 4 :ﺇﺫﻥ U0 = 4 ﻤﻥ ﺃﺠل n = 1ﻓﺈﻥ U1 = 3(1)+4 = 7 :ﺇﺫﻥ U1 = 7 ﻤﻥ ﺃﺠل n = 2ﻓﺈﻥ U2 = 3(2)+4 = 10 :ﺇﺫﻥ U2 = 10 ﻤﻥ ﺃﺠل n = 3ﻓﺈﻥ U3 = 3(3)+4 = 13 :ﺇﺫﻥ U3 = 13 ﻤﻥ ﺃﺠل n = 4ﻓﺈﻥ U4 = 3(4)+4 = 16 :ﺇﺫﻥ U4 = 16 (2ﻜﺘﺎﺒﺔ Un+1ﺒﺩﻻﻟﺔ :nﻓﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ Unﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻋﺒﺎﺭﺓ Un+1ﻨﻘﻭﻡ ﺒﺘﻌﻭﻴﺽ ﺍﻟ ّﺭﺘﺒﺔ nﺒﺎﻟ ّﺭﺘﺒﺔ ) (n+1ﻓﻨﺠﺩ: Un+1 = 3(n+1) + 4 ﻨﻘﻭﻡ ﺒﺎﻟﻨﺸﺭ ﻓﻨﺠﺩ: Un+1 = 3n + 3 + 4 ﺇﺫﻥUn+1 = 3n + 7 : 1 U0 = 1 = 1 = 1 ﻤﻥ ﺃﺠل n = 0ﻓﺈﻥ:2) Un = n 1 0 1 1 ﻤﻥ ﺃﺠل n = 1ﻓﺈﻥ: ﻤﻥ ﺃﺠل n = 2ﻓﺈﻥ: ﺇﺫﻥU0 = 1 : ﻤﻥ ﺃﺠل n = 3ﻓﺈﻥ: ﻤﻥ ﺃﺠل n = 4ﻓﺈﻥ:ﺇﺫﻥU1 = 1 : = U1 = 1 1 2 11 2U2 = 1 ﺇﺫﻥ: U2 = 2 1 1 = 1 3 3ﺇﺫﻥU3 = 1 : = U3 = 1 1 4 4 31U4 = 1 ﺇﺫﻥ: U4 = 4 1 1 = 1 5 5
(2ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ : n ﻟﺩﻴﻨﺎ :ﺒﺘﻌﻭﻴﺽ ﺍﻟﺭﺘﺒﺔ nﺒﺎﻟﺭﺘﺒﺔ )(n+1Un+1 = 1 = n 1 1 = 1 ﻨﺠﺩ : ) 1 1 n2 (n 1 1 ﺇﺫﻥUn+1 = n 2 : Un = 3n (3 -ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ: ﻤﻥ ﺃﺠل n = 0ﻓﺈﻥU0 = 30 = 1 : ﻤﻥ ﺃﺠل n = 1ﻓﺈﻥU1 = 31 = 3 : ﻤﻥ ﺃﺠل n = 2ﻓﺈﻥU2 = 32 = 9 : ﻤﻥ ﺃﺠل n = 3ﻓﺈﻥU3 = 33 = 27 : ﻤﻥ ﺃﺠل n = 4ﻓﺈﻥU4 = 34 = 81 : -ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ :n ﻟﺩﻴﻨﺎUn+1 = 3(n+1) = 3n x 3 = 3 x 3n : ﺇﺫﻥUn+1 = 3 x 3n : ﺍﻟﺘﻤﺭﻴﻥ : 2 1(1) U0 = 2 Un+1 = 2Un + 1 ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩU1 , U2 , U3 , U4 , U5 :ﻓﻲ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ،ﺤﺴﺎﺏ ﻜل ﺤﺩ ﻤﺘﻌﻠﻕ ﺒﺎﻟﺤﺩ ﺍﻟ ّﺴﺎﺒﻕ ﻟﻪ ،ﺃﻱ ﻟﺤﺴﺎﺏ ،U1 ﻴﺠﺏ ﺃﻥ ﻨﻌﻠﻡ ﻗﻴﻤﺔ ﺍﻟﺤﺩ .U0 ﻭﻟﺤﺴﺎﺏ ﺍﻟﺤﺩ ،U2ﻴﺠﺏ ﺃﻥ ﻨﻌﻠﻡ ﻗﻴﻤﺔ ﺍﻟﺤﺩ .U1 * ﺤﺴﺎﺏ : U1ﻟﺩﻴﻨﺎ ﺒﺘﻌﻭﻴﺽ ﻗﻴﻤﺔ nﺒـ 0ﻓﻲ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﻨﺠﺩ : U0+1 = 2U0 + 1
1 ﻭﻤﻨﻪ U1 = 2U0 + 1 :ﺇﺫﻥU1 = 2( 2 ) + 1 : ﻭﻤﻨﻪU1 = 2 U1 = 1+ 1 : * ﺤﺴﺎﺏ : U2ﻨﻌﻭﺽ ﻗﻴﻤﺔ nﺒﺎﻟﻌﺩﺩ 1ﻨﺠﺩ : U1+1 = 2U1 + 1ﻭﻤﻨﻪ U2 = 2U1 + 1 :ﻭﻤﻨﻪU2 = 2(2) + 1 : ﺇﺫﻥU2 = 5 : * ﺤﺴﺎﺏ : U3ﻨﻌﻭﺽ ﻗﻴﻤﺔ nﺒﺎﻟﻌﺩﺩ 2ﻨﺠﺩ : U2+1 = 2U2 + 1ﻭﻤﻨﻪ U3 = 2U2 + 1 :ﻭﻤﻨﻪ U3 = 2(5) + 1 : ﺇﺫﻥU3 = 11 : * ﺤﺴﺎﺏ : U4ﻨﻌﻭﺽ ﻗﻴﻤﺔ nﺒﺎﻟﻌﺩﺩ 3ﻨﺠﺩ: U3+1 = 2U3 + 1ﻭﻤﻨﻪ U4 = 2U3 + 1 :ﻭﻤﻨﻪU4 = 2(11) + 1 : ﺇﺫﻥ23U4 = : * ﺤﺴﺎﺏ : U5ﻨﻌﻭﺽ ﻗﻴﻤﺔ nﺒﺎﻟﻌﺩﺩ 4ﻨﺠﺩ: U4+1 = 2U4 + 1ﻭﻤﻨﻪ U5 = 2U4 + 1 :ﻭﻤﻨﻪU5 = 2(23) + 1 : ﺇﺫﻥU5 = 45 : ﺍﻟﺘﻤﺭﻴﻥ : 3 f(x) = 2x3 – 30 x2 + 162ﻭﺍﻟﺘﺎﻟﻲ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ : f x -∞ 0 10 ∞+F(x) 162 -838 ﻭﻟﺘﻜﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ :N Un = 2n3 – 30n2 + 162 ﺇﻴﺠﺎﺩ ﻗﻴﻡ U10 , U0؟ ﻤﻥ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﺩﻴﻨﺎU0 = 162 : U10 = -838 (2ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ) (Unﻟﻤﺎ }n є { 0.1.2.3.4.5.6.7.8.9.10؟ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ) (Unﻋﻠﻰ ﻫﺫﻩ ﺍﻟﻤﺠﻤﻭﻋﺔ ،ﻫﻭ ﻨﻔﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ][0 , 10 ﻭﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ،fﻭﺍﻀﺢ ﺃﻥ fﻤﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] [0 , 10ﺇﺫﻥ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ }{0.1.2.3.4.5.6.7.8.9.10 (3ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ) (Unﻟﻤﺎ n ≥ 10ﻫﻭ ﻨﻔﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ
[∞ [10 , +ﺇﺫﻥ ) (Unﻤﺘﺯﺍﻴﺩﺓ ﻟﻤﺎ n ≥ 10 ﺍﻟﺘﻤﺭﻴﻥ : 4 Un = -2n + 5 (1 ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ )(Un ﺃﻭﻻ :ﻨﻜﺘﺏ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ .nﻟﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ ،nﻨﻘﻭﻡ ﺒﺘﻌﻭﻴﺽ nﺒﺎﻟﺭﺘﺒﺔ ) (n+1ﻓﻨﺠﺩUn+1 = -2(n+1) + 5 = (-2n – : 2) + 5 = -2n + 5ﺇﺫﻥ Un+1 = -2n + (5-2) :ﻭﻤﻨﻪUn+1 = -2n + 3 : -ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ )(Un+1 – UnﻟﺩﻴﻨﺎUn+1- Un = (-2n + 3) – (-2n + 5) :ﻭﻤﻨﻪUn+1 - Un = -2n + 3 –(-2n) – (+5):ﻭﻤﻨﻪUn+1 – Un = -2n + 3+ 2n - 5 :ﺒﻌﺩ ﺍﻻﺨﺘﺯﺍلUn+1 – Un = 3-5 : ﺇﺫﻥUn+1 – Un = -2 :ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻔﺭﻕ ) (Un+1 – Unﻫﻭ ﻋﺩﺩ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ ﺇﺫﻥ : Un+1 – Un < 0ﻤﻥ ﺃﺠل ﻜل nﻤﻥ Nﻓﺈﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. Un = 2n (2 -ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ n ﻟﺩﻴﻨﺎUn+1 = 2(n+1) = 2n x 2 :Un+1 = 2 x 2n )ﺨﻭﺍﺹ ﺍﻟﻘﻭﻯ ﺍﻟﺼﺤﻴﺤﺔ( -ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ(Un+1 – Un) :ﻟﺩﻴﻨﺎUn+1 – Un = [2 x 2n] -[ 2n] : ﻤﻼﺤﻅﺔ ﺃﻥ 2nﻫﻭ ﻋﺎﻤل ﻤﺸﺘﺭﻙ ﺇﺫﻥ: Un+1 – Un = 2n [2-1] = 2n [1] = 2n* ﺒﻤﺎ ﺃﻥ ﺍﻟﻌﺩﺩ 2nﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﺇﺫﻥUn+1 – Un > 0 : ﻭﻤﻨﻪ ) (Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. Un = ( 1 )n (4 3 -ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ Un+1ﺒﺩﻻﻟﺔ : n
Un+1 = ( 1 )n+1 = ( 1 )n x ( 1 ) ﻟﺩﻴﻨﺎ: 3 3 3 Un+1 (= 1 ) ( 1 )n )ﺘﻁﺒﻴﻕ ﺨﻭﺍﺹ ﺍﻟﻘﻭﻯ( 3 3 -ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ(Un+1 – Un) : Un+1- Un (= 1 ) ( 1 )n – ( 1 )n 3 3 3 ﺇﺫﻥ: ﻤﺸﺘﺭﻙ ﻋﺎﻤل ﻫﻭ ( 1 )n ﺃﻥ ﻻﺤﻅ 3Un+1 – Un = ( 1 )n [ 1 ]-1 = ( 1 ) [ 1 3 ] = ( 1 )n [ 2 ] 3 3 3 3 3 3 1 )n ( 2 ) ﺇﺫﻥ : Un+1 – Un =( 3 3 ﺘﻤﺎﻤﺎ ﻤﻭﺠﺏ ( 1 )n ﺍﻟﻌﺩﺩ ﺃﻥ 3 ﺘﻤﺎﻤﺎ ﺴﺎﻟﺏ ( 2 ) ﺍﻟﻌﺩﺩ ﺃﻥ 3 ﺇﻥ ﺠﺩﺍﺅﻫﻤﺎ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ ﺇﺫﻥ(Un+1 – Un) < 0 : ﻭﻤﻨﻪ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ N ﺍﻟﺘﻤﺭﻴﻥ : 5 ﻫل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ) (Unﺤﺴﺎﺒﻴﺔ ؟ (1)....... Un = 3n -7 -ﻜﺘﺎﺒﺔ Un+1ﺒﺩﻻﻟﺔ n ﻟﺩﻴﻨﺎ : Un+1 = 3 ( n+1) -7 ﻭ ﻤﻨﻪ Un+1 = 3n + 3 -7 : Un+1 = 3n -4 ﺇﺫﻥ
-ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ (Un+1 – Un ) :) Un+1 – Un = 3n -4- (3n -7 = 3n – 4 – 3n + 7 Un+1 – Un = 3 ﺇﺫﻥﻭ ﻤﻨﻪ ) (Unﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ r = 3(3) Un = n2 -ﻜﺘﺎﺒﺔ Un+1ﺒﺩﻻﻟﺔ n ﻟﺩﻴﻨﺎ Un+1 = (n+1)2 : = n2 +2 (n)(1) + 12= Un+1 n2 + 2(n)(1) + 12= Un+1 n2 + 2n) +1 ﺇﺫﻥ -ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ ) (Un+1 – Unﻟﺩﻴﻨﺎ )Un+1-Un = n2 + 2n + 1 - (n2 Un+1-Un = 2n + 1 ﺇﺫﻥﺇﻥ ﺍﻟﻔﺭﻕ Un+1- Unﻟﻴﺱ ﻋﺩﺩﺍ ﺜﺎﺒﺘﺎ ،ﺇﺫﻥ ) (Unﻟﻴﺴﺕ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ (4) U0 = - 3 Un+1 =Un + n ﻟﺩﻴﻨﺎ (Un) :ﻤﻌﺭﻓﺔ ﺒﻌﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ ﺇﺫﻥ Un+1-Un = n :ﺇﻥ ﺍﻟﻔﺭﻕ ) (Un+1-Unﻟﻴﺱ ﻋﺩﺩﺍ ﺜﺎﺒﺘﺎ ﻭ ﻤﻨﻪ ) (Unﻟﻴﺴﺕ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ
(5) U0 = 1 Un+1 = Un+ 2 ) (Unﻤﻌﺭﻓﺔ ﺒﻌﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ ﺇﺫﻥ Un+1 – Un = 2 :ﻭ ﻤﻨﻪ ﺍﻟﻔﺭﻕ ﻫﻭ ﻋﺩﺩ ﺜﺎﺒﺕ ﺇﺫﻥ ) (Unﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ r=2 ﺍﻟﺘﻤﺭﻴﻥ : 6 ( Un ) (1ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ N ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ Unﺒﺩﻻﻟﺔ n 1) U0 = -1 ,r = 4 Un = U0 + n r Un = -1 + 4 n)2 U0 = 3 , =r - 5 2Un = U0 + nr ﻟﺩﻴﻨﺎ :=Un 3 - 5 n 2 (Un) (2ﻤﻌﺭﻓﺔ ﻋﻠﻰ * Nﺤﺩﻫﺎ ﺍﻷﻭل ﻫﻭ U1 ﻜﺘﺎﺒﺔ Unﺒﺩﻻﻟﺔ n 1 ) U1 = 2 , r = -2 ﻟﺩﻴﻨﺎ Un = U1 + (n -1)r : ﻭ ﻤﻨﻪUn = 2 + (n-1) (-2) : ﺇﺫﻥUn = 2 – 2n + 2 :
ﻭ ﻤﻨﻪUn= 4 – 2n : 2 ) U1 = 3 , r = 2 ﻟﺩﻴﻨﺎUn = U1 + (n-1) r : ﻭ ﻤﻨﻪUn = 3 + (n-1)+2 :ﺇﺫﻥ Un = 3 + 2n -2 :ﻭ ﻤﻨﻪ Un = (3-2) + 2nﺇﺫﻥ U n = 1 + 2n : ﺍﻟﺘﻤﺭﻴﻥ : 7 ﻟﻨﺎU5 = 9, U2 = 3 : ﺤﺴﺎﺏ ﺍﻷﺴﺎﺱ :rﻟﺩﻴﻨﺎ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﻜل ﺤﺩﻴﻥ ﻤﻥ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ: U5 = U2 + ( 5-2 ) r ﻭ ﻤﻨﻪ9 = 3 + 3 r : 9–3=3r ﻭ ﻤﻨﻪ6 = 3 r :r 6 2 ﺇﺫﻥ : 3 ﻭﻤﻨﻪ r =2 -2ﺤﺴﺎﺏ ﺍﻟﺤﺩ ﺍﻷﻭل : U0Un = U0 + 2 r ﻟﻨﺎ ﻤﻥ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ : ﺒﺈﻋﻁﺎﺀ ﺍﻟﻘﻴﻤﺔ 2ﻟـ nﻨﺠﺩ : U2 = U0 + 2 r ﺇﺫﻥ : )3 = U0 + 2(2
U0 = 3 – 4 ﻭ ﻤﻨﻪ: U0 = -1 ﺇﺫﻥ: -2ﻜﺘﺎﺒﺔ Unﺒﺩﻻﻟﺔ : n Un = U0 +n r Un = -1 + 2 n ﻭ ﻤﻨﻪ: – 4ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ :Sn Sn = U0 +…+Un @ Sn n21>U0 U nSn n 1 >1 1 2n @ 2 Sn n 1 >2 2 n @ 2ﻭﺒﺎﺨﺘﺯﺍل ﺍﻟﻌﺩﺩ 2ﻨﺠﺩ : Sn n 1 >2 1n @ 2 )Sn = (n+1) (-1+n) = (n-1)(n+1 Sn = n2 – 1 -5ﺍﺴﺘﻨﺘﺎﺝ S20,S10 : S10 = (10)2 -1 = 100 -1 = 99 S20=(2 0)2 -1=400-1=399 اﻟﺘﻤﺮﻳﻦ : 8 ﻟﺪﻳﻨﺎ U3+U4+U5=33 .....(1) : ﻭ )(U3)2+(U4)2+(U5 )2=381 ...(2 ﺒﻤﺎ ﺃﻥ U4ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ
U3+U5=2 U4ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻨﺠﺩ: ﻟﺩﻴﻨﺎ U4 +2 U4 =33ﻭﻤﻨﻪ 3 U4=33 :ﺇﺫﻥ : U 4ﻨﻌﻭﺽ ﺒﻘﻴﻤﺔ U4ﻓﻲ )(1ﻭ)(2ﻨﺠﺩ : 33 11 3 U3+11+U5=33ﻭ (U3)2+(11)2+(U5)2=381 )U3 +U5=33-11 =22 ....(1 وﻣﻨﻪ )(U3)2+(U5)2 =381-121 =260 ...(2 ﻭﻟﺩﻴﻨﺎ U5=U4+r :و U3=U4 – rﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ) (2ﻨﺠﺩ : (U4-r)2 + (U4+r)2 = 260(U4)2-2rU4 + r2 + (U4)2 +2r(U4)+r2=260 2(U4)2+2r2=260 وﺏﻌﺪ اﻹﺧﺘﺰال ﻥﺠﺪ :إذن 2 (121)+2r2=260وﻣﻨﻪ 2r2=260-242r2 18 9 إذن : وﻣﻨﻪ 2r2=18 2 وﺏﻤﺎ أن r ¢0ﻓﺈن r 3 :وﻋﻠﻴﻪ ﻓﺈن U3 11(3) 14 :و U 5 11 (3) 8 اﻟﺘﻤﺮﻳﻦ : 9 ) (Unﻣﺘﺘﺎﻟﻴﺔ ﺣﺴﺎﺏﻴﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ، Nﺏﺤﻴﺚ r=3 U1 + U2 + U3 + U4 = 34 و -1ﺣﺴﺎب :U0 -ﻥﻜﺘﺐ آﻞ ﺣﺪ ﻣﻦ ﺣﺪود اﻟﻤﺠﻤﻮع ﺏﺪﻻﻟﺔ اﻷﺱﺎس rو اﻟﺤﺪ اﻷول U0 Un = U0 + n r ﻟﻨﺎ : و ﻣﻨﻪ :ﻟﻤﺎ n = 1ﻥﺠﺪ: U1 = U0 + r ﻟﻤﺎ n = 2ﻥﺠﺪ: U2 = U0 + 2r ﻟﻤﺎ n = 3ﻥﺠﺪ: U3 = U0 + 3r ﻟﻤﺎ n = 4ﻥﺠﺪ:
U4 = U0 + 4r إذن ﻥﻌﻮض ﺏﻘﻴﻤﺔ آﻞ ﺣﺪ ﻓﻲ اﻟﻤﺠﻤﻮع ﻓﻨﺠﺪ:(U0 + r) + (U0 + 2 r) + (U0 + 3 r) + (U0 + 4 r) = 34ﺏﻤﺎ أن r=3 ﻓﻨﺠﺪ :(U0 + 3) + (U0 + 2 ) + (U0 + 9 ) + (U0 + 12 ) = 34 4 U0 + 30 = 34 و ﻣﻨﻪ: و ﻣﻨﻪ: 4U0 = 34 – 30 إذن : 4U0 = 4 U0 4 4 و ﻣﻨﻪ U0 = 1 : -2آﺘﺎﺏﺔ Unﺏﺪﻻﻟﺔ : n Un = U0 + nr Un = 1 + 3n و ﻣﻨﻪ: -3ﺣﺴﺎب اﻟﻤﺠﻤﻮع: Sn = U0 + ……+ Un @ Sn n21>U0 U nSn n 1 >2 3n @ 2 ﺣﺴﺎب اﻟﻤﺠﻤﻮع S cn : S cn = U1+……+Un ﺣﺴﺎب :U1 إذن: U1 = U0 + r = 1 + 3 = 4 U1=4
ﻟﺪﻳﻨﺎ:n> @ > @Scn n2 U1 U n = 2 ) 4 (1 3n S cn n @)>(53n 2 ﺍﻟﺘﻤﺭﻴﻥ :10 V0 = 300 (1ﺣﺴﺎب ﻋﺪد اﻟﻌﻤﺎل ﻋﺎم : 2001 أي ﺣﺴﺎب V1و ﻣﻨﻪ: V1 = V0 + 40 V1 = 300 + 40 = 340 ﺣﺴﺎب ﻋﺪد اﻟﻤﺎل ﻋﺎم : 2002 أي ﺣﺴﺎب :V2 V2 = V1 + 40 V2 = 380 + 40 = 420 (2إﻳﺠﺎد اﻟﻌﻼﻗﺔ ﺏﻴﻦ Vn + 1و :Vn ﻟﺪﻳﻨﺎ اﻻﺱﺘﻨﺘﺎج: :Vn + 1ﻋﺪد اﻟﻌﻤﺎل ﺏﻌﺪ )( n+1ﺱﻨﺔ :Vnﻋﺪد اﻟﻌﻤﺎل ﺏﻌﺪ nﺱﻨﺔ Vn+1=Vn +40 إدن : (3ﻣﻨﻪ ) (Vnهﻲ م.ح أﺱﺎﺱﻬﺎ r = 40و ﺣﺪهﺎ اﻷول هﻮ V0 = 300 Vn + 1 = Vn + 40 (4آﺘﺎﺏﺔ Vnﺏﺪﻻﻟﺔ :n ﻟﺪﻳﻨﺎ Vn = V0 + nr أيVn = 300 + 40n : (5ﺣﺴﺎب اﻟﻤﺠﻤﻮع Sn Sn = V0 +V1 +…+V n
> @Sn n 1 2 V0 VnSn n 1 >300(300 40n @) 2Sn n 1 >2(300 40 @)n 2 ﺒﻌﺩ ﺇﺨﺘﺯﺍل ﺍﻟﻌﺩﺩ 2ﺒﺴﻁﺎ ﻭﻤﻘﺎﻤﺎ ﻨﺠﺩ @)S n (n 1)>(30040n ﺍﻟﺘﻤﺭﻴﻥ : 11 ﻟﻨﺎ U0 = 3000اﻟﻤﺒﻠﻎ اﻟﻤﻮدع ﻋﺎم 2007 اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﻋﺎم :2008 U1 = U0 +(0.05)3000 U1 = U0 +3150 اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﻋﺎم :2009 U2 = U1 +( 0.05)3000 U2 = 3150 + 150 = 3300 DA -2اﻟﻌﻼﻗﺔ ﺏﻴﻦ Un +1و : Un :Un +1اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﺏﻌﺪ n+1ﺱﻨﺔ : Unاﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﺏﻌﺪ nﺱﻨﺔ إذن : Un +1 = Un + (0.05) 300 Un +1 = Un + 150و ﻣﻨﻪ ) (Unﻣﺘﺘﺎﻟﻴﺔ ﺣﺴﺎﺏﻴﺔ أﺱﺎﺱﻬﺎ r = 150و ﺣﺪهﺎ اﻷول هﻮ U0 = 2000 Un = U0 + n r و ﻣﻨﻪ: Un = 2000 + 150n ﺍﻟﺘﻤﺭﻴﻥ :12
) (Unﻣﺘﺘﺎﻟﻴﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ N ،U0 = 1ﻟﻨﺎ اﻟﻤﺠﻤﻮع: S = 1 + 1 + 21 + …. + 2001 -1ﺣﺴﺎب اﻷﺱﺎس :r r = 11 – 1 = 10 -2آﺘﺎﺏﺔ Unﺏﺪﻻﻟﺔ : n Un = U0 + n r Un = 1 + n 10 -3ﻋﻴﻦ nﺏﺤﻴﺚUn = 201 : ﻟﻨﺎUn = 201 : و ﻣﻨﻪ1 + 10n = 201 : ﻟﺪﻳﻨﺎ ﻣﻌﺎدﻟﺔ ﻣﻦ اﻟﺪرﺝﺔ اﻷوﻟﻰ ذات اﻟﻤﺠﻬﻮل اﻟﻄﺒﻴﻌﻲ nو ﻣﻨﻪ: 10n = 201 – 1 إذن10 n = 200 : n 200 20 أي: 10 و ﻣﻨﻪ n = 20 : Sn = U0 + ……+ Un إذنU20 = 201 : -4ﺣﺴﺎب :Sn @ Sn n21>U 0 U n ﻟﺪﻳﻨﺎ وﻣﻨﻪSn n 1 >1110 @n 2 > @S nn 1 > = n 1 2 @ 2 10 n 2 )2 (15n وﺏﺎﺧﺘﺰال اﻟﻌﺪد 2ﺏﺴﻄﺎ وﻣﻘﺎﻣﺎ ﻥﺠﺪ :
@)S n (n 1)>(15n ﻥﺠﺪ ﺏﻌﺪ اﻟﻨﺸﺮ: Sn = n + 5n2 + 1 + 5n Sn = 5n2 + 6n + 1 Sn = 105 -3هﻞ ﻳﻮﺝﺪ nﺏﺤﻴﺚ : ﻟﺘﻜﻦ اﻟﻤﻌﺎدﻟﺔ ذات اﻟﻤﺠﻬﻮل اﻟﻄﺒﻴﻌﻲ : n 5n2 + 6n + 1 = 105 5n2 + 6n – 104 = 0 a = 5, b = 6, c = - 104 ﺣﺴﺎب اﻟﻤﻤﻴﺰ : )∆ = b2 – 4 a c = (6)2 – 4(5)(-104 )= 36 + (20 )(104 ∆ = 36 + 2080 = 216 ' 46 إذن: و ﻣﻨﻪ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻠﻴﻦ ﻣﺘﻤﺎﻳﺰﻳﻦ : n1 ' b 6 46 40 4 2a 2u5 10 n1 = 4 Nn1 ' b 6 46 52 N 2a 2u5 10 إذن اﻟﻌﺪد اﻟﻤﻄﻠﻮب هﻮ n =4 ﺍﻟﺘﻤﺭﻴﻥ : 13 هﻞ ) (Unﻣﺘﺘﺎﻟﻴﺔ هﻨﺪﺱﻴﺔ؟ 1) Un = 3 . (2)n -إﻳﺠﺎد اﻟﺤﺪ : Un +1 Un +1 = 3 . (2)n +1 ﻟﻨﺎ : و ﺣﺴﺐ ﺧﻮاص اﻟﻘﻮى: Un +1 = 3 . (2)n .(2) = (2) (3) (2)n
Search