Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول للشعب الادبية سنة ثالثة ثانوي

دروس مادة الرياضيات للفصل الاول للشعب الادبية سنة ثالثة ثانوي

Published by DZteacher, 2015-06-17 05:38:20

Description: دروس مادة الرياضيات للفصل الاول للشعب الادبية سنة ثالثة ثانوي

Search

Read the Text Version

‫ﻓﻬﺭﺱ ﺍﻹﺭﺴﺎل ﺍﻷﻭل‬ ‫ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪ −‬ﺍﻹﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪ -‬ﺍﻟﻤﺘﻨﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ‬‫‪ -‬ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ‪ Z‬ﻭﺍﻟﻤﻭﺍﻓﻘـﺎﺕ‬ ‫ﻓﻲ ‪Z‬‬

‫‪ -1‬ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ ‪:‬‬‫‪ -‬ﺍﺴﺘﻌﻤﺎل ﻤﺒﺩﺃ ﺍﻻﺴﺘـﺩﻻل ﺒﺎﻟﺘﺭﺍﺠـﻊ ﻹﺜﺒﺎﺕ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬ ‫ﻁﺒﻴﻌﻲ ‪.n‬‬ ‫‪ -‬ﺍﻟﺘﻤﻴﻴﺯ ﺒﻴﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻭ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ‬ ‫‪ -‬ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪ -‬ﺘﺤﺩﻴﺩ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﻭ ﻫﻨﺩﺴﻴﺔ‬ ‫‪ -‬ﺍﺴﺘﻌﻤﺎل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﺤل ﻤﺸﻜﻼﺕ ﻤﻥ ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ‪.‬‬ ‫‪ -‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫‪ Un+1 = a Un + b -‬ﻤﻊ ‪َ a ≠ 0‬و ‪b ≠ 0‬‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ‪Un‬‬ ‫‪ -‬ﺤﺴﺎﺏ ‪ Sn‬ﻤﺠﻤﻭﻉ ‪ n‬ﺤﺩﹼﺍ ﻤﺘﺘﺎﺒﻌﺔ ﻟﻬﺫﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ‪.‬‬ ‫‪ -‬ﺤل ﻤﺸﻜﻼﺕ ﺘﺴﺘﻌﻤل ﻓﻴﻬﺎ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل‪:‬‬ ‫‪Un+1 = a Un +b‬‬ ‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬ ‫‪ -‬ﺘﻌﺭﻴﻑ‬ ‫‪ -‬ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪ -‬ﺘﻤﺎﺭﻴﻥ ﺤﻭل ﺍﻹﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪ -‬ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ‬

‫‪ -‬ﺘﻌﺭﻴﻑ ‪:‬‬‫ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ﻫﻭ ﻨﻤﻁ ﻤﻥ ﺃﻨﻤﺎﻁ ﺍﻟﺒﺭﻫﺎﻥ ﻴﺴﻤﺢ ﺒﺎﻟﺒﺭﻫﻨﺔ ﻋﻠﻰ ﺼﺤﺔ ﺨﺎﺼﻴﺔ ﺘﺘﻌﻠﻕ ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ‬ ‫ﻭﻴﻌﺘﻤﺩ ﻫﺫﺍ ﺍﻻﺴﺘﺩﻻل ﻋﻠﻰ ﺍﻟﻤﺒﺩﺃ ﺍﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪ -‬ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ‪:‬‬ ‫)‪ P(n‬ﺨﺎﺼﻴﺔ ﺘﺘﻌﻠﻕ ﺒﺎﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ ‪ n‬ﻭ ‪ n0‬ﻋﻨﺼﺭﺍ ﻤﻥ ‪.N‬‬ ‫ﻴﻤﻜﻨﻨﺎ ﺍﻟﺘﺄﻜﺩ ﻤﻥ ﺼﺤﺔ )‪ P(n‬ﻤﻥ ﺃﺠل ﻜل ‪ n≥n0‬ﺇﺫﺍ ﺘﺤﻘﻘﺎ ﺍﻟﺸﺭﻁﺎﻥ ﺍﻟﺘﺎﻟﻴﺎﻥ‪:‬‬ ‫‪ P(n0) -1‬ﺼﺤﻴﺤﺔ ) ﺍﻟﺨﺎﺼﻴﺔ ﻤﺤﻘﻘﺔ ﻤﻥ ﺃﺠل ﺍﻟﺭﺘﺒﺔ ‪( n0‬‬ ‫‪ -2‬ﻤﻥ ﺃﺠل ﻜل ‪ m≥n0‬ﻨﻔﺭﺽ ﺃﻥ )‪ P(m‬ﺼﺤﻴﺤﺔ ) ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ(‬ ‫ﺇﺫﻥ )‪ P(m+1‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫ﻭ ﺘﻜﻭﻥ ﻋﻨﺩﺌﺫ )‪ P(n‬ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻤﺭﺘﺒﺔ ‪ n‬ﺤﻴﺙ ‪m≥n0‬‬ ‫∗ﻤﻼﺤﻅﺔ‪: 1‬‬‫ﻟﻠﺘﻌﺒﻴﺭ ﻋﻠﻰ ﻜﻭﻥ ﺼﻭﺍﺏ )‪ P(m‬ﻴﺅﺩﻱ ﺇﻟﻰ ﺼـﻭﺍﺏ )‪ P(m+1‬ﻨﻘـﻭل ﺃﻥ ﺍﻟﺨﺎﺼـﻴﺔ ‪ P‬ﻭﺭﺍﺜﻴـﺔ)‬ ‫‪ ( héréditaire‬ﻤﻥ ﺃﺠل ﻤﺭﺘﺒﺔ ‪. n0‬‬ ‫*ﻤﻼﺤﻅﺔ‪: 2‬‬ ‫ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل ﻴﻤﺜل ﺴﻠﻤﹰﺎ ﻨﺭﻴﺩ ﺍﻟﺼﻌﻭﺩ ﻓﻴﻪ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻟ ّﺩﺭﺠﺔ‬ ‫‪ n0‬ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ ‪. n+1‬‬ ‫‪N+1‬‬ ‫ﻴﻤﻜﻨﻨﺎ ﺍﺴﺘﻌﻤﺎل ﻤﺒﺩﺃ ﺍﻻﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪N‬‬ ‫ﻭ ﺫﻟﻙ ﺒﺎﻟﺼﻌﻭﺩ ﺃﻭﻻ ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ‪ n0‬ﺜﻡ‬ ‫ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ ‪ n1‬ﺍﻟﺘﻲ ﺘﻠﻴﻬﺎ ﻤﺒﺎﺸﺭﺓ ﻭ ﻫﻜﺫﺍ‬ ‫ﺇﻟﻰ ﺃﻥ ﻨﺼل ﺇﻟﻰ ﺍﻟﺩﺭﺠﺔ ﺫﺍﺕ ﺍﻟﻤﺭﺘﺒﺔ ‪N5‬‬‫)‪( n+1‬ﻭ ﻤﻨﻪ ﺼﻌﻭﺩﻨﺎ ﺍﻟﺴﻠﻡ ﻜﺎﻥ ‪N4‬‬ ‫‪N3‬‬‫‪N2‬‬ ‫ﺒﻁﺭﻴﻘﺔ ﺴﻠﻴﻤﺔ‪.‬‬‫ﻤﺜﺎل‪ :1‬ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺍﻟﺘﺎﻟﻴﺔ ﻭ ﺫﻟﻙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻏﻴﺭ ﻤﻌﺩ‪1‬ﻭﻤ‪N‬ﺎ‪.‬‬‫)‪N0 2 + 4 + 6 + …+ 2n = n(n+1‬‬

‫ﺍﻟﺠﻭﺍﺏ ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺨﺎﺼﻴﺔ )‪ P(n‬ﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ‬ ‫)‪2 + 4 + 6 + …+ 2n = n(n+1‬‬ ‫ﺒﻤﺎ ﺃﻥ *‪ n ЄN‬ﺇﺫﻥ ﻨﺨﺘﺎﺭ ‪n0 = 1‬‬ ‫ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ ) ‪P(n0‬‬ ‫‪E1 = 2 + 4 + 6 + …. + 2n‬‬ ‫ﻨﻀﻊ‬ ‫)‪E2 = n(n+1‬‬ ‫َﻭ‬ ‫ﻤﻥ ﺃﺠل ‪ n0 = 1‬ﻟﺩﻴﻨﺎ ‪E1 = 2(1) = 2‬‬ ‫‪ E2 = 1(1+1) = 2‬ﺇﺫﻥ )‪ P(n0‬ﺼﺤﻴﺤﺔ‪.‬‬‫‪ -‬ﻨﻔﺭﺽ ﺼﺤﺔ )‪ P(n‬ﻤﻥ ﺃﺠل ﺍﻟﻤﺭﺘﺒﺔ ‪ m‬ﺤﻴﺙ ‪ m≥n0‬ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ )‪P(m+1‬‬ ‫ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ‪ P(m) :‬ﺼﺤﻴﺤﺔ ﺃﻱ‬ ‫)‪2 + 4 + 6 + …..+ 2m = m(m+1‬‬ ‫ﻨﺒﺭﻫﻥ ﺼﺤﺔ )‪ P(m+1‬ﺃﻱ‪:‬‬‫)‪2 + 4 + 6 + …..+ 2m + 2(m+1) = (m+1)(m+2‬‬ ‫ﻭ ﻤﻨﻪ )‪E1= 2 + 4 + 6 + …..+ 2m + 2(m+1‬‬ ‫ﻤﻥ ﺼﻭﺍﺏ )‪P(m‬‬ ‫)‪E1= m(m+1) + 2(m+1‬‬ ‫)‪= (m+1)(m+2‬‬ ‫ﺇﺫﻥ ‪E1 = E2‬‬ ‫ﻭ ﻤﻨﻪ )‪ P(m+1‬ﺼﺤﻴﺤﺔ‬ ‫ﻭ ﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ * ‪ P(n) , N‬ﺼﺤﻴﺤﺔ‪.‬‬‫ﻤﺜﺎل‪ : 2‬ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺼﺤﺔ ﺍﻟﺨﺎﺼﻴﺔ)‪ P(n‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻤﺴﺎﻭﺍﺓ‪:‬‬‫‪0²‬‬ ‫‪+‬‬ ‫‪2²‬‬ ‫‪+‬‬ ‫‪4²‬‬ ‫‪+‬‬ ‫‪6²‬‬ ‫‪+‬‬ ‫‪…+‬‬ ‫‪(2n)²‬‬ ‫=‬ ‫‪2‬‬ ‫)‪n(n+1)(2n+1‬‬ ‫‪3‬‬ ‫ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ n ЄN‬ﻨﺄﺨﺫ ‪. n0 = 0‬‬ ‫‪ x‬ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ )‪. P(n0‬‬ ‫ﺍﻟﻁﺭﻑ ﺍﻷﻭل ﻤﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ‪E1 = 0² = 0 :‬‬ ‫=‪E1‬‬ ‫‪2‬‬ ‫ﺍﻟﻤﺴﺎﻭﺍﺓ‪(0)(0+1)(2*0+1)=0:‬‬ ‫ﻤﻥ‬ ‫ﺍﻟﺜﺎﻨﻲ‬ ‫ﺍﻟﻁﺭﻑ‬ ‫‪3‬‬ ‫ﺇﺫﻥ ‪ E1 = E2‬ﻭ ﻋﻠﻴﻪ ﻓﺈﻥ )‪ P(n0‬ﺼﺤﻴﺤﺔ‪.‬‬

‫‪ x‬ﻨﻔﺭﺽ ﺼﺤﺔ )‪ P(n‬ﻤﻥ ﺃﺠل ﺍﻟﻤﺭﺘﺒﺔ ‪ m≥n0‬ﺃﻱ ‪:‬‬ ‫‪0² + 2² + 4² + …+ (2m)²‬‬ ‫=‬ ‫‪2‬‬ ‫)‪m(m+1)(2m+1‬‬ ‫‪3‬‬ ‫ﻭ ﻨﺒﺭﻫﻥ ﺼﺤﺔ )‪ P(m+1‬ﺃﻱ‬ ‫‪0²‬‬ ‫‪+‬‬ ‫‪2²‬‬ ‫‪+‬‬ ‫‪…+‬‬ ‫‪(2m)²‬‬ ‫‪+‬‬ ‫‪[2(m+1)]²‬‬ ‫=‬ ‫‪2‬‬ ‫)‪(m+1)(m+2)(2m+3‬‬ ‫‪3‬‬‫ﻟﺩﻴﻨﺎ ‪E1= 0² + 2² + 4² + …+ (2m)² +[2(m+1)]²‬‬ ‫ﻤﻥ ﺼﻭﺍﺏ )‪P(m‬‬ ‫‪E1‬‬ ‫=‬ ‫‪2‬‬ ‫‪m(m+1)(2m+1) +4 (m+1)2‬‬ ‫‪3‬‬‫=‬ ‫‪2‬‬ ‫@)‪(m+1)>m(2m+1)+6(m+1‬‬ ‫‪3‬‬ ‫ﻭ ﺫﻟﻙ ﺒﺘﻭﺤﻴﺩ ﺍﻟﻤﻘﺎﻤﺎﺕ ﻭ ﺇﺨﺭﺍﺝ ﺍﻟﻌﺎﻤل ﺍﻟﻤﺸﺘﺭﻙ‬ ‫= ‪E1‬‬ ‫‪2‬‬ ‫>)‪(m+1‬‬ ‫‪2m2+7m‬‬ ‫)‪+6‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪3‬‬ ‫=‪E1‬‬ ‫‪2‬‬ ‫()‪(m+1‬‬ ‫)‪m+2)(2m+3‬‬ ‫‪3‬‬ ‫‪E1 = E2‬‬ ‫ﺇﺫﻥ‪:‬‬‫ﻭ ﻤﻨﻪ )‪ P(m+1‬ﺼﺤﻴﺤﺔﻭ ﻨﺴﺘﺨﻠﺹ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪ N‬ﻓﺈﻥ )‪ P(n‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫‪ -‬ﺘﻤﺎﺭﻴﻥ ﺤﻭل ﺍﻹﺴﺘﺩﻻل ﺒﺎﻟﺘﺭﺍﺠﻊ ‪:‬‬ ‫♦ﺍﻟﺘﻤﺭﻴﻥ ‪: 1‬‬‫ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻏﻴﺭ ﻤﻌﺩﻭﻤﺎ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﺍﺓ ‪:‬‬ ‫‪12 + 22 + 32 +…+ n2‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫)‪n (2n2+3n+1‬‬ ‫‪6‬‬ ‫♦ﺍﻟﺘﻤﺭﻴﻥ ‪: 2‬‬ ‫ﺒﺭﻫﻥ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪ N‬ﻭﺒﺎﻟﺘﺭﺍﺠﻊ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﺍﺓ ‪:‬‬ ‫‪03‬‬ ‫‪+‬‬ ‫‪23‬‬ ‫‪+‬‬ ‫‪43‬‬ ‫‪+‬‬ ‫…‬ ‫‪+(2n)3‬‬ ‫(=‬ ‫‪1‬‬ ‫)‬ ‫‪n2 (n+1)2‬‬ ‫‪4‬‬

‫♦ﺍﻟﺘﻤﺭﻴﻥ ‪: 3‬‬ ‫ﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ *‪: N‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫(‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪+…+‬‬ ‫‪1‬‬ ‫)‪1‬‬ ‫=‬ ‫‪n‬‬‫)‪(1u2‬‬ ‫)‪2u3‬‬ ‫)‪(3u4‬‬ ‫ ‪n(n‬‬ ‫‪n 1‬‬ ‫ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ‬ ‫• ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل ‪:‬‬ ‫ﻨﺴﻤﻲ )‪ p(n‬ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻁﺒﻴﻌﻲ ‪ n‬ﻭﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻤﺴﺎﻭﺍﺓ ‪:‬‬ ‫‪12‬‬ ‫‪+‬‬ ‫‪22 +‬‬ ‫‪32‬‬ ‫‪+‬‬ ‫‪…+‬‬ ‫= ‪n2‬‬ ‫‪1‬‬ ‫‪n(2‬‬ ‫‪n2‬‬ ‫‪3n‬‬ ‫)‪1‬‬ ‫‪6‬‬ ‫ﻨﺴﻤﻲ ‪E1 = 12 + 22 + 32 +…n2 :‬‬ ‫ﻭ‬ ‫= ‪E2‬‬ ‫‪1‬‬ ‫‪n‬‬ ‫(‬ ‫‪2n‬‬ ‫‪2‬‬ ‫)‪ 3 n 1‬‬ ‫‪6‬‬ ‫‪ (1‬ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ )‪ p(n0‬ﺤﻴﺙ ‪n0 = 1‬‬ ‫‪E1 = 12 = 1‬‬ ‫‪E2‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫)‪(1‬‬ ‫‪(2(1)2‬‬ ‫‪+‬‬ ‫)‪3(1‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫(=‬ ‫‪1‬‬ ‫)‬ ‫‪(2‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫ﺇﺫﻥ )‪ p(n0‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫= ‪E2‬‬ ‫‪6‬‬ ‫‪=1‬‬ ‫‪6‬‬ ‫‪ (2‬ﻨﻔﺭﺽ ﺃﻥ )‪ p(n‬ﺼﺤﻴﺤﺔ ﻭﻨﺒﺭﻫﻥ ﺃﻥ )‪ p(n0‬ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ‪n tn0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪12‬‬ ‫‪+‬‬ ‫‪22‬‬ ‫‪+‬‬ ‫‪32‬‬ ‫‪+‬‬ ‫‪…+‬‬ ‫‪n2‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫‪n(2n2‬‬ ‫‪+‬‬ ‫‪3n‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪6‬‬ ‫ﻭﻨﺒﺭﻫﻥ ﺃﻥ ‪:‬‬ ‫‪12+…+‬‬ ‫(=‪(n2)+(n+1)2‬‬ ‫‪1‬‬ ‫‪)(n+1)[2(n+1)2+3(n+1)+‬‬ ‫]‪1‬‬ ‫‪6‬‬

‫‪12‬‬ ‫‪+‬‬ ‫‪22‬‬ ‫‪+‬‬ ‫‪..+‬‬ ‫‪(n2)+(n+1)2‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫)‪(n+1‬‬ ‫‪[2n2‬‬ ‫‪+‬‬ ‫‪7n‬‬ ‫‪+‬‬ ‫]‪6‬‬ ‫‪6‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪E1=12+22+32+. . .+n2 +(n+1)2‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫(=‪E1‬‬ ‫‪1‬‬ ‫)‬ ‫‪n(2n2‬‬ ‫‪+‬‬ ‫‪3n‬‬ ‫‪+‬‬ ‫‪1)+(n+1)2‬‬ ‫‪6‬‬ ‫‪E1‬‬ ‫=‬ ‫‪1‬‬ ‫‪n(2n+1)(n+1)+(n+1)2‬‬ ‫‪6‬‬ ‫‪1‬‬ ‫@)‪E1 = 6 (n+1)>n(2n+1)+6(n+1‬‬ ‫‪E1‬‬ ‫=‬ ‫‪1‬‬ ‫)‪(n+1‬‬ ‫@‪)>2n2+7n+6‬‬ ‫‪6‬‬ ‫ﻻﺤﻅ ﺃﻥ ‪ E1= E2‬ﺍﺫﻥ )‪p(n+1‬ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ*‪ p(n) . N‬ﺼﺤﻴﺤﺔ‪.‬‬ ‫• ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ ‪ :‬ﻴﺤل ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ‬ ‫• ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ ‪:‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫(‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪+…+‬‬ ‫‪n‬‬ ‫(‬ ‫‪1‬‬ ‫=‬ ‫‪n‬‬‫)‪(1u2‬‬ ‫)‪2u3‬‬ ‫)‪(3u4‬‬ ‫)‪n 1‬‬ ‫‪n 1‬‬ ‫ﻨﻀﻊ )‪ p(n‬ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﺘﻲ ﺘﺤﻘﻕ‬ ‫‪1‬‬ ‫‪+‬‬ ‫(‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪+…+‬‬ ‫‪n‬‬ ‫(‬ ‫‪1‬‬ ‫=‬ ‫‪n‬‬‫)‪(1u2‬‬ ‫)‪2u3‬‬ ‫)‪(3u4‬‬ ‫)‪n 1‬‬ ‫‪n 1‬‬ ‫ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ )‪p(n0‬ﺤﻴﺙ ‪n0=1‬‬ ‫ﺍﻟﻁﺭﻑ ﺍﻷﻭل‪:‬‬ ‫‪11‬‬‫‪E1= (1u2) = 2‬‬

‫ﺍﻟﻁﺭﻑ ﺍﻟﺜﺎﻨﻲ‪:‬‬ ‫‪11‬‬ ‫‪E2= (1  1) = 2‬‬ ‫)‪ P(n0‬ﺼﺤﻴﺤﺔ‬ ‫ﻨﻔﺭﺽ ﺼﺤﺔ )‪ p(n‬ﻭﻨﺒﺭﻫﻥ ﺼﺤﺔ )‪p(n+1‬ﻭﺫﻟﻙ ﻤﻥ ﺍﺠل ‪n≥n0‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪+…+‬‬ ‫‪n‬‬ ‫(‬ ‫‪1‬‬ ‫=‬ ‫‪n‬‬ ‫)‪(1u2‬‬ ‫)‪( 2u3‬‬ ‫)‪n 1‬‬ ‫‪n 1‬‬ ‫ﻨﺒﺭﻫﻥ ﺃﻥ ‪:‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫(‬ ‫‪1‬‬ ‫‪+….+‬‬ ‫‪n‬‬ ‫(‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪(n‬‬ ‫‬ ‫‪1‬‬ ‫‬ ‫)‪2‬‬ ‫=‬ ‫‪(n‬‬ ‫‬ ‫)‪1‬‬‫)‪(1u2‬‬ ‫)‪2u3‬‬ ‫)‪n 1‬‬ ‫‪1)(n‬‬ ‫‪(n‬‬ ‫‬ ‫)‪2‬‬ ‫ﺘﻭﺤﻴﺩ ﺍﻟﻤﻘﺎﻤﺎﺕ‬ ‫ﻭﺒﻌﺩ‬ ‫= ‪E1‬‬ ‫‪n1‬‬ ‫)‪2‬‬ ‫ ‪n1 + (n  1)(n‬‬ ‫‪ E1 = n(n2)1‬ﻭﻤﻨﻪ‬ ‫) ‪( n 1)( n  2‬‬ ‫‪n2 2n1‬‬ ‫‪( n 1) 2‬‬ ‫)‪E1 = (n1)(n2) = (n2)(n1‬‬ ‫ﺒﻌﺩ ﺍﻹﺨﺘﺯﺍل )‪ (n+1‬ﺒﺴﻁﺎ ﻭﻤﻘﺎﻤﺎ ﻨﺠﺩ ‪:‬‬ ‫= ‪E1‬‬ ‫‪n 1‬‬ ‫‪n2‬‬ ‫ﺍﺫﻥ ‪ E1 = E2‬ﻭﻤﻨﻪ )‪ p(n+1‬ﺼﺤﻴﺤﺔ‬ ‫ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ *‪ N‬ﻓﺈﻥ )‪ p(n‬ﻤﺤﻘﻘﺔ‬

‫‪ -2‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ‬ ‫‪ -1‬ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ‬ ‫‪ -2‬ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ‬ ‫‪ -3‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ \"ﺭﺘﺎﺒﺔ ﻤﺘﺘﺎﻟﻴﺔ\"‬ ‫‪ - 4‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫‪ -5‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻭﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ‬‫‪ -6‬ﺇﺴﺘﻌﻤﺎل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻟﺤل ﻤﺸﻜﻼﺕ ﻤﻥ ﺍﻟﺤﻴﺎﺓ‬ ‫ﺍﻟﻴﻭﻤﻴﺔ‬ ‫‪ -7‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل ‪ U n1 aU n  b :‬ﻤﻊ ‪ a≠0‬ﻭ ‪b≠0‬‬ ‫‪ -‬ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ‬ ‫‪ -‬ﺤـﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ‬

‫‪ -1‬ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ ‪:‬‬ ‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ ﻫﻲ ﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ‪ N‬ﺃﻭ ﺠﺯﺀ ﻤﻥ ‪N‬‬ ‫ﻤﺜل‪ N * :‬ﺃﻭ`‪N* ^1‬‬ ‫*ﻤﻼﺤﻅﺔ‪ : 1‬ﻴﺠﺏ ﺃﻥ ﻨﻔﺭﻕ ﺒﻴﻥ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ )‪ (Un‬ﻭ ‪Un‬‬ ‫ﺤﻴﺙ )‪ (Un‬ﻴﺭﻤﺯ ﺒﻪ ﺇﻟﻰ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻭ ‪ Un‬ﻟﻌﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ )‪.(Un‬‬ ‫*ﻤﻼﺤﻅﺔ ‪ : 2‬ﻤﻥ ﺍﻟﺘﻌﺭﻴﻑ ﺃﻋﻼﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﺍﻟﻤﺭﺘﺒﺔ ‪ n0‬ﻓﻤﺜﻼ‬ ‫‪1‬‬ ‫‪ Un = n‬ﻫﻭ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ *‪.N‬‬ ‫ﻭﺃﻤﺎ ‪ Vn = n  2‬ﻓﻴﻤﺜل ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ)‪ (Vn‬ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ‪n. ≥ 2‬‬‫ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪ [n0 , ∞[ :‬ﺤﻴﺙ ‪.n0 є N‬‬‫‪ -2‬ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺒﺎﻟﺘﺭﺍﺠﻊ ‪:‬‬‫ﻨﺴﻤﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒﻌﻼﻤﺔ ﺘﺴﻤﺢ ﺒﺘﻌﻴﻴﻥ ﻜل ﺤ ّﺩ ﻤﻨﻬﺎ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺤـﺩﻭﺩ‬ ‫ﺴﺒﻕ ﻤﻌﺭﻓﺘﻬﺎ‪.‬‬‫ﻜﺫﻟﻙ ﻴﻤﻜﻨﻨﺎ ﺃﻥ ﻨﻌﺭﻑ ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ﻜل ﻤﺘﺘﺎﻟﻴﺔ ‪ U‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل ‪ Un0‬ﻭﺒﺎﻟﻌﻼﻗـﺔ‬‫)‪ Un+1= f(Un‬ﺤﻴﺙ ‪ f‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪.N‬‬‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻓﻘﺔ ﺒﺎﻟﻤﺘﺘﺎﻟﻴﺔ ‪.U‬‬‫ﻤﺜﺎل‪ (Un) :1‬ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ‬ ‫‪U0=3‬‬‫ﻤﻥ ﺃﺠل ﻜل ﻁﺒﻴﻌﻲ ‪ n‬ﻤﻥ ‪N‬‬ ‫‪Un+1= 4Un-6‬‬‫‪-(1‬ﺃﺤﺴﺏ‪U3،U2،U1 :‬‬‫‪-(2‬ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Vn‬ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪N‬‬‫ﺒﻌﺒﺎﺭﺓ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ‪Vn = Un -2 :‬‬‫* ﺍﺤﺴﺏ ‪V3،V2،V1،V0‬‬‫* ﺒﺘﺨﻤﻴﻥ ﺍﺤﺴﺏ ‪ V8‬ﺜﻡ ﺃﻋﻁ ﻋﺒﺎﺭﺓ ‪ Vn‬ﺒﺩﻻﻟﺔ ‪n‬‬

‫ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫‪U0 = 3‬‬ ‫‪Un+1 = 4Un-6‬‬ ‫‪ -1‬ﺤﺴﺎﺏ‪U3،U2،U1 :‬‬‫‪U1 = 4U0-6 = 4(3)-6 = 6‬‬‫‪U2 = 4U1-6 = 4(6)-6 = 24-6=18‬‬‫‪U3 = 4U2-6 = 4(18)-6 = 66‬‬ ‫‪ -2‬ﺤﺴﺎﺏ ٍ‪V3،V2،V1‬‬ ‫ﻟﺩﻴﻨﺎ ‪Vn = Un-2‬‬ ‫‪V0 = U0-2 = 3-2 = 1‬‬ ‫‪V1 = U1-2 = 6-2 = 4‬‬‫‪V2 = U2-2 = 18-2=16‬‬‫‪V3 = U3-2 = 66-2 = 64‬‬ ‫*ﺤﺴﺎﺏ ‪ V8‬ﺒﺘﺨﻤﻴﻥ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪V3 = 43 ، V2 = 42 ، V1 = 41 ،V0 = 1= 40‬‬ ‫ﺇﺫﻥ ‪ V8 = 48‬ﺃﻱ ‪V8 = 65536‬‬ ‫ﻭﻤﻨﻪ ‪Vn = 4n‬‬‫ﻤﺜﺎل‪ :2‬ﻟﺘﻜﻥ )‪ (Un‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﻜﻤﺎ ﻴﻠﻲ‪:‬‬ ‫‪U0 = 3‬‬ ‫‪+Un‬‬ ‫‪3‬‬ ‫‪Un+1 = 2‬‬ ‫* ﺍﺤﺴﺏ ‪U3،U2،U1‬‬‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﻌﺭﻓﺔ ﻤﻥ ﺍﻟﺸﻜل‪Un+1=f(Un) :‬‬‫ﺤﻴﺙ ‪ f‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻓﻘﺔ ﺒﻬﺎ ﻭﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻭﺠﺒﺎ ﺏ‬ ‫)‪f(x‬‬ ‫=‬ ‫‪3‬‬ ‫‪+x‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ﻟﺤﺴﺎﺏ ‪U3،U2،U1‬‬ ‫‪3‬‬ ‫‪Un+1 = f(Un) = 2 +Un‬‬‫= )‪U1 = f(U0‬‬ ‫‪3‬‬ ‫= ‪+ U0‬‬ ‫= ‪3 +2‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪U2 = f(U1) = 3 +U1 = 3 + 7 = 5‬‬ ‫‪2 22‬‬‫= )‪U3 = f(U2‬‬ ‫‪3‬‬ ‫= ‪+U2‬‬ ‫‪3‬‬ ‫‪+5‬‬ ‫=‬ ‫‪13‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬

‫‪ -3‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ \"ﺭﺘﺎﺒﺔ ﻤﺘﺘﺎﻟﻴﺔ\" ‪:‬‬ ‫ﻟﺘﻜﻥ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ‬ ‫ﻨﻘﻭل ﺃﻥ‪:‬‬ ‫‪-‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ)ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ‪(n0‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪ Un+1 ≥ Un‬ﻤﻥ ﺃﺠل ﻜل ‪n ≥ n0‬‬ ‫‪-‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ )ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ‪(n0‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪ Un+1 > Un‬ﻤﻥ ﺃﺠل ﻜل ‪n ≥ n0‬‬ ‫‪-‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ )ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ‪(n0‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪ Un+1 ≤ Un‬ﻤﻥ ﺃﺠل ﻜل ‪n ≥ n0‬‬ ‫‪-‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ)ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ‪(n0‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪ Un+1< Un‬ﻤﻥ ﺃﺠل ﻜل ‪n ≥ n0‬‬ ‫‪ -‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺭﺘﻴﺒﺔ )ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ‪(n0‬‬ ‫ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﺘﻨﺎﻗﺼﺔ ﺃﻭ ﻤﺘﺯﺍﻴﺩﺓ ﻤﻥ ﺃﺠل ‪n ≥ n0‬‬‫‪ -‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺜﺎﺒﺘﺔ ﻤﻥ ﺃﺠل ‪ n‬ﻤﻥ ‪ D‬ﻤﺠﺎل ﺘﻌﺭﻴﻑ) ‪ (Un‬ﺒﺤﻴﺙ ‪ Un+1 = Un‬ﻤﻥ ﺃﺠل ﻜل ‪n ≥ n0‬‬ ‫*ﻤﻼﺤﻅﺎﺕ ‪:‬‬ ‫‪ -1‬ﻫﻨﺎﻙ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻟﻴﺴﺕ ﺭﺘﻴﺒﺔ ﻤﺜل ‪Un = (-1)n‬‬‫‪ Un = -1‬ﺇﺫﺍ ﻜﺎﻥ ‪ n‬ﻓﺭﺩﻴﺎ‬ ‫ﺤﻴﺙ‬‫‪ Un = 1‬ﺇﺫﺍ ﻜﺎﻥ ‪ n‬ﺯﻭﺠﻴﺎ‬‫‪ -2‬ﺒﺈﻤﻜﺎﻨﻨﺎ ﺍﻟﻘﻭل ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺭﺘﻴﺒﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [‪ [n0، ∞+‬ﺒﺩﻻ ﻤﻥ ﻗﻭﻟﻨﺎ ﺃﻨﻬﺎ ﺭﺘﻴﺒﺔ ﺍﺒﺘﺩﺍﺀﺍ ﻤﻥ‬ ‫ﻤﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ‪.n0‬‬ ‫ﺃﻤﺜﻠﺔ‪:‬‬‫ﺍﻟﻤﺜﺎل ﺍﻷﻭل‪ :‬ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ‪:‬‬ ‫‪1‬‬ ‫) ‪ Un = E ( n‬ﺤﻴﺙ‬‫‪ n‬ﻤﻥ *‪N‬‬ ‫‪1‬‬ ‫ل‬ ‫ﺍﻟﺼﺤﻴﺢ‬ ‫ﺍﻟﺠﺯﺀ‬ ‫ﻴﻤﺜل‬ ‫(‪E‬‬ ‫‪1‬‬ ‫)‬ ‫‪ n‬ﻤﻥ ﺃﺠل‬ ‫‪n‬‬

‫ﺍﻟﺠﻭﺍﺏ‪ :‬ﻤﻥ ﺃﺠل ﻜل ‪ n ≥ 1‬ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪1‬‬ ‫‪U1 = E( 1 ) = 1‬‬ ‫‪1‬‬‫‪U2 = E( 2 ) = E(0.5) = 0‬‬ ‫‪1‬‬‫‪U3 = E( 3 ) = E(0.33) = 0‬‬‫ﺍﺫﻥ ﻜﻥ ﺃﺠل ﻜل ‪ n ≥ 2‬ﻓﺈﻥ ‪:‬‬‫‪Un‬‬ ‫=‬ ‫(‪E‬‬ ‫‪1‬‬ ‫)‬ ‫=‬ ‫‪0‬‬ ‫‪n‬‬‫ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻭﻗﻔﺔ ﻋﻠﻰ *‪N‬‬‫ﺍﻟﻤﺜﺎل‪ (Un) :2‬ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ‪:‬‬ ‫‪U0= 2‬‬ ‫‪Un+1=4Un-6‬‬‫‪ -1‬ﺍﺤﺴﺏ ‪ U3،U2،U1‬ﻤﺎﺫﺍ ﺘﻼﺤﻅ؟‬‫‪ -2‬ﻫل ﻴﻤﻜﻥ ﺃﻥ ﻨﻌﻤﻡ ﺍﻟﻤﻼﺤﻅﺔ )ﻤﻥ ﺍﻟﺴﺅﺍل‪ (1‬ﻋﻠﻰ ‪Un‬؟‬ ‫ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫ﺤﺴﺎﺏ ‪U3، U2،U1‬‬ ‫‪U1 = 4U0 -6 = 2‬‬ ‫‪U2 = 4U1-6 = 2‬‬ ‫‪U3 = 4U2 -6 = 2‬‬‫ﻨﻼﺤﻅ ﺃﻥ ‪U1 = U2 = U3 = 2‬‬‫ﻫل ﻴﻤﻜﻥ ﺃﻥ ﻨﻌﻤﻡ ﻭﻨﻘﻭل ﺃﻥ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ‪ Un =2 ، N‬ﺃﻱ ﻫل )‪ (Un‬ﺜﺎﺒﺘﺔ؟‬ ‫‪-2‬‬‫ﻴﻤﻜﻥ ﺃﻥ ﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺫﻟﻙ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪N‬‬‫ﻨﺴﻤﻲ )‪ p(n‬ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ ‪n‬‬‫)‪ P(n‬ﺘﻜﺎﻓﺊ ‪Un = 2 :‬‬‫‪ -1‬ﻨﺘﺤﻘﻕ ﻤﻥ ﺼﺤﺔ )‪ p(n0‬ﺤﻴﺙ ‪n0 = 0‬‬‫ﻟﺩﻴﻨﺎ ‪ U0 = 2‬ﻤﺤﻘﻘﺔ‬‫‪ -2‬ﻨﻔﺭﺽ ﺃﻥ )‪ p(n‬ﻤﻥ ﺃﺠل ﺍﻟﻤﺭﺘﺒﺔ ‪ m‬ﺤﻴﺙ ‪ m ≥ n0‬ﻭﻨﺒﺭﻫﻥ ﺼﺤﺔ )‪p(m+1‬‬‫)‪ P(m‬ﺼﺤﻴﺤﺔ ﺃﻱ ‪Um = 2‬‬

‫‪Um+1 = 4Um-6‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪ Um+1= 4(2)-6‬ﺤﺴﺏ ﻓﺭﻀﻴﺔ ﺍﻟﺘﺭﺍﺠﻊ‬ ‫ﺇﺫﻥ‬ ‫ﻭﻤﻨﻪ ‪Um+1 = 8-6 = 2‬‬ ‫ﺇﺫﻥ )‪ p(m+1‬ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻓﺈﻥ )‪ p(n‬ﺼﺤﻴﺤﺔ‬ ‫ﺇﺫﻥ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺜﺎﺒﺘﺔ‬ ‫ﻭﺘﺤﻘﻕ ‪U0 = U1 = U2 =…= Un = 2‬‬‫ﻤﺜﺎل‪ : 3‬ﻟﺘﻜﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ *‪ N‬ﺒﻌﺒﺎﺭﺓ ﺤﺩﻫﺎ ﺍﻟﻬﺎﻡ ‪:‬‬ ‫= ‪Un‬‬ ‫‪n‬‬ ‫‪n 1‬‬‫ﺍﻷﺠﻭﺒﺔ ‪ :‬ﺒﻤﺎ ﺃﻥ )‪ (Un‬ﻤﻭﺠﺒﺔ ﻤﻥ ﺍﺠل ﻜل ‪ n‬ﻤﻥ*‪ N‬ﻴﻤﻜﻨﻨﺎ ﻤﻘﺎﺭﻨﺔ‬ ‫‪.1‬‬ ‫ﺒﺎﻟﻌﺩﺩ‬ ‫‪Un  1‬‬ ‫‪Un‬‬‫‪Un  1‬‬ ‫‪n 1‬‬ ‫‪x‬‬ ‫‪n 1‬‬ ‫ﻭﻤﻨﻪ‬ ‫= ‪Un+1‬‬ ‫‪n 1‬‬ ‫= ‪Un‬‬ ‫‪n2‬‬ ‫‪n‬‬ ‫ﻟﺩﻴﻨﺎ ‪n  2‬‬ ‫‪Un  1 n2  2n  1‬‬ ‫)‪Un = n(n  2‬‬‫ﻭﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪UUnn11‬‬ ‫ﺍﻟﻔﺭﻕ‬ ‫ﺇﺸﺎﺭﺓ‬ ‫ﻨﺩﺭﺱ‬ ‫ﺃﻱ‬ ‫ﺒﺎﻟﻌﺩﺩ‪.1‬‬ ‫‪Un  1‬‬ ‫ﻨﻘﺎﺭﻥ‬ ‫‪Un‬‬ ‫ ‪Un‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫=‬ ‫‪n2  2n 1‬‬ ‫=‪-1‬‬ ‫‪1‬‬ ‫‪Un‬‬ ‫)‪n(n  2‬‬ ‫)‪n(n  2‬‬ ‫‪Un  1‬‬ ‫ﺇﺫﻥ ‪> 1‬‬ ‫‪1‬‬ ‫‪>0‬‬ ‫ﺒﻤﺎ ﺃﻥ‬ ‫‪Un‬‬ ‫)‪n(n  2‬‬ ‫ﻭﻤﻨﻪ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ‪ n‬ﻤﻥ *‪N‬‬ ‫ﻁﺭﻴﻘﺔ ﺍﻟﻌﻤل‪:‬‬‫ﺇﺫﺍ ﻜﺎﻨﺕ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻤﻭﺠﺒﺔ ﻤﻥ ﺃﺠل ﻜل ‪) n ≥ n0‬ﻜل ﺤﺩﻭﺩﻫﺎ ﻤﻭﺠﺒﺔ( ﻟﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫ﺒﺎﻟﻌﺩﺩ‪1‬‬ ‫‪Un  1‬‬ ‫)‪ (Un‬ﻴﻜﻔﻲ ﻤﻘﺎﺭﻨﺔ ﺍﻟﻌﺩﺩ‬ ‫‪Un‬‬ ‫ﻨﻘﻭل ﺃﻥ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ‬ ‫‪Un  1‬‬ ‫‪-1‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪≥ 0‬‬ ‫‪Un‬‬ ‫ﻨﻘﻭل ﺃﻥ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ‬ ‫‪Un  1‬‬ ‫‪-1‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ ‪≤ 0‬‬ ‫‪Un‬‬

‫‪ - 4‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴﻴﺔ ‪:‬‬‫ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﻴﻠﺨﺹ ﺍﻟﻘﻭﺍﻨﻴﻥ ﺍﻟﺨﺎﺼﺔ ﺒﺎﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﺘﻲ ﺩﺭﺴﺕ ﻓﺱ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ‬ ‫ﺜﺎﻨﻭﻱ‪.‬‬‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ‬‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤـﺩﻫﺎ ﺍﻷﻭل ‪ Uα‬ﻭﺃﺴﺎﺴـﻬﺎ ‪ (Vn)r‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤـﺩﻫﺎ ﺍﻷﻭل ‪ Vβ‬ﻭﺃﺴﺎﺴـﻬﺎ ‪q‬‬ ‫ﺤﻴﺙ‪ β‬ﻋﻨﺼﺭ ﻤﻥ ‪.N‬‬ ‫ﺤﻴﺙ‪ α‬ﻋﻨﺼﺭ ﻤﻥ ‪.N‬‬ ‫ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ‪ q ≠ 0‬ﻭ‪q ≠ 1‬‬ ‫ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺎ ‪r ≠ 0‬‬ ‫‪Vn = Vβ.qn-β‬‬ ‫‪Un = Uα+ (n-α) r‬‬ ‫ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ‬ ‫‪Sn = Vβ+Vβ+1+…+Vn‬‬ ‫‪Sn = Uα+Uα+1+…+Un‬‬ ‫ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ‪n-β+1‬‬‫‪> @Sn‬‬ ‫ﺒﻤﺎ ﺃﻥ ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻫﻭ)‪(n-α+1‬‬ ‫‪Vβ‬‬ ‫)‪1q(nβ 1‬‬ ‫)‪(nα 1‬‬ ‫‪1 q‬‬ ‫‪2‬‬ ‫‪> @Sn‬‬ ‫‪Uα U n‬‬ ‫ﻓﺈﻥ‪:‬‬ ‫ﺤﺎﻟﺔ ﺨﺎﺼﺔ ‪q=1‬‬ ‫ﺤﺎﻟﺔ ﺨﺎﺼﺔ ‪r = 1‬‬ ‫‪ Vβ=Vn‬ﻓﺈﻥ )‪ (Vn‬ﺜﺎﺒﺘﺔ‬ ‫)‪ (Un‬ﺜﺎﺒﺘﺔ ‪Un = Uα‬‬ ‫‪Sn= (n-β+1)V β‬‬ ‫‪Sn = (n-α+1)Uα‬‬ ‫ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ‬‫ﺍﻟﻬﻨﺩﺴـﻴﺔ)‪b،(Vn‬‬ ‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫ﻤﻥ‬ ‫ﺍﻟﻬﻨﺩﺴﻲ‬ ‫ﺍﻟﻭﺴﻁ‬ ‫ﺍﻟﺤـﺴﺎﺒﻴﺔ)‪b،(Un‬‬ ‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ‬ ‫‪c،b،a‬‬ ‫‪ c،b،a‬ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻤﻥ‬ ‫ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﻬﻨﺩﺴﻲ ﻭﺘﺤﻘﻕ‬ ‫ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻭﺘﺤﻘﻕ ‪:‬‬ ‫‪b2=a.c‬‬ ‫‪2b = a+c‬‬‫ﺘﺤﻘﻕ‪v v v‬‬ ‫ﺍﻟﻬﻨﺩﺴﻴﺔ‬ ‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫‪U1-U0‬ﺤﺩﻭﺩ‬ ‫ﺍﻟﺤﺴﺎﺒﻴﺔ ﺘﺤﻘﻕ‬ ‫ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫ﺤﺩﻭﺩ‬ ‫‪.=Un+1-Un‬‬ ‫‪=U2-U1‬‬ ‫‪=.‬‬‫= ‪v1‬‬ ‫‪v v2 =… = n1‬‬ ‫♦ﻤﺜﺎل‪ :‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ‬ ‫‪0‬‬ ‫‪1n‬‬ ‫ﺍﻷﻭل ‪ U0‬ﻭﺃﺴﺎﺴﻬﺎ ‪r‬‬ ‫‪-1‬ﻋﻴﻥ ﺃﺴﺎﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪(Un‬‬‫‪-2‬ﺃﺤﺴﺏ ‪ U0‬ﺜﻡ ﺃﻋﻁ ﻋﺒﺎﺭﺓ ‪ Un‬ﺒﺩﻻﻟﺔ ‪ n‬ﻋﻠﻤـﺎ ﺃﻥﺇﺩﺍﻜﺎﻥ ‪ q=0‬ﻓﺈﻥ )‪ (Vn‬ﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻭﻗﻔﺔ‬ ‫‪U13 = 22‬‬ ‫‪U7 = 10‬‬

‫♦ﻤﺜﺎل‪ :‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ )‪ (Vn‬ﻤﺘﺘﺎﻟﻴـﺔ ﻫﻨﺩﺴـﻴﺔ‬ ‫‪-3‬ﺍﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪ S‬ﺤﻴﺙ‬ ‫‪S=U0+U1+…+U99‬‬‫ﺠﻤﻴﻊ ﺤﺩﻭﺩﻫﺎ ﻤﻭﺠﺒﺔ ﺤﻴﺙ *‪n є N‬‬ ‫‪x‬ﺍﻷﺠﻭﺒﺔ‬ ‫‪U13 = 22 ، U7=10‬‬ ‫ﺒﺤﻴﺙ ‪V4 x V6=16‬‬ ‫ﻟﺩﻴﻨﺎ‬‫‪1‬‬ ‫‪U13 = U7+(13-7)r‬‬‫‪ -1‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ‪ q‬ﻋﻠﻤﺎ ﺃﻥ =‪4 V1‬‬ ‫‪22=10+6r‬‬‫‪-2‬ﺍﺤﺴﺏ ﻋﺒﺎﺭﺓ ‪ Vn‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪-3‬ﺃﺤﺴﺏ ‪ Sn‬ﺤﻴﺙ‬ ‫‪Sn=V1+V2+…+Vn‬‬ ‫• ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫‪22-10=6r‬‬ ‫ﻭﻤﻨﻪ‬ ‫ﺍﺫﻥ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪V4 x V6 = 16‬‬ ‫‪r‬‬ ‫‪12‬‬ ‫‪2‬‬‫‪ V5x‬ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﻬﻨﺩﺴﻲ ﻟﻠﺤﺩﻴﻥ ‪ V6‬ﻭ‪ V5‬ﻭﻤﻨﻪ ‪V52‬‬ ‫‪6‬‬ ‫‪ = V4 x V6‬ﺃﻱ ‪V52 = 16‬‬ ‫ﺇﺫﻥ ﺍﻷﺴﺎﺱ ‪r =2‬‬‫ﻭﻤﻨﻪ ‪ V5 = 4‬ﻷﻥ ﺍﻟﺤﺩﻭﺩ ﻤﻭﺠﺒﺔ‬ ‫‪x‬ﺤﺴﺎﺏ ‪U0‬‬‫‪U1‬‬ ‫‪1‬‬ ‫ﺤﺴﺎﺏ ‪ q‬ﻋﻠﻤﺎ ﺃﻥ‬ ‫‪x‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪4‬‬ ‫‪U7= U0+7r‬‬ ‫‪U5 = U1.q4‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫)‪ 10 = U0+7(2‬ﻭﻤﻨﻪ‬ ‫‪U0 = 10-14 = -4‬‬ ‫‪4 = 1 .q4‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪4‬‬ ‫‪x‬ﻋﺒﺎﺭﺓ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬‫‪q4 = 4 x 4= 16‬‬ ‫ﺃﻱ‬ ‫‪Un = U0+nr‬‬ ‫ﻟﺩﻴﻨﺎ‬‫‪q4 = 24‬‬ ‫ﻭﻤﻨﻪ ‪Un = -4+2n :‬‬ ‫‪q=2‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪x‬ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ‪:‬‬ ‫‪S = U0+U1+…+U99‬‬ ‫‪ x‬ﻋﺒﺎﺭﺓ ‪ Vn‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫ﻟﺩﻴﻨﺎ ‪Vn = V1.qn-1‬‬ ‫ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ‪99-0+1 = 100‬‬‫= ‪Vn‬‬ ‫‪1‬‬ ‫‪(2)n-1‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪100‬‬ ‫‪4‬‬ ‫= ‪[U0+U99] 2 S‬‬‫ﺤﺴﺎﺏ ‪> @Sn= v1+v2+..+vn‬‬ ‫‪x‬‬ ‫])‪Sn = 50[-4+(-4)+2(99‬‬ ‫‪x‬‬ ‫‪Sn‬‬ ‫‪V1‬‬ ‫‪1q n‬‬ ‫ﻭﻤﻨﻪ ‪S = 9500‬‬ ‫‪1 q‬‬ ‫][‬ ‫‪1 2n‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪1 2‬‬ ‫= ‪4 Sn‬‬ ‫‪Sn = -‬‬ ‫‪1‬‬ ‫]‪[1-2n‬‬ ‫‪4‬‬

‫‪ -5‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻭﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ‬‫أ( ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ‪:‬‬‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻤﻊ ‪ N‬ﺤﺩﻫﺎ ﺍﻷﻭل ‪ U0‬ﻭﺃﺴﺎﺴﻬﺎ ‪.r‬‬‫ﻟﺩﻴﻨﺎ ‪ Un = U0 + nr‬ﻭﻤﻨﻪ ‪Un+1 = U0 +(n+1)r‬‬‫ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ‪( Un+1 – Un) :‬‬‫]‪Un+1 – Un = [U0 +(n+1)r] - [U0 + nr‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬‫‪= U0 + nr + r-U0 - nr‬‬‫‪Un+1 – Un = r‬‬ ‫ﺇﺫﻥ‬ ‫ﺇﺫﻥ ﺇﺘﺠﺎﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﺇﺸﺎﺭﺓ ﺃﺴﺎﺴﻬﺎ ‪r‬‬‫‪ r > 0 x‬ﻴﻜﺎﻓﺊ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ‪n є N‬‬‫‪ r < 0 x‬ﻴﻜﺎﻓﺊ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ‪n є N‬‬‫‪ r = 0 x‬ﻴﻜﺎﻓﺊ )‪ (Un‬ﺜﺎﺒﺘﺔ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪N‬‬ ‫ﻤﺜﺎل ‪ :‬ﻟﺘﻜﻥ )‪ (Un‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل ‪U0 = -4‬‬ ‫ﻭﺒﺎﻟﻌﻼﻗﺔ ‪ Un+1 = Un-2n + 3‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪n‬‬ ‫ﻭﻟﺘﻜﻥ )‪ (rn‬ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﺒﺎﻟﻌﻼﻗﺔ‬ ‫‪rn = Un+1 – Un‬‬‫‪ -1‬ﺃﺜﺒﺕ ﺃﻥ )‪ (rn‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل‪.‬‬‫‪ -2‬ﺍﺴﺘﻨﺘﺞ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪(rn‬‬

‫ﺍﻷﺠﻭﺒﺔ‬ ‫)‪ (rn‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ r‬ﻴﻜﺎﻓﺊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ‪ n‬ﻤﻥ ‪N‬‬ ‫‪rn+1 – rn = r‬‬ ‫ﻨﺤﺴﺏ ‪Un+1 – Un :‬‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪Un+1-Un = Un – 2n + 3 – Un‬‬ ‫‪= -2n + 3‬‬ ‫ﻭﻤﻨﻪ ﻨﺤﺴﺏ ‪rn+1 – rn‬‬ ‫)‪rn+1 – rn = -2(n+1) + 3 – (-2n + 3‬‬ ‫‪= -2n -2 + 3 + 2n – 3‬‬ ‫‪rn+1 – rn = -2 = r‬‬ ‫ﺇﺫﻥ )‪ (rn‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪r = -2‬‬ ‫ﺤﺴﺎﺏ ‪: r0‬‬ ‫‪r0 = -1 + 4‬‬ ‫‪ r0 = U1 – U0‬ﻭﻤﻨﻪ‬ ‫ﺇﺫﻥ ‪r0 = 3 :‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ r = -2 < 0‬ﺇﺫﻥ )‪ (rn‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ‪.‬‬ ‫ﺏ( ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ‪:‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ q‬ﺤﻴﺙ ‪ q ≠ 1‬ﻭﺤﺩﻫﺎ ﺍﻷﻭل ‪.U0‬‬ ‫ﻟﺩﻴﻨﺎ ‪ Un = U0 . qn‬ﻭ ‪Un+1 = U0 qn+1‬‬ ‫ﻭﻤﻨﻪ ﻨﺤﺴﺏ ‪Un+1 – Un‬‬ ‫]‪Un+1 – Un = U0 qn [q -1‬‬ ‫ﻨﻤﻴﺯ ﺍﻟﺤﺎﻻﺕ ﺤﺴﺏ ﺍﻹﺸﺎﺭﺓ ) ‪(q-1‬‬‫‪q -∞ 0‬‬ ‫∞‪1 +‬‬‫‪q -1‬‬ ‫‪-‬‬ ‫‪-+‬‬ ‫‪ q -1 > 0 (1‬ﺃﻱ ‪q > 1‬‬‫ﺇﺫﻥ ‪ qn‬ﻤﻭﺠﺒﺎ ﻭﻤﻨﻪ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻴﻌﺘﻤﺩ ﺇﻟﻰ ﺇﺸﺎﺭﺓ ‪U0‬‬‫ﺃ( ‪ q > 1‬ﻭ ‪ U0 > 0‬ﻴﻜﺎﻓﺊ )‪(Un‬ﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ‪n є N‬‬‫ﺏ(‪ q < 1‬ﻭ ‪ U0 < 0‬ﻴﻜﺎﻓﺊ)‪( Un‬ﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل‪n є N‬‬ ‫‪ 0< q < 1 (2‬ﺇﻥ ‪ q -1 < 0‬ﻭ ‪ qn‬ﻤﻭﺠﺒﺎ‬

‫ﻭﻤﻨﻪ ‪:‬‬ ‫ﺃ( ‪ 0<q<1‬ﻭ‪ U0 > 0‬ﻴﻜﺎﻓﺊ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل‪n є N‬‬ ‫ﺏ(‪ 0<q<1‬ﻭ ‪ U0 < 0‬ﻴﻜﺎﻓﺊ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل‪n є N‬‬‫‪ q ≤ 0 (3‬ﺇﺫﻥ ‪ q -1 < 0‬ﻭ ‪ qn‬ﻟﻴﺴﺕ ﻟﻪ ﺇﺸﺎﺭﺓ ﺜﺎﺒﺘﺔ ﻭﺫﻟﻙ ﺤﺴﺏ ﻜﻭﻥ ‪ n‬ﺯﻭﺠﻴﺎ ﺃﻭ ﻓﺭﺩﻴﺎ‪.‬‬ ‫ﻭﻤﻨﻪ )‪ (Un‬ﻟﻴﺴﺕ ﺭﺘﻴﺒﺔ‪.‬‬‫ﻤﺜﺎل ‪ (Un) :‬ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ‬‫= ‪ Un‬ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪N‬‬ ‫‪4 n 1‬‬ ‫‪7n‬‬‫‪ .1‬ﺒﺭﻫﻥ ﺃﻥ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻋﻴﻥ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل ‪.U0‬‬‫‪ .2‬ﻤﺎ ﻫﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬؟‬ ‫ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫‪ .1‬ﻟﺩﻴﻨﺎ ‪:‬‬‫= ‪Un‬‬ ‫‪4 n 1‬‬ ‫‪= 4( 4 )n‬‬ ‫‪7n‬‬ ‫‪7‬‬‫)‪ (Un‬ﻟﻬﺎ ﺍﻟﺸﻜل ‪ a.bn‬ﻭﻫﻭ ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل ‪ a‬ﻭﺃﺴﺎﺴﻬﺎ ‪b‬‬ ‫‪4‬‬ ‫ﻭﻤﻨﻪ ﻭﺒﺎﻟﻤﻭﺍﻓﻘﺔ ﻤﻊ ﻋﺒﺎﺭﺓ ‪ Un‬ﻨﺤﻭ ‪ U0 = 4‬ﻭ ‪q = 7‬‬ ‫‪ .2‬ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪(Un‬‬ ‫ﺇﺫﻥ ‪0<q<1‬‬ ‫=‪q‬‬ ‫‪4‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪7‬‬‫ﻜﺫﻟﻙ ‪ U0 > 4‬ﻭﻤﻨﻪ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪N‬‬

‫‪Un+1 – Un‬‬ ‫*ﻤﻼﺠﻅﺔ ‪ :‬ﻴﻤﻜﻥ ﺃﻥ ﻨﺩﺭﺱ ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺒﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﺍﻟﻔﺭﻕ‬ ‫‪ Un+1 – Un = 4‬‬ ‫‪4‬‬ ‫‪n1 – 4 ( 4 )n‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫=@ > ‬‫‪4‬‬‫‪4‬‬ ‫‪n‬‬ ‫‪741‬‬ ‫‪7‬‬ ‫‪ > @= 4‬‬‫‪4‬‬‫‪n‬‬‫‪3‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫ﺇﺫﻥ ‪ Un+1– Un < 0‬ﻭﻤﻨﻪ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪N‬‬‫‪ -6‬ﺇﺴــﺘﻌﻤﺎل ﺍﻟﻤﺘﺘﺎﻟﻴــﺎﺕ ﺍﻟﺤــﺴﺎﺒﻴﺔ ﻭﺍﻟﻬﻨﺩﺴــﻴﺔ ﻟﺤــل ﻤــﺸﻜﻼﺕ‬ ‫ﻤﻥ ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ‬ ‫♦ﺍﻟﻤﺸﻜﻠﺔ ﺭﻗﻡ ‪: 1‬‬ ‫ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻷﺴﺌﻠﺔ ‪:‬‬‫ﻭﻀﻊ ﺘﻠﻤﻴﺫ ﻤﺒﻠﻐﺎ ﻤﻘﺩﺍﺭﻩ ‪ 6000‬ﺩ‪.‬ﺝ ﻓﻲ ﺍﻟﺒﻨﻙ ﺒﻔﻭﺍﺌﺩ ﺒﺴﻴﻁﺔ ﻟﻌﺩﺓ ﺴﻨﻭﺍﺕ‪ ،‬ﺃﻱ ﺃﻨﻪ ﻋﻨﺩ ﻨﻬﺎﻴﺔ ﻜل‬‫ﺴﻨﺔ ﻴﻤﻨﺢ ﺍﻟﺒﻨﻙ ﻓﺎﺌﺩﺓ ﻗﺩﺭﻫﺎ ‪ %8‬ﻟﻴﺯﻴﺩ ﺇﺩﺨﺎﺭﻩ ﻜل ﺴﻨﺔ ﺒﻤﺒﻠﻎ ﺜﺎﺒﺕ ﻴﺴﺎﻭﻱ ‪ %8‬ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ‪.‬‬ ‫‪ -‬ﻴﺭﻴﺩ ﺍﻟﺘﻠﻤﻴﺫ ﻤﻌﺭﻓﺔ ﺍﻟﻤﺒﻠﻎ ﻟﻪ ﻜل ﺴﻨﺔ‬ ‫‪ .1‬ﺃﺤﺴﺏ ‪U3 . U2 . U1‬‬ ‫‪ .2‬ﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻟﺩﻴﻨﺎ ‪Un+1 = Un + 480‬‬ ‫‪ .3‬ﻋّﺒﺭ ﻫﻥ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬‫‪ .4‬ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺍﻟﺴﻨﻭﺍﺕ ﺍﻟﺘﻲ ﻴﺠﺏ ﺍﻨﺘﻅﺎﺭﻫﺎ ﻟﻴﻀ ّﻌﻑ ﺍﻟﺘﻠﻤﻴﺫ ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ ﺇﻟﻰ ‪ 3‬ﻤﺭﺍﺕ ؟‬ ‫• ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫ﻨﻀﻊ ‪ U0 = 6000‬ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ‬ ‫‪6000‬‬ ‫ﺇﺫﻥ ‪100 U1 = 6000 + 8 x :‬‬ ‫‪U1 = 6000 + 480‬‬ ‫‪U1 = 6480‬‬ ‫‪U2‬‬ ‫=‬ ‫‪6480‬‬ ‫‪+‬‬ ‫‪6000‬‬ ‫‪x‬‬ ‫‪8‬‬ ‫‪100‬‬ ‫‪= 6480 + 480‬‬

‫‪U2 = 6960‬‬ ‫‪8‬‬ ‫‪U3 = 6960 + 6000 x 100‬‬ ‫‪= 6960 + 480‬‬ ‫‪U3 = 7440‬‬ ‫‪ -2‬ﺍﻟﺘﺤﻘﻕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪Un+1 = Un + 480‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪U1 = U0 + 480‬‬ ‫‪U2 = U1 + 480‬‬ ‫‪U3 = U2 + 480‬‬ ‫ﻭﺒﺘﺨﻤﻴﻥ ﻨﺠﺩ ‪Un+1 = Un + 480‬‬ ‫ﻭﻤﻨﻪ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل ‪ U0 = 6000‬ﻭ ﺃﺴﺎﺴﻬﺎ‬ ‫‪r = 480‬‬ ‫ﺇﺫﻥ ‪ Un = U0 + nr‬ﺃﻱ ‪Un = 6000 + 480n‬‬ ‫ﻋﺩﺩ ﺍﻟﺴﻨﻭﺍﺕ ﻟﻜﻲ ﻴﺘﻀﺎﻋﻑ ﺍﻟﻤﺒﻠﻎ ﺍﻻﺒﺘﺩﺍﺌﻲ ‪ 3‬ﻤﺭﺍﺕ‬ ‫ﻨﻀﻊ ‪Un = 3 x 6000‬‬ ‫‪6000 + 480n = 18000‬‬ ‫‪480n = 18000 – 6000‬‬ ‫‪480n = 1200‬‬ ‫ﻭﻤﻨﻪ ‪n = 25‬‬ ‫ﺇﺫﻥ ﻋﺩﺩ ﺍﻟﺴﻨﻭﺍﺕ ﻫﻭ ‪ 25‬ﺴﻨﺔ‬ ‫♦ﺍﻟﻤﺸﻜﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ ‪:‬‬ ‫ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻷﺴﺌﻠﺔ ‪:‬‬‫ﻓﻲ ﺴﻨﺔ ‪ 2000‬ﻜﺎﻥ ﺴﻌﺭ ﺍﻟﻐﺭﺍﻡ ﺍﻟﻭﺍﺤﺩ ﻤﻥ ﺍﻟﺫﻫﺏ ﺍﻟﺨﺎﻟﺹ ﻴﻘ ّﺩﺭ ﺒﻘﻴﻤﺔ ‪ 1000‬ﺩ‪.‬ﺝ‪ ،‬ﻋﻠﻤﺎ ﺃﻥ‬ ‫ﺴﻌﺭ ﻫﺫﺍ ﺍﻷﺨﻴﺭ ﻴﺯﺩﺍﺩ ﻜل ﺴﻨﺔ ﺒﻤﻘﺩﺍﺭ ‪ %20‬ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﻜﺎﻥ ﻋﻠﻴﻪ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﻔﺎﺭﻁﺔ‪.‬‬‫‪ -1‬ﺍﺸﺘﺭﺕ ﺘﻠﻤﻴﺫﺓ ﺨﺎﺘﻤﺎ ﻭﺯﻨﻪ ‪4‬ﻏﺭﺍﻤﺎﺕ ﻓﻲ ﻴﻭﻡ ‪ 2000/01/01‬ﻜﻡ ﺴﻴﺒﻠﻎ ﺜﻤﻥ ﻫـﺫﺍ ﺍﻟﺨـﺎﺘﻡ ﻴـﻭﻡ‬ ‫‪ 2007/01/01‬؟‬‫‪ -2‬ﺃﺭﺍﺩﺕ ﻫﺫﻩ ﺍﻟﺘﻠﻤﻴﺫﺓ ﺃﻥ ﺘﺒﻴﻊ ﺨﺎﺘﻤﻬﺎ ﻓﻲ ﻋﺎﻡ ‪ 2007‬ﻟﺼﺎﺌﻎ ﻤﺎ ﻫﻭ ﺜﻤﻥ ﺒﻴﻥ ﻫـﺫﺍ ﺍﻟﺨـﺎﺘﻡ ﻋﻠﻤـﺎ ﺃﻥ‬ ‫ﺍﻟﺼﺎﺌﻎ ﻴﺄﺨﺫ ﻨﺴﺒﺔ ﻓﻲ ﺍﻟﺭﺒﺢ ﻤﻘﺩﺭﺓ ﺒـ‪ %20‬ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻹﺠﻤﺎﻟﻲ ﻟﻠﺨﺎﺘﻡ ؟‬ ‫•ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ ﻴﻭﻡ ‪ 2000/01/01‬ﻫﻭ ‪ 4000‬ﺩ‪.‬ﺝ‬ ‫ﻨﻀﻊ ‪U0 = 4000‬‬

‫ﺍﻟﺯﻴﺎﺩﺓ ﻜل ﻋﺎﻡ ﻤﻘﺩﺭﺓ ﺒـ ‪ %20‬ﻤﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻹﺠﻤﺎﻟﻲ‬‫ﺇﺫﻥ ﻴﻭﻡ ‪ 2001/01/01‬ﻴﺼﺒﺢ ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ ‪:‬‬ ‫‪20‬‬ ‫‪U1 = U0 + 4000 x 100‬‬‫‪U1 = 4800‬‬ ‫‪U1 = U0 + U0 x 0.2‬‬ ‫)‪U1 = U0 (1+0.2‬‬ ‫‪U1 = 1.02 x U0‬‬ ‫‪U1 = 1.02 x 4000‬‬ ‫ﻓﻲ ﺴﻨﺔ ‪ 2000‬ﻴﺼﺒﺢ ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ ‪:‬‬‫‪U2 = 5760‬‬ ‫‪U2 = U1 + U1 x 0.2‬‬ ‫)‪U2 = U1 (1+0.2‬‬ ‫)‪U2 = U1 (1.2‬‬ ‫)‪U2 = (U0 x 1.2)(1.2‬‬ ‫‪U2 = U0 (1.2)2‬‬ ‫)‪U2 = 4000 x (1.44‬‬‫ﻭﻫﻜﺫﺍ ﻓﺈﻥ ﺜﻤﻥ ﺍﻟﺨﺎﺘﻡ ﻴﺯﺩﺍﺩ ﺒﺄﺴﺎﺱ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ‪ q=1.2‬ﻭﻤﻨﻪ ‪U7 = U0 x (1.2)7‬‬ ‫‪U7 = 4000 x (1.2)7‬‬ ‫‪U7 = 14332.7‬‬ ‫ﻭﻤﻨﻪ ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺨﺎﺘﻡ ﻋﺎﻡ ‪ 2007‬ﻫﻭ ‪ 14332.7‬ﺩ‪.‬ﺝ‪.‬‬‫* ﻨﺴﺒﺔ ﺭﺒﺢ ﺍﻟﺼﺎﺌﻎ ﻤﻥ ﺍﻟﺭﺒﺢ ﺍﻹﺠﻤﺎﻟﻲ ﻫﻲ ‪ 20%‬ﺇﺫﻥ ﻫﺫﻩ ﺍﻟﻨﺴﺒﺔ ﺘﻘﺩﺭ ﺒـ‪:‬‬ ‫‪14332.7‬‬ ‫‪x‬‬ ‫‪20‬‬ ‫‪= 2866.54‬‬ ‫‪100‬‬ ‫ﻭﻤﻨﻪ ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺨﺎﺘﻡ ﻫﻭ ‪:‬‬ ‫‪14332.7 – 2866.54 = 11466.16‬‬‫ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺨﺎﺘﻡ ﻋﺎﻡ ‪ 2007‬ﻫﻭ ‪ 11466.16‬ﺩ‪.‬ﺝ‬

‫‪ -7‬ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل ‪ U n1 aU n  b :‬ﻤﻊ ‪ a≠0‬ﻭ ‪b≠0‬‬ ‫أ‪ -‬ﺣﺴﺎب اﻟﺤﺪ اﻟﻌﺎم ‪ Un‬ﺒﺩﻻﻟﺔ ‪ n‬ﺤﻴﺙ ‪ n‬ﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ‬ ‫‪ x‬ﻨﻤﻴﺯ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺨﺎﺼﺔ ‪a=1‬‬‫ﺇﺫﻥ ‪ U n1 U n b‬ﻭ ﻤﻨﻪ ‪ U n1  U n b‬ﻭ ﻤﻨﻪ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل‬ ‫‪ U0‬ﻭ ﺃﺴﺎﺴﻬﺎ ‪ b‬ﻭ ﻤﻨﻪ ‪U n U 0  bn‬‬ ‫‪ x‬ﻨﻔﺭﺽ ‪a≠1‬‬‫‪ U n1  aU n‬ﻭ‬ ‫ﺇﺫﺍ ﻜﺎﻨﺕ )‪ (Un‬ﻭ )‪ (V1‬ﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﺘﺤﻘﻘﺎﻥ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ‪b‬‬ ‫‪x‬‬ ‫‪Vn1  aVn b‬‬‫ﺇﺫﻥ ﻓﺭﻗﻬﺎ ‪ Wn‬ﻫﻭ ﺤﺩ ﻋﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ a‬ﻭ ﺒﺎﻟﻔﻌل ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫)‪Wn1 U n1  Vn1 (aU n  b)  (aVn  b‬‬ ‫‪aU n  aVn‬‬ ‫‪Wn1 a ˜Wn‬‬ ‫ﺇﺫﻥ‬‫‪ Vn1‬ﻟﺫﻟﻙ ﻨﻔﺭﺽ ﺃﻥ )‪(Vn‬‬ ‫ﻨﺭﻴﺩ ﻤﻌﺭﻓﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Vn‬ﺍﻟﺘﻲ ﺘﺤﻘﻕ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ‪aVn  b‬‬ ‫ﺜﺎﺒﺘﺔ‬ ‫ﺃﻱ ‪Vn=D‬ﻭ ﻤﻨﻪ ‪ Vn+1=D‬ﻭ ﻤﻨﻪ‬ ‫‪ Vn1 aVn  b‬ﺘﺼﺒﺢ ‪D= a D+b‬‬ ‫ﻭ ﻤﻨﻪ ‪ D - a D = b‬وﻣﻨﻪ ‪D(1-a)=b‬‬ ‫ﻋﻠﻤﺎ ﺃﻥ ‪a≠1‬‬ ‫‪α‬‬ ‫‪b‬‬ ‫ﻭ ﻨﺠﺩ ‪1  a‬‬ ‫ﻭ ﻤﻥ ﺍﻟﻌﻼﻗﺔ ‪Wn U n  Vn :‬‬ ‫‪Wn U n  α‬‬ ‫ﻨﺠﺩ‬ ‫‪Wn‬‬ ‫‪Un‬‬ ‫‬ ‫‪b‬‬ ‫‪a‬‬ ‫ﺃﻱ‬ ‫‪1‬‬ ‫‪b‬‬ ‫‪ W0‬ﺇﺫﻥ‬ ‫‪U0‬‬ ‫‬ ‫‪1 a‬‬ ‫ﺍﻷﻭل‬ ‫ﻭﺤﺩﻫﺎ‬ ‫‪a‬‬ ‫ﺃﺴﺎﺴﻬﺎ‬ ‫ﻫﻨﺩﺴﻴﺔ‬ ‫ﻤﺘﺘﺎﻟﻴﺔ‬ ‫ﻫﻲ‬ ‫)‪(Wn‬‬ ‫‪Wn‬‬ ‫‪(U 0‬‬ ‫‬ ‫‪b‬‬ ‫)‬ ‫˜‬ ‫‪a‬‬ ‫‪n‬‬ ‫‬ ‫‪1‬‬ ‫‪a‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪ Wn U n  α‬ﻭ ﻤﻨﻪ ‪U n Wn  α‬‬

‫‪ U n U 0 1ba ˜a n α‬‬ ‫ﻭ ﻨﺠﺩ ﺍﻟﻌﻼﻗﺔ ﺍﻷﺴﺎﺴﻴﺔ ‪:‬‬‫ﻭ ﻫﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ‪U n1 aU n  b‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺤﻴﺙ ‪:‬‬‫ﻁﺒﻴﻌﻲ ‪n‬‬ ‫ﺃﻋﻁ ﻋﺒﺎﺭﺓ ‪ Un‬ﺒﺩﻻﻟﺔ ‪ n‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ‬ ‫‪­U‬‬ ‫‪0‬‬ ‫‪4‬‬ ‫‪¯®U‬‬ ‫‪n1‬‬ ‫‪2U n  3‬‬ ‫ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪ b = 3 ، a = -2‬ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪α‬‬ ‫‪3‬‬ ‫‪ α‬ﺃﻱ ‪1‬‬ ‫‪b‬‬ ‫)‪1  (2‬‬ ‫‪1 a‬‬ ‫ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Wn‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ ‪Wn U n α‬‬‫‪ W0‬ﺇﺫﻥ ‪W0 =3‬‬ ‫ﺃﻱ ‪ Wn Un 1‬ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ a = -2‬ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ‪U 0  1‬‬ ‫ﻭ ﻤﻨﻪ ‪ Wn W0 ˜ q n‬ﺃﻱ ‪Wn = 3(-2)n‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ U n Wn α‬ﺇﺫﻥ ‪U n 3(2) n  1‬‬ ‫‪U n1‬‬ ‫ب‪ -‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ ‪aU n  b‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ Wn Un α‬ﺤﺴﺏ ﺍﻟﻔﺭﻉ )ﺃ(‬ ‫ﺇﺫﻥ ‪ Wn1 Un1α‬ﻭ ﻤﻨﻪ ﺇﺸﺎﺭﺓ ﺍﻟﻔﺭﻕ‬ ‫‪ U n1  U n‬ﻤﻥ ﺇﺸﺎﺭﺓ ‪Wn1  Wn‬‬ ‫ﻷﻥ ) ‪Wn1 Wn (U n1 α )(U n α‬‬ ‫‪U n1 α U n α‬‬‫‪ W0‬ﺇﺫﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ‬ ‫‪U0 α‬‬ ‫‪U n1  U n‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ )‪ (Wn‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ a‬ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل‬ ‫)‪ (Un‬ﻤﻥ ﻨﻔﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪(Wn‬‬ ‫*ﻤﻼﺤﻅﺔ ‪) :‬ﺩﺭﺱ ﺍﺘﺠﺎﻫﺎﺕ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻓﻲ ﺩﺭﺱ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻬﻨﺩﺴﻴﺔ(‬

‫ﺝ‪ -‬ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪Sn‬‬ ‫‪Sn = U1 + U2 + …… + Un‬‬ ‫ﻟﺩﻴﻨﺎ ‪ Wn U n  α‬ﻭ ﻤﻨﻪ ‪U n Wn  α‬‬ ‫‪U1 W1  α‬‬ ‫‪U 2 W2  α‬‬ ‫‪U 3 W3  α‬‬‫) ‪(U 1  U 2  ...  U n‬‬ ‫‪U n Wn  α‬‬ ‫‪Sn‬‬ ‫ﻭ ﺒﺎﻟﺠﻤﻊ ﻁﺭﻑ ﺇﻟﻰ ﻁﺭﻑ ﻨﺠﺩ‬ ‫‪α‬‬ ‫)‪(W 1  W 2  ... W n )  (α  α  . ..  α‬‬ ‫‪Sn‬‬ ‫ﻤﺠﻤﻭﻉ ‪ n‬ﺤﺩﺍ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪a‬‬ ‫‪ n‬ﻤﺭﺓ‬ ‫ﻭ ﻤﻨﻪ‬ ‫‪b‬‬ ‫‪ W1‬ﻭ‬ ‫ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ‪U1  α‬‬ ‫‪1 a‬‬ ‫‪ Sn W1˜(11aan )nα‬ﺇﺫﻥ ‪:‬‬ ‫‪(U‬‬ ‫‬ ‫‪b‬‬ ‫)‬ ‫‪ª1 an‬‬ ‫‪º‬‬ ‫‬ ‫‪nα‬‬ ‫‬ ‫«‬ ‫»‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪a‬‬ ‫¬‬ ‫‪1‬‬ ‫‬ ‫‪a‬‬ ‫¼‬‫ﺍﻟﺘﺭﺍﺠﻌﻴﺔ‬ ‫ﺒﺎﻟﻌﻼﻗﺔ‬ ‫ﻭ ﺘﻤﺜل ﻫﺫﻩ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻋﺒﺎﺭﺓ ﺍﻟﻤﺠﻤﻭﻉ ‪ Sn‬ﻟﻠﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ‬ ‫‪U n1 aU n  b‬‬ ‫ﻤﺜﺎل ‪ :‬ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻏﻴﺭ ﻤﻌﺩﻭﻤﺎ ﺒﺎﻟﺸﻜل ‪:‬‬ ‫‪­U‬‬ ‫‪0‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪®¯U‬‬ ‫‪n‬‬ ‫‪5U n  2‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (2‬ﻤﺎ ﻫﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬؟‬ ‫‪ (3‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪ Sn‬ﺍﻟﻤﻌﺭﻑ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪Sn = U1 + U2 + …… + Un (4‬‬

‫ﺍﻷﺠﻭﺒﺔ ‪:‬‬ ‫‪ (1‬ﺤﺴﺎﺏ ﻋﺒﺎﺭﺓ ‪ Un‬ﺒﺩﻻﻟﺔ ‪:n‬‬ ‫‪α‬‬ ‫‪b‬‬ ‫‪2‬‬ ‫‪ b = 2 ، a = 5‬ﻭﻤﻨﻪ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪1 a‬‬ ‫‪15‬‬ ‫‪1‬‬ ‫‪α‬‬ ‫‬ ‫‪2‬‬ ‫ﺇﺫﻥ‬ ‫ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (vn‬ﺒﻌﺒﺎﺭﺓ ﺤﺩﻩ ﺍﻟﻌﺎﻡ ‪Vn = Un –D :‬‬ ‫‪Vn‬‬ ‫‪Un‬‬ ‫‬ ‫‪1‬‬ ‫ﺃﻱ‬ ‫‪2‬‬ ‫ﻨﻌﻠﻡ ﺃﻥ )‪ (Vn‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ a=5‬ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل‬ ‫‪V1‬‬ ‫‪3‬‬ ‫‬ ‫‪1‬‬ ‫‪7‬‬ ‫‪ Vn = Un – D‬أي‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪Vn‬‬ ‫‪7 (5)n1‬‬ ‫و ﻣﻨﻪ ‪ Vn V1 ˜ q n1‬أي‬ ‫‪2‬‬ ‫‪ U n‬إذن ﻋﺒﺎرة ‪ Un‬ﺗﻌﻄﻰ ﺏﺎﻟﺸﻜﻞ‬ ‫‪Vn‬‬ ‫‬ ‫‪1‬‬ ‫ﻟﺪﻳﻨﺎ‬ ‫‪2‬‬ ‫‪Un‬‬ ‫‪7‬‬ ‫‪(5) n1‬‬ ‫‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ (2‬ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪ (Un‬ﻤﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪(Vn‬‬‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ V1>0‬ﻭ ‪ q>1‬ﺇﺫﻥ )‪ (Vn‬ﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪ N‬ﻭ ﻤﻨﻪ )‪ (Un‬ﻜﺫﻟﻙ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ‬ ‫ﻋﻠﻰ ‪N‬‬ ‫‪ (3‬ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪: Sn‬‬ ‫‪Sn‬‬ ‫‪(U1‬‬ ‫‬ ‫‪α‬‬ ‫‪)(1  a n‬‬ ‫)‬ ‫‬ ‫‪nα‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪1 a‬‬ ‫ﻭ ﻤﻨﻪ‬‫‪Sn‬‬ ‫‪(3‬‬ ‫‬ ‫‪1 )(1  5n‬‬ ‫)‬ ‫‬ ‫‪1‬‬ ‫‪n‬‬ ‫‪2 15‬‬ ‫‪2‬‬ ‫‪Sn‬‬ ‫‪7‬‬ ‫©§¨¨‬ ‫ ‪5n‬‬ ‫‪1‬‬ ‫¸·¸‪¹‬‬ ‫‬ ‫‪1‬‬ ‫‪n‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪Sn‬‬ ‫‪7‬‬ ‫‪(5n‬‬ ‫)‪ 1‬‬ ‫‬ ‫‪1‬‬ ‫‪n‬‬ ‫ﺇﺫﻥ‬ ‫‪8‬‬ ‫‪2‬‬

‫ج‪ -‬ﺤل ﻤﺸﻜﻼﺕ ﺘﺴﺘﻌﻤل ﻓﻴﻬﺎ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﻥ ﺍﻟﺸﻜل ‪U n1 aU n  b‬‬ ‫♦ ﻁﺭﺡ ﺍﻟﻤﺸﻜﻠﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ‪:‬‬‫ﻗ ّﺩﺭ ﺜﻤﻥ ﺴﻴﺎﺭﺓ ﺠﺩﻴﺩﺓ ﻤﻥ ﻁﺭﺍﺯ ﻤﻌﻴﻥ ﺒﻤﺒﻠﻎ ﻤﻠﻴﻭﻥ ﻭ ﺨﻤﺴﺔ ﻤﺎﺌﺔ ﺃﻟﻑ ﺩﻴﻨﺎﺭﺍ ﺠﺯﺍﺌﺭﻴﺎ ‪(1500000‬‬ ‫)‪ DA‬ﺒﺘﺎﺭﻴﺦ ‪07/01/01‬‬ ‫ﻭ ﺍﺘﻔﻕ ﻋﻠﻰ ﺒﻴﻊ ﻫﺫﺍ ﺍﻟﻨﻭﻉ ﻤﻥ ﺍﻟﺴﻴﺎﺭﺍﺕ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﻜل ﺴﻨﺔ ﺒﺎﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬‫ﻜل ﻋﺎﻡ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ‪ 01‬ﺠﺎﻨﻔﻲ ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﺍﻟﺠﺩﻴﺩ ﻴﻨﻘﺹ ﺒﻤﻘﺩﺍﺭ ‪ 25%‬ﻤﻥ ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻟﻠﺴﻨﺔ ﺍﻟﻔﺎﺭﻁﺔ ﻭﺒﺯﻴﺎﺩﺓ‬ ‫ﻗﺩﺭﻫﺎ )‪ (50000 DA‬ﻟﻠﻤﺒﻠﻎ ﺍﻹﺠﻤﺎﻟﻲ ﺍﻟﺠﺩﻴﺩ‪.‬‬ ‫ﻨﺴﻤﻲ ‪ Pn‬ﻤﺒﻠﻎ ﺍﻟﺴﻴﺎﺭﺓ ﻴﻭﻡ ‪ 01‬ﺠﺎﻨﻔﻲ ﻤﻥ ﺴﻨﺔ ‪2007+n‬‬ ‫ﺍﻷﺴﺌﻠﺔ ‪:‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ‪ P2 ، P1 ، P0‬ﺜﻡ ﺭﺘﺏ ﻫﺫﻩ ﺍﻟﺤﺩﻭﺩ‪.‬‬ ‫‪ (2‬ﺃﻜﺘﺏ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ n‬ﻋﺒﺎﺭﺓ ‪ Pn+1‬ﺒﺩﻻﻟﺔ ‪Pn‬‬‫‪ (3‬ﻨﻀﻊ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ‪ Un = Pn - 200000 : n‬ﺒﺭﻫﻥ ﺃﻥ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ‬ ‫ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ ‪ q‬ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ‪.U0‬‬ ‫‪ (4‬ﺇﻋﻁ ﻋﺒﺎﺭﺓ ‪ Un‬ﺒﺩﻻﻟﺔ ‪ n‬ﺜﻡ ﻋﺒﺎﺭﺓ ‪ Pn‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (5‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪ Sn‬ﺍﻟﻤﻌﺭﻑ ﺒـ ‪:‬‬ ‫‪Sn = P0 + P1 + … + Pn-1‬‬ ‫• ﺤل ﺍﻟﻤﺸﻜﻠﺔ ‪:‬‬ ‫‪ (1‬ﻨﻔﺭﺽ ‪ P0‬ﻫﻭ ﺜﻤﻥ ﺒﻴﻊ ﺍﻟﺴﻴﺎﺭﺓ ﻴﻭﻡ ‪07/01/01‬‬ ‫‪P0 = 1500000 DA‬‬ ‫ﺇﺫﻥ‬ ‫‪P1‬‬ ‫‪P0‬‬ ‫‬ ‫‪25‬‬ ‫‪u‬‬ ‫‪P0‬‬ ‫‬ ‫‪50000‬‬ ‫‪100‬‬ ‫‪P1‬‬ ‫ ‪P0[1‬‬ ‫]‪1‬‬ ‫‬ ‫‪50000‬‬ ‫‪4‬‬ ‫‪P1‬‬ ‫‪3‬‬ ‫‪P0‬‬ ‫‬ ‫‪50000‬‬ ‫‪4‬‬‫‪P1‬‬ ‫‪3 (1500000‬‬ ‫‪)  50000‬‬ ‫‪4‬‬ ‫‪P1 = 1175000 DA‬‬ ‫‪P2‬‬ ‫‪P1‬‬ ‫‬ ‫‪25‬‬ ‫‪P1‬‬ ‫‬ ‫‪50000‬‬ ‫‪100‬‬ ‫‪P2‬‬ ‫‪P1 (1‬‬ ‫‬ ‫‪1‬‬ ‫)‬ ‫‬ ‫‪50000‬‬ ‫‪4‬‬

‫‪P2‬‬ ‫‪3‬‬ ‫‪P1‬‬ ‫‬ ‫‪50000‬‬ ‫‪4‬‬‫‪P2‬‬ ‫‪3‬‬ ‫)‪(1175000‬‬ ‫‬ ‫‪50000‬‬ ‫‪4‬‬ ‫‪P2 = 931250 DA‬‬ ‫‪ P0‬ﻴﻤﺜل ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻴﻭﻡ ‪07/01/01‬‬ ‫‪ P1‬ﻴﻤﺜل ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻴﻭﻡ ‪08/01/01‬‬ ‫‪ P2‬ﻴﻤﺜل ﺜﻤﻥ ﺍﻟﺒﻴﻊ ﻴﻭﻡ ‪09/01/01‬‬ ‫‪P2 < P1 < P0‬‬ ‫ﻻﺤﻅ ﺃﻥ‬ ‫‪ (2‬ﻋﺒﺎﺭﺓ ‪ Pn‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪P1‬‬ ‫‪3‬‬ ‫‪P0‬‬ ‫‪ 50000‬‬ ‫‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪4‬‬ ‫‪P2‬‬ ‫‪3‬‬ ‫‪P1‬‬ ‫‬ ‫‪50000‬‬ ‫‪4‬‬ ‫‪Pn1‬‬ ‫‪3‬‬ ‫‪Pn‬‬ ‫‬ ‫‪50000‬‬ ‫ﺇﺫﻥ‬ ‫‪4‬‬ ‫*ﻤﻼﺤﻅﺔ ‪ (Pn) :‬ﻤﺘﺘﺎﻟﻴﺔ ﺘﺭﺍﺠﻌﻴﺔ ﻤﻥ ﺍﻟﺸﻜل ‪Pn1 aPn  b‬‬ ‫‪b‬‬ ‫‪ a‬ﻭ ‪50000‬‬ ‫‪3‬‬ ‫ﺤﻴﺙ ‪4‬‬‫‪α‬‬ ‫‪b‬‬ ‫‪50000‬‬ ‫‪Un = Pn – 200000 (3‬‬ ‫‪1 a‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫‪4‬‬ ‫ﻭﻤﻨﻪ ‪D=200000‬‬ ‫‪D 50000 u 4‬‬‫‪ a‬ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ‪U 0 P0 α‬‬ ‫ﺇﺫﻥ ‪Un = Pn –D‬‬ ‫‪3‬‬ ‫ﺇﺫﻥ )‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ a‬ﺤﻴﺙ ‪4‬‬ ‫‪U0 = 1500000 – 200000‬‬ ‫‪U0 = 1300000‬‬

‫ﻭ ﻤﻨﻪ ‪Un = U0 . qn :‬‬ ‫¨§)‬ ‫‪3‬‬ ‫·¸‬ ‫‪n‬‬ ‫©‬ ‫‪4‬‬ ‫‪¹‬‬ ‫‪Un‬‬ ‫‪(1300000‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪Pn = Un + D‬‬‫‪Sn‬‬ ‫‪Pn‬‬ ‫) ‪(1300000‬‬ ‫‪ n‬‬‫‪3‬‬ ‫‪ (4‬ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪ 200000‬‬ ‫‪4‬‬ ‫‪+ Pn-1‬‬ ‫… ‪Sn = P0 + P1 +‬‬ ‫ﻟﺩﻴﻨﺎ ‪ n‬ﺤﺩﺍ‪.‬‬ ‫‪Pn = Un + 200000‬‬ ‫‪P0 = U0 + 200000‬‬ ‫‪P1 = U1 + 200000‬‬ ‫‪P0  P1  }  Pn -1‬‬ ‫‪Pn-1 = Un-1 + 200000‬‬ ‫ﺒﺎﻟﺠﻤﻊ ﻁﺭﻑ ﺇﻟﻰ ﻁﺭﻑ ﻨﺠﺩ‬ ‫‪(U 0  U 1  }  U n -1)  200000 u n‬‬ ‫ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ‬ ‫‪Sn‬‬ ‫‪U‬‬ ‫‪0‬‬ ‫‪ª1  q n‬‬ ‫‪º‬‬ ‫‬ ‫‪200000‬‬ ‫‪u‬‬ ‫‪n‬‬ ‫‪:‬‬ ‫ﻤﻨﻪ‬ ‫ﻭ‬ ‫‪¬« 1  q‬‬ ‫¼»‬ ‫‪ Sn‬‬ ‫‪¬ª««114334‬‬ ‫‪n‬‬ ‫‪º‬‬ ‫»‬ ‫)‪(1300000‬‬ ‫¼»‬ ‫‪200000un‬‬ ‫‪1300000)¨§©¨1‬‬ ‫¨§‬ ‫‪3‬‬ ‫·¸‬ ‫‪n‬‬ ‫¸¸·‪¹‬‬ ‫©‬ ‫‪4‬‬ ‫‪¹‬‬ ‫‪Sn‬‬ ‫‪(4‬‬ ‫‪u‬‬ ‫‬ ‫‬ ‫‪200000‬‬ ‫‪u‬‬ ‫‪n‬‬ ‫‪(5200000)©¨¨§1‬‬ ‫¨§‬ ‫‪3‬‬ ‫·¸‬ ‫‪n‬‬ ‫·¸‬ ‫©‬ ‫‪4‬‬ ‫‪¹‬‬ ‫‪¸¹‬‬ ‫‪Sn‬‬ ‫‬ ‫‬ ‫‪200000‬‬ ‫‪u‬‬ ‫‪n‬‬ ‫*ﻤﻼﺤﻅﺔ‪:‬‬‫ﻴﻤﻜﻨﻙ ﺘﻁﺒﻴﻕ ﻗﺎﻨﻭﻥ ﺍﻟﻤﺠﻤﻭﻉ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﻓﻲ ﺍﻟﺩﺭﺱ ﺍﻟﻔﻘﺭﺓ )ﺩ( ﻋﻠﻤﺎ ﺃﻥ ﺍﻟﺤﺩ ﺍﻷﻭل ﻫﻭ ‪U0‬‬

‫ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴﺔ‬ ‫ﺘﻤﺭﻴﻥ ‪: 1‬‬‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ ‪:Un‬‬‫‪ -‬ﺃﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ‪.‬‬‫‪ -‬ﺃﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪n.‬‬‫‪Un = 3n + 4 , Un = -2n + 1‬‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪Un = 3n‬‬‫‪Un = n 1‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 2‬‬‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ‬‫‪ -‬ﺃﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ‪.‬‬‫‪(1) U0 = 1‬‬ ‫‪(2) U0 = -1‬‬ ‫‪Un+1 = Un + 4‬‬ ‫‪Un+1 = Un-2‬‬ ‫‪1‬‬ ‫‪(4) U0 = 2‬‬‫‪(3) U0 = 2‬‬ ‫‪Un+1 = -2Un‬‬ ‫‪Un+1 = 2Un + 1‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 3‬‬‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔﺍﻟﻌﺩﺩﻴﺔ ‪ f‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ |R‬ﺒـ ‪:‬‬ ‫‪f(x) = 2x3 – 30x2 + 162‬‬ ‫ﻭﻟﻴﻜﻥ ﺤﺩﻭﺩ ﺘﻐﻴﺭﺍﺘﻬﺎ‬ ‫‪x -∞ 0 10‬‬ ‫∞‪+‬‬‫‪F(x) 162‬‬ ‫‪-838‬‬ ‫* ﺘﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒـ‪:‬‬ ‫‪Un = 2n3 – 30n2 + 162‬‬ ‫‪ (1‬ﻤﺎ ﻫﻲ ﻗﻴﻡ ‪ U10 ، U0‬؟‬‫‪ (2‬ﺇﺴﺘﻨﺘﺞ ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪ (Un‬ﻟﻤﺎ }‪? n є { 0.1.2.3.4.5.6.7.8.9.10‬‬ ‫‪ (3‬ﺇﺴﺘﻨﺘﺞ ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪ (Un‬ﻟﻤﺎ ‪ n ≥ 10‬؟‬

‫ﺘﻤﺭﻴﻥ ‪: 4‬‬‫ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ‬‫‪Un = -2n + 5 , Un = 3n – 1 , Un = 2n‬‬ ‫‪Un‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫‪3‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 5‬‬‫ﺤل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺤﺴﺎﺒﻴﺔ ؟‬ ‫‪(3)Un = n2‬‬‫‪(1)Un = 3n – 7 (2)Un = -4n + 2‬‬‫‪(4) U0 = -3‬‬ ‫‪(5) U0 = 1‬‬ ‫‪Un+1 = Un + n‬‬ ‫‪Un+1 = Un + 2‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 6‬‬‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ ،N‬ﺤﺩﻫﺎ ﺍﻷﻭل ﻫﻭ ‪ U0‬ﻭﺃﺴﺎﺴﻬﺎ ‪r‬‬ ‫ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬‫‪(1) U0 = -1 , r = 4‬‬ ‫‪3‬‬ ‫‪(2) U0 = 2 , r = -5‬‬‫‪(3) U0 =2, r = 2‬‬ ‫‪1‬‬ ‫‪(4) U0 = 4 , r = 2‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 7‬‬‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺃﺴﺎﺴﻬﺎ ‪ r‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪U5 = 9 , U2 = 3‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ‪.r‬‬ ‫‪ (2‬ﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﻭل ‪.U0‬‬ ‫‪ (3‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬‫‪ (4‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪Sn = U0 + U1 + …+Un :Sn‬‬ ‫‪ (5‬ﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﻤﻭﻉ ‪.S10 , S20‬‬ ‫‪ -‬ﻨﻔﺱ ﺍﻷﺴﺌﻠﺔ ﺇﺫﺍ ﻜﺎﻥ‪U8 = 2 , U4 = 10 :‬‬

‫ﺘﻤﺭﻴﻥ ‪: 8‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪، N‬ﺍﺴﺎﺴﻬﺎ ‪ ( r ¢ 0 ) r‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪ U3+U4+U5=42‬ﻭ ‪(U3)2+(U4)2+(U5 )2=381‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ‪U3,U4,U5‬‬ ‫‪ (2‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ﺜﻡ ﺍﻟﺤﺩ ﺍﻷﻭل‬ ‫‪ ( 3‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫ﺘﻤﺭﻴﻥ‪: 9‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪، N‬ﺍﺴﺎﺴﻬﺎ ‪ r‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪ r = 3‬ﻭ ‪U1 + U2 + U3 + U4 = 34‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ‪U0‬‬ ‫‪ (2‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (3‬ﺃﺤﺴﺏ‪Sn = U0+…+Un :‬‬ ‫‪ (4‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ‪S'n = U1+…+Un :‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 10‬‬ ‫ﻜﺎﻥ ﻋﺩﺩ ﻋﻤﺎل ﻤﺅﺴﺴﺔ ﺇﻨﺘﺎﺠﻴﺔ ﻋﺎﻡ ‪ 2000‬ﻫﻭ ‪ 300‬ﻋﺎﻤل‬ ‫ﺒﺤﻴﺙ ﺘﻨﻁﻕ ﺍﻟﻤﺅﺴﺴﺔ ﻜل ﺴﻨﺔ ‪ 40‬ﻋﺎﻤﻼ ﺠﺩﻴﺩﺍ‪.‬‬ ‫ﻨﻌﺘﺒﺭ ﺃﻥ‪ V0‬ﻫﻭ ﻋﺩﺩ ﺍﻟﻌﻤﺎل ﻋﺎﻡ ‪2000‬‬ ‫ﻭ‪ vn‬ﻫﻭ ﻋﺩﺩ ﺍﻟﻌﻤﺎل ﺒﻌﺩ ‪ n‬ﺴﻨﺔ‬ ‫‪ -1‬ﺃﺤﺴﺏ ﻋﺩﺩ ﺍﻟﻌﻤﺎل ﻋﺎﻡ ‪.2003 ، 2002 ، 2001‬‬ ‫‪ -2‬ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ ‪ vn+1‬ﻭ ‪vn‬‬ ‫‪ -3‬ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪(vn‬‬ ‫‪ -4‬ﺃﻜﺘﺏ ‪ vn‬ﺒﺩﻻﻟﺔ ‪n.‬‬ ‫‪ – 5‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪Sn=V0 +V1 +…+Vn :‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 11‬‬‫ﻭﻀﻊ ﺸﺨﺹ ﻤﺒﻠﻎ ‪ 2000‬ﺩ‪.‬ﺝ ﻋﺎﻡ ‪ 2007‬ﺒﺄﺤﺩ ﺍﻟﺒﻨﻭﻙ‪ ،‬ﺒﺤﻴﺙ ﻟﻪ ﻓﺎﺌﺩﺓ ﺒﺴﻴﻁﺔ ﺴﻨﻭﻴﺔ ﻗﺩﺭﻫﺎ ‪. %5‬‬ ‫ﻨﻔﺭﺽ ﺃﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﻭﻀﻌﻪ ﻋﺎﻡ ‪ 2007‬ﻫﻭ ‪U0‬‬

‫ﻭ ‪ : Un‬ﺍﻟﺭﺼﻴﺩ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﺒﻌﺩ ‪ n‬ﺴﻨﻭﺍﺕ‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺭﺼﻴﺩ ﺍﻟﺸﺨﺹ ﻋﺎﻡ ‪.2010 ،2009 ، 2008‬‬ ‫‪ (2‬ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ ‪ Un+ 1‬ﻭ ‪Un‬‬ ‫‪ (3‬ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ )‪(Un‬‬ ‫‪ (4‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 12‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪N‬‬‫ﺃﺴﺎﺴﻬﺎ ‪ r‬ﻭﺤﺩﻫﺎ ﺍﻷﻭل ‪ ، U0 = 1‬ﻴﻌﺘﺒﺭ ﺍﻟﻤﺠﻤﻭﻉ ‪ S‬ﻟﻌﺩﺓ ﺤﺩﻭﺩ ‪:‬‬ ‫‪S = 1+11+21+…+201‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ‪r‬‬ ‫‪ (2‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (3‬ﻋﻴﻥ ﺍﻟﺭﺘﺒﺔ ‪ n‬ﺒﺤﻴﺙ ‪U1 = 201 :‬‬ ‫‪ (4‬ﻨﻌﺘﺒﺭ ﺍﻟﻤﺠﻤﻭﻉ ‪Sn = U0+…+Un : Sn‬‬ ‫ﻫل ﺘﻭﺠﺩ ﻗﻴﻤﺔ ﻟـ‪ n‬ﺒﺤﻴﺙ ‪Sn = 105 :‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 13‬‬ ‫ﻫل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﻫﻨﺩﺴﻴﺔ ؟‬ ‫‪Un = 3.(2)n , Un = (-4).(3)n , Un = n2‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 14‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪ q‬ﻭﺤﺩﻫﺎ ﺍﻷﻭل ‪U0‬‬ ‫‪(1‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (2‬ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪(Un‬‬ ‫‪q = 2 , U0 = 3‬‬ ‫‪1‬‬ ‫‪q = ( 3 ) , U0 = 2‬‬ ‫‪1‬‬ ‫‪q = (-2) , U0 = 2‬‬

‫ﺘﻤﺭﻴﻥ ‪: 15‬‬‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔﻤﻌﺭﻓﺔ ﻋﻠﻰ‪ *N‬ﺃﺴﺎﺴﻬﺎ ‪ q‬ﻭﺤﺩﻫﺎ ﺍﻷﻭل‪U1‬‬‫ﻨﻔﺱ ﺃﺴﺌﻠﺔ ﺍﻟﺘﻤﺭﻴﻥ ‪14‬‬ ‫‪q = 2 , U1 = -3‬‬‫‪q‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫‪,‬‬ ‫‪U1‬‬ ‫=‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪q = -3 , U1 = + 2‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 16‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪U4 = 12 , U2 = 3‬‬ ‫ﻭﺃﺴﺎﺴﻬﺎ ‪(q > 0) q‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ‪q‬‬ ‫‪ (2‬ﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﻭل ‪U0‬‬ ‫‪ (3‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (4‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪Sn = U0+…+Un : Sn‬‬ ‫ﺍﺴﺘﻨﺘﺞ ﺍﻟﻤﺠﻤﻭﻉ ‪S6‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 17‬‬‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ *‪U5 = 54 , U3 = 6 ، N‬‬ ‫ﻭﺃﺴﺎﺴﻬﺎ ‪(q > 0) q‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ‪q‬‬ ‫‪ (2‬ﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻷﻭل ‪U1‬‬ ‫‪ (3‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (4‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪Sn = U1+…+Un : Sn‬‬ ‫ﺜﻡ ﺍﺴﺘﻨﺘﺞ ‪S6‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 18‬‬ ‫)‪ (Un‬ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪N‬‬ ‫ﺃﺴﺎﺴﻬﺎ )‪ ( q > 0‬ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ‪U0 = 1‬‬ ‫ﺒﺤﻴﺙ ‪U0 + U1 + U2 = 13 :‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻷﺴﺎﺱ ‪q‬‬ ‫‪ (2‬ﺃﻜﺘﺏ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬

‫ﺘﻤﺭﻴﻥ ‪: 19‬‬‫ﺃﻭﺩﻉ ﺸﺨﺹ ﻤﺒﻠﻐﺎ ﻗﺩﺭﻩ ‪11000‬ﺩ‪.‬ﺝ ﺒﺈﺤﺩﻯ ﺍﻟﺒﻨﻭﻙ ﻋﺎﻡ ‪ 2000‬ﺒﺤﻴﺙ ﺤﺼل ﻟﻪ ﻓﺎﺌﺩﺓ ﺴﻨﻭﻴﺔ ﻤﺭﻜﺒﺔ‬ ‫ﻗﺩﺭﻫﺎ ‪.% 6‬‬ ‫ﺇﺫﺍ ﺇﻋﺘﺒﺭﻨﺎ ﺃﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻤﻭﺩﻉ ﻫﻭ ‪vn‬‬ ‫ﻭﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ ‪ : vn‬ﺍﻟﺭﺼﻴﺩ ﺍﻟﺠﺩﻴﺩ ﺒﻌﺩ ‪ n‬ﺴﻨﻭﺍﺕ‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻪ ﻋﺎﻡ ‪2003 ، 2002 ، 2001‬‬ ‫‪ (2‬ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ ‪ vn+ 1‬ﻭ ‪vn‬‬ ‫‪ (3‬ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ) ‪(Vn‬‬ ‫‪ (4‬ﺃﻜﺘﺏ ‪ Vn‬ﻟﺩﻻﻟﺔ ‪n‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 20‬‬ ‫ﺇﻨﺘﺎﺝ ﻤﺼﻨﻊ ﻋﺎﻡ‪ 2006‬ﻫﻭ ‪ 3000‬ﻁﻥ‪ ،‬ﻭ ﻴﺯﻴﺩ ﺴﻨﻭﻴﺎ ﺒـ ‪2%‬‬ ‫ﺇﺫﺍ ﺍﻋﺘﺒﺭﻨﺎ ‪ V0‬ﻫﻭ ﺍﻹﻨﺘﺎﺝ ﻋﺎﻡ ‪2006‬‬ ‫ﻭ ‪ :Vn‬ﺍﻹﻨﺘﺎﺝ ﺒﻌﺩ ‪ n‬ﺴﻨﺔ‬ ‫‪ (1‬ﺃﺤﺴﺏ ﺍﻹﻨﺘﺎﺝ ﻋﺎﻡ ‪. 2008 ، 2007‬‬ ‫‪ (2‬ﺃﻭﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ ‪ vn+ 1‬ﻭ ‪vn‬‬ ‫‪ (3‬ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪(Vn‬‬ ‫‪ (4‬ﺃﻜﺘﺏ ‪ Vn‬ﻟﺩﻻﻟﺔ ‪n‬‬ ‫‪Sn = V0+…+Vn‬‬ ‫‪ (5‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪:‬‬ ‫ﺘﻤﺭﻴﻥ ‪: 21‬‬ ‫‪ (1‬ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ‪N‬ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ‬ ‫‪U0 = 1‬‬ ‫‪2 Un+1 = -3 Un +‬‬ ‫ﺃﺤﺴﺏ ‪U1 ,U2 ,U3‬‬‫‪Vn‬‬ ‫‪U‬‬ ‫‪n‬‬ ‫‬ ‫‪1‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Vn‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ N‬ﺒـ‪:‬‬ ‫‪(2‬‬ ‫‪2‬‬ ‫ﺍ‪ /‬ﺃﺤﺴﺏ ‪V2, V1,V0 :‬‬ ‫ﺝ‪ /‬ﺒﻴﻥ ﺃﻥ)‪ (Vn‬ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ‪-3‬‬ ‫‪ (3‬ﺃﻜﺘﺏ ‪ Vn‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪ (4‬ﺃﻜﺘﺏ‪ Un‬ﺩﻻﻟﺔ ‪n‬‬ ‫‪Sn=V0+..+Vn‬‬ ‫‪ (5‬ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ‬ ‫‪Snc U0 ...U n‬‬ ‫ﺜﻡ ﺃﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪:‬‬

‫ﺤـﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 1‬‬ ‫‪Un = 3n + 4‬‬ ‫‪(1‬‬ ‫ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ‪:‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 0‬ﻓﺈﻥ‪ U0 = 3(0)+4 = 4 :‬ﺇﺫﻥ ‪U0 = 4‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 1‬ﻓﺈﻥ‪ U1 = 3(1)+4 = 7 :‬ﺇﺫﻥ ‪U1 = 7‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 2‬ﻓﺈﻥ‪ U2 = 3(2)+4 = 10 :‬ﺇﺫﻥ ‪U2 = 10‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 3‬ﻓﺈﻥ‪ U3 = 3(3)+4 = 13 :‬ﺇﺫﻥ ‪U3 = 13‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 4‬ﻓﺈﻥ‪ U4 = 3(4)+4 = 16 :‬ﺇﺫﻥ ‪U4 = 16‬‬ ‫‪ (2‬ﻜﺘﺎﺒﺔ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪:n‬‬‫ﻓﻲ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ‪ Un‬ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻋﺒﺎﺭﺓ ‪ Un+1‬ﻨﻘﻭﻡ ﺒﺘﻌﻭﻴﺽ ﺍﻟ ّﺭﺘﺒﺔ ‪ n‬ﺒﺎﻟ ّﺭﺘﺒﺔ )‪ (n+1‬ﻓﻨﺠﺩ‪:‬‬ ‫‪Un+1 = 3(n+1) + 4‬‬ ‫ﻨﻘﻭﻡ ﺒﺎﻟﻨﺸﺭ ﻓﻨﺠﺩ‪:‬‬ ‫‪Un+1 = 3n + 3 + 4‬‬ ‫ﺇﺫﻥ‪Un+1 = 3n + 7 :‬‬ ‫‪1‬‬ ‫‪U0‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 0‬ﻓﺈﻥ‪:‬‬‫‪2) Un = n  1‬‬ ‫‪0 1‬‬ ‫‪1‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 1‬ﻓﺈﻥ‪:‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 2‬ﻓﺈﻥ‪:‬‬ ‫ﺇﺫﻥ‪U0 = 1 :‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 3‬ﻓﺈﻥ‪:‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 4‬ﻓﺈﻥ‪:‬‬‫ﺇﺫﻥ‪U1 = 1 :‬‬ ‫= ‪U1 = 1‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪11‬‬ ‫‪2‬‬‫‪U2‬‬ ‫=‬ ‫‪1‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪U2‬‬ ‫=‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫‪3‬‬ ‫‬ ‫‪3‬‬‫ﺇﺫﻥ‪U3 = 1 :‬‬ ‫= ‪U3 = 1‬‬ ‫‪1‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪31‬‬‫‪U4‬‬ ‫=‬ ‫‪1‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪U4‬‬ ‫=‬ ‫‪4‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫‪5‬‬ ‫‬ ‫‪5‬‬

‫‪ (2‬ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪: n‬‬ ‫ﻟﺩﻴﻨﺎ‪ :‬ﺒﺘﻌﻭﻴﺽ ﺍﻟﺭﺘﺒﺔ ‪ n‬ﺒﺎﻟﺭﺘﺒﺔ )‪(n+1‬‬‫‪Un+1‬‬ ‫=‬ ‫‪1‬‬ ‫=‬ ‫‪n‬‬ ‫‪1‬‬ ‫‬ ‫‪1‬‬ ‫=‬ ‫‪1‬‬ ‫ﻨﺠﺩ ‪:‬‬ ‫)‪ 1‬‬ ‫‪1‬‬ ‫‪n2‬‬ ‫‪(n‬‬ ‫‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﺇﺫﻥ‪Un+1 = n  2 :‬‬ ‫‪Un = 3n (3‬‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﺨﻤﺴﺔ ﺍﻷﻭﻟﻰ‪:‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 0‬ﻓﺈﻥ‪U0 = 30 = 1 :‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 1‬ﻓﺈﻥ‪U1 = 31 = 3 :‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 2‬ﻓﺈﻥ‪U2 = 32 = 9 :‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 3‬ﻓﺈﻥ‪U3 = 33 = 27 :‬‬ ‫ﻤﻥ ﺃﺠل ‪ n = 4‬ﻓﺈﻥ‪U4 = 34 = 81 :‬‬ ‫‪ -‬ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪:n‬‬ ‫ﻟﺩﻴﻨﺎ‪Un+1 = 3(n+1) = 3n x 3 = 3 x 3n :‬‬ ‫ﺇﺫﻥ‪Un+1 = 3 x 3n :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 2‬‬ ‫‪1‬‬‫‪(1) U0 = 2‬‬ ‫‪Un+1 = 2Un + 1‬‬ ‫ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ‪U1 , U2 , U3 , U4 , U5 :‬‬‫ﻓﻲ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ‪ ،‬ﺤﺴﺎﺏ ﻜل ﺤﺩ ﻤﺘﻌﻠﻕ ﺒﺎﻟﺤﺩ ﺍﻟ ّﺴﺎﺒﻕ ﻟﻪ‪ ،‬ﺃﻱ ﻟﺤﺴﺎﺏ ‪،U1‬‬ ‫ﻴﺠﺏ ﺃﻥ ﻨﻌﻠﻡ ﻗﻴﻤﺔ ﺍﻟﺤﺩ ‪.U0‬‬ ‫ﻭﻟﺤﺴﺎﺏ ﺍﻟﺤﺩ ‪ ،U2‬ﻴﺠﺏ ﺃﻥ ﻨﻌﻠﻡ ﻗﻴﻤﺔ ﺍﻟﺤﺩ ‪.U1‬‬ ‫* ﺤﺴﺎﺏ ‪ : U1‬ﻟﺩﻴﻨﺎ ﺒﺘﻌﻭﻴﺽ ﻗﻴﻤﺔ ‪ n‬ﺒـ ‪ 0‬ﻓﻲ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ﻨﺠﺩ ‪:‬‬ ‫‪U0+1 = 2U0 + 1‬‬

‫‪1‬‬ ‫ﻭﻤﻨﻪ‪ U1 = 2U0 + 1 :‬ﺇﺫﻥ‪U1 = 2( 2 ) + 1 :‬‬ ‫ﻭﻤﻨﻪ‪U1 = 2 U1 = 1+ 1 :‬‬ ‫* ﺤﺴﺎﺏ ‪ : U2‬ﻨﻌﻭﺽ ﻗﻴﻤﺔ ‪ n‬ﺒﺎﻟﻌﺩﺩ ‪ 1‬ﻨﺠﺩ ‪:‬‬ ‫‪ U1+1 = 2U1 + 1‬ﻭﻤﻨﻪ‪ U2 = 2U1 + 1 :‬ﻭﻤﻨﻪ‪U2 = 2(2) + 1 :‬‬ ‫ﺇﺫﻥ‪U2 = 5 :‬‬ ‫* ﺤﺴﺎﺏ ‪ : U3‬ﻨﻌﻭﺽ ﻗﻴﻤﺔ ‪ n‬ﺒﺎﻟﻌﺩﺩ ‪ 2‬ﻨﺠﺩ ‪:‬‬ ‫‪ U2+1 = 2U2 + 1‬ﻭﻤﻨﻪ‪ U3 = 2U2 + 1 :‬ﻭﻤﻨﻪ ‪U3 = 2(5) + 1 :‬‬ ‫ﺇﺫﻥ‪U3 = 11 :‬‬ ‫* ﺤﺴﺎﺏ ‪ : U4‬ﻨﻌﻭﺽ ﻗﻴﻤﺔ ‪ n‬ﺒﺎﻟﻌﺩﺩ ‪ 3‬ﻨﺠﺩ‪:‬‬‫‪ U3+1 = 2U3 + 1‬ﻭﻤﻨﻪ‪ U4 = 2U3 + 1 :‬ﻭﻤﻨﻪ‪U4 = 2(11) + 1 :‬‬ ‫ﺇﺫﻥ‪23U4 = :‬‬ ‫* ﺤﺴﺎﺏ ‪ : U5‬ﻨﻌﻭﺽ ﻗﻴﻤﺔ ‪ n‬ﺒﺎﻟﻌﺩﺩ ‪ 4‬ﻨﺠﺩ‪:‬‬‫‪ U4+1 = 2U4 + 1‬ﻭﻤﻨﻪ‪ U5 = 2U4 + 1 :‬ﻭﻤﻨﻪ‪U5 = 2(23) + 1 :‬‬ ‫ﺇﺫﻥ‪U5 = 45 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 3‬‬‫‪ f(x) = 2x3 – 30 x2 + 162‬ﻭﺍﻟﺘﺎﻟﻲ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ‪: f‬‬ ‫‪x -∞ 0 10‬‬ ‫∞‪+‬‬‫‪F(x) 162‬‬ ‫‪-838‬‬ ‫ﻭﻟﺘﻜﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪:N‬‬ ‫‪Un = 2n3 – 30n2 + 162‬‬ ‫ﺇﻴﺠﺎﺩ ﻗﻴﻡ ‪ U10 , U0‬؟‬ ‫ﻤﻥ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﻟﺩﻴﻨﺎ‪U0 = 162 :‬‬ ‫‪U10 = -838‬‬ ‫‪ (2‬ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪ (Un‬ﻟﻤﺎ }‪n є { 0.1.2.3.4.5.6.7.8.9.10‬؟‬‫ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪ (Un‬ﻋﻠﻰ ﻫﺫﻩ ﺍﻟﻤﺠﻤﻭﻋﺔ‪ ،‬ﻫﻭ ﻨﻔﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]‪[0 , 10‬‬ ‫ﻭﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ ،f‬ﻭﺍﻀﺢ ﺃﻥ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل‬ ‫]‪ [0 , 10‬ﺇﺫﻥ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ }‪{0.1.2.3.4.5.6.7.8.9.10‬‬ ‫‪ (3‬ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ )‪ (Un‬ﻟﻤﺎ ‪ n ≥ 10‬ﻫﻭ ﻨﻔﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ‬

‫[∞‪ [10 , +‬ﺇﺫﻥ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ ﻟﻤﺎ ‪n ≥ 10‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 4‬‬ ‫‪Un = -2n + 5 (1‬‬ ‫ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ )‪(Un‬‬ ‫ﺃﻭﻻ‪ :‬ﻨﻜﺘﺏ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪.n‬‬‫ﻟﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪ ،n‬ﻨﻘﻭﻡ ﺒﺘﻌﻭﻴﺽ ‪ n‬ﺒﺎﻟﺭﺘﺒﺔ )‪ (n+1‬ﻓﻨﺠﺩ‪Un+1 = -2(n+1) + 5 = (-2n – :‬‬ ‫‪2) + 5 = -2n + 5‬‬‫ﺇﺫﻥ‪ Un+1 = -2n + (5-2) :‬ﻭﻤﻨﻪ‪Un+1 = -2n + 3 :‬‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ )‪(Un+1 – Un‬‬‫ﻟﺩﻴﻨﺎ‪Un+1- Un = (-2n + 3) – (-2n + 5) :‬‬‫ﻭﻤﻨﻪ‪Un+1 - Un = -2n + 3 –(-2n) – (+5):‬‬‫ﻭﻤﻨﻪ‪Un+1 – Un = -2n + 3+ 2n - 5 :‬‬‫ﺒﻌﺩ ﺍﻻﺨﺘﺯﺍل‪Un+1 – Un = 3-5 :‬‬ ‫ﺇﺫﻥ‪Un+1 – Un = -2 :‬‬‫ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻔﺭﻕ )‪ (Un+1 – Un‬ﻫﻭ ﻋﺩﺩ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ ﺇﺫﻥ ‪:‬‬‫‪ Un+1 – Un < 0‬ﻤﻥ ﺃﺠل ﻜل ‪ n‬ﻤﻥ ‪ N‬ﻓﺈﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ‪.‬‬ ‫‪Un = 2n (2‬‬ ‫‪-‬ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫ﻟﺩﻴﻨﺎ‪Un+1 = 2(n+1) = 2n x 2 :‬‬‫‪Un+1 = 2 x 2n‬‬ ‫)ﺨﻭﺍﺹ ﺍﻟﻘﻭﻯ ﺍﻟﺼﺤﻴﺤﺔ(‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ‪(Un+1 – Un) :‬‬‫ﻟﺩﻴﻨﺎ‪Un+1 – Un = [2 x 2n] -[ 2n] :‬‬ ‫ﻤﻼﺤﻅﺔ ﺃﻥ ‪ 2n‬ﻫﻭ ﻋﺎﻤل ﻤﺸﺘﺭﻙ ﺇﺫﻥ‪:‬‬ ‫‪Un+1 – Un = 2n [2-1] = 2n [1] = 2n‬‬‫* ﺒﻤﺎ ﺃﻥ ﺍﻟﻌﺩﺩ ‪ 2n‬ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﺇﺫﻥ‪Un+1 – Un > 0 :‬‬ ‫ﻭﻤﻨﻪ )‪ (Un‬ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ‪.‬‬ ‫‪Un‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫‪(4‬‬ ‫‪3‬‬ ‫‪ -‬ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪: n‬‬

‫‪Un+1‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫‪)n+1‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫‪x‬‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫ﻟﺩﻴﻨﺎ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪Un+1‬‬ ‫(=‬ ‫‪1‬‬ ‫)‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫)ﺘﻁﺒﻴﻕ ﺨﻭﺍﺹ ﺍﻟﻘﻭﻯ(‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ‪(Un+1 – Un) :‬‬ ‫‪Un+1-‬‬ ‫‪Un‬‬ ‫(=‬ ‫‪1‬‬ ‫)‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫–‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫ﻤﺸﺘﺭﻙ‬ ‫ﻋﺎﻤل‬ ‫ﻫﻭ‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫ﺃﻥ‬ ‫ﻻﺤﻅ‬ ‫‪3‬‬‫‪Un+1‬‬ ‫–‬ ‫‪Un‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫[‬ ‫‪1‬‬ ‫]‪-1‬‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫)‬ ‫[‬ ‫‪1‬‬ ‫‬ ‫‪3‬‬ ‫]‬ ‫=‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫[‬ ‫‪2‬‬ ‫]‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪1‬‬ ‫‪)n‬‬ ‫(‬ ‫‪2‬‬ ‫)‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪Un+1 – Un =( 3‬‬ ‫‪3‬‬ ‫ﺘﻤﺎﻤﺎ‬ ‫ﻤﻭﺠﺏ‬ ‫(‬ ‫‪1‬‬ ‫‪)n‬‬ ‫ﺍﻟﻌﺩﺩ‬ ‫ﺃﻥ‬ ‫‪3‬‬ ‫ﺘﻤﺎﻤﺎ‬ ‫ﺴﺎﻟﺏ‬ ‫(‬ ‫‪2‬‬ ‫)‬ ‫ﺍﻟﻌﺩﺩ‬ ‫ﺃﻥ‬ ‫‪3‬‬ ‫ﺇﻥ ﺠﺩﺍﺅﻫﻤﺎ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ ﺇﺫﻥ‪(Un+1 – Un) < 0 :‬‬ ‫ﻭﻤﻨﻪ )‪ (Un‬ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪N‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 5‬‬ ‫ﻫل ﺍﻟﻤﺘﺘﺎﻟﻴﺔ )‪ (Un‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ )‪ (Un‬ﺤﺴﺎﺒﻴﺔ ؟‬ ‫‪(1)....... Un = 3n -7‬‬ ‫‪ -‬ﻜﺘﺎﺒﺔ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪Un+1 = 3 ( n+1) -7‬‬ ‫ﻭ ﻤﻨﻪ ‪Un+1 = 3n + 3 -7 :‬‬ ‫‪Un+1 = 3n -4‬‬ ‫ﺇﺫﻥ‬

‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ ‪(Un+1 – Un ) :‬‬‫) ‪Un+1 – Un = 3n -4- (3n -7‬‬ ‫‪= 3n – 4 – 3n + 7‬‬ ‫‪Un+1 – Un = 3‬‬ ‫ﺇﺫﻥ‬‫ﻭ ﻤﻨﻪ ) ‪ (Un‬ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪r = 3‬‬‫‪(3) Un = n2‬‬ ‫‪ -‬ﻜﺘﺎﺒﺔ ‪ Un+1‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫ﻟﺩﻴﻨﺎ ‪Un+1 = (n+1)2 :‬‬ ‫‪= n2 +2 (n)(1) + 12‬‬‫= ‪Un+1‬‬ ‫‪n2 + 2(n)(1) + 12‬‬‫= ‪Un+1‬‬ ‫‪n2 + 2n) +1‬‬ ‫ﺇﺫﻥ‬ ‫‪ -‬ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ ) ‪(Un+1 – Un‬‬‫ﻟﺩﻴﻨﺎ )‪Un+1-Un = n2 + 2n + 1 - (n2‬‬ ‫‪Un+1-Un = 2n + 1‬‬ ‫ﺇﺫﻥ‬‫ﺇﻥ ﺍﻟﻔﺭﻕ ‪ Un+1- Un‬ﻟﻴﺱ ﻋﺩﺩﺍ ﺜﺎﺒﺘﺎ‪ ،‬ﺇﺫﻥ )‪ (Un‬ﻟﻴﺴﺕ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ‬ ‫‪(4) U0 = - 3‬‬ ‫‪Un+1 =Un + n‬‬ ‫ﻟﺩﻴﻨﺎ ‪ (Un) :‬ﻤﻌﺭﻓﺔ ﺒﻌﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ‬ ‫ﺇﺫﻥ ‪Un+1-Un = n :‬‬‫ﺇﻥ ﺍﻟﻔﺭﻕ )‪ (Un+1-Un‬ﻟﻴﺱ ﻋﺩﺩﺍ ﺜﺎﺒﺘﺎ ﻭ ﻤﻨﻪ )‪ (Un‬ﻟﻴﺴﺕ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ‬

‫‪(5) U0 = 1‬‬ ‫‪Un+1 = Un+ 2‬‬ ‫)‪ (Un‬ﻤﻌﺭﻓﺔ ﺒﻌﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ‬ ‫ﺇﺫﻥ ‪Un+1 – Un = 2 :‬‬‫ﻭ ﻤﻨﻪ ﺍﻟﻔﺭﻕ ﻫﻭ ﻋﺩﺩ ﺜﺎﺒﺕ ﺇﺫﻥ )‪ (Un‬ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ‪r=2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 6‬‬‫‪ ( Un ) (1‬ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪N‬‬ ‫ﻜﺘﺎﺒﺔ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪1) U0 = -1 ,r = 4‬‬ ‫‪Un = U0 + n r‬‬ ‫‪Un = -1 + 4 n‬‬‫)‪2‬‬ ‫‪U0‬‬ ‫=‬ ‫‪3‬‬ ‫‪,‬‬ ‫=‪r‬‬ ‫‪-‬‬ ‫‪5‬‬ ‫‪2‬‬‫‪Un = U0 + nr‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬‫=‪Un‬‬ ‫‪3‬‬ ‫‪-‬‬ ‫‪5‬‬ ‫‪n‬‬ ‫‪2‬‬‫‪ (Un) (2‬ﻤﻌﺭﻓﺔ ﻋﻠﻰ *‪ N‬ﺤﺩﻫﺎ ﺍﻷﻭل ﻫﻭ ‪U1‬‬ ‫ﻜﺘﺎﺒﺔ ‪ Un‬ﺒﺩﻻﻟﺔ ‪n‬‬ ‫‪1 ) U1 = 2 , r = -2‬‬ ‫ﻟﺩﻴﻨﺎ ‪Un = U1 + (n -1)r :‬‬ ‫ﻭ ﻤﻨﻪ‪Un = 2 + (n-1) (-2) :‬‬ ‫ﺇﺫﻥ‪Un = 2 – 2n + 2 :‬‬

‫ﻭ ﻤﻨﻪ‪Un= 4 – 2n :‬‬ ‫‪2 ) U1 = 3 , r = 2‬‬ ‫ﻟﺩﻴﻨﺎ‪Un = U1 + (n-1) r :‬‬ ‫ﻭ ﻤﻨﻪ‪Un = 3 + (n-1)+2 :‬‬‫ﺇﺫﻥ ‪ Un = 3 + 2n -2 :‬ﻭ ﻤﻨﻪ ‪Un = (3-2) + 2n‬‬‫ﺇﺫﻥ ‪U n = 1 + 2n :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 7‬‬ ‫ﻟﻨﺎ‪U5 = 9, U2 = 3 :‬‬ ‫ﺤﺴﺎﺏ ﺍﻷﺴﺎﺱ ‪:r‬‬‫ﻟﺩﻴﻨﺎ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﻜل ﺤﺩﻴﻥ ﻤﻥ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ‪:‬‬ ‫‪U5 = U2 + ( 5-2 ) r‬‬ ‫ﻭ ﻤﻨﻪ‪9 = 3 + 3 r :‬‬ ‫‪9–3=3r‬‬ ‫ﻭ ﻤﻨﻪ‪6 = 3 r :‬‬‫‪r‬‬ ‫‪6‬‬ ‫‪2‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪3‬‬ ‫ﻭﻤﻨﻪ ‪r =2‬‬ ‫‪ -2‬ﺤﺴﺎﺏ ﺍﻟﺤﺩ ﺍﻷﻭل ‪: U0‬‬‫‪Un = U0 + 2 r‬‬ ‫ﻟﻨﺎ ﻤﻥ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ‪:‬‬ ‫ﺒﺈﻋﻁﺎﺀ ﺍﻟﻘﻴﻤﺔ ‪ 2‬ﻟـ ‪ n‬ﻨﺠﺩ ‪:‬‬ ‫‪U2 = U0 + 2 r‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫)‪3 = U0 + 2(2‬‬

‫‪U0 = 3 – 4‬‬ ‫ﻭ ﻤﻨﻪ‪:‬‬ ‫‪U0 = -1‬‬ ‫ﺇﺫﻥ‪:‬‬ ‫‪ -2‬ﻜﺘﺎﺒﺔ ‪ Un‬ﺒﺩﻻﻟﺔ ‪: n‬‬ ‫‪Un = U0 +n r‬‬ ‫‪Un = -1 + 2 n‬‬ ‫ﻭ ﻤﻨﻪ‪:‬‬ ‫‪ – 4‬ﺤﺴﺎﺏ ﺍﻟﻤﺠﻤﻭﻉ ‪:Sn‬‬ ‫‪Sn = U0 +…+Un‬‬ ‫@ ‪Sn n21>U0 U n‬‬‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪>1‬‬ ‫‪ 1‬‬ ‫‪2n‬‬ ‫@ ‬ ‫‪2‬‬ ‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪> 2‬‬ ‫‪2‬‬ ‫‪n‬‬ ‫@ ‬ ‫‪2‬‬‫ﻭﺒﺎﺨﺘﺯﺍل ﺍﻟﻌﺩﺩ ‪ 2‬ﻨﺠﺩ ‪:‬‬ ‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪>2 1n‬‬ ‫@ ‬ ‫‪2‬‬ ‫)‪Sn = (n+1) (-1+n) = (n-1)(n+1‬‬ ‫‪Sn = n2 – 1‬‬ ‫‪ -5‬ﺍﺴﺘﻨﺘﺎﺝ ‪S20,S10 :‬‬ ‫‪S10 = (10)2 -1 = 100 -1 = 99‬‬ ‫‪S20=(2 0)2 -1=400-1=399‬‬ ‫اﻟﺘﻤﺮﻳﻦ ‪: 8‬‬ ‫ﻟﺪﻳﻨﺎ ‪U3+U4+U5=33 .....(1) :‬‬ ‫ﻭ )‪(U3)2+(U4)2+(U5 )2=381 ...(2‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ U4‬ﻫﻭ ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ‬

‫‪ U3+U5=2 U4‬ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )‪ (1‬ﻨﺠﺩ‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪ U4 +2 U4 =33‬ﻭﻤﻨﻪ ‪ 3 U4=33 :‬ﺇﺫﻥ ‪:‬‬‫‪ U 4‬ﻨﻌﻭﺽ ﺒﻘﻴﻤﺔ ‪ U4‬ﻓﻲ )‪(1‬ﻭ)‪(2‬ﻨﺠﺩ ‪:‬‬ ‫‪33‬‬ ‫‪11‬‬ ‫‪3‬‬ ‫‪ U3+11+U5=33‬ﻭ ‪(U3)2+(11)2+(U5)2=381‬‬ ‫)‪U3 +U5=33-11 =22 ....(1‬‬ ‫وﻣﻨﻪ‬ ‫)‪(U3)2+(U5)2 =381-121 =260 ...(2‬‬ ‫ﻭﻟﺩﻴﻨﺎ ‪ U5=U4+r :‬و ‪ U3=U4 – r‬ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ)‪ (2‬ﻨﺠﺩ ‪:‬‬ ‫‪(U4-r)2 + (U4+r)2 = 260‬‬‫‪(U4)2-2rU4 + r2 + (U4)2 +2r(U4)+r2=260‬‬ ‫‪2(U4)2+2r2=260‬‬ ‫وﺏﻌﺪ اﻹﺧﺘﺰال ﻥﺠﺪ ‪:‬‬‫إذن ‪ 2 (121)+2r2=260‬وﻣﻨﻪ ‪2r2=260-242‬‬‫‪r2‬‬ ‫‪18‬‬ ‫‪9‬‬ ‫إذن ‪:‬‬ ‫وﻣﻨﻪ ‪2r2=18‬‬ ‫‪2‬‬ ‫وﺏﻤﺎ أن ‪ r ¢0‬ﻓﺈن ‪r 3 :‬‬‫وﻋﻠﻴﻪ ﻓﺈن ‪ U3 11(3) 14 :‬و ‪U 5 11  (3) 8‬‬ ‫اﻟﺘﻤﺮﻳﻦ ‪: 9‬‬ ‫) ‪ (Un‬ﻣﺘﺘﺎﻟﻴﺔ ﺣﺴﺎﺏﻴﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ‪ ، N‬ﺏﺤﻴﺚ ‪r=3‬‬ ‫‪U1 + U2 + U3 + U4 = 34‬‬ ‫و‬ ‫‪ -1‬ﺣﺴﺎب ‪:U0‬‬‫‪ -‬ﻥﻜﺘﺐ آﻞ ﺣﺪ ﻣﻦ ﺣﺪود اﻟﻤﺠﻤﻮع ﺏﺪﻻﻟﺔ اﻷﺱﺎس ‪ r‬و اﻟﺤﺪ اﻷول ‪U0‬‬ ‫‪Un = U0 + n r‬‬ ‫ﻟﻨﺎ ‪:‬‬ ‫و ﻣﻨﻪ‪ :‬ﻟﻤﺎ ‪ n = 1‬ﻥﺠﺪ‪:‬‬ ‫‪U1 = U0 + r‬‬ ‫ﻟﻤﺎ ‪ n = 2‬ﻥﺠﺪ‪:‬‬ ‫‪U2 = U0 + 2r‬‬ ‫ﻟﻤﺎ ‪ n = 3‬ﻥﺠﺪ‪:‬‬ ‫‪U3 = U0 + 3r‬‬ ‫ﻟﻤﺎ ‪ n = 4‬ﻥﺠﺪ‪:‬‬

‫‪U4 = U0 + 4r‬‬ ‫إذن ﻥﻌﻮض ﺏﻘﻴﻤﺔ آﻞ ﺣﺪ ﻓﻲ اﻟﻤﺠﻤﻮع ﻓﻨﺠﺪ‪:‬‬‫‪(U0 + r) + (U0 + 2 r) + (U0 + 3 r) + (U0 + 4 r) = 34‬ﺏﻤﺎ أن ‪r=3‬‬ ‫ﻓﻨﺠﺪ ‪:‬‬‫‪(U0 + 3) + (U0 + 2 ) + (U0 + 9 ) + (U0 + 12 ) = 34‬‬ ‫‪4 U0 + 30 = 34‬‬ ‫و ﻣﻨﻪ‪:‬‬ ‫و ﻣﻨﻪ‪:‬‬ ‫‪4U0 = 34 – 30‬‬ ‫إذن ‪:‬‬ ‫‪4U0 = 4‬‬ ‫‪U0‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫و ﻣﻨﻪ ‪U0 = 1 :‬‬ ‫‪ -2‬آﺘﺎﺏﺔ ‪ Un‬ﺏﺪﻻﻟﺔ ‪: n‬‬ ‫‪Un = U0 + nr‬‬ ‫‪Un = 1 + 3n‬‬ ‫و ﻣﻨﻪ‪:‬‬ ‫‪ -3‬ﺣﺴﺎب اﻟﻤﺠﻤﻮع‪:‬‬ ‫‪Sn = U0 + ……+ Un‬‬ ‫@ ‪Sn n21>U0 U n‬‬‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪> 2‬‬ ‫‪3n‬‬ ‫@ ‬ ‫‪2‬‬ ‫ﺣﺴﺎب اﻟﻤﺠﻤﻮع ‪S cn :‬‬ ‫‪S cn = U1+……+Un‬‬ ‫ﺣﺴﺎب ‪:U1‬‬ ‫إذن‪:‬‬ ‫‪U1 = U0 + r = 1 + 3 = 4‬‬ ‫‪U1=4‬‬

‫ﻟﺪﻳﻨﺎ‪:‬‬‫‪n‬‬‫‪> @ > @Scn‬‬ ‫‪n‬‬‫‪2‬‬ ‫‪U1 U n‬‬ ‫=‬ ‫‪2‬‬ ‫) ‪4  (1 3n‬‬ ‫‪S cn‬‬ ‫‪n‬‬ ‫@)‪>(53n‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪:10‬‬ ‫‪V0 = 300‬‬ ‫‪(1‬ﺣﺴﺎب ﻋﺪد اﻟﻌﻤﺎل ﻋﺎم ‪: 2001‬‬ ‫أي ﺣﺴﺎب ‪ V1‬و ﻣﻨﻪ‪:‬‬ ‫‪V1 = V0 + 40‬‬ ‫‪V1 = 300 + 40 = 340‬‬ ‫ﺣﺴﺎب ﻋﺪد اﻟﻤﺎل ﻋﺎم ‪: 2002‬‬ ‫أي ﺣﺴﺎب ‪:V2‬‬ ‫‪V2 = V1 + 40‬‬ ‫‪V2 = 380 + 40 = 420‬‬ ‫‪ (2‬إﻳﺠﺎد اﻟﻌﻼﻗﺔ ﺏﻴﻦ ‪ Vn + 1‬و ‪:Vn‬‬ ‫ﻟﺪﻳﻨﺎ اﻻﺱﺘﻨﺘﺎج‪:‬‬ ‫‪ :Vn + 1‬ﻋﺪد اﻟﻌﻤﺎل ﺏﻌﺪ )‪( n+1‬ﺱﻨﺔ‬ ‫‪ :Vn‬ﻋﺪد اﻟﻌﻤﺎل ﺏﻌﺪ ‪ n‬ﺱﻨﺔ‬ ‫‪Vn+1=Vn +40‬‬ ‫إدن ‪:‬‬‫‪ (3‬ﻣﻨﻪ )‪ (Vn‬هﻲ م‪.‬ح أﺱﺎﺱﻬﺎ ‪ r = 40‬و ﺣﺪهﺎ اﻷول هﻮ ‪V0 = 300‬‬ ‫‪Vn + 1 = Vn + 40‬‬ ‫‪(4‬آﺘﺎﺏﺔ ‪ Vn‬ﺏﺪﻻﻟﺔ ‪:n‬‬ ‫ﻟﺪﻳﻨﺎ ‪Vn = V0 + nr‬‬ ‫أي‪Vn = 300 + 40n :‬‬ ‫‪ (5‬ﺣﺴﺎب اﻟﻤﺠﻤﻮع ‪Sn‬‬ ‫‪Sn = V0 +V1 +…+V n‬‬

‫‪> @Sn‬‬ ‫‪n 1‬‬ ‫‪2‬‬ ‫‪V0 Vn‬‬‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪>300(300‬‬ ‫‪40n‬‬ ‫@)‬ ‫‪2‬‬‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪>2(300‬‬ ‫‪ 40‬‬ ‫@)‪n‬‬ ‫‪2‬‬ ‫ﺒﻌﺩ ﺇﺨﺘﺯﺍل ﺍﻟﻌﺩﺩ‪ 2‬ﺒﺴﻁﺎ ﻭﻤﻘﺎﻤﺎ ﻨﺠﺩ‬ ‫@)‪S n (n  1)>(30040n‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 11‬‬ ‫ﻟﻨﺎ ‪ U0 = 3000‬اﻟﻤﺒﻠﻎ اﻟﻤﻮدع ﻋﺎم ‪2007‬‬ ‫اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﻋﺎم ‪:2008‬‬ ‫‪U1 = U0 +(0.05)3000‬‬ ‫‪U1 = U0 +3150‬‬ ‫اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﻋﺎم ‪:2009‬‬ ‫‪U2 = U1 +( 0.05)3000‬‬ ‫‪U2 = 3150 + 150 = 3300 DA‬‬ ‫‪ -2‬اﻟﻌﻼﻗﺔ ﺏﻴﻦ ‪ Un +1‬و ‪: Un‬‬ ‫‪ :Un +1‬اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﺏﻌﺪ ‪ n+1‬ﺱﻨﺔ‬ ‫‪ : Un‬اﻟﻤﺒﻠﻎ اﻟﻤﺤﺼﻞ ﺏﻌﺪ ‪ n‬ﺱﻨﺔ‬ ‫إذن ‪:‬‬ ‫‪Un +1 = Un + (0.05) 300‬‬ ‫‪Un +1 = Un + 150‬‬‫و ﻣﻨﻪ )‪ (Un‬ﻣﺘﺘﺎﻟﻴﺔ ﺣﺴﺎﺏﻴﺔ أﺱﺎﺱﻬﺎ ‪ r = 150‬و ﺣﺪهﺎ اﻷول هﻮ ‪U0 = 2000‬‬ ‫‪Un = U0 + n r‬‬ ‫و ﻣﻨﻪ‪:‬‬ ‫‪Un = 2000 + 150n‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪:12‬‬

‫) ‪ (Un‬ﻣﺘﺘﺎﻟﻴﺔ ﻣﻌﺮﻓﺔ ﻋﻠﻰ ‪N‬‬ ‫‪ ،U0 = 1‬ﻟﻨﺎ اﻟﻤﺠﻤﻮع‪:‬‬ ‫‪S = 1 + 1 + 21 + …. + 2001‬‬ ‫‪ -1‬ﺣﺴﺎب اﻷﺱﺎس ‪:r‬‬ ‫‪r = 11 – 1 = 10‬‬ ‫‪ -2‬آﺘﺎﺏﺔ ‪ Un‬ﺏﺪﻻﻟﺔ ‪: n‬‬ ‫‪Un = U0 + n r‬‬ ‫‪Un = 1 + n 10‬‬ ‫‪ -3‬ﻋﻴﻦ ‪ n‬ﺏﺤﻴﺚ‪Un = 201 :‬‬ ‫ﻟﻨﺎ‪Un = 201 :‬‬ ‫و ﻣﻨﻪ‪1 + 10n = 201 :‬‬ ‫ﻟﺪﻳﻨﺎ ﻣﻌﺎدﻟﺔ ﻣﻦ اﻟﺪرﺝﺔ اﻷوﻟﻰ ذات اﻟﻤﺠﻬﻮل اﻟﻄﺒﻴﻌﻲ ‪ n‬و ﻣﻨﻪ‪:‬‬ ‫‪10n = 201 – 1‬‬ ‫إذن‪10 n = 200 :‬‬ ‫‪n‬‬ ‫‪200‬‬ ‫‪20‬‬ ‫أي‪:‬‬ ‫‪10‬‬ ‫و ﻣﻨﻪ ‪n = 20 :‬‬ ‫‪Sn = U0 + ……+ Un‬‬ ‫إذن‪U20 = 201 :‬‬ ‫‪ -4‬ﺣﺴﺎب ‪:Sn‬‬ ‫@ ‪Sn n21>U 0 U n‬‬ ‫ﻟﺪﻳﻨﺎ‬ ‫وﻣﻨﻪ‬‫‪Sn‬‬ ‫‪n 1‬‬ ‫‪>1110‬‬ ‫@‪n‬‬ ‫‪2‬‬ ‫‪> @S n‬‬‫‪n 1‬‬ ‫>‬ ‫=‬ ‫‪n 1‬‬ ‫‪2‬‬ ‫@ ‪2 10 n‬‬ ‫‪2‬‬ ‫)‪2 (15n‬‬ ‫وﺏﺎﺧﺘﺰال اﻟﻌﺪد ‪ 2‬ﺏﺴﻄﺎ وﻣﻘﺎﻣﺎ ﻥﺠﺪ ‪:‬‬

‫@)‪S n (n  1)>(15n‬‬ ‫ﻥﺠﺪ ﺏﻌﺪ اﻟﻨﺸﺮ‪:‬‬ ‫‪Sn = n + 5n2 + 1 + 5n‬‬ ‫‪Sn = 5n2 + 6n + 1‬‬ ‫‪Sn = 105‬‬ ‫‪ -3‬هﻞ ﻳﻮﺝﺪ ‪ n‬ﺏﺤﻴﺚ ‪:‬‬ ‫ﻟﺘﻜﻦ اﻟﻤﻌﺎدﻟﺔ ذات اﻟﻤﺠﻬﻮل اﻟﻄﺒﻴﻌﻲ ‪: n‬‬ ‫‪5n2 + 6n + 1 = 105‬‬ ‫‪5n2 + 6n – 104 = 0‬‬ ‫‪a = 5, b = 6, c = - 104‬‬ ‫ﺣﺴﺎب اﻟﻤﻤﻴﺰ ‪:‬‬ ‫)‪∆ = b2 – 4 a c = (6)2 – 4(5)(-104‬‬ ‫)‪= 36 + (20 )(104‬‬ ‫‪∆ = 36 + 2080 = 216‬‬ ‫‪' 46‬‬ ‫إذن‪:‬‬ ‫و ﻣﻨﻪ ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻠﻴﻦ ﻣﺘﻤﺎﻳﺰﻳﻦ ‪:‬‬ ‫‪n1‬‬ ‫' ‪b‬‬ ‫‪ 6  46‬‬ ‫‪40‬‬ ‫‪4‬‬ ‫‪2a‬‬ ‫‪2u5‬‬ ‫‪10‬‬ ‫‪n1 = 4  N‬‬‫‪n1‬‬ ‫' ‪b‬‬ ‫‪ 6  46‬‬ ‫‪52‬‬ ‫‬ ‫‪N‬‬ ‫‪2a‬‬ ‫‪2u5‬‬ ‫‪10‬‬ ‫إذن اﻟﻌﺪد اﻟﻤﻄﻠﻮب هﻮ ‪n =4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ ‪: 13‬‬ ‫هﻞ ) ‪ (Un‬ﻣﺘﺘﺎﻟﻴﺔ هﻨﺪﺱﻴﺔ؟‬ ‫‪1) Un = 3 . (2)n‬‬ ‫‪ -‬إﻳﺠﺎد اﻟﺤﺪ ‪: Un +1‬‬ ‫‪Un +1 = 3 . (2)n +1‬‬ ‫ﻟﻨﺎ ‪:‬‬ ‫و ﺣﺴﺐ ﺧﻮاص اﻟﻘﻮى‪:‬‬ ‫‪Un +1 = 3 . (2)n .(2) = (2) (3) (2)n‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook