Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الثاني شعب علمية سنة ثانية ثانوي

دروس مادة الرياضيات للفصل الثاني شعب علمية سنة ثانية ثانوي

Published by DZteacher, 2015-08-17 06:00:33

Description: دروس مادة الرياضيات للفصل الثاني شعب علمية سنة ثانية ثانوي

Search

Read the Text Version

‫اﻟﺤـﻠــــــﻮل‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪r .r 1‬‬ ‫‪ (1‬ﺤﺴﺎﺏ ‪: u . v‬‬ ‫‪rr‬‬ ‫)‪u . v =r -1r(x + 3) + (x + 1) (x + 1‬‬ ‫‪u‬‬ ‫‪.‬‬ ‫‪v‬‬ ‫=‬ ‫‪-‬‬ ‫‪x‬‬ ‫‪r-‬‬ ‫‪3‬‬ ‫‪r+‬‬ ‫‪x2 +‬‬ ‫‪2x +‬‬ ‫‪1‬‬ ‫‪r‬‬ ‫‪u‬‬ ‫‪r.‬‬ ‫‪v‬‬ ‫‪= x2‬‬ ‫‪+x -‬‬ ‫‪2‬‬ ‫‪rr‬‬ ‫‪ (2‬ﺘﻌﻴﻴﻥ ‪ x‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪ u‬و ‪ v‬ﻤﺘﻌﺎﻤﺩﻴﻥ ‪u . v = 0 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪x2 + x - 2 = 0 :‬‬‫‪∆ =9‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫)‪∆ = (1)2 - 4 (1) (-2‬‬ ‫‪x2‬‬ ‫=‬ ‫‪-1 + 3‬‬ ‫=‬ ‫‪1‬‬ ‫;‬ ‫‪x1‬‬ ‫=‬ ‫‪-1 - 3‬‬ ‫‪= -2‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪r‬‬ ‫ﺇﺫﻥ ‪ rx = -2 :‬ﺃﻭ ‪xr= -1‬‬‫‪u = 2x2 + 8x + 10‬‬ ‫‪ (3‬ﺤﺴﺎﺏ ‪ u‬و ‪: v‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪ u = (x + 3)2 + (x + 1)2‬ﺃﻱ‪:‬‬ ‫‪v = x2 + 2x + 2‬‬ ‫‪r‬‬ ‫‪ v = (-1)2 + (x + 1)2‬ﻭﻤﻨﻪ ‪:‬‬ ‫‪rr‬‬ ‫‪ (4‬ﺘﻌﻴﻴﻥ ‪ x‬ﺒﺤﻴﺙ ‪u = v :‬‬‫ﺃﻱ ‪ 2x2 + 8x + 10 = x2 + 2x + 2 :‬ﻭﻤﻨﻪ ‪:‬‬‫‪ 2x2 + 8x + 10 = x2 + 2x + 2‬ﻭ ﻋﻠﻴﻪ ‪x2 + 6x + 8 = 0 :‬‬‫ﻟﺩﻴﻨﺎ ‪ ∆ = (6)2 - 4 (8) = 4 :‬ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ‪:‬‬‫‪x2‬‬ ‫=‬ ‫‪-6 + 2‬‬ ‫‪= -2‬‬ ‫;‬ ‫‪x1‬‬ ‫=‬ ‫‪-6 - 2‬‬ ‫‪= -4‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻗﻴﻡ ‪ x‬ﻫﻲ ‪. -4 ; -2 :‬‬

( )r r ‫( ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﻟـ‬5 r r: u , v r u . v = 10 : ‫ﺩﻴﻨﺎ‬r‫ ﻟ‬x = 3 ‫ﻤﻥ ﺃﺠل‬ v = 17 ; u = 2 13 rr r r rr cos u , v : ‫ﻭﻟﺩﻴﻨﺎ‬ ( )u . v = u . v : ‫ﻭﻋﻠﻴﻪ‬ rr rr = ru . vr ( ): ‫ ﺃﻱ ﺃﻥ‬cos u , v u.v ( )r r 10 cos u , v = 17 . 2 13 rr; rr 5 × 2 21 u,v 221( ) ( ) ( )cos u , v 0,34 : ‫ ﺃﻱ‬cos = : ‫ﻭﻤﻨﻪ‬ rr u , v ; 1,23 + 2kπ ; k ∈ ¢ : ‫ﺇﺫﻥ‬ r r. 2‫ﺍﻟﺘﻤﺭﻴﻥ‬ : v , u ‫( ﺤﺴﺎﺏ‬1 r  1 2 +  − 5 2 u=  2   2  r 26 : ‫ﺃﻱ‬ r 1 + 25 : ‫ﺃﻱ‬ u= 2 u= 4 4r 9 + 36 : ‫ﺃﻱ‬ r (3)2 +  6 2v= 25 v=  5 r = 3 29 : ‫ﺃﻱ‬ r 261 : ‫ﻭﻤﻨﻪ‬v 5 v= 5 rr 1 + 6 ×  -5  rr u. v=3 × 2 5  4  : u . v ‫( ﺤﺴﺎﺏ‬2

‫‪rr‬‬ ‫‪r‬‬ ‫‪.‬‬ ‫‪r‬‬ ‫‪3‬‬ ‫‪-‬‬ ‫‪3‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫ﺃﻱ ‪u . v = 0 :‬‬ ‫‪u‬‬ ‫=‪v‬‬ ‫‪2‬‬ ‫‪r‬‬ ‫‪2‬‬ ‫‪r‬‬ ‫ﻭﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪ u‬و ‪ v‬ﻤﺘﻌﺎﻤﺩﻴﻥ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫‪uuur‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ‪AD , BC , DC , AB‬‬‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪DC‬‬ ‫‪uuur‬‬‫‪AD‬‬ ‫‪ 2‬‬ ‫‪,‬‬ ‫‪BC‬‬ ‫‪ 2‬‬ ‫‪,‬‬ ‫‪3 ‬‬ ‫‪,‬‬ ‫‪AB‬‬ ‫‪3 ‬‬ ‫‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪-4‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪-4‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪ AB = (3)2 + (-4)2 :‬ﺃﻱ ‪AB = 5 :‬‬ ‫‪ DC = (3)2 + (-4)2‬ﺃﻱ ‪DC = 5 :‬‬ ‫‪ BC = (2)2 + (1)2‬ﺃﻱ ‪BC = 5 :‬‬ ‫‪ AD = (2)2 + (1)2‬ﺃﻱ ‪AD = 5 :‬‬‫‪ (2‬ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ ‪ : ABCD‬ﻟﺩﻴﻨﺎ ‪ AB = DC :‬ﻭ ‪ BC = AD‬ﻭﻤﻨﻪ ﺍﻟﺭﺒﺎﻋﻲ‪ ABCD‬ﻤﺘﻭﺍﺯﻱ‬ ‫ﺃﻀﻼﻉ ﻷﻥ ﻓﻴﻪ ﻜل ﻀﻠﻌﻴﻥ ﻤﺘﻘﺎﺒﻠﻴﻥ ﻤﺘﻘﺎﻴﺴﻴﻥ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫‪rr‬‬ ‫ﺘﻌﻴﻴﻥ ‪: λ‬‬ ‫‪( ) ( )r r‬‬‫ﻴﻜﻭﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ ‪ λu - v‬و ‪ λu + v‬ﻤﺘﻌﺎﻤﺩﻴﻥ ﺇﺫﺍ ﻭﻓﻕ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬ ‫‪( ) ( )r r r r‬‬ ‫‪λu - v λu + v = 0‬‬ ‫‪λ2 ur 2 - vr 2 = 0‬‬ ‫‪ur 2 = 5‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪ur 2‬‬ ‫‪= (1)2 + (2)2 :‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪r‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪r‬‬ ‫‪= (3)2 + (4)2‬‬ ‫ﻭﻟﺩﻴﻨﺎ‬ ‫‪v‬‬ ‫‪v‬‬ ‫‪2‬‬ ‫=‬ ‫‪25‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪λ2x5 - 25 = 0 :‬‬ ‫‪λ2 = 5‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪λ2‬‬ ‫=‬ ‫‪25‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪5‬‬

‫ﺇﺫﻥ ‪ λ = 5 :‬ﺃﻭ ‪λ = - 5‬‬ ‫‪ λ‬ﻟﻪ ﻗﻴﻤﺘﻴﻥ ﻫﻤﺎ ‪− 5 ; 5 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫‪rr‬‬ ‫ﺘﻌﻴﻴﻥ ‪ α‬ﻓﻲ ﻜل ﺤﺎﻟ‪r‬ﺔ ‪:‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪ v = 1 :‬و ‪: u Pv‬‬ ‫‪r‬‬‫ﻭﻤﻨﻪ ‪α2 + β2 = 1‬‬ ‫‪α2 + β2 = 1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪v‬‬ ‫‪= α2 + β2‬‬ ‫‪rr‬‬ ‫ﻟﺩﻴﻨﺎ ‪ u P v :‬ﻭﻋﻠﻴﻪ ‪α 2 + β = 0 :‬‬ ‫‪β = -α 2‬‬ ‫‪α2 + β2 = 1‬‬ ‫‪‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪2 + β = 0 :‬‬ ‫‪‬‬ ‫‪α‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪α2‬‬ ‫=‬ ‫‪1‬‬ ‫‪α‬‬‫‪‬‬ ‫=‬ ‫‪3‬‬ ‫أو‬ ‫‪α=-‬‬ ‫‪3‬‬ ‫‪α2‬‬ ‫=‬ ‫‪1‬‬‫‪α‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪3‬‬‫‪‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬‫‪β = -α 2‬‬ ‫‪β = -α 2‬‬ ‫‪β‬‬ ‫=‬ ‫‪-6‬‬ ‫=‪: α‬‬ ‫‪3‬‬ ‫ﻟﻤﺎ ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪β‬‬ ‫=‬ ‫‪6‬‬ ‫‪:‬‬ ‫‪α=-‬‬ ‫‪3‬‬ ‫ﻟﻤﺎ ‪:‬‬ ‫‪r3‬‬ ‫‪r‬‬ ‫‪3‬‬ ‫‪r‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪ v = 2 :‬و ‪u ⊥ v‬‬ ‫‪r‬‬ ‫‪α2 + β2 = 4‬‬ ‫‪ r v‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪=2‬‬ ‫‪:‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫‪r‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪ u ⊥ v :‬ﻭﻋﻠﻴﻪ ‪−α + β 2 = 0 :‬‬ ‫‪α = β 2‬‬ ‫‪α2 + β2 = 4‬‬ ‫‪‬‬ ‫‪:‬‬ ‫ﻭﻤﻨﻪ‬ ‫‪‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪β2‬‬ ‫‪+‬‬ ‫‪β2‬‬ ‫=‬ ‫‪4‬‬ ‫‪α‬‬ ‫=‬ ‫‪β‬‬ ‫‪2‬‬

β2 = 4 α = β 2  3 3 β2 = 4 : ‫ﺃﻱ‬ : ‫ﺃﻱ‬ α = β 2α=β 2 ‫َو‬ β = 23 ‫أو‬ β = -2 3 : ‫ﻭﻤﻨﻪ‬ 3 3 α = 26 ‫ﻓﺈﻥ‬ β= 23 : ‫ﻟﻤﺎ‬ 3 3 α = -2 6 ‫ﻓﺈﻥ‬ β = -2 3 : ‫ﻟﻤﺎ‬ 3 r 3 r u . v = 3 , V = 12 (3α2 + β2 = 12 α2 + β2 = 12 : ‫ﺃﻱ‬ -α + β : ‫ﻭﻋﻠﻴﻪ‬α = β 2 -3 2 =3 ( β 2 - 3)2 + β2 = 12 : ‫ ﺃﻱ ﺃﻥ‬ : ‫ﻭﻤﻨﻪ‬ α = β 2 - 3β3 - 2β 2 - 1 = 0 3β3 - 6β 2 - 3 = 0 : ‫ ﺇﺫﻥ‬α = β 2 - 3 α = β 2 - 3∆ = 12 β2 - 2β 2 - 1 = 0 : ‫ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬ ( ): ‫ = ∆ ﺃﻱ‬-2 2 2 - 4 (-1) : ‫ﻟﺩﻴﻨﺎ‬β2 = 2 2+ 12 , β1 = 2 2 - 12 2 2 : ‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ‬ β1 = 2 2 -2 3 ; β2 = 2 2 +2 3 2 2

β1 = 2 - 3 ; β2 = 2 + 3( )α = 2 - 3 2 - 3 : β1 = 2 - 3 : ‫ﻟﻤﺎ‬ . α = -1 - 6 : ‫ﺃﻱ‬( )α = 2 + 3 2 - 3 : β2 = 2 + 3 : ‫ﻭﻟﻤﺎ‬ . α = -1 + 6 : ‫ﺃﻱ‬ . 6‫ﺍﻟﺘﻤﺭﻴﻥ‬ ( )r 1 ‫ﻟﺩﻴﻨﺎ‬ : ‫ﺤﺎﻟﺔ‬ ‫ﻜل‬ ‫ﻓﻲ‬ rr ‫ﺤﺴﺎﺏ‬   i,u i  0 rr : r 0 (1i.u=1 × 0+0 × 3=0 u    3  rr π + 2kπ ; k∈¢ : ‫ﻭﻋﻠﻴﻪ‬ (i , u) = 2rr × (-5) + 0 × 0 = -5 : r  -5i . u =1 rr rr u   (2  r0 rrr : ‫ﻭﻤﻨﻪ‬ i.u= i . u cos (i , u ) rr rr5 cos (i , u ) = -5 : ‫ ﺇﺫﻥ‬i . u = 1r ×r 5 cos (i , u ) r r cos (i , u ) = -1 : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ (i , u) = π + 2kπ , k ∈ ¢ : ‫ﻭﻤﻨﻪ‬rr 3) = 2 , r 2  (3i . u = 1 × 2 + 0 (-2 r u r-2r  3 rr r r ri . u = i × u × cos (i , u ) = 4 cos (i , u ) : ‫ﻭﻜﺫﻟﻙ‬ rr r4 cos (i , u ) = 2 : ‫ ﻭﻤﻨﻪ‬i = 1 , u = 4 : ‫ﻷﻥ‬

rr π + 2kπ ; k∈¢ : ‫ﻭﻋﻠﻴﻪ‬ rr 1 : ‫ﺇﺫﻥ‬(i . u) = 3 cos( i , u ) = 2 - 3r r r i. u  - 3 5 -3 u 4  = 1   + 0 . 4 = 4 , 5  : ‫ﻟﺩﻴﻨﺎ‬ (4  4    4  r 3 + 5 rr r r rr u= 16 16 i . u = i × u × cos (i , u ) : ‫ﻟﻜﻥ‬ rr 2 rr r = 2 : ‫ﺃﻱ‬ i . u= 2 cos (i , u ) : ‫ﻭﻋﻠﻴﻪ‬ u 2cos r r = -6 : ‫ﻭﻋﻠﻴﻪ‬ 2 cos r r = - 3 :‫ﻭﻤﻨﻪ‬ (i , u) 4r 2 (i , u) 4 r (i , u) ; 2,33 + 2kπ ; k ∈ ¢ : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ . 7‫ﺍﻟﺘﻤﺭﻴﻥ‬ uuur M (x ; y) ‫ ﻨﻔﺭﺽ‬: M ‫ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬ BC BuuMuruuurxy  -4 ; -3  : ‫ﻟﺩﻴﻨﺎ‬   +u4uur  6  -4 (x – 3) + 6 (y + 4) = 0 : ‫ ﻭﻋﻠﻴﻪ‬BM . BC = 0 -2x + 3y + 18 = 0 : ‫ ﺃﻱ‬-4x + 6y + 36 = 0 : ‫ﺇﺫﻥ‬ ( )-2x + 3y + 18 = 0 :‫ ﻫﻲ ﻤﺴﺘﻘﻴﻡ ∆ ﻤﻌﺎﺩﻟﺘﻪ‬M ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬x36 : ‫ﺇﻨﺸﺎﺀ ﺍﻟﻤﺠﻤﻭﻋﺔ‬y -4 -2

‫‪y‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬‫‪C1‬‬‫‪-4 -3 -2 -1 0‬‬ ‫‪1 2 3 4 5 6 7 8x‬‬ ‫‪-1‬‬ ‫)∆(‬ ‫‪-2‬‬‫‪-3‬‬‫‪B-4‬‬‫‪-5‬‬‫‪-6‬‬‫ﺍﻟﻤﻼﺤﻅﺔ ‪ :‬ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﻋﻤﻭﺩﻱ ﻋﻠﻰ )‪ (BC‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪( ).B‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ : M‬ﻨﻔﺭﺽ )‪M (x ; y‬‬ ‫‪uuur‬‬ ‫‪uuuur‬‬ ‫‪AB‬‬ ‫‪ -3‬‬ ‫;‬ ‫‪AM‬‬ ‫‪‬‬ ‫‪x -1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪uuuur‬‬ ‫‪‬‬ ‫‪uyu+ur 4‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬‫‪ AM . AB = -4‬ﻭﻋﻠﻴﻪ ‪−3 × (x - 1) + 1 × (y + 4) = -4 :‬‬ ‫ﺇﺫﻥ ‪-3x + y + 11 = 0 :‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻫﻲ ﻤﺴﺘﻘﻴﻡ ∆) (‬ ‫‪ -‬ﺇﻨﺸﺎﺀ ∆ ﻭ )‪ : (AB‬ﻗﻴﻡ ﻤﺴﺎﻋﺩﺓ ﻟﺭﺴﻡ ∆ ‪( ) ( ):‬‬‫‪x23‬‬‫‪y 5- 2-‬‬

( )(AB) ‫ﻨﻼﺤﻅ ﺃﻥ ∆ ﻋﻤﻭﺩﻱ ﻋﻠﻰ‬ y 6 (∆) 5 4 3 2 1-4 -3 -2 -1 0 1 2 3 4 5 6 7 8x -1 -2 -3 BA -4 -5 -6 uuur u. u9ur‫ﺍﻟﺘﻤﺭﻴﻥ‬ AC . BCuuur uuur uuur uuur uuur uuur ‫ﺤﺴﺎﺏ‬AB 2 = ( ACuA+uBurC2B=)2AuuCur: 2‫ﻋﻠﻴﻪ‬+‫ﻭ‬ AB = AC + CB : ‫ﻟﺩﻴﻨﺎ‬ ABuu2ur= AuuCur2 + : ‫ﺇﺫﻥ‬ uuur 2 + uuur uuur : ‫ﻭﻤﻨﻪ‬ CB 2uAuurC .uCuurB CB2 - 2AC . BC 2AC . BC = AC2 + CB2 - AB2 : ‫ﺇﺫﻥ‬ ( )uuur uuur BC 1 AC . 2 = AC2 + CB2 - AB2 : ‫ﻭﻋﻠﻴﻪ‬ uuur uuur 1 (25 + 100 - 16) AC . BC = 2

uuur . uuur = 109 : ‫ﺇﺫﻥ‬ AC BC 2 rr rr . 10‫ﺍﻟﺘﻤﺭﻴﻥ‬ 3u . (−v) = -3 × u . v = -3 × (5) = -15 r r r r r r(u + v) (u - v) = u 2 - v 2 = (1)2 - (5)2 = -24 r + r r - r = ur 2 - r . r + r . r - 6 r 2(u 2v) (u 3v) 3ur vr 2v u v r r ur 2 vr 2 = 1r- ur. v - 30 = -29 - 5 = - 34(u v)2 + 2u . v + = + = 1 + 25 + 10 = 36 r r rr u v u + v = 6 : ‫ﻭﻤﻨﻪ‬ + 2 = 36 : ‫ﻭﻋﻠﻴﻪ‬ r r rr . 11‫ﺍﻟﺘﻤﺭﻴﻥ‬ .‫ ﻤﺘﻌﺎﻤﺩﻴﻥ‬u + αv ‫ ﻭ‬ru - rv : ‫ﻥ‬r‫ﺤﻴﺙ ﻴﻜﻭ‬r‫ ﺒ‬α ‫ ﺘﻌﻴﻴﻥ‬-1 (u - v) (u + αv) = 0 ur 2 r rr r r : ‫ﺃﻱ‬ + α u .v-u. v - α v 2 = 0 ‫ﻭﻤﻨﻪ‬ : 4 + α × 12 - 12 - α . 25 = 0 α = -8 : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ −13α - 8 = 0 : ‫ﻭﻋﻠﻴﻪ‬ 13 r r u + αv = 2 : ‫ ﺒﺤﻴﺙ‬α ‫ ﺘﻌﻴﻴﻥ‬-2 rr r rr r 2 (ur(u++ααvrrv)2)2==r4u++2α2α. u . v + α2 v 12 + α2 × 25 (u + αv)2 = 25 α2 + 24α + 4 r r 25α2 + 24α + 4 = 4 : ‫ﻭﻤﻨﻪ‬ u + αv 2 =4 : ‫ﻭﻟﺩﻴﻨﺎ‬ α (25 α + 24) = 0 : ‫ ﻭﻋﻠﻴﻪ‬25 α2 + 24 α = 0 : ‫ﺇﺫﻥ‬

‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ α = 0 :‬ﺃﻭ ‪25 α + 24 = 0‬‬ ‫‪α‬‬ ‫=‬ ‫‪-‬‬ ‫‪24‬‬ ‫ﺇﺫﻥ ‪ α = 0 :‬ﺃﻭ‬ ‫‪25‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪r r . 12‬‬ ‫ﺇﺜﺒﺎﺕ ﺃﻥ ‪u + v :‬‬‫‪( ) ( )r r‬‬ ‫ﻋﻤﻭﺩﻱ ﻋﻠﻰ ‪u - v‬‬ ‫‪r r rr‬‬ ‫‪r‬‬ ‫‪r‬‬‫= )‪(u + v) . (u - v‬‬ ‫‪u‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪v‬‬ ‫‪2‬‬ ‫‪r r rr‬‬ ‫‪r‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬‫= )‪(u + v) . (u - v‬‬ ‫‪u‬‬ ‫‪u2‬‬ ‫‪-‬‬ ‫‪=0‬‬ ‫‪rr r r‬‬ ‫ﺇﺫﻥ ‪ (u + v) :‬ﻋﻤﻭﺩﻱ ﻋﻠﻰ )‪(u - v‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪r r r. 13‬‬ ‫‪v‬‬ ‫‪-‬‬ ‫‪u‬‬ ‫‪u‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫ﻤﺘﻌﺎﻤﺩ‪r‬ﻴﻥ ‪:‬‬ ‫‪r‬‬ ‫‪.‬‬ ‫‪r‬‬ ‫ﻭ‬ ‫‪r‬‬ ‫ﺃﻥ‬ ‫‪ -1‬ﺇﺜﺒﺎﺕ‬ ‫‪u‬‬ ‫‪(v‬‬ ‫= )‪- u‬‬ ‫‪u‬‬ ‫‪v‬‬ ‫‪u‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪r‬‬ ‫‪rr‬‬ ‫‪-‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪u (v - u) = r4 - 4r = 0 r :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ u :‬و ‪ v - u‬ﻤﺘﻌﺎﻤﺩﻴﻥ‬‫‪uuur uuur uuur‬‬ ‫ﺍﺴﺘﻨﺘﺎﺝ ﻨﻭﻉ ﺍﻟﻤﺜﻠ‪r‬ﺙ ‪r: ABrC‬‬‫ﻟﺩﻴﻨﺎ ‪ uuuur(v -uuuur) = 0 :‬ﻭﻋﻠﻴﻪ ‪AB (AC u-uuAr B)u=uur0 :‬‬‫ﺇﺫﻥ ‪ AB . BC = 0 :‬ﻭﻋﻠﻴﻪ ‪ AB :‬و ‪ BC‬ﻤﺘﻌﺎﻤﺩﻴﻥ‬ ‫‪rr‬‬ ‫ﻭﻤﻨﻪ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻗﺎﺌﻡ ﻓﻲ ‪. B‬‬‫= )‪(u , v‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫;‬ ‫‪k∈¢‬‬ ‫ﺇﻨﺸﺎﺀ ‪ : C‬ﻟﺩﻴﻨﺎ‬ ‫‪3‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬‫‪(AB‬‬ ‫‪,‬‬ ‫= )‪AC‬‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫;‬ ‫‪k∈¢‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪3‬‬ ‫‪r‬‬ ‫‪uuur‬‬‫ﻟﺩﻴﻨﺎ ‪ u = 2 :‬ﻭﻤﻨﻪ ‪ AB = 2 :‬ﺃﻱ ‪AB = 2‬‬

‫‪rr r r‬‬ ‫‪rr‬‬ ‫ﻭﻋﻠﻴﻪ ‪u . v = u × v cos (u , v) :‬‬‫‪4=2‬‬ ‫‪r‬‬ ‫‪1‬‬ ‫ﺃﻱ ﺃﻥ ‪:‬‬ ‫‪r‬‬ ‫‪. cos‬‬ ‫‪π‬‬ ‫‪v‬‬ ‫‪×2‬‬ ‫‪4=2. v‬‬ ‫‪3‬‬ ‫‪r‬‬ ‫ﻭﻤﻨﻪ ‪ v = 4 :‬ﻭﺒﺎﻟﺘﺎﻟﻲ ‪. AC = 4 :‬‬‫ﺤﺴﺎﺏ ‪ AC2 = AB2 + BC2 : BC‬ﻭﻤﻨﻪ ‪16 + 4 = BC2 :‬‬ ‫ﺇﺫﻥ ‪ BC2 = 12 :‬ﻭﻤﻨﻪ ‪BC = 2 3 :‬‬ ‫ﻹﻨﺸﺎﺀ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻨﻘﻭﻡ ﺒﺎﻟﺨﻁﻭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫• ﻨﺭﺴﻡ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ‪ AB‬ﻁﻭﻟﻬﺎ ‪[ ]2 cm‬‬ ‫= )‪[ )( AX , AB‬‬‫‪π‬‬ ‫‪3‬‬ ‫ﺒﺤﻴﺙ ‪:‬‬ ‫‪AX‬‬ ‫• ﻨﺭﺴﻡ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ‬ ‫• ﻨﺭﺴﻡ ﻤﺴﺘﻘﻴﻤﺎ ∆ ﻋﻤﻭﺩﻴﺎ ﻋﻠﻰ )‪ (AB‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪( ). B‬‬‫• ﻴﺘﻘﺎﻁﻊ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪ AX‬ﻤﻊ ∆ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪ C‬ﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ ‪( ) [ ).ABC‬‬‫‪A‬‬ ‫)∆( ‪30° C‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬ ‫‪BX‬‬ ‫‪60°‬‬‫‪B‬‬‫‪A‬‬ ‫‪uuur uuur uuur uuur uuur uur‬‬ ‫‪C‬‬‫‪• AB . BCD= -BA . BC = -BAH . BF‬‬ ‫ﺤﻴﺙ ‪ F‬ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ ‪ C‬ﻋﻠﻰ‪uuur (AuBuu)r‬‬‫ﻭﻤﻨﻪ‪ AB . BuuCur = u-uBurA . BF cos π :‬ﻭ ‪BF =uDuuCr – AuBuur= 1‬‬‫)‪ AB . BC = -4 × 1 × (-1‬ﺃﻱ ‪uuur uuurABuu.urBCuu=ur4 :‬‬‫‪• DC . DB = DC . DH = DC . DH . cos 0‬‬

u(DuuCr) ‫ﻠﻰ‬u‫ﻋ‬uBur ‫ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁ‬H ‫ﺤﻴﺙ‬ DH = AB = 4 : ‫ ﻷﻥ‬DC . DuBuur= 5uu×ur 4 × 1 : ‫ﻭﻤﻨﻪ‬ uuur uuur uuur uuur uuur uDuurC . DB = 20 : ‫ﻭﻋﻠﻴﻪ‬( ) ( )• CA . CB = CD + DA . CH + HB ( ) ( )uuur uuur uuur uuur uuur uuur CA . CB = CD + DA . CH + HB uuur uuur DA = HB uuur uuur uuur . uuur + uuur . u:u‫ﻲ‬ur‫ﻭﺒﺎﻟﺘﺎﻟ‬ uuur uuur Au: u‫ﻥ‬Du‫ﻷ‬r2 CA . CB = CD CH CD DA + uDuuAr . uCuuHr + = CD . CH . cos 0 + 0 + HB . CH + 4 = 5 × 1 × 1 + 0 +uu0ur+ 4uuur CA . CB = 9 uuur uuur uuur uuur uuur uuur : ‫ﺇﺫﻥ‬ AD BC BH BC BH BH• . = . = = 2 = 4 uuuur uuur uuur uuur uuur u.u1ur5‫ﺍﻟﺘﻤﺭﻴﻥ‬ uuu:ur‫ﻤﻨﻪ‬u‫ﻭ‬uuKr =uuMurA .uBuuCr +uuMuurBu.uuCrA +uuMurCuu.uAr Buu‫ﻊ‬u‫ﻀ‬ur‫( ﻨ‬1K =uuMuurAu.(uMurCu-uMuurBu)uu+rMBuu.(uMr uAuu-urMuCu)ur+MuCuu.r(MuBuu-rMuuAur)K=MA.MuCuu-rMAuu.uMur B +MB.MA -MB +MC+MC.MB - MC . MA . K = 0 : ‫ﺇﺫﻥ‬[ ] [ ]: (1) ‫ ﻟﺩﻴﻨﺎ ﻤﻥ‬. AB ‫ و‬BuuCur ‫ﻴﻥ‬u‫ﻠﻌ‬u‫ﻀ‬ur‫ﻘﻴﻥ ﺒﺎﻟ‬u‫ﻌﻠ‬u‫ﻤﺘ‬ur‫ﻋﻴﻥ ﺍﻟ‬u‫ﺎ‬u‫ﺘﻔ‬u‫ﺭ‬r‫ﻁﻊ ﺍﻻ‬u‫ﺎ‬u‫ﺘﻘ‬ur‫ ﻨﻘﻁﺔ‬uHuu‫ﺽ‬r ‫( ﻨﻔﺭ‬2 HA . BC + HB . CA + HC . AB = 0 uuur uuur uuur M =uuHur‫ﻭﻫﺫﺍ ﺒﻭﻀﻊ‬ uuHurC u⊥uur AB ‫ ﻭ‬HuuAur ⊥uuurBC : ‫ﻭﻟﺩﻴﻨﺎ‬ uuur uuur HC . AB = 0 ‫ ﻭ‬uuHurA .uuBurC = 0 : ‫ﻭﻤﻨﻪ‬ HB . CA = 0 : ‫ ﻭﻤﻨﻪ‬0 + 0 + HB . CA = 0 : ‫ﻭﻋﻠﻴﻪ‬ ‫( ﻭﻋﻠﻴﻪ ﺍﻻﺭﺘﻔﺎﻉ ﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﻀﻠﻊ‬HB) ⊥ (CA) : ‫ﺇﺫﻥ‬

[ ]. H ‫ ﻴﺸﻤل‬AC ‫ ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻨﻘﻁﺔ ﻭﺍﺤﺩﺓ‬ABC ‫ﺇﺫﻥ ﺍﻻﺭﺘﻔﺎﻋﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ‬ A N M H B C r r. 16‫ﺍﻟﺘﻤﺭﻴﻥ‬ rr r (u , rv) ‫ﺱ‬r ‫ﺤﺴﺎﺏ ﻗﻴ‬cos( u , v ) = L r v = ru . vr -3 3 cos (u , ) u.v (1 3 × 2 : ‫ﻭﻋﻠﻴﻪ‬ cos r , r -3 : ‫ﺇﺫﻥ‬ (u v)= 2 rr = 5π + 2kπ ; k ∈ ¢ : ‫ﻭﻤﻨﻪ‬ (u , v) 6 = r r 3 rr rr (u v)= +3 6 : ‫ﻭ ﻤﻨﻪ‬ ru . vrcos , cos ( u , v ) u.v (2 3 rr 2 : ‫أي‬ rr 1 cos ( u , v ) = cos ( u , v ) = 22 r r (u , v) = π + 2kπ ; k ∈ ¢ : ‫ﻭﻋﻠﻴﻪ‬ 4 r r rr rrcos (u , v)= 10 cos (u , v) = ru . vr (3 4 × 5 : ‫ﻭﻤﻨﻪ‬ u.v cos r , r = 1 : ‫ﺇﺫﻥ‬ (u v) 2

rr π + 2kπ ; k∈¢ : ‫ﻭ ﻤﻨﻪ‬ (u , v) = 3 vr yr 2ur . 17‫ﺍﻟﺘﻤﺭﻴﻥ‬ ur rrrr-3vr xr y , x , v , u ‫( ﺇﻨﺸﺎﺀ‬1 rr r r u.v= u . v cos π =0 (2 2 r 2 = r + vr )2 = r 2 + r 2 r : ‫ﻨﺎ‬r‫ﻟﺩﻴ‬ y (u u v +2u. v r 2 = 13 r 2 = 9 + 4 +0 y y r rxr 2 r r ur:2‫ﺃﻱ‬+ 9 vr2 - 12 u : ‫ﻭﻤﻨﻪ‬ = (2 u - 3 v)2 = 4 .v : ‫ﻟﺩﻴﻨﺎ‬ = 36 + 36 – 0 xrr2 = 7r2 : ‫ﺇﺫﻥ‬ : y ; x ‫( ﺍﺴﺘﻨﺘﺎﺝ‬3 r r 2 = 72 : ‫ﺃﻱ‬ xr2 = 72 : ‫ﻟﺩﻴﻨﺎ‬ x =6 2 x : ‫ﻭﻤﻨﻪ‬ r 13 r 2 = 13 r 2 = 13 y= y y : ‫ﻭﻤﻨﻪ‬ ‫ﺃﻱ‬ : ‫ﻭﻟﺩﻴﻨﺎ‬AK . 18‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫( ﺇﻨﺸﺎﺀ ﺍﻟﺸﻜل‬1 D I MB C

uuur uuur r: ‫ ﻭﻤﻨﻪ‬3 KA + KD = o : ‫( ﻭﻋﻠﻴﻪ‬A ; 1)uu,ur(A ; 3u)u‫ﺔ‬ur‫ﺢ ﺍﻟﺠﻤﻠ‬u‫ﺠ‬u‫ﺭ‬u‫ﻤ‬rK ‫ﻴﻨﺎ‬r‫ﻟﺩ‬ 3 KA + KA + AD = o uuur uuur uuur uuur r AK = 1 AD : ‫ﺃﻱ‬ 4 KA + AD = o : ‫ﺃﻱ‬ 4uuur uuuur uuur uuur uuur : ‫( ﺍﻟﺤﺴﺎﺏ‬2uBuCur uBuMur =uBuurC .uBuBAurC==uBuBAurC2BA . BK = BA . 2 = 64 . 16 =uuur uuuur uuur uuur uuur uuur ‫( ﺍﻟﺤﺴﺎﺏ‬3BK .BM = (uBuuAr +uuAurK )u.u(urBCuu+urCMuu)ur uuur uuur uuur = BA .BC + BA .CM + AK . BC + AK . CM uuur uuuur uuur . uAuDuru-uu14r uAuDuruu.ur12 uuur = 0 + CD . CM + AK DC uuur uuuur = CD . CM cos 0 + AK . AD cos 0 + 1 . uuur uuur 8 DA . DC uuur uuuur 4 × 2 × 1 + 2 × 8 × 1u+uur18uu×uur0 : ‫ﻭﻤﻨﻪ‬ BK .BM = : ‫ﺇﺫﻥ‬ BK .BM = 24 uuur uuuur : BI ‫( ﺍﺴﺘﻨﺘﺎﺝ‬4 uuur uuuur uuuurBKuu. urBM = 24 : ‫ﻟﺩﻴﻨﺎ‬ BK . BMuu=urBMuuu.urBKuuuur: ‫ﺩﻴﻨﺎ‬u‫ ﻟ‬u‫ﻯ‬r‫ﻭﻤﻥ ﺠﻬﺔ ﺃﺨﺭ‬ uuur uuBurK . BuuMur = BuMur . BI : ‫ﻭ ﻤﻨﻪ‬ BK . BM = BM . BI .cos 0 : ‫ﺃﻱ‬ BI = 24 : ‫ﻭ ﻤﻨﻪ‬ BM . BI = 24 : ‫ﺇﺫﻥ‬ BM BM 2 = 64 + 4 = 68 : ‫ ﻭﻋﻠﻴﻪ‬BM 2 = BC 2 + CM 2 : ‫ﻟﺩﻴﻨﺎ‬

BM = 2 17 ‫ ﺃﻱ‬BM = 68 : ‫ﺇﺫﻥ‬ BI = 12 17 : ‫ ﺃﻱ‬BI = 2 24 : ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬ 17 uuuur uuur 17uuuur uuur uuuur u(uBurM , BK )u‫ـ‬u‫ﻟ‬uu‫ﺔ‬r‫ ﻤﻘﺭﺒ‬u‫ﺔ‬u‫ﻴﻤ‬u‫ﻗ‬r‫ ﺍﺴﺘﻨﺘﺎﺝ‬-BM . BK = BM × BK × cos (BM , BK ) : ‫ﻟﺩﻴﻨﺎ‬ BK 2 = 16 + 4 : ‫ ﻭﻤﻨﻪ‬BK 2 = BA2 + AK 2 : ‫ﻭﻟﺩﻴﻨﺎ‬uuuur uuur uuuuBr Ku=uur 20 : ‫ﺃﻱ‬BM . BK = 2 17 × 2 5 cosu(uBuurM u,uBurK ) : ‫ﻭﻋﻠﻴﻪ‬ = 4 17 . 5 cos u(uBuurM ,uuBurK ) BM . BK = 24 : ‫ﻟﻜﻥ‬ uuuur uuur cos ( BM , BK ) = 24 : ‫ﻭﻋﻠﻴﻪ‬ uuuur uuur 4 . 17 . 5 cos ( BM , BK ) = 6 : ‫ﺃﻱ ﺃﻥ‬ 85 uuuur uuur 6 85 : ‫ﻭﻋﻠﻴﻪ‬ cos ( BM , BK ) = 85K BµM ; 49,4o uuuur uuur 0,87 RAD : ‫ﻭﻤﻨﻪ‬ : ‫( ﺃﻱ‬BM , BK ) ;A D . 19‫ﺍﻟﺘﻤﺭﻴﻥ‬ O : ‫ ﺇﺜﺒﺎﺕ ﺃﻥ‬- MA2+ MC 2 = MB2 + MD2BC

uuur uuur uuuur uuur uuuur : ‫ﻟﺩﻴﻨﺎ‬MA + MC 2 = ( OA - OM )2 + ( OC - OM )2==Ou2uAurOuu2Aur+2Ou+uMuu2r 2Ou-uMuMu2uuuArOur2u2Aur-+.2OuuMuOMuuuuuurCAuurr+2. OuuuuCuurur2 + OuuMuuuurur2 uuur uuuur =OM2 Ouu+Aur22 OA - 2uuOuurC .OM +2 O.uuOMuurM2 : ‫ﻭﻋﻠﻴﻪ‬uuur uuuur MD( ) ( )MB2 + 2 = uuur uuuur 2 uuur uuuur 2 OB - OM + OD - OM : ‫ﻭﻟﺩﻴﻨﺎ‬= OOuuuuuMBBuurru2u2Br++2OuOuu+u=MuMuururuM22u2-uO-uDuru22B2urOuOuuu2=BBuurr+2..O2uOuOuuuuMOuuAuMruuurur2Muu+r++O2uO2uuDuurBOuur2u2M+u+urOOuu2uuMMuuuurr22 -2 uuur uuuur= +2 OuuDur .OuuMuur OB .OM uMuuAr 2 + uMuuCur2 = uuur 2 + uuuur 2 MB MD : ‫ﻭﻋﻠﻴﻪ‬ . ) = 87o : ‫ﻭﻤﻨﻪ‬ . 20‫ﺍﻟﺘﻤﺭﻴﻥ‬ C Cµ = 180o - (68o + 25o) : ‫ﻟﺩﻴﻨﺎ‬ BC = AC = AB : ‫ﻭﻟﺩﻴﻨﺎ‬ sin Aµ sin Bµ sin Cµ : ‫ﻭﻋﻠﻴﻪ‬ BC = AC = 16 sin 68o sin 25o sin 87o AC ; 6,77 : ‫ﻭﻤﻨﻪ‬ AC = 16 sin 25o : ‫ﻭﻋﻠﻴﻪ‬ sin 87o BC ; 14,86 : ‫ﻭﻤﻨﻪ‬ BC = 16 sin 68o : ‫ﻭﻜﺫﻟﻙ ﻟﺩﻴﻨﺎ‬ sin 87o . 21‫ﺍﻟﺘﻤﺭﻴﻥ‬

: BC ‫ ﺤﺴﺎﺏ‬- BC2 = AB2 + AC2 - 2 AB . AC . cos Aˆ BC2 = (20)2 + (30)2 - 2 × 20 × 30 cos 100o BC ; 38,84 : ‫ﻭﻤﻨﻪ‬ BC 2 ; 1: 5C)08‫و‬,3B)8 : ‫ﻭﻋﻠﻴﻪ‬ ‫ ﺤﺴﺎﺏ‬- BC = AC = AB = BC . AC . AB sin Aµ sin Bµ sin Cµ 25 38,84 = 30 = 20 : ‫ﺇﺫﻥ‬ sin 100o sin Bµ sin CµsinCµ = 20 sin 100o ‫َﻭ‬ sin Bµ = 30 sin 100o : ‫ﻭﻤﻨﻪ‬ 38,84 38,84 sin B) ; 0,76 : ‫ﻭﻋﻠﻴﻪ‬ sin C)µ ; 0,51 ‫ﻭ‬ B ; 49,5o : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ C; 30,5o ‫ﻭ‬ siAnCB) = BC . AC . AB : ‫ ﺍﺴﺘﻨﺘﺎﺝ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ‬- 2.S ) BC . AC . AB . sin B S = 2 AC ) : ‫ﺇﺫﻥ‬ S = BC . AB . sin B : ‫ﺇﺫﻥ‬ 2 S; 33,84 × 30 × sin 49,5o : ‫ﺃﻱ‬ 2 S ; 443,01 cm2 : ‫ﻭﻋﻠﻴﻪ‬ . 22‫ﺍﻟﺘﻤﺭﻴﻥ‬sin2 ) = sin2 ) + sin2 ) - 2 sin ) sin ): ‫()ﺇﺜﺒﺎﺕ ﺃﻥ‬1 A B C B. C cos A

siBnCA) = siAnCB) = siAnBC) = r ; r ∈ ¡ : ‫ﻭﻟﺩﻴﻨﺎ‬ AB = r sin Cµ ; AC = r sin Bµ ; BC = r sin Aµ : ‫ﻭﻋﻠﻴﻪ‬ BC2 = AB2 + AC2 - 2 AB . AC cos Aµ : ‫ﻭﻟﺩﻴﻨﺎ‬r 2 ssinin22A)A===rr2s2siinn22sCB)i)n++2C)sri+n2 s2siCi)nn-2)2B2B))s--in22B).cri.nssiiBnn) C)C.)sc.inorsCs)iAn). ) : ‫ﻭﻤ)ﻨﻪ‬ B co)s A cos A : ‫ﻭﻋﻠﻴﻪ‬ cos A = 0 ‫ ﻓﺈﻥ‬A ‫ﻓ)ﻲ‬ ‫ﻗﺎﺌﻡ‬ ABC ‫ﺍﻟﻤﺜﻠ)ﺙ‬ ‫( ﺇﺫﺍ ﻜﺎﻥ‬2 BB)) C) : ‫ﻭﻤﻤﺎ ﺴﺒﻕ‬ :)‫ﻓﺈﻥ‬ sin2 A) = sin2 + sin2 C sin2 A = + sin)2 :)‫ﻭﺇﺫﺍ ﻜﺎﻥ‬ sin2 : ‫ﻭﻤﻨﻪ‬ A)c=ossAi)nc2=osB)i0sn+A2: s‫ﻥ‬A)is=‫ﻓﺈ‬nin+A20µs2iA)snC):i‫ﻥ‬2n+‫ﻨﻜﻪ‬-‫ﺘ‬A2‫ﻭﻟﻤ‬s2‫ﻭ‬B)i=‫ﺔ‬ns−‫ﻴ‬ss‫ﻭ‬+i2i2si‫ﺍ‬n‫ﺯ‬nniB)sn‫ﻱ‬s22Bi)i‫ﺃ‬2n+Bn‫)ﻲ‬AsB2‫)ﻓ‬iBs+‫ﺎ‬Cn‫)=ﻤ‬i+‫ﺌ‬n‫ﺎ‬.‫ﻗ‬Cs1=)2ssAiniiCBc1n)n:2oC2‫ﻱ‬A+C)=sCC)‫)ﺙﺃ‬A1‫)ﻠ‬2=‫ﺜ‬cs=‫ﻤ‬io‫ﻟ‬:=‫ﺍ‬n9:1:s‫ﻥﻥﻥ‬02‫ﻜﻓﺎﺔﺈ‬A‫ﺎ‬A‫ﻗ‬o)‫ﺍ(ﻼﻜ‬::2‫ﺇﺫﻌﺍﺫ‬:=)‫ﻋﻠﻥﻭﺃﻥﻱﻴ–ﺍﺇﻪﻥ=ﻟ‬01‫ﻤ(ﺃﻱﻤ‬-3‫ﺃﻓﻭﻭ‬ sin2 sin2 A) = 2 - sin2 A) - 2) sin B) C) : ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨ)ﺠﺩ‬ ‫ﻭ‬ )cis A 2A=2 -)s2insiBn) )sin2 2sin )A = 1 - B . sin) C . cos)A sin2 : ‫ﻭﻋﻠﻴﻪ‬ sin B . sin C . cos .) sin C- s.inco2sA) A : ‫ﻭﻋﻠﻴﻪ‬ A=1 : ‫ﻭﻋﻠﻴﻪ‬

sin B) . sin) C) . co)s A) = co) s2 A) ) )cos A )(sin B .)sin C - cos A)) = 0 : ‫ﻭﻤﻨﻪ‬sin B . sin C - cos A = 0 coscAos=A)0= Aµ = 900 ‫ﺃﻭ‬ ‫ﺇﻤﺎ‬ ‫ﻭﻋﻠﻴﻪ‬ : ‫ﺃﻱ‬ ‫ﺇﺫﻥ‬ 0 uuur uuuur . 23‫)*( ﺍﻟﺘﻤﺭﻴﻥ‬ ( )AB . AM = 18 : ∆1 ‫( ﺘﻌﻴﻴﻥ ﻭ ﺇﻨﺸﺎﺀ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬1 ( )uuur : u‫ﻴﻪ‬u‫ﻋﻠ‬u‫ﻭ‬ur(AB) ‫ ﻤﺴﻘﻁﻬﺎ ﻋﻠﻰ‬uHuu‫ﻥ‬r‫ ﻭﻟﺘﻜ‬uu∆uur1 ‫ ﻨﻘﻁﺔ ﻤﻥ‬M ‫ﻟﺘﻜﻥ‬uuur uuuur AB . AM > 0 : ‫ ﻟﻜﻥ‬AB . AuuMuur= AuBuur. AHAB . AM = AB . AH : ‫ ﺃﻱ ﺃﻥ‬. ‫ ﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ‬AM ‫ ﻭ‬AB : ‫ﻭﻤﻨﻪ‬ AB . AH = 18 : ‫ﻭﻋﻠﻴﻪ‬ AH = 3 : ‫ﺃﻱ ﺃﻥ‬ AH = 18 : ‫ﻭﻋﻠﻴﻪ‬ uuur u6uur uuur uuuur uuur AuuBuur. AuMuur= uAuBur . AH : ‫ﻟﺩﻴﻨﺎ‬ ( )AB .uuAurM u-uuAurB . uAuuHr = 0 : ‫ﻭﻋﻠﻴﻪ‬uuur AB AM - AH = 0 : ‫ﻭﻤﻨﻪ‬ uuuur uuur uuuurAB ⊥ HM : ‫ ﻭﻋﻠﻴﻪ‬AB . HM = 0 : ‫ﺃﻱ ﺃﻥ‬ [ ]. AB ‫ ﻫﻲ ﻤﺤﻭﺭ‬M ‫ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬: ‫ﻭﻤﻨﻪ‬(∆2) (∆1) (∆)uAuBurA. uuuur S AM( )F :H ‫ﻤﺠﻤﻭﻋﺔ‬ ‫ﺎﺀ‬B‫ﺇﻨﺸ‬ = -12 ∆2 ‫ﺍﻟﻨﻘﻁ‬ ‫ﻭ‬ ‫ﺘﻌﻴﻴﻥ‬ (2 ( )(AB) ‫ ﻤﺴﻘﻁﻬﺎ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ‬F ‫ ∆ ﻭﻟﺘﻜﻥ‬2 ‫ ﻨﻘﻁﺔ ﻤﻥ‬M ‫ﻟﺘﻜﻥ‬

‫‪uuur uuuur uuur uuur‬‬ ‫ﻭﻤﻨﻪ ‪AB . AM = AB . AF :‬‬ ‫‪uuur uuur‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ AB‬ﻭ ‪uuAurF‬ﻤ‪u‬ﺨﺘﻠﻔ‪r‬ﺎ‪u‬ﻥ‪u‬ﻓ‪u‬ﻲ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ ‪:‬‬ ‫‪AB .AM = - AB . AF‬‬ ‫‪AF‬‬ ‫=‬ ‫‪12‬‬ ‫‪=2‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ AB . AF = 12 :‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪6‬‬ ‫‪uuur‬‬ ‫‪uuuur uuur uuur‬‬ ‫ﺇﺫﻥ ‪ uAuBur . uAuMuur = uAuuBr . uAuuFr :‬ﻭﻤﻨﻪ ‪:‬‬‫‪( )uuur uuuur uuur‬‬‫‪AB‬‬‫ﺃﻱ ﺃﻥ ‪= 0 :‬‬ ‫‪AB . AM -‬‬ ‫‪AB . AF = 0‬‬ ‫‪AM - AF‬‬ ‫‪uuur‬‬ ‫‪uuuur‬‬ ‫ﻭﻋﻠﻴﻪ ‪uAuBur . FMuuu=ur 0 :‬‬‫ﺃﻱ ﺃﻥ ‪ AB ⊥ FM :‬ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪ ∆ 2‬ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ) (‬ ‫‪uuur uuuur‬‬ ‫)‪ (AB‬ﻓﻲ ‪. F‬‬ ‫‪ (3‬ﺘﻌﻴﻴﻥ ﻭ ﺇﻨﺸﺎﺀ ‪( )uuur uAuurB .uAuurM ≥ 30 : π1‬‬ ‫ﻟﺘﻜﻥ‪uuSur‬ﻨﻘﻁﺔ ﻤﻥ )‪ (AB‬ﺒﺤﻴﺙ ‪ uAuurB . AS = 30 :‬ﻭﺒﻤﺎ‪ur‬ﺃ‪u‬ﻥ‪AB u‬‬ ‫ﻭ ‪ AS‬ﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ ‪ AB . AS = AB . AS :‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ )‪ (AB‬ﻓﻲ ‪( ).S‬‬ ‫∆‬ ‫= ‪ AS‬ﻭﻟﻴﻜﻥ‬ ‫‪30‬‬ ‫‪=5‬‬ ‫‪uuur uuuur‬‬ ‫‪6‬‬ ‫ﻴﻜﻭﻥ ‪ AB .uuAurM u≥uur30‬ﺇﺫﺍ ﻭﻓﻘ‪ur‬ﻁ‪u‬ﺇﺫ‪u‬ﺍ ﻜﺎﻥ‪uu:ur‬‬ ‫‪ AB . AS ≥ 30‬ﺃﻱ ‪ AB . AS ≥ 30‬ﻭﻋﻠﻴﻪ ‪ AS ≥ 5‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫)‪. M ∈[ SB‬‬ ‫ﻭ ﻤﻨﻪ ‪ π1‬ﻫﻭ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻔﺘﻭﺡ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﺴﺘﻘﻴﻡ ∆) ( ) (‬ ‫ﻭ ﻴﺸﻤل ‪.B‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬ ‫‪ (1‬ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪MA2 - MB2 = 12 :M‬‬ ‫ﻟﺘﻜﻥ ‪ I‬ﻤﻨﺘﺼﻑ ‪[ ]: AB‬‬

( ) ( )uuur+ uur 2 - uuur + uur 2 = 12 MI IA MI IB : ‫ﻟﺩﻴﻨﺎ‬ ( ) ( )uuur + uur 2 - uuur - uur 2 = 12 MI IA MI IAuuur 2 + uIuAr 2 uuur uur - uuur 2 - uIuAr 2uu+ur2 uuur . uur : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬MI + u2uMur I u.urIA MI MuuIr IA = 12 MI . IA = 3 : ‫ ﻭﻋﻠﻴﻪ‬4uMur I u. uIurA = 12 : ‫ﻭﻤﻨﻪ‬ IA . IM = -3 : ‫ﺃﻱ ﺃﻥ‬uur uuur uur uuur : ‫( ﻓﻴﻜﻭﻥ‬IA) ‫ﻋﻠﺔ‬M ‫ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ‬H ‫ﻟﻴﻜﻥ‬IA . IM = IA . IHuur uuur uur uuur uur uuurIA . IM = -IA . IH : ‫ ﻤﺨﺘﻠﻔﺎﻥ ﻓﻲ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ‬IA , IH : ‫ﻭﺒﻤﺎ ﺃﻥ‬ IA = 3 : ‫ﺇﺫﻥ‬ IA . IH = 3 : ‫ﻭﻤﻨﻪ‬ 2 ( )( IA ) ‫ ﻭ ﻴﻌﺎﻤﺩ ﺍﻟﻤﺴﺘﻘﻴﻡ‬H ‫ﻟﻴﻜﻥ ∆ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﺸﻤل‬ ( ). ∆ ‫ ﻫﻲ ﻨﻘﻁﺔ‬M ‫ﻓﺘﻜﻭﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬ MA2 + MB2 = 40uuur: M ‫ﻁ‬u‫ﻨﻘ‬u‫ﻟ‬r‫ﻋﺔ ﺍ‬2‫( ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭ‬2 uuur uur 2( ) ( )MA2 + MB2 = MI + IA + MI + IB : ‫ﺇﺫﻥ‬ ( ) ( )=uuur+ uur 2 + uuur - uur 2 MI IA MI IA uuur uur uuur uur = MI 2 + IA2 + 2MI . IA + MI 2 + IA2 - 2MI . IA = 2MI 2 + 2IA2 2MI 2 + 2IA2 = 40 : ‫ﻭﻋﻠﻴﻪ‬ MI 2 = 16 : ‫ ﻭﻤﻨﻪ‬2MI 2 + 8 = 40 : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ . 4 ‫ﻁﺭﻫﺎ‬u‫ ﻗ‬u‫ﻑ‬u‫ﺼ‬r‫ ﻭﻨ‬Iu‫ﺎ‬u‫ﻫ‬u‫ﺯ‬r‫ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜ‬M ‫ﻭ ﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬ MA . MB = λ : M ‫( ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬3

uuur uuur uuur uur uuur uur( ) ( )MA . MB = MI + IA . MI + IB ( ) ( )uuur uur uuur uur = MI + IA . MI - IA = MI 2 - IA2 = MI 2 - 4 MI 2 = λ + 4 : ‫ ﻭﻤﻨﻪ‬MI 2 - 4 = λ : ‫ﻭﻋﻠﻴﻪ‬ MI 2 = λ + 4 : ‫ﺇﺫﻥ‬ M ≡ I : ‫ ﻓﺈﻥ‬λ = -4 ‫ ﺃﻱ‬λ + 4 = 0 ‫• ﺇﺫﺍ ﻜﺎﻥ‬ . I ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ‬ . ‫ ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔ‬λ < -4 ‫ ﺃﻱ‬λ + 4 < 0 ‫• ﺇﺫﺍ ﻜﺎﻥ‬ ‫ ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ‬λ > -4 ‫ ﺃﻱ‬λ + 4 > 0 ‫• ﺇﺫﺍ ﻜﺎﻥ‬ λ + 4 ‫ ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ‬I ‫ﻤﺭﻜﺯﻫﺎ‬BC 2 = AC 2 + AB 2 - 2AC . . )25‫)*( ﺍﻟﺘﻤﺭﻴﻥ‬ a2 b2 + c2 AB cos A ) : ‫( ﻟﺩﻴﻨﺎ‬1 = - 2bc cos A : ‫ﻭﻤﻨﻪ‬ cos A) = b2 + c2 - a2 : ‫ﻭﻋﻠﻴﻪ‬ 2 bc1 + cos A) = 1 + b2 + c2 - a2 : ‫ﺇﺫﻥ‬ 2 bc = 2bc + b2 + c2 - a2 2 bc1 + cos A) = (b + c)2 - a2 : ‫ﻭ ﻤﻨﻪ‬ 2 bc (b + c- a) (b + c+ a) = 2 bc = (a + b + c) (b + c - a) 2 bc

1 - cos A) = 1 - b2 + c2 - a2 : ‫ﻭﻟﺩﻴﻨﺎ‬ 2 bc = 2bc - b2 - c2 + a2 2 bc = a2 - ( b2 + c2 - 2bc) 2 bc = a2 - (b - c)2 2 bc (a - b + c) (a + b - c) = 2 bc 1 - cos ) = (a + c - b) (a + b - c) : ‫ﻭﻋﻠﻴﻪ‬ A ) 2 bc ) : ‫( ﻭ ﻤﻨﻪ‬1 - cos A) (1 + cos A) = L : ‫( ﻨﻀﻊ‬2L = (a + b + c) (b + c - a) × (a + c - b) (a + b - c) 2 bc 2 bc1 - cos2A) = 2p × (2p - 2a) × (2p - 2b) (2p - 2c) 4b 2c 2 : ‫ﻭﻤﻨﻪ‬ sin2 ) 16 p(p - a) (p - b) (p - c) A= 4 b2c2 sin2 ) 4 p(p - a) (p - b) (p - c) : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ A= b2c2 a A) = abc : ‫( ﻟﺩﻴﻨﺎ ﺍﻟﻌﺒﺎﺭﺓ‬3 sin 2S ) 2.S 1 ) sin A = bc : ‫ﻭﻤﻨﻪ‬ S= 2 bc sin A : ‫ﻭﻋﻠﻴﻪ‬ sin2 Aµ = 4S2 : ‫ﻭﻋﻠﻴﻪ‬ b2c2

‫‪4S2‬‬ ‫=‬ ‫‪4 p(p -‬‬ ‫)‪a) (p - b) (p - c‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻤﺎ ﺴﺒﻕ ‪:‬‬ ‫‪b2c2‬‬ ‫‪b2c2‬‬ ‫ﺇﺫﻥ ‪S2 = p (p - a) (p - b) (p - c) :‬‬ ‫ﻭﻤﻨﻪ ‪ ) S = p (p - a) (p - b) (p - c) :‬ﻋﺒﺎﺭﺓ ﻫﻴﺭﻭﻥ (‬ ‫‪ (4‬ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ‪S :‬‬ ‫‪p‬‬ ‫=‬ ‫‪10‬‬ ‫‪+‬‬ ‫‪15‬‬ ‫‪+‬‬ ‫‪9‬‬ ‫ﻨﺼﻑ ﻤﺤﻴﻁ ﺍﻟﻤﺜﻠﺙ ﻫﻭ ‪:‬‬ ‫‪2‬‬ ‫ﺇﺫﻥ ‪. p = 17 :‬‬ ‫ﻭ ﻤﻨﻪ ‪S = 17 (17 - 10) (17 - 15) (17 - 9) :‬‬ ‫‪S = 17 × 7 × 2 × 8‬‬ ‫ﺇﺫﻥ ‪S = 4 119 :‬‬ ‫‪S ; 43,6 cm2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 26‬‬ ‫‪( ) ( )ur‬‬‫‪ -3‬‬ ‫∆‬ ‫‪∆1‬‬ ‫‪ (1‬ﻤﻌﺎﺩﻟﺔ‬ ‫‪ 2 ‬‬ ‫‪V‬‬ ‫ﻫﻭ ‪:‬‬ ‫‪ :‬ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ‬ ‫‪uuuur ur‬‬ ‫ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ‪.‬‬ ‫ﺘﻜﻭﻥ ‪ M‬ﻨﻘﻁﺔ ﻤﻥ ‪ ∆1‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪( )AM ⊥ V :‬‬‫‪-3 (x + 1) + 2 (y – 2) = 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪ur‬‬ ‫‪ -3‬‬ ‫‪,‬‬ ‫‪uuuur‬‬ ‫‪x‬‬ ‫‪+ 1‬‬ ‫‪V‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪AM‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪2‬‬ ‫‪‬‬ ‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ‪ ∆1‬ﻫﻲ ‪( )-3 x + 2y – 7 = 0 :‬‬‫‪3× 2x + 3y - 5 = 0‬‬‫×‪( ) ( )2‬‬‫‪‬‬ ‫‪-3x‬‬ ‫‪+‬‬ ‫‪2y‬‬ ‫‪-‬‬ ‫‪7‬‬ ‫=‬ ‫‪0‬‬ ‫‪ (2‬ﻨﻘﻁ ﺘﻘﺎﻁﻊ ‪ ∆1‬ﻭ ∆ ‪ :‬ﻨﺤل ﺍﻟﺠﻤﻠﺔ ‪:‬‬‫‪‬‬ ‫‪6x + 9y - 15 = 0‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪ -6x + 4y - 14 = 0 :‬ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ ‪:‬‬

‫‪y‬‬ ‫=‬ ‫‪29‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪13y – 29 = 0‬‬ ‫‪13‬‬ ‫ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪ 6x + 9y – 15 = 0‬ﻨﺠﺩ ‪:‬‬ ‫‪6x‬‬ ‫‪+‬‬ ‫‪66‬‬ ‫=‬ ‫‪0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪6x‬‬ ‫‪+‬‬ ‫‪9‬‬ ‫‪ 29 ‬‬ ‫‪-‬‬ ‫‪15‬‬ ‫‪=0‬‬ ‫‪13‬‬ ‫‪ 13 ‬‬ ‫‪-66‬‬ ‫‪x‬‬ ‫=‬ ‫‪-11‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫=‪x‬‬ ‫‪13‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪13‬‬ ‫‪6‬‬ ‫‪B‬‬ ‫‪ -11‬‬ ‫;‬ ‫‪29 ‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪ 13‬‬ ‫‪13 ‬‬ ‫‪uuuur uuuur‬‬ ‫‪ (3‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪[ ]: AO‬‬ ‫ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ ‪MA . MO = 0 :‬‬ ‫‪uuuur‬‬ ‫‪uuur‬‬ ‫‪MO‬‬ ‫‪ -x ‬‬ ‫‪,‬‬ ‫‪MA‬‬ ‫‪‬‬ ‫‪-1‬‬ ‫‪-x ‬‬ ‫‪:‬‬ ‫ﻭﻟﺩﻴﻨﺎ‬ ‫‪ -y ‬‬ ‫‪‬‬ ‫‪2-‬‬ ‫‪y ‬‬ ‫ﻭﻋﻠﻴﻪ ‪(-1 – x) (-x) + (2 – y) (-y) = 0 :‬‬ ‫‪x + x2 - 2y + y2 = 0‬‬ ‫ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ‪x2 + y2 + x - 2y = 0 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 27‬‬ ‫‪ -1‬ﻟﻴﻜﻥ ‪ G‬ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ‪: ABC‬‬‫‪‬‬ ‫‪xG‬‬ ‫=‬ ‫‪-2‬‬ ‫‪+1‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪xG‬‬ ‫=‬ ‫‪xA + xB + xC‬‬‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪3‬‬‫‪‬‬ ‫‪ ‬ﻭﻤﻨﻪ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪4+2‬‬ ‫‪yA + yB + yC‬‬‫‪‬‬ ‫‪yG‬‬ ‫=‬ ‫‪3‬‬ ‫‪‬‬ ‫‪yG‬‬ ‫=‬ ‫‪3‬‬‫‪‬‬ ‫‪‬‬ ‫‪G≡O‬‬ ‫‪ xG = 0‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪y‬‬ ‫=‬ ‫‪0‬‬ ‫‪G‬‬

: ‫ ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ‬-2[ ] [ ] [ ]: ‫ ﻭ ﻤﻨﻪ‬. ‫ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ‬AB , AC , BC ‫ ﻤﻨﺘﺼﻔﺎﺕ ﺍﻟﻘﻁﻊ‬I , J , K ‫ﻟﺘﻜﻥ‬K  1+1 ; -4+2  , J  -2+1 ; 2+2  , I  -2+1 ; 2-4   2 2   2 2   2 2  K (1 , -1) , J  -1 , 2  , I  -1 , -1  : ‫ﺇﺫﻥ‬  2   2  ‫ ﻨﻘﻁﺔ ﻤﻨﻪ‬M (x ; y) ‫ ﻟﺘﻜﻥ‬: (CI) ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺘﻭﺴﻁ‬ uur  -3  uuur  -1 -x  uuur uur CI   MI  -y  MI // CI : ‫ﻟﺩﻴﻨﺎ‬  2  ,  2  , -3 -1 -3 (-1 - y) + 3  -1 - x  =0 : ‫ﻭﻤﻨﻪ‬ 2 2  (CI) ‫ ﻤﻌﺎﺩﻟﺔ‬- x + y = 0 : ‫ﺇﺫﻥ‬ ‫ ﻨﻘﻁﺔ ﻤﻨﻪ‬M (x , y) ‫ ﻟﺘﻜﻥ‬: (BJ) ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺘﻭﺴﻁ‬ uuur  -3  , uuuur  x-1  , uuuur uuur : ‫ﻟﺩﻴﻨﺎ‬ BJ   BM  y + 4  BM // BJ  2  6 6 (x - 1) + 3 (y + 4) = 0 : ‫ﻭﻋﻠﻴﻪ‬ 2 3 6x + 2 y=0 : ‫ﺇﺫﻥ‬ 4x + y = 0 : ‫( ﻫﻲ‬BJ) ‫ﻤﻌﺎﺩﻟﺔ‬ ‫ ﻨﻘﻁﺔ ﻤﻨﻪ‬M (x , y) ‫ ﻟﺘﻜﻥ‬: (AK) ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺘﻭﺴﻁ‬ uuur uuuur uuuur uuur AK 3  , AM x + 2 , AM // AK : ‫ﻟﺩﻴﻨﺎ‬      -3   y - 2  -3 (x + 2) -3 (y – 2) = 0 : ‫ﻭﻋﻠﻴﻪ‬ -3x – 3y = 0 : ‫( ﻫﻲ‬AK) ‫ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ‬

‫ﺃﻱ ‪x + y = 0 :‬‬ ‫‪ (3‬ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ‪ :‬ﻨﻌﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ )‪ (BJ‬ﻭ )‪(AK‬‬ ‫ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ ‪ x = 0‬ﻭﻤﻨﻪ ‪y = 0‬‬ ‫‪4x + y = 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪y‬‬ ‫=‬ ‫‪0‬‬ ‫ﺇﺫﻥ ﺘﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻨﻘﻁﺔ )‪O (0 ; 0‬‬ ‫ﻤﻼﺤﻅﺔ ‪:‬‬ ‫ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻫﻲ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ‪ABC‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 28‬‬ ‫‪ -1‬ﻤﻌﺎﺩﻻﺕ ﺍﻷﻋﻤﺩﺓ ‪:‬‬ ‫ﻟﺘﻜﻥ ‪ I, J, K‬ﺍﻟﻤﺴﺎﻗﻁ ﺍﻟﻌﻤﻭﺩﻴﺔ ﻟﻠﻨﻘﻁ ‪ A, B,C‬ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ‬ ‫)‪ (BC) , (AC) , (AB‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫• ﻤﻌﺎﺩﻟﺔ ﺍﻟﻌﻤﻭﺩ )‪: (AI‬‬ ‫ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ )‪: (AI‬‬‫‪uuur‬‬ ‫‪uuuur‬‬ ‫‪uuuur‬‬ ‫‪uuur‬‬‫‪BC‬‬ ‫‪4‬‬ ‫‪,‬‬ ‫‪AM‬‬ ‫‪x‬‬ ‫‪- 1‬‬ ‫‪,‬‬ ‫‪AM‬‬ ‫⊥‬ ‫ﻟﺩﻴﻨﺎ ‪BC :‬‬ ‫‪ 3‬‬ ‫‪ y‬‬ ‫‪- 2‬‬ ‫ﻭﻤﻨﻪ ‪4 (x – 1) + 3 (y – 2) = 0 :‬‬ ‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ )‪ (AI‬ﻫﻲ ‪4x + 3y – 10 = 0 :‬‬ ‫• ﻤﻌﺎﺩﻟﺔ ﺍﻟﻌﻤﻭﺩ )‪ : (BJ‬ﻟﺘﻜﻥ )‪ M (x . y‬ﻨﻘﻁﺔ ﻤﻥ )‪(AJ‬‬‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬‫‪AC‬‬ ‫‪ -1‬‬ ‫‪,‬‬ ‫‪BM‬‬ ‫‪x + 4‬‬ ‫‪,‬‬ ‫‪BM‬‬ ‫⊥‬ ‫• ﻟﺩﻴﻨﺎ ‪AC :‬‬ ‫‪ 1 ‬‬ ‫‪ y ‬‬ ‫ﻭﻤﻨﻪ ‪ -1 (x + 4) +1 . y = 0 :‬ﺃﻱ ‪-x + y – 4 = 0 :‬‬ ‫ﻫﻲ ﻤﻌﺎﺩﻟﺔ )‪(BJ‬‬ ‫• ﻤﻌﺎﺩﻟﺔ ﺍﻟﻌﻤﻭﺩ )‪: (CK‬‬ ‫ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ )‪(CK‬‬

‫‪uuur‬‬ ‫‪ -5‬‬ ‫‪,‬‬ ‫‪uuuur‬‬ ‫‪x‬‬ ‫‪- 0‬‬ ‫‪,‬‬ ‫‪uuuur‬‬ ‫⊥‬ ‫‪uuur‬‬ ‫‪AB‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪CM‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪CM‬‬ ‫ﻟﺩﻴﻨﺎ ‪AB :‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪3‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪ -5x – 2 (y – 3) = 0‬ﺃﻱ ‪-5x – 2y + 6 = 0 :‬‬ ‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ )‪ (CK‬ﻫﻲ ‪5x + 2y – 6 = 0 :‬‬ ‫‪ -2‬ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻷﻋﻤﺩﺓ ‪:‬‬ ‫‪4x + 3y - 10 = 0‬‬ ‫ﻨﻌﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ‪ (AI) :‬ﻭ)‪: (BJ‬‬ ‫‪4× -x + y - 4 = 0‬‬ ‫‪4x + 3y - 10 = 0‬‬ ‫ﻭﻤﻨﻪ ‪ -4x + 4y - 16 = 0 :‬ﺒﺎﻟﺠﻤﻊ ‪7y – 26 = 0 :‬‬ ‫‪−x +‬‬ ‫‪26‬‬ ‫‪-4=0‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪y‬‬ ‫=‬ ‫‪26‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪-2‬‬‫ﺇﺫﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ‬ ‫‪x‬‬ ‫=‬ ‫‪7‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫ﺃﻱ‪ -7x + 26 – 28 = 0 :‬ﺇﺫﻥ ‪-7x – 2 = 0 :‬‬ ‫‪W‬‬ ‫‪ -2‬‬ ‫;‬ ‫‪26 ‬‬ ‫ﻜل ﺍﻷﻋﻤﺩﺓ ﻫﻲ ‪:‬‬ ‫‪ 7‬‬ ‫‪7 ‬‬ ‫‪ -3‬ﺘﻌﻴﻴﻥ ﻤﺭﻜﺯ ﻭ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ ‪ABC‬‬ ‫ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﻤﺤﺎﻭﺭ ﺍﻟﻤﺜﻠﺙ ‪. ABC‬‬ ‫ﻟﺘﻜﻥ ‪ I , J‬ﻤﻨﺘﺼﻔﻲ ‪ AB , BC‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪[ ] [ ].‬‬‫‪‬‬ ‫‪x‬‬ ‫‪I‬‬ ‫=‬ ‫‪1-4‬‬ ‫=‬ ‫‪-3‬‬ ‫‪‬‬ ‫‪xJ‬‬ ‫=‬ ‫‪-4 + 0‬‬ ‫‪= -2‬‬‫‪‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬‫‪‬‬ ‫‪،‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪+0‬‬ ‫‪0+3‬‬ ‫‪3‬‬‫‪‬‬ ‫‪yI‬‬ ‫=‬ ‫‪2‬‬ ‫=‬ ‫‪1‬‬ ‫‪‬‬ ‫‪yJ‬‬ ‫=‬ ‫‪2‬‬ ‫=‬ ‫‪2‬‬‫‪‬‬ ‫‪‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻤﺤﻭﺭ ‪ : BC‬ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺤﻭﺭ] [‬ ‫‪uuur‬‬ ‫‪4‬‬ ‫‪uuur‬‬ ‫‪‬‬ ‫‪x+‬‬ ‫‪2‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪BC‬‬ ‫‪ 3 ‬‬ ‫‪IM‬‬ ‫‪‬‬ ‫‪y-‬‬ ‫‪‬‬ ‫‪IM‬‬ ‫ﻟﺩﻴﻨﺎ ‪BC :‬‬ ‫‪,‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪,‬‬ ‫⊥‬ ‫‪2‬‬

‫ﺃﻱ ‪8x + 6y + 7 = 0 :‬‬ ‫‪4 (x + 2) + 3‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪3‬‬ ‫‪=0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻤﺤﻭﺭ ‪ : AB‬ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺤﻭﺭ] [‬‫‪uuur‬‬ ‫‪ -5 ‬‬ ‫‪,‬‬ ‫‪uuur‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪,‬‬ ‫‪uuur‬‬ ‫⊥‬ ‫‪uuur‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬‫‪AB‬‬ ‫‪ -2 ‬‬ ‫‪JM‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪JM‬‬ ‫‪AB‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪-1‬‬ ‫‪−5‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪- 2 (y - 1) = 0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪−5 x‬‬ ‫‪- 2y‬‬ ‫‪-‬‬ ‫‪15‬‬ ‫‪+2=0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ ﻫﻲ ‪10x + 4y + 11 = 0 :‬‬ ‫‪5× 8x + 6y + 7 = 0‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺤﻭﺭﻴﻴﻥ ‪:‬‬ ‫‪4× 10x + 4y + 1 = 0‬‬ ‫‪40x + 30y + 35 = 0‬‬ ‫‪ -40x - 16y - 44 = 0‬ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ ‪14y- 9 = 0 :‬‬ ‫× ‪8x + 6‬‬ ‫‪9‬‬ ‫‪+‬‬ ‫‪7‬‬ ‫=‬ ‫‪0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫=‪y‬‬ ‫‪9‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪14‬‬ ‫‪14‬‬ ‫‪-19‬‬ ‫‪152‬‬ ‫=‪x‬‬ ‫‪14‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪8x +‬‬ ‫‪14‬‬ ‫‪=0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬‫ﻭﻫﻲ ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ ‪. ABC‬‬ ‫‪F‬‬ ‫‪ -19‬‬ ‫;‬ ‫‪9‬‬ ‫ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ‬ ‫‪ 14‬‬ ‫‪14 ‬‬ ‫ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ‪: FA‬‬ ‫= ‪FA‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪+‬‬ ‫‪19 2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪9 2‬‬ ‫=‬ ‫‪1450‬‬ ‫‪‬‬ ‫‪14 ‬‬ ‫‪‬‬ ‫‪14 ‬‬ ‫‪14‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 29‬‬ ‫‪ (1‬ﻤﻌﺎﺩﻟﺔ ‪ Γ1‬ﻫﻲ ‪( )( x - 1)2 + (y + 3)2 = α2 :‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ A ∈ Γ1 :‬ﻓﺈﻥ ‪( )(5 - 1)2 + (2 + 5)2 = α2 :‬‬ ‫ﺇﺫﻥ ‪α2 = 65 :‬‬ ‫ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ‪ Γ1‬ﻫﻲ ‪( )( x - 1)2 + (y + 3)2 = 65 :‬‬ ‫‪ (2‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪[ ]: ωA‬‬ ‫‪uuur‬‬ ‫ﻟﺘﻜﻥ )‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ ‪ :‬ﻟﺩﻴﻨﺎ‬‫‪uuur‬‬ ‫‪MA‬‬ ‫‪uuur uuuur‬‬‫‪Mω‬‬ ‫‪1-x ‬‬ ‫‪,‬‬ ‫‪5‬‬ ‫‪- x‬‬ ‫‪,‬‬ ‫‪MA . Mω = 0‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪-3‬‬ ‫‪-‬‬ ‫‪y‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪y‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪ (1 – x) (5 – x) + (-3 – y) (2 – y) = 0 :‬ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪5 - x - 5x + x2 - 6 + 3y - 2y + y2 = 0‬‬ ‫ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ‪x2 + y2 - 6x + y - 1 = 0 :‬‬ ‫‪ (3‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ ‪: ABω‬‬ ‫ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺤﺎﻭﺭ‪.‬‬ ‫ﻟﺘﻜﻥ ‪ J , I‬ﻤﻨﺘﺼﻔﻲ ‪ Bω , AB‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ] [ ] [‬‫‪‬‬ ‫‪xJ‬‬ ‫=‬ ‫‪1‬‬ ‫‪+1‬‬ ‫=‬ ‫‪1‬‬ ‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪5‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪=3‬‬‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪I‬‬‫‪‬‬ ‫‪-2 - 3‬‬ ‫‪-5‬‬ ‫‪،‬‬ ‫‪‬‬ ‫‪2-2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪‬‬ ‫‪y‬‬ ‫‪J‬‬ ‫=‬ ‫=‬ ‫‪‬‬ ‫‪y‬‬ ‫‪I‬‬ ‫=‬ ‫=‬ ‫‪0‬‬‫‪‬‬ ‫‪‬‬ ‫‪J‬‬ ‫‪‬‬ ‫‪1‬‬ ‫;‬ ‫‪-5 ‬‬ ‫‪,‬‬ ‫ﻭﻤﻨﻪ ‪I ( 3 ; 0) :‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪uuur uuur‬‬ ‫‪ -‬ﻤﻌﺎﺩﻟﺔ ﻤﺤﻭﺭ ‪[ ]: AB‬‬ ‫ﻟﺘﻜﻥ )‪ M (x , y‬ﻨﻘﻁﺔ ﻤﻥ ﻤﺤﻭﺭ ‪[ ]IM ⊥ AB : AB‬‬

uuur  -4 ; uuur x - 3 AB   IM    -4   y  -4 (x – 3) – 4y = 0 : ‫ﻭﻋﻠﻴﻪ‬ x + y – 3 = 0 : ‫ﺃﻱ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ ﻫﻲ‬ uuur uuur [ ]: Bω ‫ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ‬- [ ]JM ⊥ Bω : Bω ‫ ﻨﻘﻁﺔ ﻤﻥ ﻤﺤﻭﺭ‬M (x ; y) ‫ﻟﺘﻜﻥ‬ uuur 0  uuur x -1  Bω JM    -1 ;  y + 5   2 0 (x - 1) -  y + 5 =0 : ‫ﻭﻤﻨﻪ‬  2  2y + 5 = 0 : ‫ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ ﻫﻲ‬ : ‫ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺤﻭﺭﻴﻥ‬-  x + y- 3 = 0 y = -5 2 : ‫ﻨﺤل ﺍﻟﺠﻤﻠﺔ‬  x = 11  x - 5 -3 =0  2  2  : ‫ﺃﻱ ﺃﻥ‬  : ‫ﻭﻤﻨﻪ‬ -5 y -5  y = 2 = 2  S  11 ; -5  : ‫ﻭﻋﻠﻴﻪ ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ‬  2 2  x - 11 2 +  y + 5 2 = α2 : ‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ‬ 2   2 

‫‪‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫‪11 2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪-2‬‬ ‫‪+‬‬ ‫‪5 2‬‬ ‫‪= α2‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ B :‬ﻨﻘﻁﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻓﺈﻥ ‪:‬‬‫‪‬‬ ‫‪2 ‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪α2‬‬ ‫=‬ ‫‪41‬‬ ‫ﺃﻱ‬ ‫‪α2‬‬ ‫=‬ ‫‪82‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪11 2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪5‬‬ ‫=‬ ‫‪41‬‬ ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ‪:‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪2‬‬ ‫‪ (4‬ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ‪ :‬ﻟﺘﻜﻥ ‪ T‬ﻨﻘﻁﺔ ﺍﻟﺘﻤﺎﺱ‬‫‪ur‬‬ ‫‪uuur‬‬‫‪V‬‬ ‫‪1‬‬ ‫ﻟﺩﻴﻨﺎ ‪ ωT :‬ﺸﻌﺎﻉ ﻋﻤﻭﺩﻱ ﻋﻠﻰ‬‫ﻭﻤﻨﻪ ‪( ) ( ):‬‬ ‫∆‬ ‫∆‬ ‫‪‬‬ ‫‪2 ‬‬ ‫ﻫﻭ‬ ‫ﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ‬ ‫‪ur uuur‬‬ ‫‪‬‬ ‫‪. V ⊥ ωT‬‬‫‪ur‬‬ ‫‪1‬‬ ‫;‬ ‫‪uuur‬‬ ‫‪‬‬ ‫‪x0‬‬ ‫‪-1 ‬‬ ‫ﻨﻔﺭﺽ ) ‪T (x0 ; y0‬‬‫‪V‬‬ ‫‪ 2‬‬ ‫‪ωT‬‬ ‫‪‬‬ ‫‪y0‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪( x0 - 1) + 2 (y0 + 3) = 0 :‬‬ ‫ﺃﻱ ‪x0 + 2y0 + 5 = 0 :‬‬ ‫ﻟﺩﻴﻨﺎ ‪ T ∈ ∆ :‬ﻭﻤﻨﻪ ‪( )x0 - y0 + 2 = 0 :‬‬ ‫‪−3y0 - 3 = 0‬‬ ‫ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ ‪:‬‬ ‫‪‬‬ ‫‪x0‬‬ ‫‪-‬‬ ‫‪y0 + 2 = 0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪x0‬‬ ‫‪+‬‬ ‫‪2y0 + 5 = 0‬‬ ‫‪‬‬ ‫ﺇﺫﻥ ‪ y0 = -1 :‬ﻭﻋﻠﻴﻪ ‪x0 = -1 - 2 = -3 :‬‬ ‫ﺇﺫﻥ ‪T (-3 , -1) :‬‬ ‫ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ‪: Tω‬‬‫‪ωT2 = (-3 - 1)2 + (-1 + 3)2 = 20‬‬ ‫ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ‪( x - 1)2 + (y + 3)2 = 20 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 30‬‬ ‫ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪x2 + y2 - 2x + 4y - 11 = 0 :‬‬

‫‪( x - 1)2 - (1)2 + (y + 2)2 - (2)2 - 11 = 0‬‬ ‫‪( x - 1)2 + (y + 2)2 = 16‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ )‪ ω(1 ; -2‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪R = 4‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪2x + 2y2 + 4x + 8y + 10 = 0 :‬‬ ‫ﺃﻱ ‪2 (x2 + y2 + 2 x + 4y + 5) = 0 :‬‬ ‫‪x2 + y2 + 2x + 4y + 5 = 0‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬‫‪( x + 1)2 + (y + 2)2 − (1)2 − (2)2 + 5 = 0‬‬ ‫ﻭﻋﻠﻴﻪ ‪( x + 1)2 + ( y + 2)2 = 0 :‬‬ ‫ﻭﻤﻨﻪ ‪ x + 1 = 0 :‬ﻭ ‪y + 2 = 0‬‬ ‫ﺃﻱ ‪ x = -1 :‬ﻭ ‪y = -2‬‬ ‫ﻤﺠﻤﻭﻉ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﻘﻁﺔ )‪I (-1 ; - 2‬‬ ‫‪-x2 - y2 + 6x + 10y - 60 = 0‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪x2 + y2 - 6x - 10y + 60 = 0‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬‫‪( x - 3)2 - (3)2 + (y - 5)2 - (5)2 + 60 = 0‬‬‫‪( x - 3)2 + (y - 5)2 = -26‬‬ ‫‪y3 + x2 y - 4xy + 5y2 = 0‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺨﺎﻟﻴﺔ ‪.‬‬‫‪y (y2 + x2 − 4x + 5y) = 0‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫ﺇﻤﺎ ‪ y = 0 :‬ﺃﻭ ‪x2 + y2 - 4x + 5y = 0‬‬‫‪(x‬‬ ‫‪- 2)2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪5 2‬‬ ‫‪-4-‬‬ ‫‪25‬‬ ‫=‬ ‫‪0‬‬ ‫ﺃﻭ‬ ‫ﺃﻱ ‪y = 0 :‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫‪(x‬‬ ‫‪-‬‬ ‫‪2)2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪5‬‬ ‫‪2‬‬ ‫=‬ ‫‪41‬‬ ‫ﺃﻭ‬ ‫ﻭﻤﻨﻪ ‪y = 0 :‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪4‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺇﺘﺤﺎﺩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪ y = 0‬ﻭ ﺍﻟﺩﺍﺌﺭﺓ‬

‫‪.‬‬ ‫‪41‬‬ ‫ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ‬ ‫‪L‬‬ ‫‪‬‬ ‫‪2‬‬ ‫;‬ ‫‪-5 ‬‬ ‫ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 31‬‬‫‪x2 + y2 - 2m x - 2 (1 + m) y + 6m + 1 = 0‬‬‫‪x2 - 2m x + y2 - 2 (1 + m) y + 6m + 1 = 0‬‬‫‪( x - m)2 - m2 + [ y - (1 + m)]2 - (1 + m)2 + 6m + 1 = 0‬‬‫‪( x - m)2 + [ y - (1 + m)]2 = m2 + 1 + 2m + m2 - 6m -1‬‬‫‪( x - m)2 + [ y - (1 + m)]2 = 2m2 − 4m‬‬‫)‪( x + m)2 + [ y - (1 + m)]2 = 2m (m - 2‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ x2 + (y - 1)2 = 0 : m = 0‬ﻭﻤﻨﻪ )‪(x ; y) = (0 ; 1‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻨﻘﻁﺔ )‪. M0 (0 ; 1‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ ( x- 2)2 +(x- 3)2 = 0 : m = 2‬ﺃﻱ ‪(x ; y) = (2 ; 3) :‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻨﻘﻁﺔ )‪. M1 (2 ; 3‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ m ∈ 0 ; 2 :‬ﻓﺈﻥ ‪] [2m (m - 2) < 0 :‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﺨﺎﻟﻴﺔ ‪.‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ m ∈ ]-∞ ; 0[ ∪ ]2 ; +∞[ :‬ﻓﺈﻥ ‪2m (m - 2) > 0 :‬‬ ‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ )‪ ω(m ; m+1‬ﻭ ﻨﺼﻑ‬ ‫ﺍﻟﻘﻁﺭ )‪. 2m (m - 2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 32‬‬ ‫‪ (1‬ﺇﺜﺒﺎﺕ ﺃﻥ ‪ Cm‬ﺩﺍﺌﺭﺓ ‪( ):‬‬‫‪x2 +‬‬ ‫‪y2 −‬‬ ‫‪2 (1 - m) x + (1 + 6m) y + 5m -‬‬ ‫‪5‬‬ ‫‪=0‬‬ ‫‪4‬‬‫[‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪(1‬‬ ‫‪-‬‬ ‫‪m)]2‬‬ ‫‪−‬‬ ‫‪(1‬‬ ‫‪-‬‬ ‫‪m)2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪1+6m‬‬ ‫‪2‬‬ ‫‪−‬‬ ‫‪‬‬ ‫‪1+6m‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬

+ 5m - 5 =0 4[ x - (1- m)]2 + y + 1+6m2 = 1- 2m + m2 +1 +12m +36m2 2  4 - 5m + 5 4[ x - (1 - m)]2 + y + 1 + 6m 2 = 2  4 - 8m + 4m2 + 1 + 12m + 362 - 20m + 5 4[ x - (1 - m)]2 +  1 + 6m  2 40m2 - 16m + 10  2  4 y + = 40m2 - 16m + 10 ‫ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ‬ ∆ < 0 ‫ = ∆ ﺃﻱ‬1344 ‫( = ∆ ﻭﻤﻨﻪ‬-16)2 - 4 (40) (10) 40m2 - 16m + 10 > 0 : ‫ﻭﻤﻨﻪ‬ 1 + 6m  2  ( )ω1 - m ; - Cm ‫ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ‬ : ‫ﻭﻋﻠﻴﻪ‬

40m2 − 16m + 10 2 : ‫ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ‬ : (C1 ) , (C0 ) ‫( ﺇﻨﺸﺎﺀ‬2C1   0 ; -7  , 34  , C0   1 ; -1  , 10   ω1  2    ω0  2    2   2  y 2 1 (C0) -3 -2 -1 0 1ω0 2 3x -1 (C1) -2 -3 : ‫ﻭﻤﻨﻪ‬ ω1 ωm  1 - m ; - 1 + 6m  (3  2  -4 -5 -6 -7 m = 1-x  y = - 1 + 6(1 - x) : ‫ﻭﻤﻨﻪ‬  2

y = 6x - 7 : ‫ﺇﺫﻥ‬ 2 6x - 7 y = 2 ‫ﻫﻲ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ‬ ωm ‫ﻤﺠﻤﻭﻉ ﺍﻟﻨﻘﻁ‬ ( )B ; A ‫ ﺘﺸﻤل ﻨﻘﻁﺘﺎﻥ ﺜﺎﺒﺘﺘﺎﻥ‬Cm ‫( ﺇﺜﺒﺎﺕ ﺃﻥ‬4x2 + y2 - 2 (1 - m) x + (1 + 6m) y + 5m - 5 =0 4 5x2 + y2 - 2x + 2mx +y + 6my + 5m - 4 =04x2 + 4y2 - 8x + 8mx + 4y + 24my + 20m - 5 = 04x2 + 4y2 - 8x + 4y - 5 + m (8x + 24y + 20) = 0 8x + 24y + 20 = 0   4x 2 + 4y2 − 8x + 4y -5=0 : ‫ﻭﻋﻠﻴﻪ‬ 2x + 6y + 5 = 0   4x 2 + 4y2 − 8x + 4y - 5 = 0 : ‫ﻭﻤﻨﻪ‬ : ‫ﺇﺫﻥ‬ x = 1 (-6y - 5) 24 × 1 (-6y - 5)2 + 4y2 − 8× 1 (-6y - 5) + 4y -5 = 0 4 2 1× (36y2 + 60y +25) + 4y2 + 24y + 20 + 4y - 5 = 0 : ‫ﻭﻤﻨﻪ‬ 36 y2 + 60y + 25 + 4y2 + 24y + 20 + 4y - 5 = 0 40 y2 + 88y + 40 = 0 5 y2 + 11y + 5 = 0

‫‪∆ = (11)2 − 4 (5) (5) = 21‬‬‫‪y2‬‬ ‫=‬ ‫‪−11+‬‬ ‫‪21‬‬ ‫;‬ ‫‪y1‬‬ ‫=‬ ‫‪−11-‬‬ ‫‪21‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬ ‫‪∆>0‬‬ ‫‪10‬‬ ‫‪10‬‬ ‫‪x1‬‬ ‫=‬ ‫‪1‬‬ ‫‪66+6‬‬ ‫‪21‬‬ ‫‪-‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪:‬‬ ‫‪y‬‬ ‫=‬ ‫‪−11-‬‬ ‫‪21‬‬ ‫‪‬‬ ‫‪10‬‬ ‫‪‬‬ ‫‪10‬‬ ‫ﻟﻤﺎ‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x1‬‬ ‫=‬ ‫‪8‬‬ ‫‪+3‬‬ ‫‪21‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪10‬‬ ‫‪x2‬‬ ‫=‬ ‫‪1‬‬ ‫‪‬‬ ‫‪+66‬‬ ‫‪-6‬‬ ‫‪21‬‬ ‫‪-‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪:‬‬ ‫=‪y‬‬ ‫‪−11+‬‬ ‫‪21‬‬ ‫ﻟﻤﺎ‬ ‫‪2‬‬ ‫‪‬‬ ‫‪10‬‬ ‫‪‬‬ ‫‪10‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x2‬‬ ‫=‬ ‫‪8‬‬ ‫‪-‬‬ ‫‪3‬‬ ‫‪21‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪10‬‬ ‫ﺇﺫﻥ ‪. B (x2 , y2 ) , A (x1 , y1 ) :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 33‬‬ ‫ﺩﺭﺍﺴﺔ ﻭﻀﻌﻴﺔ )‪ (C‬ﻭ ∆ ‪ :‬ﻨﺤل ﺍﻟﺠﻤﻠﺔ) (‬ ‫‪x - y + m = 0‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2 + 2x - 4y = 0‬‬ ‫‪x = y - m‬‬ ‫‪(y - m)2 + y2 + 2 (y - m) - 4y = 0‬‬ ‫‪x = y - m‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪y2‬‬ ‫‪−‬‬ ‫‪2m y +‬‬ ‫‪m2 + y2 + 2y - 2m - 4y = 0‬‬ ‫‪x = y - m‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪2y‬‬ ‫‪2‬‬ ‫‪−‬‬ ‫‪2my‬‬ ‫‪- 2y‬‬ ‫‪+ m2‬‬ ‫‪- 2m = 0‬‬

‫‪x = y - m‬‬ ‫‪‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪2y‬‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪2‬‬ ‫‪(m‬‬ ‫‪+‬‬ ‫)‪1‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪m2‬‬ ‫‪-‬‬ ‫‪2m‬‬ ‫=‬ ‫‪0‬‬ ‫ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪2 y2 - 2 (m + 1) y + m2 − 2m = 0 :‬‬‫‪ ∆′ = b′2 − ac‬ﺃﻱ ‪∆′ = (m + 1)2 − 2 (m2 − 2m) :‬‬ ‫‪∆′ = m2 + 2m + 1 - 2m2 + 4m‬‬ ‫‪∆′ = -m2 + 6m + 1‬‬ ‫ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ‪∆′m = (3)2 − 1 (-1) = 10 : ∆′‬‬ ‫‪m2‬‬ ‫=‬ ‫‪−3‬‬ ‫‪+‬‬ ‫‪10‬‬ ‫;‬ ‫= ‪m1‬‬ ‫‪−3 - 10‬‬ ‫ﻟﻪ ﺠﺫﺭﺍﻥ ‪:‬‬ ‫‪∆′‬‬ ‫‪−1‬‬ ‫‪−1‬‬ ‫ﺇﺫﻥ ‪m2 = 3 - 10 ; m1 = 3 + 10 :‬‬‫‪m‬‬ ‫‪−∞ m2‬‬ ‫∞‪m1 +‬‬‫‪∆′ -‬‬ ‫‪+-‬‬ ‫ﻤﻨﺎﻗﺸﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪:‬‬ ‫• ﻟﻤﺎ ‪∆′ < 0 : m ∈ -∞ ; m2 ∪  m1 ; +∞ :‬‬ ‫ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻭ ﻋﻠﻴﻪ )‪ (C‬ﻭ ‪ ∆m‬ﻤﻨﻔﺼﻼﻥ) (‬ ‫• ﻟﻤﺎ ‪ ∆′ > 0 : m ∈ m2 ; m1 :‬ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ‪:‬‬ ‫‪y1 = m + 1 -‬‬ ‫‪-m2 + 6 m + 1‬‬ ‫‪2‬‬ ‫‪y2 = m + 1 +‬‬ ‫‪-m2 + 6 m + 1‬‬ ‫‪2‬‬ ‫ﻟﻤﺎ ‪x1 = y1 − m : y = y1‬‬ ‫‪x1 = -m + 1 -‬‬ ‫‪-m2 + 6m + 1‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪2‬‬

‫ﻟﻤﺎ ‪x2 = y2 − m : y = y2‬‬ ‫= ‪x2‬‬ ‫‪-m +1+‬‬ ‫‪-m2 + 6m + 1‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫ﻭﻤﻨﻪ ‪ ∆m‬ﻴﻘﻁﻊ )‪ (C‬ﻓﻲ ﻨﻘﻁﺘﻴﻥ ‪( ):‬‬ ‫) ‪B (x2 , y2 ) ; A (x1 , y1‬‬ ‫• ﻟﻤﺎ ‪ m = m1‬ﻓﺈﻥ ‪∆ = 0 :‬‬ ‫‪y0‬‬ ‫=‬ ‫‪m+1‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ‬ ‫•‬ ‫‪2‬‬ ‫‪y0‬‬ ‫=‬ ‫‪4+‬‬ ‫‪10‬‬ ‫ﺃﻱ‬ ‫‪y0 = 3 +‬‬ ‫‪10 + 1‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪2 :‬‬ ‫‪x0‬‬ ‫=‬ ‫‪-2 -‬‬ ‫‪10‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪ ∆m‬ﻤﻤﺎﺴﺎ)‪ (C‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ) ‪( )C (x0 ; y0‬‬ ‫‪y0‬‬ ‫=‬ ‫‪4‬‬ ‫‪+‬‬ ‫‪10‬‬ ‫ﺃﻱ‬ ‫‪y0 = 3 +‬‬ ‫‪10 + 1‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪2‬‬ ‫‪x0‬‬ ‫=‬ ‫‪y0‬‬ ‫‪−‬‬ ‫‪m1‬‬ ‫=‬ ‫‪4+‬‬ ‫‪10‬‬ ‫‪−‬‬ ‫‪m1‬‬ ‫‪:‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪+‬‬ ‫‪10‬‬ ‫‪10 = 4 +‬‬ ‫‪10 - 6 - 2 10‬‬‫‪( )x0‬‬‫=‬ ‫‪2‬‬ ‫‪-‬‬ ‫‪3+‬‬ ‫‪2‬‬ ‫‪x0‬‬ ‫=‬ ‫‪−2‬‬ ‫‪−‬‬ ‫‪10‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪ ∆m1‬ﻤﻤﺎﺱ ‪ C‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪( ) ( ) ( )C x0 ; y0‬‬‫‪y0′‬‬ ‫=‬ ‫‪m2 + 1‬‬ ‫ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﻌﻑ ‪:‬‬ ‫∆‬ ‫‪=0‬‬ ‫‪:‬‬ ‫‪m = m2‬‬ ‫ﻟﻤﺎ‬ ‫‪2‬‬

‫‪y0′‬‬ ‫=‬ ‫‪4‬‬ ‫‪−‬‬ ‫‪10‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪y0′ = 3 −‬‬ ‫‪10 + 1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪−‬‬ ‫‪10‬‬ ‫‪( )x0′‬‬‫=‬ ‫‪2‬‬ ‫‪−‬‬ ‫‪3−‬‬ ‫‪10‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‪:‬‬‫‪x0′‬‬ ‫=‬ ‫‪−2‬‬ ‫‪+‬‬ ‫‪10‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪x0′ = 4 −‬‬ ‫‪10 − 6 − 2 10‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﻭﻋﻠﻴﻪ ‪ ∆m2‬ﻤﻤﺎﺱ ‪ C‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪( ) ( ) ( )F x0′ ; y0′‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 34‬‬ ‫‪ (1‬ﺘﻌﻴﻴﻥ ‪( )x2 + y2 + 2 x − y = 5 : C1‬‬ ‫‪( x + 1)2 +‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪1 2‬‬ ‫‪-1-‬‬ ‫‪1‬‬ ‫=‬ ‫‪5‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫‪(x‬‬ ‫‪+‬‬ ‫‪1)2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫=‬ ‫‪25‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪( )5‬‬ ‫‪ω1‬‬ ‫‪‬‬ ‫‪−1‬‬ ‫;‬ ‫‪1‬‬ ‫‪C1‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪2‬‬ ‫ﻗﻁﺭﻫﺎ‬ ‫ﻭﻨﺼﻑ‬ ‫ﺱ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ‬ ‫‪ (2‬ﻤﻌﺎﺩﻟﺔ ‪( x − 4)2 + ( y − 3)2 = 25 ( ): C2‬‬ ‫ﻭ ﻤﻨﻪ ‪x2 + y2 − 8 x − 6 y = 0 :‬‬

‫‪ (3‬ﺇﻨﺸﺎﺀ ‪ C1‬ﻭ ‪( ) ( ): C2‬‬‫)‪(C1‬‬ ‫‪y‬‬ ‫‪7‬‬ ‫‪6‬‬ ‫‪(C2) 5‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬‫‪-5 -4 -3 -2 -1 0‬‬ ‫‪1 2 3 4 5 6 7 8 9x‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬ ‫‪-4‬‬ ‫‪ -‬ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻌﻬﻤﺎ ‪:‬‬ ‫‪x2 + y2 + 2x - y = 5‬‬ ‫‪‬‬ ‫ﻨﺤل ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2 −‬‬ ‫‪8x - 6y = 0‬‬ ‫ﺒﺎﻟﻁﺭﺡ ‪ 10x + 5y = 5 :‬ﻭﻤﻨﻪ ‪2x + y = 1 :‬‬‫ﺇﺫﻥ ‪ y = 1 – 2x :‬ﻭﻋﻠﻴﻪ ‪x2 + (1- 2x)2 + 2x - (1 - 2x) = 5 :‬‬ ‫ﺃﻱ ‪x2 + 1 - 4x + 4x2 + 2x - 1 + 2x = 5 :‬‬ ‫ﻭ ﻤﻨﻪ ‪ 5 x2 = 5 :‬ﻭ ﻋﻠﻴﻪ ‪ x = 1 :‬ﺃﻭ ‪x = -1‬‬ ‫ﻟﻤﺎ ‪ y = -1 : x = 1‬؛ ﻟﻤﺎ ‪y = 3 : x = - 1‬‬ ‫ﻭﻤﻨﻪ ‪(C1 ) ∩ (C2 ) = {F (1 ; -1) , H (-1 ; 3)} :‬‬ ‫‪ – (4‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﺩﺍﺌﺭﺓ ‪ C1‬ﻋﻨﺩ ‪( ): F‬‬

( )C1 : x2 + y2 + 2x - y - 5 = 0 ، F (1 ; -1) ( ) ( )C1 ‫ ﻨﻘﻁﺔ ﻤﻥ‬M (x ; y) ‫ ﻭﻟﺘﻜﻥ‬،‫∆ ﻫﺫﺍ ﺍﻟﻤﻤﺎﺱ‬1 ‫ﻟﻜﻥ‬uuuur 2  uuuur  x -1 uuuur uuuurω1F   FM  y + 1 ; FM ⊥ ω1F : ‫ﻟﺩﻴﻨﺎ‬  -3  ; 2 4x – 3y – 7 = 0 : ‫ﺃﻱ‬ 2 (x - 1) - 3 (y + 1) = 0 : ‫ﻭﻋﻠﻴﻪ‬ 2 ( ): F ‫ ﻋﻨﺩ‬C2 ‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﺩﺍﺌﺭﺓ‬ ω2 (4 ; 3) ; (C2 ) : x2 + y2 − 8x - 6y = 0 ( ). ‫ ∆ ﻫﺫﺍ ﺍﻟﻤﻤﺎﺱ‬2 ‫ﻟﺘﻜﻥ‬ ( ). ∆ 2 ‫ ﻨﻘﻁﺔ ﻤﻥ‬M (x ; y) ‫ﻨﻔﺭﺽ‬ uuuur  -3  , uuuur  x - 4 uuuur uuuur ω2F   FM  y  , FM ⊥ ω2F  -4   - 3  -3 (x – 4) – 4 (y – 3) = 0 : ‫ﻭﻋﻠﻴﻪ‬ ( )3x + 4y – 24 = 0 : ‫ ∆ ﻫﻲ‬2 ‫ﻤﻌﺎﺩﻟﺔ‬ ( ) ( )ur4  ur 3 ∆1 U V  -3  ‫ﻫﻭ‬ ∆2 ‫ﺘﻭﺠﻴﻪ‬ ‫ﻭﺸﻌﺎﻉ‬  4  ‫ﻫﻭ‬ ‫ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ‬  ur ur   U . V = 4 (3) - 3 (4) = 0 ur ur ( ) ( )‫∆ ﻤﺘﻌﺎﻤﺩﻴﻥ‬2 ‫∆ و‬1 ‫ ﻭﻤﻨﻪ‬U ⊥ V : ‫ﻭﻋﻠﻴﻪ‬ ( ) ( )‫ ﻟﺘﻜﻥ‬: H u(-u1u;ur3) ‫ ﻋﻨﺩ‬uCuu1ur ‫ ∆ ﻟﻠﺩﺍﺌﺭﺓ‬3 ‫ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ‬- ( )ω1H ⊥ HM . ∆3 ‫ ﻨﻘﻁﺔ ﻤﻥ‬M (x ; y) uuuur  x + 1 uuuur 0  HM  y - 3  ω1H   ;  5  : ‫ﺤﻴﺙ‬ 2


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook