اﻟﺤـﻠــــــﻮل ﺍﻟﺘﻤﺭﻴﻥr .r 1 (1ﺤﺴﺎﺏ : u . v rr )u . v =r -1r(x + 3) + (x + 1) (x + 1 u . v = - x r- 3 r+ x2 + 2x + 1 r u r. v = x2 +x - 2 rr (2ﺘﻌﻴﻴﻥ xﺒﺤﻴﺙ ﻴﻜﻭﻥ uو vﻤﺘﻌﺎﻤﺩﻴﻥ u . v = 0 : ﻭﻋﻠﻴﻪ x2 + x - 2 = 0 :∆ =9 ﻭﻋﻠﻴﻪ : )∆ = (1)2 - 4 (1) (-2 x2 = -1 + 3 = 1 ; x1 = -1 - 3 = -2 2 2r ﺇﺫﻥ rx = -2 :ﺃﻭ xr= -1u = 2x2 + 8x + 10 (3ﺤﺴﺎﺏ uو : v r r u = (x + 3)2 + (x + 1)2ﺃﻱ: v = x2 + 2x + 2 r v = (-1)2 + (x + 1)2ﻭﻤﻨﻪ : rr (4ﺘﻌﻴﻴﻥ xﺒﺤﻴﺙ u = v :ﺃﻱ 2x2 + 8x + 10 = x2 + 2x + 2 :ﻭﻤﻨﻪ : 2x2 + 8x + 10 = x2 + 2x + 2ﻭ ﻋﻠﻴﻪ x2 + 6x + 8 = 0 :ﻟﺩﻴﻨﺎ ∆ = (6)2 - 4 (8) = 4 :ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ :x2 = -6 + 2 = -2 ; x1 = -6 - 2 = -4 2 2 ﻗﻴﻡ xﻫﻲ . -4 ; -2 :
( )r r ( ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﻟـ5 r r: u , v r u . v = 10 : ﺩﻴﻨﺎr ﻟx = 3 ﻤﻥ ﺃﺠل v = 17 ; u = 2 13 rr r r rr cos u , v : ﻭﻟﺩﻴﻨﺎ ( )u . v = u . v : ﻭﻋﻠﻴﻪ rr rr = ru . vr ( ): ﺃﻱ ﺃﻥcos u , v u.v ( )r r 10 cos u , v = 17 . 2 13 rr; rr 5 × 2 21 u,v 221( ) ( ) ( )cos u , v 0,34 : ﺃﻱcos = : ﻭﻤﻨﻪ rr u , v ; 1,23 + 2kπ ; k ∈ ¢ : ﺇﺫﻥ r r. 2ﺍﻟﺘﻤﺭﻴﻥ : v , u ( ﺤﺴﺎﺏ1 r 1 2 + − 5 2 u= 2 2 r 26 : ﺃﻱ r 1 + 25 : ﺃﻱ u= 2 u= 4 4r 9 + 36 : ﺃﻱ r (3)2 + 6 2v= 25 v= 5 r = 3 29 : ﺃﻱ r 261 : ﻭﻤﻨﻪv 5 v= 5 rr 1 + 6 × -5 rr u. v=3 × 2 5 4 : u . v ( ﺤﺴﺎﺏ2
rr r . r 3 - 3 ﻭﻤﻨﻪ : ﺃﻱ u . v = 0 : u =v 2 r 2 r ﻭﻨﺴﺘﻨﺘﺞ ﺃﻥ uو vﻤﺘﻌﺎﻤﺩﻴﻥ. ﺍﻟﺘﻤﺭﻴﻥ. 3 uuur (1ﺃﺤﺴﺏ AD , BC , DC , ABuuur uuur DC uuurAD 2 , BC 2 , 3 , AB 3 : ﻟﺩﻴﻨﺎ 1 1 -4 -4 ﻭﻋﻠﻴﻪ AB = (3)2 + (-4)2 :ﺃﻱ AB = 5 : DC = (3)2 + (-4)2ﺃﻱ DC = 5 : BC = (2)2 + (1)2ﺃﻱ BC = 5 : AD = (2)2 + (1)2ﺃﻱ AD = 5 : (2ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ : ABCDﻟﺩﻴﻨﺎ AB = DC :ﻭ BC = ADﻭﻤﻨﻪ ﺍﻟﺭﺒﺎﻋﻲ ABCDﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻷﻥ ﻓﻴﻪ ﻜل ﻀﻠﻌﻴﻥ ﻤﺘﻘﺎﺒﻠﻴﻥ ﻤﺘﻘﺎﻴﺴﻴﻥ ﺍﻟﺘﻤﺭﻴﻥ. 4 rr ﺘﻌﻴﻴﻥ : λ ( ) ( )r rﻴﻜﻭﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ λu - vو λu + vﻤﺘﻌﺎﻤﺩﻴﻥ ﺇﺫﺍ ﻭﻓﻕ ﺇﺫﺍ ﻜﺎﻥ : ( ) ( )r r r r λu - v λu + v = 0 λ2 ur 2 - vr 2 = 0 ur 2 = 5 ﺃﻱ : ur 2 = (1)2 + (2)2 : ﺃﻱ : r ﺃﻱ : r = (3)2 + (4)2 ﻭﻟﺩﻴﻨﺎ v v 2 = 25 2 ﻭﻤﻨﻪ λ2x5 - 25 = 0 : λ2 = 5 ﺃﻱ : λ2 = 25 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 5
ﺇﺫﻥ λ = 5 :ﺃﻭ λ = - 5 λﻟﻪ ﻗﻴﻤﺘﻴﻥ ﻫﻤﺎ − 5 ; 5 : ﺍﻟﺘﻤﺭﻴﻥ. 5 rr ﺘﻌﻴﻴﻥ αﻓﻲ ﻜل ﺤﺎﻟrﺔ : (1ﻟﺩﻴﻨﺎ v = 1 :و : u Pv rﻭﻤﻨﻪ α2 + β2 = 1 α2 + β2 = 1 ﻭﻋﻠﻴﻪ : v = α2 + β2 rr ﻟﺩﻴﻨﺎ u P v :ﻭﻋﻠﻴﻪ α 2 + β = 0 : β = -α 2 α2 + β2 = 1 ﺃﻱ : ﻭﻤﻨﻪ 2 + β = 0 : α 2 + 2 α2 = 1 α = 3 أو α=- 3 α2 = 1α 3 3 3 ﻭﺒﺎﻟﺘﺎﻟﻲ : ﻭﻋﻠﻴﻪ :β = -α 2 β = -α 2 β = -6 =: α 3 ﻟﻤﺎ : 3 3 β = 6 : α=- 3 ﻟﻤﺎ : r3 r 3 r (2ﻟﺩﻴﻨﺎ v = 2 :و u ⊥ v r α2 + β2 = 4 r vﻭﻋﻠﻴﻪ : =2 : ﻟﺩﻴﻨﺎ r ﻭ ﻟﺩﻴﻨﺎ u ⊥ v :ﻭﻋﻠﻴﻪ −α + β 2 = 0 : α = β 2 α2 + β2 = 4 : ﻭﻤﻨﻪ ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 2 β2 + β2 = 4 α = β 2
β2 = 4 α = β 2 3 3 β2 = 4 : ﺃﻱ : ﺃﻱ α = β 2α=β 2 َو β = 23 أو β = -2 3 : ﻭﻤﻨﻪ 3 3 α = 26 ﻓﺈﻥ β= 23 : ﻟﻤﺎ 3 3 α = -2 6 ﻓﺈﻥ β = -2 3 : ﻟﻤﺎ 3 r 3 r u . v = 3 , V = 12 (3α2 + β2 = 12 α2 + β2 = 12 : ﺃﻱ -α + β : ﻭﻋﻠﻴﻪα = β 2 -3 2 =3 ( β 2 - 3)2 + β2 = 12 : ﺃﻱ ﺃﻥ : ﻭﻤﻨﻪ α = β 2 - 3β3 - 2β 2 - 1 = 0 3β3 - 6β 2 - 3 = 0 : ﺇﺫﻥα = β 2 - 3 α = β 2 - 3∆ = 12 β2 - 2β 2 - 1 = 0 : ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ( ): = ∆ ﺃﻱ-2 2 2 - 4 (-1) : ﻟﺩﻴﻨﺎβ2 = 2 2+ 12 , β1 = 2 2 - 12 2 2 : ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ β1 = 2 2 -2 3 ; β2 = 2 2 +2 3 2 2
β1 = 2 - 3 ; β2 = 2 + 3( )α = 2 - 3 2 - 3 : β1 = 2 - 3 : ﻟﻤﺎ . α = -1 - 6 : ﺃﻱ( )α = 2 + 3 2 - 3 : β2 = 2 + 3 : ﻭﻟﻤﺎ . α = -1 + 6 : ﺃﻱ . 6ﺍﻟﺘﻤﺭﻴﻥ ( )r 1 ﻟﺩﻴﻨﺎ : ﺤﺎﻟﺔ ﻜل ﻓﻲ rr ﺤﺴﺎﺏ i,u i 0 rr : r 0 (1i.u=1 × 0+0 × 3=0 u 3 rr π + 2kπ ; k∈¢ : ﻭﻋﻠﻴﻪ (i , u) = 2rr × (-5) + 0 × 0 = -5 : r -5i . u =1 rr rr u (2 r0 rrr : ﻭﻤﻨﻪ i.u= i . u cos (i , u ) rr rr5 cos (i , u ) = -5 : ﺇﺫﻥi . u = 1r ×r 5 cos (i , u ) r r cos (i , u ) = -1 : ﻭﺒﺎﻟﺘﺎﻟﻲ (i , u) = π + 2kπ , k ∈ ¢ : ﻭﻤﻨﻪrr 3) = 2 , r 2 (3i . u = 1 × 2 + 0 (-2 r u r-2r 3 rr r r ri . u = i × u × cos (i , u ) = 4 cos (i , u ) : ﻭﻜﺫﻟﻙ rr r4 cos (i , u ) = 2 : ﻭﻤﻨﻪi = 1 , u = 4 : ﻷﻥ
rr π + 2kπ ; k∈¢ : ﻭﻋﻠﻴﻪ rr 1 : ﺇﺫﻥ(i . u) = 3 cos( i , u ) = 2 - 3r r r i. u - 3 5 -3 u 4 = 1 + 0 . 4 = 4 , 5 : ﻟﺩﻴﻨﺎ (4 4 4 r 3 + 5 rr r r rr u= 16 16 i . u = i × u × cos (i , u ) : ﻟﻜﻥ rr 2 rr r = 2 : ﺃﻱ i . u= 2 cos (i , u ) : ﻭﻋﻠﻴﻪ u 2cos r r = -6 : ﻭﻋﻠﻴﻪ 2 cos r r = - 3 :ﻭﻤﻨﻪ (i , u) 4r 2 (i , u) 4 r (i , u) ; 2,33 + 2kπ ; k ∈ ¢ : ﻭﺒﺎﻟﺘﺎﻟﻲ . 7ﺍﻟﺘﻤﺭﻴﻥ uuur M (x ; y) ﻨﻔﺭﺽ: M ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ BC BuuMuruuurxy -4 ; -3 : ﻟﺩﻴﻨﺎ +u4uur 6 -4 (x – 3) + 6 (y + 4) = 0 : ﻭﻋﻠﻴﻪBM . BC = 0 -2x + 3y + 18 = 0 : ﺃﻱ-4x + 6y + 36 = 0 : ﺇﺫﻥ ( )-2x + 3y + 18 = 0 : ﻫﻲ ﻤﺴﺘﻘﻴﻡ ∆ ﻤﻌﺎﺩﻟﺘﻪM ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁx36 : ﺇﻨﺸﺎﺀ ﺍﻟﻤﺠﻤﻭﻋﺔy -4 -2
y 6 5 4 3 2C1-4 -3 -2 -1 0 1 2 3 4 5 6 7 8x -1 )∆( -2-3B-4-5-6ﺍﻟﻤﻼﺤﻅﺔ :ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﻋﻤﻭﺩﻱ ﻋﻠﻰ ) (BCﻓﻲ ﺍﻟﻨﻘﻁﺔ ( ).B ﺍﻟﺘﻤﺭﻴﻥ. 8 ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ : Mﻨﻔﺭﺽ )M (x ; y uuur uuuur AB -3 ; AM x -1 uuuur uyu+ur 4 1 AM . AB = -4ﻭﻋﻠﻴﻪ −3 × (x - 1) + 1 × (y + 4) = -4 : ﺇﺫﻥ -3x + y + 11 = 0 : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻫﻲ ﻤﺴﺘﻘﻴﻡ ∆) ( -ﺇﻨﺸﺎﺀ ∆ ﻭ ) : (ABﻗﻴﻡ ﻤﺴﺎﻋﺩﺓ ﻟﺭﺴﻡ ∆ ( ) ( ):x23y 5- 2-
( )(AB) ﻨﻼﺤﻅ ﺃﻥ ∆ ﻋﻤﻭﺩﻱ ﻋﻠﻰ y 6 (∆) 5 4 3 2 1-4 -3 -2 -1 0 1 2 3 4 5 6 7 8x -1 -2 -3 BA -4 -5 -6 uuur u. u9urﺍﻟﺘﻤﺭﻴﻥ AC . BCuuur uuur uuur uuur uuur uuur ﺤﺴﺎﺏAB 2 = ( ACuA+uBurC2B=)2AuuCur: 2ﻋﻠﻴﻪ+ﻭ AB = AC + CB : ﻟﺩﻴﻨﺎ ABuu2ur= AuuCur2 + : ﺇﺫﻥ uuur 2 + uuur uuur : ﻭﻤﻨﻪ CB 2uAuurC .uCuurB CB2 - 2AC . BC 2AC . BC = AC2 + CB2 - AB2 : ﺇﺫﻥ ( )uuur uuur BC 1 AC . 2 = AC2 + CB2 - AB2 : ﻭﻋﻠﻴﻪ uuur uuur 1 (25 + 100 - 16) AC . BC = 2
uuur . uuur = 109 : ﺇﺫﻥ AC BC 2 rr rr . 10ﺍﻟﺘﻤﺭﻴﻥ 3u . (−v) = -3 × u . v = -3 × (5) = -15 r r r r r r(u + v) (u - v) = u 2 - v 2 = (1)2 - (5)2 = -24 r + r r - r = ur 2 - r . r + r . r - 6 r 2(u 2v) (u 3v) 3ur vr 2v u v r r ur 2 vr 2 = 1r- ur. v - 30 = -29 - 5 = - 34(u v)2 + 2u . v + = + = 1 + 25 + 10 = 36 r r rr u v u + v = 6 : ﻭﻤﻨﻪ + 2 = 36 : ﻭﻋﻠﻴﻪ r r rr . 11ﺍﻟﺘﻤﺭﻴﻥ . ﻤﺘﻌﺎﻤﺩﻴﻥu + αv ﻭru - rv : ﻥrﺤﻴﺙ ﻴﻜﻭr ﺒα ﺘﻌﻴﻴﻥ-1 (u - v) (u + αv) = 0 ur 2 r rr r r : ﺃﻱ + α u .v-u. v - α v 2 = 0 ﻭﻤﻨﻪ : 4 + α × 12 - 12 - α . 25 = 0 α = -8 : ﻭﺒﺎﻟﺘﺎﻟﻲ −13α - 8 = 0 : ﻭﻋﻠﻴﻪ 13 r r u + αv = 2 : ﺒﺤﻴﺙα ﺘﻌﻴﻴﻥ-2 rr r rr r 2 (ur(u++ααvrrv)2)2==r4u++2α2α. u . v + α2 v 12 + α2 × 25 (u + αv)2 = 25 α2 + 24α + 4 r r 25α2 + 24α + 4 = 4 : ﻭﻤﻨﻪ u + αv 2 =4 : ﻭﻟﺩﻴﻨﺎ α (25 α + 24) = 0 : ﻭﻋﻠﻴﻪ25 α2 + 24 α = 0 : ﺇﺫﻥ
ﻭﺒﺎﻟﺘﺎﻟﻲ α = 0 :ﺃﻭ 25 α + 24 = 0 α = - 24 ﺇﺫﻥ α = 0 :ﺃﻭ 25 ﺍﻟﺘﻤﺭﻴﻥr r . 12 ﺇﺜﺒﺎﺕ ﺃﻥ u + v :( ) ( )r r ﻋﻤﻭﺩﻱ ﻋﻠﻰ u - v r r rr r r= )(u + v) . (u - v u 2 - v 2 r r rr r ﻟﺩﻴﻨﺎ := )(u + v) . (u - v u u2 - =0 rr r r ﺇﺫﻥ (u + v) :ﻋﻤﻭﺩﻱ ﻋﻠﻰ )(u - v ﺍﻟﺘﻤﺭﻴﻥr r r. 13 v - u u r r ﻤﺘﻌﺎﻤﺩrﻴﻥ : r . r ﻭ r ﺃﻥ -1ﺇﺜﺒﺎﺕ u (v = )- u u v u ﻟﺩﻴﻨﺎ : r rr - 2 ﻭﻤﻨﻪ u (v - u) = r4 - 4r = 0 r : ﻭﻋﻠﻴﻪ u :و v - uﻤﺘﻌﺎﻤﺩﻴﻥuuur uuur uuur ﺍﺴﺘﻨﺘﺎﺝ ﻨﻭﻉ ﺍﻟﻤﺜﻠrﺙ r: ABrCﻟﺩﻴﻨﺎ uuuur(v -uuuur) = 0 :ﻭﻋﻠﻴﻪ AB (AC u-uuAr B)u=uur0 :ﺇﺫﻥ AB . BC = 0 :ﻭﻋﻠﻴﻪ AB :و BCﻤﺘﻌﺎﻤﺩﻴﻥ rr ﻭﻤﻨﻪ ﺍﻟﻤﺜﻠﺙ ABCﻗﺎﺌﻡ ﻓﻲ . B= )(u , v π + 2kπ ; k∈¢ ﺇﻨﺸﺎﺀ : Cﻟﺩﻴﻨﺎ 3 uuur uuur(AB , = )AC π + 2kπ ; k∈¢ ﻭﻋﻠﻴﻪ : 3 r uuurﻟﺩﻴﻨﺎ u = 2 :ﻭﻤﻨﻪ AB = 2 :ﺃﻱ AB = 2
rr r r rr ﻭﻋﻠﻴﻪ u . v = u × v cos (u , v) :4=2 r 1 ﺃﻱ ﺃﻥ : r . cos π v ×2 4=2. v 3 r ﻭﻤﻨﻪ v = 4 :ﻭﺒﺎﻟﺘﺎﻟﻲ . AC = 4 :ﺤﺴﺎﺏ AC2 = AB2 + BC2 : BCﻭﻤﻨﻪ 16 + 4 = BC2 : ﺇﺫﻥ BC2 = 12 :ﻭﻤﻨﻪ BC = 2 3 : ﻹﻨﺸﺎﺀ ﺍﻟﻤﺜﻠﺙ ABCﻨﻘﻭﻡ ﺒﺎﻟﺨﻁﻭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ: • ﻨﺭﺴﻡ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ABﻁﻭﻟﻬﺎ [ ]2 cm = )[ )( AX , ABπ 3 ﺒﺤﻴﺙ : AX • ﻨﺭﺴﻡ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ • ﻨﺭﺴﻡ ﻤﺴﺘﻘﻴﻤﺎ ∆ ﻋﻤﻭﺩﻴﺎ ﻋﻠﻰ ) (ABﻓﻲ ﺍﻟﻨﻘﻁﺔ ( ). B• ﻴﺘﻘﺎﻁﻊ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻘﻴﻡ AXﻤﻊ ∆ ﻓﻲ ﺍﻟﻨﻘﻁﺔ Cﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ ( ) [ ).ABCA )∆( 30° C ﺍﻟﺘﻤﺭﻴﻥ. 14 BX 60°BA uuur uuur uuur uuur uuur uur C• AB . BCD= -BA . BC = -BAH . BF ﺤﻴﺙ Fﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Cﻋﻠﻰuuur (AuBuu)rﻭﻤﻨﻪ AB . BuuCur = u-uBurA . BF cos π :ﻭ BF =uDuuCr – AuBuur= 1) AB . BC = -4 × 1 × (-1ﺃﻱ uuur uuurABuu.urBCuu=ur4 :• DC . DB = DC . DH = DC . DH . cos 0
u(DuuCr) ﻠﻰuﻋuBur ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁH ﺤﻴﺙ DH = AB = 4 : ﻷﻥDC . DuBuur= 5uu×ur 4 × 1 : ﻭﻤﻨﻪ uuur uuur uuur uuur uuur uDuurC . DB = 20 : ﻭﻋﻠﻴﻪ( ) ( )• CA . CB = CD + DA . CH + HB ( ) ( )uuur uuur uuur uuur uuur uuur CA . CB = CD + DA . CH + HB uuur uuur DA = HB uuur uuur uuur . uuur + uuur . u:uﻲurﻭﺒﺎﻟﺘﺎﻟ uuur uuur Au: uﻥDuﻷr2 CA . CB = CD CH CD DA + uDuuAr . uCuuHr + = CD . CH . cos 0 + 0 + HB . CH + 4 = 5 × 1 × 1 + 0 +uu0ur+ 4uuur CA . CB = 9 uuur uuur uuur uuur uuur uuur : ﺇﺫﻥ AD BC BH BC BH BH• . = . = = 2 = 4 uuuur uuur uuur uuur uuur u.u1ur5ﺍﻟﺘﻤﺭﻴﻥ uuu:urﻤﻨﻪuﻭuuKr =uuMurA .uBuuCr +uuMuurBu.uuCrA +uuMurCuu.uAr Buuﻊuﻀur( ﻨ1K =uuMuurAu.(uMurCu-uMuurBu)uu+rMBuu.(uMr uAuu-urMuCu)ur+MuCuu.r(MuBuu-rMuuAur)K=MA.MuCuu-rMAuu.uMur B +MB.MA -MB +MC+MC.MB - MC . MA . K = 0 : ﺇﺫﻥ[ ] [ ]: (1) ﻟﺩﻴﻨﺎ ﻤﻥ. AB وBuuCur ﻴﻥuﻠﻌuﻀurﻘﻴﻥ ﺒﺎﻟuﻌﻠuﻤﺘurﻋﻴﻥ ﺍﻟuﺎuﺘﻔuﺭrﻁﻊ ﺍﻻuﺎuﺘﻘur ﻨﻘﻁﺔuHuuﺽr ( ﻨﻔﺭ2 HA . BC + HB . CA + HC . AB = 0 uuur uuur uuur M =uuHurﻭﻫﺫﺍ ﺒﻭﻀﻊ uuHurC u⊥uur AB ﻭHuuAur ⊥uuurBC : ﻭﻟﺩﻴﻨﺎ uuur uuur HC . AB = 0 ﻭuuHurA .uuBurC = 0 : ﻭﻤﻨﻪ HB . CA = 0 : ﻭﻤﻨﻪ0 + 0 + HB . CA = 0 : ﻭﻋﻠﻴﻪ ( ﻭﻋﻠﻴﻪ ﺍﻻﺭﺘﻔﺎﻉ ﺍﻟﻤﺘﻌﻠﻕ ﺒﺎﻟﻀﻠﻊHB) ⊥ (CA) : ﺇﺫﻥ
[ ]. H ﻴﺸﻤلAC ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻨﻘﻁﺔ ﻭﺍﺤﺩﺓABC ﺇﺫﻥ ﺍﻻﺭﺘﻔﺎﻋﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ A N M H B C r r. 16ﺍﻟﺘﻤﺭﻴﻥ rr r (u , rv) ﺱr ﺤﺴﺎﺏ ﻗﻴcos( u , v ) = L r v = ru . vr -3 3 cos (u , ) u.v (1 3 × 2 : ﻭﻋﻠﻴﻪ cos r , r -3 : ﺇﺫﻥ (u v)= 2 rr = 5π + 2kπ ; k ∈ ¢ : ﻭﻤﻨﻪ (u , v) 6 = r r 3 rr rr (u v)= +3 6 : ﻭ ﻤﻨﻪ ru . vrcos , cos ( u , v ) u.v (2 3 rr 2 : أي rr 1 cos ( u , v ) = cos ( u , v ) = 22 r r (u , v) = π + 2kπ ; k ∈ ¢ : ﻭﻋﻠﻴﻪ 4 r r rr rrcos (u , v)= 10 cos (u , v) = ru . vr (3 4 × 5 : ﻭﻤﻨﻪ u.v cos r , r = 1 : ﺇﺫﻥ (u v) 2
rr π + 2kπ ; k∈¢ : ﻭ ﻤﻨﻪ (u , v) = 3 vr yr 2ur . 17ﺍﻟﺘﻤﺭﻴﻥ ur rrrr-3vr xr y , x , v , u ( ﺇﻨﺸﺎﺀ1 rr r r u.v= u . v cos π =0 (2 2 r 2 = r + vr )2 = r 2 + r 2 r : ﻨﺎrﻟﺩﻴ y (u u v +2u. v r 2 = 13 r 2 = 9 + 4 +0 y y r rxr 2 r r ur:2ﺃﻱ+ 9 vr2 - 12 u : ﻭﻤﻨﻪ = (2 u - 3 v)2 = 4 .v : ﻟﺩﻴﻨﺎ = 36 + 36 – 0 xrr2 = 7r2 : ﺇﺫﻥ : y ; x ( ﺍﺴﺘﻨﺘﺎﺝ3 r r 2 = 72 : ﺃﻱ xr2 = 72 : ﻟﺩﻴﻨﺎ x =6 2 x : ﻭﻤﻨﻪ r 13 r 2 = 13 r 2 = 13 y= y y : ﻭﻤﻨﻪ ﺃﻱ : ﻭﻟﺩﻴﻨﺎAK . 18ﺍﻟﺘﻤﺭﻴﻥ : ( ﺇﻨﺸﺎﺀ ﺍﻟﺸﻜل1 D I MB C
uuur uuur r: ﻭﻤﻨﻪ3 KA + KD = o : ( ﻭﻋﻠﻴﻪA ; 1)uu,ur(A ; 3u)uﺔurﺢ ﺍﻟﺠﻤﻠuﺠuﺭuﻤrK ﻴﻨﺎrﻟﺩ 3 KA + KA + AD = o uuur uuur uuur uuur r AK = 1 AD : ﺃﻱ 4 KA + AD = o : ﺃﻱ 4uuur uuuur uuur uuur uuur : ( ﺍﻟﺤﺴﺎﺏ2uBuCur uBuMur =uBuurC .uBuBAurC==uBuBAurC2BA . BK = BA . 2 = 64 . 16 =uuur uuuur uuur uuur uuur uuur ( ﺍﻟﺤﺴﺎﺏ3BK .BM = (uBuuAr +uuAurK )u.u(urBCuu+urCMuu)ur uuur uuur uuur = BA .BC + BA .CM + AK . BC + AK . CM uuur uuuur uuur . uAuDuru-uu14r uAuDuruu.ur12 uuur = 0 + CD . CM + AK DC uuur uuuur = CD . CM cos 0 + AK . AD cos 0 + 1 . uuur uuur 8 DA . DC uuur uuuur 4 × 2 × 1 + 2 × 8 × 1u+uur18uu×uur0 : ﻭﻤﻨﻪ BK .BM = : ﺇﺫﻥ BK .BM = 24 uuur uuuur : BI ( ﺍﺴﺘﻨﺘﺎﺝ4 uuur uuuur uuuurBKuu. urBM = 24 : ﻟﺩﻴﻨﺎ BK . BMuu=urBMuuu.urBKuuuur: ﺩﻴﻨﺎu ﻟuﻯrﻭﻤﻥ ﺠﻬﺔ ﺃﺨﺭ uuur uuBurK . BuuMur = BuMur . BI : ﻭ ﻤﻨﻪ BK . BM = BM . BI .cos 0 : ﺃﻱ BI = 24 : ﻭ ﻤﻨﻪ BM . BI = 24 : ﺇﺫﻥ BM BM 2 = 64 + 4 = 68 : ﻭﻋﻠﻴﻪBM 2 = BC 2 + CM 2 : ﻟﺩﻴﻨﺎ
BM = 2 17 ﺃﻱBM = 68 : ﺇﺫﻥ BI = 12 17 : ﺃﻱBI = 2 24 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ 17 uuuur uuur 17uuuur uuur uuuur u(uBurM , BK )uـuﻟuuﺔr ﻤﻘﺭﺒuﺔuﻴﻤuﻗr ﺍﺴﺘﻨﺘﺎﺝ-BM . BK = BM × BK × cos (BM , BK ) : ﻟﺩﻴﻨﺎ BK 2 = 16 + 4 : ﻭﻤﻨﻪBK 2 = BA2 + AK 2 : ﻭﻟﺩﻴﻨﺎuuuur uuur uuuuBr Ku=uur 20 : ﺃﻱBM . BK = 2 17 × 2 5 cosu(uBuurM u,uBurK ) : ﻭﻋﻠﻴﻪ = 4 17 . 5 cos u(uBuurM ,uuBurK ) BM . BK = 24 : ﻟﻜﻥ uuuur uuur cos ( BM , BK ) = 24 : ﻭﻋﻠﻴﻪ uuuur uuur 4 . 17 . 5 cos ( BM , BK ) = 6 : ﺃﻱ ﺃﻥ 85 uuuur uuur 6 85 : ﻭﻋﻠﻴﻪ cos ( BM , BK ) = 85K BµM ; 49,4o uuuur uuur 0,87 RAD : ﻭﻤﻨﻪ : ( ﺃﻱBM , BK ) ;A D . 19ﺍﻟﺘﻤﺭﻴﻥ O : ﺇﺜﺒﺎﺕ ﺃﻥ- MA2+ MC 2 = MB2 + MD2BC
uuur uuur uuuur uuur uuuur : ﻟﺩﻴﻨﺎMA + MC 2 = ( OA - OM )2 + ( OC - OM )2==Ou2uAurOuu2Aur+2Ou+uMuu2r 2Ou-uMuMu2uuuArOur2u2Aur-+.2OuuMuOMuuuuuurCAuurr+2. OuuuuCuurur2 + OuuMuuuurur2 uuur uuuur =OM2 Ouu+Aur22 OA - 2uuOuurC .OM +2 O.uuOMuurM2 : ﻭﻋﻠﻴﻪuuur uuuur MD( ) ( )MB2 + 2 = uuur uuuur 2 uuur uuuur 2 OB - OM + OD - OM : ﻭﻟﺩﻴﻨﺎ= OOuuuuuMBBuurru2u2Br++2OuOuu+u=MuMuururuM22u2-uO-uDuru22B2urOuOuuu2=BBuurr+2..O2uOuOuuuuMOuuAuMruuurur2Muu+r++O2uO2uuDuurBOuur2u2M+u+urOOuu2uuMMuuuurr22 -2 uuur uuuur= +2 OuuDur .OuuMuur OB .OM uMuuAr 2 + uMuuCur2 = uuur 2 + uuuur 2 MB MD : ﻭﻋﻠﻴﻪ . ) = 87o : ﻭﻤﻨﻪ . 20ﺍﻟﺘﻤﺭﻴﻥ C Cµ = 180o - (68o + 25o) : ﻟﺩﻴﻨﺎ BC = AC = AB : ﻭﻟﺩﻴﻨﺎ sin Aµ sin Bµ sin Cµ : ﻭﻋﻠﻴﻪ BC = AC = 16 sin 68o sin 25o sin 87o AC ; 6,77 : ﻭﻤﻨﻪ AC = 16 sin 25o : ﻭﻋﻠﻴﻪ sin 87o BC ; 14,86 : ﻭﻤﻨﻪ BC = 16 sin 68o : ﻭﻜﺫﻟﻙ ﻟﺩﻴﻨﺎ sin 87o . 21ﺍﻟﺘﻤﺭﻴﻥ
: BC ﺤﺴﺎﺏ- BC2 = AB2 + AC2 - 2 AB . AC . cos Aˆ BC2 = (20)2 + (30)2 - 2 × 20 × 30 cos 100o BC ; 38,84 : ﻭﻤﻨﻪ BC 2 ; 1: 5C)08و,3B)8 : ﻭﻋﻠﻴﻪ ﺤﺴﺎﺏ- BC = AC = AB = BC . AC . AB sin Aµ sin Bµ sin Cµ 25 38,84 = 30 = 20 : ﺇﺫﻥ sin 100o sin Bµ sin CµsinCµ = 20 sin 100o َﻭ sin Bµ = 30 sin 100o : ﻭﻤﻨﻪ 38,84 38,84 sin B) ; 0,76 : ﻭﻋﻠﻴﻪ sin C)µ ; 0,51 ﻭ B ; 49,5o : ﻭﺒﺎﻟﺘﺎﻟﻲ C; 30,5o ﻭ siAnCB) = BC . AC . AB : ﺍﺴﺘﻨﺘﺎﺝ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ- 2.S ) BC . AC . AB . sin B S = 2 AC ) : ﺇﺫﻥ S = BC . AB . sin B : ﺇﺫﻥ 2 S; 33,84 × 30 × sin 49,5o : ﺃﻱ 2 S ; 443,01 cm2 : ﻭﻋﻠﻴﻪ . 22ﺍﻟﺘﻤﺭﻴﻥsin2 ) = sin2 ) + sin2 ) - 2 sin ) sin ): ()ﺇﺜﺒﺎﺕ ﺃﻥ1 A B C B. C cos A
siBnCA) = siAnCB) = siAnBC) = r ; r ∈ ¡ : ﻭﻟﺩﻴﻨﺎ AB = r sin Cµ ; AC = r sin Bµ ; BC = r sin Aµ : ﻭﻋﻠﻴﻪ BC2 = AB2 + AC2 - 2 AB . AC cos Aµ : ﻭﻟﺩﻴﻨﺎr 2 ssinin22A)A===rr2s2siinn22sCB)i)n++2C)sri+n2 s2siCi)nn-2)2B2B))s--in22B).cri.nssiiBnn) C)C.)sc.inorsCs)iAn). ) : ﻭﻤ)ﻨﻪ B co)s A cos A : ﻭﻋﻠﻴﻪ cos A = 0 ﻓﺈﻥA ﻓ)ﻲ ﻗﺎﺌﻡ ABC ﺍﻟﻤﺜﻠ)ﺙ ( ﺇﺫﺍ ﻜﺎﻥ2 BB)) C) : ﻭﻤﻤﺎ ﺴﺒﻕ :)ﻓﺈﻥ sin2 A) = sin2 + sin2 C sin2 A = + sin)2 :)ﻭﺇﺫﺍ ﻜﺎﻥ sin2 : ﻭﻤﻨﻪ A)c=ossAi)nc2=osB)i0sn+A2: sﻥA)is=ﻓﺈnin+A20µs2iA)snC):iﻥ2n+ﻨﻜﻪ-ﺘA2ﻭﻟﻤs2ﻭB)i=ﺔns−ﻴssﻭ+i2i2siﺍnﺯnniB)snﻱs22Bi)iﺃ2n+Bn)ﻲAsB2)ﻓiBs+ﺎCn)=ﻤi+ﺌnﺎ.ﻗCs1=)2ssAiniiCBc1n)n:2oC2ﻱA+C)=sCC))ﺙﺃA1)ﻠ2=ﺜcs=ﻤioﻟ:=ﺍn9:1:sﻥﻥﻥ02ﻜﻓﺎﺔﺈAﺎAﻗo)ﺍ(ﻼﻜ::2ﺇﺫﻌﺍﺫ:=)ﻋﻠﻥﻭﺃﻥﻱﻴ–ﺍﺇﻪﻥ=ﻟ01ﻤ(ﺃﻱﻤ-3ﺃﻓﻭﻭ sin2 sin2 A) = 2 - sin2 A) - 2) sin B) C) : ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨ)ﺠﺩ ﻭ )cis A 2A=2 -)s2insiBn) )sin2 2sin )A = 1 - B . sin) C . cos)A sin2 : ﻭﻋﻠﻴﻪ sin B . sin C . cos .) sin C- s.inco2sA) A : ﻭﻋﻠﻴﻪ A=1 : ﻭﻋﻠﻴﻪ
sin B) . sin) C) . co)s A) = co) s2 A) ) )cos A )(sin B .)sin C - cos A)) = 0 : ﻭﻤﻨﻪsin B . sin C - cos A = 0 coscAos=A)0= Aµ = 900 ﺃﻭ ﺇﻤﺎ ﻭﻋﻠﻴﻪ : ﺃﻱ ﺇﺫﻥ 0 uuur uuuur . 23)*( ﺍﻟﺘﻤﺭﻴﻥ ( )AB . AM = 18 : ∆1 ( ﺘﻌﻴﻴﻥ ﻭ ﺇﻨﺸﺎﺀ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ1 ( )uuur : uﻴﻪuﻋﻠuﻭur(AB) ﻤﺴﻘﻁﻬﺎ ﻋﻠﻰuHuuﻥr ﻭﻟﺘﻜuu∆uur1 ﻨﻘﻁﺔ ﻤﻥM ﻟﺘﻜﻥuuur uuuur AB . AM > 0 : ﻟﻜﻥAB . AuuMuur= AuBuur. AHAB . AM = AB . AH : ﺃﻱ ﺃﻥ. ﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩAM ﻭAB : ﻭﻤﻨﻪ AB . AH = 18 : ﻭﻋﻠﻴﻪ AH = 3 : ﺃﻱ ﺃﻥ AH = 18 : ﻭﻋﻠﻴﻪ uuur u6uur uuur uuuur uuur AuuBuur. AuMuur= uAuBur . AH : ﻟﺩﻴﻨﺎ ( )AB .uuAurM u-uuAurB . uAuuHr = 0 : ﻭﻋﻠﻴﻪuuur AB AM - AH = 0 : ﻭﻤﻨﻪ uuuur uuur uuuurAB ⊥ HM : ﻭﻋﻠﻴﻪAB . HM = 0 : ﺃﻱ ﺃﻥ [ ]. AB ﻫﻲ ﻤﺤﻭﺭM ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ: ﻭﻤﻨﻪ(∆2) (∆1) (∆)uAuBurA. uuuur S AM( )F :H ﻤﺠﻤﻭﻋﺔ ﺎﺀBﺇﻨﺸ = -12 ∆2 ﺍﻟﻨﻘﻁ ﻭ ﺘﻌﻴﻴﻥ (2 ( )(AB) ﻤﺴﻘﻁﻬﺎ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰF ∆ ﻭﻟﺘﻜﻥ2 ﻨﻘﻁﺔ ﻤﻥM ﻟﺘﻜﻥ
uuur uuuur uuur uuur ﻭﻤﻨﻪ AB . AM = AB . AF : uuur uuur ﻭﺒﻤﺎ ﺃﻥ ABﻭ uuAurFﻤuﺨﺘﻠﻔrﺎuﻥuﻓuﻲ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ : AB .AM = - AB . AF AF = 12 =2 ﻭﺒﺎﻟﺘﺎﻟﻲ AB . AF = 12 :ﻭﻋﻠﻴﻪ : 6 uuur uuuur uuur uuur ﺇﺫﻥ uAuBur . uAuMuur = uAuuBr . uAuuFr :ﻭﻤﻨﻪ :( )uuur uuuur uuurABﺃﻱ ﺃﻥ = 0 : AB . AM - AB . AF = 0 AM - AF uuur uuuur ﻭﻋﻠﻴﻪ uAuBur . FMuuu=ur 0 :ﺃﻱ ﺃﻥ AB ⊥ FM :ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ 2ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ) ( uuur uuuur ) (ABﻓﻲ . F (3ﺘﻌﻴﻴﻥ ﻭ ﺇﻨﺸﺎﺀ ( )uuur uAuurB .uAuurM ≥ 30 : π1 ﻟﺘﻜﻥuuSurﻨﻘﻁﺔ ﻤﻥ ) (ABﺒﺤﻴﺙ uAuurB . AS = 30 :ﻭﺒﻤﺎurﺃuﻥAB u ﻭ ASﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ AB . AS = AB . AS :ﻭﻋﻠﻴﻪ : ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ ) (ABﻓﻲ ( ).S ∆ = ASﻭﻟﻴﻜﻥ 30 =5 uuur uuuur 6 ﻴﻜﻭﻥ AB .uuAurM u≥uur30ﺇﺫﺍ ﻭﻓﻘurﻁuﺇﺫuﺍ ﻜﺎﻥuu:ur AB . AS ≥ 30ﺃﻱ AB . AS ≥ 30ﻭﻋﻠﻴﻪ AS ≥ 5ﻭﻋﻠﻴﻪ : ). M ∈[ SB ﻭ ﻤﻨﻪ π1ﻫﻭ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻔﺘﻭﺡ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﺴﺘﻘﻴﻡ ∆) ( ) ( ﻭ ﻴﺸﻤل .B )*( ﺍﻟﺘﻤﺭﻴﻥ. 24 (1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ MA2 - MB2 = 12 :M ﻟﺘﻜﻥ Iﻤﻨﺘﺼﻑ [ ]: AB
( ) ( )uuur+ uur 2 - uuur + uur 2 = 12 MI IA MI IB : ﻟﺩﻴﻨﺎ ( ) ( )uuur + uur 2 - uuur - uur 2 = 12 MI IA MI IAuuur 2 + uIuAr 2 uuur uur - uuur 2 - uIuAr 2uu+ur2 uuur . uur : ﻭﺒﺎﻟﺘﺎﻟﻲMI + u2uMur I u.urIA MI MuuIr IA = 12 MI . IA = 3 : ﻭﻋﻠﻴﻪ4uMur I u. uIurA = 12 : ﻭﻤﻨﻪ IA . IM = -3 : ﺃﻱ ﺃﻥuur uuur uur uuur : ( ﻓﻴﻜﻭﻥIA) ﻋﻠﺔM ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔH ﻟﻴﻜﻥIA . IM = IA . IHuur uuur uur uuur uur uuurIA . IM = -IA . IH : ﻤﺨﺘﻠﻔﺎﻥ ﻓﻲ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥIA , IH : ﻭﺒﻤﺎ ﺃﻥ IA = 3 : ﺇﺫﻥ IA . IH = 3 : ﻭﻤﻨﻪ 2 ( )( IA ) ﻭ ﻴﻌﺎﻤﺩ ﺍﻟﻤﺴﺘﻘﻴﻡH ﻟﻴﻜﻥ ∆ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﺸﻤل ( ). ∆ ﻫﻲ ﻨﻘﻁﺔM ﻓﺘﻜﻭﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ MA2 + MB2 = 40uuur: M ﻁuﻨﻘuﻟrﻋﺔ ﺍ2( ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭ2 uuur uur 2( ) ( )MA2 + MB2 = MI + IA + MI + IB : ﺇﺫﻥ ( ) ( )=uuur+ uur 2 + uuur - uur 2 MI IA MI IA uuur uur uuur uur = MI 2 + IA2 + 2MI . IA + MI 2 + IA2 - 2MI . IA = 2MI 2 + 2IA2 2MI 2 + 2IA2 = 40 : ﻭﻋﻠﻴﻪ MI 2 = 16 : ﻭﻤﻨﻪ2MI 2 + 8 = 40 : ﻭﺒﺎﻟﺘﺎﻟﻲ . 4 ﻁﺭﻫﺎu ﻗuﻑuﺼr ﻭﻨIuﺎuﻫuﺯr ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜM ﻭ ﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ MA . MB = λ : M ( ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ3
uuur uuur uuur uur uuur uur( ) ( )MA . MB = MI + IA . MI + IB ( ) ( )uuur uur uuur uur = MI + IA . MI - IA = MI 2 - IA2 = MI 2 - 4 MI 2 = λ + 4 : ﻭﻤﻨﻪMI 2 - 4 = λ : ﻭﻋﻠﻴﻪ MI 2 = λ + 4 : ﺇﺫﻥ M ≡ I : ﻓﺈﻥλ = -4 ﺃﻱλ + 4 = 0 • ﺇﺫﺍ ﻜﺎﻥ . I ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ . ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔλ < -4 ﺃﻱλ + 4 < 0 • ﺇﺫﺍ ﻜﺎﻥ ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓλ > -4 ﺃﻱλ + 4 > 0 • ﺇﺫﺍ ﻜﺎﻥ λ + 4 ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎI ﻤﺭﻜﺯﻫﺎBC 2 = AC 2 + AB 2 - 2AC . . )25)*( ﺍﻟﺘﻤﺭﻴﻥ a2 b2 + c2 AB cos A ) : ( ﻟﺩﻴﻨﺎ1 = - 2bc cos A : ﻭﻤﻨﻪ cos A) = b2 + c2 - a2 : ﻭﻋﻠﻴﻪ 2 bc1 + cos A) = 1 + b2 + c2 - a2 : ﺇﺫﻥ 2 bc = 2bc + b2 + c2 - a2 2 bc1 + cos A) = (b + c)2 - a2 : ﻭ ﻤﻨﻪ 2 bc (b + c- a) (b + c+ a) = 2 bc = (a + b + c) (b + c - a) 2 bc
1 - cos A) = 1 - b2 + c2 - a2 : ﻭﻟﺩﻴﻨﺎ 2 bc = 2bc - b2 - c2 + a2 2 bc = a2 - ( b2 + c2 - 2bc) 2 bc = a2 - (b - c)2 2 bc (a - b + c) (a + b - c) = 2 bc 1 - cos ) = (a + c - b) (a + b - c) : ﻭﻋﻠﻴﻪ A ) 2 bc ) : ( ﻭ ﻤﻨﻪ1 - cos A) (1 + cos A) = L : ( ﻨﻀﻊ2L = (a + b + c) (b + c - a) × (a + c - b) (a + b - c) 2 bc 2 bc1 - cos2A) = 2p × (2p - 2a) × (2p - 2b) (2p - 2c) 4b 2c 2 : ﻭﻤﻨﻪ sin2 ) 16 p(p - a) (p - b) (p - c) A= 4 b2c2 sin2 ) 4 p(p - a) (p - b) (p - c) : ﻭﺒﺎﻟﺘﺎﻟﻲ A= b2c2 a A) = abc : ( ﻟﺩﻴﻨﺎ ﺍﻟﻌﺒﺎﺭﺓ3 sin 2S ) 2.S 1 ) sin A = bc : ﻭﻤﻨﻪ S= 2 bc sin A : ﻭﻋﻠﻴﻪ sin2 Aµ = 4S2 : ﻭﻋﻠﻴﻪ b2c2
4S2 = 4 p(p - )a) (p - b) (p - c ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻤﺎ ﺴﺒﻕ : b2c2 b2c2 ﺇﺫﻥ S2 = p (p - a) (p - b) (p - c) : ﻭﻤﻨﻪ ) S = p (p - a) (p - b) (p - c) :ﻋﺒﺎﺭﺓ ﻫﻴﺭﻭﻥ ( (4ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ S : p = 10 + 15 + 9 ﻨﺼﻑ ﻤﺤﻴﻁ ﺍﻟﻤﺜﻠﺙ ﻫﻭ : 2 ﺇﺫﻥ . p = 17 : ﻭ ﻤﻨﻪ S = 17 (17 - 10) (17 - 15) (17 - 9) : S = 17 × 7 × 2 × 8 ﺇﺫﻥ S = 4 119 : S ; 43,6 cm2 ﺍﻟﺘﻤﺭﻴﻥ. 26 ( ) ( )ur -3 ∆ ∆1 (1ﻤﻌﺎﺩﻟﺔ 2 V ﻫﻭ : :ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ uuuur ur ﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ . ﺘﻜﻭﻥ Mﻨﻘﻁﺔ ﻤﻥ ∆1ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ( )AM ⊥ V :-3 (x + 1) + 2 (y – 2) = 0 ﻭﻋﻠﻴﻪ : ur -3 , uuuur x + 1 V AM 2 y - 2 ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆1ﻫﻲ ( )-3 x + 2y – 7 = 0 :3× 2x + 3y - 5 = 0×( ) ( )2 -3x + 2y - 7 = 0 (2ﻨﻘﻁ ﺘﻘﺎﻁﻊ ∆1ﻭ ∆ :ﻨﺤل ﺍﻟﺠﻤﻠﺔ : 6x + 9y - 15 = 0 ﻭﻫﻲ ﺘﻜﺎﻓﺊ -6x + 4y - 14 = 0 :ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ :
y = 29 ﻭﻋﻠﻴﻪ : 13y – 29 = 0 13 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ 6x + 9y – 15 = 0ﻨﺠﺩ : 6x + 66 = 0 ﻭﻋﻠﻴﻪ : 6x + 9 29 - 15 =0 13 13 -66 x = -11 ﻭﻤﻨﻪ : =x 13 ﻭﻤﻨﻪ : 13 6 B -11 ; 29 ﻭﻤﻨﻪ : 13 13 uuuur uuuur (3ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ [ ]: AO ﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ MA . MO = 0 : uuuur uuur MO -x , MA -1 -x : ﻭﻟﺩﻴﻨﺎ -y 2- y ﻭﻋﻠﻴﻪ (-1 – x) (-x) + (2 – y) (-y) = 0 : x + x2 - 2y + y2 = 0 ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ x2 + y2 + x - 2y = 0 : ﺍﻟﺘﻤﺭﻴﻥ. 27 -1ﻟﻴﻜﻥ Gﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ : ABC xG = -2 +1 + 1 xG = xA + xB + xC 3 3 ﻭﻤﻨﻪ : ﻟﺩﻴﻨﺎ : 2 - 4+2 yA + yB + yC yG = 3 yG = 3 G≡O xG = 0 ﺇﺫﻥ : ﻭﻤﻨﻪ : y = 0 G
: ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ-2[ ] [ ] [ ]: ﻭ ﻤﻨﻪ. ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏAB , AC , BC ﻤﻨﺘﺼﻔﺎﺕ ﺍﻟﻘﻁﻊI , J , K ﻟﺘﻜﻥK 1+1 ; -4+2 , J -2+1 ; 2+2 , I -2+1 ; 2-4 2 2 2 2 2 2 K (1 , -1) , J -1 , 2 , I -1 , -1 : ﺇﺫﻥ 2 2 ﻨﻘﻁﺔ ﻤﻨﻪM (x ; y) ﻟﺘﻜﻥ: (CI) ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺘﻭﺴﻁ uur -3 uuur -1 -x uuur uur CI MI -y MI // CI : ﻟﺩﻴﻨﺎ 2 , 2 , -3 -1 -3 (-1 - y) + 3 -1 - x =0 : ﻭﻤﻨﻪ 2 2 (CI) ﻤﻌﺎﺩﻟﺔ- x + y = 0 : ﺇﺫﻥ ﻨﻘﻁﺔ ﻤﻨﻪM (x , y) ﻟﺘﻜﻥ: (BJ) ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺘﻭﺴﻁ uuur -3 , uuuur x-1 , uuuur uuur : ﻟﺩﻴﻨﺎ BJ BM y + 4 BM // BJ 2 6 6 (x - 1) + 3 (y + 4) = 0 : ﻭﻋﻠﻴﻪ 2 3 6x + 2 y=0 : ﺇﺫﻥ 4x + y = 0 : ( ﻫﻲBJ) ﻤﻌﺎﺩﻟﺔ ﻨﻘﻁﺔ ﻤﻨﻪM (x , y) ﻟﺘﻜﻥ: (AK) ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺘﻭﺴﻁ uuur uuuur uuuur uuur AK 3 , AM x + 2 , AM // AK : ﻟﺩﻴﻨﺎ -3 y - 2 -3 (x + 2) -3 (y – 2) = 0 : ﻭﻋﻠﻴﻪ -3x – 3y = 0 : ( ﻫﻲAK) ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ
ﺃﻱ x + y = 0 : (3ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ :ﻨﻌﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (BJﻭ )(AK ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ x = 0ﻭﻤﻨﻪ y = 0 4x + y = 0 x + y = 0 ﺇﺫﻥ ﺘﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻨﻘﻁﺔ )O (0 ; 0 ﻤﻼﺤﻅﺔ : ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻫﻲ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ABC ﺍﻟﺘﻤﺭﻴﻥ. 28 -1ﻤﻌﺎﺩﻻﺕ ﺍﻷﻋﻤﺩﺓ : ﻟﺘﻜﻥ I, J, Kﺍﻟﻤﺴﺎﻗﻁ ﺍﻟﻌﻤﻭﺩﻴﺔ ﻟﻠﻨﻘﻁ A, B,Cﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ) (BC) , (AC) , (ABﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . • ﻤﻌﺎﺩﻟﺔ ﺍﻟﻌﻤﻭﺩ ): (AI ﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ): (AIuuur uuuur uuuur uuurBC 4 , AM x - 1 , AM ⊥ ﻟﺩﻴﻨﺎ BC : 3 y - 2 ﻭﻤﻨﻪ 4 (x – 1) + 3 (y – 2) = 0 : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ) (AIﻫﻲ 4x + 3y – 10 = 0 : • ﻤﻌﺎﺩﻟﺔ ﺍﻟﻌﻤﻭﺩ ) : (BJﻟﺘﻜﻥ ) M (x . yﻨﻘﻁﺔ ﻤﻥ )(AJuuur uuur uuur uuurAC -1 , BM x + 4 , BM ⊥ • ﻟﺩﻴﻨﺎ AC : 1 y ﻭﻤﻨﻪ -1 (x + 4) +1 . y = 0 :ﺃﻱ -x + y – 4 = 0 : ﻫﻲ ﻤﻌﺎﺩﻟﺔ )(BJ • ﻤﻌﺎﺩﻟﺔ ﺍﻟﻌﻤﻭﺩ ): (CK ﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ )(CK
uuur -5 , uuuur x - 0 , uuuur ⊥ uuur AB CM CM ﻟﺩﻴﻨﺎ AB : 2 y - 3 ﻭﻤﻨﻪ -5x – 2 (y – 3) = 0ﺃﻱ -5x – 2y + 6 = 0 : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ) (CKﻫﻲ 5x + 2y – 6 = 0 : -2ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻷﻋﻤﺩﺓ : 4x + 3y - 10 = 0 ﻨﻌﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ (AI) :ﻭ): (BJ 4× -x + y - 4 = 0 4x + 3y - 10 = 0 ﻭﻤﻨﻪ -4x + 4y - 16 = 0 :ﺒﺎﻟﺠﻤﻊ 7y – 26 = 0 : −x + 26 -4=0 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : y = 26 ﻭﻤﻨﻪ : 7 7 -2ﺇﺫﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ x = 7 ﻭﺒﺎﻟﺘﺎﻟﻲ : ﺃﻱ -7x + 26 – 28 = 0 :ﺇﺫﻥ -7x – 2 = 0 : W -2 ; 26 ﻜل ﺍﻷﻋﻤﺩﺓ ﻫﻲ : 7 7 -3ﺘﻌﻴﻴﻥ ﻤﺭﻜﺯ ﻭ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ ABC ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﻤﺤﺎﻭﺭ ﺍﻟﻤﺜﻠﺙ . ABC ﻟﺘﻜﻥ I , Jﻤﻨﺘﺼﻔﻲ AB , BCﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ [ ] [ ]. x I = 1-4 = -3 xJ = -4 + 0 = -2 2 2 2 ، 2 +0 0+3 3 yI = 2 = 1 yJ = 2 = 2 -ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻤﺤﻭﺭ : BCﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺤﻭﺭ] [ uuur 4 uuur x+ 2 uuur uuur BC 3 IM y- IM ﻟﺩﻴﻨﺎ BC : , 3 , ⊥ 2
ﺃﻱ 8x + 6y + 7 = 0 : 4 (x + 2) + 3 y - 3 =0 ﻭﻋﻠﻴﻪ : 2 -ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻤﺤﻭﺭ : ABﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺤﻭﺭ] [uuur -5 , uuur x + 3 , uuur ⊥ uuur ﻟﺩﻴﻨﺎ :AB -2 JM y 2 JM AB -1 −5 x + 3 - 2 (y - 1) = 0 ﻭﻤﻨﻪ : 2 −5 x - 2y - 15 +2=0 ﺃﻱ : 2 ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ ﻫﻲ 10x + 4y + 11 = 0 : 5× 8x + 6y + 7 = 0 -ﺘﻌﻴﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺤﻭﺭﻴﻴﻥ : 4× 10x + 4y + 1 = 0 40x + 30y + 35 = 0 -40x - 16y - 44 = 0ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 14y- 9 = 0 : × 8x + 6 9 + 7 = 0 ﻭﻤﻨﻪ : =y 9 ﺇﺫﻥ : 14 14 -19 152 =x 14 ﻭﻤﻨﻪ : 8x + 14 =0 ﻭﻤﻨﻪ :ﻭﻫﻲ ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ . ABC F -19 ; 9 ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ 14 14 ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ : FA = FA 1 + 19 2 + 2 - 9 2 = 1450 14 14 14
ﺍﻟﺘﻤﺭﻴﻥ. 29 (1ﻤﻌﺎﺩﻟﺔ Γ1ﻫﻲ ( )( x - 1)2 + (y + 3)2 = α2 : ﻭﺒﻤﺎ ﺃﻥ A ∈ Γ1 :ﻓﺈﻥ ( )(5 - 1)2 + (2 + 5)2 = α2 : ﺇﺫﻥ α2 = 65 : ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ Γ1ﻫﻲ ( )( x - 1)2 + (y + 3)2 = 65 : (2ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ [ ]: ωA uuur ﻟﺘﻜﻥ ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ :ﻟﺩﻴﻨﺎuuur MA uuur uuuurMω 1-x , 5 - x , MA . Mω = 0 -3 - y 2 - y ﻭﻤﻨﻪ (1 – x) (5 – x) + (-3 – y) (2 – y) = 0 :ﻭﻋﻠﻴﻪ : 5 - x - 5x + x2 - 6 + 3y - 2y + y2 = 0 ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ x2 + y2 - 6x + y - 1 = 0 : (3ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ : ABω ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺤﺎﻭﺭ. ﻟﺘﻜﻥ J , Iﻤﻨﺘﺼﻔﻲ Bω , ABﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ] [ ] [ xJ = 1 +1 = 1 x = 5 + 1 =3 2 2 I -2 - 3 -5 ، 2-2 2 2 2 y J = = y I = = 0 J 1 ; -5 , ﻭﻤﻨﻪ I ( 3 ; 0) : 2 uuur uuur -ﻤﻌﺎﺩﻟﺔ ﻤﺤﻭﺭ [ ]: AB ﻟﺘﻜﻥ ) M (x , yﻨﻘﻁﺔ ﻤﻥ ﻤﺤﻭﺭ [ ]IM ⊥ AB : AB
uuur -4 ; uuur x - 3 AB IM -4 y -4 (x – 3) – 4y = 0 : ﻭﻋﻠﻴﻪ x + y – 3 = 0 : ﺃﻱ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ ﻫﻲ uuur uuur [ ]: Bω ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ- [ ]JM ⊥ Bω : Bω ﻨﻘﻁﺔ ﻤﻥ ﻤﺤﻭﺭM (x ; y) ﻟﺘﻜﻥ uuur 0 uuur x -1 Bω JM -1 ; y + 5 2 0 (x - 1) - y + 5 =0 : ﻭﻤﻨﻪ 2 2y + 5 = 0 : ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺤﻭﺭ ﻫﻲ : ﺘﻘﺎﻁﻊ ﺍﻟﻤﺤﻭﺭﻴﻥ- x + y- 3 = 0 y = -5 2 : ﻨﺤل ﺍﻟﺠﻤﻠﺔ x = 11 x - 5 -3 =0 2 2 : ﺃﻱ ﺃﻥ : ﻭﻤﻨﻪ -5 y -5 y = 2 = 2 S 11 ; -5 : ﻭﻋﻠﻴﻪ ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ 2 2 x - 11 2 + y + 5 2 = α2 : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ 2 2
1 - 11 2 + -2 + 5 2 = α2 ﻭﺒﻤﺎ ﺃﻥ B :ﻨﻘﻁﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻓﺈﻥ : 2 2 α2 = 41 ﺃﻱ α2 = 82 ﻭﻋﻠﻴﻪ : 2 4 x - 11 2 + y + 5 = 41 ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ : 2 2 2 (4ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ :ﻟﺘﻜﻥ Tﻨﻘﻁﺔ ﺍﻟﺘﻤﺎﺱur uuurV 1 ﻟﺩﻴﻨﺎ ωT :ﺸﻌﺎﻉ ﻋﻤﻭﺩﻱ ﻋﻠﻰﻭﻤﻨﻪ ( ) ( ): ∆ ∆ 2 ﻫﻭ ﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ ur uuur . V ⊥ ωTur 1 ; uuur x0 -1 ﻨﻔﺭﺽ ) T (x0 ; y0V 2 ωT y0 ﻭﻋﻠﻴﻪ : + 3 ﻭﺒﺎﻟﺘﺎﻟﻲ ( x0 - 1) + 2 (y0 + 3) = 0 : ﺃﻱ x0 + 2y0 + 5 = 0 : ﻟﺩﻴﻨﺎ T ∈ ∆ :ﻭﻤﻨﻪ ( )x0 - y0 + 2 = 0 : −3y0 - 3 = 0 ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ : x0 - y0 + 2 = 0 ﻭﻤﻨﻪ : x0 + 2y0 + 5 = 0 ﺇﺫﻥ y0 = -1 :ﻭﻋﻠﻴﻪ x0 = -1 - 2 = -3 : ﺇﺫﻥ T (-3 , -1) : ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ : TωωT2 = (-3 - 1)2 + (-1 + 3)2 = 20 ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ( x - 1)2 + (y + 3)2 = 20 : ﺍﻟﺘﻤﺭﻴﻥ. 30 ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ (1ﻟﺩﻴﻨﺎ x2 + y2 - 2x + 4y - 11 = 0 :
( x - 1)2 - (1)2 + (y + 2)2 - (2)2 - 11 = 0 ( x - 1)2 + (y + 2)2 = 16 ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ) ω(1 ; -2ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ R = 4 (2ﻟﺩﻴﻨﺎ 2x + 2y2 + 4x + 8y + 10 = 0 : ﺃﻱ 2 (x2 + y2 + 2 x + 4y + 5) = 0 : x2 + y2 + 2x + 4y + 5 = 0 ﻭ ﻤﻨﻪ :( x + 1)2 + (y + 2)2 − (1)2 − (2)2 + 5 = 0 ﻭﻋﻠﻴﻪ ( x + 1)2 + ( y + 2)2 = 0 : ﻭﻤﻨﻪ x + 1 = 0 :ﻭ y + 2 = 0 ﺃﻱ x = -1 :ﻭ y = -2 ﻤﺠﻤﻭﻉ ﺍﻟﻨﻘﻁ ﻫﻲ ﻨﻘﻁﺔ )I (-1 ; - 2 -x2 - y2 + 6x + 10y - 60 = 0 (3ﻟﺩﻴﻨﺎ : x2 + y2 - 6x - 10y + 60 = 0 ﻭ ﻤﻨﻪ :( x - 3)2 - (3)2 + (y - 5)2 - (5)2 + 60 = 0( x - 3)2 + (y - 5)2 = -26 y3 + x2 y - 4xy + 5y2 = 0 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺨﺎﻟﻴﺔ .y (y2 + x2 − 4x + 5y) = 0 (4ﻟﺩﻴﻨﺎ : ﺇﻤﺎ y = 0 :ﺃﻭ x2 + y2 - 4x + 5y = 0(x - 2)2 + y + 5 2 -4- 25 = 0 ﺃﻭ ﺃﻱ y = 0 : 2 4 (x - 2)2 + y + 5 2 = 41 ﺃﻭ ﻭﻤﻨﻪ y = 0 : 2 4 ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺇﺘﺤﺎﺩ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = 0ﻭ ﺍﻟﺩﺍﺌﺭﺓ
. 41 ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ L 2 ; -5 ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 31x2 + y2 - 2m x - 2 (1 + m) y + 6m + 1 = 0x2 - 2m x + y2 - 2 (1 + m) y + 6m + 1 = 0( x - m)2 - m2 + [ y - (1 + m)]2 - (1 + m)2 + 6m + 1 = 0( x - m)2 + [ y - (1 + m)]2 = m2 + 1 + 2m + m2 - 6m -1( x - m)2 + [ y - (1 + m)]2 = 2m2 − 4m)( x + m)2 + [ y - (1 + m)]2 = 2m (m - 2 • ﺇﺫﺍ ﻜﺎﻥ x2 + (y - 1)2 = 0 : m = 0ﻭﻤﻨﻪ )(x ; y) = (0 ; 1 ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻨﻘﻁﺔ ). M0 (0 ; 1 • ﺇﺫﺍ ﻜﺎﻥ ( x- 2)2 +(x- 3)2 = 0 : m = 2ﺃﻱ (x ; y) = (2 ; 3) : ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻨﻘﻁﺔ ). M1 (2 ; 3 • ﺇﺫﺍ ﻜﺎﻥ m ∈ 0 ; 2 :ﻓﺈﻥ ] [2m (m - 2) < 0 : ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﺨﺎﻟﻴﺔ . • ﺇﺫﺍ ﻜﺎﻥ m ∈ ]-∞ ; 0[ ∪ ]2 ; +∞[ :ﻓﺈﻥ 2m (m - 2) > 0 : ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ) ω(m ; m+1ﻭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ ). 2m (m - 2 ﺍﻟﺘﻤﺭﻴﻥ. 32 (1ﺇﺜﺒﺎﺕ ﺃﻥ Cmﺩﺍﺌﺭﺓ ( ):x2 + y2 − 2 (1 - m) x + (1 + 6m) y + 5m - 5 =0 4[ x - (1 - m)]2 − (1 - m)2 + y + 1+6m 2 − 1+6m 2 2 2
+ 5m - 5 =0 4[ x - (1- m)]2 + y + 1+6m2 = 1- 2m + m2 +1 +12m +36m2 2 4 - 5m + 5 4[ x - (1 - m)]2 + y + 1 + 6m 2 = 2 4 - 8m + 4m2 + 1 + 12m + 362 - 20m + 5 4[ x - (1 - m)]2 + 1 + 6m 2 40m2 - 16m + 10 2 4 y + = 40m2 - 16m + 10 ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ∆ < 0 = ∆ ﺃﻱ1344 ( = ∆ ﻭﻤﻨﻪ-16)2 - 4 (40) (10) 40m2 - 16m + 10 > 0 : ﻭﻤﻨﻪ 1 + 6m 2 ( )ω1 - m ; - Cm ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ : ﻭﻋﻠﻴﻪ
40m2 − 16m + 10 2 : ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ : (C1 ) , (C0 ) ( ﺇﻨﺸﺎﺀ2C1 0 ; -7 , 34 , C0 1 ; -1 , 10 ω1 2 ω0 2 2 2 y 2 1 (C0) -3 -2 -1 0 1ω0 2 3x -1 (C1) -2 -3 : ﻭﻤﻨﻪ ω1 ωm 1 - m ; - 1 + 6m (3 2 -4 -5 -6 -7 m = 1-x y = - 1 + 6(1 - x) : ﻭﻤﻨﻪ 2
y = 6x - 7 : ﺇﺫﻥ 2 6x - 7 y = 2 ﻫﻲ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ ωm ﻤﺠﻤﻭﻉ ﺍﻟﻨﻘﻁ ( )B ; A ﺘﺸﻤل ﻨﻘﻁﺘﺎﻥ ﺜﺎﺒﺘﺘﺎﻥCm ( ﺇﺜﺒﺎﺕ ﺃﻥ4x2 + y2 - 2 (1 - m) x + (1 + 6m) y + 5m - 5 =0 4 5x2 + y2 - 2x + 2mx +y + 6my + 5m - 4 =04x2 + 4y2 - 8x + 8mx + 4y + 24my + 20m - 5 = 04x2 + 4y2 - 8x + 4y - 5 + m (8x + 24y + 20) = 0 8x + 24y + 20 = 0 4x 2 + 4y2 − 8x + 4y -5=0 : ﻭﻋﻠﻴﻪ 2x + 6y + 5 = 0 4x 2 + 4y2 − 8x + 4y - 5 = 0 : ﻭﻤﻨﻪ : ﺇﺫﻥ x = 1 (-6y - 5) 24 × 1 (-6y - 5)2 + 4y2 − 8× 1 (-6y - 5) + 4y -5 = 0 4 2 1× (36y2 + 60y +25) + 4y2 + 24y + 20 + 4y - 5 = 0 : ﻭﻤﻨﻪ 36 y2 + 60y + 25 + 4y2 + 24y + 20 + 4y - 5 = 0 40 y2 + 88y + 40 = 0 5 y2 + 11y + 5 = 0
∆ = (11)2 − 4 (5) (5) = 21y2 = −11+ 21 ; y1 = −11- 21 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ : ∆>0 10 10 x1 = 1 66+6 21 - 5 : y = −11- 21 10 10 ﻟﻤﺎ 2 x1 = 8 +3 21 ﻭ ﻤﻨﻪ : 10 x2 = 1 +66 -6 21 - 5 : =y −11+ 21 ﻟﻤﺎ 2 10 10 x2 = 8 - 3 21 ﻭ ﻤﻨﻪ : 10 ﺇﺫﻥ . B (x2 , y2 ) , A (x1 , y1 ) : ﺍﻟﺘﻤﺭﻴﻥ. 33 ﺩﺭﺍﺴﺔ ﻭﻀﻌﻴﺔ ) (Cﻭ ∆ :ﻨﺤل ﺍﻟﺠﻤﻠﺔ) ( x - y + m = 0 ﻭﻫﻲ ﺘﻜﺎﻓﺊ : x 2 + y2 + 2x - 4y = 0 x = y - m (y - m)2 + y2 + 2 (y - m) - 4y = 0 x = y - m ﻭﻤﻨﻪ : y2 − 2m y + m2 + y2 + 2y - 2m - 4y = 0 x = y - m ﻭﻤﻨﻪ : 2y 2 − 2my - 2y + m2 - 2m = 0
x = y - m ﺃﻱ : 2y 2 - 2 (m + )1 y + m2 - 2m = 0 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 2 y2 - 2 (m + 1) y + m2 − 2m = 0 : ∆′ = b′2 − acﺃﻱ ∆′ = (m + 1)2 − 2 (m2 − 2m) : ∆′ = m2 + 2m + 1 - 2m2 + 4m ∆′ = -m2 + 6m + 1 ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ∆′m = (3)2 − 1 (-1) = 10 : ∆′ m2 = −3 + 10 ; = m1 −3 - 10 ﻟﻪ ﺠﺫﺭﺍﻥ : ∆′ −1 −1 ﺇﺫﻥ m2 = 3 - 10 ; m1 = 3 + 10 :m −∞ m2 ∞m1 +∆′ - +- ﻤﻨﺎﻗﺸﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ : • ﻟﻤﺎ ∆′ < 0 : m ∈ -∞ ; m2 ∪ m1 ; +∞ : ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻭ ﻋﻠﻴﻪ ) (Cﻭ ∆mﻤﻨﻔﺼﻼﻥ) ( • ﻟﻤﺎ ∆′ > 0 : m ∈ m2 ; m1 :ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ : y1 = m + 1 - -m2 + 6 m + 1 2 y2 = m + 1 + -m2 + 6 m + 1 2 ﻟﻤﺎ x1 = y1 − m : y = y1 x1 = -m + 1 - -m2 + 6m + 1 ﻭ ﻤﻨﻪ : 2
ﻟﻤﺎ x2 = y2 − m : y = y2 = x2 -m +1+ -m2 + 6m + 1 ﻭ ﻤﻨﻪ : 2 ﻭﻤﻨﻪ ∆mﻴﻘﻁﻊ ) (Cﻓﻲ ﻨﻘﻁﺘﻴﻥ ( ): ) B (x2 , y2 ) ; A (x1 , y1 • ﻟﻤﺎ m = m1ﻓﺈﻥ ∆ = 0 : y0 = m+1 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ • 2 y0 = 4+ 10 ﺃﻱ y0 = 3 + 10 + 1 2 ﻭﻋﻠﻴﻪ 2 : x0 = -2 - 10 ﻭﻤﻨﻪ : 2 ﻭﻋﻠﻴﻪ ∆mﻤﻤﺎﺴﺎ) (Cﻓﻲ ﺍﻟﻨﻘﻁﺔ ) ( )C (x0 ; y0 y0 = 4 + 10 ﺃﻱ y0 = 3 + 10 + 1 2 ﻭﻋﻠﻴﻪ 2 x0 = y0 − m1 = 4+ 10 − m1 : ﻭﺒﺎﻟﺘﺎﻟﻲ 2 4 + 10 10 = 4 + 10 - 6 - 2 10( )x0= 2 - 3+ 2 x0 = −2 − 10 ﻭﻤﻨﻪ : 2 ﻭﻋﻠﻴﻪ ∆m1ﻤﻤﺎﺱ Cﻓﻲ ﺍﻟﻨﻘﻁﺔ ( ) ( ) ( )C x0 ; y0y0′ = m2 + 1 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﻌﻑ : ∆ =0 : m = m2 ﻟﻤﺎ 2
y0′ = 4 − 10 ﺃﻱ : y0′ = 3 − 10 + 1 ﻭﻤﻨﻪ : 2 2 4 − 10 ( )x0′= 2 − 3− 10 ﻭﺒﺎﻟﺘﺎﻟﻲ:x0′ = −2 + 10 ﻭﻋﻠﻴﻪ : x0′ = 4 − 10 − 6 − 2 10 2 2 ﻭﻋﻠﻴﻪ ∆m2ﻤﻤﺎﺱ Cﻓﻲ ﺍﻟﻨﻘﻁﺔ ( ) ( ) ( )F x0′ ; y0′ ﺍﻟﺘﻤﺭﻴﻥ. 34 (1ﺘﻌﻴﻴﻥ ( )x2 + y2 + 2 x − y = 5 : C1 ( x + 1)2 + y - 1 2 -1- 1 = 5 2 4 (x + 1)2 + y − 1 2 = 25 ﻭﻋﻠﻴﻪ : 2 4 ( )5 ω1 −1 ; 1 C1 2 2 ﻗﻁﺭﻫﺎ ﻭﻨﺼﻑ ﺱ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ (2ﻤﻌﺎﺩﻟﺔ ( x − 4)2 + ( y − 3)2 = 25 ( ): C2 ﻭ ﻤﻨﻪ x2 + y2 − 8 x − 6 y = 0 :
(3ﺇﻨﺸﺎﺀ C1ﻭ ( ) ( ): C2)(C1 y 7 6 (C2) 5 4 3 2 1-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9x -1 -2 -3 -4 -ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻌﻬﻤﺎ : x2 + y2 + 2x - y = 5 ﻨﺤل ﺍﻟﺠﻤﻠﺔ : x 2 + y2 − 8x - 6y = 0 ﺒﺎﻟﻁﺭﺡ 10x + 5y = 5 :ﻭﻤﻨﻪ 2x + y = 1 :ﺇﺫﻥ y = 1 – 2x :ﻭﻋﻠﻴﻪ x2 + (1- 2x)2 + 2x - (1 - 2x) = 5 : ﺃﻱ x2 + 1 - 4x + 4x2 + 2x - 1 + 2x = 5 : ﻭ ﻤﻨﻪ 5 x2 = 5 :ﻭ ﻋﻠﻴﻪ x = 1 :ﺃﻭ x = -1 ﻟﻤﺎ y = -1 : x = 1؛ ﻟﻤﺎ y = 3 : x = - 1 ﻭﻤﻨﻪ (C1 ) ∩ (C2 ) = {F (1 ; -1) , H (-1 ; 3)} : – (4ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﺩﺍﺌﺭﺓ C1ﻋﻨﺩ ( ): F
( )C1 : x2 + y2 + 2x - y - 5 = 0 ، F (1 ; -1) ( ) ( )C1 ﻨﻘﻁﺔ ﻤﻥM (x ; y) ﻭﻟﺘﻜﻥ،∆ ﻫﺫﺍ ﺍﻟﻤﻤﺎﺱ1 ﻟﻜﻥuuuur 2 uuuur x -1 uuuur uuuurω1F FM y + 1 ; FM ⊥ ω1F : ﻟﺩﻴﻨﺎ -3 ; 2 4x – 3y – 7 = 0 : ﺃﻱ 2 (x - 1) - 3 (y + 1) = 0 : ﻭﻋﻠﻴﻪ 2 ( ): F ﻋﻨﺩC2 ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﺩﺍﺌﺭﺓ ω2 (4 ; 3) ; (C2 ) : x2 + y2 − 8x - 6y = 0 ( ). ∆ ﻫﺫﺍ ﺍﻟﻤﻤﺎﺱ2 ﻟﺘﻜﻥ ( ). ∆ 2 ﻨﻘﻁﺔ ﻤﻥM (x ; y) ﻨﻔﺭﺽ uuuur -3 , uuuur x - 4 uuuur uuuur ω2F FM y , FM ⊥ ω2F -4 - 3 -3 (x – 4) – 4 (y – 3) = 0 : ﻭﻋﻠﻴﻪ ( )3x + 4y – 24 = 0 : ∆ ﻫﻲ2 ﻤﻌﺎﺩﻟﺔ ( ) ( )ur4 ur 3 ∆1 U V -3 ﻫﻭ ∆2 ﺘﻭﺠﻴﻪ ﻭﺸﻌﺎﻉ 4 ﻫﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ ur ur U . V = 4 (3) - 3 (4) = 0 ur ur ( ) ( )∆ ﻤﺘﻌﺎﻤﺩﻴﻥ2 ∆ و1 ﻭﻤﻨﻪU ⊥ V : ﻭﻋﻠﻴﻪ ( ) ( ) ﻟﺘﻜﻥ: H u(-u1u;ur3) ﻋﻨﺩuCuu1ur ∆ ﻟﻠﺩﺍﺌﺭﺓ3 ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ- ( )ω1H ⊥ HM . ∆3 ﻨﻘﻁﺔ ﻤﻥM (x ; y) uuuur x + 1 uuuur 0 HM y - 3 ω1H ; 5 : ﺤﻴﺙ 2
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146