ur uuur uuur uuur uuur Uuu=urCB + 2AB + 3AD : ﻭ ﻤﻨﻪ ( )urCB =uuuDr A :uﺎuﻴﻨuﺩrﻀﻼﻉ ﻴﻜﻭﻥ ﻟuﺃuﻱur ﻤﺘﻭﺍﺯuAuBurCD ﺒﻤﺎ ﺃﻥ U = 2AD + 2AB = 2 AD + AB : ﻭﻤﻨﻪ uuur uuur uuur AD + ABur= ACuuur: ﻭﻟﺩﻴﻨﺎ ﻜﺫﻟﻙ U = 2AC : ﻭﻤﻨﻪ : 2 ﺘﻁﺒﻴﻕ[ ] [ ] ﻤﻨﺘﺼﻑC′ ، AC ﻤﻨﺘﺼﻑB′ BC ﻤﻨﺘﺼﻑA′ ﻨﺴﻤﻲ. ﻤﺜﻠﺙABC uuur uuur uuur ur . [AB] AB′ + BB′ + CC′ = O : ﺒﺭﻫﻥ ﺃﻥ-uuuur uuur uuur uuur uuur uuur uuur uuur uuu:urﺤل( ) ( ) ( )AA′+BB′+CC′ = AB +BA′ + BC+CB′ + CA+AC′ uuur uuur uuur uuur ur AB + BC + CA = AA = O : ﻟﻜﻥuuur uuur uuur uuur uuuur uuurBA′ = 1 BC ; CB′ = 1 CA ; AC′ = 1 CA : ﻭﺒﻤﺎ ﺃﻥ 2 2 2 uuuur uuur BB′ ( )AA′ + uuur = 1 uuur uuur uuur + CC′ 2 BC + CA + AB : ﻴﻜﻭﻥ uuuur + uuur + uuur = 1 r = r : ﺇﺫﻥ AA′ BB′ CC′ 2 0 0 ( ) ﺇﻨﺸﺎﺀ ﻨﻘﻁﺔ ﻤﻌﺭﻓﺔ ﺒﻤﺴﺎﻭﺍﺓ ﺸﻌﺎﻋﻴﺔ: 3 ﺘﻁﺒﻴﻕ . ﻤﺜﻠﺙABC ﻟﻴﻜﻥ : ﺘﺤﻘﻕuﻱuﻭuﺘuﺴrﻤﻥ ﺍﻟﻤuMuurﻁﺔ ﻭﺤﻴﺩﺓuﻘuﻨuﺩurﺃﻨﻪ ﺘﻭﺠuﻥuﻫurﺒﺭ 2AM - 3 AB + 4 MC = BC . M ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ- uuuur uuur uuuur uuur : ﺤل : ﺘﻜﺎﻓﺊ2 AM - 3 AB + 4 MC = BC : ﻟﺩﻴﻨﺎ
uuuur uuuur uuur uuur2AM + 4 MC =uuBuurC + 3 AuuBuur uuur uuur uuur ﺃﻱ : ( )2AM + 4 MC + AC = BC + 3AB uuuur uuur uuur uuur −2uAuuMur =uBuurC +u3uuAr B - u4uAurC uuur −2AuMuuur= BAuu+ur ACuu+ur3 AB - 4 AC −2uAuuMur = u2uBuuAur - 3uAuuCuur AM = AM1 + AM2 uuuuur uuur uuuuur uuur ﻭﻤﻨﻪ : AM1 = - AB : = AM2 ACM1 3 ﺤﻴﺙ : 2 ﺘﻭﺠﺩ ﺇﺫﻥ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ M ﻭﻀﻌﻴﺘﻬﺎ ﻤﺤﺩﺩﺓ ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒلAMuurC uur (4ﻤﻨﺘﺼﻑ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻡ :[ ]B=AMI 2 IB : ﻜﺎﻥ ABﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﺍﻟﻘﻁﻌﺔ Iﻤﻨﺘﺼﻑ ﺘﻌﺭﻴﻑ :ﺍﻟﻨﻘﻁﺔ uur uur ur ﺃﻭ IA + IB = O uur 1 uuur ﺃﻭ = AI 2 ABur ur (5ﺘﻭﺍﺯrﻱuﺸﻌﺎﻋrﻴuﻥ :ﺘﻌﺭﻴﻑ V ; U :ﺸﻌﺎﻋﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴurﻥ .ﻴﻜﻭﻥ ﺍﻟﺸﻌrﺎuﻋﻴﻥ Uو Vﻤﺘﻭﺍﺯﻴﻴﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻕ ﻏﻴurﺭ ﻤﻌﺩﻭﻡ kﺒﺤﻴﺙ U = k . V : ﺍﻟﺸﻌﺎﻉ ﺍﻟﻤﻌﺩﻭﻡ Oﻴﻭﺍﺯﻱ ﻜل ﺸﻌﺎﻉ . (6ﺇﺴﺘﻘﺎﻤﻴﺔ ﺜﻼﺙ ﻨﻘﻁ :ﺘﻜurﻭuﻥuﺍﻟﻨﻘﻁ A , B u,uCurﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ) ﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ (ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : ABو ACﻤﺘﻭﺍﺯﻴﺎﻥ. ( )r r (7ﻤﺭﻜﻴﺒﺘﺎ ﺸﻌﺎﻉ :uuur r ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ r O ; i , jﺘﻌﺭﻴﻑ ( xA ; yA ) :ﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﻨﻘﻁﺔ Aﻤﻌﻨﺎﻩ OA = xA i + yA j :
: ﻓﺈﻥB ( xB ; yB ) ; A ( xA ; yA ) : ( ﺇﺫﺍ ﻜﺎﻥ1 uuur xB - xA AB yB - yA ur x′ و ur x ﻜﺎﻥ ﺇﺫﺍ (2 V y′ U ury ur ( y = y′ ﻭx = x′) ﺘﻜﺎﻓﺊU = V : ﻓﺈﻥ x + x′ : ﻫﻤﺎ ur uur •ﻤﺭﻜﺒﺘﺎ ﺍﻟﺸﻌﺎﻉ + U + U′ y y′ k∈ ¡ , kx ur uur kyur : ﻫﻤﺎk.U •ﻤﺭﻜﺒﺘﺎ ur uur U′ = k.U : ﺘﻜﺎﻓﺊU // U ′ • uur ur U′ x′ و U x : ﺨﺎﺼﻴﺔ y′ y ur uur ur uur( ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎU , U′ ) ﺃﻱxy′ - yx′ = 0 ﺘﻜﺎﻓﺊU // U ′ : ﺘﻁﺒﻴﻘﺎﺕ : ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ﺸﻌﺎﻋﻴﻥ ﻤﺘﻭﺍﺯﻴﻴﻥ ur ur : 1ﻤﺜﺎلur : ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙV ; U . ﻤﺭﺒﻊABCD ﻟﻴﻜﻥV uuur uuur ur uuur uuur = DB + 1 BC ; U = 2 AB + DA 2 ur ur . ﻤﺘﻭﺍﺯﻴﺎﻥV وU : ﺒﺭﻫﻥ ﺃﻥ uuur uuur : ﺤل ur uDuuAr = CuuBur : ﻤﺭﺒﻊ ﻓﺈﻥABCD ﺒﻤﺎ ﺃﻥ U = 2 AB + CB : ﻭﻤﻨﻪ
ur = uuur uuur 1 uuur V AD + AB + 2 BC = uuur uuur + 1 uuur CB + AB 2 BC ur uuur 1 uuur V= AB + 2 CB ur ur U = 2V ur ur : ﺇﺫﻥ ﻤﺘﻭﺍﺯﻴﺎﻥV وU : ﻭﻤﻨﻪ : 2ﻤﺜﺎل : ﺒـF ﻭE ﻨﻌﺭﻑ ﺍﻟﻨﻘﻁﺘﻴﻥABCD ﻓﻲ ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ uuur uuur uuur uuur AF = 1 DA ; AE = 1 AB 3 4 . ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓC , E , F ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ : ﺤلuuur uuur uuur uuur uuur uuurFE =uu31ur AD + 1 AB : ﺇﺫﻥFE = FA + AE 4 uuur uuur uuur FE = FA + AD + DO uuur uuur uuur : ﻭﺒﺎﻟﻤﺜل AD + AD + AB = 1 3uuur uuur uuur u31uuruAuDur u+uur41 uuurFC = 4 AD + AB =4 AB 3 uFuurC =u4uurFE : ﻭﺒﻤﺎ ﺃﻥ . ﻤﺘﻭﺍﺯﻴﺎﻥFE ﻭFC ﻓﺈﻥ ﺍﻟﺸﻌﺎﻋﻴﻥ . ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓC , E , F ﻭﻤﻨﻪ ﺍﻟﻨﻘﻁ ( )ur ( uﺕr ) ﺍﺴﺘﻌﻤﺎل ﺍﻹﺤﺩﺍﺜﻴﺎ: 3ﻤﺜﺎل : ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁO ; i , j ﻓﻲ ﻤﺴﺘﻭ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ D (-1 ; 9) , C (1 ; -1) , B (-2 ; 2) , A (3 , 1)
uuur: ﺘﺤﻘﻕuMuuﺓrﻁﺔ ﻭﺤﻴﺩuﻘu ﻨuﺩuﺠrﻥ ﺃﻨﻪ ﺘﻭuﻫuﺭuﺒr(ﺃ 2MA + 3MB - 4 MC = 2 AC . M ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ؟D ; B ; M ﺏ( ﻫل ﺍﻟﻨﻘﻁ : ﺤلuuuur : ﺇﻥ ﻭﺠﺩﺕM (x ; y) ﺃ( ﻟﺘﻜﻥMC uuur uMuuAr 1 - x ; MB -2 - x ; 3 - x : ﻟﺩﻴﻨﺎ 1 - y 2 - y 1 - y uuur -6 - 3x ; uuur 6 - 2x : ﻭﻤﻨﻪ 3MB 2 MA 6 - 3y 2 - 2y uuur -2 ; uuuur -4 + 4x AC -4 MC -2 4 + 4y uuur uuur uuuur u: uﻪuﻨrﻭﻤ : ﺘﻜﺎﻓﺊ2MA + 3MB - 4 MC = 2 AC 6 - 2x - 6 - 3x - 4 + 4x = -4 2 - 2y + 6 - 3y + 4 + 4y = -4 x = 0 − x - 4 = -4 : ﺃﻱ -y + 12 = -4 : ﺃﻱ y = 16 M (0 ; 16) : ﻤﻭﺠﻭﺩﺓ ﻭﻭﺤﻴﺩﺓ ﺤﻴﺙM ﺍﻟﻨﻘﻁﺔ uuur uBuMuuruuur124 BD 1 ; (ﺏ 7 uuuur uuur uuuur BD ﻭBM ﻓﺈﻥ ﺍﻟﺸﻌﺎﻋﻴﻥBM = 2BD : ﻭﺒﻤﺎ ﺃﻥ D , B , M : ﻤﺘﻭﺍﺯﻴﺎﻥ ﻭﻤﻨﻪ ﺍﻟﻨﻘﻁ . ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ [ ]BM ﻫﻭ ﻤﻨﺘﺼﻑD ﺒﺎﻹﻀﺎﻓﺔ ﻓﺈﻥ : ﻤﺭﺠﺢ ﻨﻘﻁﺘﻴﻥ- II
(1ﻤﺒﺭﻫﻨﺔ ﻭﺘﻌﺭﻴﻑ : Aﻭ Bﻨﻘﻁﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ α .ﻭ βﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺤﻴﺙ 0 ≠ β + α :؛ ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻭrﺤuﻴﺩﺓ rGﺘuﺤﻘﻕ ur : αG A + βG B = O ﺍﻟﻨﻘﻁﺔ Gﺘﺴﻤﻰ ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ Aﻭ Bﺍﻟﻤﺭﻓﻘﺘﻴﻥ ﺒﺎﻟﻌﺎﻤﻠﻴﻥ αو βﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﻤﻼﺤﻅﺔ : ﻨﻘﻭل ﻜﺫﻟﻙ ﺃﻥ Gﻫﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (B , β ) ; (A , α • ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , 1ﻭ) (B , 1ﻫﻭ ﻤﻨﺘﺼﻑ [ ]AB • ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺍﻟﻤﺨﺘﻠﻔﺘﻴﻥ Aﻭ Bﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ )(AB • ﺇﺫﺍ ﻜﺎﻥ αﻭ βﻤﻥ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ﻓﺈﻥ Gﻴﻨﺘﻤﻲ ﺇﻟﻰ [ ]. AB • ﺇﺫﺍ ﻜﺎﻥ αﻭ βﻤﺨﺘﻠﻔﺎﻥ ﻓﻲ ﺍﻹﺸﺎﺭﺓ ﻓﺈﻥ Gﺨﺎﺭﺝ [ ]. AB (2ﺍﻟﺨﺎﺼﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻠﻤﺭﺠﺢ :ﺇﺫﺍ ﻜﺎﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (B , β ) ; (A , αﺤﻴﺙ . α + β ≠ 0ﻓﺈﻥ ﻤﻥ ﺃﺠل ﻜلurﻨuﻘuﻁuﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ uuur uuur : αMA + βMB = ( α + β ) MG( )r r -ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻤﺭﺠﺢ :ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ O ; i , jﻟﺘﻜﻥ ) G (xG ; yG ) . B (xB ; yB ) , A (xA , yAﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) . (B , β ) ; (A , αﺒﺘﻌﻭﻴﺽ Mﺒـ Oﻓﻲ ﺍﻟﺨﺎﺼﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻨﺠﺩ : xG = αx A + βxB α +β αyA + βYB yG = α +β ﻤﺜﺎل : 1ﺇﻨﺸﺎﺀ ﻤﺭﺠﺢ ﻨﻘﻁﺘﻴﻥﺃ( ﺃﻨﺸﺊ ﺍﻟﻤﺭﺠﺢ Gﻟﻠﺠﻤﻠﺔ )(B , 1) ; (A , 2ﺏ( ﻫل ﻴﻤﻜﻥ ﺇﻨﺸﺎﺀ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (B , -3) ; (A , 3؟
ﺤل : ﺃ( ﺍﻟﻤﺭﺠﺢ ﻤﻭﺠﻭﺩ ﻷﻥ uu1ur+ 2uu≠ur0ﻭ ﻤﻥ ﺃﺠrلuuﻜuلuﻨﻘﻁﺔ Mﻤﻥ 3MG = 2MA + MB uuur uuur ﺍﻟﻤﺴﺘﻭﻱ ﻟﺩﻴﻨﺎ : = AG AB 1 ﺒﻭﻀﻊ M = A :ﻨﺠﺩ : 3AG ﺏ( ﺍﻟﻤﺭﺠﺢurﻏﻴﺭ ﻤﻭﺠurﻭuﺩuﻷﻥ uuurB3 + u(-u3u)r= 0 ﺒﺎﻟﻔﻌل 3MA - 3MB = 3BA ≠ O : ﻤﺜﺎل ) : 2ﺍﺴﺘﻌﻤﺎل ﺍﻟﻤﺭﺠﺢ ﻓﻲ ﺍﻟﺤﺴﺎﺏ ﺍﻟﺸﻌﺎﻋﻲ ( ﻟﺘﻜﻥ ﺜﻼﺙ ﻨﻘﻁ A , B , Cﻤﻥ ﺍﻟrﻤuuﺴﺘuﻭﻱuuur uuur . ﺒﺭﻫﻥ ﺃﻨﻪ ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ﺘﺤﻘﻕ MA - 3MB = AC : ﺃﻨﺸﺊ . M ﺤل : ﻟﺘﻜﻥ Gﻤﺭﺠﺢ urﺍuﻟuﺠﻤuﻠﺔ )uuur(B , -3u) u; u(Ar , 1 ﺒﻤﺎ ﺃﻥ uuuur uuur MAu-u3urMBu=uu-r2MuGuur :ﻓﺈﻥ MA - 3MB = AC :ﺘﻜﺎﻓﺊ −2MG = AC :uuur uuur uuuur uuur= AG 3 AB ﻨﻨﺸﺊ ﺃﻭﻻ Gﺤﻴﺙ : = . GM 1 AC ﺃﻱ : 2 2 uuuur 1 uuur = GM 2 AC ﺜﻡ ﺍﻟﻨﻘﻁﺔ ﺍﻟﻭﺤﻴﺩﺓ Mﺍﻟﺘﻲ ﺘﺤﻘﻕ C MA BG (3ﻤﺭﺠﺢ ﺜﻼﺙ ﻨﻘﻁ : ﻤﺒﺭﻫﻨﺔ ﻭﺘﻌﺭﻴﻑ : A , B , Cﺜﻼﺙ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ. α , β , γﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ α + β + γ ≠ 0 :
r-1ﺘﻭﺠﺩ ﻨrﻘuﻁuﺔuﻭﺤﻴﺩﺓ uGrﺘuﺤuﻘﻕ uuur : αGA + βGB + γGC = 0 -2ﺍﻟﻨﻘﻁﺔ Gﺘﺴﻤﻰ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ : )(A , α) ; (B , β) ; (C , γ ﺨﻭﺍﺹ : -ﻻ ﻴﺘﻐﻴﺭ ﺍﻟﻤﺭﺠﺢ ﺇﺫﺍ ﻀﺭﺒﻨﺎ ﺍﻟﻤﻌﺎﻤﻼﺕ ﻓﻲ ﻨﻔﺱ ﺍﻟﻌﺩﺩ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ. -ﺇﺫﺍ ﻜﺎﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , α) ; (B , β) ; (C , γﺤﻴﺙ α + β + γ ≠ 0ﻓﺈﻥ : ﻤrﻥuuﺃﺠuل uﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱuuuur uuur uuu:r αMA + βMB + γMC = (α + β + γ) MG ( )r r (4ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻤﺭﺠﺢ : ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ O ; i , jﻟﺘﻜﻥ A (xA ; yA ) , B (xB ; yB ) , C (xC ; yC ) :) G (xG ; yGﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ (A , α ) ; (B , β ) ; (C , γ ) : xG = αxA + βxB + γxC α +β + γ αyA + βyB + γyC yG = α +β + γuuur uuur uuur ur ﺨﺎﺼﻴﺔ :ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ABCﻫﻭ ﺍﻟﻨﻘﻁﺔ Gﺍﻟﺘﻲ ﺘﺤﻘﻕ GA + GB + GC = O : )*( ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ : A , B , Cﺜﻼﺙ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ α , β , γﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ α + β + γ ≠ 0 :ﺇﺫﺍ ﻜﺎﻥ α + β ≠ 0 :ﻓﺈﻥ ﺍﻟﻤﺭﺠﺢ Gﻟﻠﺠﻤﻠﺔ ) (A , α) ; (B , β) ; (C , γﻫﻭﻜﺫﺍﻟﻙ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (C , α) ; (H , α + βﺤﻴﺙ Hﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(B , β) ; (A , α ﻤﺜﺎل ) : 1ﺇﻨﺸﺎﺀ ﻤﺭﺠﺢ ﺜﻼﺙ ﻨﻘﻁ (
ABCﻤﺜﻠﺙ .ﺃﻨﺸﺊ ﺒﻁﺭﻴﻘﺘﻴﻥ ﻤﺨﺘﻠﻔﺘﻴﻥ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(A , 1) ; (B , 1) ; (C , 2 ﺤل : ﺍﻟﻤﺭﺠﺢ Gﻤﻭﺠﻭﺩ ﻷﻥ 11 + 1 + 2 ≠ 0 • ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺨﺎﺼﺔ ﺍﻷﺴﺎurﺴﻴuﺔuuuur uuur uuur u:u ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ MA + MB + 2MC = 4MG : M uuur uuur uuur CG = 1 (CA + )CB ﺒﺘﻌﻭﻴﺽ Mﺒـ C :ﻨﺠﺩ : 4A • )*( ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ : ﻟﻴﻜﻥ Iﻤﻨﺘﺼﻑ [ ]. AB Gﻫﻭ ﻤﺭﺠﺢ I (C , 2) ; (I , 2) : G C ﺇﺫﻥ G :ﻤﻨﺘﺼﻑ [ ]ICB ﻤﺜﺎل : 2ﻓﻲ urﺍuﻟﻤuﺜﻠﺙ .uuAurBCﻨﺴﻤﻰ Iﻤﻨﺘﺼﻑ AB؛ Jﻤﻨﺘﺼﻑ CI؛ ﻭ Kﻨﻘﻁﺔ ﺤﻴﺙ [ ] [ ]: 3BK = 2BC ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ K ; J ; Aﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ. ﺤل uuur uuur uuur : ﻟﺩﻴﻨﺎ uuur 3BuuKur = 2ur(BK + KC) : −BK + 2KC =uuuOr suuu ur ﺃﻱ KB + 2KC = O : ﻭﻤﻨﻪ K :ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(C , 2) ; (B , 1 ﻟﺩﻴﻨﺎ Jﻤﻨﺘﺼﻑ CIﻭﻤﻨﻪ Jﻫﻭ ﻤﺭﺠﺢ )[ )(I , 2) ; (C , 2 ﻭﻟﻜﻥ Iﻤﻨﺘﺼﻑ ABﻓﻬﻭ ﻤﺭﺠﺢ )[ ](B , 1) ; (A , 1 ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﻨﺠﺩ ﺃﻥ : Jﻤﺭﺠﺢ )(B , 1) ; (A , 1) ; (C , 2 ﻭ ﺒﻤﺎ ﺃﻥ Kﻤﺭﺠﺢ )(C , 2) ; (B , 1 ﻓﺈﻥ ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﺘﺒﻴﻥ ﺃﻥ Jﻤﺭﺠﺢ )(K , 3) ; (A , 1
ﻨﺴﺘﻨﺘﺞ ﺃﻥ Jﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ)(AK ﺇﺫﻥ A ; J ; K :ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ. ﻤﺜﺎل : 3 ABCDﺭﺒﺎﻋﻲ I , J , K , L .ﻤﻨﺘﺼﻔﺎﺕ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻟﻸﻀﻼﻉ ]. [AB] ; [BC] ; [CD] ; [DA Mﻭ Nﻤﻨﺘﺼﻔﺎ ﺍﻟﻘﻁﺭﻴﻥ ACو BDﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ [ ] [ ]. ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ) (IK) ; (JL) ; (MNﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻨﻘﻁﺔ . ﺤل :ﻟﺘﻜﻥ Oﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , 1) ; (B , 1) ; (C , 1) ; (D , 1ﺒﺘﺠﻤﻴﻊ Aﻤﻊ B ﻭ Cﻤﻊ Dﻨﺠﺩ ﺃﻥ Oﻫﻭ ﻤﺭﺠﺢ : )(K , 2) ; (I , 2ﺒﺘﺠﻤﻴﻊ Cﻤﻊ Aﻭ Bﻤﻊ Dﻨﺠﺩ O :ﻤﺭﺠﺢ (N , 2) ; (M , 2) :ﺒﺘﺠﻤﻴﻊ Aﻤﻊ Dﻭ Cﻤﻊ Bﻨﺠﺩ Oﻤﺭﺠﺢ (J , 2) ; (L , 2) : ﻭﻤﻨﻪ O :ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ (JL) ; (MN) ; (IK) : ﺇﺫﻥ :ﻫﺫﻩ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺘﺘﻼﻗﻰ ﻓﻲ ﺍﻟﻨﻘﻁﺔ . O
ﺕﻤـﺎریـﻦ و ﻡﺸﻜﻼت ﺍﻟﺘﻤﺭﻴﻥ . 1ﺼﺤﻴﺢ ﺃﻡ ﺨﻁﺄ :ur uuur uuur (1ﻤﻥ ﺃﺠل ﺜﻼurﺙ uﻨuﻘﻁ ﻜﻴﻔﻴﺔurﻤuﻥuﺍﻟﻤﺴﺘﻭurﻱu: uV = BA - 2AC ﻟﺩﻴﻨﺎ 2uAr B +uuuBr C =u2uuAr C : (2ﺍﻟﺸﻌﺎﻋﺎﻥ U = AB + 2AC :ﻭ ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ. (3ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠrﺔ ) ( A ; -2u)u;ur(B ;u-u5urﺃﻗﺭﺏ ﻤﻥ { }B (4ﺇﺫﺍ ﻜﺎﻥ AB + 2AC = 0 :ﻓﺈﻥ B :ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ }){( A ; 1) ; (C ; 2 (5ﻤﺭﺠﺢ ) C (-1 ; 2) ; B (3 ; 4) ; A (1 ; 2ﺍﻟﻤﻔﺭﻗﺔ ﺒﻨﻔﺱ ﺍﻟﻤﻌﺎﻤل ﻓﺎﺼﻠﺘﻪ 1ﻓﻲ ﻤﺴﺘﻭ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ . (6ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (C ; 4) ; (B ; 2) ; (A ; 2ﻫﻭ ﺃﻴﻀﺎ ﻤﻨﺘﺼﻑ ] [ICﺤﻴﺙ ﻤﻨﺘﺼﻑ ][AB (7ﺇﺫﺍ ﻜﺎﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (C ; 2) ; (B ; 2) ; (A ; 1ﻓﺈﻥ Gﻫﻭ ﺃﻴﻀﺎ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ I ; 47 ; I ; 3ﺤﻴﺙ Iﻤﺭﺠﻊ) ( ) (} { }) {(B ; 2) ; ( A ; 1ﻭ Jﻤﻨﺘﺼﻑ ][BC (8ﺇﺫﺍ ﻜﺎﻥ Fﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ :}){(D ; 1) ; (G ; 4) ; (B ; 2) ; (A ; 1 ﻓﺈﻥ ﺍﻟﻨﻘﻁ Fﻭ ﻤﻨﺘﺼﻑ ADﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ [ ]:) (C ; 2) ; (B ; 1ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ { }.ﺃﻋﻁ ﺍﻷﺠﻭﺒﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻭ ﺍﻟﺨﺎﻁﺌﺔ ﻟﻜل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺍﻟﺘﺎﻟﻴﺔ ﻤﻥ 2ﺇﻟﻰ : 7ur uuur ur uuur ﺍﻟﺘﻤﺭﻴﻥ. 2 ABCDﻤﺴﺘﻁﻴل ﻨﻀﻊ V = AD ; U = AB :
ur ur ur ur U + V = U - V (1 ur 2 + ur 2 = ur - ur 2 U V U V ur ur ur ur ur (2 U + V + U - V = 2 U (3 ﺍﻟﺘﻤﺭﻴﻥ. 3 Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) ( A ; α) ; (B ; β) ; (C ; γﺤﻴﺙ γ , β , αﻤﻥ} { ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ . (1ﺘﻭﺠﺩ ﻤﻌﺎﻤﻼﺕ ﺤﻘﻴﻘﻴﺔ γ′ , β′ , α′ :ﺒﺤﻴﺙ γ′ + β′ + α′ = 1 :ﻭ Gﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ . (C , γ ) ; (B ; β) ; ( A ; α) :uuur uuur uuur= CG α CA + α CB (2ﺍﻟﻨﻘﻁﺔ Gﺘﺤﻘﻕ : α+β+γ α+β+γ (3ﺍﻟﻨﻘﻁﺔ Gﺘﻘﻊ ﺩﺍﺨل ﺍﻟﻤﺜﻠﺙ . ABC ﺍﻟﺘﻤﺭﻴﻥ. 4 ABCﻤﺜﻠﺙ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﻲ AH . Aﺍﺭﺘﻔﺎﻉ [ ]. A ; 1 , H ; 2 Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ : 3 3 uur = 1 uuur (1 CI 3 ) (B Gﻴﻘﻁﻊ ) (ACﻓﻲ Iﺒﺤﻴﺙ CA : uuur uuur uuur r GA + GB + GC = 0 (2 A (3ﻤﺭﺠﻊ ﺍﻟﺠﻤﻠﺔ ){ }(G ; 3) ; (B ; 1) ; (C ; 1 ﺍﻟﺘﻤﺭﻴﻥ. 5{ }(A;)-7, (B ; )3 , (C ; )5 ABCﻤﺜﻠﺙ G ،ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) G (1ﻴﻘﻊ ﺩﺍﺨل ﺍﻟﻘﻁﺎﻉ ﺍﻟﺯﺍﻭﻱ ﺍﻟﻤﻌﺭﻑ ﺒـ BAC ﻭﺨﺎﺭﺝ ﺍﻟﻤﺜﻠﺙ .ABC (2ﺍﻟﻤﺴﺘﻘﻴﻡ) (BGﻴﻘﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (ACﻓﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ
} ). {(A ; -7) , (C ; 5 B (3ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ } ) . {(A ; -7 ) , (C ; 5 ) , ( G ; 1 ﺍﻟﺘﻤﺭﻴﻥ. 6 ABCﻤﺜﻠﺙ G ،ﻤﺭﺠﺢ ){ }(C ; 3uu)r , (Buu;ur2) , ( A ; 1 (AG) (1ﻴﻘﻁﻊ ) (BCﻓﻲ ﺍﻟﻨﻘﻁﺔ Iﺤﻴﺙ 5BI = 2BC : (2ﻨﻘﻁrﺔ ﺘﻘﺎﻁrﻊ (BG)uuﻭ (AuCuu)rﻫﻲ ﺍﻟﻨﻘﻁﺔ Jﺤﻴﺙ : GB + 2GJ = 0 (CG) (3ﻴﻘﻁﻊ ) (ABﻓﻲ ﻤﻨﺘﺼﻑ [ ]. AB uur uuur ﺍﻟﺘﻤﺭﻴﻥ. 73AJ = 2AC uAuBurCﻤﺜﻠﺙ K , Juu, uIr.ﻨﻘﻁ ﺤrﻴﺙ uur uur : ; -3IB + 4IC = 0 ; 2uKurA =u3uKur B . IC = 3BC (1 J (2ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ){ }. ( A ; 3) ; (C ; 2 (3ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ) (C k) ; (BJ) ; (AIﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ }). {( A ; 2) ; (B ; -3) ; (C ; 4 ﺍﻟﺘﻤﺭﻴﻥ. 8 Aﻭ Bﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ AB = 5 cm : ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ { }( ) ( )B ; -2 ; A ; 7 ﺍﻟﺘﻤﺭﻴﻥ. 9 ABCﻤﺜﻠﺙ ﻜﻴﻔﻲ .ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ){ }. ( A ; 2) ; (B ; -1) ; (C ; -2 ﺍﻟﺘﻤﺭﻴﻥ. 10 ABCﺸﺒﻪ ﻤﺤﺭﻑ ﻗﺎﺌﻡ ﺤﻴﺙ : CD = 2 cm ; AD = 3 cm ; AB = 6 cm
( )r1uuurو r = 1 uuur ﻨﻀﻊ :3 AD i r6 AB=j r (1ﺒﻴﻥ ﺃﻥ A ; i , j ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ (2ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ : )(D ; 3) ; (C ; -2) ; (B ; 5) ; (A ; 4 ﺍﻟﺘﻤﺭﻴﻥ. 11 A ; B ; C ; Dﺃﺭﺒﻊ ﻨﻘﻁ ﺤﻴﺙ : DA = 6 cm ; CD = 7 cm ; AB = 5 cm Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(A ; 2) ; (B ; 3) ; (C ; 3) ; (D ; 4ﺃ( ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Iﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ { }( ) ( )A ; 2 ; B ; 3ﺏ( ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Jﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ { }( ) ( )C ; 3 ; D ; 4ﺟـ ( ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁﺔ Gﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ). (IJ ﺍﻟﺘﻤﺭﻴﻥ. 12 Aﻭ Bﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ AB = 6 cm :ﻭ Mﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ. (1ﻋﻴrﻥ uﺍuﻟﻤuﺭﺠﺢ urIﻟuﻠuﺠﻤuﻠﺔ ) . (A ; 1u)u;ur(B ; 1ﻭﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻉ : MA + MBﺒﺩﻻﻟﺔ . MI (2ﻋﻴrﻥ uﺍuﻟﻤuﺭﺠﺢ rGﻟuﻠuﺠuﻤﻠuﺔ ) (A ;u1u)u;ur(B ; 2ﻭﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻉ : MA + 2MBﺒﺩﻻﻟﺔ MG ﺍﻟﺘﻤﺭﻴﻥ. 13 ﻟﻴﻜﻥ ﺍﻟﻘﻁﻌﺔ ABﻁﻭﻟﻬﺎ [ ]. 6 cm - 1ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ AM = 6 cm؟ -2ﻟﻴﻜﻥ Iﻤﻨﺘﺼﻑ [ ]uuur uuuur uu.urABﺃ ( ﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭurﻉ MuAuu+r MB u: uﺒurﺩuﻻﻟuﺔuﺍﻟﺸﻌﺎﻉ . MI ﺏ( ﺒﺭﻫﻥ ﺃﻨﻪ MA + MB = 2 MI : ﺟـ( ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ :
uuuur uuurMA + MB = 6 cm ﺍﻟﺘﻤﺭﻴﻥ. 14 Aﻭ Bﻨﻘﻁﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ . fﺘﻁﺒﻴﻕ ﻴﺭﻓﻕ ﺒﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻨﻘurﻁﺔ Muu′uuﺤﻴrﺙuuuur uu:uMA + MuBuur= MuMuur′ (1ﻟﻴﻜﻥ Iﻤﻨﺘﺼﻑ . ABﺒﺭﻫﻥ ﺃﻥ [ ]. IM′ = -IM : (2ﺤﺩﺩ ﻁﺒﻴﻌﺔ ﺍﻟﺘﻁﺒﻴﻕ fﻭﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ. )*( ﺍﻟﺘﻤﺭﻴﻥ. 15 ABCﻤﺜﻠﺙ ﻭ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ : )(C ; -1) , (B ; 2) , (A ; 1uuuur (1ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ uuuur uuur uuur . G (2ﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻉ uuMurA +uu2urMB - MuuuCur :ﺒﺩﻻﻟﺔ uMuuGurﺜﻡ ﺒﺭﻫﻥ ﺃﻥ MA + 2MB - MC = 2 MG : (3ﻋﻴﻥ ﻤﺠﻤﻭﻋrﺔuﺍﻟuﻨﻘuﻁ rMﻤuﻥ uﺍuﻟﻤﺴﺘﻭﻱrﺒuuﺤﻴuﺙ: u MA + 2MB - MC = 5 ﺍﻟﺘﻤﺭﻴﻥ. 16uAuuBurCﻤﺜuﻠﺙ rf .ﺘuﻁuﺒﻴuﻕ ﻴﺭﻓrﻕuﺒﻜuل uﻨﻘﻁﺔuMuurﻤuﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻨﻘﻁﺔ M′ﺒﺤﻴﺙ : MA + MB + MC = MM′ (1ﻟﻴﻜﻥ Gﻤﺭﻜﺯurﺜuﻘل uﺍuﻟﻤﺜﻠﺙ uu.uAurBC ﺒﺭﻫﻥ ﺃﻥ GM′ = -2GM : (2ﺤﺩﺩ ﻁﺒﻴﻌﺔ ﺍﻟﺘﻁﺒﻴﻕ fﻭﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ . ( )r r ﺍﻟﺘﻤﺭﻴﻥ. 17 ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ O ; i , jﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺘﺎﻥ )B (3 ; 6) ; A (6 ; 3 (1ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ .OAB (2ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﺭﺍﻜﺯ ﺍﻟﺜﻘل J , I , Hﻟﻠﻤﺜﻠﺜﺎﺕ.
AGB ; OGB ; AGA (3ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺜﻴﻥ OABﻭ HIJﻟﻬﻤﺎ ﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل .( )r r ﺍﻟﺘﻤﺭﻴﻥ. 18ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ O ; i , j ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁ )C (5 ; 2) ; B (-2 ; 3) ; A ( 1 ; 4)C′(2 ; 5) ; B′(-2 ; 3) ; A′(4 ; 1 (D) (1ﻫﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ . y = xﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﻫﻭ ﻤﺤﻭﺭ ﺍﻟﻘﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ][CC′] ; [BB′] ; [AA′ (2ﻟﻴﻜﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(A ; -3) ; (B ; 2) ; (C ; 4 ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ .G (3ﻟﻴﻜﻥ G′ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ :) . (C′ ; 4) , (B′ ; 2) , ( A′ ; -3ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﺘﻲ . G′ (4ﻫل ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﻤﺤﻭﺭ ﻟﻠﻘﻁﻌﺔ GG′؟] [ )*( ﺍﻟﺘﻤﺭﻴﻥ. 19 ABCﻤﺜﻠﺙ ﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉ ﻁﻭل ﻀﻠﻌﻪ . 5cm -1ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(C . 1) , (B ; -1) , ( A ; 1 ﺜﻡ ﺒﻴﻥ ﺃﻥ ABCGﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ . -2ﺃ( ﺍﺴﺘﻌﻤل ﺍﻟﺴﺅﺍل ﺍﻟﺴﺎﺒﻕ ﻟﺘﻌﻴﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ ) (Γﻟﻠﻨﻘﻁ Mﻤﻥuuuur uuur uuur = 53 ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ :MA - MB + MC 2ﺏ( ﺘﺤﻘﻕ ﺃﻥ ﻤﻨﺘﺼﻑ ACﻴﻨﺘﻤﻲ ﺇﻟﻰ ) . (Γﺃﻨﺸﺊ )[ ]. (Γ )*( ﺍﻟﺘﻤﺭﻴﻥ. 20 ﻟﻴﻜﻥ ABCﻤﺜﻠﺙ ﻏﻴﺭ ﻗﺎﺌﻡ A′ , B′ , C′ﻤﻨﺘﺼﻔﺎﺕ ﺍﻷﻀﻠﻊ AB , AC , BCﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭﻟﻴﻜﻥ Oﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ [ ] [ ] [ ].
A -1ﻟﻴﻜﻥuHuurﻨﻘﻁﺔrﻤuﻥuﺍﻟuﻤﺴﺘﻭrﻱuﺍuﻟﻤuﻌﺭﻑ ﺒrـuu: u 'H B uuuOr Hu=uurOA +uuOuurB + OC ﺃ( ﺒﻴﻥ ﺃﻥ . OB + OCuu=uur2OAu′ uur: C' G O ﺏ( ﺍﺴﺘﻨﺘﺞ AHﺒﺩﻻﻟﺔ . OA′'B A ﺟـ( ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (AHﻋﻤﻭﺩﻱ ﻋﻠﻰ ). (BC ﺩ( ﻟﻤﺎﺫﺍ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (BHﻋﻤﻭﺩﻱ ﻋﻠﻰ ) (AC؟ ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻨﻘﻁﺔ Hﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﺜﻠﺙ . ABC -2ﻟﻴﻜﻥ Gﻤﺭﻜﺯrﺜuﻘل uﺍuﻟﻤﺜﻠﺙ uuAurBC ﺃ( ﺒﺭﻫﻥ ﺃﻥ . OH = 3 OG : ﺏ( ﻓﻲ ﺃﻱ ﺤﺎﻟﺔ ﻴﻜﻭﻥ : O=G=H؟ ﺟـ( ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻘﻁ C H , G , O ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﻤﺴﺘﻘﻴﻡ ) ﻴﺴﻤﻰ ﻫﺫﺍ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻤﺴﺘﻘﻴﻡ \"ﺃﻭﻟﻴﺭ\" (ﻡﺴﺘﻘﻴﻢ أوﻟﻴﺮ ﺩ( ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺘﺒﻘﻰ ﺼﺤﻴﺤﺔ ﻓﻲ ﺤﺎﻟﺔ ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﺍﻟﺘﻤﺭﻴﻥ. 21 A , Bﻨﻘﻁﺘﺎﻥ ﻤﺘﻤﺎﻴﺯﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ . Iﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ( ). AB -ﺒﺭﻫﻥ ﺃﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ aﻭ bﺒﺤﻴﺙ : ﻴﻜﻭﻥ Iﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ ( ) ( )A ; a , B ; b ﺍﻟﺘﻤﺭﻴﻥ. 22ﻟﻴﻜﻥ ABCﻤﺜﻠﺙ .ﻋﻴﻥ ﻭﺃﻨﺸﺊ ﺍﻟﻤﺠﻤﻭﻋﺔ ) (Eﻟﻠﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ﻴﻜﻭﻥ : uuur uuuur uuur uuur ) ( MA + 2 MB + MCﻭ ACﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ .
uuur uuur ﺍﻟﺘﻤﺭﻴﻥ. 23ﻓﻲ ﻤﺜﻠﺙ ABCﻟﺘﻜﻥ Eﻨﻘﻁﺔ ﺤﻴﺙ EB = - 2 EA :ﻨﺴﻤﻲ A′و A1ﻤﻨﺘﺼﻔﺎ BCو AA′ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ] [ ] [ -ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ A1 , E , Cﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ . ﺍﻟﺘﻤﺭﻴﻥ. 24ﻟﺘﻜﻥ A , B , C , Dﺃﺭﺒﻊ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻭ Gﻤﺭﺠﺢ ﻟﻠﺠﻤﻠﺔ). (A ; 1) , (B ; 2) , (C ; 2) , (D ; 1ﻨﺴﻤﻲ Mﻭ Nﻤﻨﺘﺼﻔﺎ ADو BCﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ [ ] [ ]. -ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ G , N , Mﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ .
اﻟﺤـﻠــــــﻮل ﺍﻟﺘﻤﺭﻴﻥ. 1 (3ﺼﺤﻴﺢ (2ﺼﺤﻴﺢ (1ﺨﻁﺄ (6ﺼﺤﻴﺢ (5ﺼﺤﻴﺢ (4ﺨﻁﺄ (8ﺼﺤﻴﺢ . (7ﺨﻁﺄ ﺍﻟﺘﻤﺭﻴﻥ. 2 (3ﺨﻁﺄ (2ﺼﺤﻴﺢ (1ﺼﺤﻴﺢ ﺍﻟﺘﻤﺭﻴﻥ. 3 (3ﺼﺤﻴﺢ (2ﺼﺤﻴﺢ (1ﺼﺤﻴﺢ ﺍﻟﺘﻤﺭﻴﻥ. 4 (3ﺨﻁﺄ (2ﺼﺤﻴﺢ (1ﺨﻁﺄ ﺍﻟﺘﻤﺭﻴﻥ. 5 (3ﺨﻁﺎ (2ﺼﺤﻴﺢ (1ﺼﺤﻴﺢ ﺍﻟﺘﻤﺭﻴﻥ. 6 (3ﺨﻁﺄ (2ﺼﺤﻴﺢ (1ﺨﻁﺎ ﺍﻟﺘﻤﺭﻴﻥ. 7 (3ﺼﺤﻴﺢ (2ﺨﻁﺄ (1ﺨﻁﺄ ﺍﻟﺘﻤﺭﻴﻥ. 8 ﻁﺭﻴﻘﺔ : ﺃ ( ﺍﺤﺴﺏ ﻤﺠﻤﻭﻉrﺍuﻟﻤuﻌuﺎﻤﻼﺕ ﻭﺘﺤﻘﻕ urﺃuﻨﻬuﺎ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ ﺏ ( ﻋﺒﺭ ﻋﻥ AGﺒﺩﻻﻟﺔ . AB ﺟـ ( ﺍﺭﺴﻡ ﺍﻟﻨﻘﻁﺔ . G ﺤـل : ﺃ ( ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ ( )7 + - 2 = 5 ≠ 0 : uuur uuur AG = - 2 AB ﺏ( 5GA B
ﺍﻟﺘﻤﺭﻴﻥ. 9ﺃ( ﻤﺠﻤﻭﻋﺔ ﺍﻟﻤﻌﺎﻤﻼﺕ 2 + (- 1) + (- 2) + - 1 ≠ 0 : uuur uuur --u21uuruAuCur = AG -1 AB + ﺏ( -1 uuur uuur AG = AB + 2ACAC ﺟـ( ﺍﻟﺭﺴﻡ :B ﺍﻟﺘﻤﺭﻴﻥG . 10 (1ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥr ABuuurو ADuuuﻤﺘﻌﺎﻤﺩﺍﻥ) ( ) ( ﻭﻤﻨﻪ AB :و rAD rﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﻴﻥ ) ﻤﺭﺘﺒﻁﻴﻥ ﺨﻁﻴﺎ ( ﻨﺴﺘﻨﺘﺞ ﺇﺫﻥrﺃﻥ I r:و Jﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﺎﻥ ( ). ﻭﻤﻨﻪ A ; I , J :ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ . (2ﺍﻟﻨﻘﻁﺔ Aﻫﻲ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻭﻤﻨﻪ )A (0 ; 0 uuur r r uuurﻨﺴﺘﻨﺘﺞ AB = 6 i :ﻭﻤﻨﻪ B ( 6 ; 0) : =i 1 AB ﻤﻥ : 6 uuur r r 1 uuurﻨﺴﺘﻨﺘﺞ AD = 3 j :ﻭﻤﻨﻪD ( 0 ; 3 ) : =j 3 ﻤﻥ AD -ﺍﻟﻤﺴﺘurﻘﻴuﻤﺎuﻥ ) (DCﻭ (AB) rﻤﺘﻭﺍﺯﻴﺎﻥﺍﻟﺸﻌﺎﻋﺎﻥ DCr :و iﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻻrﺘﺠﺎﻩ uuurﺇﺫurﻥDC = 2 i u:u uuri؛u ﻭ=1 DC = 2 uuur ﻭﻤﻨﻪur AC r= ArD + rDC r :ﺇﺫﻥ AC = 3 j + 2 i = 2 i + 3j :ﻭﻤﻨﻪ C (2 ; 3) : -ﻟﻴﻜﻥ ( )G xG ; yG :
xG = 4×0 + 5×6 + (- 2)× 2 + 3×0 4+5+ (- 2) + 3 ﻟﺩﻴﻨﺎ : 4×0 + 5× 0 + (- 2)× 3 + 3×3 yG = 4 + 5 + (- 2) + 3 ﺃﻱ xG = 2,6 ; yG = 0,3 :ﻭ ﻤﻨﻪ G ( 2,5 ; 0,3 ) : ﺍﻟﺘﻤﺭﻴﻥ. 11 ﺃ ( ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ 2 + 3 = 5 ≠ 0 uur uuur AI = 3 AB ﻭﻤﻨﻪ: 5 ﺏ ( ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ 3 + 4 = 7 ≠ 0 : uuur uuur = AC 4 CD ﻭﻤﻨﻪ: 7 ﺟـ ( ﺍﻟﻨﻘﻁﺔ Gﻫﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )(B , 3) ; ( A , 2 ) (D , 4) , (C , 3ﻓﻬﻲ ّﺇﺫﻥ ﻜﺫﻟﻙ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ : ) ( J , 7) , ( I , 5ﺇﺫﻥ ﺍﻟﻨﻘﻁﺔ Gﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ( IJ uur uur D GJ = 5 IJ ﻭ ﺘﺤﻘﻕ : 12 G JA C IB ﺍﻟﺘﻤﺭﻴﻥ. 12 – 1ﺃ ( urIﻫuﻭ uﻤﻨﺘﺼﻑ [ ]uuuur AuuBur MA + MB = 2 MI uuur uuur ﺏ( uuuur = AG 2 AB –2ﺃ( uuur 3 uuuur ﺏ ( MA + 2 MB = 3 MG
. 13ﺍﻟﺘﻤﺭﻴﻥ 6cm uﻫﺎuﺭuﻁurﻨﺼﻑ ﻗuﻭuAur ﻲ ﻤﺭﻜﺯﻫﺎuﻟﺘuﺍur ﺍﻟﺩﺍﺌﺭﺓ- 1 uuuMur A u+uuMr B = 2uMuurI ( – ﺃ2 MA + MB = 2 MI ( ﺏ uuuur uuur uuur MA + MB = 2 MIuuuur uuur uuurMA + MB = 6 ⇔ MI = 6 ( ﺟـ ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕM ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ. MI = 6 : ﺃﻱ . 3cm ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭI ﺍﻟﻤﺭﻜﺯuuur uuuuur uuuur uuur u.u1ur4 ﺍﻟﺘﻤﺭﻴﻥ2 MI = uMuurM′ : ﻥuﺃuﺞur ﻨﺴﺘﻨﺘMAuu+ur MBuuu=r 2 MuuuIr ( ﻤﻥ1IM′ = - IM : ﺃﻱ2 MI = MI + IM′ : ﺇﺫﻥ . I ﻫﻭ ﺍﻟﺘﻨﺎﻅﺭ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩf ( ﺍﻟﺘﻁﺒﻴﻕ2 . 15)*( ﺍﻟﺘﻤﺭﻴﻥ uuur uuur uuurC AG = AB - 1 AC (1 2ABuuuur G uuur uuur uuuurMA + 2 MB u-uMuurC = 2uuMurG uuur uuuur(2 MA + 2 MB - MC = 2 MGuuuur uuur uuur uuuurMA + 2 MB - MC = 2 . MGuuuur uuur uuur uuuurMA + 2 MB - MC = 2 MGuuuur uuur uuur uuuurMA + 2 MB - MC = 5 ⇔ 2 MG = 5 (3
⇔ uuuur = 5 uuur MG 2uuuur uuurﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﺒﺤﻴﺙ MA + 2 MB - MC = 5 : 5 ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ Gﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ 2 ﺍﻟﺘﻤﺭﻴﻥuuuur uuur uuur uu.u1ur6 (1ﻤﻥ uuuur uuuurMA + MuBuuu+r MCuu=uu3ur MG : ﻨﺴﺘﻨﺘﺞ ﺃﻥ 3 MG = MM′ :ﺇﺫﻥ −2 GM = GM′ : f (2ﻫﻭ ﺍﻟﺘﺤﺎﻜﻲ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ Gﻭﻨﺴﺒﺘﻪ . -2 ﺍﻟﺘﻤﺭﻴﻥ. 17 G ( 3 ; 3 ) (1 H ( 3 ; 2 ) (2؛ ) I ( 2 ; 3؛ ) J ( 4 ; 4 (3ﺇﺤﺩﺍﺜﻴﺘﺎ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ HIJﻫﻤﺎ ) ( 3 ; 3 ﺍﻟﺘﻤﺭﻴﻥ. 18 (1ﺍﻟﻨﻘﻁﺘﺎﻥ O ( 0 ; 0 ) :ﻭ ) M ( 4 ; 4ﺘﻨﺘﻤﻴﺎﻥ ﺇﻟﻰ ) ( DMA′ = 3 ; MA = 3 ; OA′ = 17 ; OA = 17 ﺇﺫﻥ ( D ) :ﻫﻭ ﻤﺤﻭﺭ [ ]AA′MB′ = 37 ; MB = 37 ; OB′ = 13 ; OB = 13 ﺇﺫﻥ ( D ) :ﻤﺤﻭﺭ [ ]BB′MC′ = 5 ; MC = 5 ; OC′ = 29 ; OC = 29 ﺇﺫﻥ ( D ) :ﻤﺤﻭﺭ [ ]CC′ . G 23 ; -8 (2 3 3 = . OG′ 593 = ; OG 593 3 3 (3
= MG′ 521 ; = MG 521 3 3 ﺇﺫﻥ ( D ) :ﻤﺤﻭﺭ [ ]. GG′ )*( ﺍﻟﺘﻤﺭﻴﻥ. 19 (1ﻟﻴﻜﻥ Jﻤﻨﺘﺼﻑ [ ]AC Jﻫﻭ ﻤﺭﺠﺢ )(C , 1) ; ( A , 1 Gﻫﻭ ﻤﺭrﺠuﺢ uﺍﻟﻜﻠﻤﺔ (B , - 1) ; ( )J u,u2ur ﻭﻤﻨﻪ JG = - JB :ﺇﺫﻥ Jﻫﻭ ﻤﻨﺘﺼﻑ [ ]BG ) ( ACﻭ ) ( BGﻨﻔﺱ ﺍﻟﻤﻨﺘﺼﻑ J ﺇﺫﻥ ABCGﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻤﻼﺤﻅﺔ: ﺒﻤﺎ ﺃﻥ BA = BC :ﻓﺈﻥ ABCGﻤﻌﻴﻥ u–ur2ﺃ u( uﺒﺎﺨﺘﺼﺎrﺭuﺍﻟuﺠuﻤﻊ ﺍﻟﺸrﻌﺎuﻋuﻲ uﻨﺠﺩuuuu:r MA - MB + MC = MGﻭﻤﻨﻪ : uuuur uuuur uuur MA - MB + MC = 53 ) M ∈ (Γﺃﻱ : 2 uuuur MG = 53 ﻭﻤﻨﻪ : 2r = 53 ) (Γﻫﻲ ﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ Gﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ ﺇﺫﻥ : 2)(Γ C G J B A
ﺏ ( GJﺍﺭﺘﻔﺎﻉ ﻟﻠﻤﺜﻠﺙ ﺍﻟﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉ GACﻁﻭل ﻀﻠﻌﻪ [ ]5)J ∈ (Γ ﻭﻤﻨﻪ : = GJ 53 ﺇﺫﻥ 2 : )*( ﺍﻟﺘﻤﺭﻴﻥ. 20 – 1ﺃ ( ﺒﻤﺎ ﺃﻥ A′ﻤrﻨuﺘuﺼuﻑur BC uﻓﺈuﻥ uﻤﻥ ﺃﺠلurﻨﻘuﻁuﻪ Mﻤﻥ] [ ﺍﻟﻤﺴﺘﻭﻱ ﻴﻜﻭﻥ uuur uuurMB + uMur C = 2 MA′ : ﺒﺘﻌﻭﻴurﺽuuﺍﻟﻨﻘﻁﺔ uMuurﺒﺎﻟﻨﻘﻁurﺔ Ouuﻨﺠﺩ OB + OC = 20 A′ : ﺏ ( uuur uuur AuHuur= AuOuur+ OuHuur AuuHur = AuuOur + OuuAur + OBuu+r OC ﻭﻤﻨﻪ AH = OB + OC = 20 A′ : ﺟـ ( ﻟﺩﻴﻨﺎ (OuurA′) :ﻤﺤﻭﺭ [BCuu]urﻭﻤﻨﻪ (BC) ⊥ (OA′) :ﻤﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ AH = 20 A′ﻨﺴﺘﻨﺘﺞ ﺃﻥ ( AH) // ( )OA′ﻭﻤﻨﻪ uuur ( AH) uur⊥ (BC) :ﺩ ( ﻭﺒﺎﻟﻤﺜل ﻨﺒﺭﻫﻥ ﺃﻥ BH = 20 B′ : ﻭﻤﻨﻪ (BH) ⊥ ( AC) :ﺇﺫﻥ AH :ﻭ BHﺍﺭﺘﻔﺎﻉ ﻟﻠﻤﺜﻠﺙ [ ] [ ]. ABCﺍﻟﻨﻘﻁﺔ Hﻤﺸﺘﺭﻜﺔ ﺒﻴﻨﻬﻤﺎ ﻓﻬﻲ ﺇﺫﻥ ﻨﻘﻁﺔ ﺘﻼﻗﻲ ﺍﻻﺭﺘﻔﺎﻋﺎﺕ – 2ﺃ ( uurGﻫﻭuuﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤrﺜﻠuﺙuuuur uuur ABCuuﻭﻤﻨﻪ MA + MB + MC = 3 MG :uuur uuur uuur ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤrﺴuﺘﻭﻱﻤﻥ ﺃﺠل M = OﻨﺠﺩOA + OB + OCuu=ur30 Guuu:rﻭﻤﻨﻪ ﻨﺴﺘﻨﺘﺞ ﺃﻥ OH = 3 OG :ﺏ( urO = G = Hﻓﻘﻁ ﻓﻲ ﺤﺎﻟﺔ AuBuCurﻤﺘﻘﺎﻴﺱ ﺍurﻷuﻀuﻼﻉ uuurﺟـ( ﻤﻥ ﺍﻟﻌﻼﻗﺔ OH = 30 G :ﻓﺈﻥ OH :ﻭ OG ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ .
ﺇﺫﻥ O , G , H :ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ . ﺩ ( ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ) Aﻤﺜﻼ (ﻓﺈﻥ uuuur uuuurO = A′uuu;r H =uuuAr :ﻭﻨﺠﺩ OH = 3 OG :ﻷﻥ A′A = 3 A′G : ﻭﻤﺴﺘﻘﻴﻡ \" ﺃﻭﻟﺭ \" ﻫﻭ ( ). OAﺍﻟﺘﻤﺭﻴﻥuuur . 21ﺒﻤﺎ ﺃﻥ I :ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤurﺴﺘuﻘﻴuﻡ ur ABﺍﻟuﺫﻱ ﻴﻤﺭ ﻤﻥ Aﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ABﻓﺈﻨﻪ ﻴﻭﺠﺩ) ( ﻋﺩﺩ ﺤﻘﻴﻘﻲ kﺘﺤrﻘuuﻕ ( )AuuIr = k ×uAurB − AI + k AI + = IB 0 ﻭﻤﻨﻪ: uur uur uur ur ﺃﻱIA + k × AuIr + k × uIuBr = uOr : (1 - R) IA + k × IB = O ﻟﻜﻥ 1 - k + k = 1 ≠ 0 : ﻭﻤﻨﻪ I :ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) { }( A ; 1 - k ) ; (B ; k1+2 +1 ≠ 0 C ; 1ﻤﻭﺠﻭﺩ ﻷﻥ ( ): ﺍﻟﺘﻤﺭﻴﻥ. 22 ﻟﻴﻜﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ : ), (B ; 2) , (A ; 1 ﻤﻥ ﺃﺠلrﻜuل uﻨuﻘuﻁﺔ Mﻤﻥrﺍﻟuﻤuﺴuﺘﻭﻱ uuuur uuur: ﻟﺩﻴﻨﺎ ( ) ( )uuMurA +u2uuMur B + MC = 4 MG :ﺇﺫﻥ M ∈ E :ﻴﻜﺎﻓﺊ MGو uur ACﻤuﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ) ( ﺃﻱ M :ﻴﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﻤﺭ ﻤﻥ Gﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ AC ﻹﻨﺸﺎﺀ Gﻨﺭﺴﻡ ﺃﻭﻻ ﺍﻟﻤﻨﺘﺼﻑ Iﻟـ [ ]AC ﻭﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻊ ﻟﻠﻤﺭﺠﺢ . Gﻫﻭ ﻤﺭﺠﺢ ) (I ; 2و ) (B ; 2ﺃﻱ G :ﻤﻨﺘﺼﻑ ][IB
A (E) I G BC ﺍﻟﺘﻤﺭﻴﻥ. 23 ﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺇﺴﺘﻘﺎﻤﻴﺔ ﺍﻟﻨﻘﻁ A1 , E , Cﻴﻜﻔﻲ ﺃﻥ ﻨﺒurﺭuﻫuﻥ ﺃﻥ r A1ﻫuﻭuuﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ rCﻭ Eﺍurﻟﻤuﺭuﻓﻘﺘﻴﻥ ﺒﻤﻌﺎrﻤuﻠﻴuﻥ uﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ . ﺒﻤﺎ ﺃﻥ EB = - 2 EA :ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ EB + 2 EA = 0 : ﻭﻤﻨﻪ E :ﻫﻭ ﻤﺭﺠﻊ )(B ; 1) , ( A ; 2 A1ﻤﻨﺘﺼﻑ [ ]AA′ﻓﻬﻭ ﻤﺭﺠﺢ )( A′ ; 2) , ( A ; 2 ﻭﻟﻜﻥ A′ﻫﻭ ﻤﻨﺘﺼﻑ BCﻓﻬﻭ ﻤﺭﺠﺢ [ ](C ; 1) , (B ; )1 ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﻨﺴﺘﻨﺘﺞ ﺃﻥ A1ﻫﻭ ﻤﺭﺠﺢ ( ) ( )C ; 1 , E ; 3 ﺇﺫﻥ C , E , A:ﻋﻠﻰ ﺇﺴﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ . ﺍﻟﺘﻤﺭﻴﻥ. 24 ﻟﺩﻴﻨﺎ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ( ) ( )D ; 1 , A ; 1 )(C ; 2) , (B ; 2 Mﻤﻨﺘﺼﻑ ADﻭ Nﻤﻨﺘﺼﻑ [ ] [ ]BC ﺇﺫﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﻓﺈﻥ Gﻫﻭ ﻜﺫﻟﻙ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ: )(N ; 4) , (M ; 2 ﺇﺫﻥ N , M , G :ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ
ﺍﻟﺠـﺩﺍﺀ ﺍﻟﺴﻠﻤـﻲ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -1ﺤﺴﺎﺏ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺸﻌﺎﻋﻴﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ . -2ﺇﺜﺒﺎﺕ ﻋﻼﻗﺎﺕ ﺍﻟﺘﻌﺎﻤﺩ . -3ﺤﺴﺎﺏ ﻤﺴﺎﻓﺎﺕ . -4ﺤﺴﺎﺏ ﺃﻗﻴﺎﺱ ﺯﻭﺍﻴﺎ . -5ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻋﻠﻡ ﻨﺎﻅﻡ ﻟﻪ. -6ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ﻜﺭﺓ. -7ﺩﺭﺍﺴﺔ ﻤﺠﻤﻭﻋﺎﺕ ﻨﻘﻁ . ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺘﻌﺎﺭﻴﻑ ﺗﻤـﺎرﻳـﻦ و ﻡﺸﻜﻼت اﻟﺤﻠﻮل
ﺘﻌﺎﺭﻴﻑ=p r r ﺤﻴﺙ : ﺍﻟrﺤﻘﻴﻘﻲp r ﻫﻭ ﺍﻟﻌﺩﺩ ﺍ•ﻟﺠﺇ1ﺩﺫﺍﺍ-ﺀﻜﺍﺎﺘﻟﻌﻥﺴﺭﻠﻴﻤurﻑﻲ :ﻟrوﺸﻌﺎvrﻋﻴrﻏﻥﻴﺭrﻤuﻌﺩr,ﻭﻤﻴvrﻥ ×u v (u , v × cos ﻓﺈrﻥ) : • ﺇﺫﺍ ﻜﺎﻥ u = 0 :ﺃﻭ rv =r0ﻓﺈﻥ . p = 0 : ﻭ ﻨﺭﻤﺯ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴrﻠﻤﻲ ﺒﺎrﻟﺭﻤﺯ r ru . v rr ﺇﺫﻥu . v = u × v × cos (u , v) : • ﺇﺫﻥ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺸﻌﺎﻋﻴﻥ ﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻭﻟﻴﺱ ﺸﻌﺎﻋﺎ . r r rr(u , =)v π + 2kπ ; k∈¢ • ﺇﺫﺍ ﻜﺎﻥ u ⊥ v :ﻓﺈﻥ : 2 r r r rr ﻭﻋﻠﻴﻪ cos r(u ,rv ) = 0ﻭﻤrﻨﻪ r u .r v = r0 : ﻭﺇﺫﺍ ﻜﺎﻥ u . v = 0 :ﻭﻜﺎﻥ u ≠ 0ﻭ v ≠ 0ﻓﺈﻥ : r r rr(u , = )v π + 2kπ ; k ∈ ¢ ﻭﻤﻨﻪ : cos (u , v ) = 0 2 rr ﺇﺫﻥr r . u ⊥ rv :r rr • )u . u = u × u × cos (u , urr r 2 rr r 2 × cos 0 = r 2 1=u.u u =u.u u u : ﻭﻤﻨﻪ × ﻭ ﻴﺴﻤﻰrﺍﻟuﻤﺭﺒﻊ rﺍﻟﺴﻠrﻤﻲ. ﻤﺜﺎل u , v , w :ﺜﻼﺙ ﺃﺸﻌﺔ ﺤﻴﺙ :( )r r ur r r = π + 2kπ ; w =2 ; v = 2 ; u =4 u,v 4 ( )r ur = π + 2kπ ; k∈¢ 2 r r ur u,w u 2 u.w ; rr ; -ﺍﺤﺴﺏ ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺴﻼﻤﻴﺔ ﺍﻵﺘﻴﺔ u . v :
rr r r rr π : ﺤـلu . v = u × v cos (u , v) = 4 × 2 cos 4 : * ﻟﺩﻴﻨﺎ rr 2 2 =4 : ﻭ ﻤﻨﻪ u. v=4 × 2 r ur r ur cos r ur = 4 × 2 cos π : * ﻟﺩﻴﻨﺎ u.w= u× w r (u , w) 2 ur u . w = 4 × 2 × 0 = 0 : ﻭ ﻤﻨﻪ r r u 2 = u 2 = (4)2 = 16 : * ﻟﺩﻴﻨﺎ : ﻋﺒﺎﺭﺓ ﺃﺨﺭﻯ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ-2 ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱH ﻭﻜﺎﻨﺕA ≠ B : ﺜﻼﺙ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙA , B , C ﺇﺫﺍ ﻜﺎﻨﺕ C uuur uuur u(uAurB) ﻰuﻋﻠuuCr ﻟﻠﻨﻘﻁﺔ B AB . AC u=uuArB .uuAurH : ﻓﺈﻥ H uuur uuur: ﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥAH وAB ﻓﺈﺫﺍ ﻜﺎﻥA AB . AC = AB . AH uuur uuur uuur uuu:r ﻤﺨﺘﻠﻔﻴﻥ ﻓﻲ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥAH وAB ﻭﺇﺫﺍ ﻜﺎﻥ AB . AC = -AB . AH : ﻤﺜﺎل uuur uuur . ﻤﺴﺘﻁﻴلABCD AB = 4 : ﻋﻠﻤﺎ ﺃﻥAB . AC : ﺍﺤﺴﺏ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ- uuur uuur : ﺤـلD C AB . AC = AB u.uAurB u=uur4 × 4 : ﻟﺩﻴﻨﺎ AB . AC = 16 : ﻭ ﻤﻨﻪAB u:rﻭﺍﺹr ﺨ-r3 . ﻋﺩﺩ ﺤﻘﻴﻘﻲλ . ﻲ ﺍﻟﻤﺴﺘﻭﻱrﺸﻌﺔ ﻓr ﺃw r, v r, u r r u . v =rv .ru (1 (λ u ) . v = λ . (u . v ) (2
rr rr u .ur(λ v) = rλ (u . v) r r r ur (3 ( )r u . v + w = u . v + u . w (4 ( )r r 2 = ur 2 r r + vr 2 v + 2u . v u+ (5 ( )r r 2 = r rr . r 2 v u - 2u . v v u- (6 ( ) ( )r r rr = ur 2 - r 2 (7 u-v v u+v r r r r r r u + v 2 = u 2 + v 2 2.u. v + (8 r - r 2 = r 2 + r 2 − 2. r r u v u v u. v rr (9 λu = λ . u (10( )r r r r : ﻤﺜﺎل v= u u,v = π + 2kπ ; 2, =4 rr 4 : ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙv , u r r 2 . ﻋﺩﺩ ﺤﻘﻴﻘﻲλ ﻟﻴﻜﻥ ( ) ( )r r r λu + v .v ; λu + v : ﺍﺤﺴﺏ ﻤﺎ ﻴﻠﻲ- ( )r r 2 rr u - 3v ; u + v ( )r r r r . r + r 2 : ﺤـل .v = λu v v : ﻟﺩﻴﻨﺎ λu + v rr rr r2 = λ . u × v cos (u , v ) + v = λ×4× 2× cos π + ( 2 )2 4 = 4λ 2 × 2 +2 2
( )r r 2 λ 2 r 2 = 4λ + 2 r. 2 u rr v λu + v = : ﻟﺩﻴﻨﺎ + 2λu . v + = λ2( 4 )2 + 2 (4λ) + ( 2 )2 r = 16λ2 + 8rλ + 2 . r 3v = r r r( u - )2 u 2 - 6u . v+9 v 2 : ﻟﺩﻴﻨﺎ = (4)2 - 6 . 4 + 9 ( 2 )2: ﻟﺩﻴﻨﺎ = 16 - 24 + 18 = 10 . r r r r r r v u + v 2 = u 2 + v 2 + 2u . = (4)2 + ( 2 )2 + 2 × 4 = 16 + 2 + 8 = 26 . : ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ-4rr r ru . v = x x′ + y y′ : ﻓﺈﻥ u x , v x′ : ﺇﺫﺍ ﻜﺎﻥ y r y′ r x x′ + y y′ = 0 : ﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥr ﺇv ﻋﻤﻭﺩﻴﺎ ﻋﻠﻰu • ﻴﻜﻭﻥ u = x2 + y2 • rr rr ru . vr : • ﻟﺩﻴﻨﺎ cos (u , v ) = u.v rr x x′ + y y′ : ﻭﻋﻠﻴﻪcos ( u , v ) = x2 + y2 . x′2 + y′2 : ﻨﻘﻁﺘﺎﻥ ﺤﻴﺙM2 , M1 • ﺇﺫﺍ ﻜﺎﻨﺕ M2 (x2 ; y2 ) , M1 (x1 ; y1 ) M1 M2 = (x2 - x1 )2 + (y2 - y1 )2 : ﻤﺜﺎل
rr: ( ﺤﻴﺙO ; i , j ) ﺜﻼﺙ ﻨﻘﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱA , B , C . A (2 ; -1) , B (-3 ; 4)uuu,r Cu(u-2ur; -1) uuu.r AB .uuAurC ( ﺍﺤﺴﺏ1 AB , AC . uuur uuur ( ﺍﺤﺴﺏ2 . cos(AB , AC) ( ﺍﺤﺴﺏ3 . C ﻭB ( ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ4 uuur uuur : ﺤـل AB AC : ﻭ ﻤﻨﻪ -5 ; -4 : ( ﻟﺩﻴﻨﺎ1 uuur uuur 5 0 AB . AuCuur= (-5) (-4) + 5 (0) = 20 AB = (-5)2 + (5)2 = 50 = 5 2uuur (2AC = (-4)2 + 02 = 16 = 4 uuur uuur uuur uuur :uucuors(AuuBur , AC) ( ﺤﺴﺎﺏ3 cos (AB , AC) = uAuurB . AuuCur AB × AC : ﻟﺩﻴﻨﺎ uuur uuur 20 = 1 : ﻭﻤﻨﻪ cos(AB , AC) = 2 : ﻭﻋﻠﻴﻪ 5 2×4 uuur uuur cos(AB , AC) = 2 2 : C ﻭB ( ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ4BC = ( xC - xB )2 + ( yC - yB )2 = (-2 + 3)2 + (-1 - 4)2 = 1 + 25 = 26 : ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻋﻠﻡ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻪ ﻭﻨﻘﻁﺔ ﻤﻨﻪ-5
r α ﺃﻱ ﻴﻌﺎﻤﺩﻩ ( ) ( ).∆ u ∆ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ β ﻤﺴﺘﻘﻴﻡ ﻟﻴﻜﻥ ) A (x0 ; y0ﻨﻘﻁﺔ ﻤﻥ . ∆ rﻟﺘurﻜuﻥ M (x ; yu)uﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ .ﺘﻜﻭﻥ Mﻨﻘﻁﺔ) ( ﻤﻥ ∆ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ( )AM ⊥ u r α ; uuuur x - x0 u AM y - ﻭ ﻟﺩﻴﻨﺎ : β y0 ﻭﻤﻨﻪ α (x - x0 ) + β (y - y0 ) = 0 : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆ ﻫﻲ αx + βy + (-αx0 - βy0 ) = 0 ( ): ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل α x + β x + δ = 0 : ∆) ( ﻫﻭ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻨﻅﺎﻤﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ r α : ﺤﻴﺙ u β -6ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺔ ﻭ ﻤﺴﺘﻘﻴﻡ : ∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ ( )α x + β y + δ = 0 : ﻟﺘﻜﻥ ) M0 (x0 ; y0ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ .ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ M0 αx0 + β y0 + δ ﻭ ∆ ﺒﺎﻟﻌﺒﺎﺭﺓ ( ): α2 + β2r ﺘﻁﺒﻴﻕ :u −1ﻨﺎﻅﻤﻲ) ( 4 ﻭ ﺸﻌﺎﻉ M0 ﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ )(2 ; 3 ∆ ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻟﻪ . -ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ∆ ﻭ ﺍﻟﻨﻘﻁﺔ )( ). H (4 ; 2 ﺤل : -ﻤﻌﺎﺩﻟﺔ ∆ ﻤﻥ ﺍﻟﺸﻜل − x + 4y + δ = 0 :ﻭﺒﻤﺎ ﺃﻥ M0ﻨﻘﻁﺔ) ( ﻤﻥ ) ∆ ( ﻓﺈﻥ -2 + 4(3) + δ = 0 :ﻭﻤﻨﻪ δ = -10 :
ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆ ﻫﻲ ( )-x + 4y – 10 = 0 : -ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Hﻭ ∆ ﻫﻲ ( ):= -4 + 4 (2) - 10 = -6 6 = 6 17 ( −1 )2 + (4)2 17 17 17 -7ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ r r :ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ )(O ; i , j • ﻤﻌﺎﺩﻟﺔ ﺩﺍﺌﺭﺓ ُﻋﻠﻡ ﻤﺭﻜﺯﻫﺎ ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ : ) (Cﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ) ω(x0 ; y0ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ αﺤﻴﺙ . α > 0) M(x ; yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ؛ ﺘﻜﻭﻥ Mﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ ) (Cﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : ωM = αﺃﻱ ωM2 = α2 :ﺇﺫﻥ ( x - x0 )2 + (y - y0 )2 = α2 :ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ). (C ﻭﺒﻨﺸﺭ ﻫﺫﻩ ﺍﻟﻌﺒﺎﺭﺓ ﻨﺠﺩ :x2 + y2 - 2x0 x - 2y0 y + x02 - α2 = 0 ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل : x2 + y2 + α x + β y + δ = 0 ﻤﺜﺎل :ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ) ω(1 ; -3ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ r = 5 ﺤـل :ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ( x - 1)2 + (y + 3)2 = 25 : ﺃﻱ x2 + y2 - 2x + 6y - 15 = 0 : • ﻤﻌﺎﺩﻟﺔ ﺩﺍﺌﺭﺓ ُﻋﻠﻡ ﻗﻁﺭﻫﺎ :) (Cﺩﺍﺌﺭﺓ ﻗﻁﺭﻫﺎ ABﺤﻴﺙ ) [ ]B (x1 ; y1 ) , A (x0 ; y0ﻟﺘﻜﻥ ) Mu(uxu,ryﻨﻘurﻁﺔuuﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ .ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁﺔ Mﻤﻥ ) (Cﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : MA . MB = 0uuur x1 - x , uuur x0 - xMB MA y0 ﻟﻜﻥ y1 - y - y
ﻭﻋﻠﻴﻪ ( x0 - x) (x1 - x) + (y0 - y) + (y1 - y) = 0 :ﺇﺫﻥx0 x1 - x0 x - x1 x + x2 + y0 y1 - y0 y + y1 y + y2 = 0 : ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ) (Cﻫﻲ :x2 + y2 - (x0 + x1 ) x - (y0 + y1 ) y + x0 x1 + y0 y1 = 0 ﻤﺜﺎل : ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ) (Cﺫﺍﺕ ﺍﻟﻘﻁﺭ ABﺤﻴﺙ [ ]: )A (-1 ; 4) ; B (4 ; 2 uuuur uuur ﺤـل : MA . MB = 0 ) M (x ; yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ ) (Cﺃﻱ : uuur uuuur MB 4 - x ; MA -1 - x ﻟﺩﻴﻨﺎ : - 2 y 4 - y ﻭﻤﻨﻪ (4 – x) (-1 – x) + (2 – y) + (4 – y) = 0 : ﺃﻱ - 4 - 4x + x + x2 + 8 - 2y + 4y + 4y + y2 = 0 : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ) (Cﻫﻲ x2 + y2 - 3x + 2y + 4 = 0 : • ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ) M (x ; yﺤﻴﺙ :x2 + y2 + α x + βy + δ = 0 x + α 2 - α2 + x + β 2 - β2 +δ =0 ﻭﻋﻠﻴﻪ : 2 4 2 4 x + α 2 + x + β 2 = α2 + β2 - 4δ ﺇﺫﻥ : 2 2 4 ﺒﻭﻀﻊ α2 + β2 - 4δ = λﻨﺠﺩ : • ﻟﻤﺎ λ < 0 :ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔ . . ω -α ; -β ﻟﻤﺎ λ = 0 :ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻨﻘﻁﺔ • 2 2 • ﻟﻤﺎ : λ > 0 :ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ
. λ : ﺍﻟﻘﻁﺭ ﻭﻨﺼﻑ ω -α ; -β 2 2 2 ﺃﻤﺜﻠﺔ : ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ) M (x ; yﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ : x2 + y2 - 4x + 3y + 4 = 0 (1 2x 2 + 2y2 + 2x - 4y + 5 =0 (2 2 x2 + y2 + 8x + 4y + 40 = 0 (3 ﺤـل : (1ﻟﺩﻴﻨﺎ x2 + y2 - 4x + 3y + 4 = 0 : ﻭ ﻤﻨﻪ x2 - 4x + y2 + 3y + 4 = 0 :( x - 2)2 − (2)2 + y + 3 2 − 3 2 + 4=0 ﺃﻱ : 2 2 ( x - 2)2 + y + 3 2 = 4+ 9 -4 ﺃﻱ : 2 4 ( x - 2)2 + y+ 3 2 = 9 ﺇﺫﻥ : 2 4 ω 2ﻭ ﻨﺼﻑ ; -3 ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ 2 . R = 3 ﻗﻁﺭﻫﺎ 2 2x2 + 2 y2 + 2x - 4y + 5 = 0 2 (2ﻟﺩﻴﻨﺎ : 2 x 2 + y2 + x - 2y + 5 =0 ﻭ ﻤﻨﻪ : 4
x2 + y2 + x - 2y + 5 =0 ﺇﺫﻥ : 4 ﻭ ﻤﻨﻪ : 5 x2 + x + y2 - 2y + 4 =0 x + 1 2 - 1 2 + ( y - 1)2 - 1 + 5 =0 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 2 2 4 x + 1 2 + ( y - 1)2 - 1 -1 + 5 =0 ﺃﻱ : 2 4 4 x + 1 2 + ( y - 1)2 =0 ﺃﻱ : 2 . ω -1 ; 1 ﻫﻲ ﺍﻟﻨﻘﻁﺔ ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ M 2 (3ﻟﺩﻴﻨﺎ x2 + y2 + 8x + 4y + 40 = 0 : x2 + 8x + y2 + 4y + 40 = 0 ﻭ ﻤﻨﻪ :( x + 4)2 − (4)2 + (y + 2)2 − (2)2 + 40 = 0( x + 4)2 − 16 + (y + 2)2 − 4 + 40 = 0( x + 4)2 + (y + 2)2 = -20 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔ . -8ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﻤﺘﺭﻴﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ : ABCﻤﺜﻠﺙ ﻜﻴﻔﻲ I .ﻤﻨﺘﺼﻑ BCﻟﺩﻴﻨﺎ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ [ ]: BC2 = AB2 + AC2 - 2AB . AC .cos Aµ (1 ﻭﻜﺫﻟﻙ AB2 = CA2 + CB2 - 2CA . CB .cos Cµ : )ﻭﻫﻲ ﻨﻅﺭﻴﺔ ﺍﻟﻜﺎﺘﻲ( AB2 + AC2 = 2AI2 + 2IB2 (2
BC = AC = AB = 2R (3 sin Aµ sinBµ sinCµ . ABC ﺎﻟﻤﺜﻠﺙuﺒuﺔuﻁrﺍﻟﻤﺤﻴuﺓuﺭuﺌr ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍR ﺤﻴﺙ AB . AC = AI2 - IB2 (4 : ﺤﻴﺙS ﻫﻲABC ( ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ5S = 1 BA . BC . sin Bµ ﺃﻭ S = 1 AB . AC . sin Aµ 2 2 1 S = 2 CA . CB . sin Cµ ﺃﻭ BC = AC = AB = AB . AC . BC sin Aµ sin Bµ sin Cµ 2S : ﻤﺜﺎل [ ]: ﺤﻴﺙBC ﻤﻨﺘﺼﻑI . ﻤﺜﻠﺙABC (cm )ﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲBC = 6 ; AC = 4 ; AB = 3 . cos Aµ ( ﺍﺤﺴﺏ1 . AI ( ﺍﺤﺴﺏ2 ABC ﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙuﺍﻟuﺭurﻑ ﻗﻁuﺼuﻨurR ( ﺍﺤﺴﺏ3 AB . AC ( ﺍﺤﺴﺏ4 ABC ( ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ5 : ﺤـل : cos Aµ ( ﺤﺴﺎﺏ1 BC 2 = AB2 + AC2 − 2AB . AC .cos Aµ : ﻟﺩﻴﻨﺎ ( 6 )2 = (3)2 + (4)2 − 2 . 3 . 4 cos Aµ : ﻭﻤﻨﻪ 11 = -24 cos Aµ : ﺃﻱ36 = 25 - 24 cos Aµ : ﻭﻤﻨﻪ . cos Aµ = -11 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ 24
: AI ( ﺤﺴﺎﺏ2: ﻭ ﻤﻨﻪAB2 + AC2 = 2AI2 + + 2(3)2 : ﻟﺩﻴﻨﺎ25 = 2AI2 + 18 : ( ﺃﻱ3 )2 + (4)2 = 2AI2 + 2 (3)2 AI 2 = 7 : ﻭﻋﻠﻴﻪ 2 AI 2 = 7 : ﻭﻤﻨﻪ 2 . AI = 14 : ﺇﺫﻥ AI = 7 2 2 : ﻭﻤﻨﻪ : R ( ﺤﺴﺎﺏ3 6 Aµ = 2R : ﻭﻤﻨﻪ BC = 2R : ﻟﺩﻴﻨﺎ sin sin Aµcos2 Aµ + sin2 Aµ = 1 ﻭ cos Aµ = -11 : ﻟﻜﻥ 24 : ﻭ ﺒﺎﻟﺘﺎﻟﻲsin2 Aµ = 1- cos2 Aµ : ﻭﻋﻠﻴﻪ sin2 Aµ = 455 ﺃﻱ sin2 Aµ = 1 - -11 2 (24)2 24 6× 24 = 2R : ﻭﻤﻨﻪ sin Aµ = 455 455 24 : ﺇﺫﻥ. R = 72 455 : ﺇﺫﻥ R = 72 : ﻭﻋﻠﻴﻪ 455 uuur 45u5uur uuur uuur : AB . AC ( ﺤﺴﺎﺏ4 AB . AC = AI2 − IB2 : ﻟﺩﻴﻨﺎuuur uuur = 14 2 − 3 2AB . AC 2 : ﻭﻤﻨﻪ 2 = 14 - 9 = 5 4 4 4
uuur . uuur = 5 : ﺇﺫﻥ AB AC 4 : ABC ( ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ5S = 1 AB . AC . sin Aµ 2S= 1 × 3× 4× 455 2 24 . S= 455 cm2 : ﻭ ﻤﻨﻪ 4
ﺗﻤـﺎرﻳـﻦ و ﻡﺸﻜﻼت rrﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ) (O ; i , j ﺍﻟﺘﻤﺭﻴﻥ. 1ur r xﻋﺩﺩ ﺤﻘﻴﻘﻲv u rr −1 ; x + 3 u , vﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ : x+ 1 x + 1 rr (1ﺃﺤﺴﺏ r r u . v (2ﻋﻴﻥ xﺒﺤﻴrﺙ ﻴﻜﻭﻥ vrو uﻤﺘﻌﺎﻤﺩﻴﻥ (3ﺍﺤﺴﺏ . v ; u rr (4ﻋﻴﻥ xﺒﺤﻴﺙ u = v ( )r r (5ﻨﻔﺭﺽ x = 3ﻋﻴﻥ ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﻟـ u , v ﺍﻟﺘﻤﺭﻴﻥr r . 2 ﻨﻌﺘﺒﺭ ﺍﻟﺸﻌﺎﻋﺎﻥ u , vﺤﻴﺙ : r r r r r r v = 3i + 6 j ; u = 1 i- 5 j 5 r 2r 4 v ; u . r r (1ﺍﺤﺴﺏ (2ﺍﺤﺴﺏ u , vﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ ﺍﻟﺘﻤﺭﻴﻥ. 3 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ :) A(2 ; 2 ) , B( 5 ; -2 ) , C(7 ; -1 ) , D(4 ; 3 (1ﺍﺤﺴﺏ ﻜل ﻤﻥ. AD , BC , AC , AB :
(2ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ ABCD؟ ﺍﻟﺘﻤﺭﻴﻥ. 4 ﻋﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ λﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ r 1 , r 3 ﻴﻌﻁﻰ ﺍﻟﺸﻌﺎﻋﺎﻥ : u 2 v 4 r rr λu - v :و λu + vﻤﺘﻌﺎﻤﺩﻴﻥ ( ) ( ).r ﺍﻟﺘﻤﺭﻴﻥ. 5 β , αﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ .ﻋﻴﻥ r -1 , r α u v ﺤﻴﺙ 2 β ﻴﻌﻁﻰ ﺍﻟﺸﻌﺎﻋﺎﻥ : β , αﻓﻲrﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠrﻲ r : v = 1 (1و . u // v rr r v = 2 (2ﻭ . u ⊥ v rr r v = 12 (3و u . v = 3 ﺍﻟﺘﻤﺭﻴﻥr . r6 ﺍﺤﺴﺏ ) (v , uﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ :r -3 (4 ; r 2 (3 ; r -5 (2 ; r 0 (1u 4 u u 0 u 3 5 -2 3 4 ﺍﻟﺘﻤﺭﻴﻥ. 7 uuuur uuur ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ C (-1 ; 2) ; B (3 ; -4) :ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ BM . BC = 0 :ﺜﻡ ﺃﻨﺸﺌﻬﺎ ﻭ ﺃﻨﺸﺊ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (BCﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟ ﺍﻟﺘﻤﺭﻴﻥ. 8 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ )B (-2 ; -3) , A (1 ; -4 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ :
uuuur uuur AM . AB = -4ﺜﻡ ﺃﻨﺸﺌﻬﺎ ﺍﻟﺘﻤﺭﻴﻥ. 9 ABCﻤﺜurﻠuﺙuuur u ﺍﺤﺴﺏ AC . BCﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ :AB = 4 ; AC = 5 ; BC = 10 r ﺍrﻟﺘﻤﺭﻴrﻥ. 10 ; v =5 rv , uﺸﻌﺎrﻋﺎﻥ ﺤﻴﺙ r : ( ) ( )r r r r u =1 ; v.u=5 rr ﺍﺤﺴﺏ ﻤﺎ ﻴﻠﻲ u + v u - v ; 3u.(-v) : ( ) ( )r r r r r r u + v ; u + 2v u - 3v ﺍrﻟﺘﻤﺭﻴrﻥ. 11 rv , uﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ r : rr α , u . v = 12 و v =5 u =2ﻋﺩﺩ ﺤﻘﻴﻘﻲ r rr ﻭr -1ﻋﻴﻥ αﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ u - rvﻭ u + αvrﻤﺘﻌﺎﻤﺩﺍﻥ – 2ﻋﻴﻥ αﺒﺤﻴﺙ ﻴﻜﻭﻥ u + αv = 5 : rr ﺍrﻟﺘﻤﺭﻴrﻥ. 12 u = v v , uﺸrﻌﺎﻋﺎﻥ ﻤrﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ:r r ﺃﺜﺒﺕ ﺃﻥ u + v :ﻋﻤﻭﺩﻱ ﻋﻠﻰ u - v ﺍrﻟﺘﻤﺭﻴrﻥ. 13 r v , uﺸﻌﺎﻋﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭrﻱ ﺤﻴrﺙ : u =2و u. v=4uuur r uuur r Ar , B , Dﺜﻼrﺙ ﻨﻘﻁrﺤﻴﺙ AB = u :و AC = v -1ﺃﺜﺒﺕ ﺃﻥ uﻭ v - uﻤﺘﻌﺎﻤﺩﻴﻥ ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻨﻭﻉ ﺍﻟﻤﺜﻠﺙ . ABC
( )r r = π ; + 2k π k∈¢ _2ﺃﻨﺸﺊ Cﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ : 3 v,u ﻤﻊ ﺤﺴﺎﺏ .BC , ACA B ﺍﻟﺘﻤﺭﻴﻥ. 14 ABCDﺸﺒﻪ ﻤﻨﺤﺭﻑ ﺤﻴﺙ : AD = 2 , DC = 5 AB = 4ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل .uAuDurD. uuur , uuur uuur , DuuCCur . uuur ﺍﺤﺴﺏ ﻤﺎurﻴﻠuﻲuuur :u BC CA . CHB DB , AB . BC ﺍﻟﺘﻤﺭﻴﻥ. 15 ABCﻤﺜﻠﺙ (1ﺒﺭﻫﻥ ﺃﻨrﻪuuﻤuﻥ ﺃﺠلrﻜuلuﻨuﻘﻁﺔ urMﻤuﻥ uﺍﻟﻤﺴrﺘuﻭuﻱuﻓﺈﻥ uuur uuur: MA . BC + MB . CA + MC . AB = 0 (2ﺒﺭﻫﻥ ﺃﻥ ﺍﻻﺭﺘﻔﺎﻋﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻨﻘﻁﺔ ﻭﺍﺤﺩﺓ. ( )r r ﺍrﻟﺘﻤﺭﻴrﻥ. 16 v , uﺸﻌﺎﻋﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ α .ﻗﻴﺱ ﺒﺎﻟﺭﺍﺩﻴﺎﻥ ﻟﻠﺯﺍﻭﻴﺔ u , vﺤﻴﺙ : 0<α<π rr ﺃﺤﺴﺏ αﻓrﻲ ﻜل ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺘﻴﺔ:r u . v = -3 3 ; v = 3 ; u = 2 (1 rr r r u . v = +3 3 ; v = 3 ; u = 6 (2 rr r r u . v = 10 ; v = 4 ; u = 5 (3 ﺍrﻟﺘﻤﺭﻴrﻥ. 17 v , uﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ :( )r r r r = π2ur+ 2kπ ; k∈¢ ; v =2 ; u =3 u,v r rr rr ur r ﻭﻟﻴﻜﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ x , yﺤﻴﺙ x = 2u - 3v ; y = u + v :
r ur r ry , x,v , uxr 2 r r ﺃﻨﺸﺊ ﻜل ﻤrﻥ (1 ﺜﻡ y 2 ﺜﻡ u hﺤﺴﺏ .rv (2 r (3ﺍﺴﺘﻨﺘﺞ y , x ﺍﻟﺘﻤﺭﻴﻥ. 18 ABCDﻤﺴﺘﻁﻴل ﺤﻴﺙ AB = 4 :ﻭ BC = 8 Mﻤﻨﺘﺼﻑ CD؛ Kﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )[ ]. (D , 1) , (A , 3 Iﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Kﻋﻠﻰ ). (BMuuur uuur (1ﺃﻨﺸﺊ ﺍﻟﺸrﻜuلuuur u.u (2ﺍﺤﺴﺏ . BA . BK ; uBuCur . BuuMur (3ﺍﺤﺴﺏ ( )uuuur uuur BK . BM (4ﺍﺴﺘﻨﺘﺞ BIﺜﻡ ﻗﻴﻡ ﻤﻘﺭﺒﺔ ﻟـ BM , BK ﺍﻟﺘﻤﺭﻴﻥ. 19 ABCDﻤﺴﺘﻁﻴل ﻤﺭﻜﺯﻩ Oﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻓﺈﻥ : MA2 + MC2 = MB2 + MD2 ﺍﻟﺘﻤﺭﻴﻥ. 20 ABCﻤﺜﻠﺙ . ﺍﺤﺴﺏ ﻜل ﻤﻥ BC ; AC ; Cµ :ﻋﻠﻤﺎ ﺃﻥ : AB = 16 , Aµ = 68o , Bµ = 25o ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﻓﺎﺕ ﺒﺘﻘﺭﻴﺏ 0,01ﻭ ﺍﻟﺯﻭﺍﻴﺎ ﺒﺘﻘﺭﻴﺏ . 0,1 ﺍﻟﺘﻤﺭﻴﻥ. 21 ABCﻤﺜﻠﺙ . ﺍﺤﺴﺏ ﻜل ﻤﻥ BCﻭ Bµﻭ Cµﻋﻠﻤﺎ ﺃﻥ : Aµ = 100o , AC = 30 , AB = 20 ﺜﻡ ﺍﺴﺘﻨﺘﺞ Sﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ . ﺍﻟﺘﻤﺭﻴﻥ. 22
ABCﻤﺜﻠﺙ ﻜﻴﻔﻲ . (1ﺒﻴﻥ ﺃﻥ :sin2 Aµ = sin2 Bµ + sin2 Cµ - 2 sin Bµ . sin Cµ . cos Aµ (2ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ABCﻴﻜﻭﻥ ﻗﺎﺌﻤﺎ ﻓﻲ Aﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ :sin2 Aµ = sin2 Bµ + sin2Cµ (3ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ABCﻴﻜﻭﻥ ﻗﺎﺌﻤﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ :sin2 Aµ + sin2Bµ + sin2Cµ = 2 )*( ﺍﻟﺘﻤﺭﻴﻥ. 23uuur uuuur Aﻭ Bﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ AB = 6 : (1ﻋﻴﻥ ﻭ ﺃﻨﺸﺊ ∆1ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ( )uuAurB .uuAuuMr = 18 : (2ﻋﻴﻥ ﻭ ﺃﻨﺸﺊ ∆ 2ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ( )ABuuu.rAMuuu=ur -12 : (3ﻋﻴﻥ ﻭ ﺃﻨﺸﺊ π1ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ( )AB . AM ≥ 30 : )*( ﺍﻟﺘﻤﺭﻴﻥ. 24 ABﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺤﻴﺙ [ ]AB = 4 : (1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ MA2 - MB2 = 12 : (2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ MAu2u+urMuBu2ur= 40 : (3ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ MA - MB = λ : )*( ﺍﻟﺘﻤﺭﻴﻥ. 25 ABCﻤﺜﻠﺙ ﻜﻴﻔﻲ ﻨﻀﻊ BC = a , AC = b , AB = c : = 1 + cosAµ )(a + b +c) (b + c - a (1ﺒﻴﻥ ﺃﻥ : 2bc (a + c -b) (a + b - )c 1 - = cosAµ 2bc (2ﻨﻀﻊ 2p) a + b + c = 2p :ﻤﺤﻴﻁ ﺍﻟﻤﺜﻠﺙ(= sin2 Aµ )4p (p - a) (p - b) (p - c ﺍﺴﺘﻨﺘﺞ ﻤﻥ ) (1ﺃﻥ : b2 c2 (3ﻟﺘﻜﻥ Sﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ABCﺒﻴﻥ ﺃﻥ :
=S )p (p - a) (p - b) (p - c )ﻋﺒﺎﺭﺓ ﻫﻴﺭﻭﻥ( )ﺍﻟﻭﺤﺩﺓ ﻫﻲ (cm (4ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ABCﺤﻴﺙ : BC = 10 ; AC = 15 ; AB = 9 ﺍﻟﺘﻤﺭﻴﻥ. 26 -ﻨﻌﺘﺒﺭ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( )3x + 3y – 5 = 0 : -1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆1ﺍﻟﺫﻱ ﻴﺸﻤل ) A (-1 ; 2ﻭﻴﻌﺎﻤﺩ ∆ ( ) ( ). -2ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ∆ ﻭ ∆1ﻭﻟﺘﻜﻥ ( ) ( ). B -3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ [ ]. AO ﺍﻟﺘﻤﺭﻴﻥ. 27 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ )C (1 ; 2) , B (1 ; -4) , A (-2 ; 2 -1ﻋﻴﻥ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ .ABC -2ﻋﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻟﻠﻤﺜﻠﺙ . ABC -3ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ .ﻤﺎﺫﺍ ﺘﻼﺤﻅ؟ ﺍﻟﺘﻤﺭﻴﻥ. 28 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ C (0 ; 3) , B (-4 ; 0) , A (1 ; 2) : -1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻻﺕ ﺃﻋﻤﺩﺓ ﺍﻟﻤﺜﻠﺙ . ABC -2ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻷﻋﻤﺩﺓ . -3ﻋﻴﻥ ﻤﺭﻜﺯ ﻭ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ .ABC ﺍﻟﺘﻤﺭﻴﻥ. 29 (1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ Γ1ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ) ω (1 ; -3ﻭ ﺘﺸﻤل) ( ﺍﻟﻨﻘﻁﺔ ). A (5 ; 2 (2ﺍﻜﺘﺏ ﻤﻌﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ [ ]. ωA (3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﻴﺔ ﺒﺎﻟﻤﺜﻠﺙ ABωﺤﻴﺙ B (1 ; -2) : (4ﺍﻜﺘﺏ ﻤﻌﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ωﻭﺘﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ) ( ﻤﻌﺎﺩﻟﺘﻪ x – y + 2 = 0 :ﻤﻤﺎﺴﺎ ﻟﻬﺎ . ﺍﻟﺘﻤﺭﻴﻥ. 30 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ) M (x ; yﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ :
. x2 + y2 - 2x + 4y - 11 = 0 (1 . 2x2 + 2y2 - 4x + 8y + 10 = 0 (2 . - x2 - y2 + 6x + 10y - 60 = 0 (3 . y2 + x2 - 4xy + 5y2 = 0 (4 ﺍﻟﺘﻤﺭﻴﻥ. 31 ﻨﺎﻗﺵ ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻭﺴﻴﻁ ﺍﻟﺤﻘﻴﻘﻲ mﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ) M (x ; yﺤﻴﺙ :x2 + y2 - 2m x - 2 (1 + m) y + 6m + 1 = 0 ﺍﻟﺘﻤﺭﻴﻥ. 32 ﻟﺘﻜﻥ Cmﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ) M (x ; yﺤﻴﺙ ( ):x2 + y2 -2 (1 - m) x + (1 + 6m) y + 5m - 5 = 0 4 Mﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ . (1ﺃﺜﺒﺕ ﺃﻥ Cmﺩﺍﺌﺭﺓ( ). (2ﺃﻨﺸﺊ ﻓﻲ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ ( ) ( )C1 , C0 (3ﻟﺘﻜﻥ ωmﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ . Cmﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ωmﻋﻨﺩﻤﺎ) ( ﻴﺘﻐﻴﺭ mﻓﻲ ¡ . (4ﺃﺜﺒﺕ ﺃﻥ Cmﺘﺸﻤل ﻨﻘﻁﺘﺎﻥ ﺜﺎﺒﺘﺘﺎﻥ B , Aﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ( ). ﺍﻟﺘﻤﺭﻴﻥ. 33ﺃﺩﺭﺱ ﻭﻀﻌﻴﺔ ﺍﻟﺩﺍﺌﺭﺓ ) (Cﺍﻟﺘﻲ ﻤﻌﺎﺩﻟﺘﻬﺎ x2 + y + m = 0ﻭﺍﻟﻤﺴﺘﻘﻴﻡ ∆mﺍﻟﺫﻱ) ( ﻤﻌﺎﺩﻟﺘﻪ m , x – y + m = 0 :ﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ. ﺍﻟﺘﻤﺭﻴﻥ. 34 (1ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ ( )x2 + y2 + 2x - y = 5 : C1 (2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ C2ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ) ω2(4 ; 3ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ( ).5 (3ﺃﻨﺸﺊ C1و C2ﻤﻌﻴﻨﺎ ﻨﻘﻁﺘﻲ ﺘﻘﺎﻁﻌﻬﻤﺎ Fﻭ Hﺤﺴﺎﺒﻴﺎ ( ) ( ). (4ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ Fﻟﻜل ﻤﻥ C1و C2ﻭ ﺒﻴﻥ ﺃﻨﻬﻤﺎ) ( ) (
ﻤﺘﻌﺎﻤﺩﺍﻥ ؛ ﻨﻔﺱ ﺍﻟﺴﺅﺍل ﻋﻨﺩ .H
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146