Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الثاني شعب علمية سنة ثانية ثانوي

دروس مادة الرياضيات للفصل الثاني شعب علمية سنة ثانية ثانوي

Published by DZteacher, 2015-08-17 06:00:33

Description: دروس مادة الرياضيات للفصل الثاني شعب علمية سنة ثانية ثانوي

Search

Read the Text Version

ur uuur uuur uuur uuur Uuu=urCB + 2AB + 3AD : ‫ﻭ ﻤﻨﻪ‬ ( )urCB =uuuDr A :u‫ﺎ‬u‫ﻴﻨ‬u‫ﺩ‬r‫ﻀﻼﻉ ﻴﻜﻭﻥ ﻟ‬u‫ﺃ‬u‫ﻱ‬ur‫ ﻤﺘﻭﺍﺯ‬uAuBurCD ‫ﺒﻤﺎ ﺃﻥ‬ U = 2AD + 2AB = 2 AD + AB : ‫ﻭﻤﻨﻪ‬ uuur uuur uuur AD + ABur= ACuuur: ‫ﻭﻟﺩﻴﻨﺎ ﻜﺫﻟﻙ‬ U = 2AC : ‫ﻭﻤﻨﻪ‬ : 2 ‫ﺘﻁﺒﻴﻕ‬[ ] [ ]‫ ﻤﻨﺘﺼﻑ‬C′ ، AC ‫ ﻤﻨﺘﺼﻑ‬B′ BC ‫ ﻤﻨﺘﺼﻑ‬A′ ‫ ﻨﺴﻤﻲ‬. ‫ ﻤﺜﻠﺙ‬ABC uuur uuur uuur ur . [AB] AB′ + BB′ + CC′ = O : ‫ ﺒﺭﻫﻥ ﺃﻥ‬-uuuur uuur uuur uuur uuur uuur uuur uuur uuu:ur‫ﺤل‬( ) ( ) ( )AA′+BB′+CC′ = AB +BA′ + BC+CB′ + CA+AC′ uuur uuur uuur uuur ur AB + BC + CA = AA = O : ‫ﻟﻜﻥ‬uuur uuur uuur uuur uuuur uuurBA′ = 1 BC ; CB′ = 1 CA ; AC′ = 1 CA : ‫ﻭﺒﻤﺎ ﺃﻥ‬ 2 2 2 uuuur uuur BB′ ( )AA′ + uuur = 1 uuur uuur uuur + CC′ 2 BC + CA + AB : ‫ﻴﻜﻭﻥ‬ uuuur + uuur + uuur = 1 r = r : ‫ﺇﺫﻥ‬ AA′ BB′ CC′ 2 0 0 ( ‫ ) ﺇﻨﺸﺎﺀ ﻨﻘﻁﺔ ﻤﻌﺭﻓﺔ ﺒﻤﺴﺎﻭﺍﺓ ﺸﻌﺎﻋﻴﺔ‬: 3 ‫ﺘﻁﺒﻴﻕ‬ . ‫ ﻤﺜﻠﺙ‬ABC ‫ﻟﻴﻜﻥ‬ : ‫ﺘﺤﻘﻕ‬u‫ﻱ‬u‫ﻭ‬u‫ﺘ‬u‫ﺴ‬r‫ﻤﻥ ﺍﻟﻤ‬uMuur‫ﻁﺔ ﻭﺤﻴﺩﺓ‬u‫ﻘ‬u‫ﻨ‬u‫ﺩ‬ur‫ﺃﻨﻪ ﺘﻭﺠ‬u‫ﻥ‬u‫ﻫ‬ur‫ﺒﺭ‬ 2AM - 3 AB + 4 MC = BC . M ‫ ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ‬- uuuur uuur uuuur uuur : ‫ﺤل‬ : ‫ ﺘﻜﺎﻓﺊ‬2 AM - 3 AB + 4 MC = BC : ‫ﻟﺩﻴﻨﺎ‬

‫‪uuuur uuuur uuur uuur‬‬‫‪2AM + 4 MC =uuBuurC + 3 AuuBuur uuur uuur uuur‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪( )2AM + 4 MC + AC = BC + 3AB‬‬ ‫‪uuuur uuur uuur uuur‬‬ ‫‪−2uAuuMur =uBuurC +u3uuAr B - u4uAurC uuur‬‬ ‫‪−2AuMuuur= BAuu+ur ACuu+ur3 AB - 4 AC‬‬ ‫‪−2uAuuMur = u2uBuuAur - 3uAuuCuur‬‬ ‫‪AM = AM1 + AM2‬‬ ‫‪uuuuur uuur‬‬ ‫‪uuuuur‬‬ ‫‪uuur‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪AM1 = - AB :‬‬ ‫= ‪AM2‬‬ ‫‪AC‬‬‫‪M1‬‬ ‫‪3‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪2‬‬ ‫ﺘﻭﺠﺩ ﺇﺫﻥ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ‪M‬‬ ‫ﻭﻀﻌﻴﺘﻬﺎ ﻤﺤﺩﺩﺓ ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل‬‫‪AM‬‬‫‪uurC uur‬‬ ‫‪ (4‬ﻤﻨﺘﺼﻑ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻡ ‪:‬‬‫‪[ ]B‬‬‫=‪AMI 2‬‬ ‫‪IB‬‬ ‫‪:‬‬ ‫ﻜﺎﻥ‬ ‫‪ AB‬ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ‬ ‫ﺍﻟﻘﻁﻌﺔ‬ ‫‪ I‬ﻤﻨﺘﺼﻑ‬ ‫ﺘﻌﺭﻴﻑ ‪ :‬ﺍﻟﻨﻘﻁﺔ‬ ‫‪uur uur ur‬‬ ‫ﺃﻭ‬ ‫‪IA + IB = O‬‬ ‫‪uur‬‬ ‫‪1‬‬ ‫‪uuur‬‬ ‫ﺃﻭ‬ ‫= ‪AI‬‬ ‫‪2‬‬ ‫‪AB‬‬‫‪ur ur‬‬ ‫‪ (5‬ﺘﻭﺍﺯ‪r‬ﻱ‪u‬ﺸﻌﺎﻋ‪r‬ﻴ‪u‬ﻥ ‪:‬‬‫ﺘﻌﺭﻴﻑ ‪ V ; U :‬ﺸﻌﺎﻋﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴ‪ur‬ﻥ ‪.‬ﻴﻜﻭﻥ ﺍﻟﺸﻌ‪r‬ﺎ‪u‬ﻋﻴﻥ ‪ U‬و ‪ V‬ﻤﺘﻭﺍﺯﻴﻴﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ‬ ‫ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻕ ﻏﻴ‪ur‬ﺭ ﻤﻌﺩﻭﻡ ‪ k‬ﺒﺤﻴﺙ ‪U = k . V :‬‬ ‫ﺍﻟﺸﻌﺎﻉ ﺍﻟﻤﻌﺩﻭﻡ ‪ O‬ﻴﻭﺍﺯﻱ ﻜل ﺸﻌﺎﻉ ‪.‬‬ ‫‪ (6‬ﺇﺴﺘﻘﺎﻤﻴﺔ ﺜﻼﺙ ﻨﻘﻁ ‪:‬‬‫ﺘﻜ‪ur‬ﻭ‪u‬ﻥ‪u‬ﺍﻟﻨﻘﻁ ‪ A , B u,uCur‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ) ﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ (ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬ ‫‪ AB‬و ‪ AC‬ﻤﺘﻭﺍﺯﻴﺎﻥ‪.‬‬ ‫‪( )r r‬‬ ‫‪ (7‬ﻤﺭﻜﻴﺒﺘﺎ ﺸﻌﺎﻉ ‪:‬‬‫‪uuur r‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ‪r O ; i , j‬‬‫ﺘﻌﺭﻴﻑ ‪ ( xA ; yA ) :‬ﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﻨﻘﻁﺔ ‪ A‬ﻤﻌﻨﺎﻩ ‪OA = xA i + yA j :‬‬

: ‫ ﻓﺈﻥ‬B ( xB ; yB ) ; A ( xA ; yA ) : ‫( ﺇﺫﺍ ﻜﺎﻥ‬1 uuur  xB - xA  AB    yB - yA  ur  x′  ‫و‬ ur x  ‫ﻜﺎﻥ‬ ‫ﺇﺫﺍ‬ (2 V  y′  U ury  ur ( y = y′ ‫ ﻭ‬x = x′) ‫ ﺘﻜﺎﻓﺊ‬U = V : ‫ﻓﺈﻥ‬ x + x′  : ‫ﻫﻤﺎ‬ ur uur ‫•ﻤﺭﻜﺒﺘﺎ ﺍﻟﺸﻌﺎﻉ‬  +  U + U′  y y′  k∈ ¡ ,  kx  ur uur  kyur : ‫ ﻫﻤﺎ‬k.U ‫•ﻤﺭﻜﺒﺘﺎ‬  ur uur U′ = k.U : ‫ ﺘﻜﺎﻓﺊ‬U // U ′ • uur ur U′  x′  ‫و‬ U  x  : ‫ﺨﺎﺼﻴﺔ‬  y′   y ur uur ur uur( ‫ ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ‬U , U′ ‫ ) ﺃﻱ‬xy′ - yx′ = 0 ‫ ﺘﻜﺎﻓﺊ‬U // U ′ : ‫ﺘﻁﺒﻴﻘﺎﺕ‬ : ‫ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ ﺸﻌﺎﻋﻴﻥ ﻤﺘﻭﺍﺯﻴﻴﻥ‬ ur ur : 1‫ﻤﺜﺎل‬ur : ‫ ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ‬V ; U . ‫ ﻤﺭﺒﻊ‬ABCD ‫ﻟﻴﻜﻥ‬V uuur uuur ur uuur uuur = DB + 1 BC ; U = 2 AB + DA 2 ur ur .‫ ﻤﺘﻭﺍﺯﻴﺎﻥ‬V ‫ و‬U : ‫ﺒﺭﻫﻥ ﺃﻥ‬ uuur uuur : ‫ﺤل‬ ur uDuuAr = CuuBur : ‫ ﻤﺭﺒﻊ ﻓﺈﻥ‬ABCD ‫ﺒﻤﺎ ﺃﻥ‬ U = 2 AB + CB : ‫ﻭﻤﻨﻪ‬

ur = uuur uuur 1 uuur V AD + AB + 2 BC = uuur uuur + 1 uuur CB + AB 2 BC ur uuur 1 uuur V= AB + 2 CB ur ur U = 2V ur ur : ‫ﺇﺫﻥ‬ ‫ ﻤﺘﻭﺍﺯﻴﺎﻥ‬V ‫ و‬U : ‫ﻭﻤﻨﻪ‬ : 2‫ﻤﺜﺎل‬ : ‫ ﺒـ‬F‫ ﻭ‬E ‫ ﻨﻌﺭﻑ ﺍﻟﻨﻘﻁﺘﻴﻥ‬ABCD ‫ﻓﻲ ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ‬ uuur uuur uuur uuur AF = 1 DA ; AE = 1 AB 3 4 .‫ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬C , E , F ‫ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ‬ : ‫ﺤل‬uuur uuur uuur uuur uuur uuurFE =uu31ur AD + 1 AB : ‫ ﺇﺫﻥ‬FE = FA + AE 4 uuur uuur uuur FE = FA + AD + DO uuur uuur uuur : ‫ﻭﺒﺎﻟﻤﺜل‬ AD + AD + AB = 1 3uuur uuur uuur u31uuruAuDur u+uur41 uuurFC = 4 AD + AB =4 AB  3  uFuurC =u4uurFE : ‫ﻭﺒﻤﺎ ﺃﻥ‬ . ‫ ﻤﺘﻭﺍﺯﻴﺎﻥ‬FE ‫ ﻭ‬FC ‫ﻓﺈﻥ ﺍﻟﺸﻌﺎﻋﻴﻥ‬ . ‫ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬C , E , F ‫ﻭﻤﻨﻪ ﺍﻟﻨﻘﻁ‬ ( )ur ( u‫ﺕ‬r‫ ) ﺍﺴﺘﻌﻤﺎل ﺍﻹﺤﺩﺍﺜﻴﺎ‬: 3‫ﻤﺜﺎل‬ : ‫ ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ‬O ; i , j ‫ﻓﻲ ﻤﺴﺘﻭ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ‬ D (-1 ; 9) , C (1 ; -1) , B (-2 ; 2) , A (3 , 1)

uuur: ‫ﺘﺤﻘﻕ‬uMuu‫ﺓ‬r‫ﻁﺔ ﻭﺤﻴﺩ‬u‫ﻘ‬u‫ ﻨ‬u‫ﺩ‬u‫ﺠ‬r‫ﻥ ﺃﻨﻪ ﺘﻭ‬u‫ﻫ‬u‫ﺭ‬u‫ﺒ‬r(‫ﺃ‬ 2MA + 3MB - 4 MC = 2 AC . M ‫ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ‬ ‫ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ؟‬D ; B ; M ‫ﺏ( ﻫل ﺍﻟﻨﻘﻁ‬ : ‫ﺤل‬uuuur : ‫ ﺇﻥ ﻭﺠﺩﺕ‬M (x ; y) ‫ﺃ( ﻟﺘﻜﻥ‬MC uuur uMuuAr   1 - x  ; MB  -2 - x  ;  3 - x : ‫ﻟﺩﻴﻨﺎ‬  1 - y   2 - y  1 -      y  uuur  -6 - 3x  ; uuur  6 - 2x  : ‫ﻭﻤﻨﻪ‬ 3MB   2 MA    6 - 3y   2 - 2y  uuur  -2  ; uuuur  -4 + 4x  AC   -4 MC    -2   4 + 4y  uuur uuur uuuur u: u‫ﻪ‬u‫ﻨ‬r‫ﻭﻤ‬ : ‫ ﺘﻜﺎﻓﺊ‬2MA + 3MB - 4 MC = 2 AC 6 - 2x - 6 - 3x - 4 + 4x = -4 2 - 2y + 6 - 3y + 4 + 4y = -4 x = 0 − x - 4 = -4  : ‫ﺃﻱ‬ -y + 12 = -4 : ‫ﺃﻱ‬  y = 16 M (0 ; 16) : ‫ ﻤﻭﺠﻭﺩﺓ ﻭﻭﺤﻴﺩﺓ ﺤﻴﺙ‬M ‫ﺍﻟﻨﻘﻁﺔ‬ uuur uBuMuuruuur124 BD  1  ;  (‫ﺏ‬  7  uuuur  uuur uuuur    BD ‫ ﻭ‬BM ‫ ﻓﺈﻥ ﺍﻟﺸﻌﺎﻋﻴﻥ‬BM = 2BD : ‫ﻭﺒﻤﺎ ﺃﻥ‬ D , B , M : ‫ﻤﺘﻭﺍﺯﻴﺎﻥ ﻭﻤﻨﻪ ﺍﻟﻨﻘﻁ‬ . ‫ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬ [ ]BM ‫ ﻫﻭ ﻤﻨﺘﺼﻑ‬D ‫ﺒﺎﻹﻀﺎﻓﺔ ﻓﺈﻥ‬ : ‫ ﻤﺭﺠﺢ ﻨﻘﻁﺘﻴﻥ‬- II

‫‪ (1‬ﻤﺒﺭﻫﻨﺔ ﻭﺘﻌﺭﻴﻑ ‪:‬‬‫‪ A‬ﻭ‪ B‬ﻨﻘﻁﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ‪ α .‬ﻭ ‪ β‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺤﻴﺙ ‪ 0 ≠ β + α :‬؛ ﺘﻭﺠﺩ ﻨﻘﻁﺔ‬ ‫ﻭ‪r‬ﺤ‪u‬ﻴﺩﺓ ‪rG‬ﺘ‪u‬ﺤﻘﻕ ‪ur :‬‬ ‫‪αG A + βG B = O‬‬ ‫ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺘﺴﻤﻰ ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ ‪ A‬ﻭ‪ B‬ﺍﻟﻤﺭﻓﻘﺘﻴﻥ ﺒﺎﻟﻌﺎﻤﻠﻴﻥ ‪ α‬و ‪ β‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪.‬‬ ‫ﻤﻼﺤﻅﺔ ‪:‬‬ ‫ﻨﻘﻭل ﻜﺫﻟﻙ ﺃﻥ ‪ G‬ﻫﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) ‪(B , β ) ; (A , α‬‬ ‫• ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪ (A , 1‬ﻭ)‪ (B , 1‬ﻫﻭ ﻤﻨﺘﺼﻑ ‪[ ]AB‬‬ ‫• ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺍﻟﻤﺨﺘﻠﻔﺘﻴﻥ ‪ A‬ﻭ‪ B‬ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪(AB‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ α‬ﻭ ‪ β‬ﻤﻥ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ﻓﺈﻥ ‪ G‬ﻴﻨﺘﻤﻲ ﺇﻟﻰ ‪[ ]. AB‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ α‬ﻭ ‪ β‬ﻤﺨﺘﻠﻔﺎﻥ ﻓﻲ ﺍﻹﺸﺎﺭﺓ ﻓﺈﻥ ‪ G‬ﺨﺎﺭﺝ ‪[ ]. AB‬‬ ‫‪ (2‬ﺍﻟﺨﺎﺼﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻠﻤﺭﺠﺢ ‪:‬‬‫ﺇﺫﺍ ﻜﺎﻥ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) ‪ (B , β ) ; (A , α‬ﺤﻴﺙ ‪ . α + β ≠ 0‬ﻓﺈﻥ ﻤﻥ ﺃﺠل‬ ‫ﻜل‪ur‬ﻨ‪u‬ﻘ‪u‬ﻁ‪u‬ﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ‪uuur uuur :‬‬ ‫‪αMA + βMB = ( α + β ) MG‬‬‫‪( )r r‬‬ ‫‪ -‬ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻤﺭﺠﺢ ‪:‬‬‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ‪O ; i , j‬‬‫ﻟﺘﻜﻥ ) ‪ G (xG ; yG ) . B (xB ; yB ) , A (xA , yA‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬ ‫) ‪. (B , β ) ; (A , α‬‬‫ﺒﺘﻌﻭﻴﺽ ‪M‬ﺒـ ‪ O‬ﻓﻲ ﺍﻟﺨﺎﺼﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻨﺠﺩ ‪:‬‬‫‪‬‬ ‫‪xG‬‬ ‫=‬ ‫‪αx A‬‬ ‫‪+ βxB‬‬‫‪‬‬ ‫‪α‬‬ ‫‪+β‬‬‫‪‬‬‫‪‬‬ ‫‪αyA + βYB‬‬‫‪‬‬ ‫‪yG‬‬ ‫=‬ ‫‪α +β‬‬ ‫ﻤﺜﺎل ‪ : 1‬ﺇﻨﺸﺎﺀ ﻤﺭﺠﺢ ﻨﻘﻁﺘﻴﻥ‬‫ﺃ( ﺃﻨﺸﺊ ﺍﻟﻤﺭﺠﺢ ‪ G‬ﻟﻠﺠﻤﻠﺔ )‪(B , 1) ; (A , 2‬‬‫ﺏ( ﻫل ﻴﻤﻜﻥ ﺇﻨﺸﺎﺀ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪ (B , -3) ; (A , 3‬؟‬

‫ﺤل ‪:‬‬ ‫ﺃ( ﺍﻟﻤﺭﺠﺢ ﻤﻭﺠﻭﺩ ﻷﻥ ‪uu1ur+ 2uu≠ur0‬ﻭ ﻤﻥ ﺃﺠ‪r‬ل‪uu‬ﻜ‪u‬ل‪u‬ﻨﻘﻁﺔ ‪ M‬ﻤﻥ‬ ‫‪3MG = 2MA + MB‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫= ‪AG‬‬ ‫‪AB‬‬ ‫‪1‬‬ ‫ﺒﻭﻀﻊ ‪ M = A :‬ﻨﺠﺩ ‪:‬‬ ‫‪3‬‬‫‪AG‬‬ ‫ﺏ( ﺍﻟﻤﺭﺠﺢ‪ur‬ﻏﻴﺭ ﻤﻭﺠ‪ur‬ﻭ‪u‬ﺩ‪u‬ﻷﻥ ‪uuurB3 + u(-u3u)r= 0‬‬ ‫ﺒﺎﻟﻔﻌل ‪3MA - 3MB = 3BA ≠ O :‬‬ ‫ﻤﺜﺎل ‪ ) : 2‬ﺍﺴﺘﻌﻤﺎل ﺍﻟﻤﺭﺠﺢ ﻓﻲ ﺍﻟﺤﺴﺎﺏ ﺍﻟﺸﻌﺎﻋﻲ (‬ ‫ﻟﺘﻜﻥ ﺜﻼﺙ ﻨﻘﻁ ‪ A , B , C‬ﻤﻥ ﺍﻟ‪r‬ﻤ‪uu‬ﺴﺘ‪u‬ﻭﻱ‪uuur uuur .‬‬ ‫ﺒﺭﻫﻥ ﺃﻨﻪ ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ ﺘﺤﻘﻕ ‪MA - 3MB = AC :‬‬ ‫ﺃﻨﺸﺊ ‪. M‬‬ ‫ﺤل ‪:‬‬ ‫ﻟﺘﻜﻥ ‪ G‬ﻤﺭﺠﺢ‪ ur‬ﺍ‪u‬ﻟ‪u‬ﺠﻤ‪u‬ﻠﺔ )‪uuur(B , -3u) u; u(Ar , 1‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪uuuur uuur MAu-u3urMBu=uu-r2MuGuur :‬‬‫ﻓﺈﻥ ‪ MA - 3MB = AC :‬ﺘﻜﺎﻓﺊ ‪−2MG = AC :‬‬‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪uuuur‬‬ ‫‪uuur‬‬‫= ‪AG‬‬ ‫‪3‬‬ ‫‪AB‬‬ ‫ﻨﻨﺸﺊ ﺃﻭﻻ ‪ G‬ﺤﻴﺙ ‪:‬‬ ‫= ‪. GM‬‬ ‫‪1‬‬ ‫‪AC‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪uuuur‬‬ ‫‪1‬‬ ‫‪uuur‬‬ ‫= ‪GM‬‬ ‫‪2‬‬ ‫‪AC‬‬ ‫ﺜﻡ ﺍﻟﻨﻘﻁﺔ ﺍﻟﻭﺤﻴﺩﺓ ‪ M‬ﺍﻟﺘﻲ ﺘﺤﻘﻕ‬ ‫‪C‬‬ ‫‪M‬‬‫‪A‬‬ ‫‪BG‬‬ ‫‪ (3‬ﻤﺭﺠﺢ ﺜﻼﺙ ﻨﻘﻁ ‪:‬‬ ‫ﻤﺒﺭﻫﻨﺔ ﻭﺘﻌﺭﻴﻑ ‪:‬‬ ‫‪ A , B , C‬ﺜﻼﺙ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ‪.‬‬ ‫‪ α , β , γ‬ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ ‪α + β + γ ≠ 0 :‬‬

‫‪r-1‬ﺘﻭﺠﺩ ﻨ‪r‬ﻘ‪u‬ﻁ‪u‬ﺔ‪u‬ﻭﺤﻴﺩﺓ ‪ uGr‬ﺘ‪u‬ﺤ‪u‬ﻘﻕ ‪uuur :‬‬ ‫‪αGA + βGB + γGC = 0‬‬ ‫‪ -2‬ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺘﺴﻤﻰ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫)‪(A , α) ; (B , β) ; (C , γ‬‬ ‫ﺨﻭﺍﺹ ‪:‬‬ ‫‪ -‬ﻻ ﻴﺘﻐﻴﺭ ﺍﻟﻤﺭﺠﺢ ﺇﺫﺍ ﻀﺭﺒﻨﺎ ﺍﻟﻤﻌﺎﻤﻼﺕ ﻓﻲ ﻨﻔﺱ ﺍﻟﻌﺩﺩ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ‪.‬‬‫‪ -‬ﺇﺫﺍ ﻜﺎﻥ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) ‪ (A , α) ; (B , β) ; (C , γ‬ﺤﻴﺙ‬ ‫‪ α + β + γ ≠ 0‬ﻓﺈﻥ ‪:‬‬ ‫ﻤ‪r‬ﻥ‪uu‬ﺃﺠ‪u‬ل‪ u‬ﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ‪uuuur uuur uuu:r‬‬ ‫‪αMA + βMB + γMC = (α + β + γ) MG‬‬ ‫‪( )r r‬‬ ‫‪ (4‬ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻤﺭﺠﺢ ‪:‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ‪O ; i , j‬‬‫ﻟﺘﻜﻥ ‪A (xA ; yA ) , B (xB ; yB ) , C (xC ; yC ) :‬‬‫) ‪ G (xG ; yG‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪(A , α ) ; (B , β ) ; (C , γ ) :‬‬‫‪‬‬ ‫‪xG‬‬ ‫=‬ ‫‪αxA + βxB + γxC‬‬‫‪‬‬ ‫‪α +β + γ‬‬‫‪‬‬‫‪‬‬ ‫‪αyA + βyB + γyC‬‬‫‪‬‬ ‫‪yG‬‬ ‫=‬ ‫‪α +β + γ‬‬‫‪uuur uuur uuur ur‬‬ ‫ﺨﺎﺼﻴﺔ ‪:‬‬‫ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻫﻭ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺍﻟﺘﻲ ﺘﺤﻘﻕ ‪GA + GB + GC = O :‬‬ ‫)*( ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ‪:‬‬ ‫‪ A , B , C‬ﺜﻼﺙ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ‬ ‫‪ α , β , γ‬ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ ‪α + β + γ ≠ 0 :‬‬‫ﺇﺫﺍ ﻜﺎﻥ ‪ α + β ≠ 0 :‬ﻓﺈﻥ ﺍﻟﻤﺭﺠﺢ ‪ G‬ﻟﻠﺠﻤﻠﺔ ) ‪ (A , α) ; (B , β) ; (C , γ‬ﻫﻭ‬‫ﻜﺫﺍﻟﻙ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪ (C , α) ; (H , α + β‬ﺤﻴﺙ ‪ H‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬ ‫)‪(B , β) ; (A , α‬‬ ‫ﻤﺜﺎل ‪ ) : 1‬ﺇﻨﺸﺎﺀ ﻤﺭﺠﺢ ﺜﻼﺙ ﻨﻘﻁ (‬

‫‪ ABC‬ﻤﺜﻠﺙ ‪ .‬ﺃﻨﺸﺊ ﺒﻁﺭﻴﻘﺘﻴﻥ ﻤﺨﺘﻠﻔﺘﻴﻥ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬ ‫)‪(A , 1) ; (B , 1) ; (C , 2‬‬ ‫ﺤل ‪:‬‬ ‫ﺍﻟﻤﺭﺠﺢ ‪ G‬ﻤﻭﺠﻭﺩ ﻷﻥ ‪11 + 1 + 2 ≠ 0‬‬ ‫• ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺨﺎﺼﺔ ﺍﻷﺴﺎ‪ur‬ﺴﻴ‪u‬ﺔ‪uuuur uuur uuur u:u‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪MA + MB + 2MC = 4MG : M‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪CG‬‬ ‫=‬ ‫‪1‬‬ ‫‪(CA‬‬ ‫‪+‬‬ ‫)‪CB‬‬ ‫ﺒﺘﻌﻭﻴﺽ ‪ M‬ﺒـ ‪ C :‬ﻨﺠﺩ ‪:‬‬ ‫‪4‬‬‫‪A‬‬ ‫• )*( ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ‪:‬‬ ‫ﻟﻴﻜﻥ ‪ I‬ﻤﻨﺘﺼﻑ ‪[ ]. AB‬‬‫‪ G‬ﻫﻭ ﻤﺭﺠﺢ ‪I (C , 2) ; (I , 2) :‬‬ ‫‪G‬‬ ‫‪C‬‬ ‫ﺇﺫﻥ ‪ G :‬ﻤﻨﺘﺼﻑ ‪[ ]IC‬‬‫‪B‬‬ ‫ﻤﺜﺎل ‪: 2‬‬‫ﻓﻲ‪ ur‬ﺍ‪u‬ﻟﻤ‪u‬ﺜﻠﺙ ‪ .uuAurBC‬ﻨﺴﻤﻰ ‪ I‬ﻤﻨﺘﺼﻑ ‪ AB‬؛ ‪ J‬ﻤﻨﺘﺼﻑ ‪ CI‬؛ ﻭ ‪ K‬ﻨﻘﻁﺔ ﺤﻴﺙ ‪[ ] [ ]:‬‬ ‫‪3BK = 2BC‬‬ ‫ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ ‪ K ; J ; A‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‪.‬‬ ‫ﺤل ‪uuur uuur uuur :‬‬ ‫ﻟﺩﻴﻨﺎ ‪uuur 3BuuKur = 2ur(BK + KC) :‬‬ ‫‪−BK + 2KC =uuuOr suuu ur‬‬ ‫ﺃﻱ ‪KB + 2KC = O :‬‬ ‫ﻭﻤﻨﻪ ‪ K :‬ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪(C , 2) ; (B , 1‬‬ ‫ﻟﺩﻴﻨﺎ ‪ J‬ﻤﻨﺘﺼﻑ ‪ CI‬ﻭﻤﻨﻪ ‪ J‬ﻫﻭ ﻤﺭﺠﺢ )‪[ )(I , 2) ; (C , 2‬‬ ‫ﻭﻟﻜﻥ ‪ I‬ﻤﻨﺘﺼﻑ ‪ AB‬ﻓﻬﻭ ﻤﺭﺠﺢ )‪[ ](B , 1) ; (A , 1‬‬ ‫ﺒﺘﻁﺒﻴﻕ ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﻨﺠﺩ ﺃﻥ ‪:‬‬ ‫‪ J‬ﻤﺭﺠﺢ )‪(B , 1) ; (A , 1) ; (C , 2‬‬ ‫ﻭ ﺒﻤﺎ ﺃﻥ ‪ K‬ﻤﺭﺠﺢ )‪(C , 2) ; (B , 1‬‬ ‫ﻓﺈﻥ ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﺘﺒﻴﻥ ﺃﻥ ‪ J‬ﻤﺭﺠﺢ )‪(K , 3) ; (A , 1‬‬

‫ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪ J‬ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ)‪(AK‬‬ ‫ﺇﺫﻥ ‪ A ; J ; K :‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‪.‬‬ ‫ﻤﺜﺎل ‪: 3‬‬ ‫‪ ABCD‬ﺭﺒﺎﻋﻲ ‪ I , J , K , L .‬ﻤﻨﺘﺼﻔﺎﺕ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻟﻸﻀﻼﻉ‬ ‫]‪. [AB] ; [BC] ; [CD] ; [DA‬‬ ‫‪ M‬ﻭ‪ N‬ﻤﻨﺘﺼﻔﺎ ﺍﻟﻘﻁﺭﻴﻥ ‪ AC‬و ‪ BD‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪[ ] [ ].‬‬ ‫ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ )‪ (IK) ; (JL) ; (MN‬ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻨﻘﻁﺔ ‪.‬‬ ‫ﺤل ‪:‬‬‫ﻟﺘﻜﻥ ‪ O‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪ (A , 1) ; (B , 1) ; (C , 1) ; (D , 1‬ﺒﺘﺠﻤﻴﻊ ‪ A‬ﻤﻊ ‪B‬‬ ‫ﻭ ‪ C‬ﻤﻊ‪ D‬ﻨﺠﺩ ﺃﻥ ‪ O‬ﻫﻭ ﻤﺭﺠﺢ ‪:‬‬ ‫)‪(K , 2) ; (I , 2‬‬‫ﺒﺘﺠﻤﻴﻊ ‪ C‬ﻤﻊ ‪ A‬ﻭ ‪ B‬ﻤﻊ ‪ D‬ﻨﺠﺩ ‪ O :‬ﻤﺭﺠﺢ ‪ (N , 2) ; (M , 2) :‬ﺒﺘﺠﻤﻴﻊ ‪ A‬ﻤﻊ ‪ D‬ﻭ ‪ C‬ﻤﻊ‬ ‫‪ B‬ﻨﺠﺩ ‪ O‬ﻤﺭﺠﺢ ‪(J , 2) ; (L , 2) :‬‬ ‫ﻭﻤﻨﻪ ‪ O :‬ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ‪(JL) ; (MN) ; (IK) :‬‬ ‫ﺇﺫﻥ ‪ :‬ﻫﺫﻩ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺘﺘﻼﻗﻰ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪. O‬‬

‫ﺕﻤـﺎریـﻦ و ﻡﺸﻜﻼت‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪ . 1‬ﺼﺤﻴﺢ ﺃﻡ ﺨﻁﺄ ‪:‬‬‫‪ur uuur uuur‬‬ ‫‪ (1‬ﻤﻥ ﺃﺠل ﺜﻼ‪ur‬ﺙ‪ u‬ﻨ‪u‬ﻘﻁ ﻜﻴﻔﻴﺔ‪ur‬ﻤ‪u‬ﻥ‪u‬ﺍﻟﻤﺴﺘﻭ‪ur‬ﻱ‪u: u‬‬‫‪V = BA - 2AC‬‬ ‫ﻟﺩﻴﻨﺎ ‪2uAr B +uuuBr C =u2uuAr C :‬‬ ‫‪ (2‬ﺍﻟﺸﻌﺎﻋﺎﻥ ‪ U = AB + 2AC :‬ﻭ‬ ‫ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ‪.‬‬‫‪ (3‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠ‪r‬ﺔ )‪ ( A ; -2u)u;ur(B ;u-u5ur‬ﺃﻗﺭﺏ ﻤﻥ ‪{ }B‬‬‫‪ (4‬ﺇﺫﺍ ﻜﺎﻥ‪ AB + 2AC = 0 :‬ﻓﺈﻥ‪ B :‬ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬ ‫})‪{( A ; 1) ; (C ; 2‬‬ ‫‪ (5‬ﻤﺭﺠﺢ )‪ C (-1 ; 2) ; B (3 ; 4) ; A (1 ; 2‬ﺍﻟﻤﻔﺭﻗﺔ ﺒﻨﻔﺱ‬ ‫ﺍﻟﻤﻌﺎﻤل ﻓﺎﺼﻠﺘﻪ ‪ 1‬ﻓﻲ ﻤﺴﺘﻭ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ‪.‬‬ ‫‪ (6‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪ (C ; 4) ; (B ; 2) ; (A ; 2‬ﻫﻭ ﺃﻴﻀﺎ ﻤﻨﺘﺼﻑ‬ ‫]‪ [IC‬ﺤﻴﺙ ﻤﻨﺘﺼﻑ ]‪[AB‬‬ ‫‪ (7‬ﺇﺫﺍ ﻜﺎﻥ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪ (C ; 2) ; (B ; 2) ; (A ; 1‬ﻓﺈﻥ ‪G‬‬‫ﻫﻭ ﺃﻴﻀﺎ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪ I ; 47 ; I ; 3‬ﺤﻴﺙ ‪ I‬ﻤﺭﺠﻊ) ( ) (} {‬ ‫})‪ {(B ; 2) ; ( A ; 1‬ﻭ ‪ J‬ﻤﻨﺘﺼﻑ ]‪[BC‬‬ ‫‪ (8‬ﺇﺫﺍ ﻜﺎﻥ ‪ F‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬‫})‪{(D ; 1) ; (G ; 4) ; (B ; 2) ; (A ; 1‬‬ ‫ﻓﺈﻥ ﺍﻟﻨﻘﻁ ‪ F‬ﻭ ﻤﻨﺘﺼﻑ ‪ AD‬ﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪[ ]:‬‬‫)‪ (C ; 2) ; (B ; 1‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ‪{ }.‬‬‫ﺃﻋﻁ ﺍﻷﺠﻭﺒﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻭ ﺍﻟﺨﺎﻁﺌﺔ ﻟﻜل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺍﻟﺘﺎﻟﻴﺔ ﻤﻥ ‪ 2‬ﺇﻟﻰ ‪: 7‬‬‫‪ur uuur ur uuur‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬‫‪ ABCD‬ﻤﺴﺘﻁﻴل ﻨﻀﻊ ‪V = AD ; U = AB :‬‬

‫‪ur ur ur ur‬‬ ‫‪U + V = U - V (1‬‬ ‫‪ur‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪ur‬‬ ‫‪2‬‬ ‫=‬ ‫‪ur‬‬ ‫‪-‬‬ ‫‪ur‬‬ ‫‪2‬‬ ‫‪U‬‬ ‫‪V‬‬ ‫‪U‬‬ ‫‪V‬‬ ‫‪ur ur ur ur ur‬‬ ‫‪(2‬‬ ‫‪U + V + U - V = 2 U (3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬‫‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) ‪ ( A ; α) ; (B ; β) ; (C ; γ‬ﺤﻴﺙ ‪ γ , β , α‬ﻤﻥ} {‬ ‫ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ‪.‬‬‫‪ (1‬ﺘﻭﺠﺩ ﻤﻌﺎﻤﻼﺕ ﺤﻘﻴﻘﻴﺔ ‪ γ′ , β′ , α′ :‬ﺒﺤﻴﺙ ‪γ′ + β′ + α′ = 1 :‬‬‫ﻭ ‪ G‬ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪. (C , γ ) ; (B ; β) ; ( A ; α) :‬‬‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬‫= ‪CG‬‬ ‫‪α‬‬ ‫‪CA +‬‬ ‫‪α‬‬ ‫‪CB‬‬ ‫‪ (2‬ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺘﺤﻘﻕ ‪:‬‬ ‫‪α+β+γ‬‬ ‫‪α+β+γ‬‬ ‫‪ (3‬ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺘﻘﻊ ﺩﺍﺨل ﺍﻟﻤﺜﻠﺙ ‪. ABC‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﻲ ‪ AH . A‬ﺍﺭﺘﻔﺎﻉ ‪[ ].‬‬ ‫‪‬‬ ‫‪A‬‬ ‫;‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪‬‬ ‫‪H‬‬ ‫;‬ ‫‪2 ‬‬ ‫‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫‪‬‬ ‫‪3 ‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪uur‬‬ ‫=‬ ‫‪1‬‬ ‫‪uuur‬‬ ‫‪(1‬‬ ‫‪CI‬‬ ‫‪3‬‬ ‫)‪ (B G‬ﻴﻘﻁﻊ )‪ (AC‬ﻓﻲ ‪ I‬ﺒﺤﻴﺙ ‪CA :‬‬ ‫‪uuur uuur uuur r‬‬ ‫‪GA + GB + GC = 0 (2‬‬ ‫‪ A (3‬ﻤﺭﺠﻊ ﺍﻟﺠﻤﻠﺔ )‪{ }(G ; 3) ; (B ; 1) ; (C ; 1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬‫‪{ }(A‬‬‫;‬‫)‪-7‬‬‫‪,‬‬ ‫‪(B‬‬ ‫;‬ ‫)‪3‬‬ ‫‪,‬‬ ‫‪(C‬‬ ‫;‬ ‫)‪5‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ‪ G ،‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬ ‫)‬ ‫‪ G (1‬ﻴﻘﻊ ﺩﺍﺨل ﺍﻟﻘﻁﺎﻉ ﺍﻟﺯﺍﻭﻱ ﺍﻟﻤﻌﺭﻑ ﺒـ ‪BAC‬‬ ‫ﻭﺨﺎﺭﺝ ﺍﻟﻤﺜﻠﺙ ‪.ABC‬‬ ‫‪ (2‬ﺍﻟﻤﺴﺘﻘﻴﻡ)‪ (BG‬ﻴﻘﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪ (AC‬ﻓﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬

‫} )‪. {(A ; -7) , (C ; 5‬‬‫‪ B (3‬ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ } ) ‪. {(A ; -7 ) , (C ; 5 ) , ( G ; 1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬‫‪ ABC‬ﻤﺜﻠﺙ ‪ G ،‬ﻤﺭﺠﺢ )‪{ }(C ; 3uu)r , (Buu;ur2) , ( A ; 1‬‬ ‫‪ (AG) (1‬ﻴﻘﻁﻊ )‪ (BC‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪ I‬ﺤﻴﺙ ‪5BI = 2BC :‬‬ ‫‪ (2‬ﻨﻘﻁ‪r‬ﺔ ﺘﻘﺎﻁ‪r‬ﻊ‪ (BG)uu‬ﻭ‪ (AuCuu)r‬ﻫﻲ ﺍﻟﻨﻘﻁﺔ ‪ J‬ﺤﻴﺙ ‪:‬‬ ‫‪GB + 2GJ = 0‬‬ ‫‪ (CG) (3‬ﻴﻘﻁﻊ )‪ (AB‬ﻓﻲ ﻤﻨﺘﺼﻑ ‪[ ]. AB‬‬ ‫‪uur uuur‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬‫‪3AJ = 2AC‬‬ ‫‪ uAuBurC‬ﻤﺜﻠﺙ ‪ K , Juu, uIr.‬ﻨﻘﻁ ﺤ‪r‬ﻴﺙ ‪uur uur :‬‬ ‫‪; -3IB + 4IC = 0 ; 2uKurA =u3uKur B‬‬ ‫‪. IC = 3BC (1‬‬ ‫‪ J (2‬ﻫﻭ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪{ }. ( A ; 3) ; (C ; 2‬‬ ‫‪ (3‬ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ )‪ (C k) ; (BJ) ; (AI‬ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‬ ‫})‪. {( A ; 2) ; (B ; -3) ; (C ; 4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫‪ A‬ﻭ‪ B‬ﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ ‪AB = 5 cm :‬‬ ‫ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪{ }( ) ( )B ; -2 ; A ; 7‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬ ‫‪ABC‬ﻤﺜﻠﺙ ﻜﻴﻔﻲ ‪.‬‬‫ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪{ }. ( A ; 2) ; (B ; -1) ; (C ; -2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬ ‫‪ ABC‬ﺸﺒﻪ ﻤﺤﺭﻑ ﻗﺎﺌﻡ ﺤﻴﺙ ‪:‬‬ ‫‪CD = 2 cm ; AD = 3 cm ; AB = 6 cm‬‬

‫‪( )r‬‬‫‪1‬‬‫‪uuur‬‬‫و‬ ‫‪r‬‬ ‫=‬ ‫‪1‬‬ ‫‪uuur‬‬ ‫ﻨﻀﻊ ‪:‬‬‫‪3‬‬ ‫‪AD‬‬ ‫‪i‬‬ ‫‪r6‬‬ ‫‪AB‬‬‫=‪j‬‬ ‫‪r‬‬ ‫‪ (1‬ﺒﻴﻥ ﺃﻥ ‪A ; i , j‬‬ ‫ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ‬ ‫‪ (2‬ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫)‪(D ; 3) ; (C ; -2) ; (B ; 5) ; (A ; 4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬ ‫‪ A ; B ; C ; D‬ﺃﺭﺒﻊ ﻨﻘﻁ ﺤﻴﺙ ‪:‬‬ ‫‪DA = 6 cm ; CD = 7 cm ; AB = 5 cm‬‬ ‫‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪(A ; 2) ; (B ; 3) ; (C ; 3) ; (D ; 4‬‬‫ﺃ( ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ ‪ I‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪{ }( ) ( )A ; 2 ; B ; 3‬‬‫ﺏ( ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ ‪ J‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪{ }( ) ( )C ; 3 ; D ; 4‬‬‫ﺟـ ( ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪. (IJ‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬‫‪ A‬ﻭ‪ B‬ﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ ‪ AB = 6 cm :‬ﻭ ‪ M‬ﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ‪.‬‬‫‪ (1‬ﻋﻴ‪r‬ﻥ‪ u‬ﺍ‪u‬ﻟﻤ‪u‬ﺭﺠﺢ ‪urI‬ﻟ‪u‬ﻠ‪u‬ﺠﻤ‪u‬ﻠﺔ )‪ . (A ; 1u)u;ur(B ; 1‬ﻭﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻉ ‪:‬‬ ‫‪ MA + MB‬ﺒﺩﻻﻟﺔ ‪. MI‬‬ ‫‪ (2‬ﻋﻴ‪r‬ﻥ‪ u‬ﺍ‪u‬ﻟﻤ‪u‬ﺭﺠﺢ ‪rG‬ﻟ‪u‬ﻠ‪u‬ﺠ‪u‬ﻤﻠ‪u‬ﺔ )‪ (A ;u1u)u;ur(B ; 2‬ﻭﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻉ ‪:‬‬ ‫‪ MA + 2MB‬ﺒﺩﻻﻟﺔ ‪MG‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 13‬‬ ‫ﻟﻴﻜﻥ ﺍﻟﻘﻁﻌﺔ ‪ AB‬ﻁﻭﻟﻬﺎ ‪[ ]. 6 cm‬‬ ‫‪ - 1‬ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪ AM = 6 cm‬؟‬‫‪ -2‬ﻟﻴﻜﻥ ‪ I‬ﻤﻨﺘﺼﻑ ‪[ ]uuur uuuur uu.urAB‬‬‫ﺃ ( ﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭ‪ur‬ﻉ‪ MuAuu+r MB u: u‬ﺒ‪ur‬ﺩ‪u‬ﻻﻟ‪u‬ﺔ‪u‬ﺍﻟﺸﻌﺎﻉ ‪. MI‬‬ ‫ﺏ( ﺒﺭﻫﻥ ﺃﻨﻪ ‪MA + MB = 2 MI :‬‬ ‫ﺟـ( ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪:‬‬

‫‪uuuur uuur‬‬‫‪MA + MB = 6 cm‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬ ‫‪ A‬ﻭ‪ B‬ﻨﻘﻁﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ‪.‬‬‫‪ f‬ﺘﻁﺒﻴﻕ ﻴﺭﻓﻕ ﺒﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻨﻘ‪ur‬ﻁﺔ‪ Muu′uu‬ﺤﻴ‪r‬ﺙ‪uuuur uu:u‬‬‫‪MA + MuBuur= MuMuur′‬‬ ‫‪ (1‬ﻟﻴﻜﻥ ‪ I‬ﻤﻨﺘﺼﻑ ‪ . AB‬ﺒﺭﻫﻥ ﺃﻥ ‪[ ]. IM′ = -IM :‬‬ ‫‪ (2‬ﺤﺩﺩ ﻁﺒﻴﻌﺔ ﺍﻟﺘﻁﺒﻴﻕ ‪ f‬ﻭﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ‪.‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 15‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ﻭ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫)‪(C ; -1) , (B ; 2) , (A ; 1‬‬‫‪uuuur‬‬ ‫‪ (1‬ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ ‪uuuur uuur uuur . G‬‬‫‪ (2‬ﻋﺒﺭ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻉ ‪uuMurA +uu2urMB - MuuuCur :‬ﺒﺩﻻﻟﺔ ‪uMuuGur‬‬‫ﺜﻡ ﺒﺭﻫﻥ ﺃﻥ ‪MA + 2MB - MC = 2 MG :‬‬ ‫‪ (3‬ﻋﻴﻥ ﻤﺠﻤﻭﻋ‪r‬ﺔ‪u‬ﺍﻟ‪u‬ﻨﻘ‪u‬ﻁ ‪rM‬ﻤ‪u‬ﻥ‪ u‬ﺍ‪u‬ﻟﻤﺴﺘﻭﻱ‪r‬ﺒ‪uu‬ﺤﻴ‪u‬ﺙ‪: u‬‬ ‫‪MA + 2MB - MC = 5‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬‫‪uAuuBurC‬ﻤﺜ‪u‬ﻠﺙ ‪rf .‬ﺘ‪u‬ﻁ‪u‬ﺒﻴ‪u‬ﻕ ﻴﺭﻓ‪r‬ﻕ‪u‬ﺒﻜ‪u‬ل‪ u‬ﻨﻘﻁﺔ‪uMuur‬ﻤ‪u‬ﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻨﻘﻁﺔ ‪ M′‬ﺒﺤﻴﺙ ‪:‬‬ ‫‪MA + MB + MC = MM′‬‬ ‫‪ (1‬ﻟﻴﻜﻥ ‪ G‬ﻤﺭﻜﺯ‪ur‬ﺜ‪u‬ﻘل‪ u‬ﺍ‪u‬ﻟﻤﺜﻠﺙ ‪uu.uAurBC‬‬ ‫ﺒﺭﻫﻥ ﺃﻥ ‪GM′ = -2GM :‬‬ ‫‪ (2‬ﺤﺩﺩ ﻁﺒﻴﻌﺔ ﺍﻟﺘﻁﺒﻴﻕ ‪ f‬ﻭﻋﻨﺎﺼﺭﻩ ﺍﻟﻤﻤﻴﺯﺓ ‪.‬‬ ‫‪( )r r‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ‪ O ; i , j‬ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺘﺎﻥ‬ ‫)‪B (3 ; 6) ; A (6 ; 3‬‬ ‫‪ (1‬ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ‪.OAB‬‬ ‫‪ (2‬ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﺭﺍﻜﺯ ﺍﻟﺜﻘل ‪ J , I , H‬ﻟﻠﻤﺜﻠﺜﺎﺕ‪.‬‬

‫‪AGB ; OGB ; AGA‬‬‫‪ (3‬ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺜﻴﻥ ‪ OAB‬ﻭ ‪ HIJ‬ﻟﻬﻤﺎ ﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل ‪.‬‬‫‪( )r r‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ‪O ; i , j‬‬ ‫ﻟﺘﻜﻥ ﺍﻟﻨﻘﻁ )‪C (5 ; 2) ; B (-2 ; 3) ; A ( 1 ; 4‬‬‫)‪C′(2 ; 5) ; B′(-2 ; 3) ; A′(4 ; 1‬‬ ‫‪ (D) (1‬ﻫﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ‪. y = x‬‬‫ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪ (D‬ﻫﻭ ﻤﺤﻭﺭ ﺍﻟﻘﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ‬ ‫]‪[CC′] ; [BB′] ; [AA′‬‬ ‫‪ (2‬ﻟﻴﻜﻥ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪(A ; -3) ; (B ; 2) ; (C ; 4‬‬ ‫ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ‪.G‬‬ ‫‪ (3‬ﻟﻴﻜﻥ ‪ G′‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬‫)‪ . (C′ ; 4) , (B′ ; 2) , ( A′ ; -3‬ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﺘﻲ ‪. G′‬‬‫‪ (4‬ﻫل ﺍﻟﻤﺴﺘﻘﻴﻡ )‪ (D‬ﻤﺤﻭﺭ ﻟﻠﻘﻁﻌﺔ ‪ GG′‬؟] [‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 19‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉ ﻁﻭل ﻀﻠﻌﻪ ‪. 5cm‬‬‫‪ -1‬ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪(C . 1) , (B ; -1) , ( A ; 1‬‬ ‫ﺜﻡ ﺒﻴﻥ ﺃﻥ ‪ ABCG‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ‪.‬‬‫‪ -2‬ﺃ( ﺍﺴﺘﻌﻤل ﺍﻟﺴﺅﺍل ﺍﻟﺴﺎﺒﻕ ﻟﺘﻌﻴﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ )‪ (Γ‬ﻟﻠﻨﻘﻁ ‪ M‬ﻤﻥ‬‫‪uuuur uuur uuur‬‬ ‫=‬ ‫‪53‬‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ ‪:‬‬‫‪MA - MB + MC‬‬ ‫‪2‬‬‫ﺏ( ﺘﺤﻘﻕ ﺃﻥ ﻤﻨﺘﺼﻑ ‪ AC‬ﻴﻨﺘﻤﻲ ﺇﻟﻰ )‪ . (Γ‬ﺃﻨﺸﺊ )‪[ ]. (Γ‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 20‬‬ ‫ﻟﻴﻜﻥ ‪ ABC‬ﻤﺜﻠﺙ ﻏﻴﺭ ﻗﺎﺌﻡ ‪ A′ , B′ , C′‬ﻤﻨﺘﺼﻔﺎﺕ ﺍﻷﻀﻠﻊ‬‫‪ AB , AC , BC‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭﻟﻴﻜﻥ ‪ O‬ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ ‪[ ] [ ] [ ].‬‬

‫‪A‬‬ ‫‪ -1‬ﻟﻴﻜﻥ‪uHuur‬ﻨﻘﻁﺔ‪r‬ﻤ‪u‬ﻥ‪u‬ﺍﻟ‪u‬ﻤﺴﺘﻭ‪r‬ﻱ‪u‬ﺍ‪u‬ﻟﻤ‪u‬ﻌﺭﻑ ﺒ‪r‬ـ‪uu: u‬‬ ‫'‪H B‬‬ ‫‪uuuOr Hu=uurOA +uuOuurB + OC‬‬ ‫ﺃ( ﺒﻴﻥ ﺃﻥ ‪. OB + OCuu=uur2OAu′ uur:‬‬ ‫‪C' G‬‬ ‫‪O‬‬ ‫ﺏ( ﺍﺴﺘﻨﺘﺞ ‪ AH‬ﺒﺩﻻﻟﺔ ‪. OA′‬‬‫'‪B A‬‬ ‫ﺟـ( ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪ (AH‬ﻋﻤﻭﺩﻱ ﻋﻠﻰ )‪. (BC‬‬ ‫ﺩ( ﻟﻤﺎﺫﺍ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪ (BH‬ﻋﻤﻭﺩﻱ ﻋﻠﻰ )‪ (AC‬؟‬ ‫ﺍﺴﺘﻨﺘﺞ ﻁﺒﻴﻌﺔ ﺍﻟﻨﻘﻁﺔ ‪ H‬ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﺜﻠﺙ ‪. ABC‬‬ ‫‪ -2‬ﻟﻴﻜﻥ ‪ G‬ﻤﺭﻜﺯ‪r‬ﺜ‪u‬ﻘل‪ u‬ﺍ‪u‬ﻟﻤﺜﻠﺙ ‪uuAurBC‬‬ ‫ﺃ( ﺒﺭﻫﻥ ﺃﻥ ‪. OH = 3 OG :‬‬ ‫ﺏ( ﻓﻲ ﺃﻱ ﺤﺎﻟﺔ ﻴﻜﻭﻥ ‪:‬‬ ‫‪O=G=H‬؟‬ ‫ﺟـ( ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﺤﺎﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺒﻴﻥ‬ ‫ﺃﻥ ﺍﻟﻨﻘﻁ ‪C H , G , O‬‬ ‫ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﻤﺴﺘﻘﻴﻡ‬ ‫) ﻴﺴﻤﻰ ﻫﺫﺍ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻤﺴﺘﻘﻴﻡ \"ﺃﻭﻟﻴﺭ\" (‬‫ﻡﺴﺘﻘﻴﻢ أوﻟﻴﺮ‬ ‫ﺩ( ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺘﺒﻘﻰ ﺼﺤﻴﺤﺔ ﻓﻲ ﺤﺎﻟﺔ ﻤﺜﻠﺙ ﻗﺎﺌﻡ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 21‬‬ ‫‪ A , B‬ﻨﻘﻁﺘﺎﻥ ﻤﺘﻤﺎﻴﺯﺘﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ‪.‬‬ ‫‪ I‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪( ). AB‬‬ ‫‪ -‬ﺒﺭﻫﻥ ﺃﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ a‬ﻭ ‪ b‬ﺒﺤﻴﺙ ‪:‬‬ ‫ﻴﻜﻭﻥ ‪ I‬ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ ‪( ) ( )A ; a , B ; b‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 22‬‬‫ﻟﻴﻜﻥ ‪ ABC‬ﻤﺜﻠﺙ ‪ .‬ﻋﻴﻥ ﻭﺃﻨﺸﺊ ﺍﻟﻤﺠﻤﻭﻋﺔ )‪ (E‬ﻟﻠﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪:‬‬ ‫‪uuur uuuur uuur uuur‬‬ ‫) ‪ ( MA + 2 MB + MC‬ﻭ ‪ AC‬ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ ‪.‬‬

‫‪uuur uuur‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 23‬‬‫ﻓﻲ ﻤﺜﻠﺙ ‪ ABC‬ﻟﺘﻜﻥ ‪ E‬ﻨﻘﻁﺔ ﺤﻴﺙ ‪EB = - 2 EA :‬‬‫ﻨﺴﻤﻲ ‪ A′‬و ‪ A1‬ﻤﻨﺘﺼﻔﺎ ‪ BC‬و ‪ AA′‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ] [ ] [‬‫‪ -‬ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ ‪ A1 , E , C‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬‫ﻟﺘﻜﻥ ‪ A , B , C , D‬ﺃﺭﺒﻊ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻭ ‪ G‬ﻤﺭﺠﺢ ﻟﻠﺠﻤﻠﺔ‬‫)‪. (A ; 1) , (B ; 2) , (C ; 2) , (D ; 1‬‬‫ﻨﺴﻤﻲ ‪ M‬ﻭ ‪ N‬ﻤﻨﺘﺼﻔﺎ ‪ AD‬و ‪ BC‬ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ‪[ ] [ ].‬‬‫‪ -‬ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ ‪ G , N , M‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ‪.‬‬

‫اﻟﺤـﻠــــــﻮل‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬ ‫‪ (3‬ﺼﺤﻴﺢ‬ ‫‪ (2‬ﺼﺤﻴﺢ‬ ‫‪ (1‬ﺨﻁﺄ‬ ‫‪ (6‬ﺼﺤﻴﺢ‬ ‫‪ (5‬ﺼﺤﻴﺢ‬ ‫‪ (4‬ﺨﻁﺄ‬ ‫‪ (8‬ﺼﺤﻴﺢ ‪.‬‬ ‫‪ (7‬ﺨﻁﺄ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬ ‫‪ (3‬ﺨﻁﺄ‬ ‫‪ (2‬ﺼﺤﻴﺢ‬ ‫‪ (1‬ﺼﺤﻴﺢ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫‪ (3‬ﺼﺤﻴﺢ‬ ‫‪ (2‬ﺼﺤﻴﺢ‬ ‫‪ (1‬ﺼﺤﻴﺢ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫‪ (3‬ﺨﻁﺄ‬ ‫‪ (2‬ﺼﺤﻴﺢ‬ ‫‪ (1‬ﺨﻁﺄ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫‪ (3‬ﺨﻁﺎ‬ ‫‪ (2‬ﺼﺤﻴﺢ‬ ‫‪ (1‬ﺼﺤﻴﺢ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫‪ (3‬ﺨﻁﺄ‬ ‫‪ (2‬ﺼﺤﻴﺢ‬ ‫‪ (1‬ﺨﻁﺎ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬ ‫‪ (3‬ﺼﺤﻴﺢ‬ ‫‪ (2‬ﺨﻁﺄ‬ ‫‪ (1‬ﺨﻁﺄ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫ﻁﺭﻴﻘﺔ ‪:‬‬ ‫ﺃ ( ﺍﺤﺴﺏ ﻤﺠﻤﻭﻉ‪r‬ﺍ‪u‬ﻟﻤ‪u‬ﻌ‪u‬ﺎﻤﻼﺕ ﻭﺘﺤﻘﻕ‪ ur‬ﺃ‪u‬ﻨﻬ‪u‬ﺎ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ‬ ‫ﺏ ( ﻋﺒﺭ ﻋﻥ ‪ AG‬ﺒﺩﻻﻟﺔ ‪. AB‬‬ ‫ﺟـ ( ﺍﺭﺴﻡ ﺍﻟﻨﻘﻁﺔ ‪. G‬‬ ‫ﺤـل ‪:‬‬ ‫ﺃ ( ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ ‪( )7 + - 2 = 5 ≠ 0 :‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪AG = -‬‬ ‫‪2‬‬ ‫‪AB‬‬ ‫ﺏ(‬ ‫‪5‬‬‫‪GA‬‬ ‫‪B‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬‫ﺃ( ﻤﺠﻤﻭﻋﺔ ﺍﻟﻤﻌﺎﻤﻼﺕ ‪2 + (- 1) + (- 2) + - 1 ≠ 0 :‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪--u21uuruAuCur‬‬ ‫= ‪AG‬‬ ‫‪-1‬‬ ‫‪AB‬‬ ‫‪+‬‬ ‫ﺏ(‬ ‫‪-1‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫‪AG = AB + 2AC‬‬‫‪AC‬‬ ‫ﺟـ( ﺍﻟﺭﺴﻡ ‪:‬‬‫‪B‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪G . 10‬‬ ‫‪ (1‬ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ‪r ABuuur‬و‪ ADuuu‬ﻤﺘﻌﺎﻤﺩﺍﻥ) ( ) (‬ ‫ﻭﻤﻨﻪ ‪ AB :‬و‪ rAD r‬ﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﻴﻥ ) ﻤﺭﺘﺒﻁﻴﻥ ﺨﻁﻴﺎ (‬ ‫ﻨﺴﺘﻨﺘﺞ ﺇﺫﻥ‪r‬ﺃﻥ ‪ I r:‬و ‪ J‬ﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﺎﻥ ‪( ).‬‬ ‫ﻭﻤﻨﻪ ‪ A ; I , J :‬ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ ‪.‬‬ ‫‪ (2‬ﺍﻟﻨﻘﻁﺔ ‪ A‬ﻫﻲ ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻭﻤﻨﻪ )‪A (0 ; 0‬‬ ‫‪uuur r‬‬ ‫‪r‬‬ ‫‪uuur‬‬‫ﻨﺴﺘﻨﺘﺞ ‪ AB = 6 i :‬ﻭﻤﻨﻪ ‪B ( 6 ; 0) :‬‬ ‫=‪i‬‬ ‫‪1‬‬ ‫‪AB‬‬ ‫ﻤﻥ ‪:‬‬ ‫‪6‬‬ ‫‪uuur r‬‬ ‫‪r‬‬ ‫‪1‬‬ ‫‪uuur‬‬‫ﻨﺴﺘﻨﺘﺞ ‪ AD = 3 j :‬ﻭﻤﻨﻪ‪D ( 0 ; 3 ) :‬‬ ‫=‪j‬‬ ‫‪3‬‬ ‫ﻤﻥ ‪AD‬‬ ‫‪ -‬ﺍﻟﻤﺴﺘ‪ur‬ﻘﻴ‪u‬ﻤﺎ‪u‬ﻥ )‪ (DC‬ﻭ‪ (AB) r‬ﻤﺘﻭﺍﺯﻴﺎﻥ‬‫ﺍﻟﺸﻌﺎﻋﺎﻥ ‪ DCr :‬و ‪ i‬ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻻ‪r‬ﺘﺠﺎﻩ ‪uuur‬‬‫ﺇﺫ‪ur‬ﻥ‪DC = 2 i u:u‬‬ ‫‪ uuri‬؛‪u‬‬ ‫ﻭ‪=1‬‬ ‫‪DC = 2‬‬ ‫‪uuur‬‬ ‫ﻭﻤﻨﻪ‪ur AC r= ArD + rDC r :‬‬‫ﺇﺫﻥ ‪ AC = 3 j + 2 i = 2 i + 3j :‬ﻭﻤﻨﻪ ‪C (2 ; 3) :‬‬ ‫‪ -‬ﻟﻴﻜﻥ ‪( )G xG ; yG :‬‬

‫‪‬‬ ‫‪xG‬‬ ‫=‬ ‫‪4×0‬‬ ‫‪+ 5×6 +‬‬ ‫‪(- 2)× 2 +‬‬ ‫‪3×0‬‬ ‫‪‬‬ ‫‪4+5+‬‬ ‫‪(- 2) + 3‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪4×0‬‬ ‫‪+‬‬ ‫‪5× 0 + (- 2)× 3‬‬ ‫‪+‬‬ ‫‪3×3‬‬ ‫‪‬‬ ‫‪yG‬‬ ‫=‬ ‫‪4 + 5 + (- 2) + 3‬‬ ‫‪‬‬ ‫ﺃﻱ‪ xG = 2,6 ; yG = 0,3 :‬ﻭ ﻤﻨﻪ ‪G ( 2,5 ; 0,3 ) :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬ ‫ﺃ ( ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ ‪2 + 3 = 5 ≠ 0‬‬ ‫‪uur‬‬ ‫‪uuur‬‬ ‫‪AI‬‬ ‫=‬ ‫‪3‬‬ ‫‪AB‬‬ ‫ﻭﻤﻨﻪ‪:‬‬ ‫‪5‬‬ ‫ﺏ ( ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ ‪3 + 4 = 7 ≠ 0 :‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫= ‪AC‬‬ ‫‪4‬‬ ‫‪CD‬‬ ‫ﻭﻤﻨﻪ‪:‬‬ ‫‪7‬‬ ‫ﺟـ ( ﺍﻟﻨﻘﻁﺔ ‪ G‬ﻫﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪(B , 3) ; ( A , 2‬‬ ‫)‪ (D , 4) , (C , 3‬ﻓﻬﻲ ّﺇﺫﻥ ﻜﺫﻟﻙ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫)‪ ( J , 7) , ( I , 5‬ﺇﺫﻥ ﺍﻟﻨﻘﻁﺔ ‪ G‬ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ‪( IJ‬‬ ‫‪uur‬‬ ‫‪uur‬‬ ‫‪D‬‬ ‫‪GJ‬‬ ‫=‬ ‫‪5‬‬ ‫‪IJ‬‬ ‫ﻭ ﺘﺤﻘﻕ ‪:‬‬ ‫‪12‬‬ ‫‪G‬‬ ‫‪J‬‬‫‪A‬‬ ‫‪C‬‬ ‫‪IB‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬ ‫‪ – 1‬ﺃ ( ‪urI‬ﻫ‪u‬ﻭ‪ u‬ﻤﻨﺘﺼﻑ ‪[ ]uuuur AuuBur‬‬ ‫‪MA + MB = 2 MI‬‬ ‫‪uuur‬‬ ‫‪uuur‬‬ ‫ﺏ(‬ ‫‪uuuur‬‬ ‫= ‪AG‬‬ ‫‪2‬‬ ‫‪AB‬‬ ‫‪–2‬ﺃ(‬ ‫‪uuur‬‬ ‫‪3‬‬ ‫‪uuuur‬‬ ‫ﺏ ( ‪MA + 2 MB = 3 MG‬‬

. 13‫ﺍﻟﺘﻤﺭﻴﻥ‬ 6cm u‫ﻫﺎ‬u‫ﺭ‬u‫ﻁ‬ur‫ﻨﺼﻑ ﻗ‬u‫ﻭ‬uAur ‫ﻲ ﻤﺭﻜﺯﻫﺎ‬u‫ﻟﺘ‬u‫ﺍ‬ur‫ ﺍﻟﺩﺍﺌﺭﺓ‬- 1 uuuMur A u+uuMr B = 2uMuurI ( ‫ – ﺃ‬2 MA + MB = 2 MI ( ‫ﺏ‬ uuuur uuur uuur MA + MB = 2 MIuuuur uuur uuurMA + MB = 6 ⇔ MI = 6 ( ‫ﺟـ‬‫ ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ‬M ‫ ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ‬. MI = 6 : ‫ﺃﻱ‬ . 3cm‫ ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ‬I ‫ﺍﻟﻤﺭﻜﺯ‬uuur uuuuur uuuur uuur u.u1ur4 ‫ﺍﻟﺘﻤﺭﻴﻥ‬2 MI = uMuurM′ : ‫ﻥ‬u‫ﺃ‬u‫ﺞ‬ur‫ ﻨﺴﺘﻨﺘ‬MAuu+ur MBuuu=r 2 MuuuIr ‫( ﻤﻥ‬1IM′ = - IM :‫ ﺃﻱ‬2 MI = MI + IM′ : ‫ﺇﺫﻥ‬ . I ‫ ﻫﻭ ﺍﻟﺘﻨﺎﻅﺭ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ‬f ‫( ﺍﻟﺘﻁﺒﻴﻕ‬2 . 15‫)*( ﺍﻟﺘﻤﺭﻴﻥ‬ uuur uuur uuurC AG = AB - 1 AC (1 2ABuuuur G uuur uuur uuuurMA + 2 MB u-uMuurC = 2uuMurG uuur uuuur(2 MA + 2 MB - MC = 2 MGuuuur uuur uuur uuuurMA + 2 MB - MC = 2 . MGuuuur uuur uuur uuuurMA + 2 MB - MC = 2 MGuuuur uuur uuur uuuurMA + 2 MB - MC = 5 ⇔ 2 MG = 5 (3

‫⇔‬ ‫‪uuuur‬‬ ‫=‬ ‫‪5‬‬ ‫‪uuur‬‬ ‫‪MG‬‬ ‫‪2‬‬‫‪uuuur‬‬ ‫‪uuur‬‬‫ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﺒﺤﻴﺙ ‪MA + 2 MB - MC = 5 :‬‬ ‫‪5‬‬ ‫ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ‪ G‬ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ ‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪uuuur uuur uuur uu.u1ur6‬‬ ‫‪ (1‬ﻤﻥ ‪uuuur uuuurMA + MuBuuu+r MCuu=uu3ur MG :‬‬ ‫ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪ 3 MG = MM′ :‬ﺇﺫﻥ ‪−2 GM = GM′ :‬‬ ‫‪ f (2‬ﻫﻭ ﺍﻟﺘﺤﺎﻜﻲ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ ‪ G‬ﻭﻨﺴﺒﺘﻪ ‪. -2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫‪G ( 3 ; 3 ) (1‬‬ ‫‪ H ( 3 ; 2 ) (2‬؛ ) ‪ I ( 2 ; 3‬؛ ) ‪J ( 4 ; 4‬‬ ‫‪ (3‬ﺇﺤﺩﺍﺜﻴﺘﺎ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ‪ HIJ‬ﻫﻤﺎ ) ‪( 3 ; 3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬ ‫‪ (1‬ﺍﻟﻨﻘﻁﺘﺎﻥ ‪ O ( 0 ; 0 ) :‬ﻭ ) ‪ M ( 4 ; 4‬ﺘﻨﺘﻤﻴﺎﻥ ﺇﻟﻰ ) ‪( D‬‬‫‪MA′ = 3 ; MA = 3 ; OA′ = 17 ; OA = 17‬‬ ‫ﺇﺫﻥ ‪ ( D ) :‬ﻫﻭ ﻤﺤﻭﺭ ‪[ ]AA′‬‬‫‪MB′ = 37 ; MB = 37 ; OB′ = 13 ; OB = 13‬‬ ‫ﺇﺫﻥ ‪ ( D ) :‬ﻤﺤﻭﺭ ‪[ ]BB′‬‬‫‪MC′ = 5 ; MC = 5 ; OC′ = 29 ; OC = 29‬‬ ‫ﺇﺫﻥ ‪ ( D ) :‬ﻤﺤﻭﺭ ‪[ ]CC′‬‬ ‫‪.‬‬ ‫‪G‬‬ ‫‪‬‬ ‫‪23‬‬ ‫;‬ ‫‪-8 ‬‬ ‫‪(2‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪3 ‬‬ ‫= ‪. OG′‬‬ ‫‪593‬‬ ‫= ‪; OG‬‬ ‫‪593‬‬ ‫‪3‬‬ ‫‪3 (3‬‬

‫= ‪MG′‬‬ ‫‪521‬‬ ‫;‬ ‫= ‪MG‬‬ ‫‪521‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﺇﺫﻥ ‪ ( D ) :‬ﻤﺤﻭﺭ ‪[ ]. GG′‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 19‬‬ ‫‪ (1‬ﻟﻴﻜﻥ ‪ J‬ﻤﻨﺘﺼﻑ ‪[ ]AC‬‬ ‫‪ J‬ﻫﻭ ﻤﺭﺠﺢ )‪(C , 1) ; ( A , 1‬‬ ‫‪ G‬ﻫﻭ ﻤﺭ‪r‬ﺠ‪u‬ﺢ‪ u‬ﺍﻟﻜﻠﻤﺔ ‪(B , - 1) ; ( )J u,u2ur‬‬ ‫ﻭﻤﻨﻪ ‪ JG = - JB :‬ﺇﺫﻥ ‪ J‬ﻫﻭ ﻤﻨﺘﺼﻑ ‪[ ]BG‬‬ ‫)‪ ( AC‬ﻭ ) ‪ ( BG‬ﻨﻔﺱ ﺍﻟﻤﻨﺘﺼﻑ ‪J‬‬ ‫ﺇﺫﻥ ‪ ABCG‬ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ‬ ‫ﻤﻼﺤﻅﺔ‪:‬‬ ‫ﺒﻤﺎ ﺃﻥ ‪ BA = BC :‬ﻓﺈﻥ ‪ ABCG‬ﻤﻌﻴﻥ‬ ‫‪ u–ur2‬ﺃ‪ u( u‬ﺒﺎﺨﺘﺼﺎ‪r‬ﺭ‪u‬ﺍﻟ‪u‬ﺠ‪u‬ﻤﻊ ﺍﻟﺸ‪r‬ﻌﺎ‪u‬ﻋ‪u‬ﻲ‪ u‬ﻨﺠﺩ‪uuuu:r‬‬ ‫‪ MA - MB + MC = MG‬ﻭﻤﻨﻪ ‪:‬‬ ‫‪uuuur uuuur uuur‬‬ ‫‪MA - MB + MC‬‬ ‫=‬ ‫‪53‬‬ ‫)‪ M ∈ (Γ‬ﺃﻱ ‪:‬‬ ‫‪2‬‬ ‫‪uuuur‬‬ ‫‪MG‬‬ ‫=‬ ‫‪53‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪2‬‬‫‪r‬‬ ‫=‬ ‫‪53‬‬ ‫)‪ (Γ‬ﻫﻲ ﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ‪ G‬ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪2‬‬‫)‪(Γ‬‬ ‫‪C‬‬ ‫‪G‬‬ ‫‪J‬‬ ‫‪B‬‬ ‫‪A‬‬

‫ﺏ ( ‪ GJ‬ﺍﺭﺘﻔﺎﻉ ﻟﻠﻤﺜﻠﺙ ﺍﻟﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉ ‪ GAC‬ﻁﻭل ﻀﻠﻌﻪ ‪[ ]5‬‬‫)‪J ∈ (Γ‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫= ‪GJ‬‬ ‫‪53‬‬ ‫ﺇﺫﻥ ‪2 :‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 20‬‬ ‫‪ – 1‬ﺃ ( ﺒﻤﺎ ﺃﻥ ‪ A′‬ﻤ‪r‬ﻨ‪u‬ﺘ‪u‬ﺼ‪u‬ﻑ‪ur BC u‬ﻓﺈ‪u‬ﻥ‪ u‬ﻤﻥ ﺃﺠل‪ur‬ﻨﻘ‪u‬ﻁ‪u‬ﻪ ‪ M‬ﻤﻥ] [‬ ‫ﺍﻟﻤﺴﺘﻭﻱ ﻴﻜﻭﻥ ‪uuur uuurMB + uMur C = 2 MA′ :‬‬ ‫ﺒﺘﻌﻭﻴ‪ur‬ﺽ‪uu‬ﺍﻟﻨﻘﻁﺔ‪ uMuur‬ﺒﺎﻟﻨﻘﻁ‪ur‬ﺔ‪ Ouu‬ﻨﺠﺩ ‪OB + OC = 20 A′ :‬‬ ‫ﺏ ( ‪uuur uuur AuHuur= AuOuur+ OuHuur‬‬ ‫‪AuuHur = AuuOur + OuuAur + OBuu+r OC‬‬ ‫ﻭﻤﻨﻪ ‪AH = OB + OC = 20 A′ :‬‬ ‫ﺟـ ( ﻟﺩﻴﻨﺎ ‪ (OuurA′) :‬ﻤﺤﻭﺭ ‪ [BCuu]ur‬ﻭﻤﻨﻪ ‪(BC) ⊥ (OA′) :‬‬‫ﻤﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ ‪ AH = 20 A′‬ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪( AH) // ( )OA′‬‬‫ﻭﻤﻨﻪ ‪uuur ( AH) uur⊥ (BC) :‬‬‫ﺩ ( ﻭﺒﺎﻟﻤﺜل ﻨﺒﺭﻫﻥ ﺃﻥ ‪BH = 20 B′ :‬‬ ‫ﻭﻤﻨﻪ ‪(BH) ⊥ ( AC) :‬‬‫ﺇﺫﻥ ‪ AH :‬ﻭ ‪ BH‬ﺍﺭﺘﻔﺎﻉ ﻟﻠﻤﺜﻠﺙ ‪[ ] [ ]. ABC‬‬‫ﺍﻟﻨﻘﻁﺔ ‪ H‬ﻤﺸﺘﺭﻜﺔ ﺒﻴﻨﻬﻤﺎ ﻓﻬﻲ ﺇﺫﻥ ﻨﻘﻁﺔ ﺘﻼﻗﻲ ﺍﻻﺭﺘﻔﺎﻋﺎﺕ‬‫‪ – 2‬ﺃ ( ‪uurG‬ﻫﻭ‪uu‬ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤ‪r‬ﺜﻠ‪u‬ﺙ‪uuuur uuur ABCuu‬‬‫ﻭﻤﻨﻪ ‪MA + MB + MC = 3 MG :‬‬‫‪uuur uuur uuur‬‬ ‫ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤ‪r‬ﺴ‪u‬ﺘﻭﻱ‬‫ﻤﻥ ﺃﺠل ‪ M = O‬ﻨﺠﺩ‪OA + OB + OCuu=ur30 Guuu:r‬‬‫ﻭﻤﻨﻪ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪OH = 3 OG :‬‬‫ﺏ( ‪urO = G = H‬ﻓﻘﻁ ﻓﻲ ﺤﺎﻟﺔ ‪ AuBuCur‬ﻤﺘﻘﺎﻴﺱ ﺍ‪ur‬ﻷ‪u‬ﻀ‪u‬ﻼﻉ ‪uuur‬‬‫ﺟـ( ﻤﻥ ﺍﻟﻌﻼﻗﺔ ‪ OH = 30 G :‬ﻓﺈﻥ ‪ OH :‬ﻭ ‪OG‬‬ ‫ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ ‪.‬‬

‫ﺇﺫﻥ ‪ O , G , H :‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ‪.‬‬ ‫ﺩ ( ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ ‪ ) A‬ﻤﺜﻼ (‬‫ﻓﺈﻥ ‪uuuur uuuurO = A′uuu;r H =uuuAr :‬‬‫ﻭﻨﺠﺩ ‪ OH = 3 OG :‬ﻷﻥ ‪A′A = 3 A′G :‬‬ ‫ﻭﻤﺴﺘﻘﻴﻡ \" ﺃﻭﻟﺭ \" ﻫﻭ ‪( ). OA‬‬‫ﺍﻟﺘﻤﺭﻴﻥ‪uuur . 21‬‬‫ﺒﻤﺎ ﺃﻥ ‪ I :‬ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤ‪ur‬ﺴﺘ‪u‬ﻘﻴ‪u‬ﻡ ‪ur AB‬ﺍﻟ‪u‬ﺫﻱ ﻴﻤﺭ ﻤﻥ ‪ A‬ﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ‪ AB‬ﻓﺈﻨﻪ ﻴﻭﺠﺩ) (‬ ‫ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ k‬ﺘﺤ‪r‬ﻘ‪uu‬ﻕ ‪( )AuuIr = k ×uAurB‬‬ ‫‪−‬‬ ‫‪AI‬‬ ‫‪+‬‬ ‫‪k AI‬‬ ‫‪+‬‬ ‫= ‪IB‬‬ ‫‪0‬‬ ‫ﻭﻤﻨﻪ‪:‬‬ ‫‪uur‬‬ ‫‪uur‬‬ ‫‪uur‬‬ ‫‪ur‬‬ ‫ﺃﻱ‪IA + k × AuIr + k × uIuBr = uOr :‬‬ ‫‪(1 - R) IA + k × IB = O‬‬ ‫ﻟﻜﻥ ‪1 - k + k = 1 ≠ 0 :‬‬ ‫ﻭﻤﻨﻪ‪ I :‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) ‪{ }( A ; 1 - k ) ; (B ; k‬‬‫‪1+2 +1 ≠ 0‬‬ ‫‪ C ; 1‬ﻤﻭﺠﻭﺩ ﻷﻥ ‪( ):‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 22‬‬ ‫ﻟﻴﻜﻥ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪:‬‬ ‫)‪, (B ; 2) , (A ; 1‬‬ ‫ﻤﻥ ﺃﺠل‪r‬ﻜ‪u‬ل‪ u‬ﻨ‪u‬ﻘ‪u‬ﻁﺔ ‪ M‬ﻤﻥ‪r‬ﺍﻟ‪u‬ﻤ‪u‬ﺴ‪u‬ﺘﻭﻱ ‪uuuur uuur:‬‬ ‫ﻟﺩﻴﻨﺎ ‪( ) ( )uuMurA +u2uuMur B + MC = 4 MG :‬‬‫ﺇﺫﻥ‪ M ∈ E :‬ﻴﻜﺎﻓﺊ ‪ MG‬و ‪uur AC‬ﻤ‪u‬ﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ) (‬ ‫ﺃﻱ ‪ M :‬ﻴﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﻤﺭ ﻤﻥ ‪ G‬ﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ‪AC‬‬ ‫ﻹﻨﺸﺎﺀ ‪ G‬ﻨﺭﺴﻡ ﺃﻭﻻ ﺍﻟﻤﻨﺘﺼﻑ ‪ I‬ﻟـ ‪[ ]AC‬‬ ‫ﻭﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻊ ﻟﻠﻤﺭﺠﺢ ‪.‬‬‫‪ G‬ﻫﻭ ﻤﺭﺠﺢ )‪ (I ; 2‬و )‪ (B ; 2‬ﺃﻱ‪ G :‬ﻤﻨﺘﺼﻑ ]‪[IB‬‬

‫‪A‬‬ ‫‪(E) I‬‬ ‫‪G‬‬ ‫‪BC‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 23‬‬ ‫ﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺇﺴﺘﻘﺎﻤﻴﺔ ﺍﻟﻨﻘﻁ ‪A1 , E , C‬‬‫ﻴﻜﻔﻲ ﺃﻥ ﻨﺒ‪ur‬ﺭ‪u‬ﻫ‪u‬ﻥ ﺃﻥ ‪r A1‬ﻫ‪u‬ﻭ‪uu‬ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﻴﻥ ‪rC‬ﻭ ‪ E‬ﺍ‪ur‬ﻟﻤ‪u‬ﺭ‪u‬ﻓﻘﺘﻴﻥ ﺒﻤﻌﺎ‪r‬ﻤ‪u‬ﻠﻴ‪u‬ﻥ‪ u‬ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ ‪.‬‬ ‫ﺒﻤﺎ ﺃﻥ‪ EB = - 2 EA :‬ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ‪EB + 2 EA = 0 :‬‬ ‫ﻭﻤﻨﻪ‪ E :‬ﻫﻭ ﻤﺭﺠﻊ )‪(B ; 1) , ( A ; 2‬‬ ‫‪ A1‬ﻤﻨﺘﺼﻑ ‪ [ ]AA′‬ﻓﻬﻭ ﻤﺭﺠﺢ )‪( A′ ; 2) , ( A ; 2‬‬ ‫ﻭﻟﻜﻥ ‪ A′‬ﻫﻭ ﻤﻨﺘﺼﻑ ‪ BC‬ﻓﻬﻭ ﻤﺭﺠﺢ ‪[ ](C ; 1) , (B ; )1‬‬ ‫ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ‪ A1‬ﻫﻭ ﻤﺭﺠﺢ ‪( ) ( )C ; 1 , E ; 3‬‬ ‫ﺇﺫﻥ ‪ C , E , A:‬ﻋﻠﻰ ﺇﺴﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬ ‫ﻟﺩﻴﻨﺎ ‪ G‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ‪( ) ( )D ; 1 , A ; 1‬‬ ‫)‪(C ; 2) , (B ; 2‬‬ ‫‪ M‬ﻤﻨﺘﺼﻑ ‪ AD‬ﻭ ‪ N‬ﻤﻨﺘﺼﻑ ‪[ ] [ ]BC‬‬ ‫ﺇﺫﻥ ﺒﺎﺴﺘﻌﻤﺎل ﺨﺎﺼﻴﺔ ﺍﻟﺘﺠﻤﻴﻊ ﻓﺈﻥ ‪ G‬ﻫﻭ ﻜﺫﻟﻙ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ‪:‬‬ ‫)‪(N ; 4) , (M ; 2‬‬ ‫ﺇﺫﻥ ‪ N , M , G :‬ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ‬

‫ﺍﻟﺠـﺩﺍﺀ ﺍﻟﺴﻠﻤـﻲ‬ ‫ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬‫‪ -1‬ﺤﺴﺎﺏ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺸﻌﺎﻋﻴﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ‪.‬‬ ‫‪ -2‬ﺇﺜﺒﺎﺕ ﻋﻼﻗﺎﺕ ﺍﻟﺘﻌﺎﻤﺩ ‪.‬‬ ‫‪ -3‬ﺤﺴﺎﺏ ﻤﺴﺎﻓﺎﺕ ‪.‬‬ ‫‪ -4‬ﺤﺴﺎﺏ ﺃﻗﻴﺎﺱ ﺯﻭﺍﻴﺎ ‪.‬‬ ‫‪ -5‬ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻋﻠﻡ ﻨﺎﻅﻡ ﻟﻪ‪.‬‬ ‫‪ -6‬ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ﻜﺭﺓ‪.‬‬ ‫‪ -7‬ﺩﺭﺍﺴﺔ ﻤﺠﻤﻭﻋﺎﺕ ﻨﻘﻁ ‪.‬‬ ‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬ ‫ﺘﻌﺎﺭﻴﻑ‬ ‫ﺗﻤـﺎرﻳـﻦ و ﻡﺸﻜﻼت‬ ‫اﻟﺤﻠﻮل‬

‫ﺘﻌﺎﺭﻴﻑ‬‫=‪p‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫ﺍﻟ‪r‬ﺤﻘﻴﻘﻲ‪p r‬‬ ‫ﻫﻭ ﺍﻟﻌﺩﺩ‬ ‫ﺍ•ﻟﺠﺇ‪1‬ﺩﺫﺍﺍ‪-‬ﺀﻜﺍﺎﺘﻟﻌﻥﺴﺭﻠﻴﻤ‪ur‬ﻑﻲ ‪:‬ﻟ‪r‬وﺸﻌﺎ‪vr‬ﻋﻴ‪r‬ﻏﻥﻴﺭ‪r‬ﻤ‪u‬ﻌﺩ‪r,‬ﻭﻤﻴ‪vr‬ﻥ‬ ‫×‪u‬‬ ‫‪v‬‬ ‫‪(u , v‬‬ ‫‪× cos‬‬ ‫ﻓﺈ‪r‬ﻥ‪) :‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ u = 0 :‬ﺃﻭ ‪ rv =r0‬ﻓﺈﻥ ‪. p = 0 :‬‬ ‫ﻭ ﻨﺭﻤﺯ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴ‪r‬ﻠﻤﻲ ﺒﺎ‪r‬ﻟﺭﻤﺯ ‪r ru . v‬‬ ‫‪rr‬‬ ‫ﺇﺫﻥ‪u . v = u × v × cos (u , v) :‬‬ ‫• ﺇﺫﻥ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ ﻟﺸﻌﺎﻋﻴﻥ ﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻭﻟﻴﺱ ﺸﻌﺎﻋﺎ ‪.‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪rr‬‬‫‪(u‬‬ ‫‪,‬‬ ‫=)‪v‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫;‬ ‫‪k∈¢‬‬ ‫• ﺇﺫﺍ ﻜﺎﻥ ‪ u ⊥ v :‬ﻓﺈﻥ ‪:‬‬ ‫‪2‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪rr‬‬ ‫ﻭﻋﻠﻴﻪ ‪ cos r(u ,rv ) = 0‬ﻭﻤ‪r‬ﻨﻪ ‪r u .r v = r0 :‬‬ ‫ﻭﺇﺫﺍ ﻜﺎﻥ ‪ u . v = 0 :‬ﻭﻜﺎﻥ ‪ u ≠ 0‬ﻭ ‪ v ≠ 0‬ﻓﺈﻥ ‪:‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪rr‬‬‫‪(u ,‬‬ ‫= )‪v‬‬ ‫‪π‬‬ ‫‪+ 2kπ ; k ∈ ¢‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪cos (u , v ) = 0‬‬ ‫‪2‬‬ ‫‪rr‬‬ ‫ﺇﺫﻥ‪r r . u ⊥ rv :r‬‬ ‫‪rr‬‬ ‫• )‪u . u = u × u × cos (u , u‬‬‫‪rr‬‬ ‫‪r‬‬ ‫‪2‬‬ ‫‪rr‬‬ ‫‪r‬‬ ‫‪2 × cos‬‬ ‫‪0‬‬ ‫=‬ ‫‪r‬‬ ‫‪2‬‬ ‫‪1‬‬‫=‪u.u‬‬ ‫‪u‬‬ ‫=‪u.u‬‬ ‫‪u‬‬ ‫‪u‬‬ ‫‪:‬‬ ‫ﻭﻤﻨﻪ‬ ‫×‬ ‫ﻭ ﻴﺴﻤﻰ‪r‬ﺍﻟ‪u‬ﻤﺭﺒﻊ‪ r‬ﺍﻟﺴﻠ‪r‬ﻤﻲ‪.‬‬ ‫ﻤﺜﺎل ‪ u , v , w :‬ﺜﻼﺙ ﺃﺸﻌﺔ ﺤﻴﺙ ‪:‬‬‫‪( )r r‬‬ ‫‪ur r‬‬ ‫‪r‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫;‬ ‫‪w =2 ; v = 2 ; u =4‬‬ ‫‪u,v‬‬ ‫‪4‬‬ ‫‪( )r ur‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫‪; k∈¢‬‬ ‫‪2‬‬ ‫‪r‬‬ ‫‪r ur‬‬ ‫‪u,w‬‬ ‫‪u‬‬ ‫‪2‬‬ ‫‪u.w‬‬ ‫;‬ ‫‪rr‬‬ ‫;‬ ‫‪ -‬ﺍﺤﺴﺏ ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺴﻼﻤﻴﺔ ﺍﻵﺘﻴﺔ ‪u . v :‬‬

rr r r rr π : ‫ﺤـل‬u . v = u × v cos (u , v) = 4 × 2 cos 4 : ‫* ﻟﺩﻴﻨﺎ‬ rr 2 2 =4 : ‫ﻭ ﻤﻨﻪ‬ u. v=4 × 2 r ur r ur cos r ur = 4 × 2 cos π : ‫* ﻟﺩﻴﻨﺎ‬ u.w= u× w r (u , w) 2 ur u . w = 4 × 2 × 0 = 0 : ‫ﻭ ﻤﻨﻪ‬ r r u 2 = u 2 = (4)2 = 16 : ‫* ﻟﺩﻴﻨﺎ‬ : ‫ ﻋﺒﺎﺭﺓ ﺃﺨﺭﻯ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ‬-2‫ ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ‬H ‫ ﻭﻜﺎﻨﺕ‬A ≠ B : ‫ ﺜﻼﺙ ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ‬A , B , C ‫ﺇﺫﺍ ﻜﺎﻨﺕ‬ C uuur uuur u(uAurB) ‫ﻰ‬u‫ﻋﻠ‬uuCr ‫ﻟﻠﻨﻘﻁﺔ‬ B AB . AC u=uuArB .uuAurH : ‫ﻓﺈﻥ‬ H uuur uuur: ‫ ﻤﻥ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ‬AH ‫ و‬AB ‫ﻓﺈﺫﺍ ﻜﺎﻥ‬A AB . AC = AB . AH uuur uuur uuur uuu:r‫ ﻤﺨﺘﻠﻔﻴﻥ ﻓﻲ ﺍﻻﺘﺠﺎﻩ ﻓﺈﻥ‬AH ‫ و‬AB ‫ﻭﺇﺫﺍ ﻜﺎﻥ‬ AB . AC = -AB . AH : ‫ﻤﺜﺎل‬ uuur uuur . ‫ ﻤﺴﺘﻁﻴل‬ABCD AB = 4 : ‫ ﻋﻠﻤﺎ ﺃﻥ‬AB . AC : ‫ ﺍﺤﺴﺏ ﺍﻟﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ‬- uuur uuur : ‫ﺤـل‬D C AB . AC = AB u.uAurB u=uur4 × 4 : ‫ﻟﺩﻴﻨﺎ‬ AB . AC = 16 : ‫ﻭ ﻤﻨﻪ‬AB u:r‫ﻭﺍﺹ‬r‫ ﺨ‬-r3 .‫ ﻋﺩﺩ ﺤﻘﻴﻘﻲ‬λ . ‫ﻲ ﺍﻟﻤﺴﺘﻭﻱ‬r‫ﺸﻌﺔ ﻓ‬r‫ ﺃ‬w r, v r, u r r u . v =rv .ru (1 (λ u ) . v = λ . (u . v ) (2

rr rr u .ur(λ v) = rλ (u . v) r r r ur (3 ( )r u . v + w = u . v + u . w (4 ( )r r 2 = ur 2 r r + vr 2 v + 2u . v u+ (5 ( )r r 2 = r rr . r 2 v u - 2u . v v u- (6 ( ) ( )r r rr = ur 2 - r 2 (7 u-v v u+v r r r r r r u + v 2 = u 2 + v 2 2.u. v + (8 r - r 2 = r 2 + r 2 − 2. r r u v u v u. v rr (9 λu = λ . u (10( )r r r r : ‫ﻤﺜﺎل‬ v= u u,v = π + 2kπ ; 2, =4 rr 4 : ‫ ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ‬v , u r r 2 . ‫ ﻋﺩﺩ ﺤﻘﻴﻘﻲ‬λ ‫ﻟﻴﻜﻥ‬ ( ) ( )r r r λu + v .v ; λu + v : ‫ ﺍﺤﺴﺏ ﻤﺎ ﻴﻠﻲ‬- ( )r r 2 rr u - 3v ; u + v ( )r r r r . r + r 2 : ‫ﺤـل‬ .v = λu v v : ‫ﻟﺩﻴﻨﺎ‬ λu + v rr rr r2 = λ . u × v cos (u , v ) + v = λ×4× 2× cos π + ( 2 )2 4 = 4λ 2 × 2 +2 2

( )r r 2 λ 2 r 2 = 4λ + 2 r. 2 u rr v λu + v = : ‫ﻟﺩﻴﻨﺎ‬ + 2λu . v + = λ2( 4 )2 + 2 (4λ) + ( 2 )2 r = 16λ2 + 8rλ + 2 . r 3v = r r r( u - )2 u 2 - 6u . v+9 v 2 : ‫ﻟﺩﻴﻨﺎ‬ = (4)2 - 6 . 4 + 9 ( 2 )2: ‫ﻟﺩﻴﻨﺎ‬ = 16 - 24 + 18 = 10 . r r r r r r v u + v 2 = u 2 + v 2 + 2u . = (4)2 + ( 2 )2 + 2 × 4 = 16 + 2 + 8 = 26 . : ‫ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻟﻠﺠﺩﺍﺀ ﺍﻟﺴﻠﻤﻲ‬-4rr r ru . v = x x′ + y y′ : ‫ﻓﺈﻥ‬ u  x , v  x′  : ‫ﺇﺫﺍ ﻜﺎﻥ‬  y  r  y′ r x x′ + y y′ = 0 : ‫ﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ‬r‫ ﺇ‬v ‫ ﻋﻤﻭﺩﻴﺎ ﻋﻠﻰ‬u ‫• ﻴﻜﻭﻥ‬ u = x2 + y2 • rr rr ru . vr : ‫• ﻟﺩﻴﻨﺎ‬ cos (u , v ) = u.v rr x x′ + y y′ : ‫ﻭﻋﻠﻴﻪ‬cos ( u , v ) = x2 + y2 . x′2 + y′2 : ‫ ﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ‬M2 , M1 ‫• ﺇﺫﺍ ﻜﺎﻨﺕ‬ M2 (x2 ; y2 ) , M1 (x1 ; y1 ) M1 M2 = (x2 - x1 )2 + (y2 - y1 )2 : ‫ﻤﺜﺎل‬

rr: ‫ ( ﺤﻴﺙ‬O ; i , j ) ‫ ﺜﻼﺙ ﻨﻘﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ‬A , B , C . A (2 ; -1) , B (-3 ; 4)uuu,r Cu(u-2ur; -1) uuu.r AB .uuAurC ‫( ﺍﺤﺴﺏ‬1 AB , AC . uuur uuur ‫( ﺍﺤﺴﺏ‬2 . cos(AB , AC) ‫( ﺍﺤﺴﺏ‬3 . C‫ ﻭ‬B ‫( ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ‬4 uuur uuur : ‫ﺤـل‬ AB AC : ‫ﻭ ﻤﻨﻪ‬  -5 ;  -4  : ‫( ﻟﺩﻴﻨﺎ‬1    uuur uuur  5   0 AB . AuCuur= (-5) (-4) + 5 (0) = 20 AB = (-5)2 + (5)2 = 50 = 5 2uuur (2AC = (-4)2 + 02 = 16 = 4 uuur uuur uuur uuur :uucuors(AuuBur , AC) ‫( ﺤﺴﺎﺏ‬3 cos (AB , AC) = uAuurB . AuuCur AB × AC : ‫ﻟﺩﻴﻨﺎ‬ uuur uuur 20 = 1 : ‫ﻭﻤﻨﻪ‬ cos(AB , AC) = 2 : ‫ﻭﻋﻠﻴﻪ‬ 5 2×4 uuur uuur cos(AB , AC) = 2 2 : C‫ ﻭ‬B ‫( ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ‬4BC = ( xC - xB )2 + ( yC - yB )2 = (-2 + 3)2 + (-1 - 4)2 = 1 + 25 = 26 : ‫ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻋﻠﻡ ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻪ ﻭﻨﻘﻁﺔ ﻤﻨﻪ‬-5

‫‪r‬‬ ‫‪α‬‬ ‫ﺃﻱ ﻴﻌﺎﻤﺩﻩ ‪( ) ( ).‬‬‫∆‬ ‫‪u‬‬ ‫∆‬ ‫ﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ‬ ‫‪‬‬ ‫‪β‬‬ ‫‪‬‬ ‫ﻤﺴﺘﻘﻴﻡ‬ ‫ﻟﻴﻜﻥ‬ ‫‪‬‬ ‫‪‬‬‫) ‪ A (x0 ; y0‬ﻨﻘﻁﺔ ﻤﻥ ‪ . ∆ r‬ﻟﺘ‪ur‬ﻜ‪u‬ﻥ‪ M (x ; yu)u‬ﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ‪ .‬ﺘﻜﻭﻥ ‪ M‬ﻨﻘﻁﺔ) (‬ ‫ﻤﻥ ∆ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪( )AM ⊥ u‬‬ ‫‪r‬‬ ‫‪α‬‬ ‫;‬ ‫‪uuuur‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪x0 ‬‬ ‫‪u‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪AM‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪-‬‬ ‫‪‬‬ ‫ﻭ ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪‬‬ ‫‪β‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪y0‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪α (x - x0 ) + β (y - y0 ) = 0 :‬‬ ‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆ ﻫﻲ ‪αx + βy + (-αx0 - βy0 ) = 0 ( ):‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪α x + β x + δ = 0 :‬‬ ‫∆) (‬ ‫ﻫﻭ ﺍﻟﺸﻌﺎﻉ ﺍﻟﻨﻅﺎﻤﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ‬ ‫‪r‬‬ ‫‪α‬‬ ‫‪:‬‬ ‫ﺤﻴﺙ‬ ‫‪u‬‬ ‫‪ β ‬‬ ‫‪ -6‬ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺔ ﻭ ﻤﺴﺘﻘﻴﻡ ‪:‬‬ ‫∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ ‪( )α x + β y + δ = 0 :‬‬ ‫ﻟﺘﻜﻥ ) ‪ M0 (x0 ; y0‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ‪ .‬ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ‪M0‬‬ ‫‪αx0 + β y0 + δ‬‬ ‫ﻭ ∆ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪( ):‬‬ ‫‪α2 + β2‬‬‫‪r‬‬ ‫ﺘﻁﺒﻴﻕ ‪:‬‬‫‪u‬‬ ‫‪ −1‬‬‫ﻨﺎﻅﻤﻲ) (‬ ‫‪ 4‬‬ ‫ﻭ ﺸﻌﺎﻉ ‪‬‬ ‫‪M0‬‬ ‫ﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ )‪(2 ; 3‬‬ ‫∆‬ ‫ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ‬ ‫‪‬‬ ‫ﻟﻪ ‪.‬‬ ‫‪ -‬ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ∆ ﻭ ﺍﻟﻨﻘﻁﺔ )‪( ). H (4 ; 2‬‬ ‫ﺤل ‪:‬‬ ‫‪ -‬ﻤﻌﺎﺩﻟﺔ ∆ ﻤﻥ ﺍﻟﺸﻜل ‪ − x + 4y + δ = 0 :‬ﻭﺒﻤﺎ ﺃﻥ ‪ M0‬ﻨﻘﻁﺔ) (‬ ‫ﻤﻥ ) ∆ ( ﻓﺈﻥ‪ -2 + 4(3) + δ = 0 :‬ﻭﻤﻨﻪ ‪δ = -10 :‬‬

‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆ ﻫﻲ ‪( )-x + 4y – 10 = 0 :‬‬ ‫‪ -‬ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ‪ H‬ﻭ ∆ ﻫﻲ ‪( ):‬‬‫= ‪-4 + 4 (2) - 10‬‬ ‫= ‪-6‬‬ ‫‪6‬‬ ‫=‬ ‫‪6 17‬‬ ‫‪( −1 )2 + (4)2‬‬ ‫‪17‬‬ ‫‪17‬‬ ‫‪17‬‬ ‫‪ -7‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ‪r r :‬‬‫ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ )‪(O ; i , j‬‬ ‫• ﻤﻌﺎﺩﻟﺔ ﺩﺍﺌﺭﺓ ُﻋﻠﻡ ﻤﺭﻜﺯﻫﺎ ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪:‬‬ ‫)‪ (C‬ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ ) ‪ ω(x0 ; y0‬ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪ α‬ﺤﻴﺙ ‪. α > 0‬‬‫)‪ M(x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ؛ ﺘﻜﻭﻥ ‪ M‬ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ )‪ (C‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬ ‫‪ ωM = α‬ﺃﻱ ‪ωM2 = α2 :‬‬‫ﺇﺫﻥ ‪ ( x - x0 )2 + (y - y0 )2 = α2 :‬ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ )‪. (C‬‬ ‫ﻭﺒﻨﺸﺭ ﻫﺫﻩ ﺍﻟﻌﺒﺎﺭﺓ ﻨﺠﺩ ‪:‬‬‫‪x2 + y2 - 2x0 x - 2y0 y + x02 - α2 = 0‬‬ ‫ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ‪:‬‬ ‫‪x2 + y2 + α x + β y + δ = 0‬‬ ‫ﻤﺜﺎل ‪:‬‬‫ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ )‪ ω(1 ; -3‬ﻭﻨﺼﻑ ﺍﻟﻘﻁﺭ ‪r = 5‬‬ ‫ﺤـل ‪:‬‬‫ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻲ ‪( x - 1)2 + (y + 3)2 = 25 :‬‬ ‫ﺃﻱ ‪x2 + y2 - 2x + 6y - 15 = 0 :‬‬ ‫• ﻤﻌﺎﺩﻟﺔ ﺩﺍﺌﺭﺓ ُﻋﻠﻡ ﻗﻁﺭﻫﺎ ‪:‬‬‫)‪ (C‬ﺩﺍﺌﺭﺓ ﻗﻁﺭﻫﺎ ‪ AB‬ﺤﻴﺙ ) ‪[ ]B (x1 ; y1 ) , A (x0 ; y0‬‬‫ﻟﺘﻜﻥ )‪ Mu(uxu,ry‬ﻨﻘ‪ur‬ﻁﺔ‪uu‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ‪ .‬ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁﺔ ‪ M‬ﻤﻥ )‪ (C‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬ ‫‪MA . MB = 0‬‬‫‪uuur‬‬ ‫‪ x1‬‬ ‫‪- x‬‬ ‫‪,‬‬ ‫‪uuur‬‬ ‫‪‬‬ ‫‪x0‬‬ ‫‪- x‬‬‫‪MB‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪MA‬‬ ‫‪‬‬ ‫‪y0‬‬ ‫‪‬‬ ‫ﻟﻜﻥ‬ ‫‪‬‬ ‫‪y1‬‬ ‫‪-‬‬ ‫‪y‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪-‬‬ ‫‪y‬‬ ‫‪‬‬

‫ﻭﻋﻠﻴﻪ ‪( x0 - x) (x1 - x) + (y0 - y) + (y1 - y) = 0 :‬‬‫ﺇﺫﻥ‪x0 x1 - x0 x - x1 x + x2 + y0 y1 - y0 y + y1 y + y2 = 0 :‬‬ ‫ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ )‪ (C‬ﻫﻲ ‪:‬‬‫‪x2 + y2 - (x0 + x1 ) x - (y0 + y1 ) y + x0 x1 + y0 y1 = 0‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ )‪ (C‬ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪ AB‬ﺤﻴﺙ ‪[ ]:‬‬ ‫)‪A (-1 ; 4) ; B (4 ; 2‬‬ ‫‪uuuur uuur‬‬ ‫ﺤـل ‪:‬‬ ‫‪MA . MB = 0‬‬ ‫)‪ M (x ; y‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ )‪ (C‬ﺃﻱ ‪:‬‬ ‫‪uuur‬‬ ‫‪uuuur‬‬ ‫‪MB‬‬ ‫‪4‬‬ ‫‪-‬‬ ‫‪x‬‬ ‫;‬ ‫‪MA‬‬ ‫‪ -1 - x ‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪‬‬ ‫‪-‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪y‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪-‬‬ ‫‪y‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪(4 – x) (-1 – x) + (2 – y) + (4 – y) = 0 :‬‬ ‫ﺃﻱ ‪- 4 - 4x + x + x2 + 8 - 2y + 4y + 4y + y2 = 0 :‬‬ ‫ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ )‪ (C‬ﻫﻲ ‪x2 + y2 - 3x + 2y + 4 = 0 :‬‬ ‫• ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ )‪ M (x ; y‬ﺤﻴﺙ ‪:‬‬‫‪x2 + y2 + α x + βy + δ = 0‬‬‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪α 2‬‬ ‫‪-‬‬ ‫‪α2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪β 2‬‬ ‫‪-‬‬ ‫‪β2‬‬ ‫‪+δ =0‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪α‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪β 2‬‬ ‫=‬ ‫‪α2‬‬ ‫‪+ β2‬‬ ‫‪- 4δ‬‬ ‫ﺇﺫﻥ ‪:‬‬‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫ﺒﻭﻀﻊ ‪ α2 + β2 - 4δ = λ‬ﻨﺠﺩ ‪:‬‬ ‫• ﻟﻤﺎ ‪ λ < 0 :‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔ ‪.‬‬ ‫‪.‬‬ ‫‪ω‬‬ ‫‪‬‬ ‫‪-α‬‬ ‫;‬ ‫‪-β ‬‬ ‫ﻟﻤﺎ ‪ λ = 0 :‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﻨﻘﻁﺔ‬ ‫•‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2 ‬‬ ‫• ﻟﻤﺎ ‪ : λ > 0 :‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻫﻲ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ‬

‫‪.‬‬ ‫‪λ‬‬ ‫‪:‬‬ ‫ﺍﻟﻘﻁﺭ‬ ‫ﻭﻨﺼﻑ‬ ‫‪ω‬‬ ‫‪‬‬ ‫‪-α‬‬ ‫;‬ ‫‪-β ‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪2 ‬‬ ‫ﺃﻤﺜﻠﺔ ‪:‬‬ ‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ )‪ M (x ; y‬ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪x2 + y2 - 4x + 3y + 4 = 0 (1‬‬ ‫‪2x 2‬‬ ‫‪+ 2y2 +‬‬ ‫‪2x - 4y +‬‬ ‫‪5‬‬ ‫‪=0‬‬ ‫‪(2‬‬ ‫‪2‬‬ ‫‪x2 + y2 + 8x + 4y + 40 = 0 (3‬‬ ‫ﺤـل ‪:‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪x2 + y2 - 4x + 3y + 4 = 0 :‬‬ ‫ﻭ ﻤﻨﻪ ‪x2 - 4x + y2 + 3y + 4 = 0 :‬‬‫‪( x - 2)2 −‬‬ ‫‪(2)2 +‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪−‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪4=0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪( x - 2)2 +‬‬ ‫‪‬‬ ‫‪y‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫=‬ ‫‪4+‬‬ ‫‪9‬‬ ‫‪-4‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪( x - 2)2 +‬‬ ‫‪‬‬ ‫‪y+‬‬ ‫‪3 2‬‬ ‫=‬ ‫‪9‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬‫‪ ω 2‬ﻭ ﻨﺼﻑ‬ ‫;‬ ‫‪-3 ‬‬ ‫ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻫﻲ ﺩﺍﺌﺭﺓ ﻤﺭﻜﺯﻫﺎ‬ ‫‪2 ‬‬ ‫‪.‬‬ ‫‪R‬‬ ‫=‬ ‫‪3‬‬ ‫ﻗﻁﺭﻫﺎ‬ ‫‪2‬‬ ‫‪2x2 + 2 y2 + 2x - 4y + 5 = 0‬‬ ‫‪2‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪y2 +‬‬ ‫‪x - 2y +‬‬ ‫‪5‬‬ ‫‪=0‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪4 ‬‬

‫‪x2 +‬‬ ‫‪y2‬‬ ‫‪+ x - 2y +‬‬ ‫‪5‬‬ ‫‪=0‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪4‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪5‬‬ ‫‪x2 +‬‬ ‫‪x + y2‬‬ ‫‪- 2y +‬‬ ‫‪4‬‬ ‫‪=0‬‬‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1 2‬‬ ‫‪-‬‬ ‫‪‬‬ ‫‪1 2‬‬ ‫‪+‬‬ ‫‪( y - 1)2 - 1 +‬‬ ‫‪5‬‬ ‫‪=0‬‬ ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬‫‪‬‬ ‫‪2 ‬‬ ‫‪‬‬ ‫‪2 ‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪( y - 1)2‬‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪-1‬‬ ‫‪+‬‬ ‫‪5‬‬ ‫‪=0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪( y - 1)2‬‬ ‫‪=0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪.‬‬ ‫‪ω ‬‬ ‫‪-1‬‬ ‫;‬ ‫‪1‬‬ ‫ﻫﻲ ﺍﻟﻨﻘﻁﺔ‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪M‬‬ ‫‪2‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪x2 + y2 + 8x + 4y + 40 = 0 :‬‬ ‫‪x2 + 8x + y2 + 4y + 40 = 0‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬‫‪( x + 4)2 − (4)2 + (y + 2)2 − (2)2 + 40 = 0‬‬‫‪( x + 4)2 − 16 + (y + 2)2 − 4 + 40 = 0‬‬‫‪( x + 4)2 + (y + 2)2 = -20‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺨﺎﻟﻴﺔ ‪.‬‬ ‫‪ -8‬ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﻤﺘﺭﻴﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ‪:‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ﻜﻴﻔﻲ ‪ I .‬ﻤﻨﺘﺼﻑ ‪ BC‬ﻟﺩﻴﻨﺎ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪[ ]:‬‬ ‫‪BC2 = AB2 + AC2 - 2AB . AC .cos Aµ (1‬‬ ‫ﻭﻜﺫﻟﻙ ‪AB2 = CA2 + CB2 - 2CA . CB .cos Cµ :‬‬ ‫)ﻭﻫﻲ ﻨﻅﺭﻴﺔ ﺍﻟﻜﺎﺘﻲ(‬ ‫‪AB2 + AC2 = 2AI2 + 2IB2 (2‬‬

BC = AC = AB = 2R (3 sin Aµ sinBµ sinCµ . ABC ‫ﺎﻟﻤﺜﻠﺙ‬u‫ﺒ‬u‫ﺔ‬u‫ﻁ‬r‫ﺍﻟﻤﺤﻴ‬u‫ﺓ‬u‫ﺭ‬u‫ﺌ‬r‫ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍ‬R ‫ﺤﻴﺙ‬ AB . AC = AI2 - IB2 (4 : ‫ ﺤﻴﺙ‬S ‫ ﻫﻲ‬ABC ‫( ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ‬5S = 1 BA . BC . sin Bµ ‫ﺃﻭ‬ S = 1 AB . AC . sin Aµ 2 2 1 S = 2 CA . CB . sin Cµ ‫ﺃﻭ‬ BC = AC = AB = AB . AC . BC sin Aµ sin Bµ sin Cµ 2S : ‫ﻤﺜﺎل‬ [ ]: ‫ ﺤﻴﺙ‬BC ‫ ﻤﻨﺘﺼﻑ‬I . ‫ ﻤﺜﻠﺙ‬ABC (cm ‫ )ﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲ‬BC = 6 ; AC = 4 ; AB = 3 . cos Aµ ‫( ﺍﺤﺴﺏ‬1 . AI ‫( ﺍﺤﺴﺏ‬2 ABC ‫ﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ‬u‫ﺍﻟ‬u‫ﺭ‬ur‫ﻑ ﻗﻁ‬u‫ﺼ‬u‫ﻨ‬urR ‫( ﺍﺤﺴﺏ‬3 AB . AC ‫( ﺍﺤﺴﺏ‬4 ABC ‫( ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ‬5 : ‫ﺤـل‬ : cos Aµ ‫( ﺤﺴﺎﺏ‬1 BC 2 = AB2 + AC2 − 2AB . AC .cos Aµ : ‫ﻟﺩﻴﻨﺎ‬ ( 6 )2 = (3)2 + (4)2 − 2 . 3 . 4 cos Aµ : ‫ﻭﻤﻨﻪ‬ 11 = -24 cos Aµ : ‫ ﺃﻱ‬36 = 25 - 24 cos Aµ : ‫ﻭﻤﻨﻪ‬ . cos Aµ = -11 : ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬ 24

: AI ‫( ﺤﺴﺎﺏ‬2: ‫ ﻭ ﻤﻨﻪ‬AB2 + AC2 = 2AI2 + + 2(3)2 : ‫ﻟﺩﻴﻨﺎ‬25 = 2AI2 + 18 : ‫ ( ﺃﻱ‬3 )2 + (4)2 = 2AI2 + 2 (3)2 AI 2 = 7 : ‫ﻭﻋﻠﻴﻪ‬ 2 AI 2 = 7 : ‫ﻭﻤﻨﻪ‬ 2 . AI = 14 : ‫ﺇﺫﻥ‬ AI = 7 2 2 : ‫ﻭﻤﻨﻪ‬ : R ‫( ﺤﺴﺎﺏ‬3 6 Aµ = 2R : ‫ﻭﻤﻨﻪ‬ BC = 2R : ‫ﻟﺩﻴﻨﺎ‬ sin sin Aµcos2 Aµ + sin2 Aµ = 1 ‫ﻭ‬ cos Aµ = -11 : ‫ﻟﻜﻥ‬ 24 : ‫ ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬sin2 Aµ = 1- cos2 Aµ : ‫ﻭﻋﻠﻴﻪ‬ sin2 Aµ = 455 ‫ﺃﻱ‬ sin2 Aµ = 1 -  -11 2 (24)2  24 6× 24 = 2R : ‫ﻭﻤﻨﻪ‬ sin Aµ = 455 455 24 : ‫ﺇﺫﻥ‬. R = 72 455 : ‫ﺇﺫﻥ‬ R = 72 : ‫ﻭﻋﻠﻴﻪ‬ 455 uuur 45u5uur uuur uuur : AB . AC ‫( ﺤﺴﺎﺏ‬4 AB . AC = AI2 − IB2 : ‫ﻟﺩﻴﻨﺎ‬uuur uuur =  14 2 −  3 2AB . AC    2  : ‫ﻭﻤﻨﻪ‬ 2   = 14 - 9 = 5 4 4 4

uuur . uuur = 5 : ‫ﺇﺫﻥ‬ AB AC 4 : ABC ‫( ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ‬5S = 1 AB . AC . sin Aµ 2S= 1 × 3× 4× 455 2 24 . S= 455 cm2 : ‫ﻭ ﻤﻨﻪ‬ 4

‫ﺗﻤـﺎرﻳـﻦ و ﻡﺸﻜﻼت‬ ‫‪rr‬‬‫ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ) ‪(O ; i , j‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬‫‪ur‬‬ ‫‪r‬‬ ‫‪ x‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ‬‫‪v‬‬ ‫‪u‬‬ ‫‪rr‬‬ ‫‪‬‬ ‫‪−1‬‬ ‫‪‬‬ ‫;‬ ‫‪ x + 3‬‬ ‫‪ u , v‬ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ ‪:‬‬ ‫‪‬‬ ‫‪x+‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪rr‬‬ ‫‪ (1‬ﺃﺤﺴﺏ ‪r r u . v‬‬ ‫‪ (2‬ﻋﻴﻥ ‪ x‬ﺒﺤﻴ‪r‬ﺙ ﻴﻜﻭﻥ‪ vr‬و ‪ u‬ﻤﺘﻌﺎﻤﺩﻴﻥ‬ ‫‪ (3‬ﺍﺤﺴﺏ ‪. v ; u‬‬ ‫‪rr‬‬ ‫‪ (4‬ﻋﻴﻥ ‪ x‬ﺒﺤﻴﺙ ‪u = v‬‬ ‫‪( )r r‬‬ ‫‪ (5‬ﻨﻔﺭﺽ ‪ x = 3‬ﻋﻴﻥ ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﻟـ ‪u , v‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪r r . 2‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺸﻌﺎﻋﺎﻥ ‪ u , v‬ﺤﻴﺙ ‪:‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪v‬‬ ‫=‬ ‫‪3i +‬‬ ‫‪6‬‬ ‫‪j‬‬ ‫;‬ ‫‪u‬‬ ‫=‬ ‫‪1‬‬ ‫‪i-‬‬ ‫‪5‬‬ ‫‪j‬‬ ‫‪5 r 2r 4‬‬ ‫‪v‬‬ ‫;‬ ‫‪u‬‬ ‫‪.‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫‪ (1‬ﺍﺤﺴﺏ‬ ‫‪ (2‬ﺍﺤﺴﺏ ‪ u , v‬ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪:‬‬‫) ‪A(2 ; 2 ) , B( 5 ; -2 ) , C(7 ; -1 ) , D(4 ; 3‬‬ ‫‪ (1‬ﺍﺤﺴﺏ ﻜل ﻤﻥ‪. AD , BC , AC , AB :‬‬

‫‪ (2‬ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﺭﺒﺎﻋﻲ ‪ ABCD‬؟‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫ﻋﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ‪ λ‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ‬ ‫‪r‬‬ ‫‪1‬‬ ‫‪,‬‬ ‫‪r‬‬ ‫‪ 3‬‬ ‫ﻴﻌﻁﻰ ﺍﻟﺸﻌﺎﻋﺎﻥ ‪:‬‬ ‫‪u‬‬ ‫‪ 2‬‬ ‫‪v‬‬ ‫‪ 4 ‬‬ ‫‪r‬‬ ‫‪rr‬‬ ‫‪ λu - v :‬و ‪ λu + v‬ﻤﺘﻌﺎﻤﺩﻴﻥ ‪( ) ( ).‬‬‫‪r‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬ ‫‪ β , α‬ﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ‪ .‬ﻋﻴﻥ‬ ‫‪r‬‬ ‫‪ -1 ‬‬ ‫‪,‬‬ ‫‪r‬‬ ‫‪α‬‬ ‫‪u‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪v‬‬ ‫ﺤﻴﺙ‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪β‬‬ ‫‪‬‬ ‫ﻴﻌﻁﻰ ﺍﻟﺸﻌﺎﻋﺎﻥ ‪:‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ β , α‬ﻓﻲ‪r‬ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠ‪r‬ﻲ ‪r :‬‬ ‫‪ v = 1 (1‬و ‪. u // v‬‬ ‫‪rr r‬‬ ‫‪ v = 2 (2‬ﻭ ‪. u ⊥ v‬‬ ‫‪rr r‬‬ ‫‪ v = 12 (3‬و ‪u . v = 3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪r . r6‬‬ ‫ﺍﺤﺴﺏ )‪ (v , u‬ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬‫‪r‬‬ ‫‪‬‬ ‫‪-3‬‬ ‫‪‬‬ ‫‪(4‬‬ ‫;‬ ‫‪r‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪(3‬‬ ‫;‬ ‫‪r‬‬ ‫‪ -5‬‬ ‫‪(2‬‬ ‫;‬ ‫‪r‬‬ ‫‪‬‬ ‫‪0‬‬ ‫‪‬‬ ‫‪(1‬‬‫‪u‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪u‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪u‬‬ ‫‪ 0 ‬‬ ‫‪u‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪5‬‬ ‫‪‬‬ ‫‪-2‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬ ‫‪uuuur uuur‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ ‪C (-1 ; 2) ; B (3 ; -4) :‬‬‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪ BM . BC = 0 :‬ﺜﻡ ﺃﻨﺸﺌﻬﺎ ﻭ ﺃﻨﺸﺊ ﺍﻟﻤﺴﺘﻘﻴﻡ‬ ‫)‪ (BC‬ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ )‪B (-2 ; -3) , A (1 ; -4‬‬ ‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ ‪:‬‬

‫‪uuuur uuur‬‬ ‫‪ AM . AB = -4‬ﺜﻡ ﺃﻨﺸﺌﻬﺎ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬ ‫‪ ABC‬ﻤﺜ‪ur‬ﻠ‪u‬ﺙ‪uuur u‬‬ ‫ﺍﺤﺴﺏ ‪ AC . BC‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ‪:‬‬‫‪AB = 4 ; AC = 5 ; BC = 10‬‬ ‫‪r‬‬ ‫ﺍ‪r‬ﻟﺘﻤﺭﻴ‪r‬ﻥ‪. 10‬‬ ‫; ‪v =5‬‬ ‫‪ rv , u‬ﺸﻌﺎ‪r‬ﻋﺎﻥ ﺤﻴﺙ ‪r :‬‬ ‫‪( ) ( )r r r r‬‬ ‫‪u =1 ; v.u=5‬‬ ‫‪rr‬‬ ‫ﺍﺤﺴﺏ ﻤﺎ ﻴﻠﻲ ‪u + v u - v ; 3u.(-v) :‬‬ ‫‪( ) ( )r r r r r r‬‬ ‫‪u + v ; u + 2v u - 3v‬‬ ‫ﺍ‪r‬ﻟﺘﻤﺭﻴ‪r‬ﻥ‪. 11‬‬ ‫‪rv , u‬ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ ‪r :‬‬ ‫‪rr‬‬ ‫‪α , u . v = 12‬‬ ‫و ‪v =5‬‬ ‫‪u =2‬‬‫ﻋﺩﺩ ﺤﻘﻴﻘﻲ‬ ‫‪r rr‬‬ ‫ﻭ‪r‬‬‫‪ -1‬ﻋﻴﻥ ‪ α‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ ‪ u - rv‬ﻭ‪ u + αvr‬ﻤﺘﻌﺎﻤﺩﺍﻥ‬ ‫‪ – 2‬ﻋﻴﻥ ‪ α‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ‪u + αv = 5 :‬‬ ‫‪rr‬‬ ‫ﺍ‪r‬ﻟﺘﻤﺭﻴ‪r‬ﻥ‪. 12‬‬ ‫‪u‬‬ ‫=‬ ‫‪v‬‬ ‫‪ v , u‬ﺸ‪r‬ﻌﺎﻋﺎﻥ ﻤ‪r‬ﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ‪:r‬‬ ‫‪r‬‬ ‫ﺃﺜﺒﺕ ﺃﻥ ‪ u + v :‬ﻋﻤﻭﺩﻱ ﻋﻠﻰ ‪u - v‬‬ ‫ﺍ‪r‬ﻟﺘﻤﺭﻴ‪r‬ﻥ‪. 13‬‬ ‫‪r v , u‬ﺸﻌﺎﻋﺎﻥ ﻤﻥ ﺍﻟﻤﺴﺘﻭ‪r‬ﻱ ﺤﻴ‪r‬ﺙ ‪:‬‬ ‫‪ u =2‬و ‪u. v=4‬‬‫‪uuur r uuur r‬‬‫‪ Ar , B , D‬ﺜﻼ‪r‬ﺙ ﻨﻘﻁ‪r‬ﺤﻴﺙ ‪ AB = u :‬و ‪AC = v‬‬ ‫‪ -1‬ﺃﺜﺒﺕ ﺃﻥ ‪ u‬ﻭ ‪ v - u‬ﻤﺘﻌﺎﻤﺩﻴﻥ ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻨﻭﻉ ﺍﻟﻤﺜﻠﺙ ‪. ABC‬‬

‫‪( )r r‬‬ ‫=‬ ‫‪π‬‬ ‫; ‪+ 2k π‬‬ ‫‪k∈¢‬‬ ‫‪ _2‬ﺃﻨﺸﺊ ‪ C‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ‪:‬‬ ‫‪3‬‬ ‫‪v,u‬‬ ‫ﻤﻊ ﺤﺴﺎﺏ ‪.BC , AC‬‬‫‪A‬‬ ‫‪B‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬ ‫‪ ABCD‬ﺸﺒﻪ ﻤﻨﺤﺭﻑ ﺤﻴﺙ ‪:‬‬ ‫‪AD = 2 , DC = 5‬‬ ‫‪ AB = 4‬ﻜﻤﺎ ﻓﻲ ﺍﻟﺸﻜل ‪.‬‬‫‪uAuDurD.‬‬ ‫‪uuur‬‬ ‫‪,‬‬ ‫‪uuur uuur‬‬ ‫‪,‬‬ ‫‪DuuCCur‬‬ ‫‪.‬‬ ‫‪uuur‬‬ ‫ﺍﺤﺴﺏ ﻤﺎ‪ur‬ﻴﻠ‪u‬ﻲ‪uuur :u‬‬ ‫‪BC‬‬ ‫‪CA . CHB‬‬ ‫‪DB‬‬ ‫‪, AB . BC‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 15‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ‬ ‫‪ (1‬ﺒﺭﻫﻥ ﺃﻨ‪r‬ﻪ‪uu‬ﻤ‪u‬ﻥ ﺃﺠل‪r‬ﻜ‪u‬ل‪u‬ﻨ‪u‬ﻘﻁﺔ ‪urM‬ﻤ‪u‬ﻥ‪ u‬ﺍﻟﻤﺴ‪r‬ﺘ‪u‬ﻭ‪u‬ﻱ‪u‬ﻓﺈﻥ ‪uuur uuur:‬‬ ‫‪MA . BC + MB . CA + MC . AB = 0‬‬ ‫‪ (2‬ﺒﺭﻫﻥ ﺃﻥ ﺍﻻﺭﺘﻔﺎﻋﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﻨﻘﻁﺔ ﻭﺍﺤﺩﺓ‪.‬‬ ‫‪( )r r‬‬ ‫ﺍ‪r‬ﻟﺘﻤﺭﻴ‪r‬ﻥ‪. 16‬‬ ‫‪ v , u‬ﺸﻌﺎﻋﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ‪ α .‬ﻗﻴﺱ ﺒﺎﻟﺭﺍﺩﻴﺎﻥ ﻟﻠﺯﺍﻭﻴﺔ ‪ u , v‬ﺤﻴﺙ ‪:‬‬ ‫‪0<α<π‬‬ ‫‪rr‬‬ ‫ﺃﺤﺴﺏ ‪ α‬ﻓ‪r‬ﻲ ﻜل ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻵﺘﻴﺔ‪:r‬‬ ‫‪u . v = -3 3 ; v = 3 ; u = 2 (1‬‬ ‫‪rr r r‬‬ ‫‪u . v = +3 3 ; v = 3 ; u = 6 (2‬‬ ‫‪rr r r‬‬ ‫‪u . v = 10 ; v = 4 ; u = 5 (3‬‬ ‫ﺍ‪r‬ﻟﺘﻤﺭﻴ‪r‬ﻥ‪. 17‬‬ ‫‪ v , u‬ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ ‪:‬‬‫‪( )r r‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫=‬ ‫‪π2ur+‬‬ ‫‪2kπ‬‬ ‫‪; k∈¢‬‬ ‫‪; v =2‬‬ ‫‪; u =3‬‬ ‫‪u,v‬‬ ‫‪r‬‬ ‫‪rr‬‬ ‫‪rr‬‬ ‫‪ur r‬‬ ‫ﻭﻟﻴﻜﻥ ﺍﻟﺸﻌﺎﻋﺎﻥ ‪ x , y‬ﺤﻴﺙ ‪x = 2u - 3v ; y = u + v :‬‬

‫‪r ur r r‬‬‫‪y‬‬ ‫‪, x,v‬‬ ‫‪,‬‬ ‫‪u‬‬‫‪xr 2‬‬ ‫‪r‬‬ ‫‪r‬‬ ‫ﺃﻨﺸﺊ ﻜل ﻤ‪r‬ﻥ‬ ‫‪(1‬‬ ‫ﺜﻡ‬ ‫‪y‬‬ ‫‪2‬‬ ‫ﺜﻡ‬ ‫‪u‬‬ ‫‪h‬ﺤﺴﺏ ‪.rv‬‬ ‫‪(2‬‬ ‫‪r‬‬ ‫‪ (3‬ﺍﺴﺘﻨﺘﺞ ‪y , x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬ ‫‪ ABCD‬ﻤﺴﺘﻁﻴل ﺤﻴﺙ ‪ AB = 4 :‬ﻭ ‪BC = 8‬‬‫‪ M‬ﻤﻨﺘﺼﻑ ‪ CD‬؛ ‪ K‬ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ )‪[ ]. (D , 1) , (A , 3‬‬‫‪ I‬ﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ ‪ K‬ﻋﻠﻰ )‪. (BM‬‬‫‪uuur uuur‬‬ ‫‪ (1‬ﺃﻨﺸﺊ ﺍﻟﺸ‪r‬ﻜ‪u‬ل‪uuur u.u‬‬‫‪ (2‬ﺍﺤﺴﺏ ‪. BA . BK ; uBuCur . BuuMur‬‬‫‪ (3‬ﺍﺤﺴﺏ ‪( )uuuur uuur BK . BM‬‬ ‫‪ (4‬ﺍﺴﺘﻨﺘﺞ ‪ BI‬ﺜﻡ ﻗﻴﻡ ﻤﻘﺭﺒﺔ ﻟـ ‪BM , BK‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 19‬‬‫‪ ABCD‬ﻤﺴﺘﻁﻴل ﻤﺭﻜﺯﻩ ‪ O‬ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻓﺈﻥ ‪:‬‬ ‫‪MA2 + MC2 = MB2 + MD2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 20‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ‪.‬‬ ‫ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪ BC ; AC ; Cµ :‬ﻋﻠﻤﺎ ﺃﻥ ‪:‬‬ ‫‪AB = 16 , Aµ = 68o , Bµ = 25o‬‬ ‫ﺘﻌﻁﻰ ﺍﻟﻤﺴﺎﻓﺎﺕ ﺒﺘﻘﺭﻴﺏ ‪ 0,01‬ﻭ ﺍﻟﺯﻭﺍﻴﺎ ﺒﺘﻘﺭﻴﺏ ‪. 0,1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 21‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ‪.‬‬ ‫ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪ BC‬ﻭ ‪ Bµ‬ﻭ ‪ Cµ‬ﻋﻠﻤﺎ ﺃﻥ ‪:‬‬ ‫‪Aµ = 100o , AC = 30 , AB = 20‬‬ ‫ﺜﻡ ﺍﺴﺘﻨﺘﺞ ‪ S‬ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 22‬‬

‫‪ ABC‬ﻤﺜﻠﺙ ﻜﻴﻔﻲ ‪.‬‬ ‫‪ (1‬ﺒﻴﻥ ﺃﻥ ‪:‬‬‫‪sin2 Aµ = sin2 Bµ + sin2 Cµ - 2 sin Bµ . sin Cµ . cos Aµ‬‬ ‫‪ (2‬ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻴﻜﻭﻥ ﻗﺎﺌﻤﺎ ﻓﻲ ‪ A‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬‫‪sin2 Aµ = sin2 Bµ + sin2Cµ‬‬ ‫‪ (3‬ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﻴﻜﻭﻥ ﻗﺎﺌﻤﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ‪:‬‬‫‪sin2 Aµ + sin2Bµ + sin2Cµ = 2‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 23‬‬‫‪uuur uuuur‬‬ ‫‪ A‬ﻭ‪ B‬ﻨﻘﻁﺘﺎﻥ ﺤﻴﺙ ‪AB = 6 :‬‬‫‪ (1‬ﻋﻴﻥ ﻭ ﺃﻨﺸﺊ ‪ ∆1‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪( )uuAurB .uuAuuMr = 18 :‬‬‫‪ (2‬ﻋﻴﻥ ﻭ ﺃﻨﺸﺊ ‪ ∆ 2‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪( )ABuuu.rAMuuu=ur -12 :‬‬‫‪ (3‬ﻋﻴﻥ ﻭ ﺃﻨﺸﺊ ‪ π1‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪( )AB . AM ≥ 30 :‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬ ‫‪ AB‬ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺤﻴﺙ ‪[ ]AB = 4 :‬‬‫‪ (1‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪MA2 - MB2 = 12 :‬‬‫‪ (2‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪MAu2u+urMuBu2ur= 40 :‬‬ ‫‪ (3‬ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ M‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ‪MA - MB = λ :‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 25‬‬ ‫‪ ABC‬ﻤﺜﻠﺙ ﻜﻴﻔﻲ ﻨﻀﻊ ‪BC = a , AC = b , AB = c :‬‬ ‫= ‪1 + cosAµ‬‬ ‫)‪(a + b +c) (b + c - a‬‬ ‫‪ (1‬ﺒﻴﻥ ﺃﻥ ‪:‬‬ ‫‪2bc‬‬ ‫‪(a‬‬ ‫‪+‬‬ ‫‪c‬‬ ‫‪-b) (a‬‬ ‫‪+‬‬ ‫‪b‬‬ ‫‪-‬‬ ‫)‪c‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫= ‪cosAµ‬‬ ‫‪2bc‬‬ ‫‪ (2‬ﻨﻀﻊ ‪ 2p) a + b + c = 2p :‬ﻤﺤﻴﻁ ﺍﻟﻤﺜﻠﺙ(‬‫= ‪sin2 Aµ‬‬ ‫)‪4p (p - a) (p - b) (p - c‬‬ ‫ﺍﺴﺘﻨﺘﺞ ﻤﻥ )‪ (1‬ﺃﻥ ‪:‬‬ ‫‪b2 c2‬‬ ‫‪ (3‬ﻟﺘﻜﻥ ‪ S‬ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﺒﻴﻥ ﺃﻥ ‪:‬‬

‫=‪S‬‬ ‫)‪p (p - a) (p - b) (p - c‬‬ ‫)ﻋﺒﺎﺭﺓ ﻫﻴﺭﻭﻥ(‬ ‫)ﺍﻟﻭﺤﺩﺓ ﻫﻲ ‪(cm‬‬ ‫‪ (4‬ﺍﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﻤﺜﻠﺙ ‪ ABC‬ﺤﻴﺙ ‪:‬‬ ‫‪BC = 10 ; AC = 15 ; AB = 9‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 26‬‬ ‫‪ -‬ﻨﻌﺘﺒﺭ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪( )3x + 3y – 5 = 0 :‬‬ ‫‪ -1‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ‪ ∆1‬ﺍﻟﺫﻱ ﻴﺸﻤل )‪ A (-1 ; 2‬ﻭﻴﻌﺎﻤﺩ ∆ ‪( ) ( ).‬‬ ‫‪ -2‬ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ∆ ﻭ ‪ ∆1‬ﻭﻟﺘﻜﻥ ‪( ) ( ). B‬‬ ‫‪ -3‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪[ ]. AO‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 27‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ )‪C (1 ; 2) , B (1 ; -4) , A (-2 ; 2‬‬ ‫‪ -1‬ﻋﻴﻥ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ‪.ABC‬‬ ‫‪ -2‬ﻋﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻟﻠﻤﺜﻠﺙ ‪. ABC‬‬ ‫‪ -3‬ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ‪ .‬ﻤﺎﺫﺍ ﺘﻼﺤﻅ؟‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 28‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ‪C (0 ; 3) , B (-4 ; 0) , A (1 ; 2) :‬‬ ‫‪ -1‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻻﺕ ﺃﻋﻤﺩﺓ ﺍﻟﻤﺜﻠﺙ ‪. ABC‬‬ ‫‪ -2‬ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻷﻋﻤﺩﺓ ‪.‬‬ ‫‪ -3‬ﻋﻴﻥ ﻤﺭﻜﺯ ﻭ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﺔ ﺒﺎﻟﻤﺜﻠﺙ ‪.ABC‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 29‬‬ ‫‪ (1‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ‪ Γ1‬ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ )‪ ω (1 ; -3‬ﻭ ﺘﺸﻤل) (‬ ‫ﺍﻟﻨﻘﻁﺔ )‪. A (5 ; 2‬‬ ‫‪ (2‬ﺍﻜﺘﺏ ﻤﻌﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪[ ]. ωA‬‬ ‫‪ (3‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺤﻴﻁﻴﺔ ﺒﺎﻟﻤﺜﻠﺙ ‪ ABω‬ﺤﻴﺙ ‪B (1 ; -2) :‬‬ ‫‪ (4‬ﺍﻜﺘﺏ ﻤﻌﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ ‪ ω‬ﻭﺘﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ) (‬ ‫ﻤﻌﺎﺩﻟﺘﻪ ‪ x – y + 2 = 0 :‬ﻤﻤﺎﺴﺎ ﻟﻬﺎ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 30‬‬ ‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ )‪ M (x ; y‬ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬

‫‪. x2 + y2 - 2x + 4y - 11 = 0 (1‬‬ ‫‪. 2x2 + 2y2 - 4x + 8y + 10 = 0 (2‬‬ ‫‪. - x2 - y2 + 6x + 10y - 60 = 0 (3‬‬ ‫‪. y2 + x2 - 4xy + 5y2 = 0 (4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 31‬‬ ‫ﻨﺎﻗﺵ ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻭﺴﻴﻁ ﺍﻟﺤﻘﻴﻘﻲ ‪ m‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ )‪ M (x ; y‬ﺤﻴﺙ ‪:‬‬‫‪x2 + y2 - 2m x - 2 (1 + m) y + 6m + 1 = 0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 32‬‬ ‫ﻟﺘﻜﻥ ‪ Cm‬ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ )‪ M (x ; y‬ﺤﻴﺙ ‪( ):‬‬‫‪x2‬‬ ‫‪+‬‬ ‫‪y2‬‬ ‫‪-2‬‬ ‫‪(1‬‬ ‫‪-‬‬ ‫‪m) x‬‬ ‫‪+‬‬ ‫‪(1‬‬ ‫‪+ 6m) y‬‬ ‫‪+ 5m‬‬ ‫‪-‬‬ ‫‪5‬‬ ‫=‬ ‫‪0‬‬ ‫‪4‬‬ ‫‪ M‬ﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ ‪.‬‬ ‫‪ (1‬ﺃﺜﺒﺕ ﺃﻥ ‪ Cm‬ﺩﺍﺌﺭﺓ‪( ).‬‬ ‫‪ (2‬ﺃﻨﺸﺊ ﻓﻲ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ ‪( ) ( )C1 , C0‬‬ ‫‪ (3‬ﻟﺘﻜﻥ ‪ ωm‬ﻤﺭﻜﺯ ﺍﻟﺩﺍﺌﺭﺓ ‪ . Cm‬ﻤﺎ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪ ωm‬ﻋﻨﺩﻤﺎ) (‬ ‫ﻴﺘﻐﻴﺭ ‪ m‬ﻓﻲ ¡ ‪.‬‬ ‫‪ (4‬ﺃﺜﺒﺕ ﺃﻥ ‪ Cm‬ﺘﺸﻤل ﻨﻘﻁﺘﺎﻥ ﺜﺎﺒﺘﺘﺎﻥ ‪ B , A‬ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ‪( ).‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 33‬‬‫ﺃﺩﺭﺱ ﻭﻀﻌﻴﺔ ﺍﻟﺩﺍﺌﺭﺓ )‪ (C‬ﺍﻟﺘﻲ ﻤﻌﺎﺩﻟﺘﻬﺎ ‪ x2 + y + m = 0‬ﻭﺍﻟﻤﺴﺘﻘﻴﻡ ‪ ∆m‬ﺍﻟﺫﻱ) (‬ ‫ﻤﻌﺎﺩﻟﺘﻪ ‪ m , x – y + m = 0 :‬ﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 34‬‬ ‫‪ (1‬ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ ‪( )x2 + y2 + 2x - y = 5 : C1‬‬ ‫‪(2‬ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﺍﺌﺭﺓ ‪ C2‬ﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ )‪ ω2(4 ; 3‬ﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ ‪( ).5‬‬ ‫‪ (3‬ﺃﻨﺸﺊ ‪ C1‬و ‪ C2‬ﻤﻌﻴﻨﺎ ﻨﻘﻁﺘﻲ ﺘﻘﺎﻁﻌﻬﻤﺎ ‪ F‬ﻭ‪ H‬ﺤﺴﺎﺒﻴﺎ ‪( ) ( ).‬‬ ‫‪ (4‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ‪ F‬ﻟﻜل ﻤﻥ ‪ C1‬و ‪ C2‬ﻭ ﺒﻴﻥ ﺃﻨﻬﻤﺎ) ( ) (‬

‫ﻤﺘﻌﺎﻤﺩﺍﻥ ؛ ﻨﻔﺱ ﺍﻟﺴﺅﺍل ﻋﻨﺩ ‪.H‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook