−π ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ﺤل ﻭﺤﻴﺩ ﻫﻭ : f )(x ≤ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 1 (3 2 1 f = )(x 2 -ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔx1 , x2 ﻓﻴﻘﻁﻊ ) (cﻓﻲ ﻨﻘﻁﺘﻴﻥ ﻓﺎﺼﻠﺘﻬﻤﺎ) (y=1 ∆ ﻨﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ 2 ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : x1 = 5π , x2 = π ﺤﻴﺙ : 6 6 x1 ≅ 2 ,617 ﺇﺫﻥ , x2 ≅ 0,523 : ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ { }x1 , x2 :
ﺍﻷﺸﻌـﺔ – ﺍﻟﻤﻌﺎﻟـﻡ – ﺍﻟﻤﺴﺘﻘﻴـﻡ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻷﺸﻌـﺔ • ﺍﻟﻤﻌﻠﻡ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ • ﺍﻟﻤﺴﺘﻘﻴﻡ • ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ • ﺍﻟـﺤـﻠــــﻭل
• ﺍﻷﺸﻌـﺔ: – 1ﺘﺴﺎﻭﻱ ﺸﻌﺎﻋﻴﻥ :ﻴﺘﺴﺎﻭﻯ ﺸﻌﺎﻋﺎﻥ ﺇﺫﺍ ﻜﺎﻥ ﻟﻬﻤﺎ : ﻨﻔﺱ ﺍﻟﻤﻨﺤﻨﻰ ﻭ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻭ ﻨﻔﺱ ﺍﻟﻁﻭﻴﻠﺔ . – 2ﺘﻭﺍﺯﻱ ﺸﻌﺎﻋﻴﻥ :ﻴﺘﻭﺍﺯﻯ ﺸﻌﺎﻋﺎﻥ ﺇﺫﺍ ﻜﺎﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻨﻰ . – 3ﺍﺴﺘﻘﺎﻤﻴﺔ ﺜﻼﺜﺔ ﻨﻘﻁ :ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁ A , B , Cﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ . AB // AC : – 4ﺠﺩﺍﺀ ﺸﻌﺎﻉ ﺒﻌﺩﺩ ﺤﻘﻴﻘﻲ u :ﺸﻌﺎﻉ k .ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . ﺠﺩﺍﺀ ﺍﻟﺸﻌﺎﻉ uﺒﺎﻟﻌﺩﺩ kﻫﻭ ﺍﻟﺸﻌﺎﻉ k uﺍﻟﺫﻱ ﻴﺤﻘﻕ : * k uﻭ uﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻨﻰ k u = k . u .* k uﻭ uﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻹﺘﺠﺎﻩ ﺇﺫﺍ ﻜﺎﻥ k > 0 :ﻭﻟﻬﻤﺎ ﺍﺘﺠﺎﻫﺎﻥ ﻤﺨﺘﻠﻔﺎﻥ ﺇﺫﺍ ﻜﺎﻥ . k < 0 : ﺧﻮاص : * ﻴﺘﻭﺍﺯﻯ ﺍﻟﺸﻌﺎﻋﺎﻥ uﻭ Gﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ k ﺒﺤﻴﺙ . G = k u : k × u = 0ﻴﻌﻨﻲ ﺃﻥ k = 0ﺃﻭ . u = 0( )* k + k' u = k u + k’ u ; * k ( u + G ) = k u + k G ( )* k ( k’ u ) = k . k' u ; * 1 × u = u
• ﺍﻟﻤﻌﻠﻡ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ : ) ( o , i , jﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ .ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : 'u 'x ; u x – ﻴﺘﻭﺍﺯﻯ ﺍﻟﺸﻌﺎﻋﺎﻥ : 1 'y y x y' - x' y = 0 – 2ﺍﺴﺘﻘﺎﻤﺔ ﺜﻼﺜﺔ ﻨﻘﻁ :ﺇﺫﺍ ﺃﻋﻁﻴﺕ ﺍﻟﻨﻘﻁ ) A ( x1 , y1 ) ; B ( x2 , y2 ) ; C ( x3 , y3ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁ A ; B ; Cﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ AB // AC. AC x3 - x1 ; AB x2 - x1 : ﺤﻴﺙ y3 - y1 y2 - y1 ﻭﻨﻘﻭﻡ ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ .
• ﺍﻟﻤﺴﺘﻘﻴﻡ : ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ :) (Dﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺘﻴﻥ M , Nﺃﻭ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ Nﻭ ﻴﻭﺍﺯﻱ ﺍﻟﺸﻌﺎﻉ V ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ) P(x , yﻤﻥ) (Dﻟﺩﻴﻨﺎ PN // MN :ﺃﻭ PN // V ﻭ ﺤﺴﺏ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ : a x + b y + c = 0ﺤﻴﺙ (a, b) ≠ (0,0) : ﻤﻼﺤﻅﺎﺕ : V −b * ﺸﻌﺎﻉ ﺍﻟﺘﻭﺠﻴﻪ ﻫﻭ : a . ﺤﻴﺙb ≠ 0 : =K −a * ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ ﻫﻭ : b * ﺇﺫﺍ ﻜﺎﻥ a = 0ﻓﺈﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . * ﺇﺫﺍ ﻜﺎﻥ b = 0ﻓﺈﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . * ﺇﺫﺍ ﻜﺎﻥ c = 0ﻓﺈﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ .* ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻻ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺒﺎﻟﺸﻜل :ﺍﻟﺘﻭﺠﻴﻪ ﺸﻌﺎﻉ V 1 ﻭ ﺤﻴﺙ αﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ y=αx+β α ﺃﻭ x = αﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . * ﻴﺘﻭﺍﺯﻯ ﻤﺴﺘﻘﻴﻤﺎﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ . * ﻴﺘﻌﺎﻤﺩ ﻤﺴﺘﻘﻴﻤﺎﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﺠﺩﺍﺀ ﻤﻌﺎﻤﻠﻲ ﺘﻭﺠﻴﻬﻬﻤﺎ ﻫﻭ – . 1 * ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭ ﺍﻟﻤﺘﺠﺎﻨﺱ ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ ﻫﻭ ﻤﻴل ﺍﻟﻤﺴﺘﻘﻴﻡ .
• ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ: ﺘﻤﺭﻴﻥ : 1 ADCﻤﺜـﻠﺙ . – 1ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Bﺒﺤﻴﺙ DB = DA + DC : – 2ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ) ( ACﻭﻴﺸﻤل Bﻴﻘﻁﻊ ) ( ADﻓﻲ Eﻭ ) ( CD ﻓﻲ . F ﺒﺭﻫﻥ ﺃﻥ AC = BF :و AC = EBﻭﺍﺴﺘﻨﺘﺞ ﺃﻥ Bﻤﻨﺘﺼﻑ ] . [ EF – 3ﺍﻟﻨﻘﻁﺔ Oﻫﻲ ﻤﺭﻜﺯ ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ . ABCDﺍﻟﻨﻘﻁﺔ ’ Oﻫﻲ ﻨﻅﻴﺭﺘﻬﺎ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ . Bﺒﺭﻫﻥ ﺃﻥ EO’ = OF : ﺘﻤﺭﻴﻥ : 2 ( 1ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻤﻥ ﺍﻟﻨﻘﻁ . B , A , O ﻟﺩﻴﻨﺎ . OB – OA = AB : A , B , C ( 2ﺜﻼﺜﺔ ﻨﻘﻁ I .ﻤﻨﺘﺼﻑ ] . [ BC ﺒﺭﻫﻥ ﺃﻥ 2 AI = AB + AC : ﺘﻤﺭﻴﻥ : 3 A , B , Cﺜﻼﺜﺔ ﻨﻘﻁ ﻟﻴﺴﺕ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ .ﻨﻀﻊ U = ABﻭ V = AC ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁ E , F , Gﺤﻴﺙ : * AF = U – V ; AE = U + V * AH = - U + V ; AG = - U - V ﺘﻤﺭﻴﻥ : 4 ABCDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ . O Iﻤﻨﺘﺼﻑ ] . [ ABﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ) ( ACﻭﻴﺸﻤل D ﻴﻘﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ) ( BDﻭﻴﺸﻤل Cﻓﻲ ﺍﻟﻨﻘﻁﺔ . J ﺒﺭﻫﻥ ﺃﻥ J , I , Oﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ . ﺘﻤﺭﻴﻥ : 5 1 ABCﻤﺜﻠﺙ I .ﻭ Jﻨﻘﻁﺘﺎﻥ ﺒﺤﻴﺙ . AJ = 3 AC ; AI = 3 AB : ( 1ﺃﻜﺘﺏ ICﻭ BJﺒﺩﻻﻟﺔ ABﻭ . AC
( 2ﺍﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) ( ICﻭ ) ( BJﻤﺘﻭﺍﺯﻴﺎﻥ . s ﺘﻤﺭﻴﻥ : 6 ABCDﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﺃﻱ . AB = DC : ـ ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁ M , N , Pﺤﻴﺙ : AM = AB + AC ; AN = 2 AD + AC ; AP = AB – AD ﺘﻤﺭﻴﻥ : 7 A , B , Cﺜﻼﺙ ﻨﻘﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﻟﻴﺴﺕ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ : – 1ﺒﻴﻥ ﺃﻥ ﺍﻟﺸﻌﺎﻉ V = NA – 2 NB + NCﺜﺎﺒﺕ . ﺤﻴﺙ Nﻨﻘﻁﺔ ﻤﺘﻐﻴﺭﺓ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ . – 2ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Oﺤﻴﺙ . AO = V : ﺘﻤﺭﻴﻥ : 8 ABCDﻤﻌﻴﻥ M , N , O , P .ﻤﻨﺘﺼﻔﺎﺕ ﺍﻷﻀﻼﻉ : ] [ AB ] , [ BC ] , [ CD ] , [ DAﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ـ ﺃﺜﺒﺕ ﺃﻥ . MA + NO + PO + MP = AC + BD : ﺘﻤﺭﻴﻥ : 9 ABCﻤﺜﻠﺙ (AA ') , (BB') , (CC') .ﻫﻲ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻷﻀﻼﻉ : ] [ BC ] , [ AC ] , [ ABﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . Mﻫﻲ ﻨﻘﻁﺔ ﺘﻼﻗﻲ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙ . ABC – 1ﻤﺎﺫﺍ ﻨﺴﻤﻲ ﺍﻟﻨﻘﻁﺔ Mﻓﻲ ﺍﻟﻤﺜﻠﺙ . ABC – 2ﺃﺜﺒﺕ ﺃﻥ Mﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ' . A 'B'C ﺘﻤﺭﻴﻥ : 10 ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻡ ﺨﻁﺄ ﻤﺎ ﻴﻠﻲ : ( 1ﺇﺫﺍ ﻜﺎﻥ ABCﻤﺜﻠﺙ ﻤﺘﻘﺎﻴﺱ ﺍﻷﻀﻼﻉ ﻓﺈﻥ AB = AC = BC : ( 2ﺇﺫﺍ ﻜﺎﻥ ABCDﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻓﺈﻥ AB + AD = AC : ( 3ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻨﻘﻁﺔ Iﻤﻨﺘﺼﻑ ] [ BCﻓﻲ ﺍﻟﻤﺜﻠﺙ ABC ﻓﺈﻥ AB + AC = 2AI : ( 4ﺇﺫﺍ ﻜﺎﻥ ABCﻤﺜﻠﺙ ﻤﺘﻘﺎﻴﺱ ﺍﻟﺴﺎﻗﻴﻥ ] [ ABﻭ ] [ AC ﻓﺈﻥ AB = AC :
) ( O , ri , rjﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . ﺘﻤﺭﻴﻥ : 11 ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ . A ( 1 ,3 ),B ( -ri2Buu,,Du1rrj )),, ) C ( -3 , -2 (, D ) 2 , -3 ﺍﻟﻨﻘﻁ ﻟﺘﻜﻥ . B,C ﺍﻟﻨﻘﻁ , D – ﻋﻠﻡ 1 . (AuuOBur , ﺍﻟurﻤAﻌuﻠﻡCu A ,ﻓﻲ ﺍﻟﺴﻠﻤﻴﺔ ﺍﻟﻤﺭﻜﺒﺎﺕ – ﻋﻴﻥ s , ﻟﻸﺸﻌﺔ 2 – 3ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻤﻨﺘﺼﻔﺎﺕ ﺍﻟﻘﻁﻊ ] . [ BC ] ، [ AD ] ، [ AC . ( O , ri , rj ) ﻤﻌﻠﻡ ﺇﻟﻰ ﺘﻤﺭﻴﻥ : 12 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏﺤﻴﺙ αﻋﺩﺩ ﺤﻘﻴﻘﻲ. A -5 , 1 , B α , -3 , ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ ) C ( 3 , -2 2 4 – 1ﻋﻴﻥ αﺤﺘﻰ ﺘﻜﻭﻥ Bﻤﻨﺘﺼﻑ ] . [ AC 2DuuAur .+Vur3Duu02Cur ﻟﻠﺸﻌﺎﻉ AuuBurﻤﻭﺍﺯﻴﺎ αﺤﺘﻰ ﻴﻜﻭﻥ ﻋﻴﻥ – 2 ﺇﺤﺩﺍﺜﻴﺘﻲ ﺍﻟﻨﻘﻁﺔ ﻋﻴﻥ – 3 = 0r Dﺒﺤﻴﺙ : Arjﺜ5ﻼ+ﺙriﻨﻘﻁ-3ﻤﻌﺭ=ﻓﺔrﻜAuﻤﺎ uﻴOuﻠﻲ:ﺤﻴﺙ , B , (OuCuBu.r O, rrii , rj )rj ﺘﻤﺭﻴﻥ : 13 =4 +6ﻋﺩﺩ m ; ﺍﻟrjﻤ-ﺴﺘiﻭrﻱ ﻤmﻨﺴ=ﻭﺏrﺇCuﻟuﻰOuﻤﻌ;ﻠﻡ ﺤﻘﻴﻘﻲ – 1ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ . A , B , C – 2ﻋﻴﻥ mﺤﺘﻰ ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁ A , B , Cﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ . – 3ﻨﻔﺭﺽ : m = 4ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺘﻲ ﻨﻘﻁﺔ Dﺒﺤﻴﺙ ﻴﻜﻭﻥ ABCD ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ . – 4ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺘﻲ ﺍﻟﻨﻘﻁﺔ ' Aﻨﻅﻴﺭﺓ Aﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ . O ﺜﻼﺙ ﻨﻘﻁ ﺤﻴﺙ : A,B,C ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ . ( O , ri : ﻟﺘﻴﻤﻜﺭﻥﻴﻥ)1rj4 , ) A , ri , rj ) A ( -1 , 3 ) ; B ( 4 , 1 ) ; C ( 2 , -3 . ( ﻟﻠﻤﺴﺘﻭﻱ . ﺍﻟﻤﻌﻠﻡ Aﻓﻲ ,,BAuu, BCur ﺒﻴﻋﻴﻥﻥﺃﺇﻥﺤﺩﺍ)ﺜﻴﺎrﺕ CuﺍuﻟﻨAuﻘﻁ, – 1 ﻤﻌﻠﻤﺎ – 2 (A
. ( A . ––ﻋﻋﻟﻟﻴﻴﺘﺘﻜﻜﻥﻥﻥﻥﺇﺇﺤﺤﺩﺩNﺍﺍMﺜﺜﻨﻴﻴﻨﻘﺎﺎﻘ ﺍﻁﻁﺕﻟﺔﻨﺔﻘﺍﺍﻟﺍﻨﻁﻘﺤﺤﺔﺩﺩﺍﻁﺍﺜﺔﺜﻴﻴNﺎﺎﻫﻓﻫﺎﺎMﻲ)ﻓ)ﺍﻟﻲ3ﻤ-3ﺍﻌﻟ,ﻠ,ﻤﻡ2ﻌ7ﻠ-ﻡ)((ﻓjﻓ)rﻲﻲ,ﺍrﻟﺍuﻟCﻤriﻤuﻌﻠﻌﻠAu,ﻡﻡ .(Au(uOBurA,,,riAuAu,.uuCur(rBujrO)), 3 4 , uUruUr, Vur rrij , ) rj ﺘﻤﺭﻴﻥ : 15 =- ; ﺸﻌﺎﻋﺎﻥ ﺤﻴﺙ : . (ri O, ﻤﻌrﻠuﻡV ﺇﻟﻰ ﻤ-ﻨﺴriﻭﺏ4 ﺍﻟﻤﺴﺘﻭrjﻱ +3 2 = – 1ﺃﺜﺒﺕ ﺃﻥ ) ( O , uUr , Vurﻤﻌﻠﻤﺎ ﻟﻠﻤﺴﺘﻭﻱ .ﻭ ﺍﺤﺩﺍﺜﻴﺎﻫﺎ ( O , ri , ﺍﻟﻤﻌﻠﻡ ) rj ( ﻓﻲ x , )y ﺇ,ﺤﺩﺍﺜrﻴﺎuUﻫﺎ, ﺍﻓﻟﻤﻲﻌﻠﺍﻡﻟﻤﺴ)ﺘﻭrﻱVu Nﻨﻘﻁﺔ – 2 'x ', y ﺃﻜﺘﺏ . . x ,y ﺒﺩﻻﻟﺔ ( O (xﻓﻲ ', y )' – 3ﻫل ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻟﻬﺎ ﻨﻔﺱ ﺍﻹﺤﺩﺍﺜﻴﻴﻥ ﻓﻲ ﺍﻟﻤﻌﻠﻤﻴﻥ . ﺘﻌﻁﻰ ﺍﻟﻨﻘﻁ : ( O , ri , rj ) ﻤﻌﻠﻡ ﺇﻟﻰ ﺘﻤﺭﻴﻥ : 16 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ) A ( -1 , 3 ) ; B ( 4 , - 5 ) ; C ( 0 , - 2 ) ; D ( 1 , - 5 1ـ ﺍﻜﺘﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻜل ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ) .( CD ) ، ( AB 2ـ ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) َ ( A Bﻭ ) .( C D ﻴﻌﻁﻰ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ : ) ( O , ri , rj ﺘﻤﺭﻴﻥ : 17 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ(∆): m x + ( m -1) y - 2 = 0(D) : (m +1) x + ( 7m - 5 ) y + 3 = 0 1ـ ﻋﻴﻥ ﻗﻴﻤﺔ mﺤﺘﻰ ﻴﻜﻭﻥ ) ∆ ( ﻭ ) ( Dﻤﺘﻭﺍﺯﻴﺎﻥ . 2ـ ﻨﺎﻗﺵ ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻭﺴﻴﻁ mﻨﻘﻁ ﺘﻘﺎﻁﻊ ) ∆ ( ﻭ ) . ( D ﺘﻌﻁﻰ ﺍﻟﻨﻘـﻁ : ) ( O , ri , rj ﺘﻤﺭﻴﻥ : 18 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ )A(2,-3 ; B ( -1, 3 ) ; )C(m,2 2
1ـ ﺍﻜﺘﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) . ( AC 2ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ . B ∈ (AC) : 3ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ﻴﻜﻭﻥ ) ( ACﻤﻭﺍﺯﻴﺎ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . 4ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ) ( ACﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ . 1 5ـ ﻋﻴﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ )∆( ﺍﻟﺫﻱ ﻴﺸﻤل Iﻤﻨﺘﺼﻑ ][AB ﻭﻴﻭﺍﺯﻱ ﺍﻟﺸﻌﺎﻉ . V −52 -6ﻨﺎﻗﺵ ﺤﺴﺏ ﻗﻴﻡ mﻨﻘﻁ ﺘﻘﺎﻁﻊ ) ∆ ( َﻭ ) . ( ACﻟﻴﻜﻥ ) (Dmﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ( O , ri , rj ) ﻤﻌﻠﻡ ﺇﻟﻰ ﺘﻤﺭﻴﻥ : 19 ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ) N(x, yﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ :(m2 + 2m − 3) x + ( m2 + 5 m + 6 ) y + m - 4 = 0 ﻤﻊ mﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ . 1ـ ﻋﻴﻥ ﻗﻴﻡ mﺤﺘﻰ ﻴﻜﻭﻥ ) (Dmﻤﺴﺘﻘﻴﻤﺎ . 2ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . 3ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . 4ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﻭﺍﺯﻱ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ∆ ( ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ . y = x + 4 : 5ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ . O 6ـ ﻋﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ ) . I ( 1 , 1
• ﺍﻟـﺤـﻠــــﻭل: E ﺘﻤﺭﻴﻥ O' : 1 A B (1ﺇﻨﺸﺎﺀ : B O (2ﺍﻟﺭﺒﺎﻋﻲ ACFBﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻷﻥ :D F ) ( BF ) // ( ACﻭ ) ( AB ) // ( CF ﻭﻋﻠﻴﻪ AC = BF :ﻭﻜﺫﻟﻙ ﺍﻟﺭﺒﺎﻋﻲ ACBEﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻷﻥ : ) ( CB ) // ( AEﻭ ) ( AC ) // ( BEﻭﻋﻠﻴﻪ C AC = EB : ﻤﻤﺎ ﺴﺒﻕ BF = EB :ﻭﻋﻠﻴﻪ B :ﻤﻨﺘﺼﻑ ] . [ EF (3ﻟﺩﻴﻨﺎ ) BO = BO’ :ﻷﻥ ’ Oﻨﻅﻴﺭﺓ Oﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ( B ﻭﻟﺩﻴﻨﺎ . BF = BE : ﻭﻋﻠﻴﻪ ﻗﻁﺭﺍ ﺍﻟﺭﺒﺎﻋﻲ OFO’Eﻤﺘﻨﺎﺼﻔﺎﻥ ﻓﻬﻭ ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ . ﻭﻤﻨﻪ . EO’ = OF : ﺘﻤﺭﻴﻥ : 2 * ﺇﺜﺒﺎﺕ ﺃﻥ : OB – OA = AB : ﻟﺩﻴﻨﺎ . OB – OA = OA + AB – OA = AB : * ﻨﺒﺭﻫﻥ ﺃﻥ : 2AI = AB + AC : AB + AC = AI + IB + AI + IC = 2AI + IB + IC = 2AI ) Iﻤﻨﺘﺼﻑ ] ( [ BC C E ﺘﻤﺭﻴﻥ : 3 H B F -ﺇﻨﺸﺎﺀ : E , F , G A * AE = U + V = AB + AC * AF = U – V = AB – AC LG ) = AB + ( - AC = AB + AL * AG = - U – V = - ( U + V ) = - AE * AH = - U + V = - ( U – V ) = - AF
ﺘﻤﺭﻴﻥ J : 4 D ﺇﺜﺒﺎﺕ ﺃﻥ O , I , J :ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ C : O ﻓﻲ ﺍﻟﻤﺜﻠﺙ ABCﻟﺩﻴﻨﺎ :AI Oﻤﻨﺘﺼﻑ ] [ ACﻭ Iﻤﻨﺘﺼﻑ ] . [ AB B (1)... = OI −1 1 2 BC ﻭﻋﻠﻴﻪ OI = 2 CB :ﺃﻱ : * ﺍﻟﺭﺒﺎﻋﻲ OCJDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻭﻋﻠﻴﻪ OJ = OC + OD : ﻭﻤﻨﻪ OJ = OC + BO :ﺃﻱ OJ = BO + OC : -1 ﺃﻱ ( 2 ) . . . OJ = BC : OI = 2 OJ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻥ ) (1ﻭ ) (2ﻴﻨﺘﺞ : ﻭﻋﻠﻴﻪ OI // OJﻭﻨﺴﺘﻨﺘﺞ ﺃﻥ O , I , Jﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ .* IC = IA + AC ﺘﻤﺭﻴﻥ : 5 ( 1ﻜﺘﺎﺒﺔ BJ ; ICﺒJﺩﻻﻟﺔ ABﻭ : AC . = IC - 1 AB + AC 3* BJ = BA + AJ C . BJ = - AB + 3AC A I B ( 2ﺍﺴﺘﻨﺘﺎﺝ ﺃﻥ ) ( ICﻭ ) ( BJﻤﺘﻭﺍﺯﻴﺎﻥ : -1 ﻟﺩﻴﻨﺎ : BJ = - AB + 3ACﻭ IC = 3 AB + AC 1 - AB + 3AC = ICﺃﻱ IC = 3 BJ : ﻭﻋﻠﻴﻪ : 3 ﻭﺒﺎﻟﺘﺎﻟﻲ . ( IC ) // ( BJ ) :
: 6 ﺘﻤﺭﻴﻥ : ﺤﻴﺙM , N , P ﺇﻨﺸﺎﺀ ﺍﻟﻨﻘﻁ AM = AB + AC ; AN = 2 AD + AC ; AP = AB – AD DA N C BP M : 7 ﺘﻤﺭﻴﻥ 2:(ﺕuNﺒuﺜﺎuAﻉrﺸﻌﺎ+ AuVuruBur= )uNu+AuruNu-uA2r +uNuBuAuruCu+r uNuuCr Vur = uNuNuuAuAurr - 2 uNuAur - 2 AuuBur +Vu.ruNuAuAu=ruOu+r- =2AuuVuCAuurruBur:+ﻴﺙAuﺤuCuOr : ﻨﺒﻴﻥ ﺃﻥ- 1 = A - : ﻟﺩﻴﻨﺎ . ﻭ ﻫﻭ ﺸﻌﺎﻉ ﺜﺎﺒﺕB : ﻭ ﻤﻨﻪ ﺇﻨﺸﺎﺀ ﺍﻟﻨﻘﻁﺔ- 2C O s MuuuNur + uNuOur + PuuOur + MuuuPr = AuuCur + BuuDur : 8 ﺘﻤﺭﻴﻥ : ﺇﺜﺒﺎﺕ ﺃﻥ MuuuNur + uNuOur + PuuOur + MuuuPr = MuuuNur + PuuOur + uNuOur + :MuuﻴﻨﺎuPﺩrﻟ= MuuuBur + BuuNur + PuuDur + DuuOur + uNuuCr + CuuOur + uMuuAur + AuuPur= 1 ( AuuBur + BuuCur + AuuDur + DuuCur + uBuCur + CuuDur +ABuuAur + uAuDur ) 2 1 AuuCur AuuCur BuuDur BuuDur= 2 ( + + + ) P M DB ON C
= 1 ( 2AuuCur + 2BuuDur ) = AuuCur + BuuDur 2 : 9 ﺘﻤﺭﻴﻥ. ABC ﻭ ﺘﺴﻤﻰ ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙABC ﻤﻠﺘﻘﻰ ﺍﻟﻤﺘﻭﺴﻁﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺙM ﺍﻟﻨﻘﻁﺔ- 1 A '0rB ' C ' MuuuAur' + MuuuBur' : ﻥMu ﺃuﻥuﻴCﺒuﻨr' = ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙM ﻹﺜﺒﺎﺕ ﺃﻥ- 2 +MuuuAur' + MuuuBur' + MuuuCur' = MuuuAur + AuuAuur' + MuuuBur + BuuBuur' + MuuuCur + Cu:uCuﻨﺎuﻴrﻟ'ﺩ ==MuAuuuuABu=urr=0+r+Au+BuuMuAuuuAuuAuurBuuu'rrA'u+u++r'Bu+MBuuuBuuuCuuurBurCu'ruB++u+ur'CuCuAu+uuuBuCuAuururCuu'r'u'+Cu+ur'CuBuuAuurBuur+' +AuuCuCuuurCu'ur' AuuBur 1 BuuCur BuuCur + 1 CuuAur CuuAur 1 AuuBur = + 2 + 2 + + 2 = 3 ( AuuBur + BuuCur + CuuAur ) 2 3 AuuAur = 3 0r 0r = 2 2 × = . A 'B'C ' ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙsM ﻭ ﻤﻨﻪ : 10 ﺘﻤﺭﻴﻥ . ( ﺨﻁﺄ4 . ( ﺼﺤﻴﺢ3 . ( ﺼﺤﻴﺢ2 . ( ﺨﻁﺄ1
A : 11 ﺘﻤﺭﻴﻥ B : A , B , C , D ﺘﻌﻠﻴﻡ ﺍﻟﻨﻘﻁ- 1 j : ﺘﻌﻴﻴﻥ ﺍﻟﻤﺭﻜﺒﺎﺕ ﺍﻟﺴﻠﻤﻴﺔ- 2 Oi AuuBur xB − xA : ﻟﺩﻴﻨﺎCD yB − yA AuuBur −3 : ﺃﻱ AuuBur −2 −1 : ﻭﻤﻨﻪ −2 1−3 BuuDur 4 : ﺃﻱ BuuDur 2+2 : ﻭﻤﻨﻪ BuuDur xD − xB : ﻟﺩﻴﻨﺎ −4 −3 −1 yD − yB CuuAur 4 : ﺃﻱ CuuAur 1 + 3 : ﻭﻤﻨﻪ CuuAur xA − xC : ﻟﺩﻴﻨﺎ 5 3 + 2 yA − yC : ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻤﻨﺘﺼﻔﺎﺕ- 3 . [ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏAC ] , [ AD ] , [ BC ] ﻤﻨﺘﺼﻔﺎﺕ ﺍﻟﻘﻁﻊP1 , P2 , P3 ﻟﺘﻜﻥ x = xA + xC = 1 − 3 = −1 2 2 P1 -1 , 1 P1 2 . : ﻭﻤﻨﻪ yA + yC 3−2 1 : ﻟﺩﻴﻨﺎ 2 2 2 y P1 = = = x = xA + xD = 1 + 2 = 3 2 2 2 P2 3 , 0 P2 2 . : ﻭﻤﻨﻪ yA + yD 3−3 : ﻟﺩﻴﻨﺎ 2 2 y P2 = = =0
x P3 = xB + xC = −2 − 3 = −5 2 2 2. P3 -5 , -1 : ﻭﻤﻨﻪ : ﻟﺩﻴﻨﺎ 2 2 yB + yC 1 − 2 −1 yP3 = 2 = 2 = 2 : 12 ﺘﻤﺭﻴﻥ : [ AC ] ﻤﻨﺘﺼﻑB ﺒﺤﻴﺙ ﺘﻜﻥα ﺘﻌﻴﻴﻥ- 1 α= -2 α = -5 + 3 x B = xA + xC 2 2 2 : وﻣﻨﻪ : أي أن : ﺃﻱ -3 − 3 -3 1 -2 yA + yC 4 = 2 4 = 2 2 yB = 2 2 . α = −1 : ﺇﺫﻥ Auuα-B4u3r=/=/-Vu1r-43 : ﺒﺎﻟﺘﺎﻟﻲ ﻭ ﺒﺤﻴﺙα ﺘﻌﻴﻴﻥ : - 2 AuuBur α + 5 : ﺃﻱ AuuBur α +5 : ﻤﻨﻪ ﻭ AuuBur xB − xA : ﻟﺩﻴﻨﺎ yB − yA −5 −3 − 1 4 4 2 (α + 5) × 2 − 0 × −5 = 0 : ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ 4 . α = −5 : ﻭﻋﻠﻴﻪ α+ 5Ou2u=DuDur20uOuAu)ruAu:++rﻱ33-( ﺃDu5uOu2OuCuruu×DuCurr=(-α+0rOuu3+DuOur:5uﺙC)u)r=ﺒ==ﺤﻴD00r0rﻴﻥ::ﻌﻴ:ﻤﻤﻱﻨﻨﺘﻪﻪ-ﺃﻭﻭ OuuAur - 2( 3 OuuDur = 2 OuuAur + 3 OuuCur : ﻭﻤﻨﻪ 5 5
2 OuuAur -2 ﻭﻤﻨﻪ : OuuAur -5 ﻟﺩﻴﻨﺎ : 5 1 1 5 2 3 OuuCur - 9 ﻭﻤﻨﻪ : OuuCur 3 ﻭ ﻜﺫﻟﻙ : 5 5 -2 6 5. D -1 , -1 ﻭﻤﻨﻪ : OuuDur -1 ﺃﻱ : OuuDur -2 + 9 ﺇﺫﻥ : 5 - 5 5 1 -1 5 6 5 ﺘﻤﺭﻴﻥ : 13 - 1ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ : A , B , C )A(-3,5) ; B(4,6) ; C(m,-1 AuuBur ﺍﺃﺴﻥﺘﻘﺎ:ﻤﺔrﻭCuﺍuﺤﺩAuﺓ/./ ﻋﻠﻰ A,B, mﺤﺘﻰ ﺘﻜﻭﻥ C -ﺘﻌﻴﻴﻥ 2 ﺘﻌﻨﻲ ﻭﺍﺤﺩﺓ A ,ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ B,C AuuBur 17 , AuuCur m + 3 ﻭ ﻟﺩﻴﻨﺎ : -6 ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ 7 ( - 6 ) – 1 ( m + 3 ) = 0 : ﻭﻤﻨﻪ - m - 45 = 0 :ﺇﺫﻥ . m = - 45 : : ﺃﻀﻼﻉ ﻤrﺘBuﻭﺍuﺯAuﻱ ﺃDﻀﻼﺒﻉﺤﻴ ﺃﺙﻱﻴﻜ:ﻭﻥ A=BDuCuDCur -ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺘﻲ 3 ABCDﻤﺘﻭﺍﺯﻱ DuuCur 4- x ﻭﻤﻨﻪ : ﻭﻟﺩﻴﻨﺎ C ( 4 , -1 ) : )D(x,y ﻨﻔﺭﺽ : -1- y 4-x=7 : ﺃﻥ ﺘﻌﻨﻲ AuuBur = DuuCur : ﺇﺫﻥ AuuBur 7 ﻭﻟﺩﻴﻨﺎ : - 1 - y = 1 1 ﻭ ﻤﻨﻪ x = - 3 , y = - 2 :ﺇﺫﻥ . D ( - 3 , - 2 ) : - 4ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺘﻲ ' Aﻨﻅﻴﺭﺓ Aﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ : O ' Aﻨﻅﻴﺭﺓ Aﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ Oﺃﻱ O :ﻤﻨﺘﺼﻑ ] ' . [ AA
0 = -3 + 'x A xO = xA + 'xA 2 2 : ﺃﻱ : ﻭﻤﻨﻪ 0 5 '+ yA yA + 'yA = 2 yO = 2 ﺇﺫﻥ . A ' ( 3 , -5 ) : xA ' =3 : ﻭﻤﻨﻪ 'yA = −5 ﺘﻤﺭﻴﻥ : 14 :riA, ,rjB), ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ C -ﺘﻌﻴﻴﻥ 1 A ( 0 ,ﻓﻲ ﺍﻟﻤﻌﻠﻡ * )0. Aﻫﻲ ﻤﺒﺩﺃ ﻫﺫﺍ ﺍﻟﻤﻌﻠﻡ ﻷﻥ (A , sAuuBur = 5ri - 2rj ﺃﻱ : AuuBur 5 ﻭﻤﻨﻪ : AuuBur 14 + 1 ﻟﺩﻴﻨﺎ : * -2 - 3 ﻓﻲ ﺍﻟﻤﻌﻠﻡ ) . (A , ri , rj ﻭ ﺒﺎﻟﺘﺎﻟﻲ B ( 5 , -2 ) :AuuCur = 3ri - 6rj ﺃﻱ : AuuCur 3 ﻭﻤﻨﻪ : AuuCur 2+1 ﻟﺩﻴﻨﺎ : * -6 -3 - 3 . ) (A , ri , rj ﺍﻟﻤﻌﻠﻡ ))uBurC,(Au3u,Cur-6ﻓAuﻲ ﻭ ﺒﺎﻟﺘﺎﻟﻲ : - 2ﺘﺒﻴﻴﻥ ﺃﻥ ﻤﻌﻠﻤﺎ ﻟﻠﻤﺴﺘﻭﻱ : (A ,ﻭ ﻤﻨﻪ . AuuBur ≠ 0r ; AuuCur ≠ 0r : AuuCur 3 َﻭ AuuBur 5 ﻟﺩﻴﻨﺎ -6 -2 ,ﻨ),ﻻﺠMﻴﺩruBurrﻭ:uCﺍBﻓuuﺯAuuﻲAuA4uﻱ(ﺍ2ﻟ,ﻤﻏ-ﻟrﻌﻴﻠﻠrCuﺭﻡuﻤuu=BﺴﻤAuﺘAu)6ﻌﻭﺩ+ﻭ,ﻱrﻤCuﻴu0.ﻥAuA3ﻭ(,-ﻏﻤ=ﻴﻌrﻠﺭ3BuﻤuﺎﻤﺘAuﻟ×ﻠﻭ)ﺍﻤ2,ﺯﺴﻴﺘ-ﻴ(ﻭﻥAﻱ–ﻓ(ﻬ).ﻤ:ﺎ 6ﻴ(-ﺸ×ﻜﻼ5ﻥ ﺍﻟﺘrrﻭBurCuﺍuuCuﺯAuAuuﻱAu ﻤﻥ ﺸﺭﻁ ﻭ ﻤﻨﻪ : ﺍﻟﺸﻌﺎﻋﺎﻥ ﺃﺴﺎﺴﺎ ) ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﺜﻼﺜﻴﺔ -ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺘﻲ 3
(2) . . .OuuOuMuuuMruur==(-1()ri-(1.+A.+3.,rOujOu5AuuOuu+MxuuuMuuBurMururx+ur-(,=3=O5uAuyuruOiuAu-ACuuuur)2r-AMuurrirui2r)=+r++j=x)ﻡ3(ﻠxﻌxr.ﻤj3+ﺍﻟ.Au.ﻲu:-AuyAuﻓBuuﻥr2uBu(ﺈMBruﻓr+x3(M+ri+xy-(-y,6y-.y62.Au).yrj,uAuAu3Cu))ur:uCu)Crruﻥjrﺃ::ﺽ:ﻥ:ﻪ::ﺃﺃﺃﺒﻨﻭﻭﻔﻤﻤﻱﻱﺎﺭﻨﻤﻱﻨﺃﻪ5x + 3y + 1 = 0 -1 + 5x + 3y = -2 : ( ﻨﺠﺩ2) ( ﻭ1) ﻤﻥ : ﺃﻱ - 2x - 6y = 0 3 - 2x - 6y = 3 5x + 3y + 1 = 0 5 ( -3y ) + 3 y + 1 = 0 : ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : ﺃﻱ x = - 3y x = −1 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ y = 1 : ﺇﺫﻥ - 12 y = - 1 : ﺃﻱ 4 12 -1 , 1 : ﻭ ﻤﻨﻪ ﻟﻠﺠﻤﻠﺔ ﺤل ﻭﺤﻴﺩ ﻫﻭ 4 12 . (A , riAuu+Bur.3(,O(rjAuAu+,CurOrui,Ou7:uu),AuNu(Nur(urrj5OﻡBurﻠ-ﻤ=)ﻌriﻟ,Ou,ﻡﺍ-ﻠuOuﻲrAﻌuiAuAuuﻓﻤ2uurﻟA,uCﺍuONuurr=rﻲrrujjMNﻓu+)7)r)=+ﻡ7ﻡN=Au7ﻌﻌﻠﻠ-3uﻤ4(ﻤA1uBu4ﻟﻟAu(rﺍﺍ4uu3ﻲﻲB3u3,Bru+ﻓrﻓ,rirNi-+13+N-12-2ﻲ9(32Au3ﺘ67ﻴ)u9ﺍﺜAuC,uﺩrAurﺤju3ru::jCﺇu)Cru)ﻥﻲﻲr:ﻟﻟﻴ:ﺎﺎﻴ:ﻪ:ﻌﺘﺘ::ﻴﻤﻱﻱﺒﺒﻨﻥﻨﻤﺎﺎﺎﺘﻨﻟﻟﻪ-ﺃﺃﻟﺇﻭﻭﻭﻭﺫﺩ 4 s OuuNur = - s
: ﻟﻠﻤﺴﺘﻭﻱ (Oﻤﻌﻠﻤﺎ , Uur , Vur ) ﺘﻤﺭﻴﻥ : 15 - 1ﺇﺜﺒﺎﺕ ﺃﻥ uUr ≠ 0r ; Vur ≠ 0r ﻭﻤﻨﻪ : Uur −2 ; Vur 4 : ﻟﺩﻴﻨﺎ 3 −1 ﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ (-2)(-1) – 3 (4) = 2 – 12 = - 10 : . ﻟﻠﻤﺴﺘﻭﻱ ﺃﺴﺎﺴﺎ ( Uur , Vur ﻭ ﺒﺎﻟﺘﺎﻟﻲ ) : Vur )ﻻrﻴVuﻭﺍ ,ﺯﻱUur Uur ﻭﻤﻨﻪ : , ﻭ ﻋﻠﻴﻪ . ﻤﻌﻠﻤﺎ ﻟﻠﻤﺴﺘﻭﻱ (O : OuOuuNuurNur==xx' 'uU(r-2+ 'riy Vur َrjﻭ )(1 : 4xOuriu,Nuyr- riﺒﺩxﻻﻟﺔ= 'x , 'yrj - 2ﻜﺘﺎﺒﺔ +3 ) rj + y ﻟﺩﻴﻨﺎ : + ... ﻭﻤﻨﻪ : ) ﺃﻱ : ( 'y (2) . . . OuuNur = ( -2 x' + 4 y' ) ri + ( 3 x' - y' ) rj'x = - 2 x' + 4 y' x = - 2 x' + 4 y ﻤﻥ ) (1ﻭ ) (2ﻨﺠﺩ : ﺃﻱ : y' = 3 x' - y 'y = 3 x' - yﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ x = - 2 x' + 4 ( 3 x' - y ) :ﺃﻱ x + 4 y = 10 x' :. = 'y 3 x+ 1 y ﻭﻤﻨﻪ : = 'x 1 x+ 2 y ﺇﺫﻥ : 10 5 10 5 - 3ﺍﻟﺒﺤﺙ ﻋﻥ ﻭﺠﻭﺩ ﻨﻘﻁ ﻟﻬﺎ ﻨﻔﺱ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ﻓﻲ ﺍﻟﻤﻌﻠﻤﻴﻥ : = x 1 x+ 2 y 'x = x 10 5 ﻭ ﻤﻨﻪ : ﻨﻔﺭﺽ : 3 1 y = 'y y = 10 x+ 5 y 9x-4y=0 9 x- 2 y=0 -3 x + 8 y = 0 10 5 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ : : ﺃﻱ -3 4 x+ y=0 10 5
ﺒﻀﺭﺏ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ 3ﻭ ﺍﻟﺠﻤﻊ ﻤﻊ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﻭﻟﻰ ﻁﺭﻓﺎ ﻟﻁﺭﻑ ﻨﺠﺩ 20 y = 0 : ﻭﻤﻨﻪ ( x , y ) = ( 0 , 0 ) : ﺇﺫﻥ ﺍﻟﻨﻘﻁﺔ ﺍﻟﻭﺤﻴﺩﺓ ﺍﻟﺘﻲ ﻟﻬﺎ ﻨﻔﺱ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ﻓﻲ ﺍﻟﻤﻌﻠﻤﻴﻥ ﻫﻲ . O ( 0 , 0 ) : ﺘﻤﺭﻴﻥ : 16 1ـ ﻜﺘﺎﺒﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) : ( AB ) N(x , yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ( ABﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ AN // AB : x +1 5 =0 ﻭ ﻤﻨﻪ : AB -58 , AN x +- 31 ﻟﻜﻥ : y-3 -8 y ﻭ ﻤﻨﻪ - 8 ( x + 1 ) - 5 ( y - 3 ) = 0 :ﺃﻱ - 8 x - 5 y + 7 = 0 : ﺇﺫﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺴﺘﻘﻴﻡ ) ( ABﻫﻲ . 8 x + 5 y - 7 = 0 : ـ ﻜﺘﺎﺒﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) : ( CD ) N(x , yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ( CDﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ . CN // CD : x 1 = 0 ﻭﻤﻨﻪ : CD -13 , CN y x 2 ﻟﻜﻥ : y+2 -3 + ﻭ ﻤﻨﻪ - 3 x - 1 ( y + 2 ) = 0 :ﺃﻱ - 3 x - y - 2 = 0 : ﺇﺫﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) ( CDﻫﻲ . 3 x + y + 2 = 0 : 2ـ ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) : ( CD ) , ( ABd = 8 5 = 8 - 15 = -7 ﻟﺩﻴﻨﺎ : 8 x + 5 y - 7 = 0 ﻨﺤل ﺍﻟﺠﻤﻠﺔ : 3 1 3 x + y + 2 = 0 ﻭ ﻤﻨﻪ ﻟﻠﺠﻤﻠﺔ ﺤل ﻭ ﺤﻴﺩ ) (x , yﺤﻴﺙ : 5 -7 -7 8 =x 12 = 17 =; y 23 = −37 d −7 d −7
I - 17 , 37 ﺤﻴﺙ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ (AB) ∩ (CD) = { I } : 7 7 ﺘﻤﺭﻴﻥ : 17 1ـ ﺘﻌﻴﻴﻥ mﺒﺤﻴﺙ ﻴﻜﻭﻥ ) ∆ ( َﻭ ) ( Dﻤﺘﻭﺍﺯﻴﺎﻥ : ﺤﺴﺏ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ m(7m - 5 ) - (m - 1)(m + 1) = 0 : ﺃﻱ 7m2 - 5m - m2 + 1 = 0 :ﺃﻱ 6 m2 - 5 m + 1 = 0 :ﻟﺩﻴﻨﺎ ∆ = (-5)2 - 4 × 6 ×1 = 1 :ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ m1 , m2 m1 = 5 -1 = 1 , m2 = 5+1 = 1 ﺤﻴﺙ: 2×6 3 2×6 2 . 1 , 1 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ mﻫﻲ : 3 2 2ـ ﻤﻨﺎﻗﺸﺔ ﺘﻘﺎﻁﻊ ) ∆ ( َﻭ ) : ( D m x + ( m -1) y - 2 = 0 ﺃﻱ ﻨﻨﺎﻗﺵ ﺤل ﺍﻟﺠﻤﻠﺔ ( m + 1 ) x + ( 7 m - 5 ) y + 3 = 0 :=d m m-1 )= m(7m-5) - (m + 1)(m-1 ﻟﺩﻴﻨﺎ : m +1 7m-5ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 1 1 ﻋﻨﺩ dﻭﻤﻤﺎ ﺴﺒﻕ ﻴﻨﻌﺩﻡ = 6 m2 -5m + ﻭﻤﻨﻪ 1: 3, 2 x-2y-6=0 ﺍﻟﺠﻤﻠﺔ ﺘﻜﺘﺏ : : m = 1 ﻟﻤﺎ * 4x - 8 y + 9 = 0 3 ﻭﺒﻀﺭﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﻭﻟﻰ ﻓﻲ 4 -ﻭ ﺍﻟﺠﻤﻊ ﻤﻊ ﺍﻟﺜﺎﻨﻴﺔ ﻨﺠﺩ 0 = 33 :ﻭﻫﺫﺍ ﻤﺴﺘﺤﻴل ﺇﺫﻥ ﺍﻟﺠﻤﻠﺔ ﻟﻴﺱ ﻟﻬﺎ ﺤل ﻭ ﺒﺎﻟﺘﺎﻟﻲ َ ( ∆ ) :ﻭ ) ( Dﻤﻨﻔﺼﻼﻥ . x- y-4=0 : ﺍﻟﺠﻤﻠﺔ ﺘﻜﺘﺏ =m 1 ﻟﻤﺎ * 3x - 3 y + 6 = 0 2 ﻭﺒﻀﺭﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﻭﻟﻰ ﻓﻲ 3 -ﻭ ﺍﻟﺠﻤﻊ ﻤﻊ ﺍﻟﺜﺎﻨﻴﺔ ﻨﺠﺩ 0 = 18 :ﻭﻫﺫﺍ
ﻤﺴﺘﺤﻴل ﺇﺫﻥ ﺍﻟﺠﻤﻠﺔ ﻟﻴﺱ ﻟﻬﺎ ﺤل ﻭ ﺒﺎﻟﺘﺎﻟﻲ َ ( ∆ ) :ﻭ ) ( Dﻤﻨﻔﺼﻼﻥ . : ﺤﻴﺙ )(x , y ﻭﺤﻴﺩ ﺤل ﻟﻬﺎ ﺍﻟﺠﻤﻠﺔ ﻓﺈﻥ m ≠ 1 ﻭ m ≠ 1 ﻟﻤﺎ * 2 3 m-1 -2=x 7m-5 3 17m-13 d = 6m2 -5m + 1 -2 m=y 3 m +1 -5m-2 d = 6m2 -5m + 1 ﻭﺒﺎﻟﺘﺎﻟﻲ (∆) ∩ (D) = {L} :ﺤﻴﺙ : L 17m -13 , - 5m - 2 1 6m2 - 5m +1 6m2 - 5m + ﺘﻤﺭﻴﻥ : 18 1ـ ﻜﺘﺎﺒﺔ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) : ( AC ﺘﻜﻭﻥ ) N( x , yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ( ACﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ . AN // AC : ﻭﺒﺎﻟﺘﺎﻟﻲ : AC m- 2 , AN x -2 ﻟﻜﻥ : 5 y +3 x-2 m-2 = 0 y+3 5 ﺇﺫﻥ 5( x - 2 ) - ( y + 3 )( m - 2 ) = 0 : ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (ACﻫﻲ . 5 x - ( m - 2 ) y - 3 m - 4 = 0 : 2ـ ﺘﻌﻴﻴﻥ mﺒﺤﻴﺙ B ∈ (AC) : )5(-1 - ( m - 2 ) 3 - 3 m - 4 = 0 ﺃﻱ : 2 . =m -4 ﺃﻱ : - 5 - 3 m + 3 - 3 m - 4 = 0 ﻭﻤﻨﻪ : 3 2 3ـ ﺘﻌﻴﻴﻥ mﺒﺤﻴﺙ ) (ACﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ : ﺃﻱ m – 2 = 0 :ﻭ ﻤﻨﻪ . m = 2 :
4ـ ﺘﻌﻴﻴﻥ mﺒﺤﻴﺙ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ) (ACﻫﻭ : 1. ﺃﻱ m = 7 : ﻭﻤﻨﻪ m - 2 = 5 : ﻤﻊ m ≠ 2 - -5 )2 = 1 : ﺃﻱ (m - 5ـ ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ) ∆ ( : xI = xA + xB = 2 -1 = 1 2 2 2 Iﻤﻨﺘﺼﻑ ] [ ABﻭﻤﻨﻪ : yA + yB -3+ 3 -3 y I = 2 = 2 2 = 4 ؛ ﻟﺘﻜﻥ ) N( x , yﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ . I 1 , -3 ﺇﺫﻥ : 2 4 ﻭﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ IN x - 1 ﺤﻴﺙ : )∆( ∈ Nﺘﻌﻨﻲ ﺃﻥ IN // V : y 2 3 + 4x( ) ( )5-1 y 3 =0 x - 1 -2 =0 2 )-(-2 + 4 ﺃﻱ : 2 5 ﻨﺠﺩ: 3 y + 4 ﻭ ﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ )∆( ﻫﻲ . 5 x + 2 y - 1 = 0 : 6ـ ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ )∆( َﻭ ): (AC 5x + 2 y - 1=0 ﺃﻱ ﻨﺤل ﺍﻟﺠﻤﻠﺔ : )5x - (m - 2) y - 3m - 4 = 0 . . . (1 d = 5 2 = 5(- m + 2) - 5× 2 = - 5 m ﻟﺩﻴﻨﺎ : 5 -m + 2 5 x + 2 y - 1 = 0 * ﻟﻤﺎ : m = 0ﺍﻟﺠﻤﻠﺔ ) (1ﺘﻜﺘﺏ 5 x + 2 y - 4 = 0 : ﺒﻁﺭﺡ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻨﺠﺩ 3 = 0 :ﻭ ﻫﺫﺍ ﻤﺴﺘﺤﻴل ﺇﺫﻥ ﺍﻟﺠﻤﻠﺔ ﻟﻴﺱ ﻟﻬﺎ ﺤل ﻭ ﻤﻨﻪ َ (∆) :ﻭ ) (ACﻤﻨﻔﺼﻼﻥ .
* ﻟﻤﺎ d ≠ 0 : m ≠ 0ﻭﻤﻨﻪ ﺍﻟﺠﻤﻠﺔ ) (1ﻟﻬﺎ ﺤل ﻭﺤﻴﺩ ) ( x , yﺤﻴﺙ : 2 -1=x -m + 2 -3m-4 = 2(-3m-4) + (-m + 2)1 = 7m + 6 d -5m 5m -1 5=y -3m-4 5 = ×-1 5-(-3m-4)5 = -3m-3 d -5m mG 7m + 6 , - 3m - 3 ﺤﻴﺙ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ (∆) ∩ (AC) = {G} : 5m m ﺘﻤﺭﻴﻥ : 19 1ـ ﺘﻌﻴﻴﻥ ﻗﻴﻡ mﺤﺘﻰ ﻴﻜﻭﻥ ) (Dmﻤﺴﺘﻘﻴﻤﺎ: ﺃﻱ (m2 + 2m - 3 , m2 + 5m + 6 ) ≠ ( 0 , 0 ) : * ﺍﻟﻤﻌﺎﺩﻟﺔ m2 + 2 m - 3 = 0 :؛ ﻨﻼﺤﻅ ﻤﺠﻤﻭﻉ ﺍﻟﻤﻌﺎﻤﻼﺕ ﻤﻌﺩﻭﻡ ﺃﻱ . m = 1 , m = - 3 : -c , 1 ﺇﺫﻥ ﺍﻟﺤﻠﻴﻥ ﻫﻤﺎ : a * ﺍﻟﻤﻌﺎﺩﻟﺔ m2 + 5 m + 6 = 0 :؛ ﻟﺩﻴﻨﺎ ∆ = 1 : ﻭﻤﻨﻪ m = - 3 , m = - 2 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ mﻫﻲ { }. R - - 3 : 2ـ ﺘﻌﻴﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل : m =1أو m = - 3 m2 + 2m - 3 = 0 ﺃﻱ m2 + 5m + 6 ≠ 0 :ﻭ ﻤﻨﻪ َ m ≠ -2 :و m ≠ -3 ﺇﺫﻥ . m = 1 :
3ـ ﺘﻌﻴﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ : m ≠ 1أو m ≠ - 3 m2 + 2m - 3 ≠ 0ﺃﻱ m2 + 5m + 6 = 0 :ﻭ ﻤﻨﻪ َ m = -2 :و m = -3 ﺇﺫﻥ . m = -2 : 4ـ ﺘﻌﻴﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﻭﺍﺯﻱ ) ∆ ( : Vur 1 ﻟﺩﻴﻨﺎ :ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ ) ∆ ( ﻫﻭ : 1 U - (m2 + 5m )+ 6 ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ ) (Dmﻫﻭ : m2 + 2m -3 ) (∆) // (Dmﺃﻱ V // U :ﻭ ﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻴﻨﺘﺞ : 2 m2 + 7 m + 3 = 0ﻟﺩﻴﻨﺎ ∆ = 25 : . m = -1 ﻭﻤﻨﻪ ) m = -3 :ﻤﺭﻓﻭﺽ ( ﺃﻭ 4 5ـ ﺘﻌﻴﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﺸﻤل : O ﺃﻱ m – 4 = 0 :ﻭ ﻤﻨﻪ . m = 4 : 6ـ ﺘﻌﻴﻴﻥ ﻗﻴﻡ mﺒﺤﻴﺙ ) (Dmﻴﺸﻤل ) : I ( 1 , 1ﺃﻱ (m2 + 2m - 3) ×1+ (m2 + 5m + 6) ×1+ m - 4 = 0 : ﻭﻤﻨﻪ 2 m2 + 8 m - 1 = 0 :؛ ﻟﺩﻴﻨﺎ ∆' = 18 : -4+3 2 , -4-3 2 ﺇﺫﻥ ﻗﻴﻡ mﻫﻲ : 2 2
ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﻁﺭﻴﻘﺔ ﺍﻟﺘﻌﻭﻴﺽ • ﻁﺭﻴﻘﺔ ﺍﻟﺠﻤﻊ • ﻁﺭﻴﻘﺔ ﺍﻟﻤﺤﺩﺩ • ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ • ﺍﻟـﺤـﻠــــﻭل
• ﻁﺭﻴﻘﺔ ﺍﻟﺘﻌﻭﻴﺽ:ﻭﻫﻲ ﺇﻴﺠﺎﺩ ﺃﺤﺩ ﺍﻟﻤﺠﻬﻭﻟﻴﻥ ﺒﺩﻻﻟﺔ ﺍﻵﺨﺭ ﻤﻥ ﺇﺤﺩﻯ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﺜﻡ ﺍﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﺨﺭﻯ ) .ﺘﺴﺘﻌﻤل ﻓﻲ ﺠﻤﻴﻊ ﺃﻨﻭﺍﻉ ﺍﻟﺠﻤل ( • ﻁﺭﻴﻘﺔ ﺍﻟﺠﻤﻊ : ﻭﻫﻲ ﻀﺭﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﻭﻟﻰ ﻓﻲ ﻋﺩﺩ ﻭ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ﻋﺩﺩ ﺁﺨﺭ ﺒﺤﻴﺙ ﻋﻨﺩ ﺠﻤﻊ ﺍﻟﻨﺎﺘﺠﻴﻥ ﻨﺠﺩ ﻤﻌﺎﺩﻟﺔ ﺫﺍﺕ ﻤﺠﻬﻭل ﻭﺍﺤﺩ ﻓﻘﻁ ﺜﻡ ﻨﺠﺩ ﺍﻟﻤﺠﻬﻭل ﺍﻵﺨﺭ ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﺃﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ .
• ﻁﺭﻴﻘﺔ ﺍﻟﻤﺤﺩﺩ : ﺘﺴﺘﻌﻤل ﻓﻲ ﺍﻟﺠﻤل ﺍﻟﺨﻁﻴﺔ ) ﺃﻭ ﺘﺅﻭل ﺇﻟﻰ ﺨﻁﻴﺔ ( ﻤﻥ ﺍﻟﺸﻜل : a x +b y+c=0 a' x + b' y + c' = 0d = a b = a × b' − a'×b ﻤﺤﺩﺩ ﺍﻟﺠﻤﻠﺔ ﻫﻭ ﺍﻟﻌﺩﺩ : 'a 'b* ﻓﻲ ﺤﺎﻟﺔ : d = 0ﺍﻟﺠﻤﻠﺔ ﻟﻬﺎ ﻤﺎ ﻻﻨﻬﺎﻴﺔ ﻤﻥ ﺍﻟﺤﻠﻭل ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﺘﻜﺎﻓﺌﺘﻴﻥ ﺃﻭ ﻤﺠﻤﻭﻋﺔ ﺨﺎﻟﻴﺔ ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻏﻴﺭ ﺍﻟﻤﺘﻜﺎﻓﺌﺘﻴﻥ . * ﻓﻲ ﺤﺎﻟﺔ : d ≠ 0ﺍﻟﺠﻤﻠﺔ ﻟﻬﺎ ﺤل ﻭﺤﻴﺩ ) ( x ، yﺤﻴﺙ : ca bc =y 'c' a َﻭ =x 'b' c d dﻤﻼﺤﻅﺔ :ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﺘﻜﺎﻓﺌﺘﻴﻥ ﻴﻌﻨﻲ ﺃﻥ ﺇﺤﺩﺍﻫﻤﺎ ﺘﻨﺘﺞ ﻤﻥ ﻀﺭﺏ ﺍﻷﺨﺭﻯ ﻓﻲ ﻋﺩﺩ.
• ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ: ﺘﻤﺭﻴﻥ : 1 ﺤل ﻓـﻲ R2ﺍﻟﺠﻤل ﺍﻵﺘﻴﺔ : 2 x - 5 y = x +3y-3 x +2 y -5 x = 4 y -1 3 4 3) )2 3 3 - x + 2 y=2x-5y x + 2 y = - 2 1 )3 2x-y+ 2=0 - 5 x + 3 y - 5 = 0 4 ) 10 x - 6 y + 6 = 0 x + 2 y -1= 0 5 x - 4 y + 16 = 0 ﺘﻤﺭﻴﻥ : 2 8x -3y-5=0 – 1ﺤل ﻓـﻲ R2ﺍﻟﺠﻤﻠﺔ : – 2ﺍﺴﺘﻨﺘﺞ ﺤﻠﻭل ﻜل ﻤﻥ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ : 5 | x | - 4 | y | + 16 = 0 |8| x -3| y|-5=0 5 x - 4 y + 16 = 0 5 - 4 + 16 =0 x y ; 8 x -3 y -5=0 8 3 x - y - 5 = 0 ﺘﻤﺭﻴﻥ : 3 x2 + 9 x + 14 = 0 – 1ﺤل ﻓـﻲ Rﺍﻟﻤﻌﺎﺩﻟﺔ : x2 - y + 16 = 0 – 2ﺍﺴﺘﻨﺘﺞ ﻓـﻲ R2ﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ : 9 x + y - 2 = 0
ﺘﻤﺭﻴﻥ : 4 mﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ ﻨﺎﻗﺵ ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻭﺴﻴﻁ mﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ :( m -1) x + 3 y + 3 = 0 mx+my+4=0 ﺘﻤﺭﻴﻥ : 5 x - m y -1= 0 mﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ .ﻨﺎﻗﺵ ﺤﺴﺏ ﻗﻴﻡ mﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ : x2 + y2 - 3 = 0)∆( ﺘﻤﺭﻴﻥ : 6 j -1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ∆ ( ). Oi -2ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆1ﻨﻅﻴﺭ) ( ) ∆ ( ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ) . ( o , i -3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆2ﻨﻅﻴﺭ) ( ) ∆ ( ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ) . ( o , j -4ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆3ﻨﻅﻴﺭ ∆) ( ) ( ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ . O ﺘﻤﺭﻴﻥ : 7 ; ) A ( 3 , 5ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ) ( ; )B(2,0 )C(6,0 ﺤriﻴ ,ﺙ ﻤﺘCﺠBﺎﻨAﺱﻤﺜ)ـjﻠrﺙ, ﻤﻥ Aﺍﻟﻤﺴﺘﻘﻴﻡ ∆1ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ).( BC . (Oﻨﺭﺴﻡﻭ ﻨﺭﺴﻡ ﻤﻥ Bﺍﻟﻤﺴﺘﻘﻴﻡ ∆2ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ) (ACﻭ ﻨﺭﺴﻡ ﻤﻥ Cﺍﻟﻤﺴﺘﻘﻴﻡ ∆3ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ) ( ) ( ). (AB -1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻻﺕ ﻜل ﻤﻥ ( ) ( ) ( ). ∆1 , ∆2 , ∆3 : ∆1 -2ﻭ ∆2ﻤﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ C′؛ ∆1ﻭ ∆2ﻴﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ B′؛) ( ) ( ) ( ) ( ∆3ﻭ ∆2ﻴﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ ( ) ( ). A′ -ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ . C′ , B′ , A′ -ﺒﻴﻥ ﺃﻥ Aﻤﻨﺼﻑ ' B , B' Cﻤﻨﺘﺼﻑ ' C ، A' Cﻤﻨﺘﺼﻑ '[ ] [ ] [ ]. A' B -ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺜﻴﻥ ABCﻭ ' A' B'Cﻟﻬﻤﺎ ﻨﻔﺱ ﻤﺭﻜﺯ ﺍﻟﺜﻘل .
ﺘﻤﺭﻴﻥ : 8 ﺍﺨﺘﺭ ﺍﻹﺠﺎﺒﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ : ﻫﻭ ( ):y= 3 x − 1 ∆ (1ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ 2 : ﻤﻌﺎﺩﻟﺘﻪ ﺍﻟﺫﻱ)a V -31 ; )b V 1 ; c) V 13 2 3 2 (2ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( )y = 3x − 1 : ﻭ ﻴﺸﻤل ) A (2 ,1ﻫﻲ :)a y = 1 x + 1 ; b) y = 3 x - 5 ; c) y = 3 x 3 3 : ﻫﻭ y = 1 x −5 (3ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : 3 ; a) 3 )b 1 ; c) - 5 3 ﺘﻤﺭﻴﻥ : 9 ﻤﺴﺘﻁﻴل ﻤﺤﻴﻁﻪ 26 Cmﻭ ﻤﺴﺎﺤﺘﻪ 40 Cm2 -ﺍﺤﺴﺏ ﻜل ﻤﻥ ﻁﻭﻟﻪ ﻭ ﻋﺭﻀﻪ . ﺘﻤﺭﻴﻥ : 10 1xﺇﺫﺍ ﺃﻀﻔﻨﺎ ﺍﻟﻌﺩﺩ 1ﺇﻟﻰ ﺒﺴﻁ ﺍﻟﻜﺴﺭ yﻴﺼﺒﺢ ﺍﻟﻜﺴﺭ ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ 4ﻭ ﺇﺫﺍ ﺃﻀﻔﻨﺎ ﺍﻟﻌﺩﺩ 1ﺇﻟﻰ ﻤﻘﺎﻡ 1 ﺍﻟﻜﺴﺭ ﻴﺼﺒﺢ ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ . 5 -ﻤﺎ ﻫﻭ ﻫﺫﺍ ﺍﻟﻜﺴﺭ . ﺘﻤﺭﻴﻥ : 11 ﻤﺠﻤﻭﻉ ﻋﺩﺩﻴﻥ ﻴﺴﺎﻭﻱ 30ﻭ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻤﺭﺒﻌﻴﻬﻤﺎ ﻴﺴﺎﻭﻱ . 60 -ﺍﺤﺴﺏ ﻫﺫﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ .
ﺘﻤﺭﻴﻥ : 12 ABCﻤﺜـﻠﺙ ﺤﻴﺙ . AB = AC :ﻤﺤﻴﻁﻪ 36 Cmﻭﻁﻭل ﺍﺭﺘﻔﺎﻋﻪ AHﻫﻭ. 12 Cm : -ﺍﺤﺴﺏ ﺃﻁﻭﺍل ﺃﻀﻼﻉ ﻫﺫﺍ ﺍﻟﻤﺜﻠﺙ .
• ﺍﻟـﺤـﻠــــﻭل: ﺘﻤﺭﻴﻥ : 1 ﺃﻱ : 2x - 5y = x + 3y -3 ( 1ﻟﺩﻴﻨﺎ : 3 + 4 = 2 x -5 y 3y -x 2 8-x21-x1225+y3y==x2+x3-y5-y3 8x -15y =12x + 36 y - 36 - 2x + 3y = 4 x -10 yﺃﻱ : ﻭﻤﻨﻪ : - 4 x - 51y + 36 = 0 - 6 x + 13 y = 0 =d -4 - 51 = - 52 - 306 = ﻟﺩﻴﻨﺎ - 358 : -6 13 ﺇﺫﻥ ﻟﻠﺠﻤﻠﺔ ﺤل ﻭﺤﻴﺩ ) ( x , yﺤﻴﺙ : -51 36=x 13 0 = 0 ×- 13 36 = 468 = 234 d -358 358 179 36 - 4=y 0 -6 = - 36 × 6 = 216 = 108 d -358 358 179
x + 2y - 5 x = 4 y -1 3 + y = - 2 : ﺃﻱ 3 : ( ﻟﺩﻴﻨﺎ2 x 2 x + 2 y -15 x = 4 y -1 3 2 x+ 3y = - 2 2 x + 2y -15x -12y + 3 = 0 : ﺃﻱ : ﻭﻤﻨﻪ 2x + 3y + 4 = 0 -14 x - 10y + 3 = 0 2 x + 3 y + 4 = 0 d= - 14 - 10 = - 42 + 20 = - 22 : ﻟﺩﻴﻨﺎ 2 3 : ( ﺤﻴﺙx , y) ﺇﺫﻥ ﻟﻠﺠﻤﻠﺔ ﺤل ﻭﺤﻴﺩ -10 3 x= 34 = - 40 - 9 = 49 d -22 22 3 - 14y= 4 2 = 6 + 56 = 62 = -31 d -22 -22 11
x 2 - y + 2 = 0 ﻭﻤﻨﻪ : ( 3ﻟﺩﻴﻨﺎ 2 -1 = 0 : x + y d = 2 -1 = 2 + 1 = 3 12 ﺇﺫﻥ ﻟﻠﺠﻤﻠﺔ ﺤل ﻭﺤﻴﺩ ) ( x , yﺤﻴﺙ : -1 2 =x 2 -1 = 1- 2 = -1 d 3 3 22 =y -1 1 = 2+ 2 = 2 2 d 3 3 -5 3 = 30 - 30 = 0 - 5 x + 3 y - 5 = 0 ( 4ﻟﺩﻴﻨﺎ :∆ = 10 -6 10 x - 6 y + 6 = 0ﻭﻤﻨﻪ : ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻏﻴﺭ ﻤﺘﻜﺎﻓﺌﺘﻴﻥ ) ﻷﻥ ﺒﻀﺭﺏ ﺍﻷﻭﻟﻰ ﻓﻲ – 2ﻻ ﺘﻨﺘﺞ ﺍﻟﺜﺎﻨﻴﺔ ( ﺇﺫﻥ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ﻟﻠﺠﻤﻠﺔ . ﺘﻤﺭﻴﻥ : 2-15 x + 12 y - 48 = 0 - 3× 5 x - 4 y + 16 = 0 ( 1ﻟﺩﻴﻨﺎ :32 x - 12 y - 20 = 0 ﺃﻱ : ×4 8 x - 3y- 5=0 x = 68 = 4 ﻭ ﻤﻨﻪ : ﺒﺠﻤﻊ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻨﺠﺩ 17 x - 68 = 0 : 17 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺇﺤﺩﻯ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻨﺠﺩ y = 9 :
) { }.S = ( 4 , 9 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ : ( 2ﺍﻻﺴﺘﻨﺘﺎﺝ :|Q=|y , ﺒﻭﻀﻊ Z = | x | : 5 | x | - 4 | y | + 16 = 0 ﻟﺩﻴﻨﺎ : 8| x | -3| y|-5=0 ﻭ ﻤﻤﺎ ﺴﺒﻕ ﻨﺠﺩ َ Z = 4 :ﻭ Q = 9 5 Z - 4 Q + 16 = 0 ﻨﺠﺩ : 8Z -3Q-5=0 ﻭ ﻤﻨﻪ َ | x | = 4 :ﻭ . | y | = 9ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ ﻫﻲ :} ) S1 = { ( 2 , 3 ) , ( 2 , - 3 ) , ( - 2 , 3 ) , ( - 2 , - 3 . 5 1 - 4 1 + 16 =0 5 - 4 + 16 =0 x y x y ﺃﻱ : ﻟﺩﻴﻨﺎ : 1 1 8 3 8 x - 3 y - 5 = 0 x - y - 5 = 0 5 Z - 4 Q + 16 = 0 Q = 1 , Z = 1 ﻨﺠﺩ : y x ﺒﻭﻀﻊ : 8 Z - 3 Q - 5 =0 ﻭ ﻤﻤﺎ ﺴﺒﻕ ﻨﺠﺩ َ Z = 4 :ﻭ Q = 9 =y 1 َﻭ =x 1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 1 = 9 َﻭ 1 = 4 ﻭ ﻤﻨﻪ : 9 4 y x . S2 = 1 , 1 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ : 4 9 5 x - 4 y + 16 = 0 x -3 y -5=0 ﻟﺩﻴﻨﺎ : 8 5 Z - 4 Q + 16 = 0 = Qﻨﺠﺩ : =y , Z x ﺒﻭﻀﻊ : 8Z-3Q - 5 =0
َﻭ . y = 81 ﻭﻤﻤﺎ ﺴﺒﻕ ﻨﺠﺩ y = 9 , x = 4 :ﻭﺒﺎﻟﺘﺎﻟﻲ x = 16 : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ { }. S3 = ( 16 , 81 ) : ﺘﻤﺭﻴﻥ : 3 x2 + 9 x + 14 = 0 -1ﺤل ﻓـﻲ Rﺍﻟﻤﻌﺎﺩﻟﺔ : ﻟﺩﻴﻨﺎ ∆ = 92 - 4 ×14 = 81- 56 = 25 : ﻭ ﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ x1 , x 2 :ﺤﻴﺙ : x1 = - 9- 5 = - 7 , x2 = - 9+ 5 = - 2 2 2 x2 - y + 16 = 0 ( 2ﺍﺴﺘﻨﺘﺎﺝ ﻓﻲ R2ﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ : 9 x + y - 2 = 0 ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ . x2 + 9 x + 14 = 0 : ﺤﻴﺙ ﺤﻠﻭل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ - 2 , - 7 :* ﻟﻤﺎ x = - 7ﻨﺠﺩ (-7)2 - y + 16 = 0 :ﻭ ﻤﻨﻪ y = 49 + 16 = 65: * ﻟﻤﺎ x = - 2ﻨﺠﺩ (-2)2 - y + 16 = 0 :ﻭ ﻤﻨﻪ y = 4 + 16 = 20 :ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ ﻫﻲ { }S = ( - 7 , 65 ) , ( - 2 , 20 ) : ﺘﻤﺭﻴﻥ : 4 ( m -1) x + 3 y + 3 = 0 ﻤﻨﺎﻗﺸﺔ ﺍﻟﺠﻤﻠﺔ : mx+my+4=0=d m −1 3 = m(m −1) − 3m = m2 − 4m ﻟﺩﻴﻨﺎ : m m d = 0 (1ﺘﻌﻨﻲ ﺃﻥ m( m – 4 ) = 0 :ﻭﻤﻨﻪ m = 0 :ﺃﻭ .m = 4- x + 3 y + 3 = 0 * ﻟﻤﺎ m = 0ﺘﺼﺒﺢ ﺍﻟﺠﻤﻠﺔ : ﻭ ﻫﺫﺍ ﻤﺴﺘﺤﻴل . 4=0 ﻭ ﻤﻨﻪ ﻟﻤﺎ m = 0ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺨﺎﻟﻴﺔ.
3 x + 3 y + 3 = 0 * ﻟﻤﺎ m = 4ﺘﺼﺒﺢ ﺍﻟﺠﻤﻠﺔ :4 x + 4 y + 4 = 0 3( x + y + 1) = 0 ﻭﻤﻨﻪ 4( x + y + 1) = 0 :ﺃﻱ x + y + 1 = 0 :ﻭﻤﻨﻪ y = - x – 1 :ﻭﺒﺎﻟﺘﺎﻟﻲ ﻟﻤﺎ m = 4ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ : }S = {( x , - x - 1 ) ; x ∈ R (2ﻤﻥ ﺃﺠل m ≠ 0ﻭ d ≠ 0 : m ≠ 4 ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻟﻠﺠﻤﻠﺔ ﺤل ﻭ ﺤﻴﺩ ) ( x , yﺤﻴﺙ : 33x = m 4 = 12 - 3m = )−3(m − 4 = −3 m2 − 4m m2 − 4m )m(m − 4 m 3 m-1=y 4m = 3m - 4m+4 = )−(m − 4 = −1 m2 − 4m m2 − 4m )m(m − 4 m S = -3 , -1 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ : m m ﺘﻤﺭﻴﻥ : 5 ) x - m y - 1 = 0 . . . (1 ﻤﻨﺎﻗﺸﺔ ﺍﻟﺠﻤﻠﺔ x2 + y2 - 3 = 0 . . . (2) : ﻤﻥ ) (1ﻴﻨﺘﺞ x = my + 1 : ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (2ﻨﺠﺩ ( m y + 1 )2 + y2 − 3 = 0 : ﺃﻱ m2y2 + 2 my + 1 + y2 − 3 = 0 : ﺃﻱ (m2 + 1)y2 + 2 my − 2 = 0 . . . (3) :ﻟﺩﻴﻨﺎ ∆ = (2m)2 - 4 (m2 +1)(-2) = 4(3 m2 +2) : ﻭ ﺒﺎﻟﺘﺎﻟﻲ ∆ > 0 :ﻭ ﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ) (3ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ﻫﻤﺎ :
y1 = −b − ∆ = −2m − 2 3m2 + 2 = −m − 3m2 + 2 2a 2(m2 )+ 1 m2 +1 y2 = −b + ∆ = −2m + 2 3m2 + 2 = −m + 3m2 + 2 2a 2(m2 )+ 1 m2 +1x1 = 1 − m 3m2 + 2 ﻓﺈﻥ : y = y1 = −m − 3m2 + 2 ﻟﻤﺎ m2 +1 m2 +1x2 = 1+ m 3m2 + 2 ﻓﺈﻥ : y = y2 = −m + 3m2 + 2 ﻟﻤﺎ m2 +1 m2 +1 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﺠﻤﻠﺔ { }(x1 , y1) , (x2 , y2 ) : ﺘﻤﺭﻴﻥ : 6 (1ﻤﻌﺎﺩﻟﺔ ∆ ( ): ( ) ( )AuuMuur ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ // AuuBur A( 4 , 0 ﻴﺸﻤل ﺍﻟﻨﻘﻁﺘﺎﻥ ) ) ; B( 0 , 3 ﻓﺎﻥ : ﻭﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﺃﻱ ﻨﻘﻁﺔ ) M (x , yﻤﻥ ∆ ﻭﻤﻨﻪ ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : AuuMuur x-4 ; AuuBur -4 ﻟﺩﻴﻨﺎ : y 3 3(x − 4) + 4y = 0ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆ ﻫﻲ . 3x + 4y −12 = 0 ( ): (2ﻤﻌﺎﺩﻟﺔ ( ): ∆1 B1( 0 ,ﻨﻅﻴﺭﺓ ( )B ri∆)1 ( )AuuMuur // AuuBuur1 -3 ) ﺍﻟﻨﻘﻁﺔ ﺍﻟﻨﻘﻁﺔ ) A ( 4 , 0ﻭ ﻴﺸﻤل ﺍﻟﻤﺴﺘﻘﻴﻡ : ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ .A ( ﻷﻥ ﻨﻅﻴﺭﺓ Aﻫﻲ O, ) M (x , yﻤﻥ ∆1 ﻓﺎﻥ ﻭﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﺃﻱ ﻨﻘﻁﺔ ﻭﻤﻨﻪ ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : AuuMuur x-4 ; AuuBuur1 -4 ﻟﺩﻴﻨﺎ : y -3
−3(x − 4) − (−4)y = 0ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆1ﻫﻲ 3x − 4y −12 = 0 ( ): . (3ﻤﻌﺎﺩﻟﺔ ( ): ∆2ﻨﻅﻴﺭﺓ ( )AA1( - 4,)0 ﻭ ﺍﻟﻨﻘﻁﺔ (B 0, )3 ﺍﻟﻨﻘﻁﺔ ﻴﺸﻤل rj∆)2 ﺍﻟﻤﺴﺘﻘﻴﻡ( )BuuMuur // : ﻤﻥ M ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰBuuAuur1 ∆ ﻓﺎﻥ 2 (. O, )(x , y ﻭﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﺃﻱ ﻨﻘﻁﺔﻭﻤﻨﻪ ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : BuuMuur x ; BuuAuur1 -4 ﻟﺩﻴﻨﺎ : y-3 -3 −3x − (−4)(y − 3) = 0ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆2ﻫﻲ 3x − 4y + 12 = 0 ( ): . (4ﻤﻌﺎﺩﻟﺔ ( ): ∆3ﺍﻟﻤﺴﺘﻘﻴﻡ ∆3ﻴﺸﻤل ﺍﻟﻨﻘﻁﺘﺎﻥ ) َ B1( 0 , -3ﻭ ) A1( - 4 , 0ﻨﻅﻴﺭﺘﻲ Bﻭ( )A( )Auu1uMuur // Auu1uBuur1 ∆3 ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ Oﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﻓﺎﻥ : ﻭﻋﻠﻴﻪ ﻤﻥ ﺃﺠل ﺃﻱ ﻨﻘﻁﺔ ) M (x , yﻤﻥﻭﻤﻨﻪ ﺒﺘﻁﺒﻴﻕ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : Auu1uMuur x+4 ; Auu1uBuur1 4 ﻟﺩﻴﻨﺎ : y -3 −3(x + 4) − 4y = 0ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆3ﻫﻲ . 3x + 4y + 12 = 0 ( ):
ﺘﻤﺭﻴﻥ : 7 (1-1ﻤﻌﺎﺩﻟﺔ ( ): ∆1ﻟﺩﻴﻨﺎ ( ) ( ):∆1 BuuCur 4 ∆1 ) M ( x , yﻤﻥ ﻤﻥ ﺃﺠل 0 ﻭ ﻴﻭﺍﺯﻱ ﻴﺸﻤل ) A ( 3 , 5 A AuuMuur x-3 // BuuCur 4 '(∆1) C 0 'B y-5 j B C ﻭﻋﻠﻴﻪ ﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : Oi )(∆3 0(x – 3 ) – 4 (y – 5 ) = 0 ) (∆2 ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆1ﻫﻲ ( ). y = 5 : (2-1ﻤﻌﺎﺩﻟﺔ ( ): ∆2 ∆2ﻴﺸﻤل ) ( )B ( 2 , 0 'A ( ). ∆2 ) M ( x , yﻤﻥ ﺃﺠل ﻤﻥ . AuuCur 3 ﻭﻴﻭﺍﺯﻱ −5 ﻭﻋﻠﻴﻪ ﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : BuuMuur x-2 // AuuCur 3 ﻟﺩﻴﻨﺎ : y -5 -5(x – 2 ) – 3 y = 0ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆2ﻫﻲ ( ). 5 x + 3 y – 10 = 0 : (3-1ﻤﻌﺎﺩﻟﺔ ( ): ∆3 AuuBur −1( ) ( )∆3 ∆3 ) M ( x , yﻤﻥ ﺃﺠل .ﻤﻥ −5 ﻭﻴﻭﺍﺯﻱ ﻴﺸﻤل ) C ( 6 , 0 ﻭﻋﻠﻴﻪ ﻤﻥ ﺸﺭﻁ ﺍﻟﺘﻭﺍﺯﻱ ﻨﺠﺩ : CuuMuur x-6 // AuuBur -1 ﻟﺩﻴﻨﺎ : y -5 -5(x – 6 ) – (-1) y = 0ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ∆3ﻫﻲ ( ). 5 x - y – 30 = 0 :
(1-2ﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ ' : A' , B' , C 5 x + 3 y - 10 = 0 * ﻟﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ ' Aﻨﺤل ﺍﻟﺠﻤﻠﺔ : 5 x - y - 30 = 0 y = −20 = −5 ﻭﻤﻨﻪ : ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ 4 y + 20 = 0 : 4 ﻭ ﺒﺎﻟﺘﺎﻟﻲ x = 5 : ﻭ ﻋﻠﻴﻪ . A' ( 5 , - 5 ) : y=5 * ﻟﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ ' Bﻨﺤل ﺍﻟﺠﻤﻠﺔ : 5 x - y - 30 = 0 ﻭ ﻋﻠﻴﻪ . B' ( 7 , 5 ) : ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ x = 7 : y=5 * ﻟﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﺎﺕ ' Cﻨﺤل ﺍﻟﺠﻤﻠﺔ :5 x + 3y - 10 = 0 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ x = −1 : ﻭ ﻋﻠﻴﻪ . C' ( -1 , 5 ) : (2-2ﺇﺜﺒﺎﺕ ﺍﻟﻤﻨﺘﺼﻔﺎﺕ :ﻭﻤﻨﻪ Aﻤﻨﺘﺼﻑ ]' . [ B'C 'yB + 'yC =5 َﻭ 'xB + 'xC =3 : ﻟﺩﻴﻨﺎ * 2 2 'yA 'yC 'xA 'xCﻭ ﻤﻨﻪ Bﻤﻨﺘﺼﻑ ]' .[ A'C + =0 َﻭ + = 2 * ﻟﺩﻴﻨﺎ : 2 2 'yA 'yB 'xA 'xBﻭﻤﻨﻪ Cﻤﻨﺘﺼﻑ ]'. [ A'B + = 0 َﻭ + =6 : ﻟﺩﻴﻨﺎ * 2 2 (3-2ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ : ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ABCﻫﻭ G1ﻭ ﻴﻌﻴﻥ ﻜﻤﺎ ﻴﻠﻲ : x1 = xA + xB + xC = 11 3 3G1 11 , 5 ﺇﺫﻥ : 3 3 yA + yB + yC 5 y1 = 3 = 3 ﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ ' : A' B' Cﻫﻭ G2ﻭ ﻴﻌﻴﻥ ﻜﻤﺎ ﻴﻠﻲ :
x 2 = 'xA + 'xB + 'xC = 11 3 3G 11 , 5 ﺇﺫﻥ : 2 3 3 'yA + 'yB + 'yC 5 3 3 y2 = = ﻭ ﻋﻠﻴﻪ . G1 = G2 : ﺘﻤﺭﻴﻥ : 8 1 y = 3 x – 5 (2 Vur 1 (1 3 (3 3 2 ﺘﻤﺭﻴﻥ : 9 ﻟﻴﻜﻥ xﻋﺭﺽ ﺍﻟﻤﺴﺘﻁﻴل y ،ﻁﻭل ﺍﻟﻤﺴﺘﻁﻴل . ﻟﺩﻴﻨﺎ َ x . y = 40 :ﻭ 2( x + y ) = 26 )y = 13 - x ...(1 ﺃﻱ : x + y = 13 ﻭ ﻋﻠﻴﻪ : x . y = 40 )...(2 x . y = 40ﺒﺘﻌﻭﻴﺽ ) (1ﻓﻲ ) (2ﻨﺠﺩ x ( 13 - x ) = 40 :ﺃﻱ x2 – 13 x + 40 = 0 : ﻭﻋﻠﻴﻪ x = 8 :ﺃﻭ x = 5؛ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻨﺠﺩ : ﻤﻥ ﺃﺠل y = 5 : x = 8ﻭ ﻤﻥ ﺃﺠل . y = 8 : x = 5 ﻭ ﺒﻤﺎ ﺃﻥ xﻫﻭ ﻋﺭﺽ ﺍﻟﻤﺴﺘﻁﻴل ﻭ yﻫﻭ ﻁﻭل ﺍﻟﻤﺴﺘﻁﻴل ﻓﺈﻥ x < y : ﻭﺒﺎﻟﺘﺎﻟﻲ َ x = 5 :ﻭ . y = 8 ﺘﻤﺭﻴﻥ : 10 4( x + 1 ) = y x+1 = 1 y 4 ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : 5 x =y+1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : x ﻟﺩﻴﻨﺎ = 1 : y+1 5 y = 24 ﻭﻋﻠﻴﻪ : 5 x = 4 ( x + 1 ) + 1ﻭﻤﻨﻪ x = 5 : 5 ﺇﺫﻥ ﺍﻟﻜﺴﺭ ﻫﻭ . 24 :
ﺘﻤﺭﻴﻥ : 11 x + y = 30 ﻨﻔﺭﺽ x , yﻫـﺫﻴﻥ ﺍﻟﻌـﺩﺩﻴﻥ ﻭﻤﻨﻪ : ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ : x 2 - y2 = 60 x + y = 30 x + y = 30 (x - y)(x + y) = 60ﻭ ﻤﻨﻪ (x - y)( 30 ) = 60 : ﺃﻱ x = 16 : 2 x = 32 x + y = 30 ﺒﺠﻤﻊ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ ﻨﺠﺩ : ﺃﻱ : x-y =2 ﻭﻤﻨﻪ A . y = 14 : ﺘﻤﺭﻴﻥ : 12 ﻨﻔﺭﺽ ﺃﻥ َ AB = A C = x :ﻭ BC = y )2 x + y = 36 …(1 ﻟﺩﻴﻨﺎ : ﻭ ﻟﺩﻴﻨﺎ ﻓﻲ ﺍﻟﻤﺜﻠﺙ AHCﺍﻟﻘﺎﺌﻡ ﻓﻲ : H x x2 = (12)2 + y 2 2 12 cm x2 − y2 = 144 )...(2 ﺃﻱ : 4B H y (3C6 − 2 x =y 36 – 2 x …(3) : ﻤﻥ ) (1ﻨﺠﺩ x22 4 ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﺃﻱ 144 x = 1872 : − = )2 ﻓﻲ ) (2ﻨﺠﺩ 144 : ﻭﻋﻠﻴﻪ x = 13 :ﻭ ﺤﺴﺏ ) (3ﻨﺠﺩ y = 10 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﺃﻁﻭﺍل ﺃﻀﻼﻉ ﺍﻟﻤﺜـﻠﺙ ﻫﻲ : AB = AC = 13 ; BC = 10
ﺍﻟــــﺩﻭﺍلﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺘﻌﺭﻴﻑ • ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﻓﻲ ﻤﻌﻠﻡ • ﺍﺘـﺠـﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ • ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﺩﺍﻟﺔ • ﺍﻟﺩﺍﻟﺔ ﺍﻟﺯﻭﺠﻴﺔ ﺃﻭ ﺍﻟﻔﺭﺩﻴﺔ • ﻨﺴﺒﺔ ﺘﺯﺍﻴﺩ ﺩﺍﻟﺔ • ﺩﺭﺍﺴـﺔ ﺩﺍﻟـﺔ • ﺍﻟﺩﻭﺍل ﺍﻟﻤﺭﺠﻌﻴﺔ • ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ • ﺍﻟﺤﻠﻭل
• ﺘﻌﺭﻴﻑ: Dﻫﻭ ﻤﺠﺎل ﺃﻭ ﺍﺘﺤﺎﺩ ﻤﺠﺎﻻﺕ ﻤﻥ . Rﺘﻌﺭﻴﻑ ﺩﺍﻟﺔ fﻤﻥ Dﻨﺤﻭ Rﻫﻭ ﺍﻹﺭﻓﺎﻕ ﺒﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Dﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻭﺤﻴﺩﺍ ﻨﺭﻤﺯ ﻟﻪ ﺒﺎﻟﺭﻤﺯ ). f(x * Dﻴﺴﻤﻰ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ f ( x ) * . fﺘﺴﻤﻰ ﺼﻭﺭﺓ xﺒﺎﻟﺩﺍﻟﺔ . f * xﻴﺴﻤﻰ ﺴﺎﺒﻘﺔ ) f ( xﺒﺎﻟﺩﺍﻟﺔ . f ﺃﻤﺜﻠﺔ : ( 1ﺇﺫﺍ ﺃﺭﻓﻘﻨﺎ ﺒﺎﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ x 3 – 1ﻨﻜﻭﻥ ﻗﺩ ﺃﻨﺸﺄﻨﺎ ﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ Rﺤﻴﺙ : . f(x) = x3–1 ( 2ﺍﻟﺩﺍﻟﺔ hﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Rﺒﺎﻟﻌﺒﺎﺭﺓ h ( x ) = 5x 2 – 3 :ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﺎﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ x ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ . 5x 2 – 3 : ﻓﻤﺜﻼ h ( 1 ) = 2 ; h ( - 1 ) = 2 : ﻭﻋﻠﻴﻪ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ 1 - ، 1ﻟﻬﺎ ﻨﻔﺱ ﺍﻟﺼﻭﺭﺓ . 2 ( 3ﺍﻟﺩﺍﻟﺔ ϕﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Rﺒﺎﻟﻌﺒﺎﺭﺓ ϕ ( x ) = x :ﻫﻲ ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل x ≥ 0ﺃﻱ ﻤﻌﺭﻓﺔ ﻋﻠﻰ . Rﻟﻤﺎ x ﻷﻨﻪ : x≠0 ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل g ( x ) = 2 ( 4ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ * Rﺒﺎﻟﻌﺒﺎﺭﺓ : x = 0ﺘﻜﻭﻥ ) g ( xﻏﻴﺭ ﻤﻭﺠﻭﺩﺓ .
• ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﻓﻲ ﻤﻌﻠﻡ: ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ o , ri , rj؛ fﺩﺍﻟﺔ ؛ Dﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ( ). ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ) ( Cﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻫﺫﺍ ﺍﻟﻤﻌﻠﻡ ﻫﻭ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ﺫﺍﺕ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ) x , f ( xﺤﻴﺙ . x ∈ D :ﻭﻨﻘﻭل ﺃﻥ y = f ( x ) :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ) ( ). ( C • ﺍﺘـﺠـﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ : fﺩﺍﻟﺔ ؛ Iﻤﺠﺎل ﻤﺤﺘﻭﻱ ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ . f * ﻨﻘﻭل ﺃﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭﻴﻥ x 1 , x 2ﻤﻥ I ﺒﺤﻴﺙ x 1 < x 2 :ﻓﺈﻥ . f ( x 1 ) < f ( x 2 ) : * ﻨﻘﻭل ﺃﻥ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭﻴﻥ x 2 , x 1ﻤﻥ I ﺒﺤﻴﺙ x 1 < x 2 :ﻓﺈﻥ . f ( x 1 ) > f ( x 2 ) :
• ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﺩﺍﻟﺔ: fﺩﺍﻟﺔ I .ﻤﺠﺎل ﻤﺤﺘﻭﻱ ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ α . Dﻫﻭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻥ . I -ﻨﻘﻭل ﺃﻥ ) f ( αﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﺇﺫﺍ ﻜﺎﻨﺕ ) f ( αﻫﻲ ﺃﺼﻐﺭ ﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ f؛ ﺃﻱ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Iﻓﺈﻥ ) f ( x ) ≥ f ( α -ﻨﻘﻭل ﺃﻥ ) f ( αﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻜﺒﺭﻯ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﺇﺫﺍ ﻜﺎﻨﺕ ) f ( αﻫﻲ ﺃﻜﺒﺭ ﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ f؛ ﺃﻱ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Iﻓﺈﻥ ) . f ( x ) ≤ f ( α • ﺍﻟﺩﺍﻟﺔ ﺍﻟﺯﻭﺠﻴﺔ ﺃﻭ ﺍﻟﻔﺭﺩﻴﺔ : fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ( C ).Dﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). o , ri , rj -ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﺯﻭﺠﻴﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﺃﻱ ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Dﻴﻜﻭﻥ: ( - x )∈Dﻭ ) . f ( - x ) = f ( x ﻭﺘﻜﻭﻥ ) ( Cﻤﺘﻨﺎﻅﺭﺓ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ -ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻓﺭﺩﻴﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﺃﻱ ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Dﻴﻜﻭﻥ : ( - x )∈Dﻭ ) f ( - x ) = f ( x ﻭﺘﻜﻭﻥ ) ( Cﻤﺘﻨﺎﻅﺭﺓ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻨﻘﻁﺔ . O • ﻨﺴﺒﺔ ﺘﺯﺍﻴﺩ ﺩﺍﻟﺔ: fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل Dﻤﻥ x 1 , x 2 . Rﻋﻨﺼﺭﺍﻥ ﻤﻥ . D=ϑ ) f ( x1 ) - f ( x2 ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل x1 ≠ x2ﺒﺎﻟﻌﺒﺎﺭﺓ : x1 - x2 ﺘﺴﻤﻰ ﻨﺴﺒﺔ ﺘﺯﺍﻴﺩ ﺍﻟﺩﺍﻟﺔ . f * ﺘﻜﻭﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ . ϑ > 0 : * ﺘﻜﻭﻥ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ . ϑ < 0 :
• ﺩﺭﺍﺴـﺔ ﺩﺍﻟـﺔ : ﻟﺩﺭﺍﺴﺔ ﺩﺍﻟﺔ fﻨﻤﺭ ﺒﺎﻟﻤﺭﺍﺤل ﺍﻟﺘﺎﻟﻴﺔ : ( 2ﺩﺭﺍﺴﺔ ﻓﺭﺩﻴﺔ ﺃﻭ ﺯﻭﺠﻴﺔ ﺍﻟﺩﺍﻟﺔ . ( 1ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . f ( 3ﺤﺴﺎﺏ ﻨﺴﺒﺔ ﺍﻟﺘﺯﺍﻴﺩ ﻭﺍﺴﺘﻨﺘﺎﺝ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ . ( 4ﺇﻋﻁﺎﺀ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ . ( 5ﺇﻋﻁﺎﺀ ﺠﺩﻭل ﻗﻴﻡ ﻤﺴﺎﻋﺩﺓ ﻟﺭﺴﻡ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ . ( 6ﺇﻨﺸﺎﺀ ﺍﻟﺒﻴﺎﻥ ) ( cﻟﻠﺩﺍﻟﺔ . f • ﺍﻟﺩﻭﺍل ﺍﻟﻤﺭﺠﻌﻴﺔ:ﻭ ﻫﻲ ﺍﻟﺩﻭﺍل ﺍﻟﺘﻲ ﻴﻜﺜﺭ ﺍﺴﺘﻌﻤﺎﻟﻬﺎ ﻭ ﻤﻨﻬﺎ ﻨﺭﻜﺏ ﺍﻟﺩﻭﺍل ﺍﻷﺨﺭﻯ ؛ ﻭﻟﺫﻟﻙ ﺃﺩﺭﺠﺕ ﻓﻲ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻭ ﻨﺫﻜﺭ ﻤﻨﻬﺎ :; x2 ; 1 x ; sin x ; Cos x x
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126