ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻨﻲ ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ: • ﺍﻷﺸﻌﺔ ﻭ ﺍﻻﻨﺴﺤﺎﺏ • ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ • ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ • ﺍﻟﻤﻌﺎﻟﻡ • ﺍﻟﺘﻁﺒﻴﻘﺎﺕ ﺍﻟﺘﻨﺎﺴﺒﻴﺔ
ﺍﻷﺸــﻌﺔ ﺍﻟﻜﻔﺎﺀﺍﺘﺎﻟﻤﺴﺘﻬﺩﻓﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺸﻌﺎﻉ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺍﻨﺴﺤﺎﺏ ﻤﻌﺭﻓﺔ ﺸﺭﻭﻁ ﺘﺴﺎﻭﻱ ﺸﻌﺎﻋﻴﻥﻤﻌﺭﻓﺔ ﻋﻼﻗﺔ ﺸﺎل ﻭﺍﺴﺘﻌﻤﺎﻟﻬﺎ ﻹﻨﺸﺎﺀ ﻤﺠﻤﻭﻉ ﺸﻌﺎﻋﻴﻥ ﺃﻭ ﻹﻨﺸﺎﺀ ﺸﻌﺎﻉ ﻴﺤﻘﻕ ﻋﻼﻗﺔ ﺸﻌﺎﻋﻴﺔ ﻤﻌﻨﻴﺔ ﺍﻭ ﻹﻨﺠﺎﺯ ﺒﺭﺍﻫﻴﻥ ﺒﺴﻴﻁﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻟﺩﺭﺱ • ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﺫﺍﺘﻲ
ﺍﻟﺩﺭﺱ (1ﺍﻟﺸﻌﺎﻉ: Aﻭ ’ Aﻨﻘﻁﺘﺎﻥ ﻤﺨﺘﻠﻔﺘﺎﻥ ﺍﻻﻨﺴﺤﺎﺏ ﺍﻟﺫﻱ ﻴﺤﻭل Aﺇﻟﻰ ’ Aﺃﻴﻀﺎ Bﺍﻟﻰ ’ Bﻭ Cﺇﻟﻰ ’.C u 'A 'CA 'B B u u c ﻟﻬﺫﻩ ﺍﻻﻨﺴﺤﺎﺏ ﻨﺭﻓﻕ ﺍﻟﺸﻌﺎﻉ Uﺍﻟﻤﻌﺭﻑ ﺒـ : * /ﻤﻨﺤﻨﺎﻩ :ﻫﻲ ﺍﻟﻤﻌﻴﻨﺔ ﺒﺎﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻭﺍﺯﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ )’ (AAﻭ )’ (BBﻭ )’(CC * /ﺍﺘﺠﺎﻩ :ﻫﻭ ﺍﻻﺘﺠﺎﻩ ﻤﻥ Aﻨﺤﻭ ’Aﺍﻻﺘﺠﺎﻩ ﻤﻥ Aﺍﻟﻰ ’ Aﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ )’ (AAﻫﻭ ﻨﻔﺴﻪ ﻤﻥ Bﺍﻟﻰ ’ Bﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ )’ (BBﺃﻭ ﻤﻥ Cﺍﻟﻰ ’ Cﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ )’(CC * /ﻁﻭﻴﻠﺘﺔ :ﻫﻭ ﺍﻟﻁﻭل ’ AAﺃﻭ ’ BBﺃﻭ ’CC ﻤﻼﺤﻅﺔ :ﻴﻤﻜﻥ ﺍﻥ ﻨﺭﻤﺯ ﻟﻬﺫﺍ ﺍﻟﺸﻌﺎﻉ ﺒـ ' ) AAﻤﺒﺩﺃﻩ Aﻭﻨﻬﺎﻴﺔ ’(A ﺃﻭ ' BBﺃﻭ ’CC /2ﺘﺴﺎﻭﻱ ﺸﻌﺎﻋﻴﻥ * /ﺘﻌﺭﻴﻑ اﻟﻘﻮل أن ' AA' = BBﻤﻌﻨﺎﻩ ﺍﻻﻨﺴﺤﺎﺏ ﺍﻟﺫﻱ ﻴﺤﻭل Aﺍﻟﻰ ’A ﻴﺤﻭل ﺃﻴﻀﺎ Bﺍﻟﻰ ’. B ﻫﺫﺍ ﺍﻻﻨﺴﺤﺎﺏ ﻴﺴﻤﻰ ﺍﻨﺴﺤﺎﺏ ﺫﻱ ﺍﻟﺸﻌﺎﻉ ' AAﺃﻭ 'BB
ﻤﻼﺤﻅﺔ : ﺍﻟﻘﻭل ﺃﻥ ﺸﻌﺎﻋﻴﻥ ﻤﺘﺴﺎﻭﻴﻴﻥ ﻤﻌﻨﺎﻩ : • ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻨﻰ • ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻹﺘﺠﺎﻩ • ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻁﻭﻴﻠﺔ /3ﻤﻨﺘﺼﻑ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ : ﺨﺎﺼﻴﺔ: إذا آﺎﻧﺖ Iﻣﻨﺘﺼﻒ اﻟﻘﻄﻌﺔ ] [ABﻓﺈن AI = IB إذا آﺎﻧﺖ AI = IBﻓﺈن Iﻣﻨﺘﺼﻒ اﻟﻘﻄﻌﺔ ][AB B I A /4ﺍﻷﺸﻌﺔ ﻭﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ : ﺨﺎﺼﻴﺔ : إذا آﺎن ﻟـ ] [ADو ] [BCﻧﻔﺲ اﻟﻤﻨﺘﺼﻒ ﻓﺈن AB = CDو AC = BDإذا آﺎن AB = CDﻓﺈن ﻟـ ] [ADو ] [BCﻧﻔﺲ اﻟﻤﻨﺘﺼﻒAB cD
BC AD ﻤﻼﺤﻅﺔ : ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﻫﺫﻩ ﺍﻟﺨﺎﺼﻴﺔ ﻋﻠﻰ ﺍﻟﻨﺤﻭ ﺍﻟﺘﺎﻟﻲ : * ﺇﺫﺍ ﻜﺎﻥ ABCDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻓﺈﻥ AB = CD * ﺇﺫﺍ ﻜﺎﻥ AB = CDﻓﺈﻥ ABCDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ. /5ﻤﺠﻤﻭﻉ ﺸﻌﺎﻋﻴﻥ : 1. 5ﻤﺭﻜﺏ ﺍﻨﺴﺤﺎﺒﻴﻥ : ﺨﺎﺼﻴﺔ :إذا ﺕﺤﻮل اﻟﺸﻜﻞ Fاﻟﻰ F1ﺑﺎﻻﻧﺴﺤﺎب ذي اﻟﺸﻌﺎع ABوﺕﺤﻮل اﻟﺸﻜﻞ F1اﻟﻰ F2ﺑﺎﻻﻧﺴﺤﺎب ذي اﻟﺸﻌﺎع BC ﻓﺈن اﻟﺸﻜﻞ Fﻳﺘﺤﻮل اﻟﻰ F2ﺑﺎﻻﻧﺴﺤﺎب ذي اﻟﺸﻌﺎع . AC B F1AF C F2 * ﺘﻌﺭﻴﻑ C, B, Aﺛﻼث ﻧﻘﻂ آﻴﻔﻴﺔ.ﻧﻘﻮل أن ﻣﺠﻤﻮع اﻟﺸﻌﺎﻋﻴﻦ ABو BCهﻮاﻟﺸﻌﺎع AC
AB + BC = AC ﻋﻼﻗﺔ ﺸﺎل : 2. 5ﺍﻷﺸﻌﺔ ﺍﻟﺨﺎﺼﺔ * ﺍﻟﺸﻌﺎﻉ ﺍﻟﻤﻌﺩﻭﻡ : ﻨﺭﻤﺯ ﻟﻪ ﺒـ Oﻭﻫﻭ ﺍﻟﺸﻌﺎﻉ ) AAﺃﻭ (.. BB ﺤﺴﺏ ﻋﻼﻗﺔ ﺸﺎل : AB + O = AB + BB = AB ﻨﻜﺘﺏ : AA = BB = O * ﺍﻟﺸﻌﺎﻋﺎﻥ ﺍﻟﻤﺘﻌﺎﻜﺴﺎﻥ: ﻤﻌﺎﻜﺱ ﺍﻟﺸﻌﺎﻉ ABﻫﻭ ﺍﻟﺸﻌﺎﻉ BAﻭﻨﻘﻭل ﺃﻥ ﺍﻟﺸﻌﺎﻋﻴﻥ ABﻭ BAﻤﺘﻌﺎﻜﺴﺎﻥ ﻨﺭﻤﺯ ﻟـ BAﺒـ - AB ﻟﺩﻴﻨﺎ : AB + BA = AA = O BA = − AB 3. 5ﻤﺠﻤﻭﻉ ﺸﻌﺎﻋﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﺒﺩﺃ : ﺨﺎﺼﻴﺔ:إذا آﺎن ABCDﻣﺘﻮازي اﻷﺿﻼع ﻓﺈن : AB + AD = AC DC AB + ADAB
. 5ﻤﺭﻜﺏ ﺘﻨﺎﻅﺭﻴﻥ ﻤﺭﻜﺯﻴﻴﻥ : ﺨﺎﺼﻴﺔ: إذا آﺎﻧﺖ F1ﻧﻈﻴﺮة Fﺑﺎﻟﻨﺴﺒﺔ اﻟﻰ A وآﺎﻧﺖ F2ﻧﻈﻴﺮة F1ﺑﺎﻟﻨﺴﺒﺔ اﻟﻰ Bﻓﺈن اﻻﻧﺴﺤﺎب ذي اﻟﺸﻌﺎع 2ABﻳﺤﻮل ﻣﺒﺎﺵﺮة Fاﻟﻰ . F2 F1 ’M M ’’MF F2
ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل ) :1ﺇﺜﺒﺎﺕ ﺘﺴﺎﻭﻱ ﺸﻌﺎﻋﻴﻥ ( BDSﻤﺜﻠﺙ ﻭ Iﻤﻨﺘﺼﻑ ﺍﻟﻘﻁﻌﺔ ][SD ﻨﻅﻴﺭﺓ ﺍﻟﻨﻘﻁﺔ Bﺒﺎﻟﻨﺴﺒﺔ ﺍﻟﻰ ﺍﻟﻨﻘﻁﺔ I -ﺒﻴﻥ ﺃﻥ HD = SB : ﺍﻟﻁﺭﻴﻘﺔ : ﻹﺛﺒﺎت أن ﺵﻌﺎﻋﻴﻦ MNو RSﻣﺘﺴﺎوﻳﺎن أي MN = RS :ﻳﻜﻔﻲ ان ﻧﺒﻴﻦ ان MNSRﻣﺘﻮازي اﻷﺿﻼعﻋﻠﻰ اﻟﺸﻜﻞ ﻳﺠﺐ ﺍﻟﺤل:ﺕﺤﺪﻳﺪ اﻟﺮﻣﻮز ﻟﻔﻬﻢ -اﻟﻨﻘﻄﺔ Hهﻲ ﻧﻈﻴﺮة Bﺑﺎﻟﻨﺴﺒﺔ اﻟﻰ I اﻟﻤﻌﻄﻴﺎت ﻳﻌﻨﻲ Iهﻲ ﻣﻨﺘﺼﻒ ][BH اﻟﻘﻄﺮ ] [SDو ] [BHﻟﻠﺮﺑﺎﻋﻲ BDHSﻳﺘﻨﺎﺹﻔﺎن إذن اﻟﺮﺑﺎﻋﻲ BDHSﻣﺘﻮازي اﻷﺿﻼع وﻣﻨﻪ B HD = SDB I SH
ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :2 ABDCﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ Eﻨﻅﻴﺭﺓ Aﺒﺎﻟﻨﺴﺒﺔ ﺍﻟﻰ Cﺒﻴﻥ ﺃﻥ ﺍﻟﺭﺒﺎﻋﻲ BDECﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ. ﺍﻟﻁﺭﻴﻘﺔ : ﻹﺜﺒﺎﺕ ﺃﻥ ﺍﻟﺭﺒﺎﻋﻲ MNSRﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ،ﻴﻜﻔﻲ ﺍﺜﺒﺎﺕ ﺘﺴﺎﻭﻱ ﺸﻌﺎﻋﻴﻥ ،ﺃﻱ ﺃﻥ : MN = RSﺃﻭ M N MR = NS ﺃﻭ SN = RMﺃﻭ SR = NMRS ﺍﻟﺤل : ﻟﺩﻴﻨﺎ ABDCﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ،ﺇﺫﻥ AC = BD : BD A CEﻧﺘﺮﺝﻢ ﺑﺎﻷﺵﻌﺔ ﻣﻌﻨﻰ -Eﻨﻅﻴﺭﺓ Aﺒﺎﻟﻨﺴﺒﺔ ﺍﻟﻰ Cأن BDECﻤﺘﻭﺍﺯﻱ ﺇﺫﻥ C :ﻤﻨﺘﺼﻑ ] [AEﻭ AC = CE ﺍﻷﻀﻼﻉ ﺍﻟﺸﻌﺎﻋﺎﻥ BDﻭ CEﻴﻘﺎﻴﺴﺎﻥ ﺍﻟﺸﻌﺎﻉ AC ﺇﺫﻥ BD = CE : ﻭﻤﻨﻪ ﺍﻟﺭﺒﺎﻋﻲ BDECﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ.
ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل : 3 * ﺃﺭﺴﻡ ﻤﺭﺒﻌﺎ RIENﻁﻭل ﻀﻠﻌﻪ 3 cm -ﺍﻨﺵﺀ ﺍﻟﻨﻘﻁﺔ Pﺼﻭﺭﺓ Iﺒﺎﻹﻨﺴﺤﺎﺏ ﺫﻱ ﺍﻟﺸﻌﺎﻉ RE -ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻨﻘﻁ ﺍﻟﻤﻭﺠﻭﺩﺓ ﻋﻠﻰ ﺍﻟﺸﻜل ﻓﻘﻁ ﺍﺜﻘل ﻭﺃﺘﻤﻡ ﺍﻟﻤﺴﺎﻭﺍﺓ ﺍﻟﺘﺎﻟﻴﺔ ﻤﻊ ﺍﻟﺘﻌﻠﻴل : ﺃ ، RE + EI = ... -ﺏ ، NR + IP + ... -ﺠـRN + RI = ... - ﺍﻟﻁﺭﻴﻘﺔ: ﻹﻨﺸﺎﺀ ﻤﻤﺜل ﺍﻟﻤﺠﻤﻭﻉ U + Vﻟﻠﺸﻌﺎﻋﻴﻥ ﻭ uV* ﺇﻤﺎ ﻨﻀﻊ ﺍﻟﺸﻌﺎﻋﻴﻥ ﺒﺤﻴﺙ ﺘﻜﻭﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺸﻌﺎﻉ ﺍﻷﻭل ﻫﻲ ﺒﺩﺍﻴﺔ ﺍﻟﺸﻌﺎﻉ ﺍﻟﺜﺎﻨﻲ ﻭﻨﺴﺘﻌﻤل ﻋﻼﻗﺔ ﺸﺎل : u U +V V * ﺇﻤﺎ ﻨﺴﺘﻌﻤل ﻤﻤﺜﻠﻴﻥ ﺒـ ﻭ Vﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﺒﺩﺃ ﻭﻨﺴﺘﻌﻤل ﻗﺎﻋﺩﺓ ﺸﻌﺎﻋﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﺒﺩﺃu. u U +V ﺍﻟﺤل V : * IP = REﺇﺫﻥ RIPEﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ) RE + EI = RI -ﺤﺴﺏ ﻋﻼﻗﺔ ﺸﺎل ( IP = RE - NR + IP = NR + RE = NE - ﺤﺴﺏ ﺸﺎل R I .NE P
ﺍﻟﺸﻌﺎﻋﺎﻥ RNﻭ RI * RIENﻤﺭﺒﻊ ﻫﻭ ﻤﺘﻭﺍﺯﻱ ﺘﻔﺱ ﺍﻟﻤﺒﺩﺃ ﺍﻷﻀﻼﻉ ﻭﻤﻨﻪ RN + RI = RE ABCD E اﻟﺘﻤﺎرﻳﻦ /1ﻤﻥ ﺒﻴﻥ ﺍﻷﺸﻜﺎل ﺍﻟﺘﺎﻟﻴﺔ ﻤﺎ ﻫﻲ ،ﺍﻟﺘﻲ ،ﺘﺤﻘﻕ ﺍﻟﻤﺴﺎﻭﺍﺓ AB = MN ( b (aAM AMBN BN AN (c BM / 2ﺃﻟﻴﻙ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل :
FGH I J K LM N O PQR S T ﺍﻨﻘل ﻭﺃﻜﻤل ﻤﺎ ﻴﻠﻲ : AH = M . PM = M . LI = .O NR = .L AK = H. * Iﻫﻲ ﺼﻭﺭﺓ ...ﺒﺎﻻﻨﺴﺤﺎﺏ ﺍﻟﺫﻱ ﺸﻌﺎﻋﻪ KC * ...ﻫﻲ ﺼﻭﺭﺓ Pﺒﺎﻻﻨﺴﺤﺎﺏ ﺍﻟﺫﻱ ﺸﻌﺎﻋﻪ GD DO = ....... ABCD /3ﻤﺴﺘﻁﻴل ﻤﺭﻜﺯﻩ 0 * ﺍﺸﺭﺡ ﻟﻤﺎﺫﺍ AO = OC -ﺍﻨﻘل ﻭﺃﺘﻤﻡ : * ، CO = ...... ، BO = ....B× U /4ﺃ .ﺃﻨﻘل ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل ﻋﻠﻰ ﻭﺭﻗﺔ ﺒﻴﻀﺎﺀ ×A ﺏ .ﺃﻨﺸﺊ ﻨﻘﻁﺘﻴﻥ Dﻭ Cﺒﺤﻴﺙ : AC = Uﻭ DB = U /5ﺍﺭﺴﻡ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ] ، [ABﺜﻡ ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Cﺒﺤﻴﺙ AB = BC * ﻤﺎﺫﺍ ﺘﻤﺜل ﺍﻟﻨﻘﻁﺔ Bﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻘﻁﻌﺔ ][AC * ﺃﻨﺸﺊ ﻨﻘﻁﺔ Dﺒﺤﻴﺙ BD = CA
/6ﺃﻨﺸﺊ ﻤﺜﻠﺙ ABC * ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ D,E,Fﺒﺤﻴﺙ BD = CBﻭ EC = CBﻭ AF = ED ABCD /7ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻤﺭﻜﺯﻩ 0 ﺃﻨﻘل ﻭﺃﺘﻤﻡ ﺃ ، AB = .........../ﺏAD = ........... / ﺠـ ، AO = ........... /ﺩ ، OB = ........... /ﻫـOC = .........../ EF = MN /8ﻭ 0ﻤﻨﺘﺼﻑ ﺍﻟﻘﻁﻌﺔ ][EN * ﺃﻨﺸﺊ ﺍﻟﺸﻜل * ﺒﻴﻥ ﺃﻥ Mﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ 0ﻭﺘﺸﻤل FVU BSD /9ﻤﺜﻠﺙ ﻭ Iﻤﻨﺘﺼﻑ ][SD * ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Hﻨﻅﻴﺭﺓ Bﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ I * ﺒﻴﻥ ﺃﻥ HD = SB /10ﺃﻋﺩ ﺭﺴﻡ ﺍﻟﺸﻜل * ﺃﻨﺸﺊ ﺼﻭﺭﺓ ﺍﻟﻤﺭﺒﻊ ABCDﺍﻻﻨﺴﺤﺎﺏ ﺫﻱ ﺍﻟﺸﻌﺎﻉ µ + V ABC /11ﻤﺜﻠﺙ * ﺃﻋﻁ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺜل *، AC + CB /* ، AB + BC / *AB + AC /* BA + AC /* ﺃﻨﺸﺊ ﻤﻤﺜل ﻤﺒﺩﺃﻩ Aﻟـ ، AB + ACﺜﻡ ﺍﻟﻤﻤﺜل ﺍﻟﺫﻱ ﻤﺒﺩﺃﻩ Cﺒﻨﻔﺱ ﺍﻟﺸﻌﺎﻉ . AB + AC /12ﻋﻠﻰ ﺃﺸﻜﺎل ﻤﺨﺘﻠﻔﺔ ﺃﻨﺸﺊ ﻤﻤﺜﻼ ﻟﻜل ﻤﻥ ﺍﻷﺸﻌﺔ
*CB + DA /* ، AD + CB /* ، BA + CD /A B CD IJK /13ﻤﺜﻠﺙ * ﺃﻋﻁ ﻤﻤﺜﻼ ﻟـIJ + JK :* ﻋﻴﻥ ﺍﻟﻨﻘﻁﺔ Sﺒﺤﻴﺙ IJ = KSﻭﺍﺴﺘﻨﺘﺞ ﺃﻥ JK + IJ = JS : VECT /14ﻤﺘﻭﺍﺯﻱ ﺃﻀﻠﻊ ﻤﺭﻜﺯﻩ Iﻋﻠﻰ ﺃﺸﻜﺎل ﻤﺨﺘﻠﻔﺔ* ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Aﺒﺤﻴﺙ TA = TC + VT*ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Bﺒﺤﻴﺙ VB = CT + VI /15ﺃﻨﻘل ﻭﺃﺘﻤﻡ ﻤﺎﻴﻠﻲﺏ...... + CA = RA / ﺃIJ + ...... = IE /ﺠـ ...... + AB = AS /ﺩAB + ...... = O / /16ﺃ ،ﺃﻨﺸﺊ ﺍﻟﻤﺜﻠﺙ ABDﻴﺤﻴﺙBD = 7 Cm ، AD = 6 Cm ، AB = 5 Cm* ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Eﺼﻭﺭﺓ Aﺒﺎﻹﻨﺴﺤﺎﺏ ﺫﻱ ﺍﻟﺸﻌﺎﻉ BD* ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Fﺒﺤﻴﺙ BF = AB + BD * ﺒﻴﻥ ﺃﻥ Dﻤﻨﺘﺼﻑ ][EF
ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺍﻟﻤﻘﺘﺭﺤﺔ /1ﺍﻟﺸﻜل ﺍﻟﺫﻱ ﻴﺤﻘﻕ ﺍﻟﻤﺴﺎﻭﺍﺓ ، AB = MNﻫﻭ ﺍﻟﺸﻜل b /2ﺇﺘﻤﺎﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ ﺃ ، AH = MT .ﺏPM = MJ . ﺠـ ، LI = Rθ .ﺩNR = HL . ﻫـAK = HR . ﻭ I .ﺼﻭﺭﺓ Qﺒﺎﻻﻨﺴﺤﺎﺏ ﺫﻱ ﺍﻟﺸﻌﺎﻉ KC ﻱ M .ﻫﻲ ﺼﻭﺭﺓ Ρﺒﺎﻻﻨﺴﺤﺎﺏ ﺫﻱ ﺍﻟﺸﻌﺎﻉ GD AO = OC /3ﻷﻥ A B * ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ )(AC 0 * ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ * ﻨﻔﺱ ﺍﻟﻁﻭﻴﻠﺔ :ﻷﻥ 0ﻤﻨﺘﺼﻑ ][ACDC /4ﺍﻟﻨﻘل ﻭﺍﻻﺘﻤﺎﻡ DO = OB /d ، CO = OA / b ، BO = OD /a /4ﺇﻨﺸﺎﺀ ﺍﻟﻨﻘﻁﺘﻴﻥ B C,D :DU ﺒﺤﻴﺙ AC = µ : C DB = µA /5ﺍﻻﻨﺸﺎﺀD AB C * ﺍﻟﻨﻘﻁﺔ Bﻤﻨﺘﺼﻑ ﺍﻟﻘﻁﻌﺔ ][AC * ﺇﻨﺸﺎﺀ Dﺒﺤﻴﺙ BD = CA
AF /6EC BD AB ABCD /7ﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ ﻤﺭﻜﺯﻩ O ﺍﻟﻤﻘﺎﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ 0 * ، AB = DCﺏAD = BC /DC * ، AO = OCﺩOB = DO / /8ﺃ /ﺇﻨﺸﺎﺀ ﺍﻟﺸﻜل ﺒﺤﻴﺙ EF = MNﻭ Oﻤﻨﺘﺼﻑ ][EN MNE F 0 MN ﺍﻟﺤﺎﻟﺔ 2 EF ﺍﻟﺤﺎﻟﺔ 1 * ﺍﺜﺒﺎﺕ ﺃﻥ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ 0ﻭﺘﺸﻤل F /1ﺍﻟﺤﺎﻟﺔ :1 ﻴﻜﻔﻲ ﺃﻥ ﻨﺘﺒﻴﻥ ﺃﻥ OM=OFﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ EF = MNﻤﻌﻨﺎﻩ ﺃﻥ ﺍﻟﺭﺒﺎﻋﻲ EFMNﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉﺃﻱ ﻗﻁﺭﺍﻩ ][ENﻭ ] [MFﻤﻨﺘﺼﻔﺎﻥ ﻭﺒﻤﺎ ﺃﻥ 0ﻤﻨﺘﺼﻑ ] [ENﻓﻬﻭ ﻤﻨﺘﺼﻑ ] [MFﻭﻤﻨﻪ OM=OF ﻭ ﻤﻨﻪ OM=OF ﻭﻤﻨﻪ Hﺘﻨﺘﻤﻲ ﻟﻠﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ 0ﻭﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ F
BSHD S /2ﺍﻟﺤﺎﻟﺔ :2 H ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ: EO = ONﻻﻥ 0ﻤﻨﺘﺼﻑ ][EN ) EF + FO = OM + MNﺍﺴﺘﻌﻤﺎل ﻋﻼﻗﺔ ﺸﺎل( ﻟﻜﻥ EF = MNﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﻤﻨﻪ FO = OM ﻭﻤﻨﻪ 0ﻤﻨﺘﺼﻑ ][FM ﻭﻤﻨﻪ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ 0ﻭﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ .F /9ﺍﺜﺒﺎﺕ ﺃﻥ B HD = SB ﻴﻜﻔﻲ ﺍﺜﺒﺎﺕ ﺃﻥ ﺍﻟﺭﺒﺎﻋﻲ ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ . ﻟﺩﻴﻨﺎD : Iﻤﻨﺘﺼﻑ ][DS ) ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ ( Hﻨﻅﻴﺭﺓ Bﺒﺎﻟﻨﺴﺒﺔ ﺍﻟﻰ I ﻤﻌﻨﺎﻩ Iﻤﻨﺘﺼﻑ ][BH ﺇﺫﻥ :ﻓﻲ ﺍﻟﺭﺒﺎﻋﻲ BSHDﻗﻁﺭﺍﻥ ] [BHﻭ ][SD ﻤﺘﻨﺎﺼﻔﺎﻥ ﻓﻲ I ﻭﻤﻨﻪ ﺍﻟﺭﺍﺒﻌﻲ BSHDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻭﻤﻨﻪ HD = SD :
/10 AB VAB U DCDC U+V /11 AB + BC A C AC + AC BAB + AC BA + AC AB + AC BA CD /12 AD CB CDAB CDAB
CB DA B CD A I ﺍﻻﺴﺘﻨﺘﺎﺝ ﺃﻥ/13 IJ + JK JK + IJ = JS ( ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ )ﺏIJ = KS ﻟﺩﻴﻨﺎJ K : ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ S ( ) ﺤﺴﺏ ﺸﺎلJK + IJ = JS T V :1 ﺍﻟﺤﺎﻟﺔ/14 EA TA = TC + VT ﺤﻴﺙ C = VT + TC = VC T : 2 ﺍﻟﺤﺎﻟﺔ C VB = CT + VI ﺤﻴﺙCI + VI V E
ﺏRC + CA = RA - /15ﺍﺘﻤﺎﻡ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ ﺩAB + BA = O - ﺃIJ + JE = IE - ﺠـBS + AB = AS - /16ﺏ E/ﺼﻭﺭﺓ Aﺒﺎﻻﻨﺴﺤﺎﺏ ﺫﻱ ﺸﻌﺎﻉ BD ﺤـ F /ﺤﻴﺙ F BF = AB + BD 7cm D 6cmB 5cm A ﺩ /ﺍﺜﺒﺎﺕ ﺃﻥ ﻤﻨﺘﺼﻑ ][ EF ﻟﺩﻴﻨﺎ ABDEﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻷﻥ BD = AE ABFDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ ﻷﻥ : AD = AB + BD BF = AB + BD ﻭﻤﻨﻪ AD = BF : -ﺒﻤﺎ ﺃﻥ ABDE :ﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ -ﻓﺈﻥ (1)..... DE = BA : -ﺒﻤﺎ ﺃﻥ ABFDﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉ
-ﻓﺈﻥ (2) ..... FD = BA : -ﻤﻥ ) (1ﻭ ) (2ﻨﺠﺩ DE = FD : ﻭﻤﻨﻪ Dﻤﻨﺘﺼﻑ ][EF
ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴــﺔﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻟﺩﺭﺱ • ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭ ﺍﻟﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
ﺍﻟﺩﺭﺱ . 1ﺘﻌﺭﻴﻑ ﻭ ﺘﺭﻤﻴﺯ :ﺘﻌﺭﻴﻑ a :ﻋﺩﺩ ﻤﻌﻠﻭﻡ .ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ xﺍﻟﺠﺩﺍﺀ xﻓﻲ aﺃﻱ a xﺘﺴﻤﻰ ﺩﺍﻟﺔ ﺨﻁﻴﺔ . ﻨﻘﻭل ﺃﻥ a x :ﻫﻲ ﺼﻭﺭﺓ . x ﺍﻟﻌﺩﺩ aﻴﺴﻤﻰ ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ . ﺍﻟﺘﺭﻤﻴﺯ : ﻨﺭﻤﺯ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ ﺍﻟﺘﻲ ﻤﻌﺎﻤﻠﻬﺎ aﺒﺎﻟﺭﻤﺯx → a x : ﻭﻨﺴﻤﻴﻬﺎ ﺒﺤﺭﻑ B، Aﺃﻭ fﻤﺜﻼ . ﻭ ﻨﻜﺘﺏ f : x → a x : ﻭﻨﻜﺘﺏ ﺃﻴﻀﺎ f(x) = a x : ﻭ ﻨﻘﺭﺃ :ﺼﻭﺭﺓ xﺒﺎﻟﺩﺍﻟﺔ fﺘﺴﺎﻭﻱ a xﻭ ﻟﻼﺨﺘﺼﺎﺭ ﻴﻤﻜﻥ ﺃﻥ ﻨﻘﺭﺃ : fﻟـ xﺘﺴﺎﻭﻱ . a x 2. 1ﺘﻌﻴﻥ ﺼﻭﺭﺓ ﻋﺩﺩ ﺒﺩﺍﻟﺔ ﺨﻁﻴﺔ : ﻤﺜﺎل f(x) = a x : : 1ﺩﺍﻟﺔ ﺨﻁﻴﺔ . ﺇﺫﺍ ﻜﺎﻥ a = 10ﻤﻌﺎﻤﻠﻬﺎ ﻓﺘﺼﺒﺢ ﺍﻟﺩﺍﻟﺔ f(x) = 10 x : ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 5ﺒﺎﻟﺩﺍﻟﺔ fﻫﻲ f (5) = 10×5 = 50 : f : 5 → 50 50ﻫﻲ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 5ﺒﺎﻟﺩﺍﻟﺔ .f ﻤﺜﺎل : 2ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ) (-8ﺒﺎﻟﺩﺍﻟﺔ fﻫﻲ : f (-8) = 10×(-8). )f (-8) = (-80 ) (-80ﻫﻲ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ) (8-ﺒﺎﻟﺩﺍﻟﺔ . f )f : (-8) → (-80
3. 1ﺘﻌﻴﻥ ﻋﺩﺩ ﺼﻭﺭﺘﻪ ﺒﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻤﻌﻠﻭﻤــﺔ : f: ? → ax ﻤﺜﺎل f(x) = 5 x : 1ﺩﺍﻟﺔ ﺨﻁﻴﺔ . ﻋﻴﻥ ﻋﺩﺩ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ fﻫﻲ . 10 ﺍﻟﺤل f(x) = 5 x :ﻭ f(x) = 10x = 10 = 2 5 x = 10 ﺃﻱ : 5 ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ 10 : fﻫﻭ ﺍﻟﻌﺩﺩ . 2 4. 1ﺘﻌﻴﻥ ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻋﺩﺩ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ ﺼﻭﺭﺘﻪ :ﺘﻌﻴﻥ ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻋﺩﺩ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ ﺼﻭﺭﺘﻪ ﻫﻭ ﺇﻴﺠﺎﺩ aﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ . ﻤﺜﺎل f :ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺤﻴﺙ f : 2 → 3 :ﺃﻱ f(2) = 3 : ﻤـﺎﻫﻭ ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ f؟ ﺍﻟﺤل :ﺒﻤﺎ ﺃﻥ fﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻓﺈﻥ fﺘﻜﺘﺏ f(x) = a x : f(2) = 2 aﻭ f(2) = 3 ﻤﻌﻨـﺎﻩ 2 a = 3 : 3 ﻭﻤﻨـﻪ a = 2 : 3 ﺃﻱ : f(x) = 2 x ﺃﻭ : 3 f:x 2 x 5. 1ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﺨﻁﻴﺔ :ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ Oﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل Oﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻭ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻹﺤﺩﺍﺜﻴـﺎﺕ ) (1,aﺤﻴﺙ ﻴﻤﺜل aﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴـﺔ . ﻤﻼﺤﻅـﺔ ) f : x → a x : (1ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ﺃﻭ ﻭﻀﻊ y = f(x): ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ f(x) = ax :ﺘﺼﺒﺢ y = a x :
ﻤﻼﺤﻅـﺔ ) y = a x : (2ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺩﺍﻟـﺔ ﺨﻁﻴـﺔ .ﻫﻨﺩﺴﻴــﺎ aﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ ﺘﺼﺒﺢ ﺘﺴﻤﻴﺘﻪ ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴـﻪ ﺃﻭ ﻤﻴل ﺍﻟﻤﺴﺘﻘﻴﻡ . ﻤﺜـﺎل f :ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺤﻴﺙ f(x) = 2 x : -ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ . Oﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲ . cm -ﺃﺫﻜــﺭ ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴــﻪ . ﺍﻟﺤـل f(x) = 2 x :ﺃﻱ y = 2 x : ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = 2 xﻴﺸﻤل ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ Oﻭ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ) . (1 ، 2 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ f(x) = 2 x : 5 4 3 2 1-5 -4 -3 -2 -1 -1 1 2345 -2 -3 -4 -5 -ﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴﻪ ﺃﻭ ﻤﻴل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = 2 xﻫﻭ . 2
5 6-1ﻗﺭﺍﺀﺓ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟـﺔ ﺨﻁﻴﺔ : 4 ﻤﺜـﺎل :ﻻﺤﻅ ﺍﻟﺸﻜل . ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻤﺜل ﺩﺍﻟﺔ ﺨﻁﻴﺔ 3 . f * ﺍﻗﺭﺃ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 2 .5 * ﺍﻗﺭﺃ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ 1 . 1,4- -- - -- 5 1 2 3 44 5 -3 -2 -1 - - - - - -- 1 2 3 4 5 - 3.5 - - - ﺍﻟﺤل : )(d ﻨﻘﺭﺃ ﻗﻴﻡ xﻋﻠﻰ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . ﻭﻗﻴﻡ ﺍﻟﺼﻭﺭ ﻋﻠﻰ ﻤﺤﻭﺭﺍﻟﺘﺭﺍﺘﻴﺏ . -1ﺼﻭﺭﺓ 5ﻫﻲ 2ﺃﻱf ( 5 ) = 2 : 3,5 -2ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ 1,4ﺃﻱ f (3,5) =1,4 : 7. 1ﺤﺴﺎﺏ ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ : ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ :
-ﻤﺎﻫﻭ aﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ fﺍﻟﻤﻤﺜﻠﺔ ﺒﻴﺎﻨﻴﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﺍﻟﺴﺎﺒﻕ ؟ ﺍﻟﺤــل :ﺍﻟﺩﺍﻟﺔ fﺨﻁﻴﺔ ﻷﻥ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻴﺸﻤل Oﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻓﻬﻲ ﻤﻥ ﺍﻟﺸﻜل f(x) = a x : ﻭﺠﺩﻨﺎ ﻓﻲ ) (1ﺃﻥ ﺼﻭﺭﺓ 5ﻫﻲ 2ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ f (5) = 2 : ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻤﻌﺎﺩﻟﺘﻪ y = axﺒﺘﻌﻭﻴﺽ x = 5ﻭ . y = 2 ﻨﺠـﺩ 5 × a = 2 : 2 ﺃﻱ a = 5 : 2 ﻭﻤﻨﻪ : f(x) = 5 x ﻤﻼﺤﻅـﺔ :ﻴﻤﻜﻥ ﺇﻴﺠﺎﺩ ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ fﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﺒﺘﻭﻅﻴﻑ f(3,5) = 1,4 -ﺘﻔﺴﻴﺭ ﺍﻟﻤﻌﺎﻤل ﻟﺩﺍﻟﺔ ﺨﻁﻴﺔ : ﻤﺜﺎل :ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ Oﻤﺎﻴﻠﻲ : g(x) = -2x ; f(x) = 3x ﺍﻟﺤل : ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = 3 xﻴﺸﻤل ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ Oﻭﺍﻟﻨﻘﻁﺔ A ﺫﺍﺕ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ) . (1 ، 3 ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = -2 xﻴﺸﻤل ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ Oﻭﺍﻟﻨﻘﻁﺔ B ﺫﺍﺕ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ) . (1 ، -2 5 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴـﺎﻨﻲ : 4 3 )A(1 ;3 2 1 2 345 1-5 -4 -3 -2 -1 -1 -2 -3 -4 -5
)B(1;-2ﻨﻼﺤﻅ ﺃﻥ ﻭﻀﻌﻴﺔ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ ﻭ ﻤﺨﺘﻠﻔﺘﺎﻥ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﻭ ﻫﺫﺍ ﺍﻹﺨﺘﻼﻑ ﺭﺍﺠﻊ ﺇﻟﻰ ﺍﺨﺘﻼﻑ ﻤﻌﺎﻤﻠﻴﻬﻤـﺎ . ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﻫـﻭ 3ﺃﻱ ﺃﻜﺒﺭ ﻤﻥ ﺼﻔﺭ . ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﻫـﻭ ) (-2ﺃﻱ ﺃﺼﻐﺭ ﻤﻥ ﺼﻔﺭ .ﻨﺴﺘﻨﺘﺞ ﺃﻨﻪ :ﺇﺫﺍ ﻜﺎﻥ ﻓﺈﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻴﻜﻭﻥ ﻓﻲ ﺍﻟﺯﺍﻭﻴﺘﻴﻥ xOyﻭ ’x’Oyﺇﺫﺍ ﻜﺎﻥ ﻓﺈﻥa<0 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻴﻜﻭﻥ ﻓﻲ ﺍﻟﺯﺍﻭﻴﺘﻴﻥ x’Oyﻭ ’xOy ’5 Y 4 a>0 3X2 ’X 1-5 -4 -3 -2 -1 -1 1 2345a>0 -2 a<0 -3 -4 -5 y ﻤﻼﺤﻅـﺔ :ﺇﺫﺍ ﻜﺎﻥ ﻓﺈﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻴﻨﻁﺒﻕ ﻋﻠﻰ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل .
ﺘﻤـﺎﺭﻴﻥ ﻭﻤﺸﻜــﻼﺕ -1ﺍﻟﺩﺍﻟـﺔ ﺍﻟﺨﻁﻴــﺔ : f: x → 3 x – fﺩﺍﻟـﺔ ﺨﻁﻴﺔ ﺤﻴﺙ : 4 * ﺃﺤﺴﺏ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ . 6 * ﺃﺤﺴﺏ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ . 21 −1 * ﺃﺤﺴﺏ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ . 2 g -ﺩﺍﻟـﺔ ﺨﻁﻴﺔ ﻤﻌﺎﻤﻠﻬـﺎ . - 3,5 * ﺃﻜﺘﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴـﺔ . g * ﺃﻜﻤــل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ : x 0 - 1 2,4ﺼﻭﺭﺓx -21 31,5 f -ﺩﺍﻟـﺔ ﺨﻁﻴﺔ ﻤﻌﺎﻤﻠﻬـﺎ . -5 * ﺃﺤﺴﺏ ).f(-3 * ﺃﺤﺴﺏ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ . -3,5 f -ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺤﻴﺙ f (7) = 21 : * ﻤﺎﻫﻭ ﺍﻟﻤﻌﺎﻤل aﻟﻠﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ f؟ * ﺃﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﺼﻭﺭﺓ xﺒﺎﻟﺩﺍﻟﺔ .f -ﻤﻥ ﺒﻴﻥ ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ .ﻤﺎﻫﻲ ﺍﻟﺘﻲ ﺘﻤﺜل ﺩﺍﻟﺔ ﺨﻁﻴﺔ ؟ ﺍﻟﺸﻜل 3 ﺍﻟﺸﻜل 2 ﺍﻟﺸﻜل 14325 54 235141 2 11
ﺍﻟﺸﻜل 6 ﺍﻟﺸﻜل5 ﺍﻟﺸﻜل 4 2345 4523 5234 1 1 1 – fﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺤﻴﺙ f(x) = 4 x : * ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ Oﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲ . cm -ﻻﺤﻅ ﺍﻟﺸﻜل : ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻤﺜل ﺩﺍﻟﺔ ﺨﻁﻴﺔ 5 . f -ﺍﻗﺭﺃ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 4 .-2 -ﺍﻗﺭﺃ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ 3 . -2 -ﻋﻴﻥ ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻤﺜﻠﺔ ﺒﻴﺎﻨﻴﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ 2 . 1- -- - - 1 23455 43 2 1- -1 )(d 2- 3- 4
ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭ ﺍﻟﻤﺸﻜﻼﺕ-5 f: x → 3 x -1 4 * ﺤﺴﺎﺏ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ : 6 f )(x = 3 x 4 f )(6 = 3 )(6 4 f )(6 = 18 = 9 4 2 * ﺤﺴﺎﺏ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ : 21 ﻨﻀﻊ f(x) = y : f )(x = 3 x 4 3 4 x = 21 4 × 3 × x = 4 × )(21 3 4 3 x = 4× 7 = 28 ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ 21ﻫﻭ ﺍﻟﻌﺩﺩ . 28 −1 *ﺤﺴﺎﺏ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ . 2
3 x = -1 4 2 4 × 3 × x = 4 × -1 3 4 3 2 x = −4 = −2 6 3 g -2ﺩﺍﻟـﺔ ﺨﻁﻴﺔ ﻤﻌﺎﻤﻠﻬـﺎ . - 3,5 * ﻜﺘﺎﺒﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴـﺔ : g gﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻤﻌﻨﺎﻩ ﺸﻜﻠﻬـﺎ g(x) = a x :ﻭ a = -3,5 g (x) = - 3,5 x ﻤﻌﻨـﺎﻩ : * ﻤــﻸ ﺍﻟﺠﺩﻭل : x 0 - 1 2,4 6 -9ﺼﻭﺭﺓ x 0 3,5 -8,4 -21 31,5 g (x) = - 3,5 x g (0) = - 3,5 (0) = 0 g (-1) = - 3,5 (-1) = 3,5 g (2,4) = - 3,5 (2,4) = -8,4 - 3,5 x = -21 ; - 3,5 x = 31,5 x = - 21 = 6 ; x = 31,5 = −9 - 3,5 - 3,5 f -3ﺩﺍﻟـﺔ ﺨﻁﻴﺔ ﻤﻌﺎﻤﻠﻬـﺎ . -5 * ﺤﺴﺎﺏ ) : f ( -3 ﻜﺘﺎﺒﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ : fﺒﻤﺎ ﺃﻥ a = -5ﻓﺈﻥ f(x) = -5 x : ﻭﻤﻨـﻪ f (-3) = -5 (-3) = 15 :
- 5 x = - 3,5-1 × −5 × x × = - 3,5 -1 * ﺤﺴﺎﺏ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ : -3,55 5x = 3,5 = 0,7 5 f -4ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺤﻴﺙ f (7) = 21 : * ﺤﺴﺎﺏ ﺍﻟﻤﻌﺎﻤل aﻟﻠﺩﺍﻟﺔ ﺍﻟﺨﻁﻴﺔ : f fﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻤﻌﻨﺎﻩ ﺸﻜﻠﻬـﺎ f(x) = a x :ﺃﻱ y =a x : x = 7ﻭ y = 21ﻨﻌﻭﺽ ﻓﻲ y = a x : a × 7 = 21 a = 21 = 3 : ﻨﺠﺩ 7 * ﻜﺘﺎﺒﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﺼﻭﺭﺓ xﺒﺎﻟﺩﺍﻟﺔ : f f(x) = a xﻭ ﺒﻤﺎ ﺃﻥ a = 3 :ﻓﺈﻥ f(x) = 3 x : -5ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﻲ ﺘﻤﺜل ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻫﻲ : ﺍﻟﺸﻜـل / 1ﺍﻟﺸﻜــل . 6 ﺍﻟﺘﻔﺴﻴـﺭ : ﻷﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻟﺩﺍﻟﺔ ﺨﻁﻴﺔ ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل O ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ . )4 A((1 ;4 1 O -1 1 -1
f – 6ﺩﺍﻟﺔ ﺨﻁﻴﺔ ﺤﻴﺙ f(x) = 4 x : * ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ : ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻴﺸﻤل Oﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻭ ﺍﻟﻨﻘﻁـﺔ . A ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ ﹶﺔ : A ﻟﺩﻴﻨـﺎ f(x) = 4 x ﻴﻌﻨﻲ f (1) = 4 : ﺇﺫﻥ A ( 1 , 4 ) : ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ : f -7ﻻﺤﻅ ﺍﻟﺤل ﻋﻠﻰ ﺍﻟﺸﻜل : y 6 5(d) 4 3 2 1-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8x -1 -2 -3 −1 -4 a × (-2) = 1ﺃﻱ = 2 : -1ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ) (-2ﻫﻲ -5 . 1 -2ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ ) (-2ﻫﻭ -6 . 1 −1 -3ﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻤﺜﻠﺔ ﺒﻴﺎﻨﻴﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﻫﻭ 2ﻷﻥ : .a
ﺍﻟــﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴــﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻟﺩﺭﺱ • ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﺫﺍﺘﻲ
ﺍﻟﺩﺭﺱ ax+bﺘﺴﻤﻰ ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ ﺘﻌﺭﻴﻑ ﻭ ﺘﺭﻤﻴـﺯ : ﺘﻌﺭﻴﻑ : aﻭ bﻋﺩﺩﺍﻥ ﻤﻌﻠﻭﻤﺎﻥ .ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ xﺍﻟﻌﺩﺩ .ﻨﻘﻭل ﺃﻥ a x + b :ﻫﻲ ﺼﻭﺭﺓ . x ﺍﻟﺘﺭﻤﻴﺯ : ﻨﺭﻤﺯ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ ﺍﻟﺘﻲ ﻤﻌﺎﻤﻠﻬﺎ aﺒﺎﻟﺭﻤﺯx → a x + b : ﻭﻨﺴﻤﻴﻬﺎ ﺒﺤﺭﻑ g , B، Aﺃﻭ fﻤﺜﻼ . ﻭ ﻨﻜﺘﺏ f : x → a x + b : ﻭﻨﻜﺘﺏ ﺃﻴﻀﺎ f(x) = a x + b :ﻭ ﻨﻘﺭﺃ :ﺼﻭﺭﺓ xﺒﺎﻟﺩﺍﻟﺔ fﺘﺴﺎﻭﻱ a x + bﻭ ﻟﻼﺨﺘﺼﺎﺭ ﻴﻤﻜﻥ ﺃﻥ ﻨﻘﺭﺃ f:ﻟـ xﺘﺴﺎﻭﻱ . a x + b ﺘﻌﻴﻥ ﺼﻭﺭﺓ ﻋﺩﺩ ﺒﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ : ﻤﺜﺎل f(x) = - 3 x + 1 : 1ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ . ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 2ﺒﺎﻟﺩﺍﻟﺔ fﻫﻲ f (2) = -3 (2) + 1 = - 5 : f: 2 → -5 ) (-5ﻫﻲ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 2ﺒﺎﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ . f ﻤﺜﺎل : 2ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ) (3-ﺒﺎﻟﺩﺍﻟﺔ fﻫﻲ : f (-3) = - 3×(-3) + 1 = 9 + 1 = 10 . ) (+10ﻫﻲ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ) (-3ﺒﺎﻟﺩﺍﻟﺔ . f ﻋﻴﻥ ﻋﺩﺩ ﺼﻭﺭﺘﻪ ﺒﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ ﻤﻌﻠﻭﻤــﺔ : f: ? → ax+b ﻤﺜﺎل f(x) = - 2 x + 3 : 1ﺩﺍﻟﺔ ﺨﻁﻴﺔ . ﻋﻴﻥ ﻋﺩﺩ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ fﻫﻲ ). (-1 ﺍﻟﺤل f(x) = -2 x + 3 :ﻭ f(x) = - 1 -2x+3=-1 ﺃﻱ :
− 2x = −1− 3 − 2x = −4 x = −4 = 2 −2 ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ ( -1 ) : fﻫﻭ ﺍﻟﻌﺩﺩ . 2 ﺘﻌﻴﻥ ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻋﺩﺩﻴﻥ ﻭ ﺼﻭﺭﺘﻴﻬﻤـﺎ : ﺘﻌﻴﻥ ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﻋﺩﺩﻴﻥ ﻭ ﺼﻭﺭﺘﻴﻬﻤـﺎ ﺒﺈﻴﺠﺎﺩ aﻤﻌﺎﻤﻠﻬﺎ ﻭﺍﻟﻌﺩﺩ . b ﻤﺜﺎل f :ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ f(-2) = -3 ; f (6) = 1 : ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴـﺔ f؟ ﺍﻟﺤل :ﺒﻤﺎ ﺃﻥ fﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ ﻓﺈﻥ fﺘﻜﺘﺏ f(x) = a x + b : f(-2) =- 2 a + bﻭ f(- 2) =- 3 ﻤﻌﻨـﺎﻩ - 2 a + b = -3 ……..(1) : ﻭ f(6) = 6 a + b :ﻭ f(6) = 1 ﻤﻌﻨـﺎﻩ 6 a + b = 1 ……..(2) : ﻟﺘﻌﻴﻥ aﻭ bﻴﺠﺏ ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ : ) - 2 a + b = - 3..................(1 )6 a + b =1......................(2 ﺒﻌﺩ ﺘﻁﺒﻴﻕ ﻁﺭﻴﻘﺔ ﺍﻟﺤل ﺒﺎﻟﻁﺭﺡ ﻤﺜﻼ ﻨﺠﺩ :− 2a + b − 6a − b = −3 − 1− 8a = −4a = − 4 = 1 − 8 2 ﺒﺘﻌﻭﻴﺽ ﻗﻴﻤﺔ aﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻨﺠﺩ : -1+b=-3 b = - 3 + 1 = -2 )f(x = 1 x − 2 ﺇﺫﻥ ﺍﻟﺩﺍﻟـﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ ﻫﻲ : 2
ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ : ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ Oﻫﻭ ﻤﺴﺘﻘﻴﻡ . ﻴﻤﺜل aﻤﻌﺎﻤل ﺍﻟﺘﻭﺠﻴـﻪ . bﻫﻲ ﺘﺭﺘﻴﺒﺔ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻤﻊ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ . y = a x + bﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ . ﻤﺜـﺎل f :ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ f(x) = 2 x - 1 : -ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ . Oﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲ . cm ﺍﻟﺤـل f(x) = 2 x - 1 :ﺃﻱ y = 2 x - 1 : ﻨﺒﺤﺙ ﻋﻥ ﻨﻘﻁﺘﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = 2 x – 1 ﺇﺫﺍ ﻜﺎﻥ x = 0ﻓﺈﻥ y = 2 (0) – 1 = - 1 :ﺍﻟﻨﻘﻁﺔ ﻫﻲ A (0,1) : ﺇﺫﺍ ﻜﺎﻥ x = 2ﻓﺈﻥ y = 2 (2) – 1 = 3 :ﺍﻟﻨﻘﻁﺔ ﻫﻲ B (2,3) : ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ f(x) = 2 x - 1 : 3 )B(2, 3 2 1-1-1 A(01,-1) 2 ﺤﺎﻻﺕ ﺨﺎﺼﺔ ﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﻟﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴﺔ : fﺩﺍﻟﺔ ﺘﺂﻟﻔﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ f(x) = a x + b :ﻭﻨﻜﺘﺏ y = a x + b : -1ﺇﺫﺍ ﻜﺎﻥ a > 0ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ fﻤﺘﺯﺍﻴﺩﺓ ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻪ : -ﺇﺫﺍ ﺘﺯﺍﻴﺩ xﻓﺈﻥ yﺘﺘﺯﺍﻴـﺩ -ﺇﺫﺍ ﺘﻨﺎﻗﺹ xﻓﺈﻥ yﺘﺘﻨـﺎﻗﺹ .
ﻤﺜــﺎل f :ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ f(x) = 2 x - 1 : fﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﻤﺘﺯﺍﻴﺩﺓ ﻷﻥ a = 2 > 0 : ﺘﻤﺜﻴل fﻟﻤــﺎ a > 0 b )(dY =ax+b a ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﺼﻌﺩY = a-x - - -- 1 - -2ﺇﺫﺍ ﻜﺎﻥ a < 0ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ fﻤﺘﻨﺎﻗﺼﺔ ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻪ : -ﺇﺫﺍ ﺘﺯﺍﻴﺩ xﻓﺈﻥ yﻴﺘﻨـﺎﻗﺹ - - -ﺇﺫﺍ ﺘﻨﺎﻗﺹ xﻓﺈﻥ yﻴﺘﺯﺍﻴـﺩ . - ﻤﺜــﺎل f :ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ f(x) = -3 x - 1 : fﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﻤﺘﻨﺎﻗﺼﺔ ﻷﻥ a = -3 < 0 : - ﺘﻤﺜﻴل fﻟﻤــﺎ a < 0 b ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻨﺯل - - - - -a 1 Y=ax+b - Y = ax - - - -ﺇﺫﺍ ﻜﺎﻥ a = 0ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ fﺜﺎﺒﺘﺔ ﻴﻌﻨﻲ y = b :
bY=b 1 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟـ ﻟﻤﺎ a = 0 : - -- - - )(d - ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . - - - ﻤﻼﺤﻅـﺔ :ﻜل ﻤﺴﺘﻘﻴﻡ ﻻ ﻴﻭﺍﺯﻱ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻴﻤﺜل ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ . -ﻗﺭﺍﺀﺓ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴﺔ : ﻤﺜـﺎل :ﻻﺤﻅ ﺍﻟﺸﻜل (d) . ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻤﺜل ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ . f 1 -1ﺍﻗﺭﺃ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ . -2- -4 - -- 1 -2ﺍﻗﺭﺃ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ . 4 - - ﺍﻟﺤل - )(d - 5 4 3 2 1 -5 -4 -3 -2 -1 1 2345
ﻨﻘﺭﺃ ﻗﻴﻡ xﻋﻠﻰ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . ﻭﻗﻴﻡ ﺍﻟﺼﻭﺭ ﻋﻠﻰ ﻤﺤﻭﺭﺍﻟﺘﺭﺍﺘﻴﺏ . -1ﺼﻭﺭﺓ -2ﻫﻭ 1ﺃﻱf ( -2 ) = 1 : 4 -2ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ 4ﺃﻱ f (4) =4 : -ﺘﻌﻴﻥ ﺍﻟﻌﺎﻤﻠﻴﻥ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ : ﻤﺜﺎل :ﺘﻭﻅﻴﻑ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ .ﺍﻟﻘﺭﺍﺀﺓ ﺍﻟﺴﺎﺒﻘﺔ ﻟﻠﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻫﻲ f (4) = 4 :ﻭ f (-2) = 1ﻨﻌﻠﻡ ﺃﻥ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (dﻤﻌﺎﺩﻟﺔ ﻭ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل y = a x + b : f (4) = 4ﺘﻌﻨﻲ ﺃﻥ - 2 a + b = 1 ……..(1) :ﻭ f (-2) = 1ﺘﻌﻨﻲ ﺃﻥ 4 a + b = 4 ….…..(2) :ﻨﺤﺼل ﻋﻠﻰ ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ : )− 2a + b = 1..............(1 )4 a + b = 4 ...............(2ﺒﺎﻟﻁﺭﺡ ﻨﺠـﺩ - 2 a + b – 4 a – b = 1 – 4 : -6a=-3 a = - 3 = 1 - 6 2ﺒﺘﻌﻭﻴﺽ ﻗﻴﻤﺔ aﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻨﺠﺩ - 1 + b = 1 : b=1+1=2ﻨﻌﻭﺽ ﺒﻘﻴﻤﺘﻲ aﻭ bﻓﻨﺠﺩ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴـﺔ :f )(x = 1 x + 2 2
ﺍﻟﺘﺼﺤﻴﺢ ﺍﻟﺫﺍﺘﻲﺘﻤـﺎﺭﻴﻥ ﻭﻤﺸﻜــﻼﺕ -2ﺍﻟﺩﺍﻟـﺔ ﺍﻟﺘـﺂﻟﻔﻴــﺔ : – 1ﻋﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻟﺘـﺂﻟﻔﻴﺔ ﻤﻥ ﺒﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻟﺘﺎﻟﻴﺔ :f :x →3x +1 ; g:x →-4x)h : x → 6 (x +1) - 2 ( 3 + 2xk : x → x 2 ; F : x → x 2 − (x + 2)2 f -2ﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴﺔ ﺤﻴﺙ . f(x) = 4 x - 2 : * ﻋﻴﻥ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ) ( - 2 * ﻋﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ fﻫﻭ . 3)h(x = 5x − 1 h -3ﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ : 4 * ﺃﺤﺴﺏ ). h (-1 . )h(x = 3 * ﺃﺤﺴﺏ ﺍﻟﻌﺩﺩ xﺤﻴﺙ : 4 g -4ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ g (x) = a x + b : * ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴـﺔ ﻋﻠﻤــﺎ ﺃﻥ :g (0 ) = -3 ; g (2) = 1 -5ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ : * f (-1) = 5 ; f (2) = -3* f (2) = 5 ; a = 3ﺤﻴﺙ aﻤﻌﺎﻤل ﺍﻟﺩﺍﻟﺔ . f
-6ﻤﻥ ﺒﻴﻥ ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ.ﻤﺎﻫﻲ ﺍﻟﺘﻲ ﺘﻤﺜل ﺩﺍﻟﺔ ﺨﻁﻴﺔ ؟ ﺍﻟﺸﻜل 3 ﺍﻟﺸﻜل 2 ﺍﻟﺸﻜل 15324 45 54231 2 1 1 1 45 1 4 1 45 ﺍﻟﺸﻜل 6 ﺍﻟﺸﻜل 5 ﺍﻟﺸﻜل 45342 5243 35421 1 1 1 45 1 45 1 45 –7ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﺩﻭﺍل ﺍﻟﺘـﺂﻟﻔﻴﺔ ﻓﻲ ﻤﻌﻠﻡ ﻤﺒﺩﺅﻩ : O f (x) = 3 x – 1 ; g(x) = - 2 x + 3 -8ﻻﺤﻅ ﺍﻟﺸﻜل :ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻤﺜل ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ 5 . f -ﺍﻗﺭﺃ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 4 .-2 -ﺍﻗﺭﺃ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﻫﻲ 3 . 5-ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻤﺜﻠﺔ ﺒﻴﺎﻨﻴﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ 2 .1-5 -4 -3 -2 -1 1 2345 -1 -2 -3 -4 -5
-10ﻤﺴـﺄﻟﺔ f :ﻭ gﺩﺍﻟﺘـﺎﻥ ﺘـﺂﻟﻔﻴﺘﺎﻥ ﺤﻴﺙ :f (x) = 2 x – 1 ; g (x) = - 3 x + 2• ﺃﺫﻜﺭ ﺘﺯﺍﻴﺩ ﺃﻭ ﺘﻨﺎﻗﺹ ﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ . gﻋﻠل ؟• ﻋﻴﻥ ﺼﻭﺭﺓ ) (-3ﺒﺎﻟﺩﺍﻟــﺔ . f ﻋﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ 5ﺒﺎﻟﺩﺍﻟـﺔ . g • •ﺃﺤﺴﺏ g 5 − 1ﺜﻡ ﻋﻴﻥ ﺍﻟﻌﺩﺩ xﺤﻴﺙ ( )f (x) = - 7 :• ﺤل ﺍﻟﻤﻌﺎﺩﻟـﺔ f (x) = g (x) :• ﺃﻨﺸﺊ ﻓﻲ ﻤﻌﻠﻡ ) ( O , J , Iﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ) (d2) ; (d1ﻟﻜل ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ g , fﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ .
ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴـﻥ ﻭ ﺍﻟﻤﺸﻜـﻼﺕ -1ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻟﺘـﺂﻟﻔﻴﺔ : ﺘﺫﻜﻴـﺭ :ﺘﻜﻭﻥ ﺩﺍﻟﺔ ﺩﺍﻟﺔ ﺘﺂﻟﻔﻴﺔ ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻥ ﺍﻟﺸﻜل a x + b fﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ f (x) = 3 x + 1 : hﻟﻴﺴﺕ ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ ﻷﻥ ﺒﻌﺩ ﺍﻟﻨﺸﺭ ﻭ ﺍﻟﺘﺒﺴﻴﻁ ﻨﻌﺭﻑ ﺤﻘﻴﻘﺘﻬـﺎ : )h(x) = 6(x + 1) − 2(3 + 2x h(x) = 6x + 6 − 6 − 4x h(x) = 2x gﺩﺍﻟـﺔ ﺨﻁﻴﺔ ﻭ ﻟﻴﺴﺕ ﺘـﺂﻟﻔﻴـﺔ . Fﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴﺔ ﻷﻥ ﺒﻌﺩ ﺍﻟﻨﺸﺭ ﻨﺤﺼل ﻋﻠﻰ ﻤﺎﻴﻠﻲ :F (x) = x2 − (x + 2)2( )F (x) = x2 − x2 + 4x + 4 F(x) = x2 − x2 − 4x − 4 F (x) = −4x − 4 kﺩﺍﻟـﺔ ﻟﻴﺴﺕ ﺘـﺂﻟﻔﻴﺔ ﻷﻨﻬﺎ ﻟﻡ ﺘﻜﺘﺏ ﻤﻥ ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ . f -2ﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴﺔ ﺤﻴﺙ . f(x) = 4 x - 2 : * ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ ): (-2 f (-2) = 4 (-2) – 2 = - 8 – 2 = - 10 * ﺘﻌﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ fﻫﻭ : 3 f (x) = 4 x – 2 ; f (x ) = 3ﻭﻤﻨـﻪ :
4x-2=3 4x = 3 + 2 = 5 x = 5 4 5 ﺍﻟﻌﺩﺩ 4ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ fﻫﻭ . 3 1 )h(x = 5x − 4 h -3ﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴـﺔ ﺤﻴﺙ : )h(−1 = )5(−1 − 1 4 )h(−1 = −5 − 1 4 * ﺤﺴﺎﺏ ): h (-1 − 20 −1 )h(−1 = 4 )h(−1 = − 21 4 )h(x = 3 * ﺤﺴﺎﺏ ﺍﻟﻌﺩﺩ xﺤﻴﺙ : 4 3)h(x = 45 x - 1 = 3 4 45 x = 1 + 3 = 1 4 4x = 1 5 – 4ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴـﺔ gﺤﻴﺙ g (x) = a x + b : g ( 0 ) = -3ﻴﻌﻨﻲ a ×0 + b = -3 : ﺃﻱ b = -3 :
a×2+b=1 : g (2) = 1 a ×2 – 3 = 1 ﺒﺘﻌﻭﻴﺽ ﻗﻴﻤﺔ bﻨﺠﺩ: a ×2 = 3 + 1= 4 ﺃﻱ : ﻭﻤﻨـﻪ a = 2 : ﺇﺫﻥ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ ﻫﻲ g(x) = 2 x – 3 : -5ﺘﻌﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ fﻓﻲ ﺤﺎﻟﺔ : * f (-1) = 5 ; f (2) = -3ﺒﻤﺎ ﺃﻥ f(-1) =5 :ﻓﺈﻥ a ×(-1) + b = 5 ……..(1) :ﺒﻤﺎ ﺃﻥ f(2) =-3 :ﻓﺈﻥ a ×(2) + b = -3 ……..(2) :ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴﺔ ﻴﺅﻭل ﺍﻟﻰ ﺤل ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻨﻴﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ − a + b = 5 ﺍﻷﻭﻟﻰ ﺒﻤﺠﻬﻭﻟﻴﻥ ﻓﻨﺠﺩ 2a + b = −3 : ﺒﺎﻟﻁـﺭﺡ ﻨﺠﺩ - a + b – 2 a – b = 5 + 3 : -3 a = 8 a = −8 38 + b = 5 ﺒﺘﻌﻭﻴﺽ ﻗﻴﻤﺔ aﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻨﺠﺩ :3 b = 5 - 8 3 b = 15 - 8 = 7 3 3 ﻨﻌﻭﺽ ﺒﻘﻴﻤﺘﻲ aﻭ bﻓﻨﺠﺩ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴـﺔ : f )(x = −8 x + 7 3 3* ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ fﻟﻤﺎ f(2) = 5ﻭ aﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﻟﻠﺩﺍﻟـﺔ fﻴﺴﺎﻭﻱ . 3 f (2) = 5ﻤﻌﻨـﺎﻩ 2 × a + b = 5 :ﺒﻤﺎ ﺃﻥ a = 3ﻓﺈﻥ 2 × a + b = 5 :ﺘﺼﺒﺢ 6 + b = 5 : ﺇﺫﻥ b = 5 – 6 = - 1 : ﻨﻌﻭﺽ ﺒﻘﻴﻤﺘﻲ aﻭ bﻓﻨﺠﺩ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘـﺂﻟﻔﻴـﺔ : f (x) = 3x −1
-6ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺍﻟﺘﻲ ﺘﻤﺜل ﺩﺍﻟـﺔ ﺘـﺂﻟﻔﻴـﺔ : ﺍﻟﺸﻜــل ) (1ﻭ ﺍﻟﺸﻜــل ). (3 ﺏg(x) = - 2 x + 3 - -7ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ﻟﻠﺩﺍﻭل ﺍﻟﺘـﺂﻟﻔﻴـﺔ : ﻟﻤـﺎ x=0ﻓﺈﻥ y=3ﺇﺫﺍ )A(0,3 ﺃf (x) = 3 x – 1 -ﻟﻤـﺎ x=2ﻓﺈﻥ y=-1ﺇﺫﺍ )B(2,-1 ﻟﻤـﺎ x=0ﻓﺈﻥ y=-1ﺇﺫﺍ )A(0,-1 )A5(0,3 ﻟﻤـﺎ x=2ﻓﺈﻥ y=5ﺇﺫﺍ )B(2 , 5 )B(2,5 5 )B(2,-1 )A(0,-1- - - - -- - - - - -- - - - - - - - -
ﺝh(x) = - √2/2 x -4 - ﺩg (x) = 3/4 x +2 - ﻟﻤـﺎ x=0ﻓﺈﻥ y=-4ﺇﺫﺍ )A(0,-4 ﻟﻤـﺎ x=0ﻓﺈﻥ y=2ﺇﺫﺍ )A(0 ;2ﻟﻤـﺎ x=√2ﻓﺈﻥ y=-5ﺇﺫﺍ )B(√2,-5 ﻟﻤـﺎ x=4ﻓﺈﻥ y=5ﺇﺫﺍ )B(4 ; 5 5 )B(4 ;5 5- -A(-0,-4-) - - )B(√2,-5 )A(0,2 - - - -- - - - - - - - - -8ﺘﻌﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻨﺄﻟﻔﻴﺔ fﻋﻠﻤﺎ ﺍﻥ ﺘﻤﺜﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺘﻴﻥ ) B(1 ;1ﻭ )A(5 ;-1 ﺍﻟﺤل : fﺍﻟﺩﺍﻟﺔ ﺍﻟﻨﺄﻟﻔﻴﺔ ﻤﻌﻨﺎﻩ f(x) = ax+b :ﺍﻭ y= ax+b ﺘﻤﺜﻴل fﻴﺸﻤل ) A(5 ;-1ﻤﻌﻨﺎﻩ ﺍﺤﺩﺍﺜﻴﺘﺎﻫﺎ ﺘﺤﻘﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ y= ax+b ﺃﻱ -1 =5a +b : ﺃﻭ …)5a + b = -1 …(1 ﺘﻤﺜﻴل fﻴﺸﻤل ) B(1,1ﻤﻌﻨﺎﻩ ﺇﺤﺩﺍﺜﻴﺘﺎﻫﺎ ﺘﺤﻘﻕ ﺍﻟﻤﻌﺎﺩﻟﺔ : y= ax+b 1 = 1× a+b )a+b = 1 …(2 ﺃﻭ : ﺘﻌﻨﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ fﻴﻌﻭﺩ ﺍﻟﻰ ﺘﻌﻴﻴﻥ aﻭ bﻭﻟﻬﺫﺍ ﻨﺤل ﺍﻟﺠﻤﻠﺔ : ×1 …)5a + b = -1 …(1 …)a + b = 1 …(2× -5 5a +b = -1 + -5a -5b = -5
5a -5a +b -5b = -1 -5 -4b = -6 b= -6/-4 b = 3/2 (-1) x 5a + b = -1 …. (1) …. … )1 × a + b = 1 …. (2 … )-5a -b = +1 … (1 + a +b = 1 … )…. (2 -5a +a –b+b = 1+1 -4a = 2 a = 2/-4 a= -1/2 ﺒﺘﻌﻭﻴﺽ a= -1/2ﻭ b = 3/2 ﻓﻲ y = ax +bﻨﺠﺩ y = -1/2x + 3/2 ﺍﻭ f(x) =-1/2x + 3/2 -9ﻻﺤﻅ ﺍﻟﺸﻜل :ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﻴﻤﺜل ﺩﺍﻟﺔ ﺘـﺂﻟﻔﻴﺔ . f )(d -ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ -2ﻫﻲ). (-15 -ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ 5ﻫﻭ . 24 -ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻤﺜﻠﺔ ﺒﻴﺎﻨﻴﺎ ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﻌﻠﻡ ﻫﻲ. :321-5 -4 -3 -2 -1 ﺒﻤﺎ ﺃﻥ ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ -2ﻫﻲ) (-1ﻓﺈﻥ 1 2 3f(-2)4= -15: -1ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ 5ﻫﻭ 2ﻓﺈﻥ -2 f(2) = 5 :ﻓﺈﻨﻨـﺎ ﻨﺤﺼل ﻋﻠﻰ ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﻫﻲ -3 :)-4 − 2a + b = −1...........(1)-5 2a + b = 5...............(2 ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ -2a + b + 2 a + b = - 1 + 5 :
Search