ﺕ : 04 ﻟﻴﻜﻥ xﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻟﻨﺘﻤﻡ ﺍﻟﺠﺩﻭل ﺍﻟﻤﻌﻁﻰﺘﻜﺎﻓﺊ xﺇﻟﻰ ﺍﺘﺤﺎﺩ ﺍﻟﻤﺠﺎﻟﻴﻥ ﺍﻟﺠﻤﻠﺔ ][8,+∞[,]− ∞,2 x−5 ≥3 x−5 ≥3x+2 ≥1][−1,+∞[,]− ∞,−3 x> 2[] [ ]2,+∞ , − ∞, 2 ﺕ : 05ﻟﻨﻌﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ aﻋﻠﻤﺎ ﺃﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ 2ﻫﻲ 3ﻭﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ 4ﻫﻲ .5 ﺒﺘﺭﺠﻤﺔ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻨﺠﺩ : a − 2 = 3وa − 4 = 5ﺒﻤﻌﻨﻰ )(a − 2 = 3) :أو) ((a − 2 = −3و)) (a − 4 = 5أو) ((a − 4 = −5 ﺒﻤﻌﻨﻰ )(a = 1) :أو) ((a = −1و)) (a = 9أو)((a = −1 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥa = −1 :
ﻤﺘﺭﺍﺠﺤﺎﺕ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ R ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﺤل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ -ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ﻋﺒﺎﺭﺓ ﺒﻤﺘﻐﻴﺭ -ﺤل ﻤﺘﺭﺍﺠﺤﺎﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﺤل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﻨﺸﺎﻁﺎﺕ • ﻤﻔﻬﻭﻡ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ • ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ,ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ .R• ﺃﻤﺜﻠﺔ ﻟﺤل ﻤﺘﺭﺍﺠﺤﺎﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﺤل ﻤﺘﺭﺍﺠﺤﺎﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ. • ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
• ﻨﺸﺎﻁﺎﺕ : ﺍﻟﻨﺸﺎﻁ ﺍﻷﻭل :ﻟﻨﺤل ,ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) , 3x + 2 < −5....(1ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ﺃﻱ ﻟﻨﻌﻴﻥﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﺒﺤﻴﺙ ﺘﻜﻭﻥ 3x + 2 < −5ﻤﺘﺒﺎﻴﻨﺔ ﺼﺤﻴﺤﺔ.* ) 3x + 2 < −5....(1ﻤﻌﻨﺎﻩ ) 3x < −5 − 2ﺒﺈﻀﺎﻓﺔ ) (-2ﺇﻟﻰ ﻁﺭﻓﻲ )((1 ﻤﻌﻨﺎﻩ )3x < −7....(2ﻟﺫﺍ 0<3 )ﺒﻘﺴﻤﺔ ﻁﺭﻓﻲ ) (2ﻋﻠﻰ 3 x < − 7 ﻤﻌﻨﺎﻩ 3 ﻻ ﺘﻐﻴﺭ ﺇﺘﺠﺎﻩ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ(ﻫﻜﺫﺍ ﻤﻥ ﺍﻟﻤﺭﺤﻠﺔ ﺍﻷﻭﻟﻰ ﺇﻟﻰ ﺍﻟﻤﺭﺤﻠﺔ ﺍﻷﺨﻴﺭﺓ ﺒﺭﻫﻨﺎ ﻋﻠﻰ ﺃﻨﻪ ﺤﺘﻰ ﻴﻜﻭﻥ \" 3x + 2 < −5ﻴﻠﺯﻡ x ∈ − ∞,− 7 ﺃﻱ ﺃﻥ ﻴﻜﻭﻥ x < − 7 ﻭﻴﻜﻔﻲ\" ﺃﻥ ﻴﻜﻭﻥ 3 3 − ∞,− 7 ﻫﻲ )(1 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺤﻠﻭل ﻟﻠﻤﺠﻤﻭﻋﺔ ﺇﺫﻥ 3 ← ﻓﻲ ﻟﻐﺔ ﺍﻟﻤﻨﻁﻕ ﺍﻟﺭﻴﺎﻀﻲ \"ﺤﺘﻰ ﻴﻜﻭﻥ ) (Aﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ ) « (Bﻤﻌﻨﺎﻫﺎ \") (Aﻴﻜﺎﻓﺊ \")(B ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ :ﻟﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ − 2x + 6ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ,xﻨﺭﻯ ﻫﻨﺎ ﺃﻥ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ − 2x + 6ﺘﺘﻌﻠﻕ ﺒﻘﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻭ\"ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ − 2x + 6ﺤﺴﺏ ﻗﻴﻡ .\"xﻴﻜﻤﻥ ﻓﻲ :ﺘﺤﺩﻴﺩ ﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ xﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ − 2x + 6ﺴﺎﻟﺒﺎ ﺘﻤﺎﻤﺎ ﻭﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ xﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ − 2x + 6ﻤﻌﺩﻭﻤﺎ ﻭﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ xﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠﻠﻬﺎ − 2x + 6ﻤﻭﺠﺒﺎ ﺘﻤﺎﻤﺎ.ﻫﻜﺫﺍ ﺤﺘﻰ ﻴﻜﻭﻥ − 2x + 6ﺴﺎﺒﻼ ﺘﻤﺎﻤﺎ ﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ . (1).... − 2x + 6 < 0 ﺃﻥ ﻴﻜﻭﻥ ) (2)... − 2x < −6ﺒﺈﻀﺎﻓﺔ – 6ﺇﻟﻰ ﻁﺭﻓﻲ )((1ﻟﺫﺍ ﻏﻴﺭ ﺇﺘﺠﺎﻩ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ( 0 > −2 )ﺒﻘﺴﻤﺔ ﻁﺭﻓﻲ ) (2ﻋﻠﻰ - 2 x > −6 ﺃﻱ ﺃﻥ ﻴﻜﻭﻥ −2 ﺃﻱ ﺃﻥ ﻴﻜﻭﻥ x > 3 ﻭﺒﺎﺘﺒﺎﻉ ﻤﺭﺍﺤل ﻤﻤﺎﺜﻠﺔ : -ﺤﺘﻰ ﻴﻜﻭﻥ − 2x + 6ﻤﻌﺩﻭﻤﺎ ﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ − 2x + 6 = 0 ﺃﻱ ﺃﻥ ﻴﻜﻭﻥ x = 3
-ﺤﺘﻰ ﻴﻜﻭﻥ − 2x + 6ﻤﻭﺠﺒﺎ ﺘﻤﺎﻤﺎ ﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ − 2x + 6 > 0 ﺃﻱ ﺃﻥ ﻴﻜﻭﻥ x < 3 ﺍﻟﺨﺎﺘﻤﺔ: − 2x + 6 < 0ﻴﻜﺎﻓﺊ [∞x ∈ ]3,+ − 2x + 6 = 0ﻴﻜﺎﻓﺊ }x ∈ {3 − 2x + 6 > 0ﻴﻜﺎﻓﺊ [x ∈ ]− ∞,3 ∞x − ﻭﻴﻤﻜﻥ \"ﺘﻠﺨﻴﺹ ﺍﻟﺨﺎﺘﻤﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : − 2x + 6ﺇﺸﺎﺭﺓ ∞3 + +0 - ﻋﻨﺩﻤﺎ ﻋﻨﺩﻤﺎ ﻋﻨﺩﻤﺎ 3> x 3= x x>30 < −2x + 6 − 2x + 6 = 0 − 2x + 6 < 0 − 2x + 6ﺃﻱ − 2x + 6ﺃﻱ ﺇﺸﺎﺭﺓ ﻫﻲ + ﺇﺸﺎﺭﺓ .1 .2 - ﻫﻲ
• ﻤﻔﻬﻭﻡ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ : R• ﻤﺘﺭﺍﺠﺤﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل xﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﻫﻲ ﺴﺅﺍل ﻴﺩﺨل ﻓﻴﻪ ﺍﻟﺤﺭﻑ xﻭﻜﺫﻟﻙ ﻤﻔﻬﻭﻡ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ. ﻤﺜﺎل x2 ≤ x :ﻫﻲ ﻤﺘﺭﺍﺠﺤﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل x ﺇﺫﺍ ﻁﻠﺒﻨﺎ \"ﻟﺤل ﻓﻲ Rﻟﻬﺫﻩ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ\" ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻨﺎ ﻤﻁﺎﻟﺒﻭﻥ ﺒﺈﻴﺠﺎﺩ ﻤﺠﻤﻭﻋﺔ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﺘﻲ ﺘﺠﻌل ﻤﻥ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ x2 ≤ x ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ. ﻭﻋﻨﺩﺌﺫ ﻜل ﻗﻴﻤﺔ ﻤﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻭﺠﻭﺩﺓ ﺘﺴﻤﻰ ﺤﻼ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ . x2 ≤ x • ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ,ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ : Rﺘﻌﺭﻴﻑ :ﻨﺴﻤﻲ ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ,xﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﻜل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺸﻜل ax + b < 0ﺃﻭ ﻤﻥ ﺍﻟﺸﻜل ax + b ≤ 0ﺃﻭ ﻤﻥ ﺍﻟﺸﻜل ax + b ≥ 0ﺃﻭ ﻤﻥ ﺍﻟﺸﻜل ax + b > 0ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ Rﻭ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻠﻭﻡ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ bﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻠﻭﻡ. )\"ﻤﻌﻠﻭﻡ\" ﻴﻌﻨﻲ \"ﻤﺴﺘﻘل ﻋﻥ ﺍﻟﻤﺠﻬﻭل\"(
• ﺃﻤﺜﻠﺔ ﻟﺤل ﻤﺘﺭﺍﺠﺤﺎﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﻤﺘﺭﺍﺠﺤﺎﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ: ﺍﻟﻤﺜﺎل ﺍﻷﻭل : ﻟﻨﺤل ,ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﺍﻟﻤﺘﺭﺍﺠﺤﺔ (1)..... 2x −1 ≤ 3ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل. * ﺤﺴﺏ ﺍﻟﻨﻅﺭﻴﺔ ﺤﻭل ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ﻭﺍﻟﻤﺠﺎﻻﺕ ) (1ﺘﻜﺎﻓﺊ 1− 3 ≤ 2x ≤ 1+ 3 ) (1ﺘﻜﺎﻓﺊ (α ).... − 2 ≤ 2x ≤ 4 ) (1ﺘﻜﺎﻓﺊ ) −1 ≤ x ≤ 2ﺒﻘﺴﻤﺔ ﻁﺭﻓﻲ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺘﺒﺎﻴﻨﺘﻴﻥ ﺍﻟﻭﺍﺭﺩﺘﺎﻥ ) (αﻋﻠﻰ 0 < 2 2ﻟﻡ ﺘﻐﻴﺭ ﺍﻻﺘﺠﺎﻩ( ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (1ﻫﻲ [ ]−1,2 ﺍﻟﻤﺜﺎل ﺍﻟﺜﺎﻨﻲ : ﻟﻨﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﺍﻟﻤﺘﺭﺍﺠﺤﺔ (2)....x2 < 4ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل. ) (2ﺘﻜﺎﻓﺊ ) x2 < 4ﺤﺴﺏ ﺍﻟﻨﺘﺎﺌﺞ ﺤﻭل ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﻭﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ ﺍﻟﻤﻭﺠﺏ( ) (2ﺘﻜﺎﻓﺊ ) x < 2ﻷﻥ ( x2 = x ) (2ﺘﻜﺎﻓﺊ x − 0 < 2 ) (2ﺘﻜﺎﻓﺊ 0 − 2 < x < 0 + 2 ﺇﺫﻥ :ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (2ﻫﻲ []− 2,2 ﺍﻟﻤﺜﺎل ﺍﻟﺜﺎﻟﺙ : ﻟﻨﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﺍﻟﻤﺘﺭﺍﺠﺤﺔ (3)....4(3x +1)2 > 9ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل. ) (3ﺘﻜﺎﻓﺊ 4(3x +1)2 > 9 ) (3ﺘﻜﺎﻓﺊ 4 × (3x +1)2 > 9 ) (3ﺘﻜﺎﻓﺊ 2 3x +1 > 3
ﻻ ﺘﻐﻴﺭ ﺍﻻﺘﺠﺎﻩ( 2>0 ) > 3x +1 3 ) (3ﺘﻜﺎﻓﺊ 2 )3x − (−1 > 3 ) (3ﺘﻜﺎﻓﺊ 2 3x > −1 + 3 2 أو 3x < −1 − 3 2 3x > 1 2 أو ) (3ﺘﻜﺎﻓﺊ 3x < − 5 2 x > 1 6 أو ) (3ﺘﻜﺎﻓﺊ x < − 5 6+ ∞, 1 ∪ − 5 ,−∞ ﻫﻲ )(3 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 6 6
ﺍﻟﻤﺜﺎل ﺍﻟﺭﺍﺒﻊ :ﻟﻨﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (4)....0 ≤ (6x +1) × (−2x + 5ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل.ﻟﺤل ﻫﺫﻩ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻟﻴﺴﺕ ﻫﻨﺎﻙ ﻨﻅﺭﻴﺔ )ﻤﺩﺭﻭﺴﺔ( ﺘﻁﺒﻕ ﻤﺒﺎﺸﺭﺓ ﺇﺫﻥ ﺍﻟﻁﺭﻴﻘﺔ ﺴﺘﻜﻭﻥ ﻜﻤﺎ ﻴﻠﻲ :ﻨﺩﺭﺱﺇﺸﺎﺭﺓ − 2x + 5ﻭﺇﺸﺎﺭﺓ 6x +1ﺤﺴﺏ ﻗﻴﻡ xﺜﻡ ﻨﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺓ ﺍﻟﺠﺩﺍﺀ ﺒﻌﺩ ﺘﻠﺨﻴﺹ ﺍﻹﺸﺎﺭﺍﺕ ﻓﻲ ﺠﺩﻭل: ﻋﺩ ﺇﻟﻰ ﺍﻟﻨﺸﺎﻁ ) 0 > −2 x > 5 ﻴﻜﺎﻓﺊ − 2x < −5 ﻴﻜﺎﻓﺊ − 2x +5 < 0 2 ﺍﻟﺜﺎﻨﻲ( x = 5 ﻴﻜﺎﻓﺊ − 2x +5 = 0 2 5 x < 5 ﻴﻜﺎﻓﺊ − 2x +5 > 0 2 ∞x − 2 ∞+ ﻨﻠﺨﺹ ﻓﻲ ﺠﺩﻭل: ﺇﺸﺎﺭﺓ + 0 - x < − 1 6x < −1ﻴﻜﺎﻓﺊ ﻴﻜﺎﻓﺊ 6x +1< 0 6− 2x +5 1 )(0 < 6 x = − 6 ﻴﻜﺎﻓﺊ 6x =1 ﻴﻜﺎﻓﺊ 6x +1= 0 x > − 1 ﻴﻜﺎﻓﺊ 6x > −1 ﻴﻜﺎﻓﺊ 6x +1> 0 6∞x − − 1 ∞+ 6 ﻨﻠﺨﺹ ﻓﻲ ﺠﺩﻭل:ﺇﺸﺎﺭﺓ + 0-6x +1 1 5 ﺇﻨﺘﺒﻪ ﺇﻟﻰ ﺘﺭﺘﻴﺏ 6 2 x − ﺍﻷﻋﺩﺍﺩ( 0 ∞− ∞+ 5 > − 1 2 6 +ﺇﺸﺎﺭﺓ + - − 2x +5 - 0 +ﺇﺸﺎﺭﺓ + 6x +1 - 0 + 0 -ﺇﺸﺎﺭﺓ)(−2x + 5)(6x +1
x ∈ − 1 , 5 ﺃﻥ ﻴﻜﻭﻥ ﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ )0 ≤ (−2x + 5)(6x +1 :ﺤﺘﻰ ﻴﻜﻭﻥ ﻤﻥ ﻫﺫﺍ ﺍﻟﺠﺩﻭل 6 2 − 1 , 5 : ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (4ﻫﻲ ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل 6 2 ﺍﻟﻤﺜﺎل ﺍﻟﺨﺎﻤﺱ: ﺍﻟﻤﺠﻬﻭل ﻫﻭ x ﺤﻴﺙ (5).... 3x + 8 <0 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ R ﺍﻟﻤﺠﻤﻭﻋﺔ ﻓﻲ ﻟﻨﺤل 7x + 2ﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﻤﺴﺘﻌﻤﻠﺔ ﻓﻲ ﺍﻟﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ ﺘﺅﺩﻱ ﺇﻟﻰ ﺍﻟﺠﺩﻭل ﺍﻟﻨﻬﺎﺌﻲ) :ﻋﻠﻴﻙ ﺃﻥ ﺘﻘﻭﻡ ﺒﺎﻟﻤﺭﺍﺤل ﺍﻟﺴﺎﺒﻘﺔ 8 !( 3 x ∞− − − 2 ∞+ 7 ﺇﺸﺎﺭﺓ -0+ + 3x + 8 -ﺇﺸﺎﺭﺓ -0 + 7x + 2 ﺇﺸﺎﺭﺓ -0 - + 3x + 8 7x + 2 ﻤﻼﺤﻅﺎﺕ : 8 2 82 )*( 3 > 7ﻤﻨﻪ − 3 < − 7ﻓﻲ ﺍﻟﺴﻁﺭ ﺍﻷﺨﻴﺭ ﻷﻥ ﻓﻲ ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ − 2 )**( ﻭﻀﺤﻨﺎ » « Double barreﻓﻲ ﻤﺴﺘﻭﻯ 7 ﺍﻟﻤﻘﺎﻡ ﻴﻨﻌﺩﻡ. − 2 ﻴﺤﺫﻑ ﻷﻥ ﻋﻨﺩﻤﺎ ﻨﻌﻭﺽ xﺒـ − 2 , 3x + 8 7 7 7x + 2
ﻤﻨﻪ : − 2 ,− 8 ﻫﻲ: ﺍﻟﻤﺘﺭﺍﺠﺤﺔ)(5 ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 7 3 ﻤﻼﺤﻅﺔ ﻫﺎﻤﺔ ﺠﺩﺍ :ﺇﺫﺍ ﻜﺎﻥ c, b, aﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻤﻌﻠﻭﻤﺔ ﺒﺤﻴﺙ , a ≠ 0ﻟﻠﺤل ﻓﻲ Rﺍﻟﻤﺘﺭﺍﺠﺤﺔ ax + b ≤ cﺤﻴﺙ x ﻫﻭ ﺍﻟﻤﺠﻬﻭل -ﻫﻨﺎﻙ ﻤﺭﺤﻠﺘﺎﻥ:* ﺍﻟﻤﺭﺤﻠﺔ ﺍﻷﻭﻟﻰ :ﻨﺠﻌل ﺍﻟﻤﻌﺎﻟﻴﻡ ﻓﻲ ﻁﺭﻑ ﻭﺍﻟﻤﺠﺎﻫﻴل ﻓﻲ ﻁﺭﻑ ax + b ≤ cﻴﻌﻨﻲ ) ax ≤ c − bﺒﺈﻀﺎﻓﺔ – bﺇﻟﻰ ﻁﺭﻓﻲ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ .( ax + b ≤ c* ﺍﻟﻤﺭﺤﻠﺔ ﺍﻟﺜﺎﻨﻴﺔ :ﻨﺭﻴﺩ \"ﺍﻴﺤﺎﺩ \"xﺇﺫﻥ ﻴﺠﺏ ﺃﻥ ﻨﻘﺴﻡ ﺍﻟﻁﺭﻓﻴﻥ ﻋﻠﻰ aﻭﻟﻬﺫﺍ ﻴﺠﺏ ﺃﻥ ﻨﻨﺘﺒﻪ ﺇﻟﻰ ﺇﺸﺎﺭﺓ a)ﻻ ﻨﻐﻴﺭ ﺍﺘﺠﺎﻩ x ≤ c − b ﺃﻱ ax ≤ c − b ﻴﻌﻨﻲ ax ≤ c − b -ﺇﺫﺍ ﻜﺎﻥ : a > 0 a a a ﺍﻟﻤﺘﺒﺎﻴﻨﺔ()ﺘﻐﻴﺭ ﺇﺘﺠﺎﻩ x ≥ c − b ﺃﻱ ax ≥ c − b ﻴﻌﻨﻲ ax ≤ c − b :a < 0 -ﺇﺫﺍ ﻜﺎﻥ a a a ﺍﻟﻤﺘﺒﺎﻴﻨﺔ(.
ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ: .1ﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ) ,(4) ,(3) ,(2) ,(1ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ﺍﻟﻤﻭﺍﻟﻴﺔ ﺜﻡ ﻤﺜل ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭﻟﻬﺎ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ :, (3)... 4 x ≥ 3 x + 7 , (2)... − 1 > 2 x + 1 , (1)....3x + 9 ≤ 6 5 2 10 3 (4)...2x 3 + 6 < 3 3 + 6 . .2ﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ) (4) ,(3) ,(2) ,(1ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل x ﺍﻟﻤﻭﺍﻟﻴﺔ ﺜﻡ ﻤﺜل ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭﻟﻬﺎ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ :, (3)...3 < 4x + 5 , (2)....(x + 3)2 ≥ 2 , (1)......1 ≥ 5x − 2 . (4)....16 > (2x + 5)2 ( 1 . 3ﺃﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ 7x +14ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ .x (2ﺃﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ − 5x + 9ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ .x (3ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ) (− 5x + 9)× (7x +14ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ .x )ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﺭﺍﺴﺎﺕ ﺴﺘﻠﺨﺹ ﻓﻲ ﺠﺩﻭل(. .4ﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ,Rﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺘﺭﺍﺠﺤﺎﺕ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل xﺍﻟﻤﻭﺍﻟﻴﺔ : (1)....(x +1)(x − 3) < 0 (1 (2)...(2x +1)(5 − x) ≥ 0 (2 (3).....(3x + 5)2 > (1− 2x)2 (3 (4)... 89 − 4x <0 (4 + 3x (5).... 89 − 4x ≥ −1 (5 + 3x (6)... 2x − 7 ≤ x + 2 (6
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ: ﺕ : 01ﻟﻨﺤل ﻓﻲ ,Rﻜﻼ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﻤﻌﻁﺎﺓ ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل : ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 3x + 9 ≤ 6 :ﻫﻲ]− ∞,−1] : − ∞,− 3 ﻫﻲ: − 1 x > 2x +1 : ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 7 3 ﻫﻲ]− ∞,−1] : 4 x ≥ 3 x + 7 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺢ : 5 2 10− ∞, 3 ﻫﻲ: 2x 3+6<3 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 3 + 6 : 2 ﺕ : 02ﻟﻨﺤل ﻓﻲ ,Rﻜﻼ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﻤﻌﻁﺎﺓ ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل: ﻟﺩﻴﻨﺎ1 ≥ 5x − 2.......(1) : )(1ﺘﻜﺎﻓﺊ −1 ≤ 5x − 2 ≤ 1 ﻭﺘﻜﺎﻓﺊ 1 ≤ 5x ≤ 3 1 ≤ x ≤ 3 ﻭﺘﻜﺎﻓﺊ 5 5 1 , 3 ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (1ﻫﻲ : ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ 5 5 ﻟﺩﻴﻨﺎ (x + 3)2 ≥ 2...(2) : ) (2ﺘﻜﺎﻓﺊ x + 3 ≥ 2 ﻭﺘﻜﺎﻓﺊ x + 3 ≥ 2أو ( ) ( )x + 3 ≤ − 2 ﻭﺘﻜﺎﻓﺊ x ≥ 2 − 3أوx ≤ − 2 − 3ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (2ﻫﻲ] ] [ [− ∞,− 2 − 3 U 2 − 3,+∞ : ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 3 < 4x + 5 : ]− ∞,−2[U − 1 ∞, + ﻫﻲ: 2 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 16 > (2x + 5)2 :
− 9 ,− 1 ﻫﻲ: 2 2 ﺕ : 03 .1ﻟﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ 7x +14ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ( )x ﻨﻠﺨﺹ ﺍﻟﺩﺭﺍﺴﺔ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : ﻗﻴﻡ x −∞ - 2 ∞+ﺇﺸﺎﺭﺓ+ 7x +14 : 0 +ـ .2ﻟﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ (− 5x + 9) :ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ x ﻨﻠﺨﺹ ﺍﻟﺩﺭﺍﺴﺔ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : ﻗﻴﻡ x ∞− 9 ∞+ 5ﺇﺸﺎﺭﺓ− 5x + 9 : ـ +0 .3ﺍﺴﺘﻨﺘﺎﺝ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ (− 5x + 9)× (7x +14) :ﺤﺴﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻟﻔﺭﻋﻴﻥ ﺍﻷﻭل ﻭﺍﻟﺜﺎﻨﻲ ﻴﻤﻜﻨﻨﺎ ﺘﻠﺨﻴﺹ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ﺍﻟﻤﻌﻁﻰ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : ﻗﻴﻡ x −∞ - 2 9 ∞+ 5 ﺇﺸﺎﺭﺓ+ 7x +14 : ﺇﺸﺎﺭﺓ− 5x + 9 : ـ 0 + + + +ﺇﺸﺎﺭﺓ(− 5x + 9)× (7x +14) : ـ0 0+ـ ـ0
ﺕ : 04 ﻟﻨﺤل ﻓﻲ ,Rﻜل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﻤﻌﻁﺎﺓ ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل: ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻟﻜﻴﻔﻴﺔ ﺍﻟﻤﺘﺒﻌﺔ ﻓﻲ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻕ ﻨﺠﺩ ﺃﻥ : ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ (x +1)(x − 3) < 0 :ﻫﻲ ]−1,3[ :− 1 ,5 : ﻫﻲ (2x +1)(5 − x) ≥ 0 ﻭ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ : 2 ﻟﺩﻴﻨﺎ: (3x + 5)2 > (1− 2x)2ﺘﻜﺎﻓﺊ (3x + 5)2 − (1− 2x)2 > 0ﻭﺘﻜﺎﻓﺊ [(3x + 5)− (1− 2x)]×[(3x + 5)+ (1− 2x)] > 0 ﻭﺘﻜﺎﻓﺊ (5x + 4)× (x + 6) > 0 ]− ∞,−6[ U − 4 ,+∞ ﻫﻲ: ﺍﻟﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ ﻭﻤﻨﻪ 5 ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﺍﻟﻤﺘﺒﻌﺔ ﻓﻲ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻕ ﻨﺠﺩ ﺃﻥ:[∞]− ∞,−3[U ]2,+ ﻫﻲ: 8− 4x <0 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ: ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 9 + 3x 8− 4x +1≥ 0 ﺘﻜﺎﻓﺊ 8− 4x ≥ −1 ﻟﺩﻴﻨﺎ: 9 + 3x 9 + 7x 17 − x ≥0 ﻭﺘﻜﺎﻓﺊ 9 + 3x ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ] ]− 3,17 : ﻟﺩﻴﻨﺎ 2x − 7 ≤ x + 2 :ﺘﻜﺎﻓﺊ 2x − 7 2 ≤ x + 2 2 ﻭﺘﻜﺎﻓﺊ (2x − 7)2 − (x + 2)2 ≤ 0ﻭﺘﻜﺎﻓﺊ [(2x − 7)− (x + 2)]×[(2x − 7)+ (x + 2)]≤ 0 ﻭﺘﻜﺎﻓﺊ (x − 9)× (3x − 5) ≤ 0 5 ,9 ﻫﻲ: ﺍﻟﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ ﻭﻤﻨﻪ 3
ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻌﺎﻟﻡ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﻤﻌﺭﻓﺔ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻘﺎﻋﺩﻴﺔ ﺤﻭل ﺍﻷﺸﻌﺔ.ﻭﺍﻟﻘﺩﺭﺓ ﻋﻠﻰ -ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺃﻨﻭﺍﻉ ﺍﻟﻤﻌﺎﻟﻡ ﺍﻟﺘﻤﺜﻴل -ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺇﺤﺩﺍﺜﻴﻲ ﺸﻌﺎﻉ. -ﻭﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺇﺤﺩﺍﺜﻴﻲ ﻨﻘﻁﺔ. -ﻤﻌﺭﻓﺔ ﺨﻭﺍﺹ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ ﻭﻤﻤﺎﺭﺴﺘﻬﺎ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺃﻨﺸﻁﺔ ﺤﻭل ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ• ﻨﺘﺎﺌﺞ ﻨﻅﺭﻴﺔ ﺤﻭل ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ • ﺍﻟﻤﻌﺎﻟﻡ ﻭﺍﻹﺤﺩﺍﺜﻴﺎﺕ. • ﺨﻭﺍﺹ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ )ﻨﻅﺭﻴﺎﺕ( • ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
• ﺃﻨﺸﻁﺔ ﺤﻭل ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ : B ϑr ﻟﻠrﺸϑﻌﺎBﻉ=ϑrA ﺍﻟﺜﻨﺎﺌﻴﺔ ﺍﻟﻤﺭﺘﺒﺔ ) (A, Bﺘﻌﻴﻥ ﺸﻌﺎﻋﺎ .1 • ﺍﻟﺜﻨﺎﺌﻴﺔ )(A, Bﻫﻲ ﻤﻤﺜلϑr = AB (A, ﻫﻲ ﻨﻬﺎﻴﺔ)B ﺍﻟAﻤﻌﻫﺩﻲﻭﻡﻤﺒﺩﺃB)0rﻫﻭ ,ﺍAﻟ(ﺸﻌﻭﺎﻉB ﺍﻟﻨﻘﻁﺔ • A ﺤﻴﺙ • )ﺤﻴﺙ Aﻨﻘﻁﺔ ﻜﻴﻔﻴﺔ( ﺍﻟ=ﺸﻌﺎ0rﻉ AA .2ﺍﻟﺸﻌﺎﻋﺎﻥ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﻴﻥ ABﻭ CDﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻨﻰ ﻷﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ) (ABﻭ ) (CDﻤﺘﻭﺍﺯﻴﺎﻥ B AC D .3ﺍﻟﺸﻌﺎﻋﺎﻥ ABﻭ EFﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ ﻭﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﺍﻟﺸﻌﺎﻋﺎﻥ ABﻭ RSﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ ﻭﺇﺘﺠﺎﻫﺎﻥ ﻤﺘﻌﺎﻜﺴﺎﻥ BF A ER S .4ﻁﻭﻴﻠﺔ ﺍﻟﺸﻌﺎﻉ ABﻫﻲ ﻁﻭل ﺍﻟﻘﻁﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ [ ]AB AB = AB ﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻓﻲ ﺍﻟﺸﻜل:AB = 3 AB
.5ﺍﻟﺸﻌﺎﻋﺎﻥ ABﻭ CDﻤﺘﺴﺎﻭﻴﺎﻥ ﻷﻥ ABﻭ CDﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ ﻭﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻭﻨﻔﺱ ﺍﻟﻁﻭﻴﻠﺔ. ABA µr CD ur = AB .6ﻭ ϑr = CDﻟﻠﺤDﺼﻭCل=ﻋﻠBﻰAﻤﻤﺜل ﻟﻠﺸﻌﺎﻉ B µr ,ϑrϑr rق µr + . 1ﻨﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Eﺤﻴﺙ CD = DEC ϑr F AEBF ﻭﻋ2ﻨ.ﺩﺌﻨﺫﻨ:ﺸﺊEﻤﺘAﻭﺍﺯ+ﻱBﺍAﻷﻀ=ﻼrﻉϑ µr + ϑr AB + A+Eϑr== AAFF ﺃﻱ µr ﺃﻱ D G AF = 3AB .7 A AG = −2AB B ﻷ ﻥ AF (1 :ﻭ ABﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ F AFﻭ ABﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻭﻫﺫﺍ ﻷﻥ 0 < 3 AF = 3 AB ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ AABBr ﻭ AAFFr (2 ﻟﻬﻤﺎ ﺇﺘﺠﺎﻫﺎﻥ ﻤﺘﻌﺎﻜﺴﺎﻥ ﻭ ﻭﻫﺫﺍ ﻷﻥ 0 > −2 AF = 2 AB
• ﻨﺘﺎﺌﺞ ﻨﻅﺭﻴﺔ ﺤﻭل ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ : .1ﺘﺭﻤﻴﺯ :ﺇﺫﺍ ﻜﺎﻥ µrﻭ ϑrﺸﻌﺎﻋﻴﻥ ﺒﺤﻴﺙ ur = ABﻭ D, C, B, A)ϑr = EDﻨﻘﻁ(. ﻴﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ − ϑrµr (−ϑrD)C = −CD DCﺃﻱ ﺇﻟﻰrﺍﻟϑﺸ−ﻌﺎrﻉµ • ﻴﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ • ﺍﻟﺸﻌﺎﻉ ﺇﻟﻰﺃﻱ) ( ) (+ AB − CD = AB + DC rr0r .2ﺨµﻤµωrﻬﻭ=ﺍﻤ++ﺎ=))ﺘrﺹϑrﻜϑµ0rrﺍﻥﻟ=+−ﺍ(+ﺠﻷrrﻤ+ϑrµﺸµﻊﻌ()+ﺍrﺔµﻟµ0r=rﺸ))rﻌ)µﺎﻫ)r,ﺍﻟﻭωﻋµrﺠﺍﻟﻲ+rﻤ−ﻌϑﻊﻨ()r,ﻨﺍϑﻫﻟﺼ(ﻅﻭrﺸﺭﺭωﻨﻌﻴ+ﺍﺎﺎﻟﻅﻋﻴrﺤﺕµﻴﺭﻲ(ﺎﺩﺘ)r:ﺒﺍµﻟﻱﺩﻴﺠﻟﻠﺒﻠﻤﺎﻟﻲﺠﻊﻨ(ﻤﺍﺴﻟﻊﺒﺔﺸﺍﻟﻌﺇﺎﻟﺸﻋﻌﻰﺎﻲﺍﻋﻟ ﺘﺠﻲ(ﺠﻤﻤﻊﻴ ﺍﻌﻟﻲﺸ(ﻌﺎﻋﻲ( .3ﻋﻼﻗﺔ ﺸﺎل : ﻤﻬﻤﺎ ﺘﻜﻥ ﺍﻟﻨﻘﻁ C, B, A AB + BC = AC .4ﺍﻟﺸﻌﺎﻋﺎﻥ ﺍﻟﻤﺘﻭﺍﺯﻴﺎﻥ :ϑrﺃﻨﻬﻤﺎ ﻤﺘﻭﺍﺯﻴﺎﻥ –ﻭﻨﺭﻤﺯ ﺇﻟﻰ ﺫﻟﻙ ﺒﺎﻟﻜﺘﺎﺒﺔ ﻭ µr ﺘﻌﺭﻴﻑ ﻭﺘﺭﻤﻴﺯ: ﻨﻘﻭل ﻋﻥ ﺸﻌﺎﻋﻴﻥ ﺃﻭµr // ϑr ϑr ﻜﺎﻥ: ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺍﻷﻗل( ﻤﻌﺩﻭﻡ )ﻋﻠﻰ µrﻭ ﺍﻭﻟﺸrﻌﺎϑﻋﻴﻏﻴﻥﺭ ﺃﺤﺩ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ. ﻭﻟﻬﻤﺎ ﻤﻌﺩﻭﻤﻴﻥ µr ﻨﻅﺭﻴﺔ:AB C ﺘﻜﻭﻥ ﻨﻘﻁ C, B, Aﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ AB // AC
ﻤ0rrﻬϑﻤﺎ=aﻴﻜ.µ+r5ﻥraﺍuﻟﻌﻴaﺨﺩﻜﺎﺩﻭﺍﻓ=ﺍﻥﺊ) ﺍﻟrﺹϑﺤ)ﻘﻴ+ﻘ0ﻀﻴﺎrﺭuﻥ(=ﺏ..aaﻭﺸ..ﻌ.ﺎ),bﻉ2aأﻤﻓ(ﻬوﻤﺎﻲ0rﻴﻜﻋﻥﺩ=ﺩﺍﻟrﺸµﺤﻌﻘﺎﻴ(ﻋﻘ.ﺎ.ﻥﻲr))..ﻨ1µﻅ(ﻭﺭﻴﺎϑrﺕ ﻟ(ﺩ:ﻴﻨﺎ: (3)....(a + b)ur = aur + bur (4)....a(bur) = (ab)ur ( )(6).......a ur −ϑr(5)=...a..ur1ur−=aϑurr (a − b)ur = aur − burﻭ aur // ur ﻟﺩﻴﻨﺎ µr ﻤﻊ ﺍﻟﻌﻠﻡ ﺃﻥ (1 :ﺠﺩﺍﺀ ﺸﻌﺎﻉ ﻓﻲ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻫﻭ ﺸﻌﺎﻉ (2ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ aﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﺸﻌﺎﻉ aur = a × ur ﻜﻭﺎﻥµarur : ﻤﻌﺩﻭﻡ ﺸﻌﺎﻉ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﺇrﺫµﺍ (3 ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ ﻭﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ. ﻭ aur µr :a > 0 ﻟﻤﺎ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻰ ﻭﺇﺘﺠﺎﻫﺎﻥ ﻤﺘﻌﺎﻜﺴﺎﻥ. ﻟﻤﺎ :a < 0 • ﺍﻟﻤﻌﺎﻟﻡ ﻭﺍﻹﺤﺩﺍﺜﻴﺎﺕ : .1ﺍﻟﻤﻌﻠﻡ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ:ﺍﺨﺘﻴﺎﺭ ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ ﻴﻌﻨﻲ ﺍﺨﺘﻴﺎﺭ ﺜﻼﺜﺔ ﻨﻘﻁ J, I, Oﻻ ﺘﻘﻊ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﻭﺒﻬﺫﺍ ﺍﻟﺘﺭﺘﻴﺏ ﻭﻋﻨﺩﺌﺫ :ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻭﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﻴﻥ ﻨﺴﻤﻴﻬﻤﺎ OrJ = rj ﻭ ﺘﻭﺴﻤﻀﻰﻌﻨﺎﻤﺒﺩﺃirﺍﻟﻤ=ﻌﻠIﻡOr. O • ﺇﺫﺍ • 0,ir, rj ﺸﻌﺎﻋﺎ ﺍﻷﺴﺎﺱ ﻟﻠﻤﻌﻠﻡ. )ﺃﻭ ﺒﺎﻟﻜﺘﺎﺒﺔ ) ( ).( (O, I , J ﻴﺭﻤﺯ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ﺒﺎﻟﻜﺘﺎﺒﺔ • • ) (OIﻴﺴﻤﻰ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻟﻠﻤﻌﻠﻡ. • ﻭ ) (OJﻴﺴﻤﻰ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻟﻠﻤﻌﻠﻡ.
rj J rj J I 0 ir I 0 ir 0,ir, rjﻤﻌﻠﻡ ﻤﺘﺠﺎﻨﺱ ﻷﻥ) ( 0,ir, rjﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ ﻷﻥ) ( 0I = 0J = 1uﺤﻴﺙ uﻭﺤﺩﺓ ) (0I ) ⊥ (0Jﻭ 0I = 0J = 1u ﺍﻟﻁﻭل ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺤﻴﺙ uﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ J J I rj rj I0 ir 0 ir ) 0,ir, rjﻤﻌﻠﻡ( ﻜﻴﻔﻲ 0,ir, rjﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻷﻥ) ( ) (0I ) ⊥ (0J .2ﺇﺤﺩﺍﺜﻴﺎ ﻨﻘﻁﺔ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ : ﻟﺘﻭﻴﻌﻜﻋﺭﻨﻥﻴﺩﺌﺫﻑ,xr,jﺘﻴﺭirﺴﻤ,ﻤﻴ0ﺯﻰ:ﻓﺎ••ﻤﻌﻠﺼﻠﻤﺎﺔﺍﻟﻠﻟﺍﻓﺘ\"ﻘﻟrjﻨﻌjﻭrﻲﻘﺒﻴ,yلﺍﻁﻟﺭirﺔﻤ\")+,ﺴﻋﺘy0ﻠMirﻭﻰ\"x,ﺒ.ﻱﺎxﻟ:ﻨ(=ﻭﻟﺴﺘﺒ\"ﻫﻜﺔjﻤrﻥMﺎﺇﻟ0ryﺇﻰ\"+Mﺤﺍﻟﺩﻨﺍﻤrﻘiﺜﻴﻌﺎxﻠﻁﻡﺔ=ﻤMrjﻥ,ﺍﺒﻟﺎirMﻟﻤﻨ0r,ﺴﺴ\"0ﺘﺒﻭﺔ ﻨﻱﻜﺇﻟﺘﻭﻰﻟﺏﻴﻜﺍﺇﻟﻥﻤﺼﻌﻠxﻁﻡ ﻭﻼﺤﺎrjyﺤﻘﻴﻘﻴﻴﻥ.ﺍﻟﻘﻭل) ( ) (,ﻋﺩirﺩ,ﻴﻥ0\" ﻴﻜﺎﻓﺊ\") M(x,yﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ) ( ) (
yﺘﺴﻤﻰ ﺘﺭﺘﻴﺏ ﺍﻟﻨﻘﻁﺔ Mﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ( )0,ir, rj ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ ) 0(0,0) (0,ir, rj ﺤﺎﻟﺔ ﺨﺎﺼﺔ : ﺇﻨﺸﺎﺀ : QM rj J ( )I P =0xPrir++00r0rQyPQrrj = xyirrj 0 ir = ﺇﻨﻟﻨﻰﺸMﺊrOjrﻤﺘ,ﻭﺍirﺯ,ﻱ 0ﺍﻷﻀﻼﻉ B OPMQ ﻟﺘﻤﺜﻴل * ﻓﻴﻜﻭﻥ *F ﺃﻱ ) M(x,yﺒﺎﻟﻨﺴﺒﺔ *A ﺃﻤﺜﻠﺔ : J E * H rj * 0 ir I *D*C ( )G * ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ : 0,ir, rj), G(0,−5) , F (0,5) , E(3,0), D(1.5,−2), C(−2,−2) , B(−1,3) , A(2,3 H − 2 ,0 3
.3ﺇﺤﺩﺍﺜﻴﺎﺕ ﺸﻌﺎﻉ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ:ﻟﺘﻴﻌﻜﺭﻴﻥﻑrj,ﺘﺭ,ﻤirﻴ,ﺯ 0:ﻤﻌﻠﻤﺎ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﻭﻟﻴﻜﻥ µrﺸﻌﺎﻋﺎ ﻤﻥ ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻭﻟﻴﻜﻥ xﻭ yﻋﺩﺩﻴﻥ) ( ﺤﻘﻴﻘﻴﻴﻥ.\" 0,ir, rjﻴﻜﺎﻓﺊ ﺍﻟﻘﻭل) ( µrﺒﺎﻟﻨﺴﺒﺔﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ) ( ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ = \"urﻨﻜﺘﺏ ﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﻟﻠ\"ﺘﻘrjjﻌrﻭﺒyﻴ,ل\"ﺭ0),+irﻋiryﻠxx\" ,ﻰ(=\"ﻫrrjﻤuﺎ\"y •\" )ur(x, y ﺇﺼﻁﻼﺤﺎ • xir . +0,ir, rj ur x \") ( ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ y ﺃﻭ\" ﺤﺎﻟﺔ ﺨﺎﺼﺔ: 0 0r ﻭ rj 10 ﻭ ir10 ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ ) , (0,ir, rj 0 • .Vﺨﻭﺍﺹ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ )ﻨﻅﺭﻴﺎﺕ(:ﻓﻲ ﺍﻟﻨﻅﺭﻴﺎﺕ ﺍﻟﻤﻭﺍﻟﻴﺔ ,ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ 0, ir, rjﻭﺇﺫﺍ ﻜﺎﻨﺕ Mﻨﻘﻁـﺔ ,ﻤـﻥ ﻨﻘـﻁ) ( ﺍﻟﻤﺴﺘﻭﻱ ,ﻭﻜﺎﻥ Vrﺸﻌﺎﻋﺎ ﻤﻥ ﺃﺸﻌﺔ ﺍﻟﻤﺴﺘﻭﻱ ( ).\" 0, ir, rj ﺴﻨﻜﺘﺏ M(x,y) :ﺒﺩﻻ ﻤﻥ\") M(x,yﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ( ).\" 0, ir, rj ﺇﻟﻰ ﺒﺎﻟﻨﺴﺒﺔ Vr x \" ﻤﻥ ﺒﺩﻻ Vr x ﻭ y y x ϑr xy'' ϑrﺸﻌﺎﻋﻴﻥ ﺒﺤﻴﺙ ﺍﻟﻨﻅﺭﻴﺎﺕ : y ) 'x = xو' y ( ) ( )ur ﻭ ﺇﺫﺍ ﻜﺎﻥ urﻭ • ﻟﺩﻴﻨﺎ: = 1 .....( y ur = ϑrﻴﻜﺎﻓﺊ
ϑr) x + xy'' ur +ϑr ( )(2)...(ur y + )'y + ﺃﻱ (x + x', y + ﻫﻤﺎ ﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﺸﻌﺎﻉ(3)....aur ax ﺃﻱ )(ax, ay ﻫﻤﺎ aur ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ,aﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﺸﻌﺎﻉ ay ) (ur //ϑrﻴﻜﺎﻓﺊ )(4).....(ay'− yx'= 0 • ﺇﺫﺍ ﻜﺎﻨﺕ Aﻭ Bﻨﻘﻁﺘﻴﻥ ﺒﺤﻴﺙA (xA , yA ) :و) B(xB , yBﻟﺩﻴﻨﺎ A) :ﻤﻨﻁﺒﻘﺔ ﻋﻠﻰ (Bﻴﻜﺎﻓﺊ ) x A = xBو (5)....(yA = yBﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﺸﻌﺎﻉ ABﻫﻤﺎ (6).....AB xB − xA ﺃﻱ (xB − xA, yB )− yA yB − yA xA + xB yA + yB ﺃﻱ] [ 2 , 2 ﻫﻤﺎ AB ﺇﺤﺩﺍﺜﻴﺎ ﺍﻟﻨﻘﻁﺔ Dﻤﻨﺘﺼﻑ (7).....D xA + xB , yA + yB 2 2 ﺘﻤﺭﻴﻥ ﺘﻁﺒﻴﻘﻲ :ﻟﻴﻜﻥ ABCﻤﺜﻠﺜﺎ ﻭﻟﻴﻜﻥ ' Aﻤﻨﺘﺼﻑ ] [BCﻭ ' Bﻤﻨﺘﺼﻑ ] [ACﻭ ' Cﻤﻨﺘﺼﻑ ][AB AG = 2 'AA ﺤﻴﺙ: ﺍﻟﻨﻘﻁﺔ G ﻭﻟﺘﻜﻥ 3 ﻨﻨﺴﺏ ﺍﻟﻤﺴﺘﻭﻱ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ( )A, AB, AC .1ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ C' , B' , A' ,C, B, A .2ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ G .3ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ ﺍﻷﺸﻌﺔAA' + BB' + CC' , CC' , BB' , AA' : .4ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻨﻘﻁ B' ,G, Bﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ. ﺍﻟﺤل :ﺍﻟﺸﻜل A .1ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻤﻨﻪ )C A(0,0'B 'A {xB − 0 = 1 ﻤﻨﻪ {xB − xA = 1. ﻤﻨﻪ AB10 {yB − 0 = 0 {yB − yA = 0 ﻤﻨﻪ )B(1,0A C' B
{xC −0=0 ﻤﻨﻪ {xC − xA = 0 ﻤﻨﻪ AC 10 {yC −0 =1 {yC − yA =1 C(0,1) ﻤﻨﻪ A' 1 , 1 ﻤﻨﻪ A' xB + xC , yB + yC 2 2 2 2 B ' 0, 1 ﻤﻨﻪ B' xA + xC , yA + yC 2 2 2 C ' 1 ,0 ﻤﻨﻪ C' xA + xB yA + yB 2 2 2 :ﺤﻭﺼﻠﺔC ' 1 ,0 , B ' 0 , 1 , A' 1 , 1 , C(0,1) , B(1,0) , A(0,0) 2 2 2 2 AA' xA' − xA ﻭ AG = 2 AA' ﻭ AG xG − xA ﻟﺩﻴﻨﺎ .2 y A' − yA 3 yG − yA 2 AA 1 ﺇﺫﻥ 2 2 , 1 ﻤﻨﻪ 1 ﻭ AG xG ﻤﻨﻪ 3 ' 3 AA' 3 , 2 AA' yG 3 2 1 2 1 3 2 1 2 3 G 1 , 1 ﻭﻋﻠﻴﻪ yG = 1 ﻭ xG = 1 , AG = 2 AA' ﻭﻤﻥ ﻜﻭﻥ 3 3 3 3 3 ﻤﻨﻪCC ' xC 'xC y , BB' xB' − xB , AA' xA' − xA .3 yC' − yB' − yB y A' − yA CC' −121 ﻭ BB' −121 , 1 AA' 2 1 2
(ﻭﻤﻥ ﺨﻭﺍﺹ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ )ﺩﺍﺌﻤﺎ ( ) ( )AA' + BB' + CC' 00 ﺇﺫﻥ 1 + (− 1) + 1 2 + 2 AA' + BB' + CC ' 1 2 1 (−1) 2 + : ﺤﻭﺼﻠﺔ ( )AA' 0 CC' −121 , BB' −121 1 + BB' + CC' 0 , ( AA'+BB'+CC , AA' 2 1 2 '= 0r )ﻨﺴﺘﻨﺘﺞﺃﻱ BG xG − xB ﻭﻟﻨﺎ BB'// BG ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﻤﻌﻨﺎﻩ B' ,G, B .4 yG − yBﻴﻌﻨﻲ ur x //Vr xy'' ﻭﻨﻌﻠﻡ ﺃﻥ BB' −121 ﻭ − 2 ﺃﻱ 1 −1 y BG 1 3 BG 3 −0 1 3 3 ,G, B ﺇﻥ BB'// BG ﻭﻋﻠﻴﻪ (−1)× 1 − 1 − 2 = − 1 + 1 :ﻭﻟﻨﺎ xy'− yx'= 0 3 2 3 3 3 ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓB' : ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﻓﻲ ﺤﺎﻟﺔ ﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ rj : ﺍﻟﻨﻅﺭﻴﺔ ﻤﻌﻠﻤﺎ ﻤﺘﻌﺎﻤﺩﺍ0,ir, ﺇﺫﺍ ﻜﺎﻥ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡB( ) ( )( ) ( ) ﻭA xA, yA B A ﻭﻜﺎﻨﺕ ﺒﺤﻴﺙ ﻨﻘﻁﺘﻴﻥ ﻭ ﻟﻠﻤﺴﺘﻭﻱ0ﺴﺎ,irﺠﺎﻨ, ﺘrjﻭﻤ yB, yB (xB − xA )2 + (yB − yA )2 = AB ﻓﺈﻥ (xB − )xA 2 + (yB − )yA 2 = AB ﺃﻱ
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ:ﺍﻟﺘ=ﺎﻟﻴtrﺔ,: ﺍﻷﺸﻌﺔ ﻜﺘﺎﺒﺔ C, B, A .1ﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ .ﻫل ﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﻋﻼﻗﺔ ﺸﺎل ﻟﺘﺒﺴﻴﻁ ,ωr = − AB − BC ,υr = AB − BC ur BA − BC , = BβrC=+3 AB + CA AB + BC ؟ .2ﺘﻌﻁﻰ ﺍﻟﻨﻘﻁ C, B, Aﺃﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ Dﺤﻴﺙ. AD = 3AB + 2CB : .3ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ 0,ir, rjﻟﺘﻜﻥ ﺍﻟﻨﻘﻁﺘﺎﻥ Aﻭ Bﺤﻴﺙ A(4,−2) :ﻭ) ( ) B(−1,2ﻟﺘﻜﻥ Cﺍﻟﻨﻘﻁﺔ ﺤﻴﺙAC = 40B : .1ﺃﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ Cﺜﻡ ﻋِﻠﻡ ﻜﻼ ﻤﻥ .C, B, A .2ﻟﺘﻜﻥ Dﻭ Eﺍﻟﻨﻘﻁﺘﻴﻥ ﺒﺤﻴﺙ D(2,8) :ﻭ )E(− 3,6 ﺃ .ﻋﻠﻡ ﺍﻟﻨﻘﻁﺘﻴﻥ Dﻭ E ﺏ .ﺃﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ Kﻤﻨﺘﺼﻑ EDﺜﻡ ﻋﻠﻡ ﺍﻟﻨﻘﻁﺔ [ ].K ﺝ .ﺃﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ Rﻨﻅﻴﺭﺓ Eﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ Aﺜﻡ ﻋﻠﻡ ﺍﻟﻨﻘﻁﺔ .R ﺩ .ﻫل ﺍﻟﻨﻘﻁ D, C, Bﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ؟. ﻫـ .ﻫل ﺍﻟﻨﻘﻁ E, C, Bﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ؟ﻤﻼﺤﻅﺔ :ﺍﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺸﻜل ﻏﻴﺭ ﻜﺎﻓﻲ ﻟﻺﺠﺎﺒﺔ ﻋﻠﻰ ﺍﻷﺴﺌﻠﺔ ﻭﻟﻜﻨﻪ ﻴﻤﻜﻥ ﻤﻥ ﺘﻘﻴﻴﻡ ﺍﻹﺠﺎﺒﺔ. .4ﻟﻴﻜﻥ ﺍﻟﺸﻜل C : M AB D JF .1ﺇﻋﺘﻤﺎﺩﺍ ﻋﻠﻰ ﺍﻟﺸﻜل ﻋﻴﻥ : 0r Jﺃ,0r I.,ﺇ0ﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ ﺍﻟﻨﻘﻁ M, F, E, D, EC, B, Aﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤ Iﻌﻠﻡ ( )0 ﺏ .ﺇﺤﺩﺍﺜﻴﺎ ﻜل ﻤﻥ ﺍﻟﻨﻘﻁ F, E, D, Mﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ( )A, AB, ACﺕ .ﺍﺴﺘﻨﺘﺞ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﺸﻌﺎﻉ EFﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻜل ﻤﻥ ﺍﻟﻤﻌﻠﻤﻴﻥ 0,0r I ,0r Jﻭ) ( ( )A, AB, AC
.5ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ 0,ir, rjﻟﺘﻜﻥ ﺍﻟﻨﻘﻁ C, B, Aﺤﻴﺙ )( ), A(1,3 )C(2,−1) , B(−2,−3 .1ﺃﺜﺒﺕ ﺃﻥ C, B, Aﻟﻴﺴﺕ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ .2ﺃﺤﺴﺏ ﺃﻁﻭﺍل ﺃﻀﻼﻉ ﺍﻟﻤﺜﻠﺙ .ABC
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ: ﺕ : 01 ﻟﺘﺒﺴﻴﻁ ﺍﻷﺸﻌﺔ ﺍﻟﺘﻲ ﻴﻤﻜﻥ ﺘﺒﺴﻴﻁﻬﺎ ﺒﺎﺴﺘﻌﻤﺎل ﻋﻼﻗﺔ ﺸﺎل : ur = BC + AB + CA ﻟﺩﻴﻨﺎ: ( )= BC + CA + AB = BC + CB = BB = 0r ﻋﻼﻗﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺘﺒ=ﺴﻴtrﻁﻪ ϑrﻻ ﻴﻤﻜﻥ ﺍﻟﺸﻌﺎﻉ ﺸﺎل : BA − BC ﻟﺩﻴﻨﺎ = BA + CB : = CB + BA = CA σr = 3AB + BC ﻟﺩﻴﻨﺎ = 2AB + AB + BC : = 2AB + AC ﺕ : 02ﻟﻨﻨﺸﺊ ﺍﻟﻨﻘﻁﺔ DﺤﻴﺙAD = 3AB + 2CB : ﻟﺘﻜﻥ A1 :ﺍﻟﻨﻘﻁﺔ ﺤﻴﺙ AA1 = 2CB : ﻟﺘﻜﻥ A1 :ﺍﻟﻨﻘﻁﺔ ﺤﻴﺙ AA2 = 3AB :A1 DA B A2 C ﻋﻨﺩﺌﺫ D :ﻫﻲ ﺍﻟﺭﺃﺱ ﺍﻟﺭﺍﺒﻊ ﻟﻤﺘﻭﺍﺯﻱ ﺍﻷﻀﻼﻉA1AA2D :
ﺕ : 03 .1ﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ C ﻟﺩﻴﻨﺎ AC = 40B : ﻭﻫﺫﺍ ﻤﻌﻨﺎﻩ AO + OC = 4OB : ﺃﻱ ﺃﻥ OC = 4OB − AO : −1ir 2Orj C+=44irO−B2+rj ﺃﻱ ﺃﻥ OA : ( ) ( )OC= 4 + ﻭﻫﺫﺍ ﻤﻌﻨﺎﻩ : ﻭﻫﺫﺍ ﻤﻌﻨﺎﻩ OC = 0ir + 6 rj :ﻭﻤﻨﻪ ﺇﺤﺩﺍﺜﻴﻲ Cﻫﻲ R * (0,6) : ﺘﻌﻠﻴﻡ ﻜل ﻤﻥ ﺍﻟﻨﻘﺎﻁ C, B, A : *D *K*E *CB * rj0 ADو*)(−ir3,6 )(2,8 .2ﺘﻌﻴﻴﻥ ﺍﻟﻨﻘﻁﺘﻴﻥ Dﻭ Eﺤﻴﺙ :E ﺃ .ﺘﻌﻠﻴﻡ ﺍﻟﻨﻘﻁﺘﻴﻥ Dﻭ E ﻨﻌﻠﻡ ﺍﻟﻨﻘﻁﺘﻴﻥ Dﻭ Eﻓﻲ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ ﺏ .ﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ Kﻤﻨﺘﺼﻑ EDﻭﺘﻌﻠﻴﻡ [ ]K K − 3+ 2 , 6 + 8 ﻟﺩﻴﻨﺎ: 2 2 K − 1 ,7 ﺃﻱ ﺃﻥ : 2 ﺠـ .ﺤﺴﺎﺏ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁﺔ Rﻨﻅﻴﺭﺓ Eﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ Aﻭﺘﻌﻠﻴﻡ R\" Rﻨﻅﻴﺭﺓ Eﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ \"Aﺘﻜﺎﻓﺊ \" Aﻤﻨﺘﺼﻑ ﺍﻟﻘﻁﻌﺔ [ ]\" ER R )2(4 − )(−3 , )2(−2 − 6 ﺘﻜﺎﻓﺊ 1 1 ﻭﺘﻜﺎﻓﺊ )R(11,−10 ﺠـ .ﻫل ﺍﻟﻨﻘﻁ D, C, Bﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ؟
D, C, Bﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﻤﻌﻨﺎﻩ BD // BC :BD 3 ﻭ BC 14 ﺃﻱ ﺃﻥ : BD 2 −+ 12 ﻭ BC 0 +1 ﻭﻟﻜﻥ : 6 8 6 −2 3× 4 − 6×1 = 12 − 6 ﻋﻨﺩﺌﺫ = 6 : ﻭ 6≠0 ﻭﻤﻨﻪ BC :ﻭ BDﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﻴﻥ. ﻭﻋﻠﻴﻪ D, C, Bﻻ ﺘﻘﻊ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ. • ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﺘﻜﻭﻥ ﺍﻹﺠﺎﺒﺔ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻷﺨﻴﺭ ﻤﻥ ﻫﺫﺍ ﺍﻟﺘﻤﺭﻴﻥ. ﺕ : 04 .1ﺍﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﻌﻁﻰ ﻓﻲ ﻨﺹ ﺍﻟﺘﻤﺭﻴﻥ ﻨﺠﺩ : ﺃ .ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﻠﻡ ( )0,OI ,OJ)A(5,2) ، B(6,2) ، C(5,3) ، D(7,2) ، E(5,0) ، F (9,1) ، M (4,2 ﺏ .ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ A, AB, ACﻟﺩﻴﻨﺎ( ): )M (−1,0) ، D(2,0) ، E(0,−2) ، F(4,−1 .2ﺍﺴﺘﻨﺘﺎﺝ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﺸﻌﺎﻉ EFﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ( )0,OI ,OJ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ 0,OI ,OJﻟﺩﻴﻨﺎ ( )E(5,0) ، F (9,1) : ﻭﻋﻠﻴﻪ EF (9 − 5,1− 0) : ﻭﻤﻨﻪ EF (4,1) : ﺍﺴﺘﻨﺘﺎﺝ ﺇﺤﺩﺍﺜﻴﻲ ﺍﻟﺸﻌﺎﻉ EFﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ( )A, AB, AC ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ A, AB, ACﻟﺩﻴﻨﺎ( )E(0,−2) ، F (4,−1) : ﻭﻋﻠﻴﻪ EF (4 − 0,−1+ 2) : ﻭﻤﻨﻪ EF (4,1) :
: 05 ﺕ ABC ﻟﻨﺤﺴﺏ ﺃﻁﻭﺍل ﺃﻀﻼﻉ ﺍﻟﻤﺜﻠﺙBC 24 ﻭ AC1− 4 ﻭ AB − 3 :ﻟﺩﻴﻨﺎ − 6 AB = (− 3)2 + (− 6)2 = 9 + 36 =3 5 AC = 12 + (− 4)2 : ﻭﻋﻠﻴﻪ = 17 BC = 42 + 22 =2 5
ﺃﻨﺸﻁﺔ ﺤﻭل ﺍﻟﺠﻤل ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻭ ﺍﻟﻤﻨﻁﻕ)(2 ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﺍﻜﺘﺴﺎﺏ ﺭﺍﺒﻁﺘﻲ ﺍﻟﻭﺼل ﻭﺍﻟﻔﺼل ﻭﻨﻔﻲ ﻜل ﻤﻨﻬﻤﺎ. -ﺍﺴﺘﻌﻤﺎل ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺨﻠﻑ. ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﺴﺘﻠﺯﺍﻡ ﺒﺒﺭﻫﺎﻥ ﻋﻠﻰ ﻋﻜﺴﻪ ﺍﻟﻨﻘﻴﺽ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻟﻨﺸﺎﻁ ﺍﻷﻭل • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻟﺙ • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺭﺍﺒﻊ • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺨﺎﻤﺱ • ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
• ﺍﻟﻨﺸﺎﻁ ﺍﻷﻭل:* ﻓﻲ ﺍﻟﻠﻐﺔ ﺍﻟﻌﺭﺒﻴﺔ ﻨﻔﻲ \"ﺍﻟﺠﻭ ﺠﻤﻴل\" ﻫﻭ ﺍﻟﺠﻤﻠﺔ \"ﺍﻟﺠﻭ ﻟﻴﺱ ﺠﻤﻴﻼ\" ﻭﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ \"ﺍﻟﺠﻭ ﻟﻴﺱ ﺠﻤﻴﻼ\" ﻫﻭ ﺍﻟﺠﻤﻠﺔ \"ﺍﻟﺠﻭ ﺠﻤﻴل\". * ﻟﻨﻬﺘﻡ ﺍﻵﻥ ﺒﺠﻤل ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻤﺜﻼ :ﺇﺫﺍ ﻜﺎﻥ aﻋﺩﺩ ﺤﻘﻴﻘﻴﺎ ,ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ \" \"a=bﻫﻭ ﺍﻟﺠﻤﻠﺔ \" \" a ≠ b ﻴﻜﻭﻥ ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ ) (Aﺼﺤﻴﺤﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺠﻤﻠﺔ) (Aﺨﺎﻁﺌﺔ. ﻴﻜﻭﻥ ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ ) (Aﺨﺎﻁﺌﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺠﻤﻠﺔ)(Aﺼﺤﻴﺤﺔ. • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ : * ﻓﻲ ﺍﻟﻠﻐﺔ ﺍﻟﻌﺭﺒﻴﺔ \"ﺍﻨﻘﻁﻊ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺭﺒﺎﺌﻲ\" ﺠﻤﻠﺔ ﻟﻨﺴﻤﻴﻬﺎ )(A ﻜﺫﻟﻙ \"ﺤﺩﺙ ﺨﻠل ﻓﻲ ﺍﻟﺜﻼﺠﺔ\" ﺠﻤﻠﺔ ﻟﻨﺴﻤﻴﻬﺎ )(B -ﺇﺫﺍ ﻭﻀﻌﻨﺎ ﺍﻟﺤﺭﻑ َﻭ ﺒﻴﻥ ﺍﻟﺠﻤﻠﺘﻴﻥ) (Aﻭ)\"(Bﺍﻨﻘﻁﻊ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺭﺒﺎﺌﻲ ﻭﺤﺩﺙ ﺨﻠل ﻓﻲ ﺍﻟﺜﻼﺠﺔ\"ﻫﻲ ﻜﺫﻟﻙ ﺠﻤﻠﺔ ﻭﺘﻜﻭﻥ ﺍﻟﺠﻤﻠﺔ \") (Aﻭ ) \"(Bﺼﺤﻴﺤﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺠﻤﻠﺘﺎﻥ ) (Aﻭ)(B ﺼﺤﻴﺤﺘﻴﻥ ﻤﻌﺎ. -ﺇﺫﺍ ﻭﻀﻌﻨﺎ ﺍﻟﺤﺭﻑ ﺃﻭ ﺒﻴﻥ ﺍﻟﺠﻤﻠﺘﻴﻥ ) (Aﻭ ) (Bﻨﺤﺼل ﻋﻠﻰ :\"ﺍﻨﻘﻁﻊ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻜﻬﺭﺒﺎﺌﻲ ﺃﻭ ﺤﺩﺙ ﺨﻠل ﻓﻲ ﺍﻟﺜﻼﺠﺔ\" ﻫﻲ ﻜﺫﻟﻙ ﺠﻤﻠﺔ ﻭﺘﻜﻭﻥ \") (Aﻭ) \"(Bﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ :)) (Aﺼﺤﻴﺤﺔ ﻭ) (Bﺼﺤﻴﺤﺔ( (A)) ,ﺨﺎﻁﺌﺔ ﻭ) (Bﺼﺤﻴﺤﺔ( (A)) ,ﺼﺤﻴﺤﺔ ﻭ) (Bﺨﺎﻁﺌﺔ( ﺘﻜﻭﻥ ﺍﻟﺠﻤﻠﺔ \") (Aﻭ) \"(Bﺨﺎﻁﺌﺔ ﻓﻲ ﺍﻟﺤﺎﻟﺔ )) (Aﺨﺎﻁﺌﺔ ﻭ)((B ** ﻟﻨﻬﺘﻡ ﺍﻵﻥ ﺒﺠﻤل ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ. ﻟﻴﻜﻥ xﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ \" x ≤ 2 \" -ﺠﻤﻠﺔ −1 ≤ xﺠﻤﻠﺔ ﻭ ) x ≤ 2ﻭ (−1 ≤ xﻫﻲ ﺍﻟﺠﻤﻠﺔ )(−1 ≤ x ≤ 2 \" x < 4 \" -ﺠﻤﻠﺔ x = 4 ,ﺠﻤﻠﺔ ,ﻭ x < 4أو x = 4ﻫﻲ ﺍﻟﺠﻤﻠﺔ )( )(x ≤ 4ﻭ ) (B ﺍﻟﻤﻼﺤﻅﺔ :ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ :ﻭ ﻴﺴﻤﻰ ﺭﺍﺒﻁﺔ ﺍﻟﻭﺼل ﺃﻭ ﻴﺴﻤﻰ ﺭﺍﺒﻁﺔ ﺍﻟﻔﺼل ﺇﺫﺍ ﻜﺎﻨﺕ ) (B) , (Aﺠﻤﻠﺘﻴﻥ : ﺍﻟﺠﻤﻠﺔ ) (Aﻭ ) (Bﺘﺴﻤﻰ ﻭﺼل ﺍﻟﺠﻤﻠﺘﻴﻥ )(B) , (A ﺍﻟﺠﻤﻠﺔ ) (Aﺃﻭ ) (Bﺘﺴﻤﻰ ﻓﺼل ﺍﻟﺠﻤﻠﺘﻴﻥ ). (B) , (A • ﻴﻜﻭﻥ ﻭﺼل ﺍﻟﺠﻤﻠﺘﻴﻥ ) (B) , (Aﺼﺤﻴﺤﺎ ﻓﻲ ﺍﻟﺤﺎﻟﺔ ) ) (Aﺼﺤﻴﺤﺔ ﺼﺤﻴﺤﺔ(.
ﻭ )(B • ﻴﻜﻭﻥ ﻭﺼل ﺍﻟﺠﻤﻠﺘﻴﻥ ) (B) , (Aﺨﺎﻁﺌﺎ ﻓﻲ ﺍﻟﺤﺎﻻﺕ ) ) (Aﺼﺤﻴﺤﺔﻭ )(B ﺨﺎﻁﺌﺎ(. ) ) (Aﺼﺤﻴﺤﺔ ﻭ ) (Bﺨﺎﻁﺌﺔ( (A) ) ,ﺨﺎﻁﺌﺔ ﻭ ) (Bﺨﺎﻁﺌﺔ( • ﻴﻜﻭﻥ ﻭﺼل ﺍﻟﺠﻤﻠﺘﻴﻥ ) (B) , (Aﺼﺤﻴﺤﺎ ﻓﻲ ﺍﻟﺤﺎﻻﺕ ) ) (Aﺼﺤﻴﺤﺔ ﺼﺤﻴﺤﺔ(. ) ) (Aﺼﺤﻴﺤﺔ ﻭ ) (Bﺨﺎﻁﺌﺔ( (A) ) ,ﺨﺎﻁﺌﺔ ﻭ ) (Bﺼﺤﻴﺤﺔ( • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻟﺙ : ﻟﻴﻜﻥ xﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﺍﻟﺠﻤﻠﺔ x≥2ﻫﻲ ﺍﻟﺠﻤﻠﺔ [∞x ∈ [2,+ ﻭﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ [∞ x ∈ [2,+ﻫﻭ [∞x ∉ [2,+ ﻭ [∞ x ∉ [2,+ﻤﻌﻨﺎﻫﺎ [) x ∈ ]− ∞,2ﺃﻨﻅﺭ ﺇﻟﻰ ﺍﻟﺸﻜل( ﻭﻤﻌﻨﺎﻫﺎ x < 2 ﺇﺫﻥ :ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ ) (x ≥ 2ﻫﻭ ﺍﻟﺠﻤﻠﺔ ) ( x < 2 ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ ]) xﺃﻜﺒﺭ ﻤﻥ ( 2ﺃﻭ )[(x=2 )(B) (A ﻫﻭ ﺍﻟﺠﻤﻠﺔ ]) xﺃﺼﻐﺭ ﻤﻥ ( 2ﺃﻭ ) [( x ≠ 2 ﻨﻔﻲ )(B ﻨﻔﻲ )(A ﻗﻭﺍﻋﺩ ﻤﻨﻁﻘﻴﺔ : A .1ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ a ≤ bﻫﻭ ﺍﻟﺠﻤﻠﺔ a > b ﻨﻔﻲ ﺍﻟﺠﻤﻠﺔ a > bﻫﻭ ﺍﻟﺠﻤﻠﺔ a ≤ b .2ﺇﺫﺍ ﻜﺎﻨﺕ ) (Aﻭ ) (Bﺠﻤﻠﺘﻴﻥ: ﻨﻔﻲ ﺍﻟﻭﺼل ] ) (Aﻭ ) [ (Bﻫﻭ ﺍﻟﻔﺼل ])ﻨﻔﻲ ) ( (Aﺃﻭ ﻨﻔﻲ )[ (B ﻨﻔﻲ ﺍﻟﻔﺼل ] ) (Aﺃﻭ ) [ (Bﻫﻭ ﺍﻟﻔﺼل ])ﻨﻔﻲ ) ( (Aﻭ ﻨﻔﻲ )[ (B ﻤﻼﺤﻅﺔ: ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ \"ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ\" ﺘﺴﻤﻰ ﻜﺫﻟﻙ \"ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ\" \"ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ\" ﺘﺴﻤﻰ ﻜﺫﻟﻙ \"ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔ\"
• ﺍﻟﻨﺸﺎﻁ ﺍﻟﺭﺍﺒﻊ : ﺘﻤﺭﻴﻥ) :ﻤﺤﻠﻭل(ﺒﺭﻫﻥ ﺃﻨﻪ :ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ﺍﻟﻤﻭﺠﺏ xﻓﺈﻥ . x 2 + 1 > x ﺍﻟﺤل:ﺍﻟﺒﺭﻫﺎﻥ :ﻟﻴﻜﻥ xﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ ﻟﻭ ﻜﺎﻨﺕ x 2 + 1 > xﺨﺎﻁﺌﺔ ﻟﻜﺎﻥ ﻨﻔﻴﻬﺎ ﺼﺤﻴﺤﺎ ﺃﻱ ﻟﻜـﺎﻥx2)ﺍﻟﻁﺭﻓﺎﻥ ﻤﻭﺠﺒﺎﻥ() ( 2 ≤ x2 ﻭﻟﻜﺎﻥ x2 +1 ≤ x +1ﻭﻟﻜﺎﻥ ) x 2 + 1 ≤ x 2ﻷﻥ ﺇﺫﺍ ﻜﺎﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ ( )( a 2 = aﻭﻟﻜﺎﻥ )1 ≤ 0ﺒﺈﻀﺎﻓﺔ − x 2ﺇﻟﻰ ﻁﺭﻓﻲ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ( ﻭ 1 ≤ 0ﺘﻨﺎﻗﺽ ﻤﻨﻪ ﻻ ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ x 2 + 1 ≤ xﺼﺤﻴﺤﺔ ﺇﺫﻥ x 2 + 1 > xﻭﻫﻭ ﺍﻟﻤﻁﻠﻭﺏ !!.ﻤﻼﺤﻅﺔ :ﺍﻟﺒﺭﻫﻨﺔ ﻋﻠﻰ ﺼﻭﺍﺏ x 2 + 1 > xﺍﻓﺘﺭﻀﻨﺎ ﺃﻨﻬﺎ ﺨﺎﻁﺌﺔ ﻭﺒﻴﻨﻨﺎ ﺃﻥ ﻫﺫﺍ ﻴﺅﺩﻱ ﺇﻟﻰ ﺘﻨﺎﻗﺽ ﻭﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻟﻠﺒﺭﻫﻨﺔ ﺘﺴﻤﻰ ﻁﺭﻴﻘﺔ ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺨﻠﻑ. • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺨﺎﻤﺱ : * ﻤﺜﺎل ﻤﻥ \"ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ\" ﺍﻟﺴﻴﺩ ﻋﻤﺭ ﻴﺭﻑ ﺠﻴﺩﺍ ﺠﺎﺭﻩ ﻋﻠﻲ ﻭﻫﻭ ﻴﻌﻠﻡ ﺃﻨﻪ \"ﺇﺫﺍ ﻜﺎﻥ ﻋﻠﻲ ﺫﺍﻫﺒﺎ ﺇﻟﻰ ﺍﻟﺴﻭﻕ ﻓﺈﻥ ﻋﻠﻲ ﻴﺤﻤل ﻗﻔﺔ\"ﻓﻲ ﻴﻭﻡ ﻤﺎ ﺭﺃﻯ ﻋﻤﺭ ﺠﺎﺭﻩ ﻋﻠﻲ ﺨﺎﺭﺝ ﻤﻥ ﺍﻟﻌﻤﺎﺭﺓ ﺒﺩﻭﻥ ﻗﻔﺔ ﻓﻘﺎل \"ﻋﻠﻲ ﻻ ﻴﺤﻤل ﻗﻔﺔ ﺇﺫﻥ ﻋﻠـﻲ ﻟـﻴﺱ ﺫﺍﻫﺒﺎ ﺇﻟﻰ ﺍﻟﺴﻭﻕ\" ﻭﻓﻲ ﻤﻨﻁﻕ ﺍﻟﺤﻴﺎﺓ ﺍﻟﻴﻭﻤﻴﺔ ﺍﺴﺘﻨﺘﺎﺝ ﻋﻤﺭ ﺼﺤﻴﺢ. ﺘﺤﻠﻴل ﺍﻟﻤﺜﺎل : ﺍﻟﺠﻤﻠﺔ ﺍﻷﻭﻟﻰ ﻤﻌﻨﺎﻫﺎ \" :ﻋﻠﻲ ﺫﺍﻫﺏ ﺇﻟﻰ ﺴﻭﻕ\" ﻴﺴﺘﻠﺯﻡ \"ﻋﻠﻲ ﻴﺤﻤل ﻗﻔﺔ\" ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل ] ) (Aﻴﺴﺘﻠﺯﻡ )[ (B ﺍﻟﺠﻤﻠﺔ ﺍﻟﺜﺎﻟﺜﺔ ﻫﻲ ﺍﻻﺴﺘﻠﺯﺍﻡ ]ﻋﻠﻲ ﻻ ﻴﺤﻤل ﻗﻔﺔ ﻴﺴﺘﻠﺯﻡ ﻋﻠﻲ ﻟﻴﺱ ﺫﺍﻫﺒﺎ ﺇﻟﻰ ﺍﻟﺴﻭﻕ[. ﻭﻫﻲ ﺍﻻﺴﺘﻠﺯﺍﻡ ]ﻨﻔﻲ Bﻴﺴﺘﻠﺯﻡ ﻨﻔﻲ [ Aﻭﺍﻟﺠﻤﻠﺘﺎﻥ ﺍﻷﻭﻟﻰ ﻭﺍﻟﺜﺎﻨﻴﺔ ﻤﺘﻜﺎﻓﺌﺘﺎﻥ !!!) ( ) (
ﻗﺎﻋﺩﺓ ﻤﻨﻁﻘﻴﺔ : ﺇﺫﺍ ﻜﺎﻨﺕ ) (Aﻭ ) (Bﺠﻤﻠﺘﻴﻥ ﻓﺈﻥ ﺍﻻﺴﺘﻠﺯﺍﻡ \" ) (Aﻴﺴﺘﻠﺯﻡ )\" (B ﻴﻜﺎﻓﺊ ﺍﻻﺴﺘﻠﺯﺍﻡ \"ﻨﻔﻲ ) (Bﻴﺴﺘﻠﺯﻡ ﻨﻔﻲ )\" (A ﻭﺍﻻﺴﺘﻠﺯﺍﻡ \" ﻨﻔﻲ ) (Bﻴﺴﺘﻠﺯﻡ ﻨﻔﻲ ) \" (Aﻴﺴﻤﻰ ﺍﻟﻌﻜﺱ ﺍﻟﻨﻘﻴﺽ ﻟﻼﺴﺘﻠﺯﺍﻡ \" ) (Aﻴﺴﺘﻠﺯﻡ )\" (B ﺘﻤﺭﻴﻥ ﺘﻁﺒﻴﻘﻲ : Xﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺒﺭﻫﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﻻﺴﺘﻠﺯﺍﻡ )[( ) ](1) x 3 + 4 x 2 − 3x − 2 ≠ ⇒ (x ≠ 1 ﺍﻟﺤل : ﺒﻤﺎ ﺃﻨﻨﺎ ﻨﺤﺴﻥ ﺍﺴﺘﻌﻤﺎل \" = \" ﺃﻜﺜﺭ ﻤﻥ \" ≠ \" ﻨﻔﻜﺭ ﻓﻲ ﺍﺴﺘﻌﻤﺎل ﻗﺎﻋﺩﺓ ﺍﻟﻌﻜﺱ ﺍﻟﻨﻘﻴﺽ ﺍﻻﺴﺘﻠﺯﺍﻡ ﻴﻜﺎﻓﺊ ﺍﻻﺴﺘﻠﺯﺍﻡ [ ( )](x = 1) ⇒ x3 + 4x2 − 3x − 2 = 0ﻟﻨﺒــﺭﻫﻥ ﺇﺫﻥ ﻋﻠــﻰ ﺼــﻭﺍﺏ ﺍﻻﺴــﺘﻠﺯﺍﻡ ) (2ﻟــﺫﻟﻙ ﻨﻔــﺭﺽ ﺃﻥ x = 1ﻭﻨﺒــﺭﻫﻥ ﺃﻥ : x3 + 4x2 − 3x − 2 = 0 ﺇﺫﺍ ﻜﺎﻥ x = 1ﻴﻜﻭﻥ x 3 + 4x 2 − 3x − 2 = 1 + 4 − 3 − 2 =0 ﻤﻨﻪ ﻴﻜﻭﻥ x 3 + 4 x 2 − 3x − 2 = 0ﻭﻫﻭ ﺍﻟﻤﻁﻠﻭﺏ ﻭﻋﻠﻴﻪ ﺍﻻﺴﺘﻠﺯﺍﻡ ) (1ﺼﺤﻴﺢ.
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ:، 0..5 ≤ x ≤ 1.5 x .1ﻋﺩﺩ ﺤﻘﻴﻘﻲ ,ﺃﻋﻁ ﻨﻔﻲ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ: ، −1 < x < −0.5 ، 0 ≤ x < 3 ، x < 0 ، x≥3 , x ≤ −2 )x > 4أو(. x ≤ 1 x .2ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﺤﻘﻕ x − 5 = 2x + 3 ﺒﺭﻫﻥ ﺒﺎﻟﺨﻠﻑ ﺃﻥ xﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ. .3ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ 0, ir,, rjﻟـﺘﻜﻥ C, B, Aﺍﻟـﻨﻘﻁ ﺤﻴـﺙ ( )، A(− 2,1) : ) C(x − 1,2) ، B(1, xﺤﻴﺙ xﻋﺩﺩ ﺤﻘﻴﻘﻲ. ﺒﺭﻫﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﻻﺴﺘﻠﺯﺍﻡ :ﺇﺫﺍ ﻜﺎﻥ C, B,, Aﻟﻴﺴﺕ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﻓﺈﻥ x ≠ −2 n (1 .4ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺒﺭﻫﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ n2ﺯﻭﺠﻴﺎ ﻓﺈﻥ nﺯﻭﺠﻲ. (2ﺘﺎﺒﻊ ﺍﻻﺴﺘﺩﻻل ﺍﻟﻤﻭﺍﻟﻲ:ﻟﻭ ﻜﺎﻥ 2ﻋﺩﺩﺍ ﻨﺎﻁﻘﺎ ﻟﻭﺤﺩ ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ aﻭ bﺃﻭﻟﻴـﺎﻥ ﻓﻴﻤـﺎ ﺒﻴﻨﻬﻤـﺎ ﺒﺤﻴـﺙ: 2 = a b a 2ﺯﻭﺠﻲ ﻭﻤﻨﻪ ( )a a2 2 a 2 b2 b (α ).....a 2 = 2b2ﻭﻤﻨﻪ ﻭﻤﻨﻪ =2 ﻭﻤﻨﻪ 2 = ﻭﻤﻨﻪ ﺯﻭﺠﻲ )ﻤﻥ (1ﻭ bﻓﺭﺩﻱ ﻷﻥ aﻭb ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻤﻨﻪ a = 2 p( p ∈ N ) : ) b = 2q + 1(q ∈ N ﻭﻤﻨﻪ ) (αﺘﺼﺒﺢ (2 p)2 = (2q + 1)2 ﻭﻤﻨﻪ 4 p 2 = 4q 2 4q + 1 ﻭﻤﻨﻪ 4( p 2 − 4q 2 − q) = 1ﻭﻤﻨﻪ \" 1ﻤﻀﺎﻋﻑ ﻟـ \" 4 ﺇﺫﻥ :ﻟﻭ ﻜﺎﻥ 2ﻨﺎﻁﻘﺎ ﻟﻜﺎﻥ \" 1ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ \" 4 -ﻤﺎ ﻫﻲ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺘﻲ ﺒﺭﻫﻥ ﻋﻠﻴﻬﺎ ﻤﻥ ﺨﻼل ﻫﺫﺍ ﺍﻻﺴﺘﺩﻻل ﻭﻤﺎ ﻫﻲ ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘـﻲ ﺍﺴـﺘﻌﻤﻠﺕ ﻟﺫﻟﻙ ؟
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139