• ﻤﺩﻭﺭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ : ﺃ .ﺃﻤﺜﻠﺔ : 1 ﻤﺩﻭﺭ 3.235ﺇﻟﻰ •) 10ﺃﻱ ﺇﻟﻰ (10-1ﻫﻭ 3.2ﻷﻥ ﺍﻟﺭﻗﻡ ﺍﻟﺜﺎﻨﻲ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻫﻭ 3 ﻭ . 3〈5 1)ﺃﻱ ﺇﻟﻰ ( 2-10ﻫﻭ 51.26ﻷﻥ ﺍﻟﺜﺎﻟﺙ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻫﻭ 1006 • ﻤﺩﻭﺭ 51.256ﺇﻟﻰ ﻭ .6 ≥ 5 • • ﻤﺩﻭﺭ 3.00152ﺇﻟﻰ 10-3ﻫﻭ 3.002ﻷﻥ ﺍﻟﺭﻗﻡ ﺍﻟﺭﺍﺒﻊ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻫﻭ 5ﻭ . 5 ≥ 5 .ﻤﺩﻭﺭ 3.8ﺇﻟﻰ ﺍﻟﻭﺤﺩﺓ ﺃﻱ ﺇﻟﻰ 10-0ﻫﻭ 4ﻷﻥ ﺍﻟﺭﻗﻡ ﺍﻷﻭل ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻫﻭ 8 ﻭ8 ≥ 5 ﺏ .ﺒﺼﻔﺔ ﻋﺎﻤﺔ :ﻟﻴﻜﻥ Aﻋﺩﺩﺍ ﻤﻜﺘﻭﺒﺎ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﺸﺭﻱ ﻭﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﺍﻟﻌﺩﺩ ﺍﻟﻌﺸﺭﻱ Rﻤﺩﻭﺭ Aﺇﻟﻰ .10-nﻨﻌﺘﺒﺭ Bﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺸﺭﻴﺔ ﻟﻠﻌﺩﺩ Aﺒﺎﺴﺘﺨﺩﺍﻡ nﺭﻗﻤﺎ ﻋﺸﺭﻴﺎ ﻤﻥ ﺃﺭﻗﺎﻤﻪ ﻭﺍﻟﻌﺩﺩ Cﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺸﺭﻴﺔ ﻟﻠﻌﺩﺩ Aﺒﺎﺴﺘﻌﻤﺎل ) (n+1ﺭﻗﻤﺎ ﻋﺸﺭﻴﺎ ﻤﻥ ﺃﺭﻗﺎﻤﻪ ﺇﺫﺍ ﻜﺎﻥ ﺁﺨﺭ ﺭﻗﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻓﻲ ﻜﺘﺎﺒﺔ Cﺃﺼﻐﺭ ﺘﻤﺎﻤﺎ ﻤﻥ R=B : 5ﺇﺫﺍ ﻜﺎﻥ ﺁﺨﺭ ﺭﻗﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻓﻲ ﻜﺘﺎﺒﺔ Cﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﻴﺴﺎﻭﻱ .R=B+10-n :5 1 ( ﻫﻭ ﻤﺩﻭﺭ ﻗﻴﻤﺘﻪ ﺍﻟﻌﺸﺭﻴﺔ ﺍﻟﻤﻘﺭﺒﺔ ﺇﻟﻰn∈N ﻤﻼﺤﻅﺔ :ﻤﺩﻭﺭ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺇﻟﻰ ) 10-n10 n + 1 ﺒﺎﻟﻨﻘﺼﺎﻥ.
• ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ ﻋﺩﺩ ﻋﺸﺭﻱ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ : ﺃ .ﺃﻤﺜﻠﺔ :ﻟﺘﻜﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻌﺸﺭﻴﺔ D, C, B, Aﺍﻟﻤﻜﺘﻭﺒﺔ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﻠﻤﻲ ﺤﻴﺙ , A = 7.2×106 D = 5.01×10−8 , C = 2 ×10−7 , B = 3.9 ×105 ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ Aﻫﻲ 107ﻷﻥ . 7.2 ≥ 5 ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ Bﻫﻲ 105ﻷﻥ . 3 .9 〈 5 ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ Cﻫﻲ 10-7ﻷﻥ . 2 〈 5 ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ Dﻫﻲ 10-7ﻷﻥ . 5.01 ≥ 5 ﺏ .ﺒﺼﻔﺔ ﻋﺎﻤﺔ :ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ ﻋﺩﺩ ﻋﺸﺭﻱ Aﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻤﻜﺘﻭﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﻠﻤﻲ ﺤﻴﺙ A = a.10 nﺃﻴﻥ aﻋﺩﺩ ﻋﺸﺭﻱ ﺒﺤﻴﺙ 1 ≤ a〈10ﻭ nﻋﺩﺩ ﺼﺤﻴﺢ ﻨﺴﺒﻲ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ Aﻫﻲ a ≥ 510. n+1 ﺇﺫﺍ ﻜﺎﻥ ﺇﺫﺍ ﻜﺎﻥ a〈5ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ Aﻫﻲ .10nﺤﻴﺙ) 10( n∈N n ﻤﻼﺤﻅﺔ :ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ ﻋﺩﺩ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻫﻲ ﻋﺩﺩ ﻋﺸﺭﻱ ﻤﻥ ﺍﻟﺸﻜل ﻤﻼﺤﻅﺔ :ﻓﻲ ﺍﻷﻭﻀﺎﻉ ﺍﻟﻌﻤﻠﻴﺔ ﺘﺴﺘﻌﻤل \"ﺭﺘﺏ ﺍﻟﻤﻘﺩﺍﺭ\" ﻋﻨﺩ ﺍﻟﺘﻌﺎﻤل ﻤﻊ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ \" ﺍﻟﻜﺒﻴﺭﺓ ﺠﺩﺍ \" ﻗﺼﺩ ﺘﻘﺩﻴﺭ ﻭﺍﺴﻊ ﻟﻬﺫﻩ ﺍﻷﻋﺩﺍﺩ.
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ: .1ﺃﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﻠﻤﻲ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻭﺍﻟﻴﺔ: 35 4 ,0.000035 , 10000 , 10 ,51000000 ,690000 ,1000 .2ﺃﺘﻤﻡ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ :252 8 22 3.561 2.125 ﻤﺩﻭﺭ ﺍﻟﻌﺩﺩ 7 ﺇﻟﻰ ﺍﻟﻭﺤﺩﺓ ﺇﻟﻰ 10-1 ﺇﻟﻰ 10-2 ﺇﻟﻰ 10-3 .3ﺃﻋﻁ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻭﺍﻟﻴﺔ : ,6400000 ,0.000002 ,0.4 892000000000 49 53 . 64000 , 2000000000000 , 1000000000 .4ﺘﺘﻜﻭﻥ ﺫﺭﺓ ﻤﻥ ﻨﻭﺍﺓ ﻭﺇﻟﻜﺘﺭﻭﻥ ,ﺇﻻﻟﻜﺘﺭﻭﻥ ﻴﺩﻭﺭ ﺤﻭل ﺍﻟﻨﻭﺍﺓ ﻋﻠﻰ ﻤﺴﺎﺭ ﺩﺍﺌﺭﻱ ﻗﻁﺭﻩ ﻴﻘﺩﺭﺒـ 0.0000001 mm :ﻭﻴﻘﺩﺭ ﻗﻁﺭ ﺍﻟﻨﻭﺍﺓ ﺒـ 0………..1 mm :ﺇﺫﺍ ﻤﺜﻠﻨﺎ ﺍﻟﻨﻭﺍﺓ ﺒﻜﻭﻴﺭﺓ ﻗﻁﺭﻫﺎ 1 ,cmﻜﻡ ﻴﻜﻭﻥ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﺴﻠﻡ ,ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻤﺴﺎﺭ ﺍﻹﻟﻜﺘﺭﻭﻥ ؟.
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ: ﺕ : 01ﻜﺘﺎﺒﺔ ﻜل ﻋﺩﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻌﻁﺎﺓ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﻠﻤﻲ: 1000 = 1×103 • 690000 = 6.9×105 • 4 = 4 ×10−2 • 100 35 = 3.5 ×10 −3 • 10000 0.000035 = 3.5×10−5 • ﺕ : 02ﺇﺘﻤﺎﻡ ﺍﻟﺠﺩﻭل ﺍﻟﻤﻌﻁﻰ 252 8 22 3.561 2.125 ﻤﺩﻭﺭ ﺍﻟﻌﺩﺩ 7 16 3 4 2 ﺃﻱ ﺍﻟﻭﺤﺩﺓ 15.9 2.8 3 3.6 2.115.87 2.83 3.1 3.56 2.13 ﺃﻱ 10−115.875 2.828 3.561 2.125 ﺃﻱ 10−2 3.14 ﺃﻱ 10−3 3.143 ﺕ : 03ﺇﻋﻁﺎﺀ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻌﻁﺎﺓ: 0.4 = 4×10−1 • ﻭ 4 < 5ﺃﻱ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ 0.4ﻫﻲ 10−1 0.000002 = 2×10−6 • ﻭ 2 < 5ﺃﻱ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ 2 ×10−6ﻫﻲ 10−6 6400000 = 6.4×106 • ﻭ 6.4 ≥ 5ﺃﻱ ﺭﺘﺒﺔ ﻤﻘﺩﺍﺭ 6.4 ×106ﻫﻲ 106+1ﺃﻱ 107 ﻭﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﻴﻜﻭﻥ ﺍﻟﺘﻌﺎﻤل ﻤﻊ ﺒﻘﻴﺔ ﺍﻷﻋﺩﺍﺩ
ﺕ : 04ﻨﺴﻤﻲ Dﻁﻭل ﺨﻁﺔ ﺍﻟﺩﺍﺌﺭﺓ ﻤﺴﺎﺭ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻭﻨﺴﻤﻲ D0ﻁﻭل ﻗﻁﺭ ﺍﻟﻨﻭﺍﺓﻭﻨﺴﻤﻲ xﻁﻭل ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻤﺴﺎﺭ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻭﻓﻕ ﺍﻟﺴﻠﻡ ﺍﻟﻤﻌﻁﻰ ﻋﻨﺩﺌﺫ ﻴﺼﺒﺢ ﻟﺩﻴﻨﺎ D0 → 1cm : D→xﺃﻱ1cm → 10−11 :x → 10−7x = 10−7 ×1 ﻭﻤﻨﻪ: 10 −11 = 104ﻭﻤﻨﻪ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻤﺴﺎﺭ ﺍﻹﻟﻜﺘﺭﻭﻥ ﻴﻘﺩﺭ ﻭﻓﻕ ﺍﻟﺴﻠﻡ ﺍﻟﻤﻌﻁﻰ ﺒـ 10000cm :
ﺍﻨﺸﻁﺔ ﺒﺎﻟﺤﺎﺴﺒﺔ ﺍﻟﻌﻠﻤﻴﺔ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﺍﻜﺘﺴﺎﺏ ﺍﻟﻤﺒﺎﺩﺉ ﺍﻟﻘﺎﻋﺩﻴﺔ ﻟﻠﺘﻤﻜﻥ ﻤﻥ ﺍﻟﺤﺴﺎﺒﺎﺕ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ ﺍﻟﻌﻠﻤﻴﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺤﺩﻭﺩ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ• ﻤﺒﺎﺩﺉ ﻗﺎﻋﺩﻴﺔ ﻤﻌﺭﻓﺘﻬﺎ ﻻﺯﻤﺔ ﻟﻠﻘﻴﺎﻡ ﺒﺤﺴﺎﺒﺎﺕ ﺒﺎﻟﺤﺎﺴﺒﺔ ﺍﻟﻌﻠﻤﻴﺔ )ﻓﻲ ﺤﺩﻭﺩ ﻗﺩﺭﺘﻬﺎ( • ﺒﻌﺽ ﺍﻟﺤﺴﺎﺒﺎﺕ • ﺘﻤﺎﺭﻴﻥ
• ﺤﺩﻭﺩ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ : ﻓﻲ ﻏﺎﻟﺏ ﺍﻟﺤﺎﻻﺕ ﻫﻲ ﺘﻌﻁﻲ ﻗﻴﻡ ﻋﺸﺭﻴﺔ ﻤﻘﺭﺒﺔ ﻟﻨﺘﺎﺌﺞ ﺍﻟﺤﺴﺎﺒﺎﺕ. ﻤﺜﺎل 2 :ﻻ ﻴﺴﺎﻭﻱ 1.414ﺒل 1.414ﻫﻲ ﻗﻴﻤﺔ ﻋﺸﺭﻴﺔ ﻤﻘﺭﺒﺔ ﻟﻠﻌﺩﺩ . 2 -ﻗﺩﺭﺓ ﺍﺴﺘﻌﺎﺏ ﺸﺎﺸﺘﻬﺎ ﻫﻲ 11ﺭﻗﻤﺎ ﻋﻠﻰ ﺍﻷﻜﺜﺭ ,ﻫﺫﺍ ﻓﻲ ﺍﻟﻜﺘﺎﺒﺔ ﺍﻟﻌﺎﺩﻴﺔ ﻴﻤﻜﻨﻬﺎ ﺃﻥ ﺘﺤﺴﻥ ﻗﺩﺭﺍﺘﻬﺎ ﻓﻲ ﺍﻟﻜﺘﺎﺒﺔ ﺍﻟﻌﻠﻤﻴﺔ ﻭﻟﻜﻥ ﻻ ﻴﻤﻜﻨﻬﺎ ﺃﺒﺩﺍ ﺃﻥ ﺘﺘﺠﺎﻭﺯ ﺤﺩﻭﺩﻫﺎ‼! • ﻤﺜﺎل :ﻫﻲ ﻏﻴﺭ ﻗﺎﺩﺭﺓ ﻋﻠﻰ ﺤﺴﺎﺏ ﺒﺴﻴﻁ ﻤﺜل 2×1050×3×1050• ﻤﺒﺎﺩﺉ ﻗﺎﻋﺩﻴﺔ ﻤﻌﺭﻓﺘﻬﺎ ﻻﺯﻤﺔ ﻟﻠﻘﻴﺎﻡ ﺒﺤﺴﺎﺒﺎﺕ ﺒﺎﻟﺤﺎﺴﺒﺔ ﺍﻟﻌﻠﻤﻴﺔ )ﻓﻲ ﺤﺩﻭﺩ ﻗﺩﺭﺍﺘﻬﺎ(: .1ﺇﺨﺘﺒﺎﺭMODE: :Mode Norhﺘﻜﺘﺏ ﺍﻷﻋﺩﺍﺩ ﻜﺘﺎﺒﺔ ﻋﺸﺭﻴﺔ ﻋﺎﺩﻴﺔ ﻭﺇﺫﺍ ﺘﺠﺎﻭﺯ ﻋﺩﺩ ﺍﻷﺭﻗﺎﻡ ﺤﺩﻭﺩ ﺍﻟﺸﺎﺸﺔ ﻓﺈﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻌﺸﺭﻴﺔ ﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﻠﻤﻲ ﺒﻌﺩ ﺃﻥ ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ = ﻤﺜﺎل3.5 x 2.7 = 9.45 := 3000000 x 2000000 612 ﻭﻫﺫﺍ ﻴﻌﻨﻲ 3000000x2000000 =6x1012 • :Mode SCIﺘﻜﺘﺏ ﺍﻷﻋﺩﺍﺩ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﻠﻤﻲ• :Mode fixﻤﺘﺒﻭﻉ ﺒﺭﻗﻡ nﻤﻥ 0ﺇﻟﻰ :9ﺘﻜﺘﺏ ﺍﻷﻋﺩﺍﺩ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻌﺸﺭﻱ ﻤﻊ nﺭﻗﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ )ﺍﻟﺭﻗﻡ ﺍﻷﺨﻴﺭ ﻤﺩﻭﺭ(. • ) Mode SDﺃﻭ : (STATﻟﻠﺤﺴﺎﺒﺎﺕ ﺍﻻﺤﺼﺎﺌﻴﺔﻟﻬﺫﻩ ﺍﻟﺒﺩﺍﻴﺔ ﺴﻨﺭﻜﺯ ﻋﻠﻰ ﺍﻟﺤﺴﺎﺒﺎﺕ ﺒﺎﺴﺘﻌﻤﺎلMode Norh
.2ﻤﻌﺭﻓﺔ ﺍﻟﻠﻤﺴﺎﺕ ﺍﻟﻤﺨﺘﻠﻔﺔ: * ﻟﻤﺴﺎﺕ ﺍﻷﺭﻗﺎﻡ ﻭﺍﻟﻠﻤﺴﺔ zyﻭﺍﻟﻠﻤﺴﺔ * ﻟﻤﺴﺘﻲ ﺍﻷﻗﻭﺍﺱ ) ﻭ (* ﻟﻤﺴﺎﺕ ﺍﺴﺘﻌﻤﺎل ﺍﻟﺫﺍﻜﺭﺓ )ﻫﻨﺎﻙ ﺤﺴﺎﺒﺎﺒﺕ ﺘﻤﻠﻙ ﻋﺩﺓ ﺫﺍﻜﺭﺍﺕ( .3ﺃﻭﻟﻭﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﺎﺕ:ﺍﻟﺤﺎﺴﺒﺎﺕ ﺍﻟﻌﻠﻤﻴﺔ ﺍﻟﻌﺼﺭﻴﺔ ﺘﺤﺘﺭﻡ ﺃﻭﻟﻭﻴﺎﺕ ﺍﻟﺤﺴﺎﺒﺎﺕ )ﻜﻤﺎ ﺘﻜﺘﺏ ﺒﺎﻟﻴﺩ( ﻭﻟﻜﻥ ,ﻋﻨﺩ ﺍﻟﺤﺎﺠﺔ ,ﺃﻭ ﺍﻟﺸﻙ, ﺍﺴﺘﻌﻤﺎل ﺍﻷﻗﻭﺍﺱ ﺍﻟﺘﻲ ﺘﺩل ﻋﻠﻰ ﻫﺫﻩ ﺍﻷﻭﻟﻭﻴﺎﺕ ﻀﺭﻭﺭﻱ.ﻹﻨﺠﺎﺯ35 + 2.3× 4 − 5 : ﻤﺜﺎل:35 + 2.3 X 4 – 5 = 39.20= 35 + ( 2.3 x 4 ) - 5 ﺃﻭ ﺍﻷﻗﻭﺍﺱ ﻏﻴﺭ ﻀﺭﻭﺭﻴﺔ 1 + 35 ﻭﻟﻜﻥ ﺍﻹﻨﺠﺎﺯ 5 − 29( 1 + 35 ) ÷ ( 5 – 29 ) = - 1.5( ÷ 1 + 35 ﻷﻥ ) 5 - 29 1+ 5 35 ﺘﻌﻨﻲ − 29ﻭ 1 + 35 ÷ 5 - 29 1+ 35 − 29 ﺘﻌﻨﻲ 5
• ﺒﻌﺽ ﺍﻟﺤﺴﺎﺒﺎﺕ: = ( )a 27 0.25+ 2.25 ×3 + 5.7 ×5 − 16 ﻟﻨﺤﺴﺏ ﺍﻟﻌﺩﺩ aﺤﻴﺙ .1 ﻭﺫﻟﻙ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ := ( 0.25 + 2.25 ) x 3 + 5.7 x 5 - 27 ÷ 16 a = 34.3125 b = 57 × 0.62 − 5 2+ 8 .2 ﻟﻴﻜﻥ bﺍﻟﻌﺩﺩ ﺤﻴﺙ3 : ﻟﻨﻌﻴﻥ ﻤﺩﻭﺭ bﺇﻟﻰ 10-2ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ: 57 x 0.6 Xy 2 – 5 x ÷ 2 +8 =3 ﺍﻵﻟﺔ ﺘﻌﻁﻲ b =18.0677343: ﻭﻤﺩﻭﺭ bﺇﻟﻰ 10-2ﻫﻭ 18.07 c = 51.62 × 5 + 3× 51.622 − 35 ﻟﻴﻜﻥ cﺍﻟﻌﺩﺩ ﺤﻴﺙ: .3 51.62M+ ﻟﺘﻌﻴﻥ ﺼﻴﻐﺔ cﺒﺎﺴﺘﻌﻤﺎل ﺭﻗﻤﻴﻥ ﻤﻥ ﺃﺭﻗﺎﻤﻪ ﺍﻟﻌﺸﺭﻴﺔ ) (Troncatureﻭﺫﻟﻙ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔﻨﻼﺤﻅ ﺃﻥ ﺍﻟﻌﺩﺩ 51.62ﻤﻜﺭﺭ ﻋﺩﺓ ﻤﺭﺍﺕ ﻓﺘﺨﺯﻨﻪ ﻓﻲ ﺍﻟﺫﺍﻜﺭﺓ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻠﻤﺴﺔ RMﺒﻌﺩ ﺇﺩﺨﺎﻟﻪ ﻋﻠﻰ ﺃﻥ ﻨﺴﺘﻌﻤل ﺍﻟﻠﻤﺴﺔ ﻜل ﻤﺎ ﺃﺭﺩﻨﺎ ﺍﺴﺘﺭﺠﺎﻋﻪ= 51.62 M+ x 5 + 3 RM Xy 2 - 35 ÷ RM ﺍﻵﻟﺔ ﺘﻌﻁﻲc = 8251.29 :
)d = 12.5+17.75 −(0.71− 40.21 .4ﻟﻨﺤﺴﺏ ﺍﻟﻌﺩﺩ dﺤﻴﺙ: 24− 2.25 ﻁﺭﻴﻘﺔ ﺃﻭﻟﻰ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻷﻗﻭﺍﺱ+ 17.75 ) - ( 0.71 - 40,21 ) ) ÷ ( 24 - = ) 2.25 ( ( 12.5ﻁﺭﻴﻘﺔ ﺜﺎﻨﻴﺔ ﻨﺨﺯﻥ ﺍﻟﺒﺴﻁ ﻓﻲ ﺍﻟﺫﺍﻜﺭﺓ:+ 17.75 ) - ( 0.71 - 40.21 ) M+ ÷ ( 24 - = ) 2.25 ( 12.5 ﻓﻨﺠﺩ d=2ﻤﻼﺤﻅﺔ :ﻨﻅﺭﺍ ﻟﻼﺨﺘﻼﻓﺎﺕ ﺒﻴﻥ ﺃﻨﻭﺍﻉ ﺍﻟﺤﺎﺴﺒﺎﺕ ﻤﺜل RMﺃﻭ RCLﺒﺩﻻ ﻤﻥ RMﺃﻭ STOﺒﺩﻻ ﻤﻥ M+ﻴﺠﺏ ﺃﻥ ﻨﻌﻭﺩ ﺇﻟﻰ ﺍﻟﻜﺘﻴﺏ ﺤﻴﺙ ﻁﺭﻴﻘﺔﺍﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ) (Prospectusﺍﻟﻤﻤﺎﺭﺴﺔ ﺘﻤﻜﻥ ﻤﻥ ﻤﻌﺭﻓﺔ ﺍﻟﺠﻴﺩﺓ ﻟﻶﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻤﻥ ﺍﺴﺘﻌﻤﺎﻟﻬﺎ ﺍﺴﺘﻌﻤﺎﻻ ﺠﻴﺩﺍ.
• ﺘﻤﺎﺭﻴﻥ: .1ﺃﺤﺴﺏ Aﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻤﺩﻭﺭ Aﺇﻟﻰ 10-2ﻓﻲ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : A = 0 .514 2 + 1 .318 2 (1 A = 3.519 × 0.591 (2 3.519 + 0.591 =A 3(3.78−2.47)2 +14×1.5 (3 3.78+ 2.47A =1.250 +1.251 +1.252 +1.253 +1.254 +1.255 (4 A= 2.53 −5×2.53 +3 2.53 3 (5 − 2.53 2.35 + 2.3 − 1 − 2.3 5 2.3 A = 2.3×1.5 +12 (6 .2ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ,ﻋﻴﻥ ﺃﺼﻐﺭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒﺤﻴﺙ ﻴﻜﻭﻥ 1 . 5 nﺃﻜﺒﺭ ﻤﻥ) ( 25V = 4 πR 3 .3ﺤﺠﻡ ﻜﺭﺓ ﻁﻭل ﻨﺼﻑ ﻗﻁﺭﻫﺎ Rﻫﻭ 3 ﺃﺤﺴﺏ ﺤﺠﻡ ﻜﺭﺓ ﻁﻭل ﻨﺼﻑ ﻗﻁﺭﻫﺎ .0,15 cm
ﺃﻨﺸﻁﺔ ﺤﻭل ﺍﻟﺠﻤل ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻭ ﺍﻟﻤﻨﻁﻕ)(1 ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﻤﺜﺎل ﺍﻟﻤﻀﺎﺩ -ﺍﻟﺒﺭﻫﺎﻥ ﺒﻔﺼل ﺍﻟﺤﺎﻻﺕ -ﺍﻻﺴﺘﻠﺯﺍﻡ ﻭﺍﻟﺘﻜﺎﻓﺅ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻟﻨﺸﺎﻁ ﺍﻷﻭل • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻟﺙ • ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
• ﻟﻨﺸﺎﻁ ﺍﻷﻭل:ﻟﺘﻜﻥ ﺍﻟﺠﻤﻠﺔ \"ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﻓﺈﻥ ) (2n+4ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ \"7ﻫل ﻫﺫﻩ ﺍﻟﺠﻤﻠﺔ ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ؟ ﻫل ﻫﻲ ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔ؟ ﺍﻹﺠﺎﺒﺔ :ﺍﻟﺠﻤﻠﺔ ﺍﻟﻤﻘﺘﺭﺤﺔ ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔ. ﺍﻟﺘﻌﻠﻴل :ﻟﻭ ﺃﺨﺫﻨﺎ ,ﻤﺜﺎﻻ n = 1ﻴﻜﻭﻥ 2n+4 = 6ﻭ 6ﻟﻴﺱ ﻤﻀﺎﻋﻔﺎ ﻟﻠﻌﺩﺩ .7 ﺍﻟﻤﻼﺤﻅﺔ :ﻟﻘﺩ ﺒﺭﻫﻨﺎ ﺒﺎﻟﻤﺜﺎل ﺍﻟﻤﻀﺎﺩ ﻋﻠﻰ ﺨﻁﺄ ﻗﻀﻴﺔ ﺘﺘﻀﻤﻥ ﺍﻟﻌﺒﺎﺭﺓ: \"ﻤﻬﻤﺎ ﻴﻜﻥ\".. • ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ: ﻟﺘﻜﻥ ﺍﻟﺠﻤﻠﺔ \"ﻤﻬﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﻓﺈﻥ ) (n2+3nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺯﻭﺠﻲ\" ﻟﻤﺎ n2+3n = 0, n = 0ﻭ 0ﺯﻭﺠﻲ ﻟﻤﺎ n2 + 3n = 4, n = 1ﻭ 4ﺯﻭﺠﻲ ﻟﻤﺎ n2 + 3n = 10, n = 2ﻭ 10ﺯﻭﺠﻲ ﻟﻤﺎ n2 + 3n =18, n = 3ﻭ 18ﺯﻭﺠﻲ ﻴﺒﺩﻭ ﻭﻜﺄﻥ ﺍﻟﺠﻤﻠﺔ ﺍﻟﻤﻘﺘﺭﺤﺔ ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ ﻟﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺫﻟﻙ: ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻜﻴﻔﺎ ﻟﺩﻴﻨﺎ ﺇﻤﺎ nﺯﻭﺠﻲ ﻭﺇﻤﺎ nﻓﺭﺩﻱ ﺍﻟﺤﺎﻟﺔ ﺍﻷﻭﻟﻰ :ﻟﻤﺎ nﺯﻭﺠﻲ: )N=2kﺤﻴﺙ kﻋﺩﺩ ﻁﺒﻴﻌﻲ( )n2 +3n = (2k)2 +3(2k = 4k 2 + 6k ) = (2 2 k 2 + 3 k ﻭ 2k 2 + 3kﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻨﻪ n 2 + 3 nﺯﻭﺠﻲ
ﺍﻟﺤﺎﻟﺔ ﺍﻟﺜﺎﻨﻴﺔ :ﻟﻤﺎ nﻓﺭﺩﻱ: ) n = 2p +1ﺤﻴﺙ pﻋﺩﺩ ﻁﺒﻴﻌﻲ()n 2 + 3n = (2 p + 1)2 + 3(2 p + 1 = 4p2 + 4p +1+6p +3 = 4 p2 +10p + 4( )= 2 2p2 +5p + 22ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻨﻪ n 2 + 3 nﻋﺩﺩ ﺯﻭﺠﻲ2p + 5p + 2 ﻭﺇﺫﻥ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ )ﺃﻱ ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ n 2 + 3 n (nﺯﻭﺠﻲ ﻤﻨﻪ ﺍﻟﺠﻤﻠﺔ ﺍﻟﻤﻘﺘﺭﺤﺔ ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔﺍﻟﻤﻼﺤﻅﺔ :ﻟﻘﺩ ﺒﺭﻫﻨﻨﺎ ﺒﻔﺼل ﺍﻟﺤﺎﻻﺕ ﻋﻠﻰ ﺼﻭﺍﺏ ﻗﻀﻴﺔ ﺘﺘﻀﻤﻥ ﺍﻟﻌﺒﺎﺭﺓ \" ﻤﻬﻤﺎ ﻴﻜﻥ \"
• ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻟﺙ : ﻟﻴﻜﻥ xﻋﺩﺩﺍ ﺤﻘﻴﻘﺎﻭ ﻜﻴﻔﻴﺎ ,ﻭﻟﺘﻜﻥ ﺍﻟﺠﻤﻠﺘﺎﻥ ) (Pﻭ ) (Qﺤﻴﺙ : ) \" :(Pﺇﺫﺍ ﻜﺎﻥ x=1ﻓﺈﻥ ( )( )\" x x −1 x2 − 4 = 0 )\" :(Qﺇﺫﺍ ﻜﺎﻥ x x −1 x2 − 4 = 0ﻓﺈﻥ( )( )\" x = 1 . 1ﻟﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺃﻥ ﺍﻟﺠﻤﻠﺔ ) (Pﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ :ﺇﺫﺍ ﻜﺎﻥ x=1ﻴﻜﻭﻥ x-1=0ﻭ x2 - 4= - 3ﻭ ( )( )x x −1 x2 − 4 = 0 ﻤﻨﻪ ﺍﻟﺠﻤﻠﺔ ) (Pﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ - 2ﻟﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺃﻥ ﺍﻟﺠﻤﻠﺔ) (Qﻟﻴﺴﺕ \" ﺼﺤﻴﺤﺔ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ \"ﻭﻻ ﻴﻜﻭﻥ = ( )( )x x −1 x − 4 = 0x2 ﻭﺫﻟﻙ ﺒﺎﻟﻤﺜﺎل ﺍﻟﻤﻀﺎﺩ ﻟﻭ ﺃﺨﺫﻨﺎ ﻤﺜﻼ x = 0ﻴﻜﻭﻥ .1 - 3ﺍﻟﻤﻼﺤﻅﺎﺕ :• ﺠﻤﻠﺔ ﻤﻥ ﺍﻟﺸﻜل \" ﺇﺫﺍ ﻜﺎﻥ ) (Aﻓﺈﻥ ) \"(Bﺘﺴﻤﻰ ﺍﺴﺘﻠﺯﺍﻤﺎ ﻭﺘﻘﺭﺃ ﻜﺫﻟﻙ \") (Aﻴﺴﺘﻠﺯﻡ )\"(B ﻭﻴﺭﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﻜﺘﺎﺒﺔ: » )« (A)=> (B • ﺍﻟﺠﻤﻠﺔ \" ﺇﺫﺍ ﻜﺎﻥ ) (Bﻓﺈﻥ ) \" (Aﺘﺴﻤﻰ ﺍﻻﺴﺘﻠﺯﺍﻡ ﺍﻟﻌﻜﺴﻲ ﻟﻼﺴﺘﻠﺯﺍﻡ• ﺍﻟﺠﻤﻠﺔ ])ﺇﺫﺍ ﻜﺎﻥ ) (Aﻓﺈﻥ ) ((Bﻭ) ﺇﺫﺍ ﻜﺎﻥ ) (Bﻓﺈﻥ ) [((Aﺘﺴﻤﻰ ﺘﻜﺎﻓﺅﺍ ﻭﺘﻘﺭﺃ ﻜﺫﻟﻙ\") (Aﻴﻜﺎﻓﺊ) \"(Bﺃﻭ ﻴﻜﻭﻥ ) (Aﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ )\"(Bﺃﻭ \") (Aﻤﻌﻨﺎﻩ) \"(Bﻭﻴﺭﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﻜﺘﺎﺒﺔ » )« (A)<=> (B• ﻟﻠﺒﺭﻫﻨﺔ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﻻﺴﺘﻠﺯﺍﻡ \" ﺇﺫﺍ ﻜﺎﻥ ) (Aﻓﺈﻥ ) \"(Bﻨﺒﺭﻫﻥ ﺃﻥ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ ﺤﻴﺙ ) (Aﺼﺤﻴﺤﺔ ﺘﻜﻭﻥ )(Bﻜﺫﻟﻙ ﺼﺤﻴﺤﺔ.ﻭﻟﻠﺒﺭﻫﻨﺔ ﻋﻠﻰ ﺃﻥ ﺍﻻﺴﺘﻠﺯﺍﻡ \" ﺇﺫﺍ ﻜﺎﻥ ) (Aﻓﺈﻥ ) \" (Bﻟﻴﺱ ﺼﺤﻴﺤﺎ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ ﻴﻜﻔﻲ ﺃﻥ ﻨﺠﺩﻤﺜﺎﻻ ﻤﻀﺎﺩﺍ ﺃﻱ ﺤﺎﻟﺔ ﺤﻴﺙ ) (Aﺼﺤﻴﺤﺔ ﻭ ) (Bﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﻜل ﻭﺍﺤﺩ ﻤﻥ ﺍﻻﺴﺘﻠﺯﺍﻤﻴﻥ\" ﺇﺫﺍ ﻜﺎﻥ ) (Aﻓﺈﻥ ) \"(Bﻭ\" ﺇﺫﺍ ﻜﺎﻥ ) (Bﻓﺈﻥ )\" (A
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ .1ﻟﺘﻜﻥ ﺍﻟﺠﻤل )(R), (Q), (Pﺤﻴﺙ : ) \" : (Pﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻕ ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ Aﻓﺈﻥ Aﻋﺩﺩ ﺃﺼﻡ \" 3 ) : (Qﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﻓﺈﻥ nﻋﺩﺩ ﻨﺎﻁﻕ\". ) : (Rﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ Aﻓﺈﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ A2ﻤﻭﺠﺏ ﺃﻭ ﻤﻌﺩﻭﻡ.ﻗل ﻤﻌﻠﻼ ﻋﻠﻰ ﺇﺠﺎﺒﺘﻙ ,ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﺠﻤل ) (R), (Q), (Pﺇﻥ ﻫﻲ ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ ﺃﻭ ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔ. .2ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻜﻴﻔﻴﺎ ﺃ .ﺒﺭﻫﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﻻﺴﺘﻠﺯﺍﻡ \":ﺇﺫﺍ ﻜﺎﻥ nﻤﻀﺎﻋﻔﺎ ﻟﻠﻌﺩﺩ 8ﻓﺈﻥ nﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ\"4 ﺏ .ﻫل ﺍﻻﺴﺘﻠﺯﺍﻡ\" ﺇﺫﺍ ﻜﺎﻥ nﻤﻀﺎﻋﻔﺎ ﻟﻠﻌﺩﺩ 4ﻓﺈﻥ nﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ \" 8 ﺼﺤﻴﺢ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ؟ .3ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﺒﺤﻴﺙ :ﻭa ≠ −b a ≠ bab = 0 ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ 2a − a +b =1 ﻴﻜﻭﻥ ﺍﻟﺘﻜﺎﻓﺅ\" : ﺼﻭﺍﺏ ﻋﻠﻰ ﺒﺭﻫﻥ a+b a −b \"
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ : ﺕ : 01 ﺍﻟﺠﻤﻠﺔ ) (Pﺤﻴﺙ: •) \" (Pﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ Aﻓﺈﻥ Aﻋﺩﺩ ﺃﺼﻡ\"ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔ ﺇﺫ ﻴﻜﻔﻲ ﺃﻥ A = 4 :ﻓﻔﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ 4 = 2ﻭ 2ﻟﻴﺱ ﻋﺩﺩ ﺃﺼﻡ. ﺍﻟﺠﻤﻠﺔ )(Qﺤﻴﺙ: • 3)\" : (Qﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﻓﺈﻥ n :ﻋﺩﺩ ﻨﺎﻁﻕ\" ﻗﻀﻴﺔ ﺨﺎﻁﺌﺔ ﻜﺎﻨﺕ ﻏﻴﺭ ﻤﻌﺭﻑ. 3 ﻴﻜﻔﻲ ﺃﻥ n=0 :ﻓﻔﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ n ﺍﻟﺠﻤﻠﺔ ) (Rﺤﻴﺙ: •)\" : (Rﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ Aﻓﺈﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ A2ﻤﻭﺠﺏ ﺃﻭ ﻤﻌﺩﻭﻡ \" ﺘﺒﺩﻭ ﻭﻜﺄﻨﻬﺎ ﺼﺤﻴﺤﺔ.ﻟﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺫﻟﻙ :ﻟﺘﻜﻥ Aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻜﻴﻔﻲ ،ﻟﺩﻴﻨﺎ ﺇﻤﺎ Aﻤﻭﺠﺏ ﻭﺇﻤﺎ Aﺴﺎﻟﺒﺎ ﺘﻤﺎﻤﺎ.A2 = A× A ﺍﻟﺤﺎﻟﺔ ﺍﻷﻭﻟﻰ :ﻟﻤﺎ Aﻤﻭﺠﺏ : ﻭﺠﺩﺍﺀ ﻋﺩﺩﻴﻥ ﻤﻭﺠﺒﻴﻥ ﻋﺒﺎﺭﺓ ﻋﻥ ﻋﺩﺩ ﻤﻭﺠﺏ. ﻭﺒﺎﻟﺘﺎﻟﻲ A2ﻤﻭﺠﺏ. ﺍﻟﺤﺎﻟﺔ ﺍﻟﺜﺎﻨﻴﺔ :ﻟﻤﺎ Aﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ : ﺃﻱ A2ﻫﻭ ﺠﺩﺍﺀ ﻋﺩﺩﻴﻥ ﺴﺎﻟﺒﻴﻥ ﺘﻤﺎﻤﺎ ﻓﻬﻭ ﺇﺫﻥ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ A2 = A× Aﺇﺫﻥ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ )ﺃﻱ ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ A2 ( Aﻤﻭﺠﺏ ﺃﻭ ﻤﻌﺩﻭﻡ ﻭﻤﻨﻪ ﺍﻟﺠﻤﻠﺔ ﺍﻟﻤﻘﺘﺭﺤﺔ ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ.
ﺕ : 02ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻜﻴﻔﻴﺎ ﺃ( ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﻻﺴﺘﻠﺯﺍﻡ: \" ﺇﺫﺍ ﻜﺎﻥ nﻤﻀﺎﻋﻔﺎ ﻟﻠﻌﺩﺩ 8ﻓﺈﻥ nﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ \" 4 ﻨﻔﺭﺽ ﺃﻥ ﺍﻟﺠﻤﻠﺔ \" nﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ :8ﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ. ﻋﻨﺩﺌﺫ :ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ kﺒﺤﻴﺙn = 8k : ﻭﻋﻠﻴﻪ :ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ kﺒﺤﻴﺙ n = 4(2k) : ﻭﺒﺎﻟﺘﺎﻟﻲ ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ' kﺒﺤﻴﺙ n = 4k ' : )ﺇﺫﻥ ﻴﻜﻔﻲ ﺃﺨﺫ( k'= 2k : ﻭﻤﻨﻪ n :ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ 4 ﻭﻤﻨﻪ ﺠﻭﺍﺏ ﺍﻻﺴﺘﻠﺯﺍﻡ ﺍﻟﻤﻌﻁﻰ. ﺏ( ﺍﻻﺴﺘﻠﺯﺍﻡ \" :ﺇﺫﺍ ﻜﺎﻥ nﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ 4ﻓﺈﻥ nﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ \"8 ﻟﻴﺱ ﺼﺤﻴﺤﺎ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ ﺇﺫ ﻴﻜﻔﻲ ﺃﺨﺫ n = 12 :ﺤﻴﺙ: 12ﻤﻀﺎﻋﻑ ﻟـ 4ﻭ 12ﻟﻴﺱ ﻤﻀﺎﻋﻔﺎ ﻟـ .8 ﺕ a :03ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺒﺤﻴﺙ a ≠ b :ﻭ a ≠ −b ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺼﻭﺍﺏ ﺍﻟﺘﻜﺎﻓﺅ: • \" ab = 0 ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ 2a − a + b = 1 \"ﻴﻜﻭﻥ a+b a − b 2a(a − b) − (a )+ b 2 2a a+b a+b a−b\" (a + b)(a − )b \"= 1 ﺘﻜﺎﻓﺊ \" − \"= 1 ﺍﻟﺠﻤﻠﺔ: \" 2a 2 − 2ab − a2 − b2 − 2ab \" ﻭﺘﻜﺎﻓﺊ a2 − b2 \"a2 − b2 − 4ab \"= 1 ﻭﺘﻜﺎﻓﺊ a2 −b2 ﻭﻫﺫﻩ ﺍﻷﺨﻴﺭﺓ ﺘﻜﺎﻓﺊ\"a 2 − b2 − 4ab = a2 − b2\" : ﻭﺘﻜﺎﻓﺊ \"\"−4ab = 0 ﻭﺘﻜﺎﻓﺊ \" \"ab = 0ﻷﻥ− 4 ≠ 0 :
ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ﺍﻟﻭﺍﺤﺩ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﺍﻟﺘﻤﻜﻥ ﻤﻥ ﺤل ﻜﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ﺍﻟﻭﺍﺤﺩ -ﺤل ﻤﻌﺎﺩﻻﺕ ﻴﺅﻭل ﺤﻠﻬﺎ ﺇﻟﻰ ﺤل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ -ﻤﺴﺎﺌل ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﻌﺎﺩﻻﺕ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺃﻤﺜﻠﺔﻭﻤﻼﺤﻅﺎﺕ • ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
• ﺃﻤﺜﻠﺔ ﻭ ﻤﻼﺤﻅﺎﺕ :ﻤﺜﺎل : 1ﺍﻟﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻟﺔ ) − 3x + 5 = 0.......(1ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ,ﻴﻌﻨﻲ ﺍﻴﺠﺎﺩﺠﻤﻴﻊ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ xﺍﻟﺘﻲ ﺘﺤﻘﻕ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻭﻟﻜﻥ− 3x + 5 = 0 x = 5 ﻤﻌﻨﺎﻩ − 3x = −5 ﻤﻌﻨﺎﻩ − 3x + 5 = 0 3 55 ﻤﻨﻪ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻟﻬﺎ ﺤل ﻭﺤﻴﺩ ﻫﻭ 3ﺃ ﻱ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻫﻲ} { 3 .ﻤﻼﺤﻅﺔ :\"ﻤﻌﺎﺩﻟﺔ\" ﻫﻲ \"ﺴﺅﺍل\" ﻤﺜﻼ ﻋﻨﺩﻤﺎ ﻨﻜﺘﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ) , x2 −3x = 2.....(2ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭلﻓﻲ ,Rﻨﺤﻥ ﻁﺭﺤﻨﺎ ﺍﻟﺴﺅﺍل\":ﻫل ﺘﻭﺠﺩ ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﺔ xﺘﺴﻤﻰ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ) (2ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ x 2 − 3 xﻴﺴﺎﻭﻱ .\"1 ﻭﻋﻨﺩﻤﺎ ﻨﻁﺎﻟﺏ ﺒﺤل ﻤﻌﺎﺩﻟﺔ ,ﻨﻁﺎﻟﺏ ﺒﺈﻴﺠﺎﺩ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ. ﻗﺎﻋﺩﺘﺎﻥ ﻫﺎﻤﺘﺎﻥ :ﻋﻨﺩﻤﺎ ﻨﻅﻴﻑ ﻨﻔﺱ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ﺇﻟﻰ ﻁﺭﻓﻲ ﻤﻌﺎﺩﻟﺔ ﻨﺤﺼل ﻋﻠﻰ • ﻤﻌﺎﺩﻟﺔ ﻟﻬﺎ ﻨﻔﺱ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل. •ﻋﻨﺩﻤﺎ ﻨﻘﺭﺏ ﻁﺭﻓﻲ ﻤﻌﺎﺩﻟﺔ ﻓﻲ ﻨﻔﺱ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻕ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻨﺤﺼل ﻋﻠﻰ ﻤﻌﺎﺩﻟﺔ ﻟﻬﺎ ﻨﻔﺱ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل.ﻤﺜﺎل :2ﺍﻟﻤﻌﺎﺩﻟﺘﺎﻥ 3 x + 6 = 1ﻭ 2x + 5 = − xﻟﻬﻤﺎ ﻨﻔﺱ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﺇﻟﻰ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﻭﻟﻰ(− x −1 )ﺃﻀﻔﻨﺎ)ﻀﺭﺒﻨﺎ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻨﻔﺱ ﻟﻬﻤﺎ ﻭ 13x +17 = 0 13x + 17 =0 ﺍﻟﻤﻌﺎﺩﻟﺘﺎﻥ 5 ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻷﻭﻟﻰ ﻓﻲ (5
ﺘﻁﺒﻴﻕ : ﻟﻨﺤل ﻓﻲ Rﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ,ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ﺍﻟﺘﺎﻟﻴﺔ:, (2).......−. 3x +2 = 7x +8 , (1)...... 1 x + 3 = 5x − 1 2 ), (3)....(x +1)(x −1) = 3(x −1(5)...... x 3 + 2 = 0 ), (4).......(x − 2)(3x +5 = 3x2 +8 +8 x * )(1ﻭ ) (2ﻤﻌﺎﺩﻟﺘﺎﻥ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ :ﻟﻌﺯل ﺍﻟﻤﺠﻬﻭل − 9 x = −4 ﻭﺘﻜﺎﻓﺊ 1 x − 5x = −1 − 5 * ) (1ﺘﻜﺎﻓﺊ 2 2ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ) (1ﻫﻲ x = )(−4 × (− )2 ﻭﺘﻜﺎﻓﺊ x = −4 ﻭﺘﻜﺎﻓﺊ 9 −9 2 8 } {9 * ) (2ﺘﻜﺎﻓﺊ − 3x − 7 x = 8 − 2ﻭﺘﻜﺎﻓﺊ − 10 x = 6 ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ) (2ﻫﻲ x = − 3 ﻭﺘﻜﺎﻓﺊ x = 6 ﻭﺘﻜﺎﻓﺊ 5 − 10 3 } {− 5
ﻤﻼﺤﻅﺔ: =x b ﺇﺫﺍ ﻜﺎﻥ ax = b , a ≠ 0ﺘﻜﺎﻓﺊ a * ) (3ﻟﻴﺴﺕ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﻨﻼﺤﻅ ﻋﺎﻤﻼ ﻤﺸﺘﺭﻜﺎ ﻟﻠﻁﺭﻓﻴﻥ ) (3ﺘﻜﺎﻓﺊ(x+1)(x−1)−3(x−1) =0 : ﻭﺘﻜﺎﻓﺊ (x −1)(x +1− 3) = 0 ﻭﺘﻜﺎﻓﺊ( x − 1)( x − 2) = 0 : ﻭﺘﻜﺎﻓﺊ ]) (x-1=0ﺃﻭ ) [(x-2=0ﻭﺘﻜﺎﻓﺊ ]) (x=1ﺃﻭ ) [ (x=2ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ) (3ﻫﻲ}{ 2,1 * ) (4ﻻ ﻴﻭﺠﺩ ﻋﺎﻤل ﻤﺸﺘﺭﻙ ﻟﻁﺭﻓﻴﻬﺎ ﻨﺤﺎﻭل ﺍﻟﻨﺸﺭ ) (4ﺘﻜﺎﻓﺊ 3x2 + 5x −6x −10 = 3x2 +8ﻭﺘﻜﺎﻓﺊ 3x 2 − x − 10 = 3x 2 + 8ﻭﺘﻜﺎﻓﺊ 3x2 −x−3x2 =9+10ﻭﺘﻜﺎﻓﺊ − x =18ﻭﺘﻜﺎﻓﺊ x = −18 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ) (4ﻫﻲ }{-18 2 * 0ﻟﻴﺱ ﺤﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ) (5ﻷﻥ 0ﻴﻌﺩﻡ ﻤﻘﺎﻡ xﻭﻜﺫﺍ -8ﻟﻴﺱ ﺤﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ ) (5ﻷﻥ -8ﻴﻌﺩﻡ ﻤﻘﺎﻡ 3 x + 8ﻨﺤل ) (5ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺠﻤﻴﻊ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺒﺎﺴﺘﺜﻨﺎﺀ 0ﻭ ) - 8ﻴﺭﻤﺯ ﺇﻟﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ ﺒﺎﻟﺭﻤﺯ }.(R -{0,8 2x +16+3x = 0 ﺘﻜﺎﻓﺊ 2(x + 8) + 3x = 0 ﻫﻜﺫﺍ ) (5ﺘﻜﺎﻓﺊ )x(x +8 )x(x + 8ﻭ x≠0 ﺘﻜﺎﻓﺊ ) 5x + 16 = 0ﻤﻊ 5x +16 = 0 ﺘﻜﺎﻓﺊ )x(x + 8 ( x ≠ −8 − 16 ≠ 0 ﻭ x = − 16 ﺘﻜﺎﻓﺊ 5x = −16ﺘﻜﺎﻓﻲﺀ 5 5 {− 16 ﻭﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ) (5ﻫﻲ } 5
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ: -1ﺤل ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ Rﺍﻟﻤﻌﺎﺩﻻﺕ –ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل xﺍﻟﺘﺎﻟﻴﺔ:, (2).....3(x − 4) − 2(x −7) = 4x , (1).....2. x −3(4x −1) = 7x + 2, (4)......x − 4 − x − 2 = 2x + 8 , (3)....x.(x−5)+3x−1= x2 +2 5 3 7 , (5)..x. (x−2)+(x−2)(x+3) = x(x+5)+(x−2)2 (7).... x − 3x + 2 = 0 , )(6)....(2x +1)(x + 7 = (2x +1)(3x )−5 x +1 3x - 2ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﺎ ,ﺃﻨﺸﺭ ﺍﻟﺠﺩﺍﺀ )(3 − 5a) × (2a +1 • ﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻟﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل xﺍﻟﺘﺎﻟﻴﺔ: 10 x 2 − x − 3 = 0 9 -3ﻤﺎﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺇﺫﺍ ﺃﻀﻴﻑ ﺇﻟﻰ ﺒﺴﻁ ﻭﻤﻘﺎﻡ ﺍﻟﻜﺴﺭ 13ﻨﺤﺼل ﻋﻠﻰ ﻋﺩﺩ ﻨﺎﻁﻕ ﻴﺴﺎﻭﻱ 4 5؟ -4ﺇﺫﺍ ﺃﻀﻔﻨﺎ 5mﺇﻟﻰ ﻁﻭل ﻀﻠﻊ ﻤﺭﺒﻊ ﻤﺴﺎﺤﺘﻪ ﺘﺯﺩﺍﺩ ﺒـ 125 m2ﻤﺎ ﻫﻭ ﻀﻠﻊ ﻫﺫﺍ ﺍﻟﻤﺭﺒﻊ؟ -5ﺇﻤﺘﺤﻥ ﺘﻠﻤﻴﺫ ﻓﻲ 4ﻤﻭﺍﺩ ﺍﻟﻤﺎﺩﺓ ﺍﻷﻭﻟﻰ ﻤﻌﺎﻤﻠﻬﺎ 5ﺘﺤﺼل ﻓﻴﻬﺎ ﻋﻠﻰ ﺍﻟﻌﻼﻤﺔ 14 ﺍﻟﻤﺎﺩﺓ ﺍﻟﺜﺎﻨﻴﺔ ﻤﻌﺎﻤﻠﻬﺎ 4ﺘﺤﺼل ﻓﻴﻬﺎ ﻋﻠﻰ ﺍﻟﻌﻼﻤﺔ 10 ﺍﻟﻤﺎﺩﺓ ﺍﻟﺜﺎﻟﺜﺔ ﻤﻌﺎﻤﻠﻬﺎ 4 ﺍﻟﻤﺎﺩﺓ ﺍﻟﺭﺍﺒﻌﺔ ﻤﻌﺎﻤﻠﻬﺎ 2ﺘﺤﺼل ﻓﻴﻬﺎ ﻋﻠﻰ ﺍﻟﻌﻼﻤﺔ 13 ﻋﻠﻤﺎ ﺃﻥ ﻤﻌﺩل ﺍﻟﺘﻠﻤﻴﺫ ﻓﻲ ﻫﺫﺍ ﺍﻻﻤﺘﺤﺎﻥ ﻫﻭ 12ﻓﻤﺎ ﻫﻲ ﻋﻼﻤﺘﻪ ﻓﻲ ﺍﻟﻤﺎﺩﺓ ﺍﻟﺜﺎﻟﺜﺔ ؟
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ: ﺕ : 01 1 ﻫﻲ: 2x − 3(4x −1) = 7x + 2 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ: 17 2 ﻫﻲ: ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ3(x − 4)− 2(x − 7) = 4x : 3 −3 ﻫﻲ: = x(x − 5)+ 3x −1 ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔx2 + 2 : 2 − 67 ﻫﻲ: x − 4 − x − 2 = 2x + 8 ﺍﻟﻤﻌﺎﺩﻟﺔ: ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 22 5 3 7ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ x(x − 2)+ (x − 2)(x + 3) = x(x + 5)+ (x − 2)2 :ﻫﻲ{− 5} :− 1 ,6 ﻫﻲ: ﺍﻟﻤﻌﺎﺩﻟﺔ(2x +1)(x + 7) = (2x +1)(3x − 5): ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 2 − 2 ﻫﻲ: x − 3x + 2 = 0 ﺍﻟﻤﻌﺎﺩﻟﺔ: ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ 5 +1 3x x ﺕ : 02ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻨﺸﺭ ﺍﻟﺠﺩﺍﺀ(3 − 5a)(2a +1) : • ﻟﺩﻴﻨﺎ(3 − 5a)(2a +1) = 6a + 3 −10a2 − 5a : = −10a2 + a + 3 ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻟﻔﺭﻉ ﺍﻟﺴﺎﺒﻕ ﻨﺠﺩ ﺃﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ : • 3 ,− 1 ﻫﻲ: 10 x 2 − x−3 = 0 5 2 ﺕ : 03ﻨﺭﻤﺯ ﻟﻠﻌﺩﺩ ﺍﻟﻤﻁﻠﻭﺏ ﺒﺎﻟﺭﻤﺯ a :ﻋﻨﺩﺌﺫ ﻴﺼﺒﺢ ﻟﺩﻴﻨﺎ: 9+a = 4 13 + a 5 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ (9 + a)× 5 = (13 + a)× 4 : ﻭﻤﻨﻪa = 7 :
ﺕ : 04ﻨﺭﻤﺯ ﻟﻁﻭل ﻀﻠﻊ ﻫﺫﺍ ﺍﻟﻤﺭﺒﻊ ﺒـ l :ﻋﻨﺩﺌﺫ ﻴﺼﺒﺢ ﻟﺩﻴﻨﺎ: (l + 5)2 = 125 + l 2 ﺃﻱ 2l + 25 = 125 : ﻭﻤﻨﻪl = 50 : ﺕ :05ﻨﺴﻤﻲ aﻋﻼﻤﺔ ﻫﺫﺍ ﺍﻟﺘﻠﻤﻴﺫ ﻓﻲ ﺍﻟﻤﺎﺩﺓ ﺍﻟﺜﺎﻟﺜﺔ: ﻴﻤﻜﻨﻨﺎ ﺘﺭﺠﻤﺔ ﺍﻟﻤﻌﻁﻴﺎﺕ ﺍﻟﻭﺍﺭﺩﺓ ﻓﻲ ﻨﺹ ﺍﻟﺘﻤﺭﻴﻥ ﻋﻠﻰ ﺍﻟﻨﺤﻭ ﺍﻟﺘﺎﻟﻲ :ﺍﻟﻤﻌﺎﻤﻼﺕ ﻤﺠﻤﻭﻉ ﻴﻤﺜل 15 ﺍﻟﻤﻘﺎﻡ 14×5+10×4+ a×4+13×2 =12 15 ﻭﻋﻠﻴﻪ136+4a =180: ﻭﻤﻨﻪa = 11 :
ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ(1 ) R ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﻤﻘﺎﺭﻨﺔ ﻋﺩﺩﻴﻥ -ﺍﻟﺘﻌﺎﻤل ﻤﻊ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ -ﺍﻟﺘﻌﺎﻤل ﻤﻊ ﺍﻟﺤﺼﻭﺭ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﻤﻔﺭﺩﺍﺕ ﻭﺭﻤﻭﺯ. • ﺨﻭﺍﺹ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ • ﺃﻨﺸﻁﺔ ﻭﺘﻤﺎﺭﻴﻥ ﺘﻁﺒﻴﻘﻴﺔ1 ﻭ 1 ,ﻤﻘﺎﺭﻨﺔ b, • ﻤﻘﺎﺭﻨﺔ a2ﻭ ,b2ﻤﻘﺎﺭﻨﺔ ab a • ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ • ﺍﻟﺤﻠﻭل
• ﻤﻔﺭﺩﺍﺕ ﻭﺭﻤﻭﺯ: ﺃ -ﻤﻘﺎﺭﻨﺔ ﻋﺩﺩ ﻭ: 0 * ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ \" aﺴﺎﻟﺏ\" \" aﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ\" \" aﻤﻭﺠﺏ\" \" aﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ\" ﺍﻟﺠﻤﻠﺔ ﻤﻌﻨﺎﻫﺎ\" aﺴﺎﻟﺏ ﺘﻤﺎﻤـﺎ \" aﺃﺼﻐﺭ ﻤـﻥ 0 \" aﻤﻭﺠﺏ ﺘﻤﺎﻤـﺎ \" aﺃﻜﺒﺭ ﻤﻥ 0ﻭ ﺃﻭ aﻴﺴﺎﻭﻱ \"0 ﻭ aﻻ ﻴﺴﺎﻭﻱ \"0 ﺃﻭ aﻴﺴﺎﻭﻱ \"0 aﻻ ﻴﺴﺎﻭﻱ \"0 ﻴﺭﻤــﺯ ﺇﻟﻴﻬــﺎ ﺒﺎﻟﻜﺘﺎﺒﺔ a≤0 a〈0 a≥0 a〉0• ﺘﻌﻴﻴﻥ ﺇﺸﺎﺭﺓ ﻋﺩﺩ ﺤﻘﻴﻘﻲ aﻴﻤﻜﻥ ﻓﻲ ﺇﻋﻁﺎﺀ ﺍﻟﻘـﻀﻴﺔ ﺍﻟـﺼﺤﻴﺤﺔ ﻤـﻥ ﺒـﻴﻥ ﺍﻟﻘـﻀﺎﻴﺎ: .a〉0 ,a = 0 ,a〈0 ﺏ.ﻤﻘﺎﺭﻨﺔ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻥ : * ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ\" aﺃﺼﻐﺭ ﻤﻥ ﺃﻭ \" aﺃﺼﻐﺭ ﺘﻤﺎﻤـﺎ \" aﺃﻜﺒﺭ ﻤـﻥ ﺃﻭ \" aﺃﻜﺒﺭ ﺘﻤﺎﻤﺎ ﻤﻥ ﺍﻟﺠﻤﻠﺔ ﻴﺴﺎﻭﻱ \"b ﻤﻥ \"b ﻴﺴﺎﻭﻱ \"b \"b ﻤﻌﻨﺎﻫﺎ ﻴﺭﻤــﺯ ﺇﻟﻴﻬــﺎ a −b ≤ 0 a −b〈0 a−b≥0 a −b〉0 ﺒﺎﻟﻜﺘﺎﺒﺔ a≤b a〈b a≥b a〉b ,ﺘﺴﻤﻰ ﻤﺘﺒﺎﻴﻨﺔa ≤ b a ≥ b. ﻭﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺠﻤل a 〉 b, , a〈b , ,ﺘﺴﻤﻰ ﻤﺘﺒﺎﻴﻨﺔ ﺘﺎﻤﺔa 〉 b ﻭﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺠﻤﻠﺘﻴﻥ ﻭﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺠﻤﻠﺘﻴﻥ ,ﺘﺴﻨﻰ ﻤﺘﺒﺎﻴﻨﺔ ﻋﺭﻴﻀﺔa ≤ b a ≥ b.
• \"ﻤﻘﺎﺭﻨﺔ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ aﻭ \"bﺘﻜﻤﻥ ﻓﻲ ﺘﻌﻴﻴﻥ ﺍﻟﻘﻀﻴﺔ ﺍﻟـﺼﺤﻴﺤﺔ ﻤـﻥ ﺒـﻴﻥ ﺍﻟﻘـﻀﺎﻴﺎ ,ﻭﻫﺫﺍ ﻴﻌﻭﺩ ﺇﻟﻰ ﺘﻌﻴﻴﻥ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ )a 〉 b a 〈b-(a-b ,a = b ,ﺍﻟﻜﺘﺎﺒﺘﺎﻥ a≤bﻭ b≥aﻤﺘﻜﺎﻓﺌﺘﺎﻥ ﻤﻼﺤﻅﺔ : ﺍﻟﻜﺘﺎﺒﺘﺎﻥ a<bﻭ b>aﻤﺘﻜﺎﻓﺌﺘﺎﻥ← ﻟﺘﻤﻴﻴﺯ ﺒﻴﻥ \" ﺃﻜﺒﺭ\" ﻭ\"ﺃﺼﻐﺭ\" ﻻﺤﻅ ﺃﻥ ﺍﻟﺸﻜل> ﻟﻪ ﺠﻬﺔ ﻜﺒﻴﺭﺓ ﻭﺠﻬﺔ ﺼﻐﻴﺭﺓ > ﺼﻐﻴﺭﺓ ﻜﺒﻴﺭﺓﻭﻓﻲ ﺍﻟﺘﺭﻤﻴﺯ ﺍﻟﻌﺩﺩ ﺍﻟﻜﺒﻴﺭ ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻜﺒﻴﺭﺓ ﻭﺍﻟﻌﺩﺩ ﺍﻟﺼﻐﻴﺭ ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﺼﻐﻴﺭﺓﻤﻼﺤﻅﺔ :ﻓﻲ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﺍﻟﺤﺭﻑ \"ﺃﻭ\" ﻟﻴﺱ ﻤﺎﻨﻌﺎ :ﻋﻨﺩﻤﺎ ﻴﻭﻀﻊ ﺒﻴﻥ ﺠﻤﻠﺘﻴﻥ ﻫﻭ ﻴﻌﻨﻲ ﺃﻨﻪ ﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ ﺇﺤﺩﺍﻫﻤﺎ ﺃﻭ ﺍﻷﺨﺭﻯ ﺃﻭ ﺍﻹﺜﻨﺎﻥ. • ﺨﻭﺍﺹ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ: ﻓﻲ ﺍﻟﻨﻅﺭﻴﺎﺕ ﺍﻟﻤﻭﺍﻟﻴﺔ d, c, b, a :ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻭﻴﻤﻜﻥ ﺘﻌﻭﻴﺽ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﺍﻟﺘﺎﻤﺔ ﺒﻤﺘﺒﺎﻴﻨﺎﺕ ﻋﺭﻴﻀﺔﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻤﺘﺒﺎﻴﻨﺘﻴﻥ c > 0ﻭ c < 0ﻓﻲ ﺍﻟﻨﻅﺭﻴﺔ -54ﺤﻴﺙ cﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﻤﻘﺎﻡ ﻻ ﻴﻤﻜﻨﻪ ﺃﻥ ﻴﺴﺎﻭﻱ .0ﺍﻟﻌﻼﻗﺔ > ﻤﺘﻌﺩﻴﺔ ﺍﻟﻨﻅﺭﻴﺔ: 01ﺍﻟﻌﻼﻗﺔ ≥ ﻤﺘﻌﺩﻴﺔ ﺇﺫﺍ ﻜﺎﻥa<b) :ﻭ ( b < cﻓﺈﻥ)(a<cﺒﺈﻀﺎﻓﺔ )ﺃﻭ ﻁﺭﺡ( ﻨﻔﺱ ﺍﻟﻌـﺩﺩ ﺍﻟﻨﻅﺭﻴﺔ : 02ﺇﻟﻰ ﻁﺭﻓﻲ ﻤﺘﺒﺎﻴﻨﺔ ﻨﺤﺼل ﻋﻠﻰ ﺇﺫﺍ ﻜﺎﻥ (a<b):ﻓﺈﻥ) a+c<b+cﻭ(a-c<b-c ﻤﺘﺒﺎﻴﻥ ﺫﺍﺕ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩﺍﻟﺠﻤﻊ ﻤﺘﺒﺎﻴﻨﺘﻴﻥ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻻﺘﺠـﺎﻩ ﻟﻨﻅﺭﻴﺔ : 03ﻁﺭﻑ ﺒﻁﺭﻑ ﻨﺤﺼل ﻋﻠﻰ ﻤﺘﺒﺎﻴﻨﺔ ﺇﺫﺍ ﻜﺎﻥa<b):ﻭ (c<dﻓﺈﻥ)(a+c<b+d ﺫﺍﺕ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ
ﺍﻟﻨﻅﺭﻴﺔ : 04( a < b acو ﻓﺈﻥ )< bc ﺇﺫﺍ ﻜﺎﻥa <b):و(c >0 c c ( a 〉 b acو ﺇﺫﺍ ﻜﺎﻥa < b) :و (c < 0ﻓﺈﻥ ) 〉bc b c -ﺒﻀﺭﺏ )ﺃﻭ ﻗﺴﻤﺔ( ﻁﺭﻓﻲ ﻤﺘﺒﺎﻴﻨﺔ ﻓﻲ ﻨﻔـﺱ ﺍﻟﻌﺩﺩ ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻨﺤﺼل ﻋﻠﻰ ﻤﺘﺒﺎﻴﻨـﺔ ﺫﺍﺕ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ. -ﺒﻀﺭﺏ )ﺃﻭ ﻗﺴﻤﺔ( ﻁﺭﻓﻲ ﻤﺘﺒﺎﻴﻨﺔ ﻓﻲ ﻨﻔـﺱ ﺍﻟﻌﺩﺩ ﺍﻟﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ ,ﻨﺤﺼل ﻋﻠﻰ ﻤﺘﺒﺎﻴﻨـﺔ ﺫﺍﺕ ﺇﺘﺠﺎﻩ ﻤﻌﺎﻜﺱ ﺍﻟﻨﻅﺭﻴﺔ : 05 ﺇﺫﺍ d, c, b, aﻤﻭﺠﺒﺔ ﻭﻜﺎﻥ) a<bﻭ (c<dﻓﺈﻥ )(ac<bd ﻜﺎﻨﺕ ﺍﻷﻋﺩﺍﺩ)ﺇﺫﺍ ﻜﺎﻨﺕ ﻟﺩﻴﻨﺎ ﻤﺘﺒﺎﻴﻨﺘﺎﻥ ﻁﺭﻓﺎ ﻜل ﻤﻨﻬﻤﺎ ﺃﻋﺩﺍﺩ ﻤﻭﺠﺒﺔ ﻭﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ,ﻨﺤﺼل ﻋﻠﻰ ﻤﺘﺒﺎﻴﻨﺔ ﻟﻬﺎ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﺒﻀﺭﺒﻬﺎ ﻁﺭﻑ ﺒﻁﺭﻑ(. \"ﻗﻭﺍﻋﺩ ﺍﻹﺸﺎﺭﺓ\" ﺤﺎﻻﺕ ﺨﺎﺼﺔ ﻟﻠﻨﻅﺭﻴﺔ - 54 • ﺒﺘﻌﻭﻴﺽ bﺒﺎﻟﻌﺩﺩ : 0ﺇﺫﺍ ﻜﺎﻥ )a < 0و (c > 0ﻓﺈﻥ )(1 ﻤﻥ ( a < acو0 )< 0 cﻤﻥ )(2 ( a > acو0 ﺇﺫﺍ ﻜﺎﻥ )a < 0و (c > 0ﻓﺈﻥ ) > 0 b • ﺒﺘﻌﻭﻴﺽ aﺒﺎﻟﻌﺩﺩ : 0ﺇﺫﺍ ﻜﺎﻥ )b > 0و (c > 0ﻓﺈﻥ )(1 ﻤﻥ ( b > bcو0 )> 0 c
• ﺃﻨﺸﻁﺔ ﻭﺘﻤﺎﺭﻴﻥ ﺘﻁﺒﻴﻘﻴﺔ: x .1ﻭ yﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺒﺤﻴﺙ 1 ≤ x ≤ 3ﻭ 5 ≤ y ≤ 8 ﺍﻟﻤﻁﻠﻭﺏ :ﺘﻌﻴﻴﻥ ﺤﺼﺭ ﻟﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ . y − 2 x , x − y , x + y , x. y 1 ≤ x ≤ 3ﻤﻌﻨﺎﻩ x ≤ 3ﻭ 1 ≤ x 5 ≤ y ≤ 8ﻤﻌﻨﺎﻩ y ≤ 8ﻭ 5 ≤ y ﺇﺫﻥ ﻟﺩﻴﻨﺎ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ 1 ....x ≤ 3ﻭ ( )(3 ).... 1 ≤ x (2)....y ≤ 8ﻭ (4)......5 ≤ yﻟﺩﻴﻨﺎ xﻤﻭﺠﺏ ﻷﻥ x ≥ 1ﻭ yﻤﻭﺠﺏ ﻷﻥ y ≥ 5ﺇﺫﻥ ﻨﺴﺘﻁﻴﻊ ﻀﺭﺏ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﺫﺍﺕ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻁﺭﻑ ﺒﻁﺭﻑ )ﺠﻤﻴﻊ ﺍﻷﻁﺭﺍﻑ ﻤﻭﺠﺒﺔ(. • ﻤﻥ ) (1ﻭ ) (2ﻨﺤﺼل ﻋﻠﻰ xy ≤ 3 × 8ﺃﻱ xy ≤ 24 • ﻤﻥ ) (3ﻭ) (4ﻨﺤﺼل ﻋﻠﻰ 5 × 1 ≤ xyﺃﻱ 5 ≤ xy ﺇﺫﻥ 5 ≤ xy ≤ 24 • ﺒﺠﻤﻊ ) (1ﻭ) (2ﻁﺭﻑ ﺒﻁﺭﻑ x + y ≤ 3+8 :ﻤﻨﻪ x + y ≤11 • ﺒﺠﻤﻊ ) (3ﻭ) (4ﻁﺭﻑ ﺒﻁﺭﻑ 5+1≤ x + y :ﻤﻨﻪ 6 ≤ x + y ﺇﺫﻥ 6 ≤ x + y ≤11 : • ﺇﻨﺘﺒﻪ !!! ﻟﻨﺴﺘﻁﻴﻊ ﺍﻟﻁﺭﺡ ﻁﺭﻑ ﺒﻁﺭﻑ: ﻓﻨﺤﺎﻭل ﺍﺴﺘﻌﻤﺎل ﺍﻟﺠﻤﻊ ﻟﺩﻴﻨﺎ − y ≥ −8ﻤﻥ ) (2ﺃﻱ ( )5......−8≤ −y ﺒﺠﻤﻊ ) (3ﻭ ) (5ﻁﺭﻑ ﺒﻁﺭﻑ 1 − 8 ≤ x − y :ﺃﻱ − 7 ≤ x − y ﻜﺫﻟﻙ ﻤﻥ ) − 5 ≥ − y : (4ﺇﺫﻥ 6 ....− y ≤ −5ﻭﺒﺠﻤﻊ ) (1ﻭ) (6ﻁﺭﻑ ﺒﻁﺭﻑ ( ): x − y ≤ 3 − 5ﺃﻱ x − y ≤ −2ﻤﻨﻪ −7 ≤ x − y ≤ −2 ﻤﻼﺤﻅﺔ :ﺒﺈﻤﻜﺎﻨﻨﺎ ﺍﻟﺘﻌﺎﻤل ﻤﻊ ﺍﻟﺤﺼﻭﺭ ﻤﺒﺎﺸﺭﺓ ﻟﻨﺴﺘﻌﻤل ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻟﺤﺼﺭ y − 2 x ﻟﺩﻴﻨﺎ 1 ≤ x ≤ 3 :ﻤﻨﻪ (0〉 − 2 ) − 2 ≥ −2x ≥ −6
ﺇﺫﻥ − 6 ≤ −2x ≤ −2 :ﻭﺒﺎﻟﺠﻤﻊ ﻁﺭﻑ ﺒﻁﺭﻑ − 6 + 5 ≤ −2x + y ≤ −2 + 8 ﻭ 5≤ y≤8 ﺇﺫﻥ −1≤ y − 2x ≤ 6 : 506 .002 30 .2ﻟﻨﻘﺎﺭﻥ ﺍﻟﻌﺩﺩﻴﻥ 31ﻭ 506 .001 31 〉 30 31 〉 30ﻤﻨﻪ ﻻ ﺩﺍﻋﻲ ﺃﻥ ﻨﻨﺠﺯ ﺍﻟﻔﺭﻕ ﺒﻴﻨﻬﻤﺎ :ﻟﺩﻴﻨﺎ 31 31 506.001〈506.002ﻤﻨﻪ ﻭﻟﺩﻴﻨﺎ (α 〉 )1 30 ﺇﺫﻥ 31ﻭ ) (α ﻭﻤﻥ (β 〈)1 506 .002 ﻤﻨﻪ 506 .001 〈 506 .002 506 .001 506 .001 506 .001 30 〈 506 .002 ) (β 31 506 .001 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ. 2005 ﻭ 44777 ﻟﻨﻘﺎﺭﻥ ﺍﻟﻌﺩﺩﻴﻥ: .3 1000 = 44.777 44777 ﻭ ﺒﺎﻟﺤﺎﺴﺒﺔ 2005 = 44.7772.... 1000 44777 〈 2005 ﻤﻨﻪ 1000 x .4ﻋﺩﺩ ﺤﻘﻴﻘﻲ : ﻟﻨﻘﺎﺭﻥ ﺍﻟﻌﺩﺩﻴﻥ Aﻭ Bﺤﻴﺙ A= x2 −x+3 :ﻭ B = x +1 ﻨﻨﺠﺯ ﺍﻟﻔﺭﻕ A – B )A − B = (x 2 − x + 3)− (x + 1 = x2 − 2x + 2
( )= x2 − 2x +1 +1 = (x + 1)2 + 1 ﻭﻟﺩﻴﻨﺎ (x +1)2 ≥ 0ﻤﻨﻪ (x + 1)2 + 1 ≥ 1 ﻭﻋﻠﻴﻪ A − B ≥1ﺇﺫﻥ A − B〉0ﻭﺒﺎﻟﺘﺎﻟﻲ A 〉 B1 1 ,ﻤﻘﺎﺭﻨﺔ ﻭb • ﻤﻘﺎﺭﻨﺔ a 2ﻭ , b 2ﻤﻘﺎﺭﻨﺔ ab aﻭ . ﺍﻟﻨﻅﺭﻴﺔ :1 ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻤﻭﺠﺒﻴﻥ )(P * ﻴﻜﻭﻥ a = bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a2 = b2 )(Q * ﻴﻜﻭﻥ a < bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a 2 < b 2 )(R * ﻴﻜﻭﻥ a ≤ bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a 2 ≤ b2 )(S * ﻴﻜﻭﻥ a = bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a = b )(T * ﻴﻜﻭﻥ a < bﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a < b )(K ≤a ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ a ≤ bb * ﻴﻜﻭﻥ ﺍﻟﺒﺭﻫﺎﻥ :ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻤﻭﺠﺒﻴﻥ • ﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺍﺴﺘﻠﺯﺍﻤﺎﺕ ﺃﻭﻻ : a2 = b2 ﻓﺈﻥ a =b ﺇﺫﺍ ﻜﺎﻥ • (1)..... • ﺇﺫﺍ ﻜﺎﻥ a = bﻓﺈﻥ (2)...... a = bﺇﺫﺍ ﻜﺎﻥ a < bﻴﻜﻭﻥ a < bﻭﺒﻀﺭﺏ ﺍﻟﻤﺘﺒﺎﻴﻨﺘﻴﻥ ﻁـﺭﻑ ﺒﻁـﺭﻑ )ﺍﻷﻁـﺭﺍﻑ • ﻤﻭﺠﺒﺔ( ﻭ a<b a2 < b2
ﻤﻨﻪ ﺇﺫﺍ ﻜﺎﻥ a < bﻴﻜﻭﻥ (3)...... a 2 < b 2 2 ﻴﻜﻭﻥ a ≤ b a ≤ b2 • ﻤﻥ ) (1ﻭ) :(3ﺇﺫﺍ ﻜﺎﻥ(4).....• ﺇﺫﺍ ﻜــﺎﻥ a < bﻴﻜــﻭﻥ ) 0 < bﻷﻥ ( a ≥ 0ﻤﻨــﻪ 0 < bﻭ( b + a )( b − =)a )( b + a b− 0< b+ aﻭ a= ( b )2 − ( )a 2 b+ a = b−a b+ a ﺍﻟﺒﺴﻁ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭﺍﻟﻤﻘﺎﻡ ﻜﺫﻟﻙ ﻤﻨﻪ b − a > 0ﻤﻨﻪ b > a ﺇﺫﻥ :ﺇﺫﺍ ﻜﺎﻥ a < bﻴﻜﻭﻥ ( )5 ..... a < b• ﻤﻥ ) (2ﻭ) :(5ﺇﺫﺍ ﻜﺎﻥ a ≤ bﻴﻜﻭﻥ ( )6 ....... a ≤ b • ﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺍﻻﺴﺘﻠﺯﺍﻤﺎﺕ ﺍﻟﻌﻜﺴﻴﺔ : 2ﻴﻜﻭﻥ ) a2 = b2ﻤﻥ ) ((2ﺃﻱ ﻴﻜﻭﻥa = b2 • ﺇﺫﺍ ﻜﺎﻥ b=a 2ﻴﻜﻭﻥ a = b(I)....... a = b2 ﺇﺫﻥ :ﺇﺫﺍ ﻜﺎﻥ• ﺇﺫﺍ ﻜﺎﻥ a 2 < b 2ﻴﻜﻭﻥ ) a2 < b2ﻤﻥ ) ((5ﻭﻴﻜﻭﻥ a < b ﺇﺫﺍ ﻜﺎﻥ a 2 < b 2ﻴﻜﻭﻥ a(II)..... < b 2ﻴﻜﻭﻥ a ≤ b(III)..... a ≤ b 2 • ﻤﻥ ) (Iﻭ) :(IIﺇﺫﺍ ﻜﺎﻥ• ﺇﺫﺍ ﻜﺎﻥ a = bﻴﻜﻭﻥ ) a 2 = b 2ﻤﻥ ) ((1ﻭﻴﻜﻭﻥ ( ) ( )a = b ﻤﻨﻪ ﺇﺫﺍ ﻜﺎﻥ a = bﻴﻜﻭﻥ (IV).....a = b• ﺇﺫﺍ ﻜﺎﻥ a < bﻴﻜﻭﻥ ) a 2 = b 2ﻤﻥ ) ((3ﻭﻴﻜﻭﻥ ( ) ( )a < b
ﻤﻨﻪ ﺇﺫﺍ ﻜﺎﻥ a < bﻴﻜﻭﻥ (V).....a < b• ﻤﻥ ) (IVﻭ ) :(Vﺇﺫﺍ ﻜﺎﻥ a < bﻴﻜﻭﻥ ( )VI .....a ≤ b ﺍﻟﺨﺎﺘﻤﺔ : ﻤﻥ ) (1ﻭ ) (Iﺍﻟﺘﻜﺎﻓﺅ ) (Pﺼﺤﻴﺢ ﻤﻥ ) (3ﻭ ) (IIﺍﻟﺘﻜﺎﻓﺅ ) (Qﺼﺤﻴﺢ ﻤﻥ ) (4ﻭ ) (IIIﺍﻟﺘﻜﺎﻓﺅ ) (Rﺼﺤﻴﺢ ﻤﻥ ) (2ﻭ ) (IVﺍﻟﺘﻜﺎﻓﺅ ) (Sﺼﺤﻴﺢ ﻤﻥ ) (5ﻭ) (Vﺍﻟﺘﻜﺎﻓﺅ ) (Tﺼﺤﻴﺢ ﻤﻥ ) (6ﻭ ) (Vﺍﻟﺘﻜﺎﻓﺅ ) (Kﺼﺤﻴﺢﻟﻴﻜﻥ bﻭ aﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﺍﻟﻨﻅﺭﻴﺔ: 2ﻜﺎﻥ a = b ﻭﻓﻘﻁ ﺇﺫﺍ ﺇﺫﺍ 1 = 1 ﻴﻜﻭﻥ * a b ﺍﻟﺒﺭﻫﺎﻥ ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ)ﺘﻭﺤﻴﺩ ﺍﻟﻤﻘﺎﻤﺎﺕ( b−a = 0 ﻤﻌﻨﺎﻩ 1 − 1 = 0 ﻤﻌﻨﺎﻩ 1 = 1 ab a b a b ﻤﻌﻨﺎﻩ b − a = 0ﻤﻌﻨﺎﻩ a = b ﺍﻟﻨﻅﺭﻴﺔ :3ﻟﻴﻜﻥ bﻭ aﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻤﻥ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ b<a ﻜﺎﻥ ﻭﻓﻘﻁ ﺇﺫﺍ ﺇﺫﺍ 1 > 1 ﻴﻜﻭﻥ * b a b≤a ﻜﺎﻥ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ 1 ≥ 1 ﻴﻜﻭﻥ * b a
ab> 01>1 ﺍﻟﺒﺭﻫﺎﻥ :ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻤﻥ ﻨﻔـﺱ ﺍﻹﺸـﺎﺭﺓ ab b−a < 0 ﻤﻌﻨﺎﻩ 1 − 1 <0 ﻤﻌﻨﺎﻩ ab b a ﻤﻌﻨﺎﻩ ) b − a < 0ﻷﻥ ( ab > 0 ﻤﻌﻨﺎﻩ a > bﻤﻌﻨـﺎﻩ b −a ≤ 0ﻤﻌﻨـﺎﻩ b−a ≤0 ﻤﻌﻨﺎﻩ 1 − 1 ≤ 0 ﻤﻌﻨﺎﻩ 1 ≥ 1 ﻭ ab b a b a b≤a ﺃﻤﺜﻠﺔ ﻭﺘﻁﺒﻴﻘﺎﺕ x :ﻋﺩﺩ ﺤﻘﻴﻘﻲ x > 42 • ﺇﺫﺍ ﻜـﺎﻥ x > 4ﻟـﺩﻴﻨﺎ x > 0ﻭ 4 > 0ﻤﻨـﻪ )ﺤـﺴﺏ ﺍﻟﻨﻅﺭﻴـﺔ( 2ﻭ x > 4ﻤﻨﻪ x2 > 16ﻭ x > 2• ﺇﺫﺍ ﻜـــﺎﻥ x < 0 , x < −3ﻤﻨـــﻪ − x > 0ﻭ −x >3ﻤﻨـــﻪ (− x)2 > 32ﻤﻨﻪ x2 > 9 1 > 1 5 > 0ﻤﻨﻪ ﻭ ﺇﺫﺍ ﻜﺎﻥ 5 < xﻟﺩﻴﻨﺎ x > 0 • 5 xﺃﻱ 1 ≥ 1 ﻤﻨـﻪ ﻭ −3<0 x<0 ﻟـﺩﻴﻨﺎx ≤ −3 ﺇﺫﺍ ﻜﺎﻥ • x −3 − 1 ≤ 1 3 x 2 > 1 >1 ﻴﻜﻭﻥ ﺃﻱ 1 > 1 > 1 ﻴﻜﻭﻥ 1 < x <1 ﺇﺫﺍ ﻜﺎﻥ • x 2 x 1 2 3x +1 • ﻟﻨﻔﺭﺽ 1 < x <3ﻭﻟﻨﻌﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ 2 x + 5 ﻟﺩﻴﻨﺎ 3 < 3x < 9ﻤﻨﻪ ) α .......4. <3x+1<10ﻻ ﻨﺴﺘﻁﻴﻊ ﺃﻥ ﻨﻘﺴﻡ ﻁﺭﻑ ﺒﻁﺭﻑ() (
2 < 2x < 6ﻤﻨﻪ (β).....7 < 2x + 5 <11(δ )... 1 < 1 5 < 1 ﺃﻱ 1 > 1 > 1 ﻨﺤﺎﻭل ﺍﻟﻀﺭﺏ ﻤﻥ ) (β 11 2x + 7 7 2x + 5 11 4 < 3x +1 < 10 ﻤﻭﺠﺒﺔ( )ﺍﻷﻁﺭﺍﻑ ﺒﻁﺭﻑ ﻁﺭﻑ (δ ﻭ) ) (α ﻭﺒﻀﺭﺏ 11 2x +5 7
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ: 1−a a > 7 a. a ,ﻤﺎﺫﺍ ﻴﻤﻜﻥ ﺃﻥ ﻨﻘﻭل ﻋﻠﻰ ﻜل ﻤﻥ , a 2 .1ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺒﺤﻴﺙ1−a aa , .2ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺒﺤﻴﺙ a < −11ﻤﺎﺫﺍ ﻴﻤﻜﻥ ﺃﻥ ﻨﻘﻭل ﻋﻠﻰ ﻜل ﻤﻥ , a 2ﻭ 1< b < 4ﻤﺎﺫﺍ ﻴﻤﻜﻥ ﺃﻥ ﻨﻘﻭل ﻋﻠﻰ ﻜل3<a <5 a .3ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺒﺤﻴﺙ a ﻤﻥ ﺍﻷﻋﺩﺍﺩ , a − b , a × b , a + bb؟ a .4ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺒﺤﻴﺙ − 5 < a < −1ﻭ 5 < b < 7ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻜلa+b b ﻤﻥ ﺍﻷﻋﺩﺍﺩ , 3a−5b , 3b − 2aa−b ,a a .5ﻭ bﻋﺩﺩﺍﻥ ﺴﺎﻟﺒﺎﻥ ﺘﻤﺎﻤﺎ ﺒﺤﻴﺙ , a 2 ≤ b2ﻗﺎﺭﻥ ﺍﻟﻌﺩﺩﻴﻥ aﻭ b .6ﺇﺤﺼﺭ 135ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥﻋﺩﺩﻴﻥ ﻨﺎﻁﻘﻴﻥ ﺒﻴﻥ 1352 + 3 ﺍﺴﺘﻨﺘﺞ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ 4 − 135
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ: ﺕ a : 01ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺒﺤﻴﺙ a > 7 :ﻋﻨﺩﺌﺫ: ) a2 > 49 -ﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﻀﺭﺏ ﻓﻲ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ( * ﻭ ) − a < −7ﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﻀﺭﺏ ﻓﻲ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ(ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ( ﻓﻲ ﺍﻟﻤﻘﻠﻭﺏ )ﺨﺎﺼﻴﺔ 0 < 1 ﻤﻊ ﺍﻟﻌﻠﻡ ﺃﻥ: 1 < 1 *ﻭ a a 7 ﺕ a : 02ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺒﺤﻴﺙ a < −11 :ﻋﻨﺩﺌﺫ: * a2 > 121 * ﻭ − a > 11 1 < 0 ﻤﻊ ﺍﻟﻌﻠﻡ ﺃﻥ: 1 > − 1 *ﻭ a a 11ﺕ a : 03ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺒﺤﻴﺙ 3< a <5 :ﻭ 1< b < 4 ﻋﻨﺩﺌﺫ : * 4<a+b<9 * ﻭ 3< a×b < 20 * ﻭﻤﻥ ) 3 < a < 5و (− 4 < − b < − 1 −1< a −b < 4 1 < 1 < 3و< 1 a < 5 * ﻭﻤﻥ 4 b 3 < a <5 : ﻨﺠﺩ 4 bﺕ a : 04ﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺒﺤﻴﺙ − 5 < a < −1 :ﻭ 5 < b < 7 * ﻤﻥ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ − 5 < a < −1 : ﻨﺠﺩ −15<3a<−3 : ﻭﻤﻥ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ5<b<7 : ﻨﺠﺩ −35< −5b < −25 :
ﻭﻤﻨﻪ −50<3a−5b < −28 : ﻭﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ :ﻨﺠﺩ : 17 < 3b − 2a < 31 ﻟﺩﻴﻨﺎ − 5 < a < −1 :ﻭ 5 < b < 7 5<b<7 ﻭ <−1 1 < − 1 ﻭﻋﻠﻴﻪ: a 5 5<b<7 ﻭ 1 < − 1 <1 ﻭﺒﺎﻟﺘﺎﻟﻲ : 5 a 1 < − b <7 ﻭﻋﻠﻴﻪ : a − 7 < b < −1 : ﻭﻤﻨﻪ a * ﻭﻤﻥ ﺍﻟﻤﺘﺒﺎﻴﻨﺘﻴﻥ − 5 < a < −1 :ﻭ 5 < b < 7 ﻨﺠﺩ 0 < a + b < 6 :ﻭ −12 < a − b < −6 − 1 < 1 < − 1 ﻭ 0<a+b<6 ﻭﻋﻠﻴﻪ : 6 a−b 12 1 < − a 1 < 1 ﻭ 0<a+b<6 ﻭﺒﺎﻟﺘﺎﻟﻲ : 12 −b 6 0 < − a +b <1 : ﻭﻋﻠﻴﻪ a −b <−1 a+b <0 : ﻭﻤﻨﻪ a−b ﺕ a : 05ﻭ bﻋﺩﺩﺍﻥ ﺴﺎﻟﺒﺎﻥ ﺘﻤﺎﻤﺎ ﺒﺤﻴﺙ a2 = b2 : ﻟﻨﻘﺎﺭﻥ ﺒﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ aﻭ : b ﺍﻟﺠﻤﻠﺔ a 2 ≤ b2 ﻟﻜﻥ ﺃﻥ a2 − b2 ≤ 0 : ﻭﻫﺫﺍ ﻴﻌﻨﻲ (a − b)(a + b) ≤ 0 :( a 1 b < 0 )ﻷﻥ: a 1 b (a − b)(a + )b ≥ 0 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ : + + ﻭﻫﺫﺍ ﻴﻌﻨﻲ a − b ≥ 0 : ﻭﻤﻨﻪa ≥ b :
ﺕ : 06 .1ﺤﺼﺭ ﺍﻟﻌﺩﺩ 135ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥ ﺒﺎﻟﺤﺎﺴﺒﺔ ﻨﺠﺩ135 = 11.6189..... : ﻭﻤﻨﻪ11 < 135 < 12 :ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﻨﺎﻁﻘﻴﻥ 2 135 + 3 .2ﺍﺴﺘﻨﺘﺎﺝ ﺤﺼﺭ ﺍﻟﻌﺩﺩ 4 − 135 ﻟﺩﻴﻨﺎ 11 < 135 < 12....(1) : ﻤﻥ ) (1ﻨﺠﺩ22 < 2 135 < 24 :ﻭﻋﻠﻴﻪ 25 < 2 135 + 3 < 27....(2) :ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ ﻭﻤﻥ ) (1ﻨﺠﺩ −12 < − 135 < −11 : ﻭﻋﻠﻴﻪ − 8 < 4 − 135 < −7 : − 1 < 4− 1 < − 1 ﻭﺒﺎﻟﺘﺎﻟﻲ : 7 135 81 <− 1 < 1 )....(3 ﻭﻋﻠﻴﻪ:8 4− 135 7ﻤﻥ ) (2ﻭ ) (3ﻭﺒﺎﻟﻀﺭﺏ ﻁﺭﻓﺎ ﻟﻁﺭﻑ ﻨﺠﺩ : 25 < − 2 135 + 3 < 27 8 4 − 135 7− 27 < 2 135 + 3 < − 25 ﻭﻤﻨﻪ : 7 4 − 135 8
ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ (2) R ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: -ﻤﻌﺭﻓﺔ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻋﺩﺩﻴﻥ. -ﻤﻌﺭﻓﺔ ﻤﺠﺎﻻﺕ R -ﺍﻟﻤﻤﺎﺭﺴﺔ ﺍﻟﺴﻠﻴﻤﺔ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﺠﺎﻻﺕ ﻭﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ oﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ oﻤﺠﺎﻻﺕ ﺍﻟﻤﺠﻤﻭﻋﺔ R oﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ oﺍﻟﺤﻠﻭل
• ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ: ﺃ .ﻨﺸﺎﻁ :ﻟﻴﻜﻥ ) (Dﻤﺴﺘﻘﻴﻤﺎ ﻤﺩﺭﺠﺎ ﻤﺒﺩﺃﻩ 0ﻭﻟﺘﻜﻥ B, Aﻭ Cﺍﻟﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ Dﺍﻟﺘﻲ ﻓﻭﺍﺼﻠﻬﺎ 5 ,3ﻭ ( )-4 ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏC0 AB-4 0 35 • ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ Bﻫﻲ 2 ﻨﻘﻭل ﻜﺫﻟﻙ ﺃﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ 3ﻭ ) 5ﺃﻭ ﺒﻴﻥ 5ﻭ (3ﻫﻲ 2ﻭﻨﻼﺤﻅ 2= 5–3 • ﻭﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ Cﻫﻲ 7ﻨﻘﻭل ﻜﺫﻟﻙ ﺃﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ 3ﻭ ) – 4ﺃﻭ ﺒﻴﻥ – 4ﻭ (3ﻫﻲ 7ﻭﻨﻼﺤﻅ ).7 = 3- (- 4 • ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Bﻭ Cﻫﻲ .9ﻨﻘﻭل ﻜﺫﻟﻙ ﺃﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ 5ﻭ ) – 4ﺃﻭ ﺒﻴﻥ – 4ﻭ (5ﻫﻲ 9ﻭﻨﻼﺤﻅ ).9 = 5 – (- 4 ﺏ .ﺘﻌﺭﻴﻑ : ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ aﻭ bﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : • ﺇﺫﺍ ﻜﺎﻥ a ≥ bﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ bﻫﻲ a − b • ﺇﺫﺍ ﻜﺎﻥ a ≤ bﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ bﻫﻲ b − a ﺕ .ﺍﺴﺘﻨﺘﺎﺝ : ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻭﻟﺘﻜﻥ dﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ .b ﺇﺫﺍ ﻜﺎﻥ a ≥ bﻟﺩﻴﻨﺎ a − b ≥ 0ﻭ d = a − bﻭﻜﺫﻟﻙ a − b = a − bﺇﺫﺍ ﻜﺎﻥ a ≤ bﻟﺩﻴﻨﺎ a −b ≤ 0ﻭ d = b − aﺃﻱ ) d = −(a − bﻭ ). a − b = −(a − b ﻭﻋﻠﻴﻪ ﻓﻲ ﺠﻤﻴﻊ ﺍﻟﺤﺎﻻﺕ : ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ aﻭ bﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ) (a − bﺃﻱ ﻫﻲ a − b
ﻭﺒﺎﻷﺨﺹ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﻋﺩﺩ ﺤﻘﻴﻘﻲ aﻭﺍﻟﻌﺩﺩ 0ﻫﻲ a − 0ﻭﻫﻲ aﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ aﻭﺍﻟﻌﺩﺩ 0ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ﻟﻠﻌﺩﺩ aﺃﻱ ﻫﻲ a • ﻤﺠﺎﻻﺕ ﺍﻟﻤﺠﻤﻭﻋﺔ : R ﺃ .ﺘﻌﺎﺭﻴﻑ ﻭﺘﻤﺜﻴﻼﺕ : • ﺍﻟﻤﺠﺎﻻﺕ ﺍﻟﻤﺤﺩﻭﺩﺓ : ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﺒﺤﻴﺙ : a ≤ bﺘﻤﺜﻴل ﻫﺫﺍ ﺍﻟﻤﺠﺎل ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﻤﺭﻤﺯ ﺇﻟﻴﻪ ﻫﻭ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺘﺴﻤﻴﺘﻪ: ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ ﺍﻟﺤﻘﻴﻘﻴﺔ xﺍﻟﺘﻲ ﺘﺤﻘﻕ ﻤﺠﺎل...... ﺒﺎﻟﺭﻤﺯ ab a ≤ x ≤ bﻤﻐﻠﻕ ][a, b ab a〈 x〈bﻤﻔﺘﻭﺡ []a, ba b ﻤﻔﺘﻭﺡ ﻓﻲ a a〈x ≤ b ]]a, b ﻤﻐﻠﻕ ﻓﻲ b [[a, ba b ﻤﻐﻠﻕ ﻓﻲ a a ≤ x〈b ﻤﻔﺘﻭﺡ ﻓﻲ b ﻓﻲ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﺫﻜﻭﺭﺓ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺴﺎﺒﻕ : • aﻭ bﻫﻤﺎ ﺤﺩﺍ ﺍﻟﻤﺠﺎل. )ﺃﻭ ﻤﻨﺘﺼﻑ( ﺍﻟﻤﺠﺎل ﻫﻭ ﻤﺭﻜﺯ b+a • 2 • b − aﻫﻭ ﻁﻭل )ﺃﻭ ﺴﻌﺔ( ﺍﻟﻤﺠﺎل.
ﻫﻭ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﻤﺠﺎل. b−a • 2 a b+a b 2 b−a b−a 22 b−a • ﺍﻟﻤﺠﺎﻻﺕ ﻏﻴﺭ ﺍﻟﻤﺤﺩﻭﺩﺓ : ﻟﻴﻜﻥ aﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥﺘﻤﺜﻴﻠﻪ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ ﻗﺴﻤﻴﺘﻪ :ﻤﺠﺎل.... ﻫﻭ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﺠﺎل ﺍﻟﻤﺭﻤﺯ ﺇﻟﻴﻪ ﺍﻟﺤﻘﻴﻘﻴﺔ xﺍﻟﺘﻲ ﺘﺤﻘﻕ ﺒﺎﻟﺭﻤﺯ a ﻏﻴﺭ ﻤﺤﺩﻭﺩ ﻤﻥ ab ﺍﻷﻋﻠﻰ ﻤﻐﻠﻕ ﻓﻲ a a≤x [∞[a,+ b ﻏﻴﺭ ﻤﺤﺩﻭﺩ ﻤﻥ a〈x [∞]a,+ ﺍﻷﻋﻠﻰ ﻤﻔﺘﻭﺡ ﻓﻲ a ﻏﻴﺭ ﻤﺤﺩﻭﺩ ﻤﻥ x≤b ]]− ∞,b ﺍﻷﺴﻔل ﻤﻐﻠﻕ ﻓﻲ b ﻏﻴﺭ ﻤﺤﺩﻭﺩ ﻤﻥ x〈b []− ∞,b ﺍﻷﺴﻔل ﻤﻔﺘﻭﺡ ﻓﻲ b * ﺍﻟﻤﺠﻤﻭﻋﺔ Rﻫﻲ ﺍﻟﻤﺠﺎل ﺍﻟﻤﺭﻤﺯ ﺇﻟﻴﻪ ﺒﺎﻟﺭﻤﺯ ∞] [− ∞,+ ﻤﻼﺤﻅﺔ : ∞ −ﻭ ∞ +ﻟﻴﺴﺎ ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ.ﻤﺜﺎل ﺘﻁﺒﻴﻘﻲ :ﻟﻴﻜﻥ Iﻭ Jﺍﻟﻤﺠﺎﻟﻴﻥ ﺤﻴﺙ ] I = [− 4,2ﻭ ]J = [− 3,5 ﻟﻨﻌﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ xﺍﻟﺘﻲ ﺘﺤﻘﻕ ]) (x ∈ Iو) [(x ∈ J4- 3- 0 ﻨﻤﺜل ﺍﻟﻤﺠﺎﻟﻴﻥ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﺩﺭﺝ : 25
ﺍﻟﻤﺠﻤﻭﻋﺔ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻫﻲ ﺍﻟﻤﺠﺎل [ ]− 3,2ﻤﻼﺤﻅﺔ x)] :ﻴﻨﺘﻤﻲ ﺇﻟﻰ ( Iﻭ) xﻴﻨﺘﻤﻲ ﺇﻟﻰ [( Jﻤﻌﻨﺎﻩ ) xﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺘﻘﺎﻁﻊ Iﻭ ( Jﻭﻴﺭﻤﺯ ﺇﻟﻰ \"ﺘﻘﺎﻁﻊ Iﻭ Jﺒﺎﻟﻜﺘﺎﺒﺔ I ∩ J ﻭﻫﻜﺫﺍ I ∩ J = [− 3,2] :← ﺍﺴﺘﻌﻤﺎل ﺍﻷﻟﻭﺍﻥ ﻴﺴﻬل ﺍﻟﻌﻤل :ﻨﻠﻭﻥ ﺒﺎﻷﺤﻤﺭ ﺍﻟﻨﻘﻁ ﺍﻟﺘﻲ ﺘﻤﺜل ﻋﻨﺎﺼﺭ Iﻭﺒﺎﻷﺨﻀﺭ ﺍﻟﻨﻘﻁ ﺍﻟﺘﻲ ﺘﻤﺜل ﻋﻨﺎﺼﺭ Jﺍﻟﻨﻘﻁ ﺍﻟﺘﻲ ﺘﻤﺜل ﻋﻨﺎﺼﺭ I ∩ Jﻫﻲ ﺍﻟﻨﻘﻁ ﺍﻟﻤﻠﻭﻨﺔ ﺒﺎﻷﺤﻤﺭ ﻭﺒﺎﻷﺨﻀﺭ. ﺏ .ﺍﻟﻤﺠﺎﻻﺕ ﻭﺍﻟﻤﺴﺎﻓﺔ :ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻭﻟﻴﻜﻥ rﻋﺩﺩﺍ ﻤﻭﺠﺒﺎ .ﻟﻨﻤﺜل ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ ) (Dﺍﻟﻤﺠﺎل ﺍﻟﻤﻐﻠﻕ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ a ﻭﻨﺼﻑ ﻗﻁﺭﻩ rﻫﺫﺍ ﺍﻟﻤﺠﺎل ﻫﻭ][a − r, a + r B AM CP tt a-r 3- a x׳ a+r y rrﻟﺘﻜﻥ C, B, Aﺍﻟﻨﻘﻁ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﺍﻟﺘﻲ ﻓﻭﺍﺼﻠﻬﺎ a + r , a − r , aﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ :ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ,xﺇﺫﺍ ﺴﻤﻴﻨﺎ Mﺍﻟﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﺍﻟﺘﻲ ﻓﻭﺍﺼﻠﺘﻬﺎ M :x •ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻘﻁﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ BCﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ Mﺃﺼﻐﺭ ﻤﻥ ﺃﻭ ﺘﺴﺎﻭﻱ [ ]( r • -¾ x ∈ a − r, a + rﻤﻌﻨﺎﻩ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ xﻭ aﺃﺼﻐﺭ ﻤﻥ ﺃﻭ] [ ﻤﻨﻪ : -ﺘﺴﺎﻭﻱ (r ﻤﻨﻪ : ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ yﺇﺫﺍ ﺴﻤﻴﻨﺎ Pﺍﻟﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ : y Pﺘﻨﺘﻤﻲ ﺇﻟﻰ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻘﻴﻡ ' Btﺃﻭ ﺇﻟﻰ ﻨﺼﻑ ﺍﻟﻤﺴﺘﻘﻴﻡ ) Ctﺃﻨﻅﺭ ﺇﻟﻰ ﺍﻟﺸﻜل() )[ [ﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ Pﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﺘﺴﺎﻭﻱ (rﻤﻨﻪ :¾ )[∞y ∈ [a + r,+أو] ( y ∈ ]− ∞, a − rﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ y ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﺘﺴﺎﻭﻱ .(r)ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Aﻭ Pﺘﺴﺎﻭﻱ (rﻤﻌﻨﺎﻩ ) y = a − rﺃﻭ ( y = a + r
ﺘﻌﺭﻴﻑ ﻤﺠﺎﻻﺕ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﺴﺎﻓﺔ ﻭﺍﺴﺘﻨﺘﺎﺝ : ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﺎ ﻭﻟﻴﻜﻥ rﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ : .1ﺍﻟﻤﺠﺎل ﺍﻟﻤﻐﻠﻕ ﺍﻟﺫﻱ ﻤﺭﻜﺯﻩ aﻭﻨﺼﻑ ﻗﻁﺭﻩ rﻫﻭ ﺍﻟﻤﺠﺎل [ ]a − r, a + r .2ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ,xﻟﺩﻴﻨﺎ ﺍﻟﺘﻜﺎﻓﺅ :) xﻴﻨﺘﻤﻲ ﺇﻟﻰ ( a − r, a + rﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ xﺃﺼﻐﺭ ﻤﻥ ﺃﻭ ﺘﺴﺎﻭﻱ [ ].(r .3ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ yﻟﻨﺎ ﺍﻟﺘﻜﺎﻓﺅﺍﻥ :* ) yﻴﻨﺘﻤﻲ ﺇﻟﻰ − ∞, a − rﺃﻭ ﺇﻟﻰ ∞ ( a + r,+ﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ yﺃﻜﺒﺭ ﻤﻥ ﺃﻭ] ] [ [ ﺘﺴﺎﻭﻱ .(r* ) y − a = −rﺃﻭ ( y − a = rﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ yﺘﺴﺎﻭﻱ .(r← ﻋﻨﺩ ﺍﻟﺘﺭﻜﻴﺯ ﻻﺴﺘﺭﺠﺎﻉ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ,ﻴﺘﻀﺢ ﺍﺴﺘﻌﻤﺎل ﺘﻤﺜﻴل ﺍﻟﻤﺠﺎﻻﺕ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ ﻤﺜﺎل :ﻟﻴﻜﻥ ﺍﻟﻤﺠﺎل ][2,52 3.5 5 ﺃﻱ 3.5 7 ﻭﻫﻭ 5+2 ﻫﻭ ﻤﺭﻜﺯ ﺍﻟﻤﺠﺎل ][2,5 2 21.5 1.5 [ ]3 5−2 ﻫﻭ 2,5 ﻭﻨﺼﻑ ﻗﻁﺭ ﺍﻟﻤﺠﺎل 2 2ﺃﻱ 1.5 ﺃﻱ ﻫﻭ ﻤﻨﻪ :ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻟﺩﻴﻨﺎ (x ∈ 2,5 ) :ﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ xﻭ 3.5ﺃﺼﻐﺭ ﻤﻥ ﺃﻭ ﺘﺴﺎﻭﻱ [ ](1.5) ∞ x ∈ 5,+ﺃﻭ ( x ∈ − ∞,2ﻤﻌﻨﺎﻩ )ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ xﻭ 3.5ﺃﻜﺒﺭ ﻤﻥ ﺃﻭ ﺘﺴﺎﻭﻱ ] ] [ [(1.5 ﺕ .ﺍﻟﻤﺠﺎﻻﺕ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ :ﻨﻌﻠﻡ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ aﻭ xﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ xﻫﻲ x − aﻤﻥ ﻫﺫﺍ ﻭﻤﻥ ﻨﺘﺎﺌﺞ ﺍﻟﻔﻘﺭﺓ ﺍﻟﻔﺎﺭﻁﺔ ﻨﺴﺘﻨﺘﺞ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ: ﺍﻟﻨﻅﺭﻴﺔ : ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻭﻟﻴﻜﻥ rﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ. ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻟﺩﻴﻨﺎ ﺍﻟﺘﻜﺎﻓﺅﺍﻥ : )(x∈[a −r,a +r]) ⇔(r ≥ x −a) (x ∈[a + r,+∞[)]⇔ ( x − a ≥ rأو)][(x ∈]− ∞,a − r ) (x −a = −r)) ⇔( x −a = rأو)((x −a = r ﻭﻤﻥ ﺘﻌﺭﻴﻑ ﻤﺘﺒﺎﻴﻨﺔ ﺘﺎﻤﺔ ,ﻨﺴﺘﻨﺘﺞ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ :
ﺍﻟﻨﻅﺭﻴﺔ : ﻟﻴﻜﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﺎ ﻭﻟﻴﻜﻥ rﻋﺩﺩﺍ ﺤﻘﻴﻘﺎ ﻤﻭﺠﺒﺎ ﺘﻤﺎﻤﺎ ﻤﻬﻤﺎ ﻴﻜﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻟﺩﻴﻨﺎ ﺍﻟﺘﻜﺎﻓﺅﺍﻥ : )(x∈]a−r,a+r[) ⇔(r〉 x−a ) (x∈]−∞,a−r[) ⇔( x−a〉rأو)[∞(x∈]a+r,+ ﻤﻠﺨﺹ ﻟﻨﺘﺎﺌﺞ ﻫﺎﻤﺔ : Aﻭ xﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﻭ rﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ)ﺤﻴﺙ ﻴﻤﻜﻥ ﺍﺴﺘﺒﺩﺍل \" rﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ\" ﺒـ \" rﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ\" ﻭﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﺍﻟﻌﺭﻴﻀﺔ ﺒﻤﺘﺒﺎﻴﻨﺎﺕ ﺘﺎﻤﺔ ﻭﺍﻟﻤﺠﺎﻻﺕ ﺒﻤﺠﺎﻻﺕ ﻤﻔﺘﻭﺤﺔ(]x ∈ [a − r, a + r a−r ≤ x≤a+r x−a ≤r]x ∈ ]− ∞, a − r x≤a−r ﺃﻭ ﺃﻭ[∞x ∈ [a + r,+ x≥a+r x−a ≥r\". ( [a + [∞r,+ ﺇﻟﻰ ﻴﻨﺘﻤﻲ )x ﺃﻭ ( ]− ∞, a− ]r ﺇﻟﻰ ﻤﻼﺤﻅﺔ : \" ) xﻴﻨﺘﻤﻲﻤﻌﻨﺎﻩ x\":ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺇﺘﺤﺎﺩ ﺍﻟﻤﺠﺎﻟﻴﻥ ] ]− ∞, a − rﻭ [∞.\" [a + r,+ﻭﻴﺭﻤﺯ ﺇﻟﻰ ﺇﺘﺤﺎﺩ ﺍﻟﻤﺠﺎﻟﻴﻥ ] ]− ∞, a − rﻭ [∞ [a + r,+ﺒﺎﻟﻜﺘﺎﺒﺔ [∞]− ∞, a − r]∪ [a + r,+
ﻤﺜﺎل :ﻟﻨﻌﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ bﻋﻠﻤﺎ ﺃﻥ 5 > bﺤﺴﺏ ﺍﻟﻨﻅﺭﻴﺔ 5 > b − 0ﻤﻌﻨﺎﻩ ﺍﻟﻤﺴﺎﻓﺔﺒﻴﻥ bﻭ 0ﺃﺼﻐﺭ ﺘﻤﺎﻤﺎ ﻤﻥ 5ﺃﻱ 5 > b − 0ﺃﻱ 0 − 5 < b < 0 + 5ﺃﻱ . − 5 < b < 5 ﻓﻲ ﻫﺫﺍ ﺍﻟﻤﺜﺎل 5 > b − 0 :ﻤﻌﻨﺎﻩ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ bﻭ 0ﺃﺼﻐﺭ ﺘﻤﺎﻤﺎ ﻤﻥ 55 05 5 5
• ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ : .1ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻭﺍﻟﻴﺔ:]] [. x ∈ 2, 5 , x∈[0.75,1] , x∈[5.8.5???????]?, x∈]−1,2 .2ﺃﺘﻤﻡ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ -ﺤﻴﺙ Iﻤﺠﺎل ﻭ xﻋﺩﺩ ﺤﻘﻴﻘﻲ – )ﻟﻘﺩ ﻤﻸﻨﺎ ﺍﻟﺴﻁﺭ ﺍﻟﺜﺎﻨﻲ ﻤﻥ ﺍﻟﺠﺩﻭل ﻋﻠﻰ ﺴﺒﻴل ﺍﻟﻤﺜﺎل(.ﺇﺫﺍ ﺍﺴﺘﻌﻤﻠﻨﺎ ﺍﻟﻘﻴﻤﺔ ﻨﺼﻑ ﻗﻁﺭ ﺘﻤﺜﻴل ﺍﻟﻤﺠﺎل Iﻋﻠﻰ ﻤﺭﻜﺯ ﺍﻟﻤﺠﺎل I ﺍﻟﻤﺠﺎل Iﺍﻟﻤﻁﻠﻘﺔ ﻭﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ, ﺍﻟﻤﺠﺎل Iﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﺩﺭﺝ ﻫﻭ ﻫﻭ ﻫﻭﺍﻟﺠﻤﻠﺔ \"\" x ∈ I 2,5 ]0,5 [− 2,3 3 -2 0 3 ﺘﻜﺎﻓﺊ [- 1 ]−1,6x − 0.5 ≤ 2.5x+2 ≤2 .3ﻋﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ aﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: . a 〈7 , a + 3 ≤ 1 , a − 2 ≤ 5 .4ﺃﺘﻤﻡ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ –ﺤﻴﺙ xﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺘﻜﺎﻓﺊ xﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺇﺘﺤﺎﺩ ﺍﻟﻤﺠﺎﻟﻴﻥ ﺍﻟﺠﻤﻠﺔ x−5 ≥3 x+2 ≥1 x〉 2 .5ﻋﻴﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ aﻋﻠﻤﺎ ﺃﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ 2ﻫﻲ 3ﻭﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ aﻭ 4ﻫﻲ 5
• ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ :ﺕ : 01ﻟﻨﻌﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻌﻁﺎﺓ ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻟﺘﻌﺎﺭﻴﻑ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻤﺠﺎﻻﺕ ﻨﺠﺩ: * ] x ∈ ]−1,2ﺘﻌﻨﻲ −1 < x ≤ 2 * ] x ∈[5,8.5ﺘﻌﻨﻲ 5 ≤ x ≤ 8.5 * ] x ∈[0.75,1ﺘﻌﻨﻲ 0.75 ≤ x ≤ 1 * x ∈ 2, 5ﺘﻌﻨﻲ ] [2 < x < 5 ﺕ : 02 ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭ xﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻟﻨﺘﻤﻡ ﺍﻟﺠﺩﻭل ﺍﻟﻤﻌﻁﻰﺇﺫﺍ ﺍﺴﺘﻌﻤﻠﺕ ﺍﻟﻘﻴﻤﺔ ﻨﺼﻑ ﻗﻁﺭ ﻤﺭﻜﺯ ﺍﻟﻤﺠﺎل I ﺘﻤﺜﻴل ﺍﻟﻤﺠﺎل ﺍﻟﻤﺠﺎل Iﻫﻭﺍﻟﻤﻁﻠﻘﺔ ﻭﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ ﺍﻟﻤﺠﺎل ﻫﻭ ﻫﻭ ﻋﻠﻰ ﻤﺴﺘﻘﻴﻡ 2.5ﺍﻟﺠﻤﻠﺔ \"\" x ∈ I 3 0.5 ﻤﺩﺭﺝ ﻫﻭ 3.5 –1 ﺘﻜﺎﻓﺊ 2 2.5 -2 0 3 ][− 2,3 –2 -4 0 2 ][− 4,2 x − 0.5 ≤ 2.5 -10 6 []−1,6 ][− 4,0 x +1 ≤ 3 x − 2.5 < 3.5 x+2 ≤2 -4 0 ﺕ : 03 ﻟﻨﻌﻴﻥ ﺤﺼﺭﺍ ﻟﻠﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ aﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻌﻁﺎﺓ: • a − 2 ≤ 5ﺘﻌﻨﻲ − 3 ≤ a ≤ 7 • a + 3 ≤ 1ﺘﻌﻨﻲ − 4 ≤ a ≤ −2 • a < 7ﺘﻌﻨﻲ − 7 < a < 7
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139