(3ﺍﻟﺤﺎﺩﺜﺘﺎﻥ ﺍﻟﻤﺴﺘﻘﻠﺘﺎﻥ: ﺘﻌﺭﻴﻑ :ﻟﺘﻜﻥ :ﻤﺠﻤﻭﻋﺔ ﺸﺎﻤﻠﺔ ﻤﺯﻭﺩﺓ ﺒﻘﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل . p ﻨﻘﻭل ﻋﻥ ﺤﺎﺩﺜﺘﻴﻥ Aﻭ Bﺃﻨﻬﻤﺎ ﻤﺴﺘﻘﻠﺘﻴﻥ ﺇﺫﺍﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ : )P(AB)=p(A) up(B * ﻤﻼﺤﻅﺔ :ﻴﺠﺏ ﺍﻟﺘﻤﻴﻴﺯ ﺒﻴﻥ \" ﺍﻟﺤﺎﺩﺜﺘﻴﻥ ﺍﻟﻤﺴﺘﻘﻠﺘﻴﻥ\" ﻭ \" ﺍﻟﺤﺎﺩﺜﺘﻴﻥ ﻏﻴﺭ ﺍﻟﻤﺘﻼﺌﻤﺘﻴﻥ\" *ﺨﺎﺼﻴﺔ :ﻟﺘﻜﻥ :ﻤﺠﻤﻭﻋﺔ ﺸﺎﻤﻠﺔ ﻤﺯﻭﺩﺓ ﺒﻘﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل pﻭﻟﺘﻜﻥ Aﻭ Bﺤﺎﺩﺜﺘﻴﻥ ﺒﺤﻴﺙ P(A)z0:ﻭ .P(B)z0 ﺍﻟﻘﻭل \" Aﻭ Bﻤﺴﺘﻘﻠﺘﺎﻥ\" ﻴﻜﺎﻓﺊ\" ) \" pA(B)=p(Bﻭ ﻴﻜﺎﻓﺊ \" ).\"pB(A)=p(A ﻤﺜﺎل ﺘﻁﺒﻴﻘﻲ :ﺘﺤﺘﻭﻱ ﻋﻠﺒﺔ ﻋﻠﻰ 4ﺒﻁﺎﻗﺎﺕ ﺼﻔﺭﺍﺀ ﻭ 6ﺒﻁﺎﻗﺎﺕ ﺒﻴﻀﺎﺀ ،ﻫﺫﻩ ﺍﻟﺒﻁﺎﻗﺎﺕ ﻤﺭﻗﻤﺔ ﻜﻤﺎ ﻴﻠﻲ : ﺍﻟﺒﻁﺎﻗﺎﺕ ﺍﻟﺼﻔﺭﺍﺀ ﺘﺤﻤل ﺍﻷﺭﻗﺎﻡ 1،2،3،3 :ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ. ﺍﻟﺒﻁﺎﻗﺎﺕ ﺍﻟﺒﻴﻀﺎﺀ ﺘﺤﻤل ﺍﻷﺭﻗﺎﻡ 1،2،3،3،3،4 :ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ. ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺼﺩﻓﺔ ﺍﻟﻜﺎﻤﻠﺔ ﻥ ﻨﺴﺤﺏ ﺒﻁﺎﻗﺔ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻌﻠﺒﺔ . ﺇﺫﺍ ﺴﻤﻴﻨﺎ Jﺍﻟﺤﺎﺩﺜﺔ \" ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺼﻔﺭﺍﺀ\" . Bﺍﻟﺤﺎﺩﺜﺔ \" ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺒﻴﻀﺎﺀ\" . Tﺍﻟﺤﺎﺩﺜﺔ \" ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ .\"3 Dﺍﻟﺤﺎﺩﺜﺔ \" ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ .\"2=)p(J 4 )P(J ﺍﻻﺤﺘﻤﺎل ﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺼﻔﺭﺍﺀ ﻫﻭ 10 ) ( =)p(J 2 ﺃﻱ 5=)p(B 6 )P(B ﺍﻻﺤﺘﻤﺎل ﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺒﻴﻀﺎﺀ ﻫﻭ 10
)(x =)p(B 3 ﺃﻱ 5 ) P(Tﺍﻻﺤﺘﻤﺎل ﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 3ﻫﻭ ) ( =)p(T 1 ﺃﻱ =)p(T 5 2 10 ) P(Dﺍﻻﺤﺘﻤﺎل ﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 2ﻫﻭ )(x =)p(D 1 ﺃﻱ =)p(D 2 5 10ﺃﻱ =)P(JT 2 ) P(JTﺍﻻﺤﺘﻤﺎل ﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺼﻔﺭﺍﺀ ﻭ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 3ﻫﻭ 10 1 ) ( =)P(JT 5 ﻭ ﻟﻨﺎ ( )..... P(JT) =p(J)up(T):ﻭ ﻤﻨﻪ ﺍﻟﺤﺎﺩﺜﺘﺎﻥ Jﻭ Tﻤﺴﺘﻘﻠﺘﺎﻥ . 1) P(BDﺍﻻﺤﺘﻤﺎل ﻜﻲ ﺘﻜﻭﻥ ﺍﻟﺒﻁﺎﻗﺔ ﺍﻟﻤﺴﺤﻭﺒﺔ ﺒﻴﻀﺎﺀ ﻭ ﺘﺤﻤل ﺍﻟﺭﻗﻡ 2ﻫﻭ (x ) P(BD)= 10 ﻭ ﻟﻨﺎ ( )..... P(BD) =p(B)up(D): :ﻭ ﻤﻨﻪ ﺍﻟﺤﺎﺩﺜﺘﺎﻥ Bﻭ Dﻟﻴﺴﺘﺎ ﻤﺴﺘﻘﻠﺘﻴﻥ .
A1 (5ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ :A5 B ﺘﻤﻬﻴﺩ A4 A2 : A3 :ﻤﺠﻤﻭﻋﺔ ﺸﺎﻤﻠﺔ A5 ،A4 ، A3 ، A2 ، A1 :ﺤﻭﺍﺩﺙ ﺘﺸﻜل ﺘﺠﺯﺌﺔ ﺍﻟﻤﺠﻤﻭﻋﺔ .: Bﺤﺎﺩﺜﺔ ﻜﻴﻔﻴﺔ .ﻟﺩﻴﻨﺎ BA1ﻭ BA2ﻭ BA3ﻭ BA4ﻭ BA5ﻏﻴﺭ ﻤﺘﻼﺌﻤﺔ ﻤﺜﻨﻰ ﻤﺜﻨﻰﻭ (BA1)( BA2) ( BA3) ( BA4) ( BA5)=Bﻤﻨﻪ ﺇﺫﺍ ﻜﺎﻥ pﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل ﻋﻠﻰ . :)p(BA3)+ p(BA4)+ (BA5)+P(B)=p(BA1)+ p(BA2 ﻭ ﺇﺫﺍ ﻜﺎﻨﺕ ) p(A1)z0ﻤﺜﻼ(ﻤﻨﻪ )p (A1 B)=pA1(B)up(A1 =)PA1(B )p(A1 B ) p(A1 ﻭ ﺒﺼﻭﺭﺓ ﻋﺎﻤﺔ :
ﻤﺒﺭﻫﻨﺔ ) ﻤﻘﺒﻭﻟﺔ ( :ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔﻟﺘﻜﻥ :ﻤﺠﻤﻭﻋﺔ ﺸﺎﻤﻠﺔ ﻤﺯﻭﺩﺓ ﺒﻘﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل pﻭ ﻟﺘﻜﻥ An ،............ ، A2 ، A1ﺤﻭﺍﺩﺙ ﺒﺤﻴﺙ An ،............ ، A2 ، A1ﺘﺸﻜل ﺘﺠﺯﺌﺔ ﻟﻠﻤﺠﻤﻭﻋﺔ :ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ i ﺒﺤﻴﺙ. p(A1) z0 ، nt i t 1 -ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﺍﻟﺤﺎﺩﺜﺔ Bﻟﺩﻴﻨﺎ : ) p(B)= pA1 u p(A1 ) pA2 u p(A 2 ) .......... pAn u p(A n ﻤﺜﺎل ﺘﻁﺒﻴﻘﻲ:ﺃﺠﺭﻴﺕ ﻓﺤﻭﺼﺎﺕ ﺒﻴﻁﺭﻴﺔ ﻋﻠﻰ ﻗﻁﻴﻊ ﻤﻥ ﺍﻷﻏﻨﺎﻡ %20ﻤﻨﻪ ﻤﺴﺘﻭﺭﺩﺓ ﻤﻥ ﺒﻠﺩ Aﻭ %70ﻤﻨﻪ ﻤﺴﺘﻭﺭﺩﺓ ﻤﻥ ﺒﻠﺩ Bﻭ %10ﻤﺴﺘﻭﺭﺩﺓ ﻤﻥ ﺒﻠﺩ Cﻓﻜﺎﻨﺕ ﺍﻟﻨﺘﺎﺌﺞ ﻜﻤﺎ ﻴﻠﻲ: %90ﻤﻥ ﺍﻷﻏﻨﺎﻡ ﺍﻟﻤﺴﺘﻭﺭﺩﺓ ﻤﻥ ﺍﻟﺒﻠﺩ Aﺴﻠﻴﻤﺔ 60% ،ﻤﻥ ﺍﻷﻏﻨﺎﻡ ﺍﻟﻤﺴﺘﻭﺭﺩﺓ ﻤﻥ ﺍﻟﺒﻠﺩ Bﺴﻠﻴﻤﺔ ﻭ %55ﻤﻥ ﺍﻷﻏﻨﺎﻡ ﺍﻟﻤﺴﺘﻭﺭﺩﺓ ﻤﻥ ﺍﻟﺒﻠﺩ Cﺴﻠﻴﻤﺔ. ﺇﺫﺍ ﺃﺨﺫﻨﺎ ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺼﺩﻓﺔ ﺍﻟﻜﺎﻤﻠﺔ ،ﺤﻴﻭﺍﻨﺎ ﻭﺍﺤﺩﺍ ﻤﻥ ﺍﻟﻘﻁﻴﻊ . 20 )p(A 100 ﺍﻻﺤﺘﻤﺎل ) p(Aﻜﻲ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﻤﺴﺘﻭﺭﺩﺍ ﻤﻥ ﺍﻟﺒﻠﺩ Aﻫﻲ )p(B 70 ﺍﻻﺤﺘﻤﺎل ) p(Bﻜﻲ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﻤﺴﺘﻭﺭﺩﺍ ﻤﻥ ﺍﻟﺒﻠﺩ Bﻫﻲ 100 10 )p(C 100 ﺍﻻﺤﺘﻤﺎل ) p(Cﻜﻲ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﻤﺴﺘﻭﺭﺩﺍ ﻤﻥ ﺍﻟﺒﻠﺩ Cﻫﻲ. =)pA(S 90 ﺍﻻﺤﺘﻤﺎل ) pA(Sﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﺴﻠﻴﻤﺎ ﻋﻠﻤﺎ ﺍﻨﻪ ﻤﺴﺘﻭﺭﺩ ﻤﻥ ﺍﻟﺒﻠﺩ Aﻫﻭ 100 60. =)pB(S 100 ﺍﻻﺤﺘﻤﺎل ) pB(Sﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﺴﻠﻴﻤﺎ ﻋﻠﻤﺎ ﺍﻨﻪ ﻤﺴﺘﻭﺭﺩ ﻤﻥ ﺍﻟﺒﻠﺩ Bﻫﻭ . =)pc(S 55 ﺍﻻﺤﺘﻤﺎل ) pC(Sﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﺴﻠﻴﻤﺎ ﻋﻠﻤﺎ ﺍﻨﻪ ﻤﺴﺘﻭﺭﺩ ﻤﻥ ﺍﻟﺒﻠﺩ cﻫﻭ 100 ﺍﻟﺤﻭﺍﺩﺙ C ، B ،Aﺘﺸﻜل ﺘﺠﺯﺌﺔ ﻟﻠﻤﺠﻤﻭﻋﺔ ﺍﻟﺸﺎﻜﻠﺔ ) ﻤﺠﻤﻭﻋﺔ ﺍﻷﻏﻨﺎﻡ ﻓﻲ ﺍﻟﻘﻁﻴﻊ( . P(A)z0ﻭ p(B)z0ﻭ p(C)z0ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺩﺴﺘﻭﺭ ﺍﻻﺤﺘﻤﺎﻻﺕ ﺍﻟﻜﻠﻴﺔ ) P(Sﺍﻻﺤﺘﻤﺎل ﻜﻲ ﻴﻜﻭﻥ ﺍﻟﺤﻴﻭﺍﻥ ﺍﻟﻤﺄﺨﻭﺫ ﺴﻠﻴﻤﺎ ﻫﻲ ﺒﺤﻴﺙ:
)P(S)=pA(S)up(A) + pB(S)up(B)+ pC(S)up(C 90 60 55 = 100 u 20 100 u 70 100 u 10 100 100 100 ﺒﻌﺩ ﺍﻻﺨﺘﺯﺍﻻﺕ ﻭ ﺍﻟﺤﺴﺎﺏ p(S)= 0 ,655 IIIﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻲ ﻭ ﺍﻟﺘﺒﺎﻴﻥ ﻭ ﺍﻹﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﺍﻟﻤﺭﻓﻘﺔ ﺒﻘﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل ﻋﺩﺩﻱ: (1ﻤﺜﺎل ﺘﻤﻬﻴﺩﻱ:ﻟﺩﻴﻨﺎ ﻨﺭﺩﺍﻥ ﻤﻜﻌﺒﺎﻥ ﻤﺘﻭﺍﺯﻨﺎﻥ ﺃﺤﺩﻫﻤﺎ ﺃﺯﺭﻕ ) (Bﺃﻭﺠﻬﻪ ﺘﺤﻤل ﺍﻷﺭﻗﺎﻡ 3،3،3،2،1،1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭ ﺍﻵﺨﺭ ﺃﺤﻤﺭ ) (Rﺃﻭﺠﻬﻪ ﺘﺤﻤل ﺍﻷﺭﻗﺎﻡ 2،2،2 ،1،1،1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﺘﺠﺭﺒﺔ ﻋﺸﻭﺍﺌﻴﺔ ﺘﻜﻤﻥ ﻓﻲ ﺭﻤﻲ ﺍﻟﻨﺭﺩﻴﻥ Bﻭ Rﻭ ﺘﺴﺠﻴل ﻤﺠﻤﻭﻉ ﺍﻟﺭﻗﻤﻴﻥ ﺍﻟﻤﺴﺠﻠﻴﻥ ﻋﻠﻰ ﺍﻟﻭﺠﻬﻴﻥ ﺍﻟﻌﻠﻭﻴﻴﻥ ﻟﻠﻨﺭﺩﻴﻥ Bﻭ .R :ﻤﺠﻤﻭﻋﺔ ﺠﻤﻴﻊ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻤﻜﻨﺔ)ﺍﻟﻤﺨﺎﺭﺝ( ﻟﻬﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ ﻫﻲ.:={2,3,4,5} : • ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺘﺠﺭﻴﺒﻲ:ﻗﻤﻨﺎ ﺒﻤﺤﺎﻜﺎﺓ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ،ﺒﺎﺴﺘﻌﻤﺎل ﻤﺠﺩﻭل 1000 ،ﻤﺭﺓ ﻓﺤﺼﻠﻨﺎ ﻋﻠﻰ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺘﺎﻟﻴﺔ : xi 2 3 4 5ﻨﺘﻴﺠﺔ ﺍﻟﺠﻤﻭﻉ 158 243 344 255 fi 1000 1000 1000 1000 ﺘﻭﺍﺘﺭ xi xﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺒﺤﻴﺙ : x =f1x1+f2x2+ f3x3+f4x4 255 158 243 344 1000= 2 u 1000 3u 1000 4 u 1000 5 u x =3,696 Vﺘﺒﺎﻴﻥ ﺍﻟﺴﻠﺴﻠﺔ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺒﺤﻴﺙ: ()2 x V=f1x21+f2x22+ f3x23+f4x24-
= 4 u 158 9 u 243 16 u 344 25 u 255 )(3,696 2 1000 1000 1000 1000 V=14,698-13,660416 V=1,037584 ﻭ Vﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﺴﻠﺴﻠﺔ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺒﺤﻴﺙ : V= V V=1,018618673 xxﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻨﻅﺭﻱ : Bﺃﻭﺠﻪ ﺍﻟﻨﺭﺩ 333211 ﺍﻟﻤﺠﻤﻭﻉ ﻴﻤﻜﻥ ﺘﻠﺨﻴﺹ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻤﻜﻨﺔ ﻟﺭﻤﻲ ﺍﻟﻨﺭﺩﻴﻥ B 4443221 ﺃﻭﺠﻪ ﺍﻟﻨﺭﺩ R ﻭ Rﻭ ﻤﺠﻤﻭﻉ ﺍﻟﺭﻗﻤﻴﻥ ﺍﻟﻤﺴﺠﻠﻴﻥ ﻋﻠﻰ ﻭﺠﻬﻴﻬﻤﺎ 4443221 ﺍﻟﻌﻠﻭﻴﻴﻥ ﻓﻲ ﺍﻟﺠﺩﻭل 4443221 ﺍﻟﻤﺠﺎﻭﺭ: 5554332 5554332 5554332 ﻨﻅﺭﻴﺎ :ﻟﺩﻴﻨﺎ 6ﺤﻅﻭﻅ ﻤﻥ 36ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﻴﺴﺎﻭﻱ .2 9ﺤﻅﻭﻅ ﻤﻥ 36ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﻴﺴﺎﻭﻱ .3 12ﺤﻅﻭﻅ ﻤﻥ 36ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﻴﺴﺎﻭﻱ .4 96ﺤﻅﻭﻅ ﻤﻥ 36ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﺠﻤﻭﻉ ﻴﺴﺎﻭﻱ .5 ﻤﻨﻪ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل pﻋﻠﻰ :ﻴﻜﻭﻥ ﻜﻤﺎ ﻴﻠﻲ: 2 3 4 5ﺍﻹﻤﻜﺎﻨﻴﺔ xi P(xi)=pi 6 9 12 9 36 36 36 36 ﻭ ﻟﻘﺩ ﺭﺃﻴﻨﺎ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﻤﺎﻀﻴﺔ ﺃﻥ ﺍﻻﺤﺘﻤﺎﻻﺕ ﻫﻲ \" ﺘﻭﺘﺭﺕ ﻨﻅﺭﻴﺔ\" ﻭ ﺍﻟﻌﺩﺩ Eﺤﻴﺙ E=x1p1+ x2p2+ x3p3+ x4p4 ﺍﻟﺫﻱ ﺤﺴﺎﺒﻪ \"ﻴﺸﺒﻪ\" ﺤﺴﺎﺏ ﺍﻟﻭﺴﻁ ﺍﻟﺤﺴﺎﺒﻲ ﺴﻤﻲ ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻲ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل . p
ﻭ ﺍﻟﻌﺩﺩ Vﺒﺤﻴﺙ :ﺍﻟﺫﻱ ﺤﺴﺎﺒﻪ\" ﻴﺸﺒﻪ\" ﺤﺴﺎﺏ ﺍﻟﺘﺒﺎﻴﻥ ﻴﺴﻤﻰ ﺘﺒﺎﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل . p ﻭ ﺍﻟﻌﺩﺩ Vﺒﺤﻴﺙ V= Vﻴﺴﻤﻰ ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل .pﺃﻨﺠﺯﻨﺎ ﺍﻟﺤﺴﺎﺒﺎﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻬﺫﺍ ﺍﻟﻭﻀﻊ ﺍﻟﻨﻅﺭﻱ ﻓﻭﺠﺩﻨﺎ :E|3,6667 ﺃﻱ =E 11 3V |1,0556 ﺃﻱ =V 19 18V |1,0274 =V 19 18 xxxﻨﻼﺤﻅ ﺘﻘﺎﺭﺏ ﻨﺘﺎﺌﺞ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﺘﺠﺭﻴﺒﻲ ﻭ ﻨﺘﺎﺌﺞ ﺍﻟﻨﻤﻭﺫﺝ ﺍﻟﻨﻅﺭﻱ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل pﺍﻟﺫﻱ ﻋﺭﻑﺍﻋﺘﻤﺎﺩﺍ ﻋﻠﻰ ﻜﻭﻥ ﺠﻤﻴﻊ ﺃﻭﺠﻪBﻟﻬﺎ ﻨﻔﺱ ﺍﻟﺤﻅ ﻟﻠﻅﻬﻭﺭ ،ﻭ ﻜﺫﻟﻙ ﺠﻤﻴﻊ ﺃﻭﺠﻪ Rﻭ ﻫﺫﺍ ﻴﺅﻜﺩ ) ﺸﻴﺌﺎ ﻤﺎ( ﺍﻟﻘﻭل \" ﺍﻟﻨﺭﺩﺍﻥ Bﻭ Rﻤﺘﻭﺍﺯﻨﺎﻥ\". (2ﺘﻌﺎﺭﻴﻑ :
ﻟﺘﻜﻥ :ﻤﺠﻤﻭﻋﺔ ﺸﺎﻤﻠﺔ ﺒﺤﻴﺙ } :={x1,x2,……..,xnﺃﻴﻥ xn......... ، x2 ، x1ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ) ﻨﺘﺎﺌﺞ ﺍﻟﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ( ﻭ ﻟﻴﻜﻥ pﻗﺎﻨﻭﻥ ﺍﺤﺘﻤﺎل ﻋﻠﻰ :ﺒﺤﻴﺙ : p(x1)=p1,p(x2)=p2,………,p(xn)= pn ﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻲ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل pﻫﻭ ﺒﺎﻟﺘﻌﺭﻴﻑ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ Eﺤﻴﺙ: E=x1.p1+ x2.p2+………………+ xn.pn ﺘﺒﺎﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل pﻫﻭ ﺒﺎﻟﺘﻌﺭﻴﻑ ،ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ Vﺤﻴﺙ : V=(x1)2.p1+(x2)2.p2+………………+(xn)2.pn-E2 )ﺃﻱ Eﺍﻷﻤل ﺍﻟﺭﻴﺎﻀﻲ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ( p ﺍﻻﻨﺤﺭﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻘﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل pﻫﻭ ،ﺒﺎﻟﺘﻌﺭﻴﻑ ،ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ V ﺤﻴﺙ ) V= Vﺃﻱ Vﺘﺒﺎﻴﻥ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل .(p ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻹﺤﺘﻤﺎﻻﺕﻜﺭﻴﺔ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺼﻨﺩﻭﻕ ﻭﻨﺴﻤﻲ ﺍﻟﺘﻤﺭﻴﻥ : 1 ﺃﻋﻁ ﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺤﻭﺍﺩﺙ ﺍﻟﺘﺎﻟﻴﺔ (1ﻓﻲ ﻗﺴﻡ ﻤﺎ ﻨﺨﺘﺎﺭﺘﻠﻤﻴﺫﻴﻥ ﺒﻁﺭﻴﻘﺔ ﻋﺸﻭﺍﺌﻴﺔ )s (Aﺍﻟﺘﻠﻤﻴﺫﻴﻥ ﺒﻨﺘﻴﻥs (2ﻓﻲ ﻤﻁﻌﻡ ﺃﺤﻤﺩ ﻁﻠﺏ ﻁﺒﻕ ﻁﻌﺎﻡ ﻭﻓﺎﻜﻬﺔ sﺃﺤﻤﺩ ﻁﻠﺏ ﻟﺤﻤﹰﺎ ﻭ ﺘﻔﺎﺤﹰﺎ )s (B (3ﻓﻲ ﻟﻌﺒﺔ ﻴﺎﻨﺼﻴﺏ ,ﺇﺸﺘﺭﻯ ﺸﺨﺼﹰﺎ ﺜﻼﺙ ﺒﻁﺎﻗﺎﺕ ﺇﺤﺩﻯ ﺍﻟﺒﻁﺎﻗﺘﻴﻥ ﻋﻠﻰ ﺍﻷﻗل ﺭﺍﺒﺤﺔ )(C ﺍﻟﺒﻁﺎﻗﺘﻴﻥ ﻋﻠﻰ ﺍﻷﻜﺜﺭ ﺭﺍﺒﺤﺘﻴﻥ )(D ﺍﻟﺘﻤﺭﻴﻥ : 2 ﻴﺤﺘﻭﻱ ﺼﻨﺩﻭﻕ ﻜﺭﻴﺎﺕ ﺒﻴﻀﺎﺀ ﻭﺴﻭﺩﺍﺀ ﻭ ﺤﻤﺭﺍﺀ ﻨﺴﺤﺏ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﺘﺎﻟﻲ ) (Aﺴﺤﺏ ﻜﺭﻴﺔ ﺒﻴﻀﺎﺀ ) (Bﺴﺤﺏ ﻜﺭﻴﺔ ﻻ ﺤﻤﺭﺍﺀ ﻭﻻ ﺒﻴﻀﺎﺀ ) (Cﺴﺤﺏ ﻜﺭﻴﺔ ﺴﻭﺩﺍﺀ ﺃﻭ ﻜﺭﻴﺔ ﺤﻤﺭﺍﺀ (1ﻫل ﺍﻟﺤﺎﺩﺜﺘﻴﻥ Aﻭ Bﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ؟
(2ﻫل ﺍﻟﺤﺎﺩﺜﺘﻴﻥ Bﻭ Cﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ ؟ (3ﺸﻜل ﺠﻤﻠﺔ ﺘﺸﻜل ﺍﻟﻌﺒﺎﺭﺓ , CAﺜﻡ ﺍﻟﻌﺒﺎﺭﺓCB ﺍﻟﺘﻤﺭﻴﻥ :3 ﻨﺭﻤﻲ ﻗﻁﻌﺔ ﻨﻘﻭﺩ ﺜﻼﺙ ﻤﺭﺍﺕ ﻤﺘﺘﺎﻟﻴﺔ (1ﺃﻋﻁ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﺍﻟﻤﻤﻜﻨﺔﻋﻠﻤﹰﺎ ﺃﻥ ﺍﻟﻭﺠﻪ ﻫﻭ Fﻭ ﺍﻟﻅﻬﺭ ﻫﻭP (2ﺃﺤﺴﺏ ﺇﺤﺘﻤﺎﻻﺕ ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﺘﺎﻟﻴﺔ : (Aﻴﻅﻬﺭ ﻓﻲ ﺍﻟﺭﻤﻴﺎﺕ ﺍﻟﺜﻼﺜﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻅﻬﺭ p (Bﻴﻅﻬﺭ ﻓﻲ ﺍﻟﺭﻤﻴﺎﺕ ﺍﻟﺜﻼﺜﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻋﻠﻰ ﺍﻷﻗل ﻤﺭﺓ ﻭﺍﺤﺩﺓ ﺍﻟﻭﺠﻪ F ﺍﻟﺘﻤﺭﻴﻥ :4 ﻓﻲ ﺘﺠﻤﻊ ﻤﺎ ﺘﻭﺠﺩ ﻤﺠﻤﻭﻋﺔ ﺃﺸﺨﺎﺹ ﺘﺘﻜﻭﻥ ﻤﻥ 250ﺸﺨﺼﹰﺎ ﻨﻼﺤﻅ ﻓﻘﻁ ﺍﻟﺭﺠﺎل ﺍﻟﺫﻴﻥ ﻴﻠﺒﺴﻭﻥ ﺭﺒﻁﺔ ﻋﻨﻕ ﺃﻭ ﺍﻟﺭﺠﺎل ﺫﻭﻱ ﺍﻟﻌﻴﻭﻥ ﺍﻟﺯﺭﻗﺎﺀﻴﻭﺠﺩ 120ﺭﺠ ﹰﻼ ﻴﻠﺒﺴﻭﻥ ﺭﺒﻁﺔ ﻋﻨﻕ ﻭ 85ﺭﺠ ﹰﻼ ﺃﻋﻴﻨﻬﻡ ﺯﺭﻗﺎﺀ ﻤﻨﻬﻡ 50ﺭﺠ ﹰﻼ ﻴﻠﺒﺴﻭﻥ ﺭﺒﻁﺔ ﻋﻨﻕ . -ﻨﺘﺤﺩﺙ ﻤﻊ ﺸﺨﺹ ﺒﻁﺭﻴﻘﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻤﻥ ﻫﺫﺍ ﺍﻟﺘﺠﻤﻊ (1ﻤﺎﻫﻭ ﺍﻹﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﻫﺫﺍ ﺍﻟﺸﺨﺹ ﻻﺒﺴﹰﺎ ﺭﺒﻁﺔ ﻋﻨﻕ؟ (2ﻤﺎﻫﻭ ﺍﻹﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﻫﺫﺍ ﺍﻟﺸﺨﺹ ﻻﺒﺴﹰﺎ ﺭﺒﻁﺔﻋﻨﻕ ﺃﻭ ﻋﻴﻨﺎﻩ ﺯﺭﻗﺎﻭﺍﻥ (3ﻤﺎﻫﻭ ﺍﻹﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﻫﺫﺍ ﺍﻟﺸﺨﺹ ﻻﺒﺴﹰﺎ ﺭﺒﻁﺔﻋﻨﻕ ﻭ ﻋﻴﻨﺎﻩ ﺯﺭﻗﺎﻭﺍﻥ (4ﻤﺎﻫﻭ ﺍﻹﺤﺘﻤﺎل ﺃﻥ ﻨﺘﺤﺩﺙ ﻤﻊ ﺸﺨﺹ ﻻﻫﻭﻻﺒﺱ ﺭﺒﻁﺔﻋﻨﻕ ﻭﻻﻋﻴﻨﺎﻩ ﺯﺭﻗﺎﻭﺍﻥ ﺍﻟﺘﻤﺭﻴﻥ :5 ﻓﻲ ﻤﺴﺎﺒﻘﺔ ﻤﺎ ﻁﺭﺡ ﺴﺅﺍﻻﻥ 65ﻤﻥ ﺍﻷﺸﺨﺎﺹ ﺃﺠﺎﺒﻭﺍ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻷﻭل 51ﻤﻥ ﺍﻷﺸﺨﺎﺹ ﺃﺠﺎﺒﻭﺍ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻟﺜﺎﻨﻲ 46ﻤﻥ ﺍﻷﺸﺨﺎﺹ ﺃﺠﺎﺒﻭﺍ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍﻟﻴﻥ (1ﻤﺎﻫﻭ ﺍﻹﺤﺘﻤﺎل ﺃﻥ ﻴﺠﻴﺏ ﺸﺨﺼﹰﺎ \"ﺒﻨﻌﻡ \"ﻋﻠﻰ ﺃﺤﺩ ﺍﻟﺴﺅﺍﻟﻴﻥ ؟ (2ﻤﺎﻫﻭ ﺍﻹﺤﺘﻤﺎل ﺃﻥ ﻴﺠﻴﺏ ﺸﺨﺼﹰﺎ ﺏ\" ﻻ \" ﻋﻠﻰ ﺍﻟﺴﺅﺍﻟﻴﻥ ؟ ﺍﻟﺘﻤﺭﻴﻥ :6 ﻨﺭﻤﻲ ﺯﻫﺭﺓ ﻨﺭﺩ ﻤﺯﻴﻔﺔ ﻟﻬﺎ ﺴﺘﺔ ﺃﻭﺠﻪ ،ﺍﺤﺘﻤﺎل ﻜل ﺍﻷﻭﺠﻪ ﺍﻟﻅﺎﻫﺭﺓ ﻫﻭ P1=0.1 , P2=0.2 , P3=0.3 , P4=0.1 , p5= 0.15 (1ﺃﺤﺴﺏ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺍﻟﻭﺠﻪ ﺍﻟﺫﻱ ﻴﺤﻤل ﺍﻟﺭﻗﻡ 6ﺃﻱ p6 (2ﻤﺎﻫﻭ ﺍﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻤﹰﺎ ﻓﺭﺩﻴﹰﺎ ﺍﻟﺘﻤﺭﻴﻥ \" :7ﺸﺠﺭﺓ ﺍﻹﺤﺘﻤﺎﻻﺕ \"
ﻓﻲ ﺜﺎﻨﻭﻴﺔ ﻤﺎ ﺘﻼﻤﻴﺫ ﻫﺎ ﺇﻤﺎ ﺨﺎﺭﺠﻴﻥ ﺃﻭ ﻨﺼﻑ ﺩﺍﺨﻠﻴﻥ ﺸﺠﺭﺓ ﺍﻹﺤﺘﻤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺘﻤﺜل ﺘﺠﺯﺌﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺤﺴﺏ ﺍﻟﻤﺴﺘﻭﻯ ﺓ ﺍﻟﻨﻭﻋﻴﺔ ﺨﺎﺭﺠﻴﺎ Eﺃﻭ ﻨﺼﻑ ﺩﺍﺨﻠﻴﹰﺎ DP (1ﺃﻨﻘل ﻭ ﺃﻜﻤل ﺍﻟﺸﺠﺭﺓ E 1er DP 0.8 2eme E 0.35 0.6 DP E 3eme 0.1 0.5 DP E TS DP 0.7 (2ﺃﺤﺴﺏ ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺤﺎﺭﺠﻴﻥ ﻓﻲ ﻫﺫﻩ ﺍﻟﺜﺎﻨﻭﻴﺔ ؟ (3ﻫﺎﻫﻲ ﻨﺴﺒﺔ ﺍﻷﻗﺴﺎﻡ ﺍﻟﻨﻬﺎﺌﻴﺔ ﻤﻥ ﺒﻴﻥ ﺍﻟﺨﺎﺭﺠﻴﻥ ؟ ﺍﻟﺘﻤﺭﻴﻥ :8ﺍﻟﺤﻭﺍﺩﺙ ﺍﻟﻤﺴﺘﻘﻠﺔﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟـﻲ ﻴﻌﻁﻲ ﺘﻘﻴﻴﻡ 150ﻤﺘﺭﺒﺹ ﺤﺴﺏ ﺍﻟﻠﻐﺔ ﺍﻟﻤﺨﺘﺎﺭﺓ ﻭ ﺍﻟﻨﺸﺎﻁ ﺍﻟﺭﻴﺎﻀﻲ ﺍﻟﻤﺨﺘﺎﺭ ﻨﺨﺘﺎﺭ ﺘﻠﻤﻴﺫ ﻭﺍﺤﺩ ﺒﻁﺭﻴﻘﻁﺔ ﻋﺸﻭﺍﺌﻴﺔ ﻜﺭﺓ ﺍﻟﻤﻀﺭﺏ ﺭﻜﻭﺏ ﺍﻟﺨﻴل ﺍﻟﺴﺒﺎﺤﺔﺍﻹﻨﺠﻠﻴﺯﻴﺔ 45 18 27ﺍﻷﻟﻤﺎﻨﻴﺔ 33 09 18 (1ﻫل ﺍﻟﺤﺎﺩﺜﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﻴﺘﻴﻥ ﻤﺴﺘﻘﻠﺘﻴﻥ ؟ ) (Lﺍﻟﺘﻠﻤﻴﺫ ﺍﻟﻤﺨﺘﺎﺭ ﻴﺩﺭﺱ ﺍﻟﻠﻐﺔ ﺍﻷﻟﻤﺎﻨﻴﺔ ) (Tﺍﻟﺘﻠﻤﻴﺫ ﺍﻟﻤﺨﺘﺎﺭ ﻴﻤﺎﺭﺱ ﻜﺭﺓ ﺍﻟﻤﻀﺭﺏ (2ﺍﻟﺤﺎﺩﺜﺘﻴﻥ \" ﺍﻟﺘﻠﻤﻴﺫ ﻴﺩﺭﺱ ﺍﻹﻨﺠﻠﻴﺯﻴﺔ \" ﻭ \" ﻴﻤﺎﺭﺱ ﺍﻟﺴﺒﺎﺤﺔ \" ﻫل ﻫﻤﺎ ﻤﺴﺘﻘﻠﺘﺎﻥ ؟
ﺤﻠﻭل ﺘﻤﺎﺭﻴﻥ ﺍﻹﺤﺘﻤﺎﻻﺕ ﺍﻟﺘﻤﺭﻴﻥ :1 ﺍﻟﺤﺎﺩﺜﺔ CAﻴﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻤﻥ ﺒﻴﻥ ﺍﻟﺘﻠﻤﻴﺫﻴﻥ ﺍﻟﻤﺨﺘﺎﺭﻴﻥ ﺫﻜﺭﹰﺍ ﺍﻟﺤﺎﺩﺜﺔ CBﺃﺤﻤﺩ ﻻﻴﻁﻠﺏ ﻟﺤﻤﺎ ﺃﻭ ﻻ ﻴﻁﻠﺏ ﺘﻔﺎﺤﹰﺎ ﺍﻟﺤﺎﺩﺜﺔ CCﻻﺘﻭﺠﺩ ﺃﻴﺔ ﺒﻁﺎﻗﺔ ﺭﺍﺒﺤﺔ ﺍﻟﺤﺎﺩﺜﺔ CDﺍﻟﺒﻁﺎﻗﺎﺕ ﺍﻟﺜﻼﺜﺔ ﺭﺍﺒﺤﺔ ﺍﻟﺘﻤﺭﻴﻥ : 2 ﺍﻟﺤﺎﺩﺜﺘﻴﻥ Aﻭ Bﻏﻴﺭ ﻤﺘﻼﺌﻤﺘﻴﻥ ﻷﻥ ﻻ ﻴﻤﻜﻥ ﻟﻜﺭﺓ (1ﺃﻥ ﺘﻜﻭﻥ ﺒﻴﻀﺎﺀ ﻭﻏﻴﺭ ﺒﻴﻀﺎﺀ ﻓﻲ ﺁﻥ ﻭﺍﺤﺩ (2ﺍﻟﺤﺎﺩﺜﺘﻴﻥ Bﻭ Cﻤﺘﻼﺌﻤﺘﻴﻥ ﻷﻥ ﺴﺤﺏ ﺍﻟﻜﺭﻴﺔ ﺍﻟﺴﻭﺩﺍﺀ ﻴﺤﻘﻘﻬﺎ ﻤﻌﺎ (3ﻨﻔﻲ ﺍﻟﺤﺎﺩﺜﺔ A CAﻨﺴﺤﺏ ﻜﺭﻴﺔ ﺤﻤﺭﺍﺀ ﺃﻭﻜﺭﻴﺔ ﺴﻭﺩﺍﺀ ﻨـﻔﻲ ﺍﻟﺤﺎﺩﺜﺔ B CBﺴﺤﺏ ﻜﺭﻴﺔ ﺒﻴﻀﺎﺀ ﺃﻭ ﻜﺭﻴﺔ ﺤﻤﺭﺍﺀ ﺍﻟﺘﻤﺭﻴﻥ :3 ﺒﺎﻹﺴﺘﻌﺎﻨﺔ ﺒﺸﺠﺭﺓ ﺍﻹﺤﺘﻤﺎﻻﺕ ﻨﺠﺩ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻭﻤﻨﻪ:=^(P,P,P),(P,P ,F),(P,F,P),(P ,F,F) ,(F,P,P) ,(F,P,F) , `)(F,F,F) ,(F,F,P
P P FPP F F P P FF P F F x (2ﺤﺴﺎﺏ )P(A)P( A )card ( A 1 ﻟﺩﻴﻨﺎ )card (: 8 xﺤﺴﺎﺏ )P(B)P( A )card (B 7 ﻟﺩﻴﻨﺎ )card (: 8ﺃﻭﻨﻁﺒﻕ ﻗﺎﻨﻭﻥ ﺍﻟﺤﺎﺩﺜﺘﻴﻥ ﺍﻟﻤﺘﻌﺎﻜﺴﺘﻴﻥ،ﻷﻥ ﺍﻟﺤﺎﺩﺜﺔ Bﻫﻲ ﺍﻟﻤﻌﺎﻜﺴﺔ ﻟـ AﺇﺫﻥP(B) 1P( A) 118 81 7 8 8
ﺍﻟﺘﻤﺭﻴﻥ 4 ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﻴﺴﻤﺢ ﺒﺘﻤﻴﻴﺯ ﺍﻟﺤﺎﻻﺕ ﺭﺒﻁﺔ ﺍﻟﻌﻨﻕ ﺩﻭﻥ ﺭﺒﻁﺔ ﻋﻨﻕ ﺍﻟﻤﺠﻤﻭﻉ ﺍﻟﻌﻴﻭﻥ ﺍﻟﺯﺭﻗﺎﺀ ﺍﻟﺤﺎﺩﺜﺔA ﺍﻟﺤﺎﺩﺜﺔCA 85ﺍﻟﻌﻴﻭﻥ ﻏﻴﺭﺍﻟﺯﺭﻗﺎﺀ 50 35 ﺍﻟﻤﺠﻤﻭﻉ 70 95 165 120 130 250 :ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﺤﻴﺙ card(:)=250 (1ﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺸﺨﺹ ﻻﺒﺴﺎ ﺭﺒﻁﺔ ﺍﻟﻌﻨﻕ )P( A )card ( A 85 17 ﻟﺩﻴﻨﺎ )card (: 250 50 (2ﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺸﺨﺹ ﻻﺒﺴﺎ ﺭﺒﻁﺔ ﺍﻟﻌﻨﻕ ﻭﻋﻴﻨﺎﻩ ﺯﺭﻗﺎﻭﺍﻥ )P( AB )card ( AB 50 1 )card (: 250 5 (3ﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺸﺨﺹ ﻻﺒﺴﺎ ﺭﺒﻁﺔ ﺍﻟﻌﻨﻕ ﺃﻭﻋﻴﻨﺎﻩ ﺯﺭﻗﺎﻭﺍﻥ)P( AB )P( A) P( B) P( AB 85 122500 50 155 31 250 250 250 50 (4ﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺸﺨﺹ ﻻﻫﻭ ﻻﺒﺴﺎ ﺭﺒﻁﺔ ﺍﻟﻌﻨﻕ ﻭﻻﻋﻴﻨﺎﻩ ﺯﺭﻗﺎﻭﺍﻥ ﻭﻫﻲ ﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﻜﺴﺔ ﻟﻠﺤﺎﺩﺜﺔ ) (ABﺇﺫﻥ )P( AB )P( AB )1P( AB 1 31 19 50 50 ﺍﻟﺘﻤﺭﻴﻥ 5 ﻨﺴﻤﻲ ﺍﻟﺤﺎﺩﺜﺔ \"\" Aﺍﻟﺸﺨﺹ ﺃﺠﺎﺏ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻷﻭل ﻨﺴﻤﻲ ﺍﻟﺤﺎﺩﺜﺔ \"\" Bﺍﻟﺸﺨﺹ ﺃﺠﺎﺏ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍل ﺍﻟﺜﺎﻨﻲ ﻨﺴﻤﻲ ﺍﻟﺤﺎﺩﺜﺔ \"\" Cﺍﻟﺸﺨﺹ ﺃﺠﺎﺏ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍﻟﻴﻥ ﺇﺫﻥ ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻟﺩﻴﻨﺎ
)P(B 51 0.51 )P( A 65 0.65 100 100)P( AB 46 0.46 100 (1ﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﺸﺨﺹ ﺃﺠﺎﺏ ﺒﻨﻌﻡ ﻋﻠﻰ ﺍﻟﺴﺅﺍﻟﻴﻥP( AB) P( A)P(B)P( AB) 0.650.510.46 0.7 (2ﺇﺤﺘﻤﺎل ﺃﻥ ﻴﺠﻴﺏ ﺸﺨﺼﺎ ﺒـ \"ﻻ\"ﻋﻠﻰ ﺍﻟﺴﺅﺍﻟﻴﻥ ﻭﻫﻲ ﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻤﻌﻜﺴﺔ ﻟﻠﺤﺎﺩﺜﺔ ) (ABﺇﺫﻥP( AB) P( AB) 1P( AB) 10.7 0.3 ﺍﻟﺘﻤﺭﻴﻥ 6 P1=0.1 , P2=0.2 , P3=0.3 , P4=0.1 , p5= 0.15 P1+ P2+ P3+ P4+ P5+P6=1 ﻭﺒﻤﺎ ﺃﻥ )P6 =1-( P1+ P2+ P3+ P4+ P5 ﻓﺈﻥ )P6=1-(0.1+0.2+0.3+0.1+0.15 ﺇﺫﻥ =1-0.85 P6=0.15 ﻭﻤﻨﻪ (2ﺇﺤﺘﻤﺎل ﻅﻬﻭﺭ ﺭﻗﻡ ﻓﺭﺩﻱ ﻤﺠﻤﻭﻋﺔ ﺍﻷﺭﻗﺎﻡ ﺍﻟﻔﺭﺩﻴﺔ ﻫﻲ `^1,3,5 ﺇﺫﻥ ﺍﻹﺤﺘﻤﺎل ﻫﻭ P1+ P3 + P5 =0.1+0.3+0.15=0.55 ﺍﻟﺘﻤﺭﻴﻥ 7 ﺇﻜﻤﺎل ﺸﺠﺭﺓ ﺍﻹﺤﺘﻤﺎﻻﺕ ﻤﺠﻤﻭﻉ ﺇﺤﺘﻤﺎﻻﺕ ﺍﻟﻔﺭﻭﻉ ﻫﻭ 1ﺇﺒﺘﺩﺍﺀ ﻤﻥ ﻜل ﻋﻘﺩﺓ ﻤﺠﻤﻭﻉ ﺇﺤﺘﻤﺎﻻﺕ ﺍﻟﻔﺭﻭﻉ ﺍﻟﺠﺯﺌﻴﺔ ﻫﻭ 1ﺇﺒﺘﺩﺍﺀ ﻤﻥ ﻜل ﻋﻘﺩﺓ ﻭﻤﻨﻪ ﺘﻜﻭﻥ ﺸﺠﺭﺓ ﺍﻹﺤﺘﻤﺎﻻﺕ ﻜﺎﻵﺘﻲ
0.2 E 0.2+0.8=11er DP 0.8 E 0.4+0.6=1 0.42eme0.35 0.6 DP 0.5+0.5=1 0.5 E 3eme0.1 0.5 DP 0.3 E 0.3+0.7=1 TS DP0.7 ﺍﻟﺭﻤﺯ 1erﻴﻌﻨﻲ ﺘﻼﻤﻴﺫ ﺍﻟﺴﻨﺔ ﺍﻷﻭﻟﻰﺍﻟﺭﻤﺯ 2emeﻴﻌﻨﻲ ﺘﻼﻤﻴﺫ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔﺍﻟﺭﻤﺯ 3emeﻴﻌﻨﻲ ﺘﻼﻤﻴﺫ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔﺍﻟﺭﻤﺯTSﻴﻌﻨﻲ ﺘﻼﻤﻴﺫ ﺍﻟﻘﺴﻡ ﺍﻟﺨﺎﺹ)ﺴﻨﺔ ﺜﺎﻟﺜﺔ( (2ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ ﻓﻲ ﻫﺫﻩ ﺍﻟﺜﺎﻨﻭﻴﺔﻻﺤﻅ ﺃﻥ ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻷﻭﻟﻰ ﻫﻲ 0.35u0.2 0.07 ﺃﻱ ﺒﻨﺴﺒﺔ 7% ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻫﻲ 0.25u0.4 0.1 ﺃﻱ ﺒﻨﺴﺒﺔ 10% ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ ﻫﻲ0.3u 0.5 0.1u 0.3 0.15 0.03 0.18 ﺃﻱ ﺒﻨﺴﺒﺔ 18%ﻭﻤﻨﻪ ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ ﻓﻲ ﺍﻟﺜﺎﻨﻭﻴﺔ ﻫﻲ 0.070.10.18 0.35 ﺃﻱ ﺒﻨﺴﺒﺔ 35% (3ﻨﺴﺒﺔ ﺍﻷﻗﺴﺎﻡ ﺍﻟﻨﻬﺎﺌﻴﺔ ﻤﻥ ﺒﻴﻥ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ
ﻤﻥ ﺒﻴﻥ 100ﺘﻠﻤﻴﺫ ﻴﻭﺠﺩ 35ﺘﻠﻤﻴﺫ ﺨﺎﺭﺠﻲ،ﻋﻠﻤﺎ ﺃﻥ ﻨﺴﺒﺔ ﺍﻟﺘﻼﻤﻴﺫ ﺍﻟﺨﺎﺭﺠﻴﻴﻥ ﻟﻸﻗﺴﺎﻡ ﺍﻟﻨﻬﺎﺌﻴﺔ ﻫﻲ 18%ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻫﻲ 1385u100 51% ﺍﻟﺘﻤﺭﻴﻥ 8ﻨﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﺒﺎﻟﻤﻌﻠﻭﻤﺎﺕ ﺍﻟﻜﺎﻓﻴﺔ ﺭﻜﻭﺏ ﺍﻟﺨﻴل ﻜﺭﺓ ﻟﻤﻀﺭﺏ ﺍﻟﻤﺠﻤﻭﻉ ﺍﻟﺴﺒﺎﺤﺔﺍﻹﻨﺠﻠﻴﺯﻴﺔ 45 18 27 90ﺍﻷﻟﻤﺎﻨﻴﺔ 33 9 18 60ﺍﻟﻤﺠﻤﻭﻉ 78 27 45 150 (1ﻨﻌﺘﺒﺭ :ﻤﺠﻤﻭﻋﺔ ﺍﻹﻤﻜﺎﻨﻴﺎﺕ ﻓﺈﻥ card(:)=150 )P( A )card ( A ﻤﻥ ﺃﺠل ﻜل ﺤﺎﺩﺜﺔ Aﻟﺩﻴﻨﺎ )card (: ﻨﻘﻭل ﻋﻥ ﺤﺎﺩﺜﺘﻴﻥ Aﻭ Bﺇﻨﻬﻤﺎ ﻤﺴﺘﻘﻠﺘﺎﻥ ﺇﺫﺍﻭﻓﻘﻁ ﺇﺫﺍ ﺘﺤﻘﻕ )P( AB) P( A)uP(B ﻨﺭﻤﺯ ﺒـ ) P(Tﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻤﺘﺭﺒﺹ ﻴﻤﺎﺭﺱ ﻜﺭﺓ ﺍﻟﻤﻀﺭﺏ ﻨﺭﻤﺯ ﺒـ ) P(Lﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻤﺘﺭﺒﺹ ﻴﺩﺭﺱ ﺍﻟﻠﻐﺔ ﺍﻷﻟﻤﺎﻨﻴﺔ )P(T )uP(L 17580u16500 5206u5200 26 ﻟﺩﻴﻨﺎ 125 ﻨﺤﺴﺏ )P(TD)P(T D ﻭﻤﻨﻪ ) PT (D) u P(T )PT (D )P(T D ﻟﺩﻴﻨﺎ ) P(T )P(T D 7338u17580 1216u5206 11 ﺇﺫﻥ 50 ) P(T D) z P(D) u P(T ﻭﻤﻨﻪ
ﺇﺫﻥ ﺍﻟﺤﺎﺩﺜﺘﻴﻥ Dﻭ Tﻏﻴﺭ ﻤﺴﺘﻘﻠﺘﺎﻥ (2ﻨﺭﻤﺯ ﺒـ ) P(Nﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻤﺘﺭﺒﺹ ﻴﻤﺎﺭﺱ ﺍﻟﺴﺒﺎﺤﺔﻨﺭﻤﺯ ﺒـ ) P(Aﺇﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻟﻤﺘﺭﺒﺹ ﻴﺩﺭﺱ ﺍﻟﻠﻐﺔ ﺍﻹﻨﺠﻠﻴﺯﻴﺔ) P( N 45 ﻭ )P( A 90 ﻟﺩﻴﻨﺎ 150 150) P( A)uP(N 19500u14550 53u130 9 ﻭﻤﻨﻪ 50) P( AN ) PN ( A)uP(N ﻭﻤﻨﻪ )PN ( A ) P( AN ﻟﺩﻴﻨﺎ ) P(T) P( AN 2475u14550 27 9 ﺇﺫﻥ 150 50) P(AN ) P(A)uP(N ﻭﻤﻨﻪ ﺇﺫﻥ Aﻭ Nﺤﺎﺩﺜﺘﺎﻥ ﻤﺴﺘﻘﻠﺘﺎﻥ
ﺃﻨﺸﻁﺔ ﻓﻲ ﺍﻹﺤﺼﺎﺀ ﺒﺎﺴﺘﻌﻤﺎل ﻤﺠﺩﻭل EXCELﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺍﻟﻨﺸﺎﻁ 1 ﺍﻟﻨﺸﺎﻁ 2
ﺍﻟﻨﺸﺎﻁ :1ﻤﺸﺎﻫﺩﺓ ﺘﺫﺒﺫﺏ ﺍﻟﻌﻴﻨﺎﺕ ﻋﻠﻰ ﻀﻭﺀ ﻤﺤﺎﻜﺎﺓ ﺜﻼﺜﺔ ﻋﻴﻨﺎﺕ ﺫﺍﺕ ﺍﻟﻤﻘﺎﺱ 36ﻟﻠﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ\"،ﺭﻤﻲ ﻨﺭﺩ ﻤﺘﻭﺍﺯﻥ ﺃﻭﺠﻬﻪ ﺘﺤﻤل ﺍﻷﺭﻗﺎﻡ ﻤﻥ 1ﺇﻟﻰ \"6 /1ﺍﻟﻤﺤﺎﻜﺎﺓ ﻓﻲ ﺤﺩ ﺫﺍﺘﻬﺎ:ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ A2ﺇﻟﻰ ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ: ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﻠﻴﺔ A2ﺍﻟﻁﻠﺒﻴﺔ )ENT ( ALEA() * 6 1 ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ F2ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺴﻁﺭ 2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺴﻁﺭ .7 ﻫﻜﺫﺍ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ A9ﺇﻟﻰ ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ: ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﻠﻴﺔ A9ﺍﻟﻁﻠﺒﻴﺔ )ENT ( ALEA() * 6 1 ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ F9ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺴﻁﺭ 9ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺴﻁﺭ .14 ﻫﻜﺫﺍ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ. ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ:ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﻠﻴﺔ A16ﺍﻟﻁﻠﺒﻴﺔ ) ENT ( ALEA() * 6 1ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ A16ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ F16ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺴﻁﺭ 16ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺴﻁﺭ .21 ﻫﻜﺫﺍ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ. /2ﺤﺴﺎﺏ ﺘﻭﺍﺘﺭ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﺘﺠﺭﺒﺔ )ﺃﻱ ﺘﻭﺍﺘﺭ ﻜل ﻤﻥ ( 6,5,4,3,2,1ﻓﻲ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻌﻴﻨﺎﺕ ﺍﻟﺜﻼﺙ ﻭﺇﻨﺸﺎﺀ ﻤﻀﻠﻌﺎﺕ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ:ﻨﺒﺩﺃ ﺒﻜﺘﺎﺒﺔ 6,5,4,3,2,1ﻓﻲ ﺍﻟﺨﻼﻴﺎ G7 ,G6 ,G5 ,G4 ,G3 ,G2ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ xﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ:ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﻠﻴﺔ H 2ﺍﻟﻁﻠﺒﻴﺔ N.BSI ($A$2 : $F$7,G 2 ) / 36 H 2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ . H 7 ﻫﻜﺫﺍ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻴﻨﺔ ﺍﻷﻭﻟﻰ. xﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ: ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﻠﻴﺔ H 2ﺍﻟﻁﻠﺒﻴﺔ NB.SI ($A$9 : $F$14, G 2 ) / 36 H 2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ . H 7 ﻫﻜﺫﺍ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ .
ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ xﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ: ﻨﺤﺠﺯ ﻓﻲ ﺍﻟﺨﻠﻴﺔ J 2ﺍﻟﻁﻠﺒﻴﺔ NB.SI ($A$16 : $F$21, G 2 ) / 36 ﺍﻟﺨﻠﻴﺔ J 2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ . J 7 ﻫﻜﺫﺍ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﻌﻴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ. ﻓﺘﻅﻬﺭ \"ﺍﻟﻭﺭﻗﺔ\" ﻤﺜل ﻤﺎ ﻴﻠﻲ: A B C D EFﺍﻟﻌﻴﻨـــﺔ 1 121 4 6 4 5 233 3 2 1 4 242 4 3 2 3 354 1 3 3 6 46233 4 5571 6 4 1 3 2ﺍﻟﻌﻴﻨـــﺔ 8 294 5 2 1 6 210 5 5 5 2 1 111 4 6 4 5 3 212 3 6 5 2 3 213 6 2 5 2 3 314 3 4 6 6 5ﺍﻟﻌﻴﻨـــﺔ 15 316 3 4 6 5 4 517 6 2 5 3 6 418 2 2 1 6 2 519 2 6 3 5 6 120 6 6 5 4 4 421 4 3 4 6 2 2
GH ﺍﻟﺘﻭﺍﺘﺭﺍﺕ IJﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻌﻴﻨﺔ 1ﺍﻟﻨﺘﺎﺌﺞ ﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻌﻴﻨﺔ 2 ﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻌﻴﻨﺔ 31 0.13888889 0.08333333 0.055555562 0.19444444 0.22222222 0.194444443 0.27777778 0.16666667 0.111111114 0.22222222 0.11111111 0.222222225 0.08333333 0.22222222 0.166666676 0.08333333 0.19444444 0.25 ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻤﻀﻠﻊ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﺍﻟﻤﻤﺜﻠﺔ ﻟﻠﻌﻴﻨﺎﺕ ﺍﻟﺜﻼﺜﺔ:Insertion ﻨﺤﺩﺩ ﺍﻟﺨﻼﻴﺎ ﻤﻥ H2ﺇﻟﻰ J7ﺜﻡ ﻨﻨﻘﺭ ﻋﻠﻰGraphique ﻓﻴﻅﻬﺭ ﺍﻟﺸﻜل ﻤﺜل ﻤﺎ ﻴﻠﻲ:CourbesSuivantTerminer
ﻤﻼﺤﻅﺔ:ﻤﻥ ﺨﻼل ﺍﻷﻋﻤﺩﺓ J , I, Hﻭﻜﺫﻟﻙ ﻤﻥ ﺨﻼل ﻤﻀﻠﻌﺎﺕ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ،ﻨﻼﺤﻅﺘﻐﻴﻴﺭ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﻤﻥ ﻋﻴﻨﺔ ﺇﻟﻰ ﺃﺨﺭﻯ ﻫﻨﺎﻙ ﺇﺫﻥ ﺘﺫﺒﺫﺏ ﻟﻠﺘﻭﺍﺘﺭﺍﺕ ،ﻭﻴﻤﻜﻥ ﺘﺠﺴﻴﺩ ﺫﻟﻙ ﺃﻜﺜﺭ ﺒﺎﻟﻨﻘﺭ ﻋﺩﺓ ﻤﺭﺍﺕ ﻋﻠﻰ ﺍﻟﻠﻤﺴﺔ F9 ﺍﻟﻨﺸﺎﻁ :2ﻤﺸﺎﻫﺩﺓ ﺍﺴﺘﻘﺭﺍﺭ ﺍﻟﺘﻭﺍﺘﺭﺍﺕ ﻋﻠﻰ ﻀﻭﺀ ﻤﺤﺎﻜﺎﺓ ﻋﻴﻨﺔ ﺫﺍﺕ ﺍﻟﻤﻘﺎﺱ 300ﻟﻠﺘﺠﺭﺒﺔ ﺍﻟﻌﺸﻭﺍﺌﻴﺔ \"ﺭﻤﻲ ﻗﻁﻌﺔﻨﻘﺩﻴﺔ ﻤﺘﻭﺍﺯﻨﺔ\" ﻗﺼﺩ ﺍﻻﻫﺘﻤﺎﻡ ﺒﺘﻭﺍﺘﺭ ﻅﻬﻭﺭ ﺍﻟﻨﺘﻴﺠﺔ ) \" (Pﺒﻌﺩ nﺭﻤﻴﺔ ﻭﻫﺫﺍ ﻤﻥ n 1ﺇﻟﻰ ﻏﺎﻴﺔ n 300 xﺍﻟﻤﺤﺎﻜﺎﺓ ﻭﺘﺴﺠﻴل ﺘﻜﺭﺍﺭﺍﺕ ﻭﺘﻭﺍﺘﺭﺍﺕ \"ﻅﻬﻭﺭ ﻅﻬﺭ\": ﻨﺼﻁﻠﺢ ﺘﻤﺜﻴل \"ﻅﻬﺭ ﺒﺎﻟﺭﻗﻡ 1ﻭ\"ﻭﺠﻪ\" ﺒﺎﻟﺭﻗﻡ .2 xﻓﻲ ﺍﻟﻌﻤﻭﺩ ، Aﺇﺒﺘﺩﺍﺀﺍ ﻤﻥ ﺍﻟﺨﻠﻴﺔ A2ﻨﺴﺠل ﺭﻗﻡ ﺍﻟﺭﻤﻴﺔ )ﻤﻥ 1ﺇﻟﻰ (300 xﻓﻲ ﺍﻟﻌﻤﻭﺩ Bﻨﺴﺠل ﻨﺘﻴﺠﺔ ﻜل ﺭﻤﻴﺔ ﻭﻟﺫﻟﻙ:ﻨﺤﺠﺯ ﺍﻟﻁﻠﺒﻴﺔ ) ENT ( ALEA() * 2 1ﻓﻲ ﺍﻟﺨﻠﻴﺔ B2ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ B2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ . B301
ﻓﻲ ﺍﻟﻌﻤﻭﺩ Cﻨﺴﺠل ﻋﺩﺩ ﺍﻟﻤﺭﺍﺕ ﺍﻟﺘﻲ ﻅﻬﺭﺕ ﻓﻴﻬﺎ ﺍﻟﻨﺘﻴﺠﺔ \"ﻅﻬﺭ\" ﺃﻱ 1ﺒﻌﺩ nﺭﻤﻴﺔ ﻭﻟﺫﻟﻙ xﻨﺤﺠﺯ ﺍﻟﻁﻠﺒﻴﺔ )\" NB.SI (B$2 : B2 ;\"1ﻓﻲ ﺍﻟﺨﻠﻴﺔ C2ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ C2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ . C301 xﻓﻲ ﺍﻟﻌﻤﻭﺩ Dﻨﺴﺠل ﺘﻭﺍﺘﺭ ﻅﻬﻭﺭ \"ﻅﻬﺭ\" ﺃﻱ 1ﺒﻌﺩ nﺭﻤﻴﺔ ﻭﻟﺫﻟﻙ ﻨﺤﺠﺯ ﺍﻟﻁﻠﺒﻴﺔ C2 / A2ﻓﻲ ﺍﻟﺨﻠﻴﺔ D2ﺜﻡ ﻨﻌﻤﻡ ﻤﺤﺘﻭﻯ ﺍﻟﺨﻠﻴﺔ D2ﺇﻟﻰ ﻏﺎﻴﺔ ﺍﻟﺨﻠﻴﺔ . D301 ﻓﻨﺤﺼل ﻋﻠﻰ \"ﺍﻟﻭﺭﻗﺔ\" ﻤﺜل ﻤﺎ ﻴﻠﻲ: A B C D ﺭﻗﻡ ﺍﻟﺭﻤﻴﺔ ﻨﺘﻴﺠﺔ ﻅﻬﻭﺭ1 ﺘﻜﺭﺍﺭ ﺘﻭﺍﺘﺭ ﻅﻬﻭﺭ\"ﻅﻬﺭ\"ﺒﻌﺩ1 ﺃﻭ 22 ﻅﻬﻭﺭ\"ﻅﻬﺭ\"ﺒﻌﺩ ﺍﻟﺭﻤﻴﺔ ...3 2 04 2 ﺍﻟﺭﻤﻴﺔ ... 05 1 0 0.333333336 1 0 0.57 1 1 0.68 2 2 0.59 2 3 0.4285714310 1 3 0.511 1 3 0.5555555612 2 4 0.513 1 5 0.5454545514 2 5 0.515 1 6 0.5384615416 2 6 0.517 2 7 0.4666666718 1 7 0.519 2 7 0.4705882420 2 8 0.4444444421 2 8 0.4210526322 1 8 0.4523 2 8 0.4285714324 2 9 0.40909091 1 9 0.43478261 1 9 0.45833333 10 11
25 2 11 0.4426 1 12 0.4615384627 2 12 0.4444444428 2 12 0.4285714329 2 12 0.413793130 2 12 0.431 2 12 0.3870967732 1 13 0.4062533 1 14 0.4242424234 2 14 0.4117647135 1 15 0.4285714336 1 16 0.4444444437 1 17 0.4594594638 1 18 0.4736842139 1 19 0.4871794940 2 19 0.47541 2 19 0.4634146342 2 19 0.4523809543 1 20 0.4651162844 2 20 0.4545454545 1 21 0.4666666746 1 22 0.4782608747 2 22 0.4680851148 1 23 0.4791666749 1 24 0.4897959250 1 25 0.551 1 26 0.5098039252 2 26 0.553 2 26 0.4905660454 2 26 0.4814814855 2 26 0.4727272756 1 27 0.4821428657 2 27 0.4736842158 2 27 0.4655172459 2 27 0.4576271260 1 28 0.4666666761 1 29 0.4754098462 1 30 0.48387097
63 2 30 0.4761904864 2 30 0.4687565 1 31 0.4769230866 1 32 0.4848484867 1 33 0.4925373168 1 34 0.569 1 35 0.5072463870 2 35 0.571 2 35 0.4929577572 2 35 0.4861111173 1 36 0.4931506874 1 37 0.575 2 37 0.4933333376 2 37 0.4868421177 2 37 0.4805194878 2 37 0.4743589779 1 38 0.4810126680 1 39 0.487581 1 40 0.4938271682 1 41 0.583 1 42 0.506024184 2 42 0.585 1 43 0.5058823586 2 43 0.587 1 44 0.5057471388 1 45 0.5113636489 1 46 0.5168539390 2 46 0.5111111191 1 47 0.5164835292 1 48 0.5217391393 2 48 0.5161290394 1 49 0.521276695 2 49 0.5157894796 2 49 0.5104166797 2 49 0.5051546498 2 49 0.599 1 50 0.50505051100 1 51 0.51
101 1 52 0.51485149102 2 52 0.50980392103 2 52 0.50485437104 2 52 0.5105 2 52 0.4952381106 1 53 0.5107 1 54 0.5046729108 2 54 0.5109 1 55 0.50458716110 1 56 0.50909091111 1 57 0.51351351112 2 57 0.50892857113 2 57 0.50442478114 2 57 0.5115 2 57 0.49565217116 1 58 0.5117 1 59 0.5042735118 2 59 0.5119 2 59 0.49579832120 1 60 0.5121 2 60 0.49586777122 1 61 0.5123 2 61 0.49593496124 1 62 0.5125 2 62 0.496126 2 62 0.49206349127 2 62 0.48818898128 1 63 0.4921875129 2 63 0.48837209130 1 64 0.49230769131 1 65 0.49618321132 1 66 0.5133 1 67 0.5037594134 2 67 0.5135 1 68 0.5037037136 1 69 0.50735294137 2 69 0.50364964138 2 69 0.5
139 1 70 0.50359712140 2 70 0.5141 2 70 0.4964539142 1 71 0.5143 2 71 0.4965035144 1 72 0.5145 2 72 0.49655172146 2 72 0.49315068147 2 72 0.48979592148 1 73 0.49324324149 2 73 0.48993289150 1 74 0.49333333151 1 75 0.49668874152 2 75 0.49342105153 1 76 0.49673203154 2 76 0.49350649155 2 76 0.49032258156 2 76 0.48717949157 2 76 0.48407643158 1 77 0.48734177159 1 78 0.49056604160 2 78 0.4875161 1 79 0.49068323162 1 80 0.49382716163 1 81 0.49693252164 1 82 0.5165 2 82 0.4969697166 2 82 0.4939759167 2 82 0.49101796168 1 83 0.49404762169 1 84 0.49704142170 1 85 0.5171 2 85 0.49707602172 2 85 0.49418605173 1 86 0.49710983174 2 86 0.49425287175 1 87 0.49714286176 2 87 0.49431818
177 2 87 0.49152542178 1 88 0.49438202179 2 88 0.49162011180 1 89 0.49444444181 1 90 0.49723757182 1 91 0.5183 1 92 0.50273224184 2 92 0.5185 1 93 0.5027027186 1 94 0.50537634187 1 95 0.50802139188 1 96 0.5106383189 2 96 0.50793651190 1 97 0.51052632191 1 98 0.51308901192 1 99 0.515625193 2 99 0.51295337194 2 99 0.51030928195 1 100 0.51282051196 1 101 0.51530612197 1 102 0.5177665198 2 102 0.51515152199 1 103 0.51758794200 1 104 0.52201 1 105 0.52238806202 1 106 0.52475248203 1 107 0.5270936204 2 107 0.5245098205 2 107 0.52195122206 1 108 0.52427184207 2 108 0.52173913208 2 108 0.51923077209 1 109 0.5215311210 2 109 0.51904762211 1 110 0.52132701212 1 111 0.52358491213 2 111 0.52112676214 1 112 0.52336449
215 1 113 0.5255814216 1 114 0.52777778217 1 115 0.52995392218 2 115 0.52752294219 1 116 0.52968037220 1 117 0.53181818221 1 118 0.53393665222 1 119 0.53603604223 1 120 0.53811659224 1 121 0.54017857225 1 122 0.54222222226 1 123 0.54424779227 2 123 0.54185022228 1 124 0.54385965229 2 124 0.54148472230 2 124 0.53913043231 1 125 0.54112554232 2 125 0.5387931233 2 125 0.53648069234 2 125 0.53418803235 1 126 0.53617021236 2 126 0.53389831237 2 126 0.53164557238 1 127 0.53361345239 2 127 0.53138075240 1 128 0.53333333241 2 128 0.53112033242 2 128 0.52892562243 1 129 0.5308642244 2 129 0.52868852245 1 130 0.53061224246 2 130 0.52845528247 2 130 0.52631579248 2 130 0.52419355249 2 130 0.52208835250 1 131 0.524251 1 132 0.52589641252 1 133 0.52777778
253 2 133 0.5256917254 1 134 0.52755906255 2 134 0.5254902256 2 134 0.5234375257 1 135 0.52529183258 1 136 0.52713178259 2 136 0.52509653260 1 137 0.52692308261 2 137 0.52490421262 1 138 0.52671756263 1 139 0.52851711264 2 139 0.52651515265 1 140 0.52830189266 1 141 0.53007519267 1 142 0.53183521268 1 143 0.53358209269 2 143 0.53159851270 1 144 0.53333333271 2 144 0.53136531272 2 144 0.52941176273 2 144 0.52747253274 2 144 0.52554745275 1 145 0.52727273276 1 146 0.52898551277 1 147 0.53068592278 1 148 0.5323741279 2 148 0.53046595280 2 148 0.52857143281 1 149 0.53024911282 2 149 0.52836879283 1 150 0.53003534284 1 151 0.53169014285 2 151 0.52982456286 2 151 0.52797203287 2 151 0.5261324288 2 151 0.52430556289 1 152 0.52595156290 2 152 0.52413793
291 1 153 0.5257732292 1 154 0.52739726293 2 154 0.52559727294 2 154 0.52380952295 2 154 0.5220339296 2 154 0.52027027297 2 154 0.51851852298 2 154 0.51677852299 1 155 0.51839465300 2 155 0.51666667 Terminer ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ )ﺘﻭﺍﺘﺭ ﻅﻬﻭﺭ \"ﻅﻬﺭ\" ﺒﻌﺩ nﺭﻤﻴﺔ( n o ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﺘﻤﺜﻴل: ﻨﺤﺩﺩ ﺍﻟﺨﻼﻴﺎ ﻤﻥ D2ﺇﻟﻰ D301ﺜﻡ ﻨﻨﻘﺭ ﻋﻠﻰ: Insertion Graphique Nuage de joints Suivant
Search