ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻷﻭل ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ: • ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻭ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻨﺎﻁﻘﺔ • ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ • ﺍﻟﺠﺫﻭﺭ ﺍﻟﺘﺭﺒﻴﻌﻴﺔ • ﺍﻟﻤﺜﻠﺜﺎﺕ • ﺍﻟﺤﺴﺎﺏ ﺍﻟﺤﺭﻓﻲ
ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻭ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻨﺎﻁﻘﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ /1ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺍﻷﻋﺩﺍﺩ -2ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ .3ﺍﻟﻜﺴﺭ ﻏﻴﺭ ﺍﻟﻘﺎﺒل ﻟﻼﺨﺘﺯﺍل ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻟﺔ ﺗﻤـﺎرﻳـﻦ ﺗﺼﺤﻴﺢ اﻟﺘﻤﺎرﻳـﻦ
/1ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺍﻷﻋﺩﺍﺩ: ﺇﻟﻴﻙ ﻫﺫﺍ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺫﻱ ﻴﻭﻀﺢ ﻤﺨﺘﻠﻑ ﺃﻨﻭﺍﻉ ﺍﻷﻋﺩﺍﺩ ﻤﻊ ﺒﻌﺽ ﺍﻷﻤﺜﻠﺔ * ﺍﻷﻋﺩﺍﺩ ﺍﻟﻌﺸﺭﻴﺔ :ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﻟﻬﺎ ﻜﺘﺎﺒﺔ ﻋﺸﺭﻴﺔ ﺤﻴﺙ ﻋﺩﺩ ﺍﻷﺭﻗﺎﻡ ﺒﻌﺩ ﺍﻟﻔﺎﺼﻠﺔ ﻤﻨﺘﻬﻲ.* ﺍﻷﻋﺩﺍﺩ ﺍﻟﻨـﺎﻁﻘﺔ :ﺍﻟﻌﺩﺩ ﺍﻟﻨﺎﻁﻕ ﻴﻜﺘﺏ ﻋﻠﻰ ﺸﻜل ﻜﺴﺭ ﺒﺴﻁﻪ ﻭ ﻤﻘﺎﻤﻪ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ. ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻭ ﺍﻟﻌﺸﺭﻱ ﻫﻲ ﺃﻋﺩﺍﺩ ﻨﺎﻁﻘﺔ.
-2ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ:ﻴﻘﺴﻡ a ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ ﺍﻟﺫﻱ ﺘﻌﺭﻴﻑ: ﻭ bﻴﻘﺴﻡ ﻜﺫﻟﻙ. ﻤﻼﺤﻅﺔ 1 :ﻫﻭ ﺩﺍﺌﻤﺎ ﻗﺎﺴﻡ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ aﻭ .b ﺨﺎﺼﻴﺔ ﻭ ﺘﻌﺭﻴﻑ: -ﻤﻥ ﺒﻴﻥ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻴﻭﺠﺩ ﻋﺩﺩ ﺃﻜﺒﺭﻫﻡ ﻴﺴﻤﻰ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻭ ﻨﺭﻤﺯ ﻟﻪ PGCDﻭ ﻨﻜﺘﺏPGCD (a,b) : ﻤﺜﺎل :ﺃﺤﺴﺏ ):PGCD (8,12 ﻗﻭﺍﺴﻡ 8ﻫﻲ 8,4,2,1 : ﻗﻭﺍﺴﻡ 12ﻫﻲ 12,6,4,3,2,1: ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻫﻲ 4,2,1 : ﻭﻤﻨﻪ PGCD (8,12) = 4 : ﺘﻌﺭﻴﻑ: ﺇﺫﺍ ﻜﺎﻥ PGCD (a,b) = 1 :ﻓﺎﻥ ﺍﻟﻌﺩﺩﻴﻥ aﻭ bﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. ﻤﺜﺎل 2 :ﻭ 3ﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. 2ﻭ 4ﻋﺩﺩﺍﻥ ﻏﻴﺭ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ
ab * ﺇﻴﺠﺎﺩ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ:br ﺨﻭﺍﺭﺯﻤﻴﺔ ﺍﻗﻠﻴﺩﺱ: ﺨﺎﺼﻴﺔ :ﺇﺫﺍ ﻜﺎﻥ rﻫﻭ ﺒﺎﻗﻲ ﺍﻟﻘﺴﻤﺔ ﺍﻹﻗﻠﻴﺩﻴﺔ ل aﻋﻠﻰ bﻤﻊ a〉b ﻓﺎﻨﻪ. PGCD (a,b) = PGCD (b,r) : ﺨﻭﺍﺭﺯﻤﻴﺔ ﺍﻗﻠﻴﺩﺱ :ﻟﺤﺴﺎﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ aﻭb )ﻤﻊ ( a〉bﻨﺴﺘﻌﻤل ﺃﺜﺎﺭ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﻤﺭﺘﺒﺔ ﻓﻴﻤﺎ ﻴﻠﻲ: a,b )(1 ﺇﻴﺠﺎﺩ ﺍﻟﺒﺎﻗﻲ rﺒﺎﻗﻲ ﻗﺴﻤﺔ aﻭb ﻻ )(3 r=0 ﻨﻌﻡ )(2 PGCD = b * ﻨﻘﺴﻡ aﻋﻠﻰ bﻹﻴﺠﺎﺩ ﺍﻟﺒﺎﻗﻲ r
* ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺒﺎﻗﻲ r = 0ﻓﺎﻥ ﺍﻟﺨﻭﺍﺭﺯﻤﻴﺔ ﺘﻨﺘﻬﻲ ﻭ * * PGCD (a,b) = bﺇﺫﺍ ﻜﺎﻥ r = 0ﻤﻥ )(1 ﻨﻌﻭﺽ ﻗﻴﻤﺔ aﺏ bﻭ bﺏ rﺜﻡ ﻨﻌﻴﺩ ﺍﻟﻌﻤﻠﻴﺎﺕ ﺒﺩﺀﺍﻤﺜﺎل :ﺃﺤﺴﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 1078ﻭ 322ﺒﺎﺴﺘﻌﻤﺎل ﺨﻭﺍﺭﺯﻤﻴﺔ ﺍﻗﻠﻴﺩﺱ. 1078 = 3 x 322 + 112322 = 2 x 112 + 98 bﺍﻟﺒﺎﻗﻲ ﺍﻟﻤﺭﺤﻠﺔ a112 = 1 x 98 + 14 112 322 1078 1 98 = 14 x 7 + 0 98 112 322 2 ﺍﻟﺨﻭﺍﺭﺯﻤﻴﺔ ﺘﻨﺘﻬﻲ ﻟﻤﺎ ﻴﻜﻭﻥ ﺍﻟﺒﺎﻗﻲ ﻤﻌﺩﻭﻤﺎ. 14 98 112 3ﻭﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ ﻫﻭ ﺁﺨﺭ ﺒﺎﻗﻲ ﻏﻴﺭ 0 14 98 4 ﻤﻌﺩﻭﻡ ﻤﺤﺼل ﻋﻠﻴﻪ.ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ PGCD (1078,322) = 14 ﻭ = )PGCD (1078,322) = PGCD (322,112 PGCD (112, 98) = PGCD (98,14) = 14
.3ﺍﻟﻜﺴﺭ ﻏﻴﺭ ﺍﻟﻘﺎﺒل ﻟﻼﺨﺘﺯﺍل: ﺘﻌﺭﻴﻑ:ﻟﻼﺨﺘﺯﺍل ( bﺃﻨﻪ ﻏﻴﺭ ﻗﺎﺒل )ﻤﻊ ≠ 0 a ﺍﻟﻜﺴﺭ ﻨﻘﻭل ﻋﻥ b ﺍﺫﺍ ﻜﺎﻥ aﻭ bﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ. 2ﻤﺜﺎل :1ﺍﻟﻜﺴﺭ 3ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻷﻥ PGCD (2,3) = 1ﻟﻴﺼﺒﺢ ﻜﺴﺭﺍ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل: 60 ﻤﺜﺎل :2 ﺍﺨﺘﺯل ﺍﻟﻜﺴﺭ 4560 5 × 3× 4 445 = 5 × 3× 3 = 3 ﻭ ﺒﻤﺎ ﺃﻥ PGCD (4,3) = 1 4 ﻓﺎﻥ 3ﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺨﺘﺯﺍل.
ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻟﺔ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل : ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻜﺴﺭ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﺒﺎﺴﺘﻌﻤﺎل ﺨﻭﺍﺭﺯﻤﻴﺔ ﺍﻗﻠﻴﺩﺱ. ﺍﻟﻁﺭﻴﻘﺔ: ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻜﺴﺭ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻤﺒﺎﺸﺭﺓ ﺒﻌﺩ ﻋﻤﻠﻴﺔ ﺍﺨﺘﺯﺍل ﻭﺍﺤﺩﺓ: * ﻨﺤﺴﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻜل ﻤﻥ ﺍﻟﺒﺴﻁ ﻭﺍﻟﻤﻘﺎﻡ. * ﻨﻘﺴﻡ ﻜﻼ ﻤﻥ ﺍﻟﺒﺴﻁ ﻭﺍﻟﻤﻘﺎﻡ ﻋﻠﻰ ﺍﻟﻘﺎﺴﻡ . PGCD 1488 ﺍﻟﻨﺹ :ﺍﺠﻌل ﺍﻟﻜﺴﺭ 2418ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻤﻭﻀﺤﺎ ﺍﻟﺤﺴﺎﺏ. ﺍﻟﺤل :ﺇﻴﺠﺎﺩ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 1488،2418ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺨﻭﺍﺭﺯﻤﻴﺔ . ﺍﻟﻤﺭﺤﻠﺔ b aﺍﻟﺒﺎﻗﻲ 930 1488 2418 1 558 930 1488 2 372 558 930 3= 186 186 372 558 4 ﻭﻤﻨﻪPGCD(2418,1488) : 0 186 372 5 8 ﻭﺒﺎﻟﺘﺎﻟﻲ13 : 1488 1488 ÷186 = 2418 = 2418 ÷186 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ: ﺠﻌل ﻜﺴﺭ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ 956 ﺍﻟﻨﺹ :ﺍﺠﻌل ﺍﻟﻜﺴﺭ 684ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻤﺴﺘﻌﻴﻨﺎ ﺒﻶﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ. ﺍﻟﺤل :ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ Casio fx - 92 college :
956 d/c 684 exe956 684 ﺘﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ 239 171ﻫﻭ ﺍﻟﻜﺴﺭ ﺍﻟﻨﺎﺘﺞ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل. 239 ﻭﻤﻨﻪ 171
ﺗﻤـﺎرﻳـﻦﺍﺤﺴﺏ PGCDﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻸﻋﺩﺍﺩ ﺍﻟﻤﻌﻁﺎﺕ ﻤﻊ ﻜﺘﺎﺒﺔ /1 ﻤﺠﻤﻭﻋﺔ ﻗﻭ ﺍﺴﻤﻬﺎ: ﺍ 36 /ﻭ ، 54ﺏ 63 /ﻭ 64ﺒﺩﻭﻥ ﺤﺴﺎﺏ ﺍﺸﺭﺡ ﻟﻤﺎﺫﺍ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﺘﺎﻟﻴﻴﻥ ﻏﻴﺭ ﺃﻭﻟﻴﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ /2 ﺍ 218 /ﻭ ، 162ﺏ 21 /ﻭ 18 /3 ﺃﻨﺠﺯ ﺍﻟﻘﺴﻤﺔ ﺍﻻﻗﻠﻴﺩﻴﺔ ل 5885ﻋﻠﻰ . 753ﺍﻨﻘل ﻭ ﺃﺘﻤﻡPGCD(5885 ، 753) = PGCD(753 ، ...) : / 4ﻨﺭﻴﺩ ﺤﺴﺎﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 288ﻭ 84ﺒﺎﺴﺘﻌﻤﺎل ﻁﺭﻴﻘﺔ ﺍﻗﻠﻴﺩﺱ ﺍﻨﻘل ﻭ ﺃﺘﻤﻡ : Bﺍﻟﺒﺎﻗﻲ ﺍﻟﻤﺭﺍﺤل A... 84 288 1... ... 84 20 ... ... 3 ﺍﺴﺘﻨﺘﺞ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ ) 288ﻭ . (84 / 5ﺍﺤﺴﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 1515ﻭ 1789ﺒﺎﺴﺘﻌﻤﺎل ﻁﺭﻴﻘﺔ ﺍﻗﻠﻴﺩﺱ. 2332 ﺃﻭﺠﺩ ﻜﺴﺭ ﻏﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ﻟﻠﻜﺴﺭ: /6 47223 ﺍﺸﺭﺡ ﺍﻟﺤل / 7ﻨﺭﻴﺩ ﺘﺠﻤﻴﻊ 161ﻗﻠﻡ ﺍﺤﻤﺭ ﻭ 133ﻗﻠﻡ ﺍﺯﺭﻕ ﻓﻲ ﻋﻠﺏ ﺒﺤﻴﺙ ﺘﺤﻭﻱ ﻜل ﻋﻠﺒﺔ ﻴﻜﻭﻥ ﻓﻴﻬﺎ ﺃﻗﻼﻡ ﻤﻥ ﻨﻔﺱ ﺍﻟﻨﻭﻉ ﻭ ﻜل ﻋﻠﺒﺔ ﺘﺤﻭﻱ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﻌﺩﺩ ﻤﻥ ﺍﻷﻗﻼﻡ . * ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺃﻗﻼﻡ ﻜل ﻋﻠﺒﺔ ؟
* ﻤﺎ ﻫﻭ ﻋﺩﺩ ﻋﻠﺏ ﻜل ﻨﻭﻉ ﻤﻥ ﺍﻷﻗﻼﻡ ؟ / 8ﺍﺤﺴﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ل 1756ﻭ . 1317* ﺒﺎﺌﻊ ﺃﺯﻫﺎﺭ ﺘﻠﻘﻰ 1756ﺯﻫﺭﺓ ﺒﻴﻀﺎﺀ ﻭ 1317ﺯﻫﺭﺓ ﺤﻤﺭﺍﺀ ،ﺃﺭﺍﺩ ﺇﻨﺠﺎﺯ ﺒﺎﻗﺎﺕ ﻭﺭﺩ ﻤﺘﻁﺎﺒﻘﺔ) . ﻨﻔﺱ ﻋﺩﺩ ﺍﻷﺯﻫﺎﺭ ﻭ ﻨﻔﺱ ﺘﻭﺯﻴﻊ ﺃﻟﻭﺍﻥ ﺍﻷﺯﻫﺎﺭ ( ﺒﺎﺴﺘﻌﻤﺎل ﻜل ﺍﻷﺯﻫﺎﺭ. * ﻤﺎ ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻷﻜﺒﺭ ﻟﻠﺒﺎﻗﺎﺕ ﺍﻟﻤﺘﻁﺎﺒﻘﺔ ؟ )ﻤﻊ ﺍﻟﺸﺭﺡ(. *ﻤﺎ ﻫﻭ ﺘﻭﺯﻴﻊ )ﻋﺩﺩ ﺍﻷﺯﻫﺎﺭ ﺍﻟﺒﻴﻀﺎﺀ ﻭ ﺍﻟﺤﻤﺭﺍﺀ( ﻓﻲ ﻜل ﺒﺎﻗﺔ .؟ / 9ﻜﺘﺎﺒﻴﻥ ﻴﺤﻭﻴﺎﻥ 480ﻭ 608ﺼﻔﺤﺎﺕ ﻴﺘﻜﻭﻥ ﻜل ﻜﺘﺎﺏ ﻤﻥ ﺃﺠﺯﺍﺀ ﻟﻬﺎ ﻨﻔﺱ ﻋﺩﺩ ﺍﻟﺼﻔﺤﺎﺕ ﺍﻟﻤﺤﺼﻭﺭﺓ ﺒﻴﻥ 30ﻭ 50ﺼﻔﺤﺔ. * ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺼﻔﺤﺎﺕ ﻜل ﺠﺯﺀ ؟ * ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺃﺠﺯﺍﺀ ﻜل ﻜﺘﺎﺏ ؟ * / 10ﺍﺤﺴﺏ . 442 * ﺍﺤﺴﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 7744ﻭ 17424 * ﺍﺴﺘﻨﺘﺞ ﺒﺩﻭﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ : -ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ ل 7744ﻭ 17424 17424 -ﺍﻟﻜﺴﺭ ﺍﻟﻐﻴﺭ ﻗﺎﺒل ﻟﻼﺨﺘﺯﺍل ل 7744
ﺗﺼﺤﻴﺢ اﻟﺘﻤﺎرﻳـﻦ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل :ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻭﺍﺴﻡ ﻫﻲ: }64= {1,2,4,8,32,16,64 }63= {1,3,7,9,21,63 ﻭ ﻤﻨﻪ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ ) (64,63ﻫﻭ 1 : }54= {1,2,3,6,9,18,27,54 }36= {1,2,3,6,9,12,18,36 ﻭ ﻤﻨﻪ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 54,36ﻫﻭ( )18: ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ :* ﺍﻟﻌﺩﺩﺍﻥ 218ﻭ 162ﻏﻴﺭ ﺃﻭﻟﻴﻴﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻷﻨﻬﻤﺎ ﺯﻭﺠﻴﺎﻥ ﺃﻱ ﻴﻘﺒﻼﻥ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ) 2ﻓﻬﻤﺎ ﻴﻘﺒﻼﻥ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ﺃﻜﺜﺭ ﻤﻥ ﻋﺩﺩﻴﻥ(.* ﺍﻟﻌﺩﺩﺍﻥ 21ﻭ 18ﻏﻴﺭ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻷﻨﻬﻤﺎ ﻤﻥ ﻤﻀﺎﻋﻔﺎﺕ ﺍﻟﻌﺩﺩ )3ﻓﻬﻤﺎ ﻴﻘﺒﻼﻥ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ﺃﻜﺜﺭ ﻤﻥ ﻋﺩﺩﻴﻥ(. ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ: 5885=753x7+615 PGCD(5885,753)=PGCD(753,615). ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ: ﺤﺴﺎﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ ) (288,84ﺒﺎﺴﺘﻌﻤﺎل ﻁﺭﻴﻘﺔ ﺇﻗﻠﻴﺩﺱ:ﺍﻟﺒــﺎﻗﻲ ﺍﻟﻤﺭﺍﺤل B A 288=84x3+36 36 84 288 01 84=36x2+12 12 36 84 02 0 12 36 03 36=12x3+0 )(288;84 ﻭ ﻤﻨﻪPGCD =12 :
ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺨﺎﻤﺱ :* ﺤﺴﺎﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ 1789ﻭ 1515ﺒﺎﺴﺘﻌﻤﺎل ﻁﺭﻴﻘﺔ ﺇﻗﻠﻴﺩﺱ: 1789=1515x1+274 1515=274x5+145 274=145x1+129 145=125x1+16 125=16x8+1 16=16x1+0)(1789;1515 ﻭ ﻤﻨﻪPGCD =1 : ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺩﺱ:* ﺇﻴﺠﺎﺩ ﺍﻟﻜﺴﺭ ﺍﻟﻐﻴﺭ ﻗﺎﺒل ﻟﻺﺨﺘﺯﺍل ﻹﻴﺠﺎﺩ ﺍﻟﻜﺴﺭ ﺍﻟﻐﻴﺭ ﻗﺎﺒل ﻟﻺﺨﺘﺯﺍل ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻜل ﻤﻥ ﺒﺴﻁ ﻭ ﻤﻘﺎﻡ ﻫﺫﺍ ﺍﻟﻜﺴﺭ. ) PGCD(2332,47223ﺃﻱ ﺇﻴﺠﺎﺩ : 47223 = 2332x20 + 583 = 583 x 4 + 0PGCD(47223 ;2332) = 583.ﻭ ﻤﻨﻪ2332 : 583 = 4 . 47223 : 583 = 3 : 2332 ﻭ ﻤﻨﻪ 3= : 47223 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻊ4 :* ﻋﺩﺩ ﺃﻗﻼﻡ ﻜل ﻋﻠﺒﺔ ) ﻹﻴﺠﺎﺩ ﻋﺩﺩ ﺃﻗﻼﻡ ﻜل ﻋﻠﺒﺔ ﻨﺤﺴﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺩﻴﻥ 161ﻭ 133 (. 161 = 133 x 1 + 28 = 28 x 4 + 21 28 = 21 x 1 + 7 21 = 7 x 3 +0.ﻭ ﻤﻨﻪPGCD (133;161)= 7 :
ﻭﻤﻨﻪ ﻜل ﻋﻠﺒﺔ ﺘﺤﻭﻱ ﻋﻠﻰ 07ﺃﻗﻼﻡ. * /2ﻋﺩﺩ ﻋﻠﺏ ﺍﻷﻗﻼﻡ ﺍﻟﺤﻤﺭﺍﺀ161: 7 = 23 : * ﻋﺩﺩ ﻋﻠﺏ ﺍﻷﻗﻼﻡ ﺍﻟﺯﺭﻗﺎﺀ133 : 7 = 19 : ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻤﻥ: * ﺤﺴﺎﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 1756ﻭ 1317 1756 = 1317 x 1 + 439. 1317 = 439 x 3 + 0 . PGCD(1756;1317) = 439 * ﻋﺩﺩ ﺍﻟﺒﺎﻗﺎﺕ ﺍﻟﻤﻤﻜﻨﺔ ﻫﻭ .439 ﻭ ﻫﻭ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ 1317ﻭ 1756 ﻋﺩﺩ ﺍﻟﺯﻫﺭﺍﺕ ﺍﻟﺒﻴﻀﺎﺀ ﻓﻲ ﻜل ﺒﺎﻗﺔ ﻫﻭ1756 : 439 = 4 : ﻋﺩﺩ ﺍﻟﺯﻫﺭﺍﺕ ﺍﻟﺤﻤﺭﺍﺀ ﻓﻲ ﻜل ﺒﺎﻗﺔ ﻫﻭ1317 : 439 = 3 : ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺘﺎﺴﻊ:* ﻹﻴﺠﺎﺩ ﻋﺩﺩ ﺼﻔﺤﺎﺕ ﻜل ﺠﺯﺀ ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ ) 608ﻭ .( 480 608 = 480 x 1 + 128 480 = 128 x 3 + 96 128 = 96 x 1 + 32 96 = 32 x 3 + 0. ﻭﻤﻨﻪ :ﻋﺩﺩ ﺼﻔﺤﺎﺕ ﻜل ﺠﺯﺀ ﻫﻭ .32 : * ﻋﺩﺩ ﺃﺠﺯﺍﺀ ﻜل ﻜﺘﺎﺏ : 608 : 32 = 19 480 : 32 = 15 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻌﺎﺸﺭ: * ﺍﻟﺤﺴﺎﺏ 44 2 = 1936 : * ﺤﺴﺎﺏ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟـ 7744:ﻭ 17424 17424 = 7744 x 2 + 1936. 7744 = 1936 x 4 + 1
ﻭ ﻤﻨﻪPGCD( 17424 ; 7744 ) = 1936 : * ﺍﻻﺴﺘﻨﺘﺎﺝ ﺒﺩﻭﻥ ﺁﻟﺔ ﺤﺎﺴﺒﺔ:7744 = 1936x4 = 1936 x 4 = 44 x 2 = 8817424 = 1936x9 = 1936 x 9 = 44 x 3 = 132* ﺍﻟﻜﺴﺭ ﺍﻟﻐﻴﺭ ﻗﺎﺒل ﻟﻺﺨﺘﺯﺍل:17424 :1936 =97744 :1936 4
ﻨﻅﺭﻴـﺔ ﻁﺎﻟﻴـﺱ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ* /ﻤﻌﺭﻓﺔ ﺨﺎﺼﻴﺔ ﻁﺎﻟﻴﺱ ﻭ ﺍﺴﺘﻌﻤﺎﻟﻬﺎ ﻓﻲ ﺤﺴﺎﺏ ﺃﻁﻭﺍل ﺃﻭ ﺇﻨﺠﺎﺯ ﺒﺭﺍﻫﻴﻥ ﻭ ﺇﺘﺸﺎﺀﺍﺕ ﻫﻨﺩﺴﻴﺔ ﺒﺴﻴﻁﺔ * /ﺘﻁﺒﻴﻕ ﺍﻟﻨﻅﺭﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺜﺎﺕ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺍﻟﻨﻅﺭﻴﺔ • ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻴﺔ • ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ • ﺘﻘﺴﻴﻡ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺇﻟﻰ ﻗﻁﻊ ﻤﺘﻘﺎﻴﺴﺔ • ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ • ﺍﻟﺘﻤﺎﺭﻴﻥ
.1ﺍﻟﻨﻅﺭﻴﺔ:) (dﻭ )' (dﻤﺴﺘﻘﻴﻤﺎﻥ ﻤﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ A Bﻭ Mﻨﻘﻁﺘﺎﻥ ﻤﻥ ) (dﻤﺨﺘﻠﻔﺘﺎﻥ ﻋﻥ A Cﻭ Nﻨﻘﻁﺘﺎﻥ ﻤﻥ)' ( dﻤﺨﺘﻠﻔﺘﺎﻥ ﻋﻥ A ﺇﺫﺍ ﻜﺎﻥ(MN) // ( BC) :AM = AN = MN ﻓــﺈﻥ:AB AC BC ﺍﻷﺸﻜـﺎل:
.2ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻴﺔ : ) (dﻭ )' (dﻤﺴﺘﻘﻴﻤﺎﻥ ﻤﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ A Bﻭ Mﻨﻘﻁﺘﺎﻥ ﻤﻥ ) (dﻤﺨﺘﻠﻔﺘﺎﻥ ﻋﻥA Cﻭ Nﻨﻘﻁﺘﺎﻥ ﻤﻥ )‘ (dﻤﺨﺘﻠﻔﺘﺎﻥ ﻋﻥAﻓﻲ A,B,M ﺍﻟﻨﻘﻁ ﻜﺎﻨﺕ ﻭ AM = AN ﺇﺫﺍ ﻜﺎﻥ: AB AC ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﻭﻨﻔﺱ ﺍﻟﺘﺭﺘﻴﺏ ﻤﻊ ﺍﻟﻨﻘﻁ A,C,N ﻓﺈﻥ(MN) // ( BC) : ﺘﻤﺭﻴﻥ ﻤﺤﻠﻭل :ﺇﻟﻴﻙ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل .ﺤﻴﺙ ﺍﻟﻭﺤﺩﺓ ﻫﻲcm : ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ.(CD) // (AB) : OA=4; OD=8,4 OC=6; AB=3 ﺃ /ﺍﺤﺴﺏ ﺍﻟﻁﻭلOB : ﺏ /ﺍﺤﺴﺏ ﺍﻟﻁﻭلCD : ﺍﻟﺤــل: ) (DBﻭ ) (ACﻤﺴﺘﻘﻴﻤﺎﻥ ﻤﺘﻘﺎﻁﻌﺎﻥ ﻓﻲO : . ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ (AB) :ﻭ ) (CDﻤﺘﻭﺍﺯﻴﺎﻥ ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ. 4 OB 3 ﺤﺴﺏ ﻁﺎﻟﻴﺱ: 6 = 8,4 = CD OA OB AB OC = OD = CDﺃﻱ: ﻨﺠﺩ OB = 5,6 cm : 4 OB ﻤﻥ6 = 8,4 :
43 ﻤﻥ 6 = CD :ﻨﺠﺩCD = 4,5 cm : ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ :ﺇﻟﻴﻙ ﺍﻟﺸﻜﻠﻴﻥ ﺍﻟﺤـل:. AN = 7,5 =0,6 ﻭ AM = 5,4 = 0,6 ﻓﻲ ﺍﻟﺸﻜل ﺍﻷﻭل: AC 12,5 AB 9 ﺤﺴﺏ ﻁﺎﻟﻴﺱ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ) (MNﻭ ) (BCﻤﺘﻭﺍﺯﻴﻴﻥ. . AM = 11,9 =0,34 . AN = 18,2 = 0,35 ﺍﻟﺜﺎﻨﻲ: ﺍﻟﺸﻜل ﻓﻲ AB 35 AC 52 ﺤﺴﺏ ﻁﺎﻟﻴﺱ :ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ) (BC) (MNﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﻴﻥ.
.3ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ:ﻟﻴﻜﻥ ABCﻤﺜﻠﺙ M،ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺤﺎﻤل )(AB Nﻨﻘﻁﺔ ﻤﻥ ﺍﻟﺤﺎﻤل )(ACﺇﺫﺍ ﻜﺎﻥ :ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) (BCﻭ ) (MNﻤﺘﻭﺍﺯﻴﺎﻥ. AM AN MN ﻓﺈﻥ AB = AC = BC :* ﺃﻀﻼﻉ ﺍﻟﻤﺜﻠﺜﻴﻥ ABCﻭ AMNﻤﺘﻨﺎﺴﺒﺎﻥ. ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ :ﻫﻭ ﺠﺩﻭل ﺘﻨﺎﺴﺒﻴﺔ.AM AN MNAB AC BC
.4ﺘﻘﺴﻴﻡ ﻗﻁﻌﺔ ﻤﺴﺘﻘﻴﻤﺔ ﺇﻟﻰ ﻗﻁﻊ ﻤﺘﻘﺎﻴﺴﺔ : ﻤﺜـﺎل :ﻟﺘﻘﺴﻴﻡ ﺍﻟﻘﻁﻌﺔ] [ABﺇﻟﻰ ﺜﻼﺙ ﻗﻁﻊ ﻤﺘﻘﺎﻴﺴﺔ: * ﻨﺭﺴﻡ ﻨﺼﻑ ﻤﺴﺘﻘﻴﻡ ) [AX * ﻨﺭﺴﻡ ﻋﻠﻰ ) [ AXﺘﺩﺭﻴﺞ ﻤﻨﺘﻅﻡ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﺩﻭﺭA , N1 , N3 , N2 : * ﻨﺼل ﺍﻟﺘﺩﺭﻴﺠﺔ N3ﺒﺎﻟﻁﺭﻑ B *ﻨﺭﺴﻡ M1 , M2ﻤﺴﺎﻗﻁ N1 , N2ﻋﻠﻰ ] [ABﻭﻓﻕ ][N3B
. 5ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ: ABCﻤﺜﻠﺙ ﺇﺫﺍ ﻜﺎﻨﺕ Mﻨﻘﻁﺔ ﻤﻥ ][ABAM = AP ﻭ ﻨﻘﻁﺔ ﻤﻥ ][AC ﻭ ﻜﺎﻨﺕPAB AC ﻓﺈﻥ (MP)// (BC) : ﻤﻼﺤﻅﺔ :ﻤﺼﺩﺍﻗﻴﺔ ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ ﺘﺭﺘﻜﺯ )ﺘﻌﺘﻤﺩ( ﻋﻠﻰ ﺍﻹﺴﺘﻘﺎﻤﺔ ﻓﻲ ﻨﻔﺱ ﺍﻟﺘﺭﺘﻴﺏ ﻟﻠﻨﻘﻁ. ﻤﺜﺎل : ﻤﺜﺎل ﻤﻀﺎﺩ :ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل: AM = AN = 1 AB AC 3 ﻟﻜﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ) (MNﻭ )(BC ﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﻴﻥ.
ﺍﻟﺘﻤــﺎﺭﻴـﻥ /1ﺇﻟﻴﻙ ﺍﻟﺸﻜل ﺤﻴﺙ )(BC) // (EDAC=15 ;BC=18 ;AB=12 ; AE= 7 * ﺍﺤﺴﺏ ﺍﻟﻁﻭﻟﻴﻥAD; DE;: /2ﻟﻴﻜﻥ ABCDﻤﺴﺘﻁﻴل ﻓﻴﻪ: E . BC = 7 ; AB=12ﻨﻘﻁﺔ ﻤﻥ ][ADﺤﻴﺙ AE=5 ﻭ) (BEﻴﻘﻁﻊ ) (CDﻓﻲ F* ﺃﺤﺴﺏ EBﺏ /ﺃﺤﺴﺏ EFﻭFD ACE /3ﻤﺜﻠﺙ ﻜﻴﻔﻲ B،ﻨﻘﻁﺔ ﻤﻥ ] D، [ACﻨﻘﻁﺔ ﻤﻥ][AE ﺒﺤﻴﺙ AD=ABﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ) (BDﻭ) (CEﻤﺘﻭﺍﺯﻴﺎﻥ. ﺇﻟﻴﻙ ﺍﻟﺸﻜل،ﺤﻴﺙ /4) (CE)// (BDﻭ)(EG)//(DF ﺃ /ﺒﻴﻥ ﺃﻥ )(GC)//(BF
/5ﺇﻟﻴﻙ ﺍﻟﺸﻜل ﺤﻴﺙ: ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) (BMﻭ)(AC ﻤﺘﻭﺍﺯﻴﺎﻥ. ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) (ABﻭ )(NC ﻤﺘﻭﺍﺯﻴﺎﻥ * ﺒﻴﻥ ﺃﻥOA2 = OM x ONﻓﻲK BA) Cﻴﻘﻁﻊ][BC ABC /6ﻤﺜﻠﺙ ، ﺍﻟﻤﻨﺼﻑ ﺍﻟﺩﺍﺨﻠﻲ ﻟﻠﺯﺍﻭﻴﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻭﺍﺯﻱ ﻟـ) (ABﻴﻤﺭ ﺒـC ﻭ ﻴﻘﻁﻊ) (AKﻓﻲ D * ﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ DACﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﻲC AB = KB * ﺒﻴﻥ ﺃﻥ AC KC ABCD /7ﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻗﺎﻋﺩﺘﺎﻩ ] [ABﻭ ][CD Iﻤﻨﺘﺼﻑ ] [ADﻭ Jﻤﻨﺘﺼﻑ] [BCﻭ Kﻤﻨﺘﺼﻑ][AC* ﺒﻴﻥ ﺃﻥ I;J;K :ﻋﻠﻰ ﺇﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ،ﻭ ﺤﺎﻤﻠﻬﺎ ﻴﻭﺍﺯﻱ )(AB * ﺃﺤﺴﺏ IJﺒﺩﻻﻟﺔ ABﻭ .CD ABCD/8ﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻗﺎﻋﺩﺘﺎﻩ ] [ABﻭ][CD * Mﻨﻘﻁﺔ ﻤﻥ ] [BDﻭ )(BC)//(AM * Nﻨﻘﻁﺔ ﻤﻥ ] [ACﻭ )(AD)//(BN * Iﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ] [ANﻭ ][BM * ﺒﻴﻥ ﺃﻥ )(AB)// (MN /9ﻴﺭﺍﻗﺏ ﺸﺨﺹ ﻜﺴﻭﻑ ﺍﻟﺸﻤﺱ ﺍﻟﻤﻤﺜل ﺒـ ﺍﻟﺸﻜل ﺍﻟﻤﺭﺍﻗﺏ ﻤﻭﺠﻭﺩ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ، Tﺍﻟﻨﻘﻁﺔ) Sﻤﺭﻜﺯ ﺍﻟﺸﻤﺱ(ﻭﺍﻟﻨﻘﻁﺔ ) Lﻤﺭﻜﺯ ﺍﻟﻘﻤﺭ( ﻭﺍﻟﻨﻘﻁ T, L , S :ﻋﻠﻰ ﺇﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ.
ﺍﻟﻘﻁﺭ] [ OSﻟﻠﺸﻤﺱ ﻫﻭ 695 000 km ﻗﻁﺭ] [ LUﺍﻟﻘﻤﺭ ﻫﻭ1 736 km ﺍﻟﻤﺴﺎﻓﺔ STﻫﻲ 150ﻤﻠﻴﻭﻥ ﻜﻴﻠﻭﻤﺘﺭ. * ﺍﺤﺴﺏ ﺍﻟﻤﺴﺎﻓﺔ LT: / 10ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) (BDﻭ ) (ACﻴﺘﻘﺎﻁﻌﺎﻥ ﻓﻲO ﺤﻴﺙOD=7; OB=5; OA = 6.5 ; OC=9.1 : * ﻫل ﺍﻟﺭﺒﺎﻋﻲ ABCDﺸﺒﻪ ﻤﻨﺤﺭﻑ. /1ﺤﺴﺎﺏ ﺍﻟﻁﻭﻟﻴﻥ AD :ﻭ DE ABCﻤﺜﻠﺙ ﻟﺩﻴﻨﺎ:ﻭ Eﻨﻘﻁﺔ ﻤﻥ ) (ABﻭ Dﻨﻘﻁﺔ ﻤﻥ )(AC ﻭ ) ) (ED) // (BCﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ(. ﺒﺘﻁﺒﻴﻕ ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ ﻨﺠﺩ: AC = AB = BC AD AE ED15 = 12 ﺃﻱ AC = AB ﻤﻥAD 7 AD AEﻭﻤﻨﻪ AD=8,75 BC = AB 18 = 12 ED AE DE 7 ﻭﻤﻨﻪDE =10,5 :
ﺍﻟﻘﺎﺌﻡ ﻓﻲA: /2ﺤﺴﺎﺏEB: ] [EBﻫﻭ ﻭﺘﺭ ﺍﻟﻤﺜﻠﺙ ABE ﺤﺴﺏ ﻓﻴﺘﺎﻏﻭ ﺭﺙ: EB2=AB2+AE2 EB2=122+52 EB2= 169 /3ﺤﺴﺎﺏ EB2= EF ,1E6D9:) (FCﻭ Eﻨﻘﻁﺔ ﻤﻥ )(FB ﻟﺩﻴﻨﺎ D :ﻨﻘﻁﺔ ﻤﻥ EB=13ﻭ )(BC) // (EDﺒﺘﻁﺒﻴﻕ ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙ FBCﻨﺠﺩ:(1)... FE = FD = ED FB FC BC ED=2 ; ED=AD - AE ED = 2 BC 7ﻨﻀﻊ FB = x+13 ; FB = FE + EB FE = xﻤﻥ ) (1ﻨﺠﺩ: FE = x ﻓﺘﺼﺒﺢ: FB x+137x = 2x + 26 ﺃﻱ : x = 2 x+13 7 =x 26 5x = 26 5 = EF 26 ﻭ ﻤﻨﻪ: 5 = FD 24 ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻨﺠﺩ: 5 /4ﻻ ﻴﻤﻜﻥ ﺭﺴﻡ ﻫﺫﺍ ﺍﻟﺸﻜل ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻌﺎﻤﺔ ﻷﻥ:ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) (BDﻭ ) (CEﻤﺘﻭﺍﺯﻴﺎﻥ ﻓﺈﻥ ﺤﺴﺏ ﻁﺎﻟﻴﺱ:ﻟﻜﻥAD = AB : AD = AB AE AC
ﺇﺫﺍ ﻴﻜﻭﻥAC = AE : ﻭ ﻫﺫﻩ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻏﻴﺭ ﻤﺤﻘﻘﺔ ﻓﻲ ﻤﺜﻠﺙ ﻜﻴﻔﻲ . ACE /5ﻹﺜﺒﺎﺕ ﺃﻥ (CG) // (BF) : AC = AG ﻴﻜﻔﻲ ﺃﻥ ﻨﺒﻴﻥ ﺃﻥ : AB AF ﻓﻲ ﺍﻟﻤﺜﻠﺙ ABF (1ﻟﺩﻴﻨﺎ :ﻓﻲ ﺍﻟﻤﺜﻠﺙ ABD Cﻨﻘﻁﺔ ﻤﻥ )(AB ﻭ Eﻨﻘﻁﺔ ﻤﻥ )(AD ﻭ ).(CE)//(BD (1)... AC = AE ﺒﺘﻁﺒﻴﻕ ﻁﺎﻟﻴﺱ ﻨﺠﺩ: AB AD (2ﻟﺩﻴﻨﺎ ﻓﻲ ﺍﻟﻤﺜﻠﺙADF Gﻨﻘﻁﺔ ﻤﻥ )(AF ﻭ Eﻨﻘﻁﺔ ﻤﻥ ) (ADﻭ )(DF)//(EG (2).... AE = AG ﺒﺘﻁﺒﻴﻕ ﻁﺎﻟﻴﺱ ﻨﺠﺩ: AD AF AC = AG ﻤﻥ ) (1ﻭ ) (2ﻨﺠﺩ: AB AF ﺇﺫﺍ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ABFAC = AG Cﻨﻘﻁﺔ ﻤﻥ ) (ABﻭ Gﻨﻘﻁﺔ ﻤﻥ ) (AFﻭ ﻟﺩﻴﻨﺎ:AB AFﺒﺘﻁﺒﻴﻕ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻲ ﻟﻁﺎﻟﻴﺱ ﻨﺴﺘﻨﺘﺞ ﺃﻥ (BF)//(CG) : /6ﺃﺜﺒﺎﺕ ﺃﻥ OA2 = OM × ON : ﻟﺩﻴﻨﺎ A:ﻨﻘﻁﺔ ﻤﻥ ) (OMﻭ Cﻨﻘﻁﺔ ﻤﻥ )(AB ﻭ )(AC)//(MB …).(1 OM = OB ﺤﺴﺏ ﻁﺎﻟﻴﺱ: OA OC Aﻨﻘﻁﺔ ﻤﻥ ) (ONﻭ Bﻨﻘﻁﺔ ﻤﻥ )(OC ﻟﺩﻴﻨﺎ: ﻭ )(AB)//(CN
(2)... OA = OB ﺤﺴﺏ ﻁﺎﻟﻴﺱ : ON OC OM = OA ) (2ﻨﺠﺩ : ﻭ )1(1 ﻤﻥ OA ON ﻭ ﻤﻨﻪ OA2 = OM × ON : C ﻓﻲ A)ACCDﻤDﺘﺴﺎ=ﻭﻱCﺍﻟ)ﺴDﺎﻗAﻴﻥ ﻟﻜﻲ ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺜﻠﺙ /7 ﻴﻜﻔﻲ ﺃﻥ ﻨﺒﻴﻥ ﺃﻥ:ﻟـ BA) C BA) D AA) BC):ﻤ(ﻥDﻭﺍﻟ)ﻤ=CﻌﻁDﻴ(ﺎ Dﻤ)ﺕAﺘﻭﺍ)Bﺯ.ﻴﺎKﻥAﺍ[ﻟ ﺍﺯﻟﺍﻤﻭﻨﻴﺘﺎﺼﻥﻑCﺍﻟ)ﺩﺍDﺨﻠAﻲﻭ ﻟﺩﻴﻨﺎ ﺃﻱ : ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ DA) C = ﺍ:ﻟﺩﺍﺨCﻠ )ﻲA.D ﻤﺘﻘﺎﻴﺴﺘﺎﻥ ﺒﺎﻟﺘﺒﺎﺩل ﻤﻥ ﺃ( ﻭ ﺏ( ﻨﺠﺩ ﻭ ﻤﻨﻪ :ﺍﻟﻤﺜﻠﺙ ACDﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﻲC: AB = KB * ﺇﺜﺒﺎﺕ ﺃﻥ : AC KCﻟﺩﻴﻨﺎ :ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ) (ADﻭ ) (BCﻤﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ K. ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ) (ABﻭ ) (CDﻤﺘﻭﺍﺯﻴﺎﻥ(1)... AB = KB ﺒﺎﺴﺘﻌﻤﺎل ﻨﻅﺭﻴﺔ ﻁﺎﻟﻴﺱ ﻨﺠﺩ : CD KC ﻟﻜﻥ :ﺍﻟﻤﺜﻠﺙ DACﻤﺘﺴﺎﻭﻱ ﺍﻟﺴﺎﻗﻴﻥ ﻓﻲ CKB = AB ﻨﺠﺩ: ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ)(1 ﺇﺫﻥ CD = AC:KC AC /8ﺇﺜﺒﺎﺕ ﺃﻥ J,I,K :ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﻭ ﺤﺎﻤﻠﻬﺎ ﻴﻭﺍﺯﻱ).(AB * ﻓﻲ ﺍﻟﻤﺜﻠﺙ ACDﺍﻟﻤﺴﺘﻘﻴﻡ )(IK ﻴﺸﻤل IﻭKﻤﻨﺘﺼﻔﺎ ] [ADﻭ][AC ﻓﻬﻭ ﻴﻭﺍﺯﻱ ﺍﻟﺤﺎﻤل )(DC * ﺃﻴﻀﺎ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ACBﺍﻟﻤﺴﺘﻘﻴﻡ )(KJ ﻴﺸﻤل Kﻭ Jﻤﻨﺘﺼﻔﺎ ] [ACﻭ][BC ﻓﻬﻭ ﻴﻭﺍﺯﻱ ﺍﻟﺤﺎﻤل )(AB * ﻟﻜﻥ ABCDﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻗﺎﻋﺩﺘﺎﻩ ] [ABﻭ ][DCﺇﺫﻥ (DC)//(AB) :ﻭ ) (DC) //(IKﻭ )(KJ)//(AB
ﻭ ﻤﻨﻪ (KG)// (KI) :ﻟﻜﻥ Kﻨﻘﻁﺔ ﻤﻥ)(KIﻭ)(KJﻭ ﻤﻨﻪ :ﺍﻟﻨﻘﻁ I,J,Kﻋﻠﻰ ﺇﺴﺘﻘﺎﻤﺔ ﻭﺍﺤﺩﺓ ﺤﺎﻤﻠﻬﺎ ﻴﻭﺍﺯﻱ )(AB ﺤﺴﺎﺏ IJﺒﺩﻻﻟﺔ ABﻭCDﻟﺩﻴﻨﺎ K :ﻨﻘﻁﺔ ﻤﻥ ) (IJﺇﺫﻥ(1)....IJ = IK + KJ : Iﻭ Kﻤﻨﺘﺼﻔﺎ] [ADﻭ ][CB (2)... = IK 1 DC ﺇﺫﻥ : 2 ﺃﻴﻀﺎ K :ﻭ Jﻤﻨﺘﺼﻔﺎ ] [CAﻭ ][CB (3).... = KJ 1 AB ﺇﺫﻥ: 2IJ = 1 DC + 1 AB ﻤﻥ ) (1ﻭ) (2ﻭ) (3ﻨﺠﺩ: 2 2 IJ = 1 ( AB ﻭﻤﻨﻪ + DC ) : 2 /9ﺇﺜﺒﺎﺕ ﺃﻥ .(AB)//(MN) : ADIﻤﺜﻠﺙ. ﻟﺩﻴﻨﺎ: Bﻨﻘﻁﺔ ﻤﻥ ) (IDﻭ Nﻨﻘﻁﺔ ﻤﻥ )(AIﻭ )) (AD)//(BNﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ( .(1)... IN = IB ﺤﺴﺏ ﻁﺎﻟﻴﺱ: IA ID ﻟﺩﻴﻨﺎ AMI : :ﻤﺜﻠﺙ. Cﻨﻘﻁﺔ ﻤﻥ ) (IAﻭ Bﻨﻘﻁﺔ ﻤﻥ )(BI ﻭ )) (AM)//(BCﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ( .(2)... IM = IA ﺤﺴﺏ ﻁﺎﻟﻴﺱ: IB IC ABIﻤﺜﻠﺙ. ﻟﺩﻴﻨﺎ: : Cﻨﻘﻁﺔ ﻤﻥ ) (IAﻭ Dﻨﻘﻁﺔ ﻤﻥ )(BIﻭ )) (AB)//(DCﻗﺎﻋﺩﺘﺎ ﺸﺒﻪ ﺍﻟﻤﻨﺤﺭﻑ( .(3)... IB = IA ﺤﺴﺏ ﻁﺎﻟﻴﺱ: ID IC
.(4)... IN = IM ﺇﺫﻥ :ﻤﻥ ) (1ﻭ ) (2ﻭ ) (3ﻨﺠﺩ: IA IB ﻭ ﻤﻨﻪ :ﻓﻲ ﺍﻟﻤﺜﻠﺙ ABI Mﻨﻘﻁﺔ ﻤﻥ ) (BIﻭ Nﻨﻘﻁﺔ ﻤﻥ )(AI IN = IM ﻭ IA IBﺇﺫﻥ :ﺤﺴﺏ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻁﺎﻟﻴﺱ(AB)//(MN) : /10ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﻓﺔ : ﻟﺩﻴﻨﺎ: TSOﻤﺜﻠﺙ. Uﻨﻘﻁﺔ ﻤﻥ ) (TOﻭ Lﻨﻘﻁﺔ ﻤﻥ )(STﻭ ) ) (SO)//(LUﻤﺴﺘﻘﻴﻤﺎﻥ ﻋﻤﻭﺩﻴﺎﻥ ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﻤﺴﺘﻘﻴﻡ( TL = UL ﺤﺴﺏ ﻁﺎﻟﻴﺱ: TS OS = TL 6 1736 ﺃﻱ: 3 150×10 695×10 =TL 150×106×1736 ﺃﻱ : 3 695×10 ﻭ ﻤﻨﻪ . TL = 374676 ,26 km : /11ﻹﺜﺒﺎﺕ ﺃﻥ ﺍﻟﺭﺒﺎﻋﻲ ABCDﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻴﻜﻔﻲ ﺃﻥ ﻨﺒﻴﻥ ﺃﻥ ﻗﺎﻋﺩﺘﺎﻩ ] [ABﻭ ] [CDﻤﺘﻭﺍﺯﻴﺘﺎﻥ. OB = 5 = 0 ,71 ﻟﺩﻴﻨﺎ : OD 7 OA = 6,5 = 0 ,71 ﻭ: OC 9,1 ﺇﺫﻥ :ﻓﻲ ﺍﻟﻤﺜﻠﺙ AOB Cﻨﻘﻁﺔ ﻤﻥ ) (OAﻭ Dﻨﻘﻁﺔ ﻤﻥ )(OB OA = OB = 0 ,71 ﻭ OC ODﻭﻤﻨﻪ :ﺤﺴﺏ ﺍﻟﻨﻅﺭﻴﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻁﺎﻟﻴﺱ ﻋﻠﻰ ﺍﻟﻤﺜﻠﺙOBA )(DC)// (AB ﻭ ﻤﻨﻪ ABCD :ﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻗﺎﻋﺩﺘﺎﻩ ][ABﻭ ].[DC
ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ ﻟﻌﺩﺩ ﻤﻭﺠﺏ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ * /ﺘﻌﺭﻴﻑ ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ ﻟﻌﺩﺩ ﻤﻭﺠﺏ* /ﻤﻌﺭﻓﺔ ﻗﻭﺍﻋﺩ ﺍﻟﺤﺴﺎﺏ ﻋﻠﻰ ﺍﻟﺠﺫﻭﺭ ﺍﻟﺘﺭﺒﻴﻌﻴﺔ ﻭ ﺍﺴﺘﻌﻤﺎﻟﻬﺎ ﻟﺘﺒﺴﻴﻁ ﻋﺒﺎﺭﺍﺕ ﺘﺘﻀﻤﻥ ﺠﺫﻭﺭﺍ ﺘﺭﺒﻴﻌﻴﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ .1ﺘﻌﺎﺭﻴﻑ .2ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻟﺔ .3ﺍﻟﺘﻤﺎﺭﻴﻥ .4ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ
/1ﺘﻌﺎﺭﻴﻑ : ﻟﻴﻜﻦ aﻋﺪدا ﻣﻮﺟﺒﺎ .اﻟﻌﺪد اﻟﻤﻮﺟﺐ اﻟﺬي ﻣﺮﺏﻌﻪ aیﺴﻤﻰ اﻟﺠﺬر اﻟﺘﺮﺏﻴﻌﻲ ﻧﺮﻣﺰ ﻟﻪ ﺏـ a * 0 =0 * ﺍﻟﻌﺩﺩ ﺍﻟﺴﺎﻟﺏ ﻟﻴﺱ ﻟﻪ ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ . ﺃﻤﺜﻠﺔ : * 52=25ﺇﺫﻥ25 =5 : * 3ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﻭﺠﺏ ﺍﻟﺫﻱ ﻨﺭﺒﻌﻪ ﻟﻨﺤﺼل ﻋﻠﻰ :3 ( 3 )2=3 . 2ﺨﻭﺍﺹ : a bﻋﺩﺩﺍﻥ ﻤﻭﺠﺒﺎﻥ ≠ =a a (a a )2 b bﻭ b≠ 0 = . ; ab = a b28 =2 7 ، = 28 = 4 x 7 ، 28 ﺍﻤﺜﻠﺔ: = 4x7 72
.3ﺍﻟﻤﻌﺎﺩﻻﺕ ﻤﻥ ﺍﻟﺸﻜل x2 = a : ﺨﺎﺼﻴﺔ:ﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ x2 = aﻟﻬﺎ ﺤﻼﻥ: ﻟﻴﻜﻥ ﺍﻟﻌﺩﺩ a * /ﺇﺩﺍ ﻜﺎﻥ a >0 aﻭ- a*‘ /ﺩﺍ ﻜﺎﻥ a = 0 :ﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ x2 = aﻟﻬﺎ ﺤل ﻭﺤﻴﺩﻫﻭ0:* /ﺇﺫﺍ ﻜﺎﻥ a<0 :ﻓﺈﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ x2 = aﻟﻴﺱ ﻟﻬﺎ ﺤل0 ﺃﻤﺜﻠﺔ :* ﺍﻟﻤﻌﺎﺩﻟﺔ x2 =7ﻟﻬﺎ ﺤﻼﻥ - 7 :ﻭ 7 * ﺍﻟﻤﻌﺎﺩﻟﺔ x2 = -4ﻟﻴﺱ ﻟﻬﺎ ﺤل .
ﺗﻤﺎرﻳﻦ ﻣﺤﻠﻮﻟﺔ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :1 ) ﺍﺴﺘﻌﻤﺎل ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺸﻬﻴﺭﺓ ( ﺒﻴﻥ ﺍﻥc = (2+ 3 )2 + (1-2 3 ) 2 : ) d= (2- 3 )x (2+ 3 ﻭ: ﻫﻤﺎ ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ . ﺍﻟﺤل : ﻟﺩﻴﻨﺎ c= (2+ 2 3 )2 + (1-2 3 )2 : ) = (22 + 2x 2 3 +( 3 )2 ) + (12-2x2 3 + (2 3 )2 = 4 + 4 3 + 3 + 1 -4 3 + 12 c=20 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :2 ﺍﺴﺘﻌﻤﺎل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻓﻲ ﺍﻟﻬﻨﺩﺴﺔx 2 = a ﻋﻠﺒﺔ ﺃﺴﻁﻭﺍﻨﻴﺔ ﺍﻟﺸﻜل ﺤﺠﻤﻬﺎ 900 cm ﺍﺭﺘﻔﺎﻋﻬﺎ 11 cm * ﺍﺤﺴﺏ ﻨﺼﻑ ﻗﻁﺭ ﻗﺎﻋﺩﺓ ﺍﻟﻌﻠﺒﺔ * ﺃﻋﻁ ﻤﺩﻭﺭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ ﺇﻟﻰ mm* /ﻧﻌﻤﻞ ﺏﺎﺱﺘﻌﻤﺎل اﻟﻘﻴﻤﺔ اﻟﺘﺎﻣﺔ دون * R/یﻤﺜﻞ ﻧﺼﻒ ﻗﻄﺮ اﻟﻌﻠﺒﺔ ﺍﻟﺤل: ﺕﻌﻮیﺾ ﺏﻘﻴﻤﺘﻬﺎ اﻟﻤﻘﺮﺏﺔπ. π R 2 x 11= 900= R2 900 */اﻟﻤﻌﺎدﻟﺔ R2 = 900 11π 11π *R /ﻃﻮل أدن اﻟﺤﻞ اﻟﻤﻮﺟﺐ هﻮ اﻟﻤﻨﺎﺱﺐ- 900 ﻟﻬﺎ ﺡﻼن 11π ﻧﺼﻒ ﻗﻄﺮ اﻟﻌﻠﺒﺔ هﻮ: 900 و 900 cm 11π 11π اﻟﻤﺪور إﻟﻰ mmهﻮ: 1,5 mm
ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :3 2 ﻤﻌﺭﻓﺔ ﻭ ﺍﺴﺘﻌﻤﺎل ﺍﻟﻜﺘﺎﺒﺔ ﻤﻥ ﺍﻟﺸﻜل a b ﺍﻟﻁﺭﻴﻘﺔ: ﻋﻨﺩﻤﺎ ﻴﻁﻠﺏ ﻤﻨﺎ ﻜﺘﺎﺒﺔ 98ﻋﻠﻰ ﺸﻜل a b *ﻋﻠﻴﻨﺎ ﺃﻥ ﻨﻜﺘﺏ ﺍﻟﻌﺩﺩ 98ﻋﻠﻰ ﺸﻜل ﺠﺩﺍﺀ ﻤﺭﺒﻊ ﺘﺎﻡ ) (... 64,49,36,25,16,9,4ﺒﻌﺩﺩ ﻁﺒﻴﻌﻲ.*ﺃﻜﺘﺏ ﻋﻠﻰ ﺸﻜل a bﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺘﺎﻟﻴﺔ ﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻭ bﺃﺼﻐﺭ ﻋﺩﺩ ﻤﻤﻜﻥ. 98ﻭ 50ﻭ . 50 + 98 ﺍﻟﺤل: ﻧﻜﺘﺐ 50= 25x2 = 50 2 = 98ﺡﻴﺚ 25هﻮ أآﺒﺮ ﻣﺮﺏﻊ ﺕﺎم 25x2 = 5 x2 یﻘﺴﻢ 50 =5 2 49x2 = 7 2 . 50 + 98 = 5 2 + 7 2 =12 2ﻨﺴﺘﺨﺭﺝ 2ﻜﻌﺎﻤل ﻤﺸﺘﺭﻙ 5 2 + 7 2 = (7+5) 2 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :4 ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﺍﻟﺠﺫﻭﺭ ﺍﻟﺘﺭﺒﻴﻌﻴﺔ. . 8.1 ﻭ * ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ2 x 18 : 0.1 . 2 ﻨﺎﻁﻕ: ﻋﺩﺩ ﻤﻘﺎﻤﻪ ﻜﺴﺭ ﺸﻜل ﻋﻠﻰ ﺃﻜﺘﺏ * 3
ﻧﺴﺘﻌﻤﻞ اﻟﻌﻼﻗﺔ ﺍﻟﺤـل:ab = a b 2 x 18 = 2x18 /1 = 36 =6 ﻧﺴﺘﻌﻤﻞ اﻟﻌﻼﻗﺔ = 8.1 8.1 = 81 0.1 0.1b≠ 0 و a = a b b =9 ﻧﺴﺘﻌﻤﻞ اﻟﻌﻼﻗﺔ: =2 2x 3 23 3 3x 3 33x 3 =3 و a = ka = b kb
ﺍﻟﺘﻤﺎﺭﻴﻥ /1ﺃﻋﻁ -ﻤﺭﺒﻊ -ﻤﻀﺎﻋﻑ – ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ – ﺍﻟﻨﺼﻑ ﻟﻜل ﻤﻥ ﺩ.10-2/ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺘﺎﻟﻴﺔ )ﺍﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ(. ﺃ 25 /ﺏ 102 /ﺠـ 0.006/ /2ﺍﺤﺴﺏ ﺒﺩﻭﻥ ﺍﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ: 25 ﺩ/ ﺠـ0.09 / ﺃ 121 /ﺏ6400 / 16 /3ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:A= 3 2 + 2 2 - 4 2B= 11 3 - 3 3 + 4 3 /4ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:A = 3 2 - 5 3 + 2 +2 3B = 5 5 - 3 3 +2 3 -2 5 ABC /5ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Aﻓﻴﻪ CA= 3cm BA= 4 cm ﺍﺤﺴﺏ ﻁﻭل ﺍﻟﻀﻠﻊBC : ABCD /6ﻤﺴﺘﻁﻴل ﺤﻴﺙ AB = 5 BC = 2+ 5 * ﺃﺤﺴﺏ ﻤﺤﻴﻁ ﻫﺫﺍ ﺍﻟﻤﺴﺘﻁﻴل . * ﺃﺤﺴﺏ ﻤﺴﺎﺤﺔ ﻫﺫﺍ ﺍﻟﻤﺴﺘﻁﻴل. /7ﺃﻨﺸﺭ ﻭ ﺒﺴﻁ ﻤﺎﻴﻠﻲ:)B= 2 ( 2 +5 ) A=7(2+ 5D = ( 1- 7 ) ( 1 + 7 ) C = ( 2 - 3 )2 /8ﺃﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ:B = ( x 5 + 2) (x 5 - 2) A = (x + 2 )2 B = x2 -5 A = X2 – 4 /9ﺤﻠل ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ: /10ﻗﺭﺹ ﻤﺴﺎﺤﺘﻪ 15 cm2 * ﺍﺤﺴﺏ ﻨﺼﻑ ﻗﻁﺭﻩ. * ﺍﻋﻁ ﺍﻟﻤﺩﻭﺭ ﺇﻟﻰ mmﻟﻨﺼﻑ ﻗﻁﺭﻩ.
/11ﺃﻜﺘﺏ ﺒﺩﻭﻥ ﺭﻤﺯ ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ ﻤﺎﻴﻠﻲ:=B 0.7 x 70 A = 27 x 3 27 3 a bﺤﻴﺙ aﻋﺩﺩ ﺼﺤﻴﺢ ﻤﺎﻴﻠﻲ: ﺃﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل /12 B = 80 A = 72 /13ﺃﻜﺘﺏ 125 ، 720ﻋﻠﻰ ﺸﻜل a b* ﺍﺴﺘﻨﺘﺞ ﻜﺘﺎﺒﺔ ﻤﺒﺴﻁﺔ ﻟـA = 3 80 - 2 125 + 720 : /14ﻨﺴﻤﻲ ﻤﺴﺎﻓﺔ ﺍﻟﺘﻭﻗﻑ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﻤﻘﻁﻭﻋﺔ ﺃﺒﺘﺩﺍﺀﺍ ﻤﻥ ﺭﺅﻴﺔ ﺍﻟﺴﺎﺌﻕ ﻟﻠﺨﻁﺭ ﻭ ﻫﻲ ﺘﻨﻘﺴﻡ ﺇﻟﻰ ﻤﺴﺎﻓﺘﻴﻥ : * ﺍﻟﻤﺴﺎﻓﺔ) d(mﺍﻟﻤﻘﻁﻭﻋﺔ ﻓﻲ ﺯﻤﻥ ﺭﺩ ﻓﻌل ﺍﻟﺴﺎﺌﻕ ﻭﺍﻟﻤﻘﺩﺭﺓ ﺒﻭﺍﺤﺩ ﺜﺎﻨﻴﺔ. D= v2 x 1 * ﺍﻟﻤﺴﺎﻓﺔ) D(mﻟﻠﻜﺒﺢ ﻤﻌﻁﺎﺓ ﺒﺎﻟﻌﻼﻗﺔ 20f ﺤﻴﺙ v :ﻫﻲ ﺴﺭﻋﺔ ﺍﻟﺴﻴﺎﺭﺓ fﻤﻌﺎﻤل ﺇﺤﺘﻜﺎﻙ ﺍﻟﻌﺠﺎﻻﺕ ﻤﻊ ﺍﻟﻁﺭﻴﻕ ﻭ ﻫﻭ 0.7ﻓﻲ ﺤﺎﻟﺔ ﻁﺭﻴﻕ ﺠﺎﻑ ﻭ 0.4ﻓﻲ ﺤﺎﻟﺔ ﻁﺭﻴﻕ ﻤﺒﻠل. * ﺍﺤﺴﺏ ﻤﺴﺎﻓﺔ ﺘﻭﻗﻑ ﺴﻴﺎﺭﺓ ﺘﺴﻴﺭ ﺒﺴﺭﻋﺔ90 km/h : * ﻋﻠﻰ ﻁﺭﻴﻕ ﺠﺎﻑ * ﻋﻠﻰ ﻁﺭﻴﻕ ﻤﺒﻠل. /15ﺇﻟﻴﻙ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل ) ﺤﻴﺙ ﺍﻟﻘﻴﺎﺴﺎﺕ ﻏﻴﺭ ﺤﻘﻴﻘﻴﺔ( ABCDﻤﺭﺒﻊ ﻁﻭل ﻀﻠﻌﻪ ﻫﻭ . (cm) x EFCﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Cﺤﻴﺙ FC = 4 cm * ﺃﺤﺴﺏ ﺍﻟﻤﺴﺎﺤﺔ S1ﻟﻠﻤﺭﺒﻊ ABCDﺒﺩﻻﻟﺔX * ﺃﺤﺴﺏ S1ﻤﻥ ﺃﺠل )X=2+ 2ﺘﻌﻁﻰ ﺍﻟﻨﺘﻴﺠﺔ ﻋﻠﻰ ﺸﻜل a+b 2ﺤﻴﺙ b.aﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ -ﻨﻔﺭﺽ Xﺃﻜﺒﺭ ﻤﻥ 1 * ﻋﻠﻤﺎ ﺃﻥ BE=0.5cmﺃﺤﺴﺏ ﺒﺩﻻﻟﺔ Xﺍﻟﻤﺴﺎﺤﺔ S2ﻟﻠﻤﺜﻠﺙ EFC * ﻟﻨﺭﻤﺯ ﺒـ Sﻟﻤﺠﻤﻭﻉ ﺍﻟﻤﺴﺎﺤﺘﻴﻥ S1+S2ﺒﺩﻻﻟﺔ X * ﺘﺤﻘﻕ ﺃﻥ S = X2 + 2X - 1 -ﺃﺤﺴﺏ Sﻤﻥ ﺃﺠل )X=2+ 2ﺘﻌﻁﻰ ﺍﻟﻨﺘﻴﺠﺔ ﻋﻠﻰ ﺸﻜل a+bﺤﻴﺙ b.aﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ(
ﺡﻠﻮل اﻟﺘﻤﺎرﻳﻦ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل : ﻨﺼﻔﻪ ﺠﺫﺭﻩ ﺍﻟﺘﺭﺒﻴﻌﻲ ﻀﻌﻔﻪ ﻤﺭﺒﻌﻪ ﺍﻟﻌﺩﺩ 12.5 5 50 625 25 50 10 200 104 1020.0032 0.8 0.0128 0.00004096 0.00640.005 10-1 0.02 10-4 10-2 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ 2 * 121 = 11 = 11 * 6400 = 100x64 = 10 x 8 = 80 = 0.09 9 = 3 = 0.3 * 100 10 25 = 5 * 16 4 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ: ﺘﺒﺴﻴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ:A=3 2 +2 2 -4 2= 5 2-4 2= 2B= 11 3 - 3 3 + 4 3 =8 3 + 4 3 = 12 3 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ :ﺘﺒﺴﻴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ:A = 3 2 - 5 3 + 2 +2 3 =3 2 + 2 - 5 3 +2 3A = 4 2 -2 3B = 5 5 - 3 3 +2 3 -2 5= 3 5- 3 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺨﺎﻤﺱ: ﺤﺴﺎﺏ ﻁﻭل ﺍﻟﻀﻠﻊ BC ABCﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Aﺤﺴﺏ ﻓﻴﺘﺎﻏﻭﺭﺙ BC2 = AB2 + AC2
= BC BC2 = (4)2 + ( 3 )2 BC = 5cmﻻﻨﻪ ﻁﻭل BC2 = 16 + 9 BC2 = 25 ± 25 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺩﺱ: ABCDﻤﺴﺘﻁﻴل. * ﻤﺤﻴﻁ ﺍﻟﻤﺴﺘﻁﻴلP = 2(L + l) : ) P=2(2+ 5 + 5 ) P =2 (2 +2 5 P = 4+4 5 * ﻤﺴﺎﺤﺔ ﺍﻟﻤﺴﺘﻁﻴل.S=LxlS = ( 2 + 5 ) 5 = 2 5 + 5 x 5 = 2 5 + 25S =2 5 +5A = 7 ( 2 + 5 ) =14 + 7 5 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻊ:) B= 2 ( 2 +5) = 2 2 + 2 5 = 2 + 5 2 ﺍﻟﻨﺸﺭ ﻭ ﺍﻟﺘﺒﺴﻴﻁ:C = ( 2 - 3 )2 = (2)2 – 2(2 3 ) +( 3 )2 = 4 - 4 3 + 3C=7 -4 3 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻤﻥ:D = ( 1- 7 ) ( 1 + 7 ) = (1)2 - ( 7 )2 = 1 – 7 = -6. ﺍﻟﻨﺸﺭ ﻭ ﺍﻟﺘﺒﺴﻴﻁ:
A = (x + 2 )2 2 )2 ﻨﺴﺘﻌﻤل ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺸﻬﻴﺭﺓ ( = x2 +2(x 2 ) + (A+B)2 =A2+2AB+B2A = x2 +2 2 x +2 ﻧﺴﺘﻌﻤﻞ ( A )2= A ﻧﺴﺘﻌﻤﻞ اﻟﺠﺪاءات اﻟﺸﻬﻴﺮB = ( x 5 + 2) (x )5 - 2 (A+B)(A-B)=A2 - B2 = ( x 5 )2 - (2)2 (A B )2=A2 BB = 5 x2 - 4A = x2 – 4 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺘﺎﺴﻊ: = x2 – 22 ﺘﺤﻠﻴل ﺍﻟﻌﺒﺎﺭﺍﺕ )= (x –2 ) (x + 2 ﻧﺴﺘﻌﻤﻞ اﻟﺠﺪاءات اﻟﺸﻬﻴﺮةB = x2 -5 )A2-B2=(A-B ) (A+B = x2 - ( 5 )2 ﻧﺴﺘﻌﻤﻞ ( A )2= A ) (x - 5 ) ( x + 5 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻌﺎﺸﺭ: ﺤﺴﺎﺏ ﻨﺼﻑ ﺍﻟﻘﻁﺭ ﻨﻌﻠﻡ ﺃﻥ ﻤﺴﺎﺤﺔ ﺍﻟﻘﺭﺹ ﺘﻌﻁﻰ ﺒﺎﻟﻌﻼﻗﺔ: πS = R2 ﺇﺫﻥ π15 = R2 = R2 15 cm π
=R 15 π R = 2.2 cmA = 27 x 3 81 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺤﺎﺩﻱ ﻋﺸﺭ: ﺍﻟﻜﺘﺎﺒﺔ ﺒﺩﻭﻥ ﺭﻤﺯ ﺍﻟﺠﺫﺭ ﺍﻟﺘﺭﺒﻴﻌﻲ: = = 27x3 ﻧﺴﺘﻌﻤﻞ اﻟﻌﻼﻗﺔ:A = 9. ab = a b=B 0.7 x 70 27 3=B 0.7 x 70 = 49 = 49 ﻧﺴﺘﻌﻤﻞ اﻟﻌﻼﻗﺔ 27 3 81 81 و a a=B 9 ≠0 b = 7 b b ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ ﻋﺸﺭ: ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺍﻟﺸﻜل a b :ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺘﺎﻟﻴﺔ ﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ: A = 72 = 36x2 ﺒﺎﻟﺘﺤﻠﻴل ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل 2 ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺘﺎﻡ ﺜﻡ a b = ab= 36 x 2 = 6 x 2 =6 2B = 80 = 16x5 2= 16 x 5 = 4 5 a = a
ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ ﻋﺸﺭ: * ﺍﻟﻜﺘﺎﺒﺔ ﻋﻠﻰ ﺸﻜل a b 2 125 + * ﺍﻟﻜﺘﺎﺒﺔ ﺍﻟﻤﺒﺴﻁﺔ125 = 25x5 = 5 x5 720125 = 5 5 2 720 = 144x5 = 12 x5 720 = 12 5 A = 3 80 - 2 A= 3(4 5 ) – 2 (5 5 ) + 12 5 A = 12 5 - 10 5 + 12 5 A = 14 5 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ ﻋﺸﺭ: ﻹﻴﺠﺎﺩ ﻤﺴﺎﻓﺔ ﺘﻭﻗﻑ ﺴﻴﺎﺭﺓ ﺒﺴﺭﻋﺔ90 km/h * ﻨﺤﻭل ﺍﻟﺴﺭﻋﺔ ﺇﻟﻰ ﺍﻟﻤﺘﺭ ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ: =V 90x1000 6300 V =25 m/s ﻋﻠﻰ ﺍﻟﻁﺭﻴﻕ ﺍﻟﺠﺎﻑ: * ﻤﺴﺎﻓﺔ ﺭﺩ ﺍﻟﻔﻌل ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ ﺍﻷﻭﻟﻰ ﻟﺭﺅﻴﺔ ﺍﻟﺨﻁﺭ: d=25 m * ﻤﺴﺎﻓﺔ ﺍﻟﺘﻭﻗﻑ ﻋﻠﻰ ﺍﻟﻁﺭﻴﻕ ﺍﻟﺠﺎﻑ:D= v2 x 1 20fD =(25)2 x 1 20x0.7D = 44 .64
ﻭ ﻤﻨﻪ ﻤﺴﺎﻓﺔ ﺍﻟﺘﻭﻗﻑ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻫﻲ: 25 + 44.64 = 69.64m ﻋﻠﻰ ﺍﻟﻁﺭﻴﻕ ﺍﻟﻤﺒﻠل: * ﻤﺴﺎﻓﺔ ﺭﺩ ﺍﻟﻔﻌل ﻓﻲ ﺍﻟﺜﺎﻨﻴﺔ ﺍﻷﻭﻟﻰ ﻟﺭﺅﻴﺔ ﺍﻟﺨﻁﺭ:D =25 m * ﻤﺴﺎﻓﺔ ﺍﻟﺘﻭﻗﻑ ﻋﻠﻰ ﺍﻟﻁﺭﻴﻕ ﺍﻟﻤﺒﻠل:D= v2 x 1 20fD =(25)2 x 1 = 78.125m 20x0.4 ﻭ ﻤﻨﻪ ﻤﺴﺎﻓﺔ ﺍﻟﺘﻭﻗﻑ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻫﻲ: 25 + 78.125 = 103.125 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺨﺎﻤﺱ ﺍﻟﻌﺸﺭ: * ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ Sﻟﻠﻤﺭﺒﻊ ABCDﺒﺩﻻﻟﺔ : X S = X2 * ﺤﺴﺎﺏ Sﻤﻥ ﺍﺠل X = 2 + 2 A = (2 + 2 )2 = (2)2 + 2 (2 2 ) + ( 2 ) 2 =4+4 2 + 2 S=6+4 2 * ﺤﺴﺎﺏ ﺍﻟﻤﺴﺎﺤﺔ ' Sﺒﺩﻻﻟﺔ xﻟﻠﻤﺜﻠﺙ . EFC 'S = 1 CF x CE 2
)= 14 (X – 0.5 ) = 2 (X – 0.5 S' = 2X - 1 * ﺍﻟﺘﺤﻘﻕ :ﻟﺩﻴﻨﺎ '5 = S + S = 1–X2 + 2X * ﺤﺴﺎﺏ Sﻤﻥ ﺍﺠل X = 2 + 2S = (2+ 2 ) 2 + 2 ( 2 + 2 ) - 1 ﻤﻥ ﺍﻟﺴﺅﺍل * /1ﻨﺠﺩ: = 6+4 2 +4+2 2 - 1 S = 6 2 +9
ﺍﻟﻤﺜﻠﺜﺎﺕ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ ﺘﻌﺭﻴﻑ ﺠﻴﺏ ﻭ ﻅل ﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ ﻓﻲ ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﺍﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ ﻟﺘﻌﻴﻴﻥ ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ،ﻟﻜل ﻤﻥ ﺠﻴﺏ ﻭ ﻅل ﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ ﺃﻭ ﻟﺘﻌﻴﻴﻥ ﻗﻴﺱ ﺯﺍﻭﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺠﻴﺏ ﺃﻭ ﺒﻅل.ﺇﻨﺸﺎﺀ ﻫﻨﺩﺴﻲ ) ﺒﺎﻟﻤﺴﻁﺭﺓ ﺍﻟﻐﻴﺭ ﻤﺩﺭﺠﺔ ﻭ ﺍﻟﻤﺩﻭﺭ( ﺯﺍﻭﻴﺔ ﺒﻤﻌﺭﻓﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻷﺤﺩﻯ ﻨﺴﺒﻬﺎ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻤﻌـﺭﻓﺔ ﺍﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺘﻴﻥ= S = 6 2 +9 : tan x ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ .1ﺍﻟﺩﺭﺱ .2ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻟﺔ .3ﺍﻟﺘﻤﺎﺭﻴﻥ .4ﺍﻟﻤﺴﺎﺌل .5ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭ ﺍﻟﻤﺴﺎﺌل
ﺍﻟﺩﺭﺱ ) cos- sin - tan .1ﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ(. ﻓﻲ ﻤﺜﻠﺙ ﻗﺎﺌﻡ : * cos/ﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ ﻴﺴﺎﻭﻱ ﺤﺎﺼل ﻗﺴﻤﺔ ﻁﻭل ﺍﻟﻀﻠﻊ ﺍﻟﻤﺠﺎﻭﺭ ﻟﻠﺯﺍﻭﻴﺔ ﻋﻠﻰ ﻁﻭل ﺍﻟﻭﺘﺭ. * sin/ﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ ﻴﺴﺎﻭﻱ ﺤﺎﺼل ﻗﺴﻤﺔ ﻁﻭل ﺍﻟﻀﻠﻊ ﺍﻟﻤﻘﺎﺒل ﻟﻠﺯﺍﻭﻴﺔ ﻋﻠﻰ ﻁﻭل ﺍﻟﻭﺘﺭ.* tan/ﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ ﻴﺴﺎﻭﻱ ﺤﺎﺼل ﻗﺴﻤﺔ ﻁﻭل ﺍﻟﻀﻠﻊ ﺍﻟﻤﻘﺎﺒل ﻟﻠﺯﺍﻭﻴﺔ ﻋﻠﻰ ﻁﻭل ﺍﻟﻀﻠﻊ ﺍﻟﻤﺠﺎﻭﺭ ﻟﻠﺯﺍﻭﻴﺔ. ﻤﻥ ﺃﺠل ﺍﻟﻤﺜﻠﺙ ABCﺍﻟﻘﺎﺌﻡ ﻓﻲ : ACos ˆB = AB ˆsin B = AC = ˆtan B AC BC BC AB ﻤﻼﺤﻅـﺔ: cosﻭ sinﺯﺍﻭﻴﺔ ﻤﺤﺼﻭﺭﺓ ﺒﻴﻥ 0ﻭ .1 tanﺯﺍﻭﻴﺔ ﺤﺎﺩﺓ ﻫﻭ ﻋـــﺩﺩ ﻤـﻭﺠﺏ .2ﺭﺒﻊ ﺩﺍﺌﺭﺓ ﻨﺼﻑ ﻗﻁﺭﻫﺎ :1 ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ)(O,I,J ) (Cﺭﺒﻊ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ O ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ .1 ﺍﻟﻤﺴﺘﻘﻴﻡ) (ITﻤﻤﺎﺱ ل) (Cﻓﻲ.I *ﺨﻭﺍﺹ: Mﻨﻘﻁﺔ ﻤﻥ ﺭﺒﻊ ﺩﺍﺌﺭﺓ) X، (Cﻗﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ . IOˆ M
* ﺍﺤﺩﺜﻴﺎ Mﻫﻤﺎ).(cos x, sin x * tanxﻫﻭ ﻁﻭل ITﺤﻴﺙ Tﻫﻲ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ) (OMﻭ)(IT .3ﺍﺴﺘﻌﻤﺎﻻﺕ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ: ﺒﺎﺴﺘﻌﻤﺎل ﺍﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﺔ ﻨﺘﺒﻊ ﻤﺎ ﻴﻠﻲ:*ﻨﻜﺘﺏ ﻗﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ ﺜﻡ ﻨﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ ﺍﻟﻤﻨﺎﺴﺏ ) ( sin.tan.cos ﻭ tan 82° ﻟـ7sin 68° 1 ﺍﻟﻤﺩﻭﺭ ﺃﺤﺴﺏ ﻤﺜﺎل:1 100680 sin x 7= 6.490286982 ﺍﻟﺠﻭﺍﺏ ﻫﻭ: 7 sin 68° ≈ 6.49 *tan82°=……………./ ﺍﻟﺠﻭﺍﺏ ﻫﻭ: ……………=tan 82°* tan =x sin x .4ﻋﻼﻗﺎﺕ ﺤﺴﺎﺏ ﺍﻟﻤﺜﻠﺜﺎﺕ: cos x ﻓﻲ ﻤﺜﻠﺙ ﻗﺎﺌﻡ xﺘﻤﺜل ﻗﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ ﺍﻟﺤﺎﺩﺓ ﺨﺎﺼﻴﺔ: 22* cos x + sinx = 1
ﺗﻤﺎرﻳﻦ ﻣﺤﻠﻮﻟﺔ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :1 EFGﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ Eﺤﻴﺙ FG=7.5m ، Fˆ = 59° ﻟﻠﻁﻭل.GE 1 ﺍﻟﻤﺩﻭﺭ ﺃﻋﻁ * 10 ﺍﻟﺤل EFG :ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ E ﻟﺩﻴﻨﺎ GEGE = 7.5sin59°,sin 59°= 7.5GE ≈ 6.4 cm ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :2 BCDﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ B ﺤﻴﺙCˆ =50°, BD = 7 : . ﻟﻠﻁﻭلCD 1 ﺍﻟﻤﺩﻭﺭ ﺃﻋﻁ * 10 ﺍﻟﺤل BDCﻤﺜﻠﺙ ﻗﺎﺌﻡ B=DC 7 , sin =50° 7 SIN 50° ﻟﺩﻴﻨﺎ DC DC=9.1cm ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :3 ABDﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ B ﺤﻴﺙ Aˆ =40° , AB = 9:
1 ﺃﻋﻁ ﺍﻟﻤﺩﻭﺭ 10ﻟﻠﻁﻭل . B ﺍﻟﺤل ABD :ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ .B BDﻟﺩﻴﻨﺎ BD =9.tan40°, tan 40°= 9 BD= 7.6 cm ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﻤﺤﻠﻭل :4 ABCﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ A ﺤﻴﺙ AB=2.6m , BC= 4m : ﻟﻘﻴﺱ ﺍﻟﺯﺍﻭﻴﺔ ˆC 1 *( ﺃﻋﻁ ﺍﻟﻤﺩﻭﺭ 10 ﺍﻟﺤل ABCﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ AˆC = nd sin 0.65 , sin ˆC = 2.6 ﻟﺩﻴﻨﺎ 4 2 Cˆ ≈ 40.5°
Search