Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülü Limit ve Türev

AYT Matematik Ders İşleyiş Modülü Limit ve Türev

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-22 09:23:23

Description: AYT Matematik Ders İşleyiş Modülü Limit ve Türev

Search

Read the Text Version

5ÑSFW\"MNB,VSBMMBSŽ TEST - 4 1. f ( x ) = ax3 + bx2 +DY+ d , f ' ( 1 ) = 1 ve f '' ( 1 ) = 2 5. f ( x ) = ( x - 1 ) ( x - 2 ) ( x - 3 ) … ( x - 12 ) PMEVôVOBHÌSF B-DGBSLŽOŽOFöJUJLBÀUŽS  PMEVôVOBHÌSF Gh  JGBEFTJOJOEFôFSJLBÀUŽS A) - #  $  %  &  A) - # - $ - 4!  %  &  6. f^ x h = x PMEVóVOBHËSF  x+3 2. f ( x ) = 5 + 2 x lim f ^ 4 + h h- f^ 4 h h\"0 h  PMEVôVOBHÌSF Gh  JGBEFTJOJOFöJUJLBÀUŽS MJNJUJOJOFöJUJLBÀUŽS A) - 1  # - 1  $  1  %  1 1 A) 4  #  2 $  1  %  4 E) 1 E) 5 5 5 25 25 3 12 16 12 6 3. f ( x ) = ( x - 2 ) 20 . ( x + 1 ) 10 7. f^ x h = 1 PMEVóVOBHËSF  PMEVôVOBHÌSF Ghh  + f' ( - UPQMBNŽOŽOFöJUJ 3 x2 - 2x + 5 LBÀUŽS lim f^ 3 + h h- f^ 3 - h h A) - # - $  %  &  h\"0 h MJNJUJOJOFöJUJLBÀUŽS A) - 1  # - 1  $  %  2 E) 4 6 12 3 3 4. f ( x ) = ( 3x + 1 ) 20 8. f^ x h = x + 1 fonksiyonu veriliyor.  PMEVôVOBHÌSF Ghh  JGBEFTJOJOFöJUJLBÀUŽS x+9 \"  #  $  Buna göre Gh  LBÀUŽS A) 16  #  8  $  8  %  4  %  &  E) 4 27 81 27 81 27 1. C 2. D 3. C 4. \" 49 5. \" 6. D 7. \" 8. &

TEST - 5 5ÑSFW\"MNB,VSBMMBSŽ 1. y = P ( x ) polinomu 5. f^ x h = x + 2 fonksiyonu veriliyor. P' ( x ) + P ( x ) = x2+ 3x + x2 - 4  FõJUMJóJOJTBóMŽZPS  #VOBHÌSF 1  LBÀUŽS Buna HÌSF Gh  LBÀUŽS A) - #  $ - 1  %  1 E) 0 44 \"  #  $  %  &  2. f^ x h = x2 3 x2 - 1 + x. x2 + 16 6. f^ x h = x2 - 2x + 1 fonksiyonu veriliyor. fonksiyonu veriliyor. x2 + 4x + k  #VOBHÌSF Gh  LBÀUŽS f' ( 0 ) = -PMEVóVOBHËSF QP[JUJGLHFSÀFLTBZŽTŽ LBÀUŽS \"  #  $  %  &  \"  #  $  %  &  7. P ( x ) = 4 ( x - 1 ) + Y- 1 )2 + 4 ( x - 1 )3+ ( x - 1)4 3. f^ x h = x - 1 fonksiyonu veriliyor. polinomu veriliyor. x+1 Buna göre, lim P^ 2 + 5h h - P^ 2 h LBÀUŽS d2 f^ x h h\"0 2h Buna göre, dx2 EFôFSJLBÀUŽS \"  #  $  %  &  x=0 A) - # - $ - % 1 E) 4 4. f ( x ) = ( x2 - 1 ) ( x + 1) ( x2 - 9 ) fonksiyonu verili- 8. fn( x ) = n . n x , n ` { 2, ..., 100}GPOLTJZPOMBSŽWF- yor. riliyor. Buna göre, f' ( - LBÀUŽS Buna göre, f'2^ 1 h + f3' ^ 1 h + . . . + f1' 00^ 1 hUPQMB- A) - # - $  %  &  NŽLBÀUŽS \"  #  $  %  &  1. & 2. & 3. \" 4. C 50 5. C 6. B 7. D 8. D

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 6. MODÜL ·/÷7&34÷5&:&)\";*3-*, 1\"3¦\"-*'0/,4÷:0/-\"3*/5·3&7÷ 1BSÀBMŽ'POLTJZPOMBSŽO5ÑSFWJ ÖRNEK 3 %m/*m f^ x h = * x2 + 1 x # 2 fonksiyonu veriliyor. f^ x h = * g1 ^ x h x≤a 4x x > 2 g2 ^ x h x>a Buna göre, f' ( 2+ ) ve f' ( 2– EFôFSMFSJWBSTBLBÀUŽS y = f ( x ) fonksiyonunda x = a apsisli nokta kri- lim f^ x h ≠ lim– f^ x h f, x = 2 için süreksiz, UJLOPLUBEŽS + x\"2 x\"2 lim f^ x h- f^ 2 h = lim 4x - 5 r f fonksiyonu x = a için süreksiz ise f'(a) + x-2 + x+2 x\"2 x\"2 yoktur. MJNJUJHFSÀFMTBZŽEFôJMEJSGh +) yoktur. f^ x h- f^ 2 h x 2 +1-5 x-2 r f fonksiyonu x = a için sürekli ise lim– x-2 = lim– = lim– ^x+2h= 4 x\"2 x\"2 x\"2 i) g1' (a) áH2'(a) ise f'(a) yoktur. f'(2-) = 4 ii) g '(a) = g '(a) ise f'(a) = g '(a) = g '(a) 1 2 1 2 olur. ÖRNEK 1 8<$5, f^ x h = * - x, x < 0 ise 4ÐSFLMJPMNBZBOOPLUBMBSEBTBóEBOWFTPMEBOUÐSFW x, x ≥ 0 ise BMŽOŽSLFOUÐSFWJOSFTNJUBOŽNŽLVMMBOŽMNBMŽEŽS'POL- TJZPO TÐSFLMJ PMEVóVOEB UÐSFW BMNB LVSBMŽ LVMMBOŽ- Gh  Gh  Gh m EFôFSMFSJOJIFTBQMBZŽOŽ[ labilir. lim+ f^ x h = lim– f^ x h = f^ 0 h sürekli x\"0 x\"0 -1 x < 0 ÖRNEK 4 f'^ x h = ( 1 x>0 Z x2 - 2x + 1 x≤0 ]] f'(0+) = 1, f'(0-) = -PMEVôVOEBOGh  ZPLUVSGh  = 1 ve f^ x h = [ 3x + 1 0 < x ≤ 1 foOLTJZPOVUBOŽNMBOŽZPS f'(-2) = -1 olur. ]] \\ x3 - 2 x >1 Buna göre, f ' ( 0– ) , f ' ( 0+ ) , f ' ( 1– ), f ' ( 1+ ) EFôFSMFSJ varsa bulunuz. ÖRNEK 2 Z lim f^ x h = lim– f^ x h = f^ 0 h sürekli ]] 3x + 5, x11 + x\"0 1 # x # 3 fonksiyonu veriliyor. x\"0 f^ x h = [ 4x + 1, x23 lim f^ x h ≠ lim– f^ x h = , x = 1 için süreksiz ]] \\ 2x - 3, + x\"1 x\"1 Buna göre, y =Gh Y GPOLTJZPOVOVZB[ŽOŽ[ x < 0 f' ( x ) = 2x - 2, f'(0) = -2 f^ x h ≠ lim– f^ x h X > 0 f' ( X ) = 3, f' ( 0+ ) = 3 lim+ x\"1 süreksiz, f'(1) yoktur. f^ x h- f^ 1 h x3 - 2 - 4 x-1 x\"1 f'^ 1+ h = lim+ = lim+ lim f^ x h ≠ lim f^ x h süreksiz, f'(3) yoktur. x\"1 x-1 x\"1 x\"3 ++ MJNJUHFSÀFMTBZŽEFôJMG'(1+) yoktur. x\"3 Z 3 , x<1 f'(1-) = f^ x h- f^ 1 h 3x + 1 - 4 ]] =3 f'^ x h = [ 4 , 1 < x < 3 lim = lim– ]] x-1 x-1 \\ + x\"1 x\"1 2 , x>3 f'(1-) = 3 3, x < 112351 3. f'(2+) yoktur, f'(2–) = 4 4. f'(0-) = –2, f'(0+) = 3, f'(1–) = 3, f(1+) yoktur. 1. f'(0) yoktur, f'(1) = 1, f'(–2) = –1 2. f(x) = 4, 1 < x < 3 2, x > 3

·/÷7&34÷5&:&)\";*3-*, 6. MODÜL -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 5 ÖRNEK 8 ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS f^ x h = * 2x2 + mx + 4 , x 1 1 fonksiyPOVUBOŽNMBOŽZPS y nx2 + 2x + 1 , x $ 1 y = f(x) x =BQTJTMJOPLUBTŽOEBZ= f ( x ) fonksiyonu türevli ol- EVóVOBHËSF NWFOHFSÀFMTBZŽMBSŽOŽCVMVOV[ 2 1 –5 –3 x lim– f^ x h = lim+ f^ x h = f^ 1 h O2 –1 x\"1 x\"1 2 +N+ 4 = n + 2 + 1 jN- n = -3 f ( 1+) = f ( 1-) y = f ( x ) fonksiyonu ( -    BSBMŽôŽOEBLJ LBÀ UBOF 2n + 2 = 4 +NjN- 2n = -2 UBNTBZŽEFôFSJJÀJOUÑSFWMJEJS m-n =-3 x = -TÑSFLTJ[PMEVôVJÀJO Y= -5 ve x =TBôTPMUÑ- 4n = - 1, m = - 4 SFWGBSLMŽPMEVôVJÀJOUÑSFWTJ[EJS m - 2n = - 2 11 -3 =UBOFUBNTBZŽEFôFSJJÀJOUÑSFWMJEJS .VUMBL%FôFS'POLTJZPOVOVO5ÑSFWJ ÖRNEK 6 TANIM f : R Z R ve f^ x h = * 2x2 + n, x # 1 f^ x h = g^ x h = * -g^ x h g^ x h < 0 g^ x h g^ x h $ 0 mx + 3, x 2 1 fonksiyonu x =BQTJTMJOPLUBTŽOEBUÑSFWMJPMEVôV- f'^ x h = * - g'^ x h g^ x h < 0 OBHÌSF NOÀBSQŽNŽLBÀUŽS g'^ x h g^ x h > 0 lim f^ x h = f^ 1 hPMNBMŽ g ( x ) = EFOLMFNJOJTBóMBZBOOPLUBMBSEBTBó- dan ve soldan türeve bakmak gerekir. x\"1 lim+ f^ x h = m + 3 _ bb x\"1 `m+3=2+n jN- n = -1 lim– f^ x h = 2 + n bb  (FOFMPMBSBLCVLËLMFSJO¿PLLBUMŽPMNBTŽEVSV- a NVOEBUÐSFWMFSJWBSEŽSWFTŽGŽSBFõJUUJS x\"1 f'^ x h = ( 4x x<1 m x > 1 x =EFFöJUMJLLVMMBOBCJMNFLJÀJO f'(1+) = f'(1-) f'(1+) =N= 4 = f'(1- N= 4, n = NO= 20 ÖRNEK 7 ÖRNEK 9 mx + n , x # 2 | |f ( x ) = x + 2 PMEVóVOBHËSF  f^ x h = * x2 + nx + 2 , fonksiyonu veriliyor. x22 f' ( 0 ), f' ( -3 ), f' ( -1 ), f' ( -2 ) EFôFSMFSJOJIFTBQMBZŽOŽ[ #VGPOLTJZPOVOUÑNSFFMTBZŽlardBUÑSFWMJPMBCJMNFTJ f^ x h = ( x+2 x $-2 JÀJO  N O JLJMJTJOFPMNBMŽEŽS  -x - 2 x <-2 lim+ f^ x h = lim– f^ x h = f^ 2 h 1 x >-2 f'^ x h = ( - 1 x <-2 x\"2 x\"2 4 + 2n + 2 = 2m + n & _ 2m - n = 6 x = -2 de türevsizdir. = 2x + n 44 + n = m & bb m-n=4 x>2 f'^ x h = ` m = 2, n = f'(0) = f'(-1) = 1 j f'(-3) = -1 x<2 f'^ x h m bb a - 2 5. 8 6. 20 7. (2, –2) 52 8. Nm Om 9. f'(0) = 1, f'(–1) = 1, f'(–3) = –1, f'(–2) = yoktur.

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 6. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 10 ÖRNEK 13 f ( x ) = | x2 - 2x | | | | |f ( x ) = x . x3 - 1 - 2x 1 - 3x2 PMEVôVOBHÌSF Gh   Gh   Gh   Gh  EFôFSMF PMEVôVOBHÌSF  G  LBÀUŽS SJOJIFTBQMBZŽOŽ[ x = 2 için x3-JGBEFTJQP[JUJG - 3x2 ifadesi negatiftir. Z x2 - 2x x<0 f(x) = x ( x3 - 1) - 2x ( 3x2 - 1) ] 0#x<2 f(x) = x4 - x - 6x3 + 2x ]] f'(x) = 4x3 - 18x2 + 1 f^ x h = [ - 2 + 2x x$2 f''(x) = 12x2 - 36x j f''(2) = -24 ] x x<0 ÖRNEK 14 0<x<2 ]] x2 - 2x | |f ( x ) = x2 + ax + 4 \\ x>2 ifadesi r x `3JÀJOUÑSFWMJPMEVôVOBHÌSF BHFSÀFM Z TBZŽMBSŽOŽOBMBCJMFDFôJEFôFSBSBMŽôŽOFEJS ]] 2x - 2 f'^ x h = [ - 2x + 2 f(x) = |x2 + ax + 4|GPOLTJZPOVUÑSFWMJPMNBTŽJÀJO ]] \\ 2x - 2 x2 + ax + 4 =EFOLMFNJOJOLÌLÑZPLUVSZBEBLÌLMFS ÀJGULBUPMNBMŽEŽS f'(0) ve f'(2) yoktur. D # 0 a2 - 16 # 0 j -4 # a # 4 j a ` [-4, 4] f'(1) = -2 + 2= 0 j f'(3) = 6 - 2 = 4 ÖRNEK 15 ÖRNEK 11 | |f ( x ) = ( x - 1) ( x + 2 ) ( x - 3 ) ( x + 3 )2 | |f ( x ) = x3 + x2 GPOLTJZPOVOVO UÑSFWTJ[ PMEVôV LBÀ GBSLMŽ Y EFôFSJ PMEVôVOBHÌSF Gh   Gh -1 ) , f ' ( 2 ) , f ' ( - EFôFS WBSEŽS MFSJOJIFTBQMBZŽOŽ[ y = f(x) fonksiyonu x = 1 ve x = 3 için türevsizdir. f^ x h = * -x3 - x2 x <-1 x = -2 ve x = - ÀPL LBUMŽ LÌLMFS PMEVôV JÀJO UÑSFWMFSJ x3 + x2 x $-1 WBSEŽSWFTŽGŽSEŽS5ÑSFWTJ[UBOFYEFôFSJWBSEŽS f'^ x h = * - 3x2 - 2x x <-1 x >-1 2 + 2x 3x f'(-1) yoktur. f'(0) = 0 ( 0 çift kat) f'(2) = 12 + 4 = 16 , f'(-2) = -12 + 4 = -8 ÖRNEK 12 ÖRNEK 16 | |f ( x ) = x . x B CWFDTŽGŽSEBOGBSLMŽUBNTBZŽMBSPMNBLÐ[FSF PMEVóVOBHËSF Gh   Gh  EFôFSMFSJOJIFTBQMBZŽOŽ[ | |f ( x ) = ( x + 1 ) a. xb . ( x + 2 )D fonksiyonu veriliyor. 2 x$0 2x x $ 0 f fonksiyonu r x `3JÀJOUÑSFWMJPMEVôVOBHÌSF  f'^ x h = ( a + b +DUPQMBNŽen azLBÀUŽS f^ x h = * x 2 - 2x x < 0 f, r x `3JÀJOUÑSFWMJJTFB C Dä - x<0 2+3+4=9 x f'(0+) = f'(0-) =PMEVôVOdan f'(0) = 0 f'(2) = 4 10. f'(0), f'(2) yoktur, f'(1) = 0, f'(3) = 4 11. f'(–1) yoktur, 53 13. –24 14. [–4, 4] 15. 2 16. 9 f'(0) = 0, f'(2) = 16, f'(–2) = –8 12. f'(2) = 4, f'(0) = 0

·/÷7&34÷5&:&)\";*3-*, 6. MODÜL -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ;JODJS,VSBMŽWF#JMFöLF'POLTJZPOVO5ÑSFWJ ÖRNEK 19 TANIM fl^ 2 h = 3 _ b gl^ 5 h = - 4 ` PMEVôVOBHÌSe, HPG h  LBÀUŽS  GWFHUÐSFWMFOFCJMJSGPOLTJZPOMBSŽJ¿JOZ= fog ( x ) b a GPOLTJZPOVOVOUÐSFWJOJIFTBQMBZBMŽN f^ 2 h = 5 fog^ x + h h - fog^ x h g' ( f ( 2 ) ) .f' ( 2 ) = g' ( 5 ) .f' ( 2 ) = -4.3 = -12 lim = ^ fog h'^ x h h\"0 h PMEVóVOVUÐSFWUBOŽNŽOEBOCJMJZPSV[ fog^ x + h h - fog^ x h g^ x + h h - g^ x h lim · h \" 0 g^ x + h h- g^ x h h ÖRNEK 20 g ( x ) = u için lim g (x + h) = lim u + k olur. f : R Z R ve f ( 3x + 1 ) = x3 +Y2 + 2x - 7 h\"0 k\"0 PMEVôVOBHÌSF Gh  LBÀUŽS f^ u + k h- f^ u h g^ x + h h- g^ x h f'(3x + 1) . 3 = 3x2+ 10x + 2 lim · lim 3f'(4) = 15 j f'(4) = 5 1k4\"404 4 4 2 4k4 4 4 4 3 h \" 0 h f'^ u h f' ( u ) . g' ( x ) = f' ( g ( x ) ) . g' ( x ) ( fog )' ( x ) = f' ( g ( x ) . g' ( x ) olur.  :VLBSŽEBV=H Y EËOÐõÐNÐZBQŽMEŽóŽOEB y = f^ u h 4 FMEFFEJMNJõUJ ÖRNEK 21 u = g^ v h f : R Z R,  5ÐSFWBMŽOEŽóŽOEBJTF f ( x ) = ( 3x - 1 )2 PMEVôVOB HÌSF  GPG h   LBÀUŽS dy = dy · du elde edilir. f' ( x ) = 2 ( 3x - 1 ) . 3 dx du dx ( fof )' ( 0 ) = f' ( f ( 0 ) ) . f' ( 0 ) = f'(1) . f'(0) = 12. (-6) = -72  &MEFFUUJóJNJ[CVLVSBMB[JODJSLVSBMŽBEŽWFSJMJS ÖRNEK 22 ÖRNEK 17 f ( x ) = x2 + 3x - 1 ve g ( x ) = x2 - 1 f ( x ) = x2 +Y H Y = 3x GPOLTJZPOMBSŽJÀJO GPH   h+Gh H   LBÀUŽS PMEVôVOBHÌSF Z= GPH h Y JOFöJUJOJCVMVOV[ ( fog ) ( 3 ) )' = 0 f' ( g ( 3 ) ) = f'^ 8 h = 2 8 + 3 = 4 2 + 3 (fog)' (x) = f'(g(x)) . g'(x) f'^ x h = 2x + 5 ^ 2^ 3x h + 5 h.3 4 g'^ x h = 3 18x + 15 ÖRNEK 18 ÖRNEK 23 fl^ 7 h = 3 _ g ( x ) = x. f 2 ( 2x + 1 ) ve f ( 3 ) = 1, f ' ( 3 ) = 2 b gl^ 5 h = 4 ` PMEVôuna göre, ( fog ) ' ( 5 ) kaçUŽS PMEVôVOBHÌSF Hh  LBÀUŽS b g^ 5 h = 7 a g'(x) = 1.f2(2x + 1) + x.2.f(2x + 1) . f'(2x + 1).2 g'(1) = f2(3) + 4f(3).f'(3) = 1 + 8 = 9 f' ( g ( 5 ) ) . g' ( 5 ) = f' ( 7 ) . g' ( 5 ) = 3.4 = 12 17. 18x + 15 18. 12 54 19. –12 20. 5 21. –72 22. 4 2 + 3 23. 9

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 6. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 24 ÖRNEK 27 f ( x ) + f f 1 p + f^ x2 - x + 1 h = x3 + 2x + 1 y = t2 - 2t _ xx bb FöJUMJôJOJTBôMBZBOZ= f ( x ) fonksiyonu için f' ( 1 ) kaç- t = u3 + 1 ` UŽS bb u= x a f'^ x h - 1 f'd 1 n + ^ 2x - 1 h f'^ x2 - x + 1 h = 2x - 1 dy ifadesininJOFöJUJOJCVMVOV[ PMEVôVOBHÌSF  dx 2x 2 xx f' ( 1 ) - f' ( 1 ) + f' ( 1 ) = 1j f' ( 1 ) = 1 dy · dt · du = ^ 2t - 2 h.3u2· 1 dt du dx 2x = 2 x x ·3x 1 = 2 3x 2x ÖRNEK 28 y = t2 + 2t _ bb ÖRNEK 25 t=3 u ` f^ x h- f^ 2 h u = 8x bb lim = 10 a x\"4 x-4 FöJUMJôJOJTBôMBZBOZ= f ( x ) için fh  LBÀUŽS dy PMEVôVOBHÌSF  dx JGBEFTJOJOFöJUJLBÀUŽS x=1 y = f^ x h için, dy = f'^ x h· 1 dx 2 x dy dt du = ^ 2t + 2 h. 1 –2/3 · · 3 u .8 dt du dx f'^ 2 h. 1 = 10 & f'^ 2 h = 40 4 1 x = 1, u = 8, t = 2 j 6· ·8 = 4 3.4 ÖRNEK 26 ÖRNEK 29 y = 1 , x = u , u = t2 G Y  QPMJOPN GPOLTJZPOV JÀJO EFSG Y  ä   PMEVôV- x na göre, dy dy I. y = f ( x ) çift fonksiyon ise y = f' ( x ) fonksiyonu tek fonksiyondur. PMEVóVOBHöre, dt JGBEFTJOJOEFôFSJJMF du II. y = f ( x ) tek fonksiyon ise y = f' ( x ) fonksiyonu çift t=1 u=4 fonksiyondur. ifadesiniOEFôFSJGBSLŽOŽONVUMBLEFôFSJLBÀUŽS III. y = f ( x ) tek fonksiyon ise f'' (- x ) = Ghh Y  FõJUMJóJ TBóMBOBCJMJS dy dx du 11 · · =- · ·2t JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS dx du dt 2 2u *G -x) = f ( x ) j -f'(-x) =Gh Y EPôSVEVS x **G -x ) = -f ( x ) j -f'(-x) = -Gh Y EPôSVEVS ***G Y =NYJÀJOGh Y =NWFGhh Y = 0 olur. 1 t = 1, u = 1, x = 1 j - 1· ·2 = - 1 f'' ( -x ) = f''(x) =FöJUMJôJTBôMBOŽS * **WF***EPôSVEVS 2 dy dx 11 · =- · dx du 2 2u x 11 1 1 15 u = 4, x = 2 j - · = - j - 1 + = 44 16 61 16 24. 1 25. 40 15 55 27. 3x2 28. 4 29. * **WF*** 26. 16

TEST - 6 1BSÀBMŽ'POLTJZPOMBSŽO5ÑSFWJ 1. f^ x h = * ax2 + 1 x $ 1 5. f^ x h = * x2 – 1 x ≤ 2 x +1 4x + b x 1 1 x>2 fonksiyonu türevlenebilir CJSGPOLTJZPOPMEVôV- fonksiyonu veriliyor. OBHÌSF BCÀBSQŽNŽLBÀUŽS Buna göre, f ' ( 2+ ) - f ' ( 2- LBÀUŽS A) - # - $  %  &  A) - # - $  %  &  2x – 1 x ≤ 1 6. f^ x h = * x2 + 3x fonksiyonu veriliyor. x >1 2. f^ x h = * ax2 + 4 x 1 1 Buna göre  BöBôŽEBLJ TFÀFOFLMFSEFO IBOHJTJ ZBOMŽöUŽS 3x4 + b x $ 1 A) f' ( 1+ ) =UJS fonksiyonu türevlenebilir CJSGPOLTJZPOPMEVôV- # y = f ( x ) fonksiyonu x = 0 için süreklidir. na göre, f'( - JGBEFTJOJOEFôFSJLBÀUŽS $ y = f ( x ) fonksiyonu x = 1 için türevsizdir. \"  #  $ - % -12 E) -24 % f ' ( 1- ) = 2 dir. E) f' ( 2+ ) = 7 dir. 3. \"öBôŽEBLJGPOLTJZPOMBSŽOIBOHJTJOJOY= 1 nok- 7. f : R Z R UBT ŽOEBUÑSFWJWBSEŽS 2x - 3 x < 1 f^ x h = * x3 + 4x x $ 1 A) f (x) = ' x + 1 x # 1  #  f (x) = * x2 + 1 x # 1 2x - 2 x 2 1 f^ x h- f^ 1 h x+1 x21 fonksiyonu için lim MJNitinin so- x \" 1+ 3x x # 1 x-1 nucVLBÀUŽS $  f (x) = * 0 x = 1  %  f (x) = ' x + 1 x 1 1 3x - 1 x $ 1 x+1 x21 E) f (x) = * x2 + 1 x 1 1 A) -1 #  $  2x x $ 1  %  & ZPLUVS Z ax2 Z x2 - 4 x<2 ] ] x = 2 fonksiyonu veriliyor. + x12 ] 3 8. f^ x h = [ 0 x>2 4. f^ x h = [ bx - 5 x=2 ]] x 2 + x ] \\ \\ 8x + c x 2 2 Buna göre, f' ( 2+ ) vaSTBLBÀUŽS fonksiyonu türevlenebilir bir fonksiyon olduôV- na göre, a + b +DUPQMBNŽLBÀUŽS \"  #  $  \"  #  $  %  &   %  & :PLUVS 1. \" 2. & 3. & 4. C 56 5. \" 6. \" 7. D 8. &

1BSÀBMŽ'POLTJZPOMBSŽO5ÑSFWJ TEST - 7 1. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 4. f ( x ) = | x2 - 4 | + | x2| y y = f(x)  GPOLTJZPOVLBÀYSFFMTBZŽTŽJÀJOUÑSFWTJ[EJS 5 \"  #  $  %  &  –7/2 O 5 x 6 –1 –1 Buna göre, f' ( -1- ) + f' ( 0 ) + f' ( 7+ UPQMBNŽOŽO 5. | | |f ( x ) = x2 - 1 + x - 2 | EFôFSJLBÀUŽS  GPOLTJZPOVLBÀYSFFMTBZŽTŽJÀJOUÑSFWTJ[EJS \"  #  $  %  &  \"  #  $  %  &  Z x2 - 3 x#1 ] 1<x<2 ] 2. f^ x h = [ - 2x x$2 ]] \\ x2 - 6x fonksiyonu veriliyor. Buna göre, 6. f ( x ) = | x | + | x - 1 | + | x - 2 | I. f fonksiyonu r x ` R için süreklidir. II. f' ( 2 ) = -2 dir.  GPOLTJZPOVOVOUÑSFWTJ[PMEVôVYEFôFSMFSJUPQ- III. f' ( 1+ ) = -2 dir. MBNŽLBÀUŽS IV. f' ( 3 ) =EŽS \"  #  $  %  &   JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS \"  #  $  %  &  f^ x h - 2x f^ x h > g^ x h | |7. f ( x ) = x3 - 8 - x2 f^ x h # g^ x h 3. h^ x h = * g^ x h.x2 fonksiyonu için f ' ( -1 ) +Gh  UPQMBNŽOŽOFöJ- UJLBÀUŽS  GPOLTJZPOVUBOŽNMBOŽZPS A) - # - $  %  &  Buna göre, g ( x ) = 2x + 3 ve f ( x ) = x2 fonk- TJZPOMBSŽ için lim h^ x h- h^ -1 h ifadesinin + x+1 x \" –1 TPOVDVWBSTBLBÀUŽS \" :PLUVS # - $   %  &  1. \" 2. C 3. C 57 4. C 5. D 6. D 7. D

TEST - 8 1BSÀBMŽ'POLTJZPOMBSŽO5ÑSFWJ | |1. f ( x ) = x3 - x2 5. f ( x ) = | x | . x3 +  PMEVôVOBHÌSF Gh  +Gh  EFôFSJWBSTBLBÀ- fonksiyonu için f '' ( 2 ) + f '' ( -1 ) ifadesinin de- UŽS ôFSJLBÀUŽS \" :PLUVS #  $  \"  #  $  %  &   %  &  2. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 6. y =G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y y y = f(x) 2 y = f(x) O x 1 5 –2 O –6 –1 2 3 x –2 | |Buna göre, y = f ( x ) fonksiyonunun türevsiz –3 PMEVôVOPLUBMBSŽOBQTJTMFSJOJOUPQMBNŽLBÀUŽS \"  #  $ - % -4 E) -1 | |Buna göre, g ( x ) = f ( x ) fonksiyonu ile ilgili olarak; I. g' ( 0 ) yoktur. II. ZHh Y GPOLTJZPOVOPLUBEBUBOŽNTŽ[EŽS III. y = g ( x ) fonksiyonu r x ` R için süreklidir. | |3. f ( x ) = x2 + 4x - k fonksiyonunun r x ` R için tü- JGBEFMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS SFWMJPMEVóVCJMJOJZPS \" :BMOŽ[* # **WF*** $ :BMOŽ[***  #VOB HÌSF  L HFSÀFM TBZŽTŽOŽO BMBCJMFDFôJ EF-  % *WF** & *WF*** ôFSMFS LÑNFTJOEFLJ en büyük JLJ UBN TBZŽOŽO UPQMBNŽLBÀUŽS A) - # - $ - % -12 E) -13 | |4. f ( x ) = x2 + bx +D fonksiyonunun türevsiz oldu- 7. I. y = f ( x ) fonksiyonu r x ` R için türevliyse óVOPLUBMBSŽOBQTJTMFSJOJO¿BSQŽNŽEŽS | |y = f ( x ) fonksiyonu da türevlidir.  #VOB HÌSF  C HFSÀFL TBZŽTŽOŽO BMBCJMFDFôJ EF- II. y = f ( x ) fonksiyonu r x ` R için türevliyse ôFSLÑNFTJBöBôŽEBLJMFSEFOIBOHJTJEJS | |y = f ( x ) fonksiyonu da türevlidir. A) 6- 2 6, 2 6 @ # ^ - 3, - 2 6 h , ^ 2 6, 3 h $  [ Þ  %  -Þ  III. y = f ( x ) fonksiyonu x = a için türevsiz ise | |y = f ( x ) fonksiyonu da türevsizdir. | |IV. y = f ( x ) fonksiyonu rx ` R için türevli ise G N G O FõJUTJ[MJóJOJTBóMBZBONWFOHFS- ¿FLTBZŽMBSŽZPLUVS JGBEFMFSJOEFOLBÀUBOFTJLFTJOMJLMFEPôSVEVS E) ( -Þ  \"  #  $  %  &  1. D 2. & 3. B 4. B 58 5. \" 6. B 7. \"

;JODJS,VSBMŽWF#JMFöLF'POLTJZPOVO5ÑSFWJ TEST - 9 1. x f ( x ) f ' ( x ) g ( x ) g ' ( x ) 5. f ( 3x + 1 ) = 2x - 1, ( gof ) ( x ) = x2 - 2x ve g ' ( a ) = 9 134  2 PMEVôVOBHÌSF BHFSÀFMTBZŽTŽLBÀUŽS 3 –3 7 2  \"  #  $  %  &  :VLBSŽEBLJUBCMPZBHÌSF  HPG h  EFôFSJkaç- UŽS A) - # - $ - %  &  6. f ( x ) = x2 + 2x + 1, g ( x ) = 2x - 1 ve ( fog ) ' ( a ) = ( gof ) ' ( 2 ) PMEVôVOBHÌSF BHFSÀFMTBZŽTŽLBÀUŽS 2. f ( x2 ) = 2 g ( 3 - 4x ), g ' ( 1 ) = 3 A) 4  #  3  $  7  %  &  3 24  PMEVôVOBHÌSF f' c 1 mEFôFSJLBÀUŽS 4 A) - # - $ - % - & -24 y = 2t3 - 3t - 10 _ b 7. t = u ` b u = 3x + 1 a 3. g ( x ) = x + 2 ve f ( x + 1 ) = x2. g ( 2x ) oldVôVOBHöre, dy JGBEFTJOJOFöJUJLBÀUŽS  PMEVôVOBHÌSF Gh  EFôFSJLBÀUŽS dx x = 1 A) - 63  # - $ - 15 4 4 \"  #  $  %  &   %  15 E) 63 4 4 4. f^ x h = x2 + 2x + 1 8. f : R Z R, f ( x ) = 3 x g^ x h = x2 + 1 fonksiyonu veriliyor.  PMEVôVOBHÌSF ( fog ) ' ( 2 ) deôFSJLBÀUŽS ( gof ) ( x ) = x \"  #  $  %  &  PMEVôVOBHÌSF Hh  EFôFSJLBÀUŽS A) 1  #  1  $  1  %  &  27 9 3 1. D 2. & 3. & 4. D 59 5. \" 6. B 7. & 8. &

TEST - 10 ;JODJS,VSBMŽWF#JMFöLF'POLTJZPOVO5ÑSFWJ 1. y =G Y EPóSVTBMGPOLTJZPOVJ¿JO fog^ x h r ( fof )' ( 2 ) = 4 4. h^ x h = r ( fof ) ( x ) = mx + 9 r f ( 1903 ) > f ( 1907 ) g^ x h bilgileri veriliyor. FõJUMJóJOJTBóMBZBOGWFHUÐSFWMFOFCJMJSGPOLTJZPOMBSŽ  #VOBHÌSF G N LBÀUŽS için g ( 0 ) = g'( 0 ) = 1 ve h' ( 0 ) = 1 dir. A) - # - $  %  &  Buna göre, y = f ( 2x ) . g ( 1 - 2x ) fonksiyonunun x = 1 noktaTŽOEBLJUÑSFWJLBÀUŽS 2 A) - # - $  1  %  &  2 2. f^ x h = x + 1 , g ( x ) = x2 - 2x ve h ( x ) = x4 fonk- 5. f^ x h = x4 + x2 + 1 fonksiyonu veriliyor. siyonlaSŽWFSJMJZor. x4 - x2 + 1 Buna göre, d 6hofog^ x h@JGBEFTJOJOFöJUJBöB- Buna göre, f'^ 1 h f^ 1 h dx LBÀUŽS -  JGBEFTJOJO FöJUJ ôŽEBLJMFSEFOIBOHJTJEJS f'^ - 1 h f^ - 1 h A) 4 ( x - 1 )3 #  Y+ 1)3 $  Y+  %  Y- 1 ) A) - # - $  %  &  E) 4 ( x2- 1 ) 2x 6. k = {1, 2, ..., n} olmak üzere, 3. y =G Y GPOLTJZPOVOVOHSBGJóJõFLJMEFLJHJCJEJS fk( x ) = kx + k2 - k +GPOLTJZPOMBSŽUBOŽNMBOŽZPS y y = f(x) d a f1of2of3o. . .ofn^ x h k dx O1 x –4 2 1 ifadesinin x =J¿JOEFóeri 72PMEVóVOBHËSF  Buna göre, y = f ( -x2 + 2x - 1 ) fonksiyonu kaç ( n + 1 ) fn ( x ) - f1 ( x ) ifadesinin x =JÀJOFöJUJ OPLUBEBUÑSFWTJ[EJS LBÀUŽS \" 3 # 3 $ 3 - 1 \"  #  $  %  &   % 3 - & 3 + 1 1. \" 2. \" 3. B 60 4. & 5. \" 6. \"

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, 5·3&75&03&.-&3÷ 0SUBMBNB%FôFS5FPSFNJ 3PMMF5FPSFNJ TANIM TANIM y = f ( x ) fonksiyonu [ a, b ]BSBMŽóŽOEBTÐSFLMJWF y = f ( x ) fonksiyonu [ a, b ]BSBMŽóŽOEBTÐSFLMJWF B C BSBMŽóŽOEBUÐSFWMJPMTVO B C BSBMŽóŽOEBUÐSFWMJPMTVO f'^ c h = f^ b h - f^ a h b-a f ( a ) =G C JTFGh D =FõJUMJóJOJTBóMBZBOFO  õBSUŽOŽTBóMBZBOFOB[CJSD` B C HFS¿FMTB- B[CJSD` B C HFS¿FMTBZŽTŽWBSEŽS ZŽTŽWBSEŽS yy y y = f(x) f(a) = f(b) f(b) f(a) = f(b) O a c b x O a c1 c2 c3 b x f(a) b x ÖRNEK 3 O ac f : [ 0, 2 ] Z [-1, 0], f ( x ) = x2 - 2xGPOLTJZPOVOVO y y = f(x) 3PMMFUFPSFNJOJTBôMBZBOD`   HFSÀFMTBZŽTŽOŽO f(b) FöJUJOJCVMVOV[ G  =G  =PMEVôVOEBOD`   Gh D =PMVS D-=jD= f(a) c2 c3 b x O a c1 ÖRNEK 1 ÖRNEK 4 f : [ 0, 3] Z [-1, 3] f : [0, 1] Z R f ( x ) = x2 - 2xGPOLTJZPOVOVOUBOŽNLÑNFTJOEFPS- f ( x ) = x3 - 6x2 +YGPOLTJZPOVWFSJMJZPS UBMBNBEFôFSUFPSFNJOJTBôMBZBOHFSÀFMTBZŽLBÀUŽS #VOBHÌSF Z=G Y GPOLTJZPOVJÀJO3PMMFUFPSFNJOJ TBôMBZBOD`   HFSÀFMTBZŽTŽLBÀUŽS G Y =Y2JÀJOGh Y =Y- G  =G  =PMEVôVOEBOsD`   Gh D =PMVS f^ 3 h - f^ 0 h = f'^ c hj 3 - 0 = 2c - 2 D2-D+5=j c 1, 2 12 ± 144 - 60 3-0 3-0 =  6 3 6 - 21 =D-jD= D1= 3 2 ÖRNEK 2 ÖRNEK 5 f : [ 1, 2 ] Z [ 1, 4 ],f ( x ) = x2GPOLTJZPOVWFSJMJZPS f ( x ) = x3 - x GPOLTJZPOVOVO[- ]BSBMŽôŽOEB3PM- #VOBHÌSF CVGPOLTJZPOVOPSUBMBNBEFôFSUFPSFNJ- MFUFPSFNJOJTBôMBZBODHFSÀFMTBZŽEFôFSMFSJOJOÀBS- OJTBôMBZBOD`   HFSÀFMTBZŽTŽLBÀUŽS QŽNŽLBÀUŽS G Y =Y2JÀJOGh Y =Y G - =G  =jsD`[- ]Gh D = f'^ c h = f^ 2 h - f^ 1 h & 4 - 1 & c = 3 D2-=jD1= 1 D2= - 1  33 2-1 2-1 2 11 1 D1D2= ·- =- 3 33 33 61 1 6 - 21  - 1   33 22

TEST - 11 5ÑSFW5FPSFNMFSJ 1. f^ x h = x3 + x2 + x + 1 5. -2 < a <PMNBLÐ[FSF 3  f ( x ) = x3 -YGPOLTJZPOVWFZ=BEPóSVTVOVO LFTJNOPLUBMBSŽY1, x2WFY3UÐS  GPOLTJZPOVOVO[ ]BSBMŽôŽOEBPSUBMBNBEFôFS UFPSFNJOJTBôMBZBODHFSÀFMTBZŽTŽLBÀUŽS A) 7 - 1 B) 7 + 1 C) 6 - 1  Y1<Y2<Y3PMEVôVOBHÌSF GPOLTJZPOVOVO D) 1 + 6 E) 2 [Y1  Y] BSBMŽôŽOEB SPMMF UFPSFNJOJ TBôMBZBO D HFSÀFM TBZŽ EFôFSMFSJ BöBôŽEBLJMFSEFO IBOHJTJ- EJS A) - 3 ve 3 B) - 2 ve 2 2. f ( x ) = x2 +YGPOLTJZPOVWFSJMJZPS C) - 5 ve 5 D) -WF  #VOBHÌSF \"   WF#   OPLUBMBSŽOEBOHF-  & 4BEFDF ÀFO EPôSVZB QBSBMFM WF Z = G Y  GPOLTJZPOVOB UFôFUPMBOEPôSVOVOUFNBTOPLUBTŽOŽOPSEJOBUŽ 6. BWFCUBNTBZŽPMNBLÐ[FSF  LBÀUŽS  y = ( x2 - 4x + 3 )2 fonksiyonunun [a, b]BSBMŽóŽOEB A) 1 B) 2 C) 3 D) 4 E) 5 3PMMFUFPSFNJOJTBóMBZBOGBSLMŽDHFS¿FLTBZŽEF- óFSJWBSEŽS 3. f^ x h = x - 1  #VOBHÌSF B+CUPQMBNŽLBÀUŽS A) 2 B) 4 C) 5 D) 3 E) 6 x+1 7. y = x - 2 x  GPOLTJZPOVOVO[ ]BSBMŽôŽOEBPSUBMBNBEFôFS  GPOLTJZPOVOVO[ ]BSBMŽôŽOEB3PMMFUFPSFNJOJ UFPSFNJOJTBôMBZBODHFSÀFMTBZŽTŽLBÀUŽS TBôMBZBODHFSÀFMTBZŽTŽJÀJOG D LBÀUŽS A) -1 B) - 2 C) - 3 D) -2 E) -15 A) 1 B) 3 - 1 C) 2 - 1 2 3 2 D) E) 4 2 4. y = x3 - x2 8. f1( x ) = sinx, f2( x ) =DPTY 32  f3( x ) = x2 -ÕY G4( x ) = x- π  GPOLTJZPOVOVOÐ[FSJOEFLJ\" B O WF# C N OPL- 2 UBMBSŽOEBOHF¿FOEPóSVOVOFóJNJEJS f5( x ) =Fx + 1  #V EPôSVOVO  GPOLTJZPOV [B  C] BSBMŽôŽOEB  GPOLTJZPOMBSŽOEBOLBÀUBOFTJOJO[ Ö]BSBMŽôŽO- OPLUBEBLFTUJôJCJMJOEJôJOFHÌSF  B C BSBMŽôŽO- EBFOB[CJSUBOFDHFSÀFMTBZŽTŽJÀJOUÑSFWJOJO EBPSUBMBNBEFôFSUFPSFNJOJTBôMBZBODHFSÀFM PMEVôVOV3PMMFUFPSFNJOJLVMMBOBSBLHÌTUFSFCJ- TBZŽMBSŽOŽOGBSLŽOŽOQP[JUJGEFôFSJLBÀUŽS MJSJ[ A) 1 B) 2 C) 3 D) 4 E) 5 A) 4 B) 1 C) 3 D) 0 E) 2 A C C C 62 % B A &

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, 5·3&7÷/'÷;÷,4&-:036.6 5ÑSFWJO'J[JLTFM:PSVNV ÖRNEK 3 TANIM ,ÑSFöFLMJOEFLJCJSCBMPOVOZBSŽÀBQŽDNEFODN ZFÀŽLBSŽMŽSTBIBDNJOEFLJEFôJöJNJOZBSŽÀBQŽOBHÌSF y y = f(x) x PSUBMBNBEFôJöJNIŽ[ŽLBÀUŽS y1 x1 Dy Dx 4 3 4 3 4 y0 Dx x0 Dt DV ·4 π - ·2 π π ·56 V= = 33 3 112π = = 2 x t ort Dr 4-2 23 x1 t1 cm O x0 O t0 ôFLJM* ôFLJM**  0SUBMBNBEFóJõJNIŽ[ŽCJSOJDFMJóJOEFóJõJNJOJO CBõLB CJS OJDFMJLUF EFóJõJNF LŽZBTMB PSUBMBNB ÖRNEK 4 OFLBEBSPMBDBóŽOŽHËTUFSFOPSBOEŽS #JSIBSFLFUMJOJOLPOVN-[BNBOEFOLMFNJY=U2 +UEJS  ôFLJM*EFHËSÐMFDFóJÐ[FSFCVPSBO #VOBHÌSF CVIBSFLFUMJOJOU1=WFU2=TBOJZF- MFSJBSBTŽOEBLJPSUBMBNBEFôJöJNJIŽ[ŽLBÀNTOEJS m = y1 - y0 = Dy JMFJGBEFFEJMJS x1 - x0 Dx #VLBWSBNŽEBIBË[FMMFõUJSNFLJTUFSTFLCJSIB- SFLFUMJOJO LPOVNVOEBLJ EFóJõJNJO  [BNBOEBLJ a 2 + 6.5 k - a 2 2 + 6.2 k 55 - 16 DX 5 V= = = ort Dr 5-2 3 EFóJõJNF PSBOŽOŽ PSUBMBNB IŽ[ PMBSBL BEMBOEŽ- SBCJMJSJ[ Vort = Dx JMFJGBEFFEFCJMJS ôFLJM** 39 Dt  = = 13 m/s 3 ÖRNEK 1 ÖRNEK 5 #JSIBSFLFUMJTBBUUFLNIŽ[MBTBBU TBBUUFLNIŽ[- ôFLJMEFLJHSBGJLUFCJSIBSFLFUMJOJOTBBUCPZVODBIŽ[ŽOŽO MBTBBUJMFSMFNJõUJS [BNBOBHËSFEFóJõJNJHËTUFSJMNJõUJS #VOBHÌSF CVIBSFLFUMJOJOZPMCPZVODBPSUBMBNBIŽ- 7 LNTBBU [ŽLBÀLNTBBUUJS  100 Dx 40.3 + 30.2 180 V= = = = 36 km/sa 50 ort Dt 3+2 5 30 34 6 U TBBU O1 ÖRNEK 2 #VOB HÌSF  m TBBU BSBTŽOEBLJ WF m TBBUMFSJ BSB- TŽOEBLJIŽ[ŽOŽOPSUBMBNBEFôJöJNMFSJOJ JWNF IFTBQ- 0DBLEF™PMBOCJSJMJOIBWBTŽDBLMŽóŽ0DBL MBZŽOŽ[ EF-™PMEVóVOBHËSF CVJMJOIBWBTŽDBLMŽôŽHÑO- EFPSUBMBNBLBÀEFSFDFEÑöNÑöUÑS DT - 4 - 8 12 a = DV = 30 - 0 = 5 2 V= = = - = - 3 derece/gün ort Dt 6-0 km/sa ort Dt 20 - 16 4 a = DV = 100 - 50 = 50 2 ort Dt 4-3 km/sa LNTBmEFSFDFHÑO 63  112π DN2NTO5.LNTB LNTB2 3

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr TANIM ÖRNEK 7  #JSOJDFMJLUFLJEFóJõJNJOCBõLBCJSOJDFMJLUFEF- :FSEFOZVLBSŽZBEPóSVGŽSMBUŽMBOCJSUPQVO[BNBOBCBóMŽ óJõJNFHËSFBOMŽLOFLBEBSEFóJõUJóJOJHËTUFSFO ZPMEFOLMFNJx = -U2 +UEJS orana BOMŽLIŽ[EFOJS0SUBMBNBEFóJõJNIŽ[ŽO- 5PQVOLBÀŽODŽTBOJZFEFLJIŽ[ŽNTOEJS EBO GBSLMŽ PMBSBL CVSBEB EFóJõJNMFS ¿PL LпÐL PMNBMŽEŽS 4ŽGŽSB  ¿PLZBLŽO  dx V = = - 10t + 80 j-U+=jU= x dt x2 Dx ÖRNEK 8 x1 Dt t x0 t1 t2 :FSEFO EJL PMBSBL ZVLBSŽ GŽSMBUŽMBO CJS UBõŽO U TBOJZFEF- O t0 LJZFSEFOZÐLTFLMJóJ I U = -U2 +U NFUSF GPSNÐMÐZ- MFWFSJMNJõUJS  U1J¿JOBOMŽLIŽ[IFTBQMBOŽSLFOZVLBSŽEBLJHSB- #VOBHÌSF UBöŽOZFSFÀBSQNBIŽ[ŽLBÀNTOEJS GJLUFO EF BOMBõŽMBDBóŽ Ð[FSF IFSIBOHJ CJS TB- I U =JÀJO-U2+U=jU= U= CJUU2 EFóFSJJ¿JOPSUBMBNBIŽ[IFTBQMBNBLCJ[F dh ZBOMŽõTPOV¿WFSFDFLUJS V = = - 2t + 20 V = x2 - x1 dt t2 - t1 7=-+=-NTO U1 =U2BMŽONBTŽEVSVNVOEBEBIFTBQMBNBZB- QŽMBNB[ ÖRNEK 9  #V EVSVNEB UÐSFW LPOVTVOEBO ZBSEŽN BMBSBL s =G U =U2 +U- 1 GPOLTJZPOVJMFIBSFLFUFEFOCJS IBSFLFUMJOJOU=WFU=BOŽOEBLJBOMŽLIŽ[WFBO CVTPSVOV¿Ë[FDFóJ[ MŽLJWNFTJOJCVMVOV[ UTBOJZF TNFUSFJMFËM¿ÐMÐZPS V = lim x-x = dx ds V = = 6t + 5 1 dt anlık t\"t t - t1 dt U=JÀJO7=NTO U=JÀJO7=NTO 1 a = dV = 6 jU=WFU=JÀJONT2 ÖRNEK 6 dt 4BBUUFLNIŽ[MBZVLBSŽZBEPóSVBUŽMBOCJSDJTNJOZFS- ÖRNEK 10 EFOZÐLTFLMJóJOJWFSFOEFOLMFNI U =U-U2JMFJGB- EFFEJMNJõUJS ;BNBOBCBôMŽZPMEFOLMFNJY=-U2+U-PMBO IBSFLFUMJOJOIŽ[ŽOŽOTŽGŽSPMEVôVBOEBIBSFL FUFCBö- #VOB HÌSF  U =  TO BOŽOEB CV DJTNJO IŽ[Ž LBÀ NTO MBEŽôŽOPLUBZBPMBOV[BLMŽôŽLBÀNFUSFE JS PMVS dx dh V = = 0 & - 12t + 60 = 0 jU= V = = 40 - 10t j-=NTO dt dt U=JÀJOY=-  U=JÀJOY=-+-= 6[BLMŽLNFUSF NTO mNTONTO NTO NTO2 NTO2 64 N

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 11 ÖRNEK 15 #JSLBSFOJOIFSCJSLFOBSŽDNTOPSBOŽZMBBSUNBLUBEŽS  N V[VOMVóVOEB CJS NFSEJWFO EVWBSB EBZBMŽ PMBSBL ,BSFOJO CJS LFOBSŽ  DN PMEVôVOEB LBSFOJO BMBOŽ EVSNBLUBEŽS IBOHJPSBOEBBSUBS 13 V = dA = 2a· da ==DN2TO dt dt EVWBS ÖRNEK 12 ZFS #JSEBJSFOJOBMBOŽ 3 ÕDN2TOPSBOŽZMBBSUNBLUBEŽS .FSEJWFOJOEVWBSBEFóFOBZBóŽEVWBSEBO- 1 m/snIŽ- 2 2 %BJSFOJO BMBOŽ Ö DN2 PMEVôVOEB ZBSŽÀBQŽ IBOHJ [ŽZMBLBZBSLFO NFSEJWFOJOZFSFEFóFOBZBóŽEVWBSEBn V[BLMBõNBLUBEŽS PSBOMBBSUBS .FSEJWFOJO ÑTU VDV ZFSEFO  N ZÑLTFLMJLUFZLFO  ÖS2=ÖjS= NFSEJWFOJO BMU VDV EVWBSEBO LBÀ NTO IŽ[MB V[BL- MBöŽS dA dr V = = 2πr· dt dt dr 3 dr 1 %VWBSBV[BLMŽôŽY ZFSEFOZÑLTFLMJôJIPMTVO 2 π ·3· = π j = DNTO dt 2 dt 4 Y2+I2=jI=DN Y= dx dh 2x· + 2h· = 0 dt dt ÖRNEK 13 5· dx + 12d - 1 n = 0 j dx = 6 NTO dt 2 dt 5 ,ÐSFõFLMJOEFCJSCBMPOHFOJõMFNFLUFEJS ÖRNEK 16 ,ÑSFOJOZBSŽÀBQŽDNTOPSBOŽZMBBSUUŽôŽOBHÌSF LÑ- SFOJOZBSŽÀBQŽDNPMEVôVOEBIBDNJOEFLJBOMŽLEF- N ôJöJNPSBOŽLBÀUŽS V= dH = 4 2 dr =Ö2=DN3TO ,POJ õFLMJOEFLJ CJS TV EFQPTV- OVOUBCBOZBSŽ¿BQŽNWFZÐL- dt 3 ·3π .r · dt TFLMJóJ  N EJS 4V EFQPTVna ÖRNEK 14 N 3 N3ELIŽ[ŽZMBTVQPNQBMBO- #JSEJLEËSUHFOJOHFOJõMJóJTBOJZFEFDNB[BMŽSLFO CPZV 2 TBOJZFEFDNB[BMNBLUBEŽS NBLUBEŽS #PZVO  DN  HFOJöMJôJ  DN PMEVôV BOEB LÌöFHFO %FQPEB UBN  N TFWJZFTJOEF TV PMEVôV BOEB  TV V[VOMVôVOVOBOMŽLEFôJöJNPSBOŽOFPMVS  ZÑLTFLMJôJOJOBSUŽöIŽ[ŽOFEJS  (FOJöMJôJB CPZVCLÌöFHFOJLPMTVO r h6 h B2+C2=L2 h = & =r da db dk r2 3 2a· + 2b· = 2k· )BDJN= 1 ÖS2I= 1 ÖI3 dt dt dt 3 27 2.6.^ - 2 h + 2.8.^ - 4 h = 2.10· dk = - 4, 4 cm/sn dH 1 ÖI2p dh dt V= = dt 27 dt 1 dh 3 dh 27 & π . 3 .4· = j = m/dk 27 dt 2 dt 8π DN2TO 1 DNTODN3TOm DNTO 65 6 27 4  NTO NEL 5 8π

TEST - 12 5ÑSFWJO'J[JLTFM:PSVNV 1. :FSEFO EJL PMBSBL ZVLBSŽ BUŽMBO CJS IBSFLFUMJOJO U 4. #JS LÑSFOJO ZÑ[FZ BMBOŽOŽO Ö DN2TO WF ZBSŽ- TBOJZFEFLJZFSEFOZÐLTFLMJóJ ÀBQŽOŽO   DNTO IŽ[ŽZMB BSUUŽôŽ BOEB LÑSFOJO IBDNJIBOHJIŽ[MBEFôJöJS   I U =U-U2GPSNÐMÐZMFWFSJMNJõUJS A) 5π 4π 16π D) 5π  & Õ  #VOBHÌSF UBöŽOJMLTOJÀFSJTJOEFLJPSUBMBNB 4 B) C) IŽ[ŽLBÀNTEJS 5 52 A) 40 B) 10 C) 20 D) 15 E) 5 2. Y LN 55 50 30 U TBBU 5. %Ð[CJSZPMEBCJS\"OPLUBTŽOEBOZÐSÐNFZFCBõMB- 20 17 ZBO CJS IBSFLFUMJOJO [BNBO J¿FSJTJOEF \" OPLUBTŽO- EBOOFLBEBSV[BLUBCVMVOEVóVOVHËTUFSFOEFOL- 0 t1 t2 t3 t4 t5 t6 t7 MFNY=U3 -U2 +UJMFWFSJMNJõUJS  :VLBSŽEBLJLPOVN-[BNBOHSBGJLMFSJOEF  #VOBHÌSF CVIBSFLFUMJTOJÀFSJTJOEF\"OPL- UBTŽOEBOFOÀPLLBÀNFUSFV[BLMBöNŽöUŽS i `;WFâJâJ¿JOUiTBZŽMBSŽBSEŽõŽLTBZŽMBSEŽS  )Ž[ŽOFLTJ¿ŽLUŽóŽBSBMŽLUBIBSFLFUJOUFSTZËOEFZB- \"  #  $  %  &  QŽMEŽóŽOŽ CJMFO öMLFS PSUBMBNB IŽ[MBSŽ IFTBQMBSLFO IBSFLFU ZËOÐOÐ JINBM FEJQ TPOV¿MBSŽ QP[JUJG CVMV- ZPS  #VOB HÌSF  BöBôŽEBLJ [BNBO BSBMŽLMBSŽO IBOHJ- TJOEFPSUBMBNBIŽ[ŽFOB[CVMVS \" mU1 # U3 -U4 $ U6 -U & U1 -U2  % U4 -U5 3. V0JMLIŽ[ŽZMBBõBóŽEPóSVBUŽMBOCJSDJTNJOU[BNBOŽ 6. 4JMJOEJSõFLMJOEFLJCJSTVEFQPTVOVOUBCBOZBSŽ¿B- J¿JOEFBMEŽóŽZPMEFOLMFNJ QŽNZÐLTFLMJóJNEJS%FQPZB ÕN3ELIŽ[-  S = V0t + 1 gt2 EJS(g: yer çekimi ivmesi) MBTVBLŽUBOCJSNVTMVLUBLŽMŽZPS 2  #VOBHÌSF TVTFWJZFTJOJOZFSEFONZÑLTFL- MJLUF PMEVôV BOEB TVZVO ZÑLTFLMJôJOJO BOMŽL EFôJöJNIŽ[ŽLBÀNELEJS  H =  NTO2  PMNBL Ñ[FSF  7 =  NTO IŽ[- \"  #   $   %   &   MBBöBôŽBUŽMBOCVDJTNJOTBOJZFEFLJIŽ[ŽLBÀ NTOEJS \"  #  $  %  &  B C & 66 A & %

5ÑSFWJO'J[JLTFM:PSVNV TEST - 13 1. ,FOBSV[VOMVLMBSŽDNWFDNPMBOEJLEËSUHFOJO 4. #JSPCKFY2 + y2 =¿FNCFSJ¿FWSFTJOEFTBBUZË- LŽTB LFOBSŽ   DNTO IŽ[MB BSUBSLFO V[VO LFOBSŽ 22  DNTOIŽ[MBBSUUŽSŽMŽZPS OÐOEFIBSFLFUFUNFLUFEJS0CKFf , p nok-  #VOB HÌSF  EJLEÌSUHFOJO V[VO LFOBSŽOŽO  DN 22 PMEVôV BOEB BMBOŽOŽO BOMŽL EFôJöJN IŽ[Ž LBÀ UBTŽOEBO HF¿FSLFO  PCKFOJO QP[JTZPOVOV JGBEF DN2TOEJS FEFO Y  Z  OPLUBTŽOŽO Y LPPSEJOBUŽOŽO TBOJZFEF  CS PSBOŽZMB BSUUŽóŽ CJMJOEJóJOF HËSF  Z LPPSEJOBUŽ \"   #   $   %  &   IBOHJPSBOEBEFôJöJS 2. ôFLJMEF CJS BZSŽUŽOŽO V[VOMVóV  NFUSF PMBO LBSF \" CSTOBSUBS # CSTOBSUBS CJ¿JNJOEF CFZB[ CJS QFSEF WBSEŽS %Ð[FOFóF ZBSŽ- $ CSTOBSUBS % CSTOB[BMŽS ¿BQŽNFUSFPMBOTBZEBNPMNBZBOCJSLÐSFZFSMFõ- UJSJMNJõUJS,ÐSFOJONFSLF[JJMFQFSEFOJOBóŽSMŽLNFS-  & 4BCJULBMŽS LF[JBSBTŽOEBLJV[BLMŽLNFUSFEJS N O1 N 5. :BSŽ¿BQV[VOMVóVDN ZÐLTFLMJóJDNPMBOCJSLP- N N OJOJOZBSŽ¿BQZÐLTFLMJLPSBOŽTBCJULBMBDBLõFLJMEF  #VLÐSFOJOWFLBSFOJOBóŽSMŽLNFSLF[JJMFBZOŽEPó- ZBSŽ¿BQŽ DNTOIŽ[MBBSUUŽSŽMŽZPS SVMUV Ð[FSJOEF LBMBDBL õFLJMEF LÐSFOJO NFSLF[JO-  #VOBHÌSF ZBSŽÀBQŽOŽODNPMEVôVBOEBIBD- EFONFUSFV[BLMŽóBOPLUBTBMCJSŽõŽLLBZOBóŽLPO- NJOJOEFôJöJNJOJOBOMŽLIŽ[ŽLBÀDN3TOPMVS NVõUVS %BIB TPOSB ŽõŽL LBZOBóŽ LÐSFZF   NTO \"  Õ #  Õ $  Õ %  Õ & Õ IŽ[MBZBLMBõUŽSŽMŽZPS 6. #JSBZSŽUŽOŽOV[VOMVóVDNPMBOCJSLÐQÐ BZSŽUMBSŽ-  #VOBHÌSF TBOJZFEFQFSEFÑ[FSJOEFPMVöBO OŽO[BNBOBHËSFEFóJõJNEFOLMFNJ a =U2 +U+ 1 EBJSF öFLMJOEFLJ HÌMHFOJO BMBOŽOŽO BOMŽL EFôJ- EFOLMFNJJMFWFSJMNJõUJS öJNIŽ[ŽLBÀN2TOPMVS  #VOB HÌSF  CV LÑQÑO CJS BZSŽUŽOŽO  DN PMEV- ôVBOEBIBDNJOJOEFôJöJNJOJOBOMŽLJWNFTJLBÀ A) 30 3 π #  Õ $ 6 3 π DN3TO2PMVS \"  #  $  %  &   % Õ & Õ 3.  U>PMNBLÐ[FSF   Y U =U2 +U+ 10  EFOLMFNJJMFTBCJUJWNFMJCJSIBSFLFUMJOJOLPOVN–[B- NBOEFOLMFNJWFSJMNJõUJS  #VOB HÌSF  CV IBSFLFUMJOJO JWNFTJ LBÀ NT2 EJS \"  #  $  %  &  A % % 67 % A A

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr 5·3&7÷/(&0.&53÷,:036.6 TANIM ÖRNEK 1 y dt f ( x ) = x3 - 2x + 1 GPOLTJZPOVOB\"   OPLUBTŽO B(x1, y1) EBOÀJ[JMFOUFôFUJOEFOLMFNJOJWFOPSNBMJOEFOLMF- a y = f(x) NJOJCVMVOV[ O A(x0, f(x0)) G  =PMEVôVOEBO Gh Y =Y2-  dn Gh  =-==NU x Z-= Y- Z=Y-UFôFUEFOLMFNJ  :VLBSŽEBLJ HSBGJLUF Z = f ( x ) fonksiyonu, bu N5N/=-jN/=-jN/=-1 Z-=- Y- Z=-Y+OPSNBMEFOLMFNJ GPOLTJZPOB\"OPLUBTŽOEBUFóFUPMBOEUEPóSVTV WF\"OPLUBTŽOEBLJOPSNBMJPMBOEn EPóSVTVWF- ÖRNEK 2 SJMNJõUJS/PSNBMEPóSVTV UFóFUEPóSVTVOBEJL- f : R Z R , G Y =|-Y2|GPOLTJZPOVOVOBQTJTJ UJS PMBO OPLUBTŽOEBLJ UFôFUJOJO EFOLMFNJOJ WF OPSNBMJ-  EUUFóFUEPóSVTVOVOFóJNJ OJOEFOLMFNJOJCVMVOV[  r mAB = f^ x0 h - y1  \"OBMJUJLHFPNFUSJ \"QTJTJPMBOOPLUBOŽOPSEJOBUŽG  =-= x0 - x1 `[- ]PMEVôVOEBO  r UBOa 5SJHPOPNFUSJ G Y =-Y2jGh Y =-Y f^ x h- f^ x h Gh  =-UFôFUJOFôJNJ Z-=- Y- jZ=-Y+UFôFUEPôSVTV  r f'^ x h = lim 0  5ÐSFW x\"x x - x0 0 GPSNÐMMFSJZMFCVMVOVS  5ÐSFWGPSNÐMÐJ¿JOLVMMBOŽMBO\"OPLUBTŽOŽOFóSJ- N5N/=-jN5=-j m = 1  Y- ZJ TBóMBEŽóŽOB EJLLBU FEJMNFMJEJS 5FóFU EPóSV- TVÐ[FSJOEFFóSJZJTBóMBNBZBOOPLUBMBSJ¿JOUÐ- / 2 SFW GPSNÐMÐ LVMMBOŽMNB[ ±ODF UFNBT OPLUBTŽ IFTBQMBOŽS 15 Z-=Y-j y = x + OPSNBMEPôSVTV 22  EnOPSNBMEPóSVTVOVOFóJNJJTFEJLEPóSVMBSŽO ÖRNEK 3 FóJNMFSJOEFOCVMVOVS Z= Y- 2FôSJTJOF\"   OPLUBTŽOEBOÀJ[JMFOUF-  NTN/ = -1 ôFUMFSJOEFOLMFNMFSJOJCVMVOV[  5FóFUWFOPSNBMEPóSVMBSŽOŽOEFOLMFNMFSJBOB- MJUJLHFPNFUSJEFOZBSBSMBOŽMBSBLCVMVOVS Gh Y = Y- PMVS\"ODBL\"   OPLUBTŽFôSJZJTBôMB- NBEŽôŽOEBOFôSJÑ[FSJOEF# O L OPLUBTŽBMŽOŽS  ET : y - f (x ) =NT Y- x) m = k - 0 = f'^ n hPMVS T n-3 0 0 y - f ( x0 ) =Gh Y0 ) ( x - x0 ) k - 0 = 2^ n - 2 h & ^ n - 2 h2 = 2^ n - 2 h n-3 n-3  E/: y - f ( x0 ) =N/ Y- x0 ) O=WFZBO-= O- y - f(x ) = - 1 ^x - x0h O-=-+OjO=CVMVOVS#VEVSVNEB   OPL- f'^ x0 h UBTŽOEBOHFÀFOUFôFUJOFôJNJPMVSLFO    OPLUBTŽO- 0 EBOHFÀFOUFôFUJOFôJNJPMVSZ-= Y- jZ= Z-= Y- jZ=Y-UFôFUMFSJCVMVOVS 68 1.ZYmUFôFU ZmY OPSNBM2.ZmY UFôFU  x+5 Z OPSNBMZ ZYm 2

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 ÖRNEK 7 Z=Y2æ-Y+FôSJTJOJOZ=Y+EPôSVTVOBQB- f ( x ) = x3 - ( n - 2 ) x2 + 12x + 1 SBMFMUFôFUJOJOEFOLMFNJOFEJS GPOLTJZPOVOVO Y FLTFOJOF QBSBMFM UFôFUJ CVMVONB- EŽôŽOB HÌSF  O UBN TBZŽMBSŽOŽO BMBCJMFDFôJ LBÀ GBSL- Z=Y+EPôSVTVOBQBSBMFMEPôSVOVOFôJNJUÑS MŽEFôFSWBSEŽS Gh Y =Y-PMVS Y-= Y=UFôFUOPLUBTŽOŽOBQTJTJ Gh Y =EFOLMFNJOJOÀÌ[ÑNLÑNFTJCPöLÑNFPMNBMŽEŽS G  =-+=PSEJOBUŽ Gh Y =Y2- O- Y+= Z-= Y-  Z=Y- D< 4^ n - 2 h2 - 4 .3.12 < 0  O- 2-<  O+  O- < ÖRNEK 5 –4 8 y = f ( x ) = x3 - 5x2 + 6x - 1 + –+ FôSJTJOJOY+Z=EPôSVTVOBEJLUFôFUMFSJOJOEFô- NFOPLUBMBSŽOŽOBQTJTMFSJÀBSQŽNŽLBÀUŽS -  BSBTŽOEBUBNTBZŽWBSEŽS 2 ÖRNEK 8 Y+Z=EPôSVTVOVOFôJNJ - f ( x ) = x4 + 3x2 + bx +DGPOLTJZPOVOVOHSBGJôJY=- 33 BQTJTMJOPLUBTŽOEBYFLTFOJOFUFôFUPMEVô VOBHÌSF  EJLEPôSVOVOFôJNJJTF PMNBMŽEŽS C+DUPQMBNŽLBÀUŽS 2 Y=-EFYFLTFOJOFUFôFUJTFG - =Gh - = Gh Y =Y2-Y+ Gh Y =Y3+Y+C Y2-Y+= 3   --+C=jC= G - =+-+D=jD=  2 C+D=+= 29 3x - 10x + = 0 2 3 x .x = 12 2 ÖRNEK 6 ÖRNEK 9 f ( x ) = x2 - 3x + 2 f ( x ) = x2 +YGPOLTJZPOVOVOCBõMBOHŽ¿OPLUBTŽOEBO¿J- [JMFOUFóFUJÐ[FSJOEFCJS\" O L OPLUBTŽBMŽOŽZPS GPOLTJZPOVÐ[FSJOEFLJ\" O L OPLUBTŽOEBO¿J[JMFOUFóFU  YFLTFOJJMFQP[JUJGZËOMЙB¿ŽZBQNBLUBEŽS | |OA = 4 5 CSPMEVóVOBHËSF LHFSÀFMTBZŽTŽOŽOBMB- #VOBHÌSF O+LUPQMBNŽLBÀUŽS CJMFDFôJQP[JUJGEFôFSLBÀUŽS y Gh Y =Y+ A(n,k) L=O2-O+ UBOš=Gh O  4 5 2a N=UBOa=Gh  = =O- L=-+ Oa x 5 a = 4 5 jB=  a –2 =O   L= L=B= O= jO+L= 3 69 118 ZYm 2 2

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 12 f ( x ) = x3 + kx2 - 3x + 5 y ôFLJMEFZ= f ( x ) fonksiyo- GPOLTJZPOVÑ[FSJOEF\"  O WF# - I OPLUBMBSŽO- y = f(x) nunun HSBGJóJWF\"OPLUB- EBOÀJ[JMFOUFôFUMFSCJSCJSJOFQBSBMFMPMEVôVOBHÌSF  A TŽOEBLJUFóFUJWFSJMNJõUJS LHFSÀFMTBZŽTŽLBÀUŽS O 13 x Gh Y =Y2+LY- –2 Gh  =Gh - 3 + 2k - 3 = 12 - 4k - 3  #VOBHÌSF H Y =Y2G Y FôSJTJOFÑ[FSJOEFLJ L= Y =  BQTJTMJ OPLUBTŽOEBO ÀJ[JMFO UFôFUJO EFOLMFNJ 3 OFEJS L= 2 y y = f(x) Hh Y =YG Y +Y2Gh Y 2;f^ 3 h + 3<f'^ 3 h = 14 A x 42 24 2 13 H  =G  =  Z-= Y-  –2 Z=Y- ÖRNEK 11 ÖRNEK 13 y =G Y GPOLTJZPOVOVOHSBGJóJWF\"OPLUBTŽOEBLJUFóFUJ y ôFLJMEFZ= f ( x ) fonksi- õFLJMEFLJHSBGJLUFWFSJMNJõUJS ZPOVOVO HSBGJóJ WF \" y = f(x) 3 y = f(x) OPLUBTŽOEBLJ UFóFUJ WF- y x SJMNJõUJS A(n, 4) –3 –2 O 45° x O A –2 d1 g^ 2x - 4 h = f^ 3x h PMEVô VOBHÌSF Hh - LBÀUŽS g^ x h = x2 FöJUMJôJOJTBôMBZBOQP[JUJGHFSÀFMTBZŽ- x2 - 2 f^ x h MBSEBUBOŽNMŽZ=H Y GPOLTJZPOVJÀJOHh O LBÀUŽS 4-^-2h y = 3 x + 3 UFôFUEPôSVTV f^ - 3 h = - 9 + 3 = - 3 ; = 1jO=  2 22 n-0 f'^ - 3 h = 3  G  = Gh  =UBOš= 2 f'^ 3x h.3^ x2 - 2 h - 2x.f^ 3x h g'^ x h = 2x.f^ x h - x2f'^ x h = 12.4 - 36.1 = 12 = 3 g'^ 2x - 4 h.2 = ^ x2 - 2 h2 f2^ x h 16 16 4 3f'^ - 3 h.^ - 1 h + 2f^ - 3 h g'^ - 6 h.2 = ^ - 1 h2 96 15 Hh - = - - jHh - = - 22 4 33 15    ZYm - 4 24

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 14 ÖRNEK 17 ôFLJMEF Z = G Y  WF Z = H Y  GPOLTJZPOMBSŽOŽO HSBGJLMF- f ( x ) = x3 + x2 - 4x +GPOLTJZPOVÐ[FSJOEFLJ\"    OPLUBTŽOEBO¿J[JMFOUFóFUFóSJZJCBõLBCJS# O L OPLUB- SJWFSJMN JõUJS TŽOEBLFTJZPS y y #VOBHÌSF OHFSÀFMTBZŽTŽLBÀUŽS y = f(x) y = g(x) 5 2 –1 –3 –1 O Gh Y =Y2+Y-jGh  = O2 x x 32 k-2 =1 & n + n - 4n + 4 - 2 =1 n-1 n-1 #VOBHÌSF Z= GPH  Y FôSJTJOFÑ[FSJOEFLJY=- n3 - 1 + n2 - 4n + 3 & =1 BQTJTMJ OPLUBTŽOEB ÀJ[JMFO UFôFUJO EFOLMFNJOJ CVMV- OV[ n-1 O2+O++O-=jO2+O-= O+  O- =jO=-3 G  =  H - = 5 Hh - = Gh  =  3 GPH  - =G  = G2 5 5 Gh H Y  Hh Y =Gh g^ - 1 h Hh - = ·1 = 33 ÖRNEK 18 5 y d Z-=  Y- y = f(x) A 3 B x Z-=Y+jZ-Y-= O ÖRNEK 15 f ( x ) = x2 - 2x GPOLTJZPOVOVOLÌLMFSJOEFOÀJ[JMFOUF- ôFUMFSJOJOBSBTŽOEBLJEBSBÀŽOŽOUBOKBOUŽLBÀUŽS Gh Y =Y- :VLBSŽEBLJõFLJMEFHSBGJóJWFSJMFOZ=G Y JLJODJEFSFDF- EFOGPOLTJZPOVJMFJMHJMJPMBSBL Gh  =-WFGh  = r  EEPóSVTVGPOLTJZPOB\"OPLUBTŽOEBUFóFUPMVQFóJ- tan a = m -m + 2-^-2h =- 4 NJUÐS 12 r [ AB ]0Y 1 + m .m 1 + ^ - 2 h^ 2 h 3 r 'POLTJZPOVOVOBMBCJMFDFóJFOLпÐLEFóFS-EJS 12 r f ( -1 ) = f ( 5 ) ÖRNEK 16 CJMHJMFSJWFSJMJZPS f ( x ) = x2 + 4x + 1QBSBCPMÑOÑOZ=Y-EPôSVTV- #VOBHÌSF G - LBÀUŽS OBFOZBLŽOPMEVôVOPLUBOŽOBQTJTJLBÀUŽS G - =G  JTFG  =G  PMVS Y2+Y+=Y- NE=JTF-Gh  =Gh  =PMVS Y2-Y+=D< Gh Y =BY+C FO ZBLŽO OPLUB CV EPôSVZB QBSBMFM PMBO UFôFU ZBSEŽNŽZ- Gh  =-jC=-4 MBCVMVOVS Gh  =jB-=jB= Y+=jY= G  =-j-+D=-jD= Y=TJNFUSJFLTFOJ G Y =Y2-Y+ G - = 4 71 –38 ZmYm - 1 3

TEST - 14 5ÑSFWJO(FPNFUSJL:PSVNV 1. f ( x ) = x2 - 3x + 1 5. f ( x ) = x3 - 2x2 - 3x +FóSJTJWFSJMJZPS  GPOLTJZPOVOBY=OPLUBTŽOEBÀJ[JMFOUFôFUJO  Z=G Y GPOLTJZPOVOVOBQTJTJPMBOOPLUBTŽO- FôJNJLBÀUŽS EBLJOPSNBMJOJOEFOLMFNJBöBôŽEBLJMFSEFOIBO- HJTJEJS A) -3 B) -1 C) 0 D) 1 E) 3 A) y = x B) y = x - 1 C) y = 2x + 1 D) y = -x E) y = 3 - 2x 2. f(x) = x3 - x + 2   GPOLTJZPOVOBÑ[FSJOEFLJY=BQTJTMJOPLUBTŽO- 6.  f ( x ) = x2 - 2ax + b EBO ÀJ[JMFO UFôFUJO EFOLMFNJ BöBôŽEBLJMFSEFO IBOHJTJEJS FôSJTJOJOY=-BQTJTMJOPLUBTŽOEBLJUFôFUJ  Z=Y-EPôSVTVPMEVôVOBHÌSF,C-BLBÀUŽS A) y = 26x - # Z= 26x - 52 A) -3 B) -2 C) 0 D) 1 E) 3 C) y = 26x - 26 D) y = 26x - 12 E) y = 26x + 26 7.  f^ x h = x2 + 2x + 6 3. f ( x ) = | x2 - 3x + 2 | + 2x2 - 3  GPOLTJZPOVOBY=BQTJTMJOPLUBT ŽOEBOÀJ[JMFO UFôFUJOEFOLMFNJBöBôŽEBLJMFSEFOIBOHJTJEJS  FôSJTJOFY=-BQTJTMJOPLUBTŽOEBOÀJ[JMFOOPS- NBMJOFôJNJLBÀUŽS A) 2x - 3y += 0 B) 2x + 3y + 1 = 0 A) - 1 B) - 1 C) 1 D) 1 E) 1 C) 2x - 3y - 11 = 0 D) 2x + 3y += 0 9 8 8 9 7 E) 2x - 3y + 11 = 0 4. f ( x ) = x2 +NY+OWFH Y = -x2 +UY 8.  y = -3x2 - kx - 2   FôSJMFSJOJO \"     OPLUBTŽOEB CJSCJSMFSJOF UF-  QBSBCPMÑOFY=-BQTJTMJOPLUBTŽOEBOÀJ[JMFO ôFUPMEVôVCJMJOEJôJOFHÌSF N+O-UJGBEFTJOJO UFôFUY-Z+B=EPôSVTVOBQBSBMFMPMEV- FöJUJLBÀUŽS ôVOBHÌSF LHFSÀFMTBZŽTŽLBÀUŽS A) -4 B) -2 C) 0 D) 2 E) 4 A) 6 16 D) 14 13 B) C) 5 E) 3 33 B B % C 72 % & A B

5ÑSFWJO(FPNFUSJL:PSVNV TEST - 15 1.  y = x2 - 4x + 12 5. f ( x ) = x3 - 3x2 + 4x + 3  FôSJTJOJOZ=YEPôSVTVOBFOZBLŽOOPLUBTŽ-  FôSJTJOJOZ=Y+EPôSVT VOBQBSBMFMUFôFUMF- OŽOPSEJOBUŽLBÀUŽS  SJBSBTŽOEBLJV[BLMŽLLBÀCJSJNE JS A) - 3 B) 0 C) 3 D) 6 E) 9 A) 4 B) 2 2 C) 2 3 D) 4 E) 2 5 17 2. y = 2x2 QBSBCPMÑOÑOZ=Y+BEPôSVTVOBUF- 6. f ( x ) = x3 - 3x2 + ax + C  GPOLTJZPOVOVO HSBGJóJ ôFUPMEVôVOBHÌSF BHFSÀFMTBZŽTŽOŽOFöJUJLBÀ- y = 2x +EPóSVTVOBY=BQTJTMJOPLUBEBUFóFU UŽS UJS A) - # - $  %  &   #VOBHÌSF CHFSÀFMTBZŽTŽLBÀUŽS 3. f^ x h = 1 x3 + ax2 - 6x + 1 A) -2 B) -1 C) 0 D) 2 E) 3 32  GPOLTJZPOVOVO Y FLTFOJOF QBSBMFM UFôFUMFSJOJO 7.  y = x2 - ax + EFôNFOPLUBMBSŽOŽOBQTJTMFSJOJOUPQMBNŽ-PM-  QBSBCPMÑOÑOPSJKJOEFOHFÀFOUFôFUMFSJCJSCJSMFSJ- EVôVOBHÌSF BHFSÀFMTBZŽTŽOŽOFöJUJLBÀUŽS OFEJLPMEVôVOBHÌSF BHFSÀFMTBZŽTŽOŽOOFHBUJG A) 0 B) 1 C) 2 D) 3 E) 4 EFôFSJLBÀUŽS 4.  y = x3 +QY2 + 4x + 1 A) – 6 B) - 3 3 C) - 2 3  FôSJTJOJOYFLTFOJOFQBSBMFMUFôFUJOJOPMNBNB- D) - 2 2 E) - 2 TŽJÀJOQHFSÀFMTBZŽTŽOŽOBMBCJMFDFôJEFôFSBSB- MŽôŽBöBôŽEBLJMFSEFOIBOHJTJEJS 8. y = 4 FôSJTJJMFZ=Y2QBSBCPMÑOÑOLFTJöUJL- A) -12 <Q< 12 B) -4 <Q< 4 x C) - 2 3 1 p 1 2 3 MFSJOPLUBEBOFôSJMFSFÀJ[JMFOUFôFUMFSBSBTŽOEB- D)Q< -ZBEBQ> 2 E) p 2 2 3 ZBEB p 1 - 2 3 LJEBSBÀŽOŽOUBOKBOUŽLBÀUŽS A) 12 B) 5 C) 8 D) 1 E) 10 31 6 9 9 & A C C 73 A & B A

TEST - 16 5ÑSFWJO(FPNFUSJL:PSVNV 1. y = ( x + 1 ) 2  5. y = x3  FôSJTJOJO \"     OPLUBTŽOEBO HFÀFO UFôFU- x MFSEFO CJSJOJO EFOLMFNJ BöBôŽEBLJMFSEFO IBO HJTJEJS  FóSJTJOF   OPLUBTŽOEBO¿J[JMFOUFóFUFóriyi bir A OPLUBTŽOEBLFTJZPS A) y =Y+ 16 B) y =Y+ $ Z=Y-  #VOBHÌSF \"OPLUBTŽOŽOBQTJTJLBÀUŽS D) y = 4x - 4 E) y = 5x - 5 A) 1 + 2 B) 1 C) -1 + 2 D) -1 - 2 E) -3 2. y = x2 QBSBCPMÑOF  - OPLUBTŽOEBOÀJ[JMFO 6. f ( x ) = x3 - 3x2 + bx +DGPOLTJZPOVOVOHSBGJóJ  UFô FUMFSJO EFôNF OPLUBMBSŽ BSBTŽOEBLJ V[BLMŽL x =BQTJTMJOPLUBEBY–FLTFOJOFUFóFUPMEVóVOB LBÀCJSJNEJS HËSF DHFSÀFMTBZŽTŽLBÀUŽS \"  #  $  %  &  A) - #  $  %  &  3.  y = x2 - 3x +Q 7. y = 4 x FôSJTJJMFZ=Y2+BFôSJTJ\" Y1 Z   QBSBCPMÑOFLÌLMFSJOEFOÀJ[JMFOUFôFUMFSJOFôJN- OPLUBTŽOEBCJSCJSMFSJOFUFôFUPMEVôVOBHÌSF  MFSJÀBSQŽNŽ-PMEVôVOBHÌSF QHFSÀFMTBZŽTŽ BHFSÀFMTBZŽTŽLBÀUŽS LBÀUŽS A) 2 B) 3 C) 4 D) 5 E) 6 A) -2 B) -3 C) -4 D) -5 E) -6 8. y = -x2 - 4x - 3 y = x2 - 4x + 3 4. y = x3 -FóSJTJOFÐ[FSJOEFLJY= -BQTJTMJOPL FôSJMFSJOJOPSUBLUFôFUMFSJOEFOCJSJOJOFôJNJBöB- ôŽEBLJMFSEFOIBOHJTJEJS UBTŽOEBO¿J[JMFOUFóFUFóSJZJCJS\"OPLUBTŽOEBLFTJ ZPS A) - 12 3 B) -12 C) -  #VOBHÌSF \"OPLUBTŽOŽOPSEJOBUŽLBÀUŽS D) - 2 3 + 4 E) 2 3 - 4 \"  #  $  %  &  C % % % 74 % % B &

5ÑSFWJO(FPNFUSJL:PSVNV TEST - 17 1. y ôFLJMEFZ= f ( x ) 4. 2 x A fonksiyonunun grafi- y y = óJ WF \" OPLUBT ŽOEB 2 UFóFUJWFSJMNJõUJS –1 O 2 x A y = f(x) x g ( x ) =YG2( 3x - 1 ) O PMEVôVOBHÌSF Hh  LBÀUŽS  :VLBSŽEBLJõFLJMEF  y = 2 FóSJTJWFFóSJZF\"OPL- \"  #  $  %  &  x UBTŽOEBO¿J[JMFOUFóFUJOHSBGKóJWFSJMNJõUJS  #VOBHÌSF UFôFUJOFLTFOMFSMFPMVöUVSEVôVÑÀ- HFOJOBMBOŽLBÀCJSJNLBSFEJS \"  #  $  %  &  y y 2. A b 5. d y = f(x) A(a, b) y = f(x) –a O 2a x d –3 x O  E EPóSVTV Z = G Y  GPOLTJZPOVOB \" OPLUBTŽOEB  :VLBSŽEBLJ õFLJMEF \" B  C  OPLUBTŽOEB Z = f ( x ) UFóFUUJS GPOLTJZPO VOBUFóFUEEPóSVTV¿J[ JMNJõUJS  g ( x ) = x2G Y WFHh - a ) = -BPMEVôVOBHÌ- f ( x ) = ( 2x + Gh Y PMEVôVOBHÌSF BHFSÀFM TBZŽTŽLBÀUŽS SF G -B JGBEFTJOJOFöJUJLBÀUŽS A) -2 B) -1 C) 0,25 D) -1,5 E) -2,5 A) 3 5 3 D) -2 E) -3 B) C) 22 6. y y = g(x) y 3. y A(2, 3) y = f(x) x B(3, 2) y = g(x) y = f(x) O O6 x –3 A 60° x  :VLBSŽEBLJHSBGJLMFSZ=H Y WFZ= f ( x ) fonksiyon- –2 –1 O MBSŽOBTŽSBTŽZMB\"WF#OPLUBMBSŽOEBO¿J[JMFOUFóFU- MFSWFSJMNJõUJS  ôFLJMEFZ=G Y WFZ=H Y GPOLTJZPOMBSŽ\"OPLUB TŽOEBUFóFUUJS  I Y = GPH  Y PMEVóVOBHËSF Z=I Y GPOLTJZP OVOBÑ[FSJOEFLJY=BQTJTMJOPLUBTŽOEBOÀJ[J  I Y =G Y H Y GPOLTJZ POVOVOY=-BQ- MFOUFôFUJOEFOLMFNJOFEJS TJTMJOPLUBTŽOEBLJUFôFUJOJOFôJNJLBÀUŽS A) y = 2x + 5 B) y = -2x + 10 A) 3 B) 2 3 C) 5 3 C) y = -2x + 9 D) y = -2x + 6 D) 7 3 E) 9 3 E) y = -2x + 4 C A & 75 C B %

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr \"35\"/\";\"-\"/'0/,4÷:0/-\"3 TANIM TEOREM f : [a, b] Z3PMNBLÐ[FSF f : [a, b] Z3UBOŽNMŽCJSGGPOLTJZPOV[a, b] ara- r x1, x2 ` [a, b]WFY1 < x2J¿JO MŽóŽOEBTÐSFLMJ  B C BSBMŽóŽOEBUÐSFWMJPMTVO f ( x1 ) < f ( x2 ) oluyorsa f fonksiyonu [a, b]BSBMŽ- r x ` B C J¿JO óŽOEBBSUBOEŽS  Gh Y > 0 oluyorsa f, [a, b]BSBMŽóŽOEBBSUBO f ( x1 ) > f ( x2 ) oluyorsa f fonksiyonu [a, b]BSBMŽ-  Gh Y < 0 oluyorsa f, [a, b]BSBMŽóŽOEBB[BMBO  Gh Y = 0 oluyorsa f, [a, b]BSBMŽóŽOEBTBCJUGPOL- óŽOEBB[BMBOEŽS TJZPOEVS f ( x1 ) = f ( x2 ) oluyorsa f fonksiyonu [a, b]BSBMŽ- y d NE =UBOi =Gh Y > 0 0<i< π óŽOEBTBCJUUJS 2 yy i 88 Oa x b x –2 O 3 x y π < 0 <Õ 2 f(b) 2 2 x –2 NE =UBOi =Gh Y < 0 O –8 –8 f(x) = –x3 f(a) x i f : [-2, 2] Z [- ] f : [-2, 2] Z [- ] O ax b [-2, 2]BSBMŽóŽOEBB[BMBO [-2, 2]BSBMŽóŽOEBBSUBO d ÖRNEK 1 ÖRNEK 3 y = 4 - x2  GPOLTJZPOVOVO BSUBO WF B[BMBO PMEVôV f ( x ) = x2 + 4 GPOLTJZPOVOVOBSUBOWFB[BMBOPMEVôV BSBMŽLMBSŽZB[ŽOŽ[ BSBMŽLMBSŽUÑSFWZBSEŽNŽZMBCVMVOV[ Gh Y =Y f' 0 –+ y -ß  ] GPOLTJZPO BS- -Þ ]B[BMBO 4 f UBO  [ Þ BSUBO [  ß  GPOLTJZPO B[B- –2 2 O MBO x ÖRNEK 2 ÖRNEK 4 | | | |f : R Z R, f ( x ) = x + x - 2 GPOLTJZPOVOVOBSUBO  f(x) = 1  x B[BMBOWFTBCJUPMEVôVBSBMŽLMBSŽCVMVOV[ GPOLTJZPOVOVOBSUBOWFB[BMBOPMEVôVBSBMŽLMBSŽCV- MVOV[ 1   0 Gh Y = -  f' –– -ß ]GPOLTJZPOBSUBO  f y [ ]GPOLTJZPOTBCJU  2 2 y = f(x) [ Þ GPOLTJZPOBSUBO O2 x x -ß  B[BMBO  ß B[BMBO #JSMFöJNLÑNFTJB[BMBOEFôJMEJS G  =>-=G -   mß >BSUBO < ß B[BMBO 76  mÞ >B[BMBO< Þ BSUBO  mß >BSUBO < >TBCJU < Þ BSUBO  mß  B[BMBO  ß B[BMBO

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, UYARI ÖRNEK 8 #JS GPOLTJZPOVO B[BMBO WFZB BSUBO  PMEVóV BSBMŽL- f ( x ) = x3 GPOLTJZPOVOVOBSUBOPMEVôVBSBMŽôŽCVMV- MBSŽO CJSMFõJN LÐNFTJOEF GPOLTJZPO B[BMBO WFZB OV[ BSUBO PMNBZBCJMJS±SOFLÐJODFMFZJOJ[ ÖRNEK 5 y Gh   =  PMNBTŽOB SBô- y = x3 NFOZ=G Y GPOLTJZPOV f ( x ) = 2x3 - 9x2 - 24x + 5 BSUŽöŽOBEFWBNFEJZPS x O G GPOLTJZPOV 3 EF BS- UBOEŽS GPOLTJZPOVOVO BSUBO WF B[BMBO PMEVôV BSBMŽLMBS JO- DFMFZJOJ[ Gh Y =Y2-Y- –1 4 +–+ -ß -1]BSUBO  f' UYARI [- ]B[BMBO  f #JS GPOLTJZPOVO BSUBO WFZB B[BMBO  PMEVóV BSBMŽL- [ ß BSUBO MBSEBUÐSFWJTŽOŽSMŽTBZŽEBOPLUBJ¿JOPMBCJMJS ÖRNEK 6 ÖRNEK 9 f_ x i = x2 - 6x + 5 f : R Z R, f ( x ) = x3 - 3x2 + ax GPOLTJZPOVOVOBSUBOWFB[BMBOPMEVôVBSBMŽLMBSŽZB- [ŽOŽ[ GPOLTJZPOV3EFBSUBOPMEVôVOBHÌSF BHFSÀFMTBZŽ- TŽOŽOFOLÑÀÑLUBNTBZŽEFôFSJLBÀUŽS f'^ x h = 2x - 6 1 35  Gh Y =Y2-Y+B 2 f + ––+ Dã -Bã 2 x - 6x + 5 ãB BFOB[PMVS -ß ]B[BMBO  f' – – + + [ ß BSUBO f(x) UBOŽNTŽ[ ÖRNEK 7 n ` Z+PMNBLÐ[FSF ZG Y GPOLTJZPOV B C BSBMŽóŽO- EBOFHBUJGEFóFSMJB[BMBOCJSGPOLTJZPOEVS #VOBHÌSF Z=G Y  Z=G Y y = 1 y = 1  ÖRNEK 10 f_ x i f2_ x i f : R – {-4} Z R GPOLTJZPOMBSŽOEBOLBÀUBOFTJBZOŽBSBMŽLUBBSUBOEŽS f_ x i = ax - 3 GOFHBUJGEFôFSMJB[BMBOPMEVôVOBHÌSF  x+4 G< Gh<EŽS GPOLTJZPOVOVO -ß, - WF - ß BSBMŽLMBSŽOEBBS- UBO GPOLTJZPO PMNBTŽ JÀJO B HFSÀFM TBZŽTŽOŽO EFôFS d 2 ^ x h =G Y Gh Y >BSUBO BSBMŽôŽOŽCVMVOV[ dx f f'^ x h = 4a + 3 > 0 ^ x + 4 h2 d G3 Y =G2 Y Gh Y <B[BMBO 3 dx B+>jB> - d G-1 Y =-G-2 Y Gh Y >BSUBO 4 dx d G-2 Y =-G-3 Y Gh Y <B[BMBO dx UBOFTJBSUBOEŽS  mß m>BSUBO <m >B[BMBO < ß BSUBO 77 3d - 3 , 3 n  mß >B[BMBO < ß BSUBO2 4

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 11 ÖRNEK 14 y = f'(x) :BOEBLJõFLJMEF f ( x ) = x4 + 2x3 - 12x2 + 4x - 5 y GPOLTJZPOVWFSJMJZPS y =Gh Y GPOLTJZPOVOVO #VOB HÌSF  Z = Gh Y  GPOLTJZPOVOVO B[BMBO PMEVôV –3 O 3 HSBGJóJWFSJMNJõUJS BSBMŽôŽCVMVOV[ –1 5 x Gh Y =Y3+Y2-Y+ –2 1 #VOBHÌSF  Ghh Y =Y2+Y- f'' + – + * ( 3, R BSBMŽóŽOEBGGPOLTJZPOVBSUBOCJSGPOLTJZPO- EVS [- ]GhB[BMBO f' **   BSBMŽóŽOEBGGPOLTJZPOVB[BMBOCJSGPOLTJZPO- ÖRNEK 12 EVS y *** Gh - ZPLUVS 2 1 *7 ( -  BSBMŽóŽOEBGhh Y <EŽS 7 Ghh - ZPLUVS 7* Ghh  Gh  <EŽS ÌOFSNFMFSJOEFOLBÀUBOFTJEPôSVEVS –6 4 x –3 1 5 –1 3 –4 –2 O 23 f' – + –+ f' –1 y = f(x) f f'' + – + :VLBSŽEBLJZ=G Y GPOLTJZPOVOVOHSBGJóJOFHËSF [ ]B[BMBO   Þ BSUBO *ZBOMŽö  * [ 2, 4]BSBMŽóŽOEBGGPOLTJZPOVB[BMBOEŽS Gh - WBSEŽS***ZBOMŽö ** [ 0, 2 ]BSBMŽóŽOEBGGPOLTJZPOVBSUBOEŽS Ghh  Gh  >PMEVôVOEBO7*ZBOMŽö *** (-Þ - BSBMŽóŽOEBGhQP[JUJGUJS ÖRNEK 15 :VLBSŽEBLJHSBGJL *7 (-  BSBMŽóŽOEBGhOFHBUJGUJS y =Gh Y GPOLTJZPOV- 7 f ( - Gh  < 0 y OBBJUUJS 7* Gh - G  = 0 4 3 JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS x ²OFSNFMFSEFO TBEFDF 7 ZBOMŽöUŽS G -  >   Gh   >  ÀBSQŽNMBSŽQP[JUJGUJSUBOFTJEPôSVEVS –2 1 –1 O1 ÖRNEK 13 y = Gh Y  GPOLTJZPOV- #VOBHÌSF  OVOHSBGJóJWFSJMNJõUJS * ( -R, - BSBMŽóŽOEBGGPOLTJZPOVBSUBOEŽS y ** ( 1, R BSBMŽóŽOEBGGPOLTJZPOVB[BMBOEŽS 2 3x #VOB HÌSF  Z = G Y  *** Gh - ZPLUVS y = f'(x) GPOLTJZPOVOVO BSUBO *7 Gh - ZPLUVS –2 PMEVôVBSBMŽLOFEJS 7 ( - 2, - BSBMŽóŽOEBGhh Y >EŽS O JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS Gh>PMEVôVBSBMŽL -  UÑS -ß - BSBMŽôŽOEBB[BMBOEŽS*ZBOMŽö  Gh - =PMEVôVHSBGJLUFBÀŽLUŽS***ÌODÑMZBOMŽöUŽS [- ]BSBMŽôŽOEBGBSUBOEŽS %JôFSÌODÑMMFSEPôSVEVS <m >5<m > 78 33

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, :FSFM&LTUSFNVN/PLUBMBSŽ ÖRNEK 16 TANIM f ( x ) = 3x - x2 GPOLTJZPOVOVOFLTUSFNVNOPLUBMB- SŽOŽCVMVOV[ :FUFSJODFLпÐLCJSSQP[JUJGHFS¿FLTBZŽTŽJ¿JO  r x ` D-S D+S BSBMŽóŽOEBG D $ f ( x )  G D # f ( x )) oluyorsa, y = f ( x ) fonksiyonunun Gh Y =-Y 3/2 x =DBQTJTMJOPLUBTŽOEBZFSFMNBLTJNVNV ZF- SFMNJOJNVNV WBSEŽSG D EFóFSJZFSFMNBLTJ- fd 3 n = 9 - 9 =- 9 f' + – NVNEFóFSJ ZFSFMNJOJNVNEFóFSJ EJS 2 24 4 d 3 , - 9 nZFSFMNBLTJNVN f 24 yerel maks. f'(x3) yoktur. yerel maks. f' < 0 ÖRNEK 17 y = f(x) f'(x0) = 0 f ( x ) = 3x5 + 45 x4 + 10x3 + 5 f'(x2) = 0 f' > 0 f'(x4) yoktur. 4 f' < 0 f' > 0 f' < 0 f' > 0 GPOLTJZPOVOVOZFSFMFLTUSFNVNOPLUBMBSŽOŽOBQTJT- f' > 0 yerel min. MFSJUPQMBNŽLBÀUŽS f'(x1) = 0 f'(x5) yoktur. yerel min. a x0 x1 x2 x3 x4 x5 b TEOREM –2 –1 0 Gh Y =Y4+Y3+Y2 f' + – + + =Y2 Y2+Y+  x = D BQTJTMJ OPLUBEB TÐSFLMJ CJS G GPOLTJZPOV- f OVO CVOPLUBEBUÐSFWJZPLWFZBGh D =PMTVO Gh Y=DEFJõBSFUEFóJõUJSJZPSTB D G D  OPLUB- -ZFSFMNBLTJNVN -ZFSFMNJOJNVNOPLUBTŽOŽOBQTJ- TŽZFSFMFLTUSFNVNPMVS TJ-+ - =- xc xc ÖRNEK 18 f' – + f' + – | |f ( x ) = x - 1 + 2UPQMBNŽOŽOZFSFMFLTUSFNVNEFôF- f f SJLBÀUŽS yerel minimum yerel maksimum f ( x ) = ( x+1 x $ 1  f' ( x ) = ( 1 x>1 -x + 3 x < 1 -1 x<1 NOT Y=JÀJOGhZPLUVSY=ZFSFMNJOJNVNBQTJTJ  4ÐSFLMJCJSGGPOLTJZPOVOVOY=DBQTJTMJOPLUB-   ZFSFMNJOJNVNOPLUBTŽ TŽOEBZFSFMFLTUSFNVNVWBSTBGh D ZPLUVSWF- ZBGh D =PMVS UYARI ÖRNEK 19 y = f(x) x f (x) = 6x x0 x1 k x2 x3 x2 + 1 GPOLTJZPOVOVO FLTUSFNVN OPLUBMBSŽOŽO PSEJOBUMBSŽ UPQMBNŽLBÀUŽS 6^ 2 + 1 h - 2x.6x 6 - 6x2 &LTUSFNVNOPLUBMBSŽPMBOYi âJ< 4, i `; BQ- f' ( x) = x = TJTMJOPLUBMBSUÐSFWUFTUJZMFUFTQJUFEJMFNFZFCJMJS#V OPLUBMBS UBOŽN ZBSEŽNŽZMB CVMVOVS L BQTJTMJ OPLUB- ^ x2 + 1 h2 ^ x2 + 1 h2 EBGOJOFLTUSFNVNVZPLUVS4ÐSFLTJ[GPOLTJZPOMBS- EBUÐSFWUFTUJEPóSVTPOV¿WFSNFZFCJMJS –1 1 66 - + =0 f' – + – f 22 79 d 3 , - 9 nm 24

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 20 ÖRNEK 24 f ( x ) = x3 + ax + b GPOLTJZPOVOVO   OPLUBTŽOEB x3 - 3x2 + a = 0 EFOLMFNJOJOÑÀUBOFGBSLMŽSFFMLÌ- ZFSFMNJOJNVNVWBSTBB-CLBÀUŽS  LÑOÑOPMBCJMNFTJJÀJOBIBOHJBSBMŽLUBPMNBMŽEŽS Gh  =WFG  =PMNBMŽEŽS &LTUSFNVNOPLUBMBSŽ[ŽUJöBSFUMJPSEJOBUBTBIJQPMNBMŽEŽS Gh Y =Y2+Bj+B=jB=-3 G  =-+C=jC= Gh Y =Y2-Y= 04 B-C=-7 jY=WY=  +– + G  G  <jB B- < B`   ÖRNEK 21 ÖRNEK 25 f ( x ) = ( a - 1 ) x3 - 3ax + 1 y y = f'(x) :BOEB Z = Gh Y  fonksiyonunun gra- FôSJTJOJOZFSFMFLTUSFNVNOPLUBTŽOŽOPMNBNBTŽJÀJO  –6 O 1 BHFSÀFMTBZŽTŽIBOHJBSBMŽLUBPMN BMŽE ŽS –4 –3 –2 x GJóJWFSJMNJõUJS 35 Gh Y = B- Y2-B 01 D#0jB B- # D+ – + #VOB HÌSF  Z = G Y  GPOLTJZPOVOVO ZFSFM NJOJNVN OPLUBMBSŽOŽOBQTJTMFSJÀBSQŽNŽLBÀUŽS B`[ ] ÖRNEK 22 5ÑSFWJOJöBSFUEFôJöUJSEJôJ-EFO+ZBHFÀUJôJZFSMFS- EFZFSFMNJOJNVNWBSEŽS GGPOLTJZPOVOVOWFUÐSFWMFSJWBSTBWFY=BBQTJTMJ OPLUBTŽZFSFMNJOJNVNOPLUBTŽJTFGhh B >PMVS :FSFMNJONVNOPLUBMBSŽOŽOBQTJTMFSJ-WFUÑS  f^ x h = x3 + ax2 + bx + 1 -WFÀBSQŽNMBSŽ-EJS 3 GPOLTJZPOVOVO Y =  BQTJTMJ OPLUBTŽOEB ZFSFM NJOJ- ÖRNEK 26 NVNVWBSTBBHFSÀFMTBZŽTŽIBOHJBSBMŽLUBPMNBMŽEŽS y ôFLJMEFGhGPOLTJyonu- Gh  =WFGhh  > OVOHSBGJóJWFSJMNJõUJS Gh Y =Y2+BY+C (–3, 2) Ghh Y =Y+B y = f'(x) +B>jB>-1 B` - Þ 37x –5 O ÖRNEK 23 (5, –1) f ( x ) = x3 + 2x2 + ax + b GPOLTJZPOVOVOUFSTJOJOPMB- CJMNFTJJÀJOBHFSÀFMTBZŽTŽIBOHJBSBMŽLUBPMNBMŽEŽS #VOBHÌSF  * x = -UFGGPOLTJZPOVOVOZFSFMNJOJNVNVWBSEŽS GGPOLTJZPOVIFQBSUBOZBEBB[BMBOPMNBMŽEŽS ** x = -UFGGPOLTJZPOVOVOZFSFMNBLTJNVNVWBSEŽS Gh Y =Y2+Y+B *** x =UFGGPOLTJZPOVOVOZFSFMNJOJNVNVWBSEŽS *7 Ghh - 3 ) =EŽS 4 7 ( - R, - BSBMŽóŽOEBGhh Y >EŽS D#0j-B#j #B 7* x =UFGhGPOLTJZPOVOVOZFSFMNJOJNVNVWBSEŽS 3 JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS Y=- GhJÀJOZFSFMNBLTJNVNEVS Y= GJÀJOZFSFMNBLTJNVNEVS %JôFSJGBEFMFSEPôSVEVS **WF***ZBOMŽöUŽS –7< > m Þ = 4 , 3 G     –124 3

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, .VUMBL&LTUSFNVN/PLUBMBSŽ ÖRNEK 28 TANIM f:RZR f ( x ) = -2x2 -Y+ 5 y Mutlak y Mutlak maksimum maksimum GPOLTJZPOVOVO NVUMBL FLTUSFNVN OPLUBMBSŽ WBSTB f(b) OFEJS a xa x b x1 b Gh Y =-Y- –2 f(a) G - = Mutlak Mutlak -  NVUMBLFLTUSFNVNOPLUBTŽ- f' + – minimum minimum EŽS f y Mutlak maksimum x1 x ab Mutlak minimum 4ÐSFLMJ CJS G GPOLTJZPOVOVO [ a, b ] BSBMŽóŽOEB ÖRNEK 29 BMBCJMFDFóJ FO CÐZÐL FO LпÐL  EFóFSF NVU- | |f : [-5, 3] Z R, f ( x ) = x2 - 3x + 2 MBL NBLTJNVN NVUMBL NJNJNVN  EFOJS 4F[HJTFMPMBSBLPBSBMŽLUBHSBGJóJOFOZÐLTFL- GPOLTJZPOVOVONVUMBLFLTUSFNVNEFôFSMFSJOJCVMV- UFLJ FOBõBóŽEBLJ OPLUBTŽEŽS  OV[ Bir f fonksiyonunu [ a, b ] BSBMŽóŽOEBLJ NVUMBL x –5 1 2 3 FLTUSFNVN OPLUBMBSŽOŽ CVMNBL J¿JO G GPOLTJ- f(x) x2– 3x + 2 –x2 + 3x – 2 x2– 3x + 2 ZPOVOVO B  C  BSBMŽóŽOEBLJ D1  D2  wDn ZFSFM FLTUSFNVNOPLUBMBSŽCVMVOVS f'(x) Ymæ Y æ Ymæ f'(x) – + {G B  G D1   G D2    G Dn), f ( b ) } LÐNFTJ- f(x) +– OJOFOCÐZÐLFMFNBOŽ FOLпÐL NVUMBLNBL- 3/2 TJNVN NVUMBLNJOJNVN EFóFSJEJS yerel yerel yerel yerel yerel NBLT NJO NBLT NJO NBLT G - = G  =  fd 3 n = 1 G  = G  = 24 NVUMBLNBLTJNVNEFôFSJ NVUMBLNJOJNVNEFôFSJ ÖRNEK 27 f : [-1, 3] Z R ÖRNEK 30 f ( x ) = x3 + 3x2 + 5 GPOLTJZPOVOVOWBSTBNVUMBLFLT- f(x) = 1 USFNVNEFôFSMFSJOJCVMVOV[ x2 + 1 Gh Y =Y2+Y GPOLTJZPOVOVO WBSTB NVUMBL FLTUSFNVN OPLUBMBSŽ- OŽCVMVOV[ Y=EBZFSFMNJOJNVN NVU- MBLNJOJNVN x –1 0 3 + Y = - WFZB  Y =  UF NVUMBL f' – 2x 0 NBLTJNVNWBSEŽS -  f Gh Y = - ^ x2 + 1 h2  f' + – f   NVUMBLNBLTJNVNOPLUBTŽ yerel     NVUMBL NBLTJNVN EFôFSJ       NVUMBL NJOJ- NBLTJNVN NVNEFôFSJ NVUMBLNJOJNVNEFôFSJ NVUMBLNBLTJNVNEFôFSJ 81  m  NVUMBLNBLTJNVNEFôFSJ  NVUMBLNJOJNVNEFôFSJ

TEST - 18 \"SUBO\"[BMBO'POLTJZPOMBS 1.  f^ x h = x3 + x2 - 6x + 1 5.  f^ x h = x - 1  32 x2  GPOLTJZPOV BöBôŽEBLJ BSBMŽLMBSŽO IBOHJTJOEF  GPOLTJZPOVOVO BSUBO PMEVôV FO HFOJö BSBMŽL B[BMBOEŽS BöBôŽEBLJMFSEFOIBOHJTJEJS A) -3 # x # 2 B) -2 # x # 3 C) -1 # x # 6 \"  mÞ > B) > 4 , 3 p $   > 3 D) -6 # x # 1 E) x $ 0 D) >1, 4 H 4 3 E) f 0 , H 3 2. y 6. f ( x ) =NY3 - 2x2 - 4x + 1 –2 –1 1 y = f(x)  GPOLTJZPOVOVOEBJNBB[BMBOPMNBTŽJÀJONHFS- 3x ÀFMTBZŽTŽOŽOEFôFSBSBMŽôŽBöBôŽEBLJMFSEFOIBO- 3O HJTJEJS 2 y = g(x) A) m # - 1 # N< 0 $ N> 0 3 E) - 1 < m < 0  :VLBSŽEBLJ G WF H GPOLTJZPOMBSŽ JMF UBOŽNMB- D) m $ 1 3 OBO  WF Ih Y  = Gh Y H Y  LPöVMVOV TBôMBZ BO 3 Z = I Y  GPOLTJZPOV BöBôŽEBLJ BSBMŽLMBSEBO I BOHJTJOEFLFTJOMJLMFBSUBOEŽS A) x < 1 B) -1 < x < 1 C) -1 < x < 3 7.  f ( x ) = x3 + ax2 + bx + 3 D) x < -2 E) 1 < x < 3  GPOLTJZPOVOVO B[BMBO PMEVôV FO HFOJö BSBMŽL   PMEVôVOBHÌSF BCÀBSQŽNŽLBÀUŽS A) 0 B) -3 C) -9 D) - & - 3. f^ x h = x2 - 2x - 3 GPOLTJZPOVWFSJMJZPS  Z = G Y  GPOLTJZPOVOVO B[BMBO PMEVôV BSBMŽL 8. y =G Y GPOLTJZPOV   BSBMŽóŽOEBOFHBUJGEFóFS- BöBôŽEBLJMFSEFOIBOHJTJEJS MJBSUBOCJSGPOLTJZPOEVS A) ( -Þ > #  -Þ -> $ < Þ   #VOBHÌSF   % < Þ  & 3- ( -1, 3 )  r y = - 1 4. f ( x ) = x3 - 4x2 + 3x -GPOLTJZPOVWFSJMJZPS f2_ x i  r y = f_ x2 i  #VOBHÌSF GhGPOLTJZPOVOVOBSUBOPMEVôVBSB- MŽLBöBôŽEBLJMFSEFOIBOHJTJEJS r y = f_ x i A) >- 4 , 4 H # < R) C) > 4 , 3 p r y = f ( f ( x ) ) 33 3 r y = f3 ( x ) D) R E) ( -R > GPOLTJZPOMBSŽOEBOLBÀUBOFTJBZOŽBSBMŽLUBBSUBO GPOLTJZPOEVS A) 0 B) 1 C) 2 D) 3 E) 4 A % B C 82 % A & C

\"SUBO\"[BMBO'POLTJZPOMBS TEST - 19 1. f ( x ) = x3 - x2 + ax - 3  4. Z = G Y  GPOLTJZPOV B  C  BSBMŽôŽOEB OFHB-  GPOLTJZPOVOVOEBJNBBSUBOPMNBTŽJÀJOBHFS- UJG EFôFSMJ WF BSUBO CJS GPOLTJZPO PMEVôVOB HÌ- ÀFMTBZŽTŽOŽOEFôFSBSBMŽôŽBöBôŽEBLJMFSEFOIBO- SF BöBôŽEBLJMFSEFOIBOHJTJBZOŽBSBMŽLUBEBJNB HJTJEJS B[BMBOEŽS \" <G Y >3 B) 5 + f ( x ) C) x3 + f ( x ) A) a > 1 B) a $ 1 C) a # 1 D) 3 E) 1 3 3 f^ x h f (x2) D) a < 0 E) a < -1 5. ôFLJMEFLJHSBGJL Z=G Y GPOLTJZPOVOBBJUUJS y y = f(x) 2. f^ x h = 3x - a –3 x –1 O x-1  Ih Y  = ( x2 - x -   Gh Y  FöJUMJôJOJ TBôMBZBO I  GPOLTJZPOVOVOY>JÀJOEBJNBB[BMBOPMNBTŽ GPOLTJZPOVOVO B[BMBO PMEVôV BSBMŽL BöBôŽEBLJ JÀJOBHFSÀFMTBZŽTŽOŽOEFôFSBSBMŽôŽBöBôŽEBLJ- TFÀFOFLMFSEFOIBOHJTJEJS MFSEFOIBOHJTJEJS A) a < 3 B) 1 < a < 3 C) a > 3 A) (-Þ -3] B) [ 0, 2] D) 3 < a < 4 E) a > 4 C) (-Þ -1] b [0, 2] D) (-Þ -3] b [1, 2] E) [-1, 2] 3. x a b c 6. (FS¿FMTBZŽMBSLÐNFTJOEFTÐSFLMJWFUÐSFWMFOFCJMJS f' + – – + y =G Y GPOLTJZPOVOVOBSUBOPMEVóVFOHFOJõBSB- MŽL[ 0, 6 ]EŽS  (FS¿FMTBZŽMBSLÐNFTJOEFUÐSFWMFOFCJMJSCJSGGPOLTJ-  #VOBHÌSF  ZPOVOVOUÐSFWJOJOJõBSFUUBCMPTVZVLBSŽEBLJHJCJEJS #VOBHÌSF * y = f ( 2 -Y GPOLTJZPOV<- >BSBMŽóŽOEBBS- * <B D>BSBMŽóŽOEBGB[BMBOEŽS UBOEŽS ** (-Þ B>b<D Þ BSBMŽóŽOEBGBSUBOEŽS *** <C Þ BSBMŽóŽOEBGhBSUBOEŽS ** y = f ( 4 - Y  GPOLTJZPOV <-  > BSBMŽóŽOEB B[BMBOEŽS *** y = fa x kGPOLTJZPOV<- >BSBMŽóŽOEBBSUBO- EŽS  JGBEFMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS  JGBEFMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS \" :BMOŽ[* # *WF** $ *WF*** \" :BMOŽ[* # *WF** $ *WF***  % **WF*** & * **WF***  % **WF*** & :BMOŽ[** B A A 83 % B &

TEST - 20 \"SUBO\"[BMBO'POLTJZPOMBS 1. f ( x ) = x3 - 3x2 - 24x + 1 5. f ( x ) = | x2 - 4 | - 3  GPOLTJZPOVOVOZFSFMNJOJNVNEFôFSJLBÀUŽS  GPOLTJZPOVOVONVUMBLNJOJNVNOPLUBMBSŽBSB- A) - # -69 C) -12 D) 0 E) 29 TŽOEBLJV[BLMŽLLBÀCJSJNEJS \"  #  $  %  &  2. G3Z3PMNBLÑ[FSF  6. f fonksiyonunun x =LBQTJTMJOPLUBTŽOEBZFSFMNBL- f ( x ) = x3 - 3x + a TJNVNVWBSTBGhh L <EŽS  f ( x ) = x3 + ax2 + bx +DGPOLTJZPOVOVO\"  -1 ) GPOLTJZPOVOVO ZFSFM NBLTJNVN EFôFSJ -  PM- EVôVOBHÌSF BHFSÀFMTBZŽTŽOŽOEFôFSJLBÀUŽS OPLUBTŽOEBZFSFMNBLTJNVNVWBSEŽS A) -3 B) -2 C) 0 D) 2 E) 3  #VOB HÌSF  B TBZŽTŽOŽO BMBCJMFDFôJ FO CÑZÑL UBNTBZŽEFôFSJJÀJODHFSÀFMTBZŽTŽLBÀUŽS A) 3 B) 2 C) 1 D) -2 E) -3 7. f ( x ) = ax3 + ( a - 1 ) x2 + 2x + 3 3. f : R Z3PMNBLÐ[FSF   GPOLTJZPOVOVO FLTUSFNVNV PMNBNBTŽ JÀJO B HFSÀFMTBZŽTŽOŽOBMBCJMFDFôJFOHFOJöEFôFSBSB- f ( x ) = ax3 + bx2 + 2  MŽôŽBöBôŽEBLJMFSEFOIBOHJTJEJS  GPOLTJZPOVOVO\" -  OPLUBTŽOEBZFSFMNJ- A) [ -3, -2 ] B) ( 0, 3 ) OJNVNVPMEVôVOBHÌSF BCÀBSQŽNŽLBÀUŽS C) ( -4, 4 ) D) 6 4 - 15, 4 + 15 @ E) 6 - 15 , 15 @ \"  #  $  %  &  8. a >PMNBLÐ[FSF    f ( x ) = ax3 + 2x2 + 3x - 5 4. f: R Z3PMNBLÐ[FSF   GPOLTJZPOVOVOUFSTJOJOPMBCJMNFTJJÀJOBHFSÀFM TBZŽTŽOŽOBMBCJMFDFôJFOHFOJöEFôFSBSBMŽôŽBöB- f ( x ) = x3 - 2ax2 + 3x -GPOLTJZPOVWFSJMJZPS ôŽEBLJMFSEFOIBOHJTJEJS y =Gh Y GPOLTJZPOVOVOZFSFMNJOJNVNEFôFSJ -PMEVô VOBHÌSF BHFSÀFMTBZŽTŽOŽOQP[JUJGEF- A) ; 2 , 3 m B) [ 0, R) ôFSJLBÀUŽS 9 A) 1 B) 2 C) 3 D) 5 E)  C) ;0 , 2 E D) ;0 , 4 E 9 9 E) ; 4 , 3 m 9 A A C C 84 % & % &

\"SUBO\"[BMBO'POLTJZPOMBS TEST - 21 1.  f ( x ) = x3 - x2 + a 4. ôFLJMEFLJHSBGJLZ=G Y GPOLTJZPOVOBBJUUJS  EFOLMFNJOJO GBSLMŽ ÑÀ SFFM LÌLÑ PMEVôVOB HÌ- y y = f(x) SF BHFSÀFMTBZŽTŽOŽOBMBCJMFDFôJFOHFOJöEFôFS BSBMŽôŽBöBôŽEBLJMFSEFOIBOHJTJEJS O1 x A) ( 0, 5 ) B) ( 0, 3 ) C) f - 4 , 4 p –4 –3 –2 5 27 27 D) c 0, 4 m E) c 0, 1 m 27 3 2. ôFLJMEF Z = G Y  GPOLTJZPOVOVO CJSJODJ UÐSFWJOJO #VOBHÌSF HSBGJóJWFSJMNJõUJS * x = -EFGGPOLTJZPOVOVOZFSFMNBLTJNVNV WBSEŽS y ** x =   EF  G GPOLTJZPOVOVO ZFSFM NJOJNVNV WBSEŽS *** -YEFGh Y EŽS *7 Gh -2 ) =EŽS 7 Gh - EŽS 7* Gh - G  EŽS 7** x ` ( -3, R JTFGh Y EŽS 7*** Gh - EŽS –5 O 1 4x  JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS –2 2 3 y = f'(x) \"  #  $  %  &   #VOBHÌSF Z=G Y GPOLTJZPOVOVOZFSFMNJOJ- 5. ôFLJMEFLJHSBGJLZ=G Y GPOLTJZPOVOBBJUUJS NVNOPLUBMBSŽOŽOBQTJTMFSJUPQMBNŽLBÀUŽS y y = f(x) A) -5 B) -3 C) -1 D) 1 E) 6 –5 –3 O 2 x –7 5 3. ôFLJMEF Z = G Y  GPOLTJZPOVOVO CJSJODJ UÐSFWJOJO  #VOBHÌSF HSBGJóJWFSJMNJõUJS * x = -UFGGPOLTJZPOVOVOZFSFMNJOJNVNVWBS- EŽS y ** x = - UF G GPOLTJZPOVOVO ZFSFM NBLTJNVNV WBSEŽS –3 –2 O 2 x *** Gh  =EŽS –5 4 6 89 *7 -YBSBMŽóŽOEBGh Y EŽS 7 x ` ( 2, R BSBMŽóŽOEBGh Y EŽS y = f'(x) 7* Gh - EŽS #VOBHÌSF Z=G Y GPOLTJZPOVOVOZFSFMNBL- 7** Gh -5 ) = f ( 5 ) TJNVNOPLUBMBSŽOŽOBQTJTMFSJUPQMBNŽLBÀUŽS  JGBEFMFSJOEFOLBÀUBOFTJEPôSVE VS \"  #  $  %  &  \"  #  $  %  &  % B % 85 B %

TEST - 22 \"SUBO\"[BMBO'POLTJZPOMBS 1. ôFLJMEFLJHSBGJLZ=Gh Y GPOLTJZPOVOBBJUUJS 3. ôFLJMEFZ=Gh Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y y 5 y = f'(x) 2 –3 1 –3 O O 14 x y = f'(x)  #VOBHÌSF   Z=G Y GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFO * y = f ( x ) fonksiyonunun x = -OPLUBTŽOEB IBOHJTJPMBCJMJS ZFSFMNJOJNVNVWBSEŽS ** y =Gh Y GPOLTJZPOVOVO   OPLUBTŽOEBZF-  A) y B) y SFMNBLTJNVNVWBSEŽS –3 2 x –2 13 x *** ( -R, - BSBMŽóŽOEBZ= f ( x ) fonksiyonu ar- O1 O UBOEŽS C) y D) y *7 Gh  WFG  ZPLUVS Ox 7 Gh - Ghh  EŽS Ox 7* Ghh  =EŽS –1 1 2 7** ( -3, R BSBMŽóŽOEBG Y GPOLTJZPOVBSUBOEŽS  JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS \"  #  $  %  &  E) y Ox 2. ôFLJMEFZ=Gh Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y y = f'(x) –7 –4 O2 6x 4. –2 x– a b c f' – + +–  #VOBHÌSF   :VLBSŽEBLJ JõBSFU UBCMPTV UÐN HFS¿FM TBZŽMBSEB * ( -R, - BSBMŽóŽOEBGGPOLTJZPOVB[BMBOEŽS UÐSFWMFOFCJMJSZ=G Y GPOLTJZPOVOVOUÐSFWJOFBJU- ** (-  BSBMŽóŽOEBGGPOLTJZPOVB[BMBOEŽS UJS *** x = - OPLUBTŽOEB G GPOLTJZPOVOVO ZFSFM  #VOBHÌSF  NBLTJNVNVWBSEŽS * Gh B Gh C =Gh D = 0 ** x =BOPLUBTŽOEBZ=G Y JOZFSFMNJOJNVNV *7 x =OPLUBTŽOEBGGPOLTJZPOVOVOZFSFMNJOJ- WBSEŽS NVNVWBSE ŽS *** x =COPLUBTŽOEBZ=G Y JOZFSFMNBLTJNV- 7 ( 2, R BSBMŽóŽOEBGhh Y EŽS NVWBSEŽS 7* ( -  BSBMŽóŽOEBGhh Y EŽS 7** Gh - Ghh - *7 DJTFG  G  UJS 7*** f ( -1 ) > f ( 3 ) 7 rx `3J¿JOG Y TÐSFLMJEJS  JGBEFMFSJOEFOLBÀUBOFTJEPôSVEVS  JGBEFMFSJOEFOLBÀUBOFTJEPôSVE VS \"  #  $  %  &  A) 1 B) 2 C) 3 D) 4 E) 5 C B 86 & C

\"SUBO\"[BMBO'POLTJZPOMBS TEST - 23 1. ôFLJMEFy =Gh Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 3. ôFLJMEFLJHSBGJLZ=G Y GPOLTJZPOVOBBJUUJS y y y = f'(x) –3 –2 2 4 x O –5 –2 O 1 4x 5  #VOBHÌSF BöBôŽEBLJMFSEFOIBOHJTJZBOMŽöUŽS  #VOBHÌSF  ^ x - 3 h.f^ x h 1 0FöJUTJ[MJôJOJTBôMB A) x = -EFZ=G Y GPOLTJZPOVOVOZFSFMNJOJ- f'^ x h NVNVWBSEŽS ZBOYEFôFSMFSJOJOBSBMŽôŽBöBôŽEBLJMFSEFOIBO B) x =EFZ=G Y GPOLTJZPOVOVOZFSFMNBLTJ- HJTJEJS NVNVWBSEŽS A) ( -3, -2 ) b ( 4, R) C)Ghh -2 ) =EŽS B) ( -3, -2 ) b ( 2, 3 ) D) f ( -2 ) < f ( 1 ) C) ( -3, -2 ) b ( 3, 4 ) E) f ( - < f ( -5 ) D) ( 2, 4 ) E) (-2, 2 ) b ( 3, R) 2. y y = G Y   EFSFDF- 4. y =G Y GPOLTJZPOVOVOUÐSFWJOJOHSBGJóJõFLJMEFWF- 3 y = f(x) EFOQPMJOPNVOHSB- –3 SJMNJõUJS GJóJWFSJMNJõUJS y O 1x y = f'(x) –2 1 x –1 O 2  Z=Gh Y GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFO  #VOBHÌSF Z=G Y GPOLTJZPOVOVOHSBGJôJBöB- IBOHJTJEJS ôŽEBLJMFSEFOIBOHJTJPMBCJMJS  A) y B) y –3 – 1  A) y B) y 3 Ox O x 1 1 1 –2 –1 O –1 O x 12 x C) y D) y –5 3 Ox O 2x C) y D) y 1 –2 –2 O2 x O2 –2 x E) y E) y O 3x 1 Ox & C 87 B %

TEST - 24 \"SUBO\"[BMBO'POLTJZPOMBS 1. ôFLJMEFLJHSBGJLPSJKJOFHËSFTJNFUSJLPMBOZ=Gh Y  g_ x i , g_ x i $ h_ x i 3. f_ g_ x i, h_ x i i = * g_ x i < h_ x i GPOLTJZPOVOBBJUUJS , y h_ x i 2 y = f'(x)  GPOLTJZPOVUBOŽNMBOŽZPS  #VOBHÌSF Z=G Y2 Y+ GPOLTJZPOVJMFJMHJ- MJPMBSBLWFSJMFO –3 x * .VUMBLNJOJNVNEFóFSJPMVS O 3 –2 ** .VUMBLNBLTJNVNEFóFSJZPLUVS *** :FSFMFLTUSFNVNEFóFSJZPLUVS GGPOLTJZPOV3EFTÑSFLMJPMEVôVOBHÌSF   JGBEFMFSEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS * y = f ( x ) fonksiyonunun x =BQTJTMJOPLUBTŽO- \" :BMOŽ[* # *WF** $ :BMOŽ[*** EBNVUMBLNBLTJNVNVWBSEŽS  % **WF*** & *WF*** ** y =G Y GPOLTJZPOVOVOUBOFZFSFMNJOJNVN OPLUBTŽWBSEŽS *** f ( - LG  FõJUTJ[MJóJOJTBóMBZBOLHFS¿FM TBZŽTŽJ¿JOG Y =LEFOLMFNJOJOUBOFGBSLMŽLË- LÐWBSEŽS  ZBSHŽMBSŽOEBOIBOHJMFSJLFTJOMJLMFEPôSVEVS 4. y =G Y GPOLTJZPOVJMFJMHJMJPMBSBL \" :BMOŽ[* # **WF*** $ *WF*** r ¥JGUGPOLTJZPOEVS r G  G  G  EŽS  % *WF** & * **WF*** r(FS¿FM TBZŽMBS LÐNFTJOEF UÐSFWMFOFCJMJS CJS 2. (FS¿FLTBZŽMBSLÐNFTJOEFTÐSFLMJCJSGGPOLTJZPOV- GPOLTJZPOEVS OVOUÐSFWJOJOHSBGJóJBõBóŽEBLJõFLJMEFWFSJMNJõUJS  #VOBHÌSF Z=G Y GPOLTJZPOVOVOFLTUSFNVN y OPLUBMBSŽOŽOTBZŽTŽFOB[LBÀUŽS  A) 2 B) 3 C) 4 D) 5 E) 6 2 O 2x y = f'(x) –1 –2  #VOBHÌSF 5. f : R Z R * GGPOLTJZPOV < >BSBMŽóŽOEBBSUBOEŽS ** G Y FõJUMJóJOJTBóMBZBOUBOFYHFS¿FLTB- x, 0#x<2 ZŽTŽWBSEŽS   f_ x i = * *** GGPOLTJZPOVOVOZFSFMFLTUSFNVNOPLUBMBSŽOŽO 4-x , 2#x<5 PSEJOBUMBSŽGBSLŽOŽONVUMBLEFóFSJPMVS  fonksiyonu r x ` 3 J¿JO G Y  = f (x +   FõJUMJóJOJ TBóMŽZPS  #VOBHÌSF Z=G Y GPOLTJZPOVOVOFLTUSFNVN OPLUBMBSŽOEBOLBÀUBOFTJ   BSBMŽôŽOEBLB- MŽS  JGBEFMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS \" :BMOŽ[* # *WF** $ *WF*** A) 20 B) 25 C) 40 D) 41 E) 50  % **WF*** & * **WF*** B C 88 B % A

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, .\",4÷.6..÷/÷.6.130#-&.-&3÷ TANIM ÖRNEK 3 #JSGPOLTJZPOVNBLTJNJ[FWFZBNJOJNJ[FFUNF ¦FWSFTJCSPMBOEJLEÌSUHFOMFSEFOLÌöFHFOJFOLÑ- QSPCMFNJOJO¿Ë[ÐNÐOÐ ¿Ë[ÐNJ¿JOJ[JOWFSJMFO ÀÑLPMBOŽOBMBOŽLBÀCS2EJS CJS LÐNF EBIJMJOEFLJ EFóFSMFSJOJ TJTUFNBUJL CJS õFLJMEF LVMMBOBSBL BSBNB JõMFNJOF PQUJNJ[BT- B2+C2=L2WFB+C=JÀJO 6 ZPOEFOJS'J[JL CJZPMPKJ NÐIFOEJTMJL FLPOPNJ –+ HJCJCJS¿PLBMBOEBFOJTUFOJMFOTPOVDVFMEFFU- ,ÌöFHFO V[VOMVôVOVO LBSFTJOJ NFLBNBDŽZMBLVMMBOŽMŽS WFSFOGPOLTJZPOL B PMTVO L B =B2+ -B 2  .BLTJNVN  NJOJNVN QSPCMFNMFSJOEF UÐSFW ZBSEŽNŽZMB FO JTUFOJMFO TPOV¿MBSŽ FMEF FUNFZF Lh B =B+ -B  - =B- ¿BMŽõBDBóŽ[#VOVOJ¿JOJTUFOJMFOJGBEFZJUFLEF- óJõLFOMJGPOLTJZPOIºMJOFHFUJSFSFLCVGPOLTJZP- \"MBO== OVO CFMJSMFONJõ LÐNFEF BMBCJMFDFóJ FO CÐZÐL ÖRNEK 4 FOLпÐL EFóFSMFSJIFTBQMBZBDBóŽ[ \",ËõFMFSJ пHFOJO Ð[FSJOEF PMBO NBLTJNVN BMBOMŽ EJL- ÖRNEK 1 EËSUHFOJO BMBOŽ пHFOJO BMBOŽOŽO ZBSŽTŽEŽS ÌOFSNFTJ- OJO EPôSV PMEVôVOV WFZB ZBOMŽö PMEVôVOV JTQBUMB- 'BSLMBSŽ  PMBO JLJ TBZŽOŽO ÀBSQŽNŽOŽO FO LÑÀÑL EF- ZŽOŽ[ ôFSJLBÀUŽS A ha ·ÀHFO 2 h–x %JLEÌSUHFOYZ Y-Z=JTF 3 K yh M h-x = y &y= a ^h-xh YZ=Y Y- =-Y2+Y2 –+ x ha h -+Y=jY= YZ=-=-9 BL NC a \"MBO=ZY= a ^ hx - x2 h = A^ x h h/2 h +– A'^ x h = c ^ h - 2x h x = h a , y =  h 22 xy Ü çgenin Alan› Alan = = 42 ÖRNEK 2  f ( x ) = x2 - 9x + 10 ÖRNEK 5 FôSJTJOJO IBOHJ OPLUBTŽOEBLJ LPPSEJOBUMBSŽ UPQMBNŽ Y - Z =  EPôSVTV  0Y WF 0Z FLTFOMFSJOJO PMVö- NJOJNVNEVS UVSEVôVÑÀHFOJOJÀJOFÀJ[JMFOCJSLÌöFTJEPôSVÑ[F- SJOEF PMBO EJLEÌSUHFOMFSEFO FO CÑZÑL BMBOMŽ PMBOŽO Y+G Y =Y2-Y+=5 Y  4 BMBOŽLBÀCS2EJS 5h Y =Y- –+ G  =-+=- 6.8 PMEVôVOEBO  - y \" \"#0 = = 24 O 2 –6 8 x 24 B A %JLEÌSUHFO= = 12 2 –9  m 89 36%PôSVEVS12

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 8 :BSŽ¿BQV[VOMVóVDNPMBOCJSEBJSFOJOJ¿FSJTJOEFOLË- NFUSFUFMJMFÀFWSJMFCJMFOEJLEÌSUHFOCJÀJNJOEFLJ õFMFSJEBJSFOJO¿FWSFZBZŽOŽOÐ[FSJOEFPMBDBLõFLJMEFCJS UBSMBOŽOBMBOŽFOÀPLLBÀN2EJS EJLEËSUHFOLFTJMFSFL¿ŽLBSŽMŽZPS B+C=PMNBLÑ[FSF #VOB HÌSF  HFSJZF LBMBO CÌMHFOJO BMBOŽ FO B[ LBÀ \"MBO=BC=B -B =\" B DN2PMVS \"h B =-B-B=jB= \"MBO== a B2+C2=PMNBLÑ[FSF b BC OJO FO CÑZÑL EFôFSJOJ BSŽ- 12 ZPSV[ 24 a.b = a 144 - a = 1440.a = f^ a h Gh B =B-B 0 62 ÖRNEK 9 .BLTJNVNEJLEÌSUHFOBMBOŽ – +– JÀJO a = b = 6 2  #JS¿JGU¿JOJOFMJOEFNFUSFMJL¿JUZBQNBZBZFUFDFLNBM- [FNFWBSEŽS#VNBM[FNFMFSMFCJSCJSMFSJZMFLFTJõNFZFO $FWBQCVEVSVNEBÖ-PMVS JLJUBOFLBSFõFLMJOEFLBQBMŽCËMHFPMVõUVSBDBLWFCVCËM- HFMFSFJLJBZSŽDJOTUBWVLLPZBDBLUŽS #VOB HÌSF  CV CÌMHFMFSJO UPQMBN BMBOŽ FO B[ LBÀ N2PMVS ,BSFMFSJOCJSBZSŽUŽOŽOV[VOMVôVBWFCNFUSFPMTVO ÖRNEK 7 4a + 4b = 32 _ b b Garaj Çardak :BOEBLJ LSPLJEF FW  a+b = 8 2 + ^ 8 - a h2 = A^ a h bb j2+2= 3m HBSBK ¿BSEBLWFCBI- a2 + b2 = ` ¿F BZSŽUMBSŽ  N WF a b NPMBOCJSBSTBZB ZFSMFõUJSJMNJõUJS #BI- 2a + 2a - 16 = 0 b ¿FOJO LFOBSMBSŽOEBO bb õFLJMEFLJ V[VOMVLMBS- a=4 a EB NFTBGF CŽSBLŽMB- Havuz 18 m SBL ZÐ[NF IBWV[V Ev 1 m 1m CBI¿FZFFLMFONJõUJS 2m ÖRNEK 10 16 m 5BCBOZBSŽÀBQŽCS ZÑLTFLMJôJCSPMBOLPOJOJOJÀJ- )BWV[VO BMBOŽ  N2 PMEVôVOB HÌSF  CBIÀFOJO BMB- OF ÀJ[JMFO FO CÑZÑL IBDJNMJ TJMJOEJSJO UBCBO ZBSŽÀB- OŽFOLÑÀÑLEFôFSJOJBMEŽôŽOEB HBSBKŽOBMBOŽLBÀN2 QŽLBÀCSEJS PMVS 6-h r  = jI=-S YZ=  6–h 62 Y+  Z+ =# 6 2 h 40 200 r x x πr h = π r2 ^ 6 - 3r h=) S 2 33 #= Y+  d + 2 n=+Y+ + H'^ r h = π : 12r - 2 D = 0 200 3 9r #h Y =- 2 =jY=WFZ= 4 r= x 3 (BSBK= -  - ==N2 ÖmN2 4   3

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 11 ÖRNEK 13 G WF H JLJODJ EFSFDFEFO GPOLTJZPOMBSŽO HSBGJLMFSJ BSBTŽOB D2 C õFLJMEF WFSJMFO ZBNV- 2 ôVOBMBOŽOŽOFOÀPLPM- õFLJMEFLJHJCJEJLEËSUHFOZFSMFõUJSJMJZPS Ax 2 NBTŽJÀJOYLBÀPMNBMŽ- y y = g(x) EŽS 4 DC B –2 O 2 x D2C 1 –1 B 2 4 – a2 2 A 2 –1 y = f(x) a a A B :FSMFöUJSJMFOEJLEÌSUHFOJOBMBOŽFOCÑZÑLPMBOŽJÀJO# (124+422+424a3) · 4 - 2 = A^ a h OPLUBTŽOŽOBQTJTJLBÀUŽS a 2 G Y =-Y2WFH Y =Y2- ^ a + 2 h,a 4 - 2 k = A^ a h a |AB|=BJÀJO 1. 4 - a2 + ^ a + 2 ha - 2 a k = A' (a) # B B2- $ B -B PMVS 2· 4 - 2 a #VEVSVNEB|BC|=-B2EJS -B2-B2-B= - B2+B- =jB= Y= \" B =B -B2 =B-B3 A'^ a h = 10 - 2 = 0 &a= 5 12a 6 ÖRNEK 14 :BSŽÀBQŽDNPMBOCJSLÑSFOJOJÀFSJTJOFZFSMFöUJSJMF- CJMFONBLTJNVNIBDJNMJEJLLPOJOJOZÑLTFLMJôJLBÀ DNEJS ÖRNEK 12 3 x2 - ( a - 2 ) x + 3 - a = 0 x3 r EFOLMFNJOJO LÌLMFSJOJO LBSFMFSJOJO UPQMBNŽOŽO NJOJ- NVNPMNBTŽJÀJOBHFSÀFMTBZŽTŽLBÀPMNBMŽEŽS x +x =a-2 S2+Y2=I=+Y 12  π2 π x x =3-a ·r ·h = a 9 - 2 k^ x + 3 h =) Y 12 33 x 2 + 2 = 2 - 4a + 4 - 6 + 2a H'^ x h = π :^ - 2x h^ x + 3 h + a 9 - 2 kD x x a x 12 3 T^ a h = a2 - 2a + 4 = π a - 3x2 - 6x + 9 k 5h B =B-=jB= 3 = π ^ - 3 h^ x + 3 h^ x - 1 h 3 Y=I=4 5 91 44  1 6

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 15 ÖRNEK 18 y = 2x3 - 6x2 - 5x + 1 FôSJTJOFÀJ[JMFOUFôFUMFSEFO 0OPLUBTŽOEBONFUSFEPóVEBCVMVOBO\"MQFSNEL FôJNJFOF[PMBOŽOUFNBTOPLUBTŽOŽOPSEJOBUŽLBÀUŽS IŽ[MBCBUŽZB NFUSFLV[FZEFCVMVOBO\"INFUJTF  NELIŽ[MBHÐOFZFHJUNFLUFEJS Z=G Y JÀJO Gh Y =Y2-Y- Kuzey Ghh Y =Y- V1=3 m/dk Y-=jY= 200m G  =--+=-8 220m ÖRNEK 16 #BUŽ %PóV 5BOFTJ5-EFOÐSFUJMFCJMFOCJSÐSÐOÐOTBUŽõGJZBUŽ5- O V2=5 m/dk PMBSBLCFMJSMFOEJóJOEFBEFUTBUŽMBCJMJZPS Güney #VÑSÑOÑOGJZBUŽOEBZBQŽMBOIFS5-MJLJOEJSJNEF #VOBHÌSF BSBMBSŽOEBLJV[BLMŽLFOB[PMEVôVBOEB0 BEFU GB[MB TBUŽö ZBQŽEŽôŽOB HÌSF  CV ÑSÑOÑO TBUŽöŽO- OPLUBTŽOBPMBOV[BLMŽLMBSŽOŽOUPQMBNŽLBÀUŽS EBOFOGB[MBLBÀ5-L»SFMEFFEJMJS E U = -U 2+ U- 2 ,»S Y = +Y  -Y- Eh U = -U  - + U-   = +Y  -Y Eh U = U- =jU= ,h Y = -Y + +Y  - \"MQFSNFUSF ,h Y =-Y--Y \"INFUNFUSF ,h Y =-Y +=NFUSF -Y=jY= ,  =    = ÖRNEK 19 ÖRNEK 17 ,BMEŽSŽN Anne ,VNMVL BMBOEB PZOB- ZBO&MJG BOOFTJOJO¿B- LJõJMJLCJSTUBEZVNBTBIJQCJSGVUCPMUBLŽNŽOŽOTF- 80 m óŽSNBTŽ Ð[FSJOF FO LŽ- ZJSDJMFSJOEFONB¿CBõŽOBTBCJU5-ÐDSFUJTUFONJõUJS 170 m TB TÐSFEF BOOFTJOJO \"ODBLTFZJSDJMFSNB¿BJMHJHËTUFSNFNJõWFTFZJSDJ ZBOŽOBLPõBSBLHJUNFL NB¿BHJUNJõUJS#VOVOÐ[FSJOFZËOFUJNCJMFUGJZBUMBSŽOEB Elif Kumluk alan JTUJZPS &MJGhJO LVNEBLJ ZBQUŽóŽIFS5-MJLJOEJSJNMFSEFTFZJSDJTBZŽTŽOŽO ,BMEŽSŽN IŽ[Ž  NEL  LBMEŽSŽN- LJõJBSUUŽóŽOŽCFMJSMFNJõUJS5BLŽNŽONB¿HFMJSMFSJOJOFOÐTU EBLJIŽ[ŽNELEŽS TFWJZFZF HFMEJóJ BOEB CJS LF[ EBIB JOEJSJN LBSBSŽ BMBO ZËOFUJNJOZBQUŽóŽIFS5-JOEJSJNEFTFZJSDJTBZŽTŽ ,BMEŽSŽNBV[BLMŽôŽN BOOFTJOFPMBOV[BLMŽôŽ LJõJBSUNŽõUŽS NPMBO&MJGhJOLBMEŽSŽNBJMLÀŽLUŽôŽBOEBBOOFTJOFPMBO #VOBHÌSF CVTF[POCPZVODBCJSNBÀUBFOGB[MBHF- V[BLMŽôŽNFUSFPMVS MJSFMEFFEJMEJôJOEFTUBEZVNEBFOB[LBÀLPMUVLCPö LBMNŽöUŽS  .B¿MBSBCJMFUTJ[TFZJSDJBMŽONBNŽõUŽS f^ x h = 6400 + 2 + 150 - x x A 80 150–x +Y  -Y =( Y x (h Y = -Y - +Y -Y=jY= 6 10 G2 Y = +Y = -Y G2h Y = -Y - +Y f' ( x) = 2x 1 G2h Y =-Y--Y - =0 =-Y 10 Y= UBNTBZŽPMNBEŽôŽJÀJOFOB[CPöLPMUVLJÀJO 2 6400 + 2 .6 Y=PMVSLPMUVLEPMV LPMUVLCPö 640+x2 x E Y= 6400 + 2 x 2 = 36.a 6400 + 2 k 100x x Y2=jY=j-Y= –8 92 NN

.BLTJNVN.JOJNVN1SPCMFNMFSJ TEST - 25 1. f ( x ) = x3 + 4x2 + 5x + 3 5. :BSŽÀBQŽ 8 2 DNPMBOCJSÀFNCFSÑ[FSJOEFLÌ  GPOLTJZPOVOB ÀJ[JMFO UFôFUMFSEFO FôJNJ FO LÑ- öFMFSJCVMVOBOFOCÑZÑLBMBOBTBIJQ\"#$%EJL- ÀÑLPMBOŽOŽOFôJNJOFEJS EÌSUHFOJOJOBMBOŽLBÀDN2EJS A) 2 B) - 1 C) - 4 D) - 2 E) - 5 3 333 \"  #  $  %  &  2. ¦FWSFTJ  CS PMBO EJLEÌSUHFOMFSEFO LÌöFHFOJ 6. 4x - 3y = NJOJNVNPMBOŽOŽOBMBOŽLBÀCJSJNLBSFEJS  EPôSVTVOVO Y WF Z FLTFOMFSJ JMF PMVöUVSEVôV ÑÀHFOJO JÀJOF ÀJ[JMFO CJS LÌöFTJ EPôSV Ñ[FSJO- \"  #  $  %  &  EF PMBO EJLEÌSUHFOMFSEFO FO CÑZÑL BMBOMŽ PMB- OŽOBMBOŽLBÀCJSJNLBSFEJS \"  #  $  %  &  3.  DN V[VOMVóVOEB CJS UFM JLJ QBS¿BZB BZSŽMŽZPS 7. y = x FóSJTJÐ[FSJOEF CJSLFOBSŽY=EPóSVTV 1BS¿BMBSEBOCJSJOEFOLBSF CJSJOEFOFõLFOBSпHFO Ð[FSJOEFCVMVOBO\"#$%EJLEËSUHFOJWFSJMNJõUJS PMVõUVSVMVZPS  #VJLJBMBOUPQMBNŽOŽONJOJNVNPMNBTŽJÀJOLB SFOJOCJSLFOBSŽLBÀDNPMNBMŽEŽS 20 3 40 3 60 3 y y= x A) B) C) D C 9+4 3 9+4 3 9+4 3 80 3 90 3 D) E) 9+4 3 9+4 3 OA Bx x = 16  #VOB HÌSF  \"#$% EJLEÌSUHFOJOJO BMBOŽ FO ÀPL LBÀCJSJNLBSFEJS 4. ¦FWSFTJ  CJSJN PMBO JLJ[LFOBS ÑÀHFOMFSEFO A) 64 B) 80 C) 128 33 33 33 BMBOŽFOCÑZÑLPMBOŽOBMBOŽLBÀCJSJNLBSFEJS D) 256 E) 100 400 200 100 33 3 A) B) C) 33 33 33 D) 50 E) 40 33 33 B A C A 93 C % C

TEST - 26 y = f(x) .BLTJNVN.JOJNVN1SPCMFNMFSJ 1. y 4. #JSLFOBSŽOŽOV[VOMVóVDNPMBOLBSFõFLMJOEF- AB x LJ CJS LBSUPOVO IFS LËõFTJOEFO Fõ LBSFMFS LFTJMJQ OC LBUMBO BSBLÐTUÐB¿ŽLEJLEËSUHFOMFSQSJ[NBTŽõFLMJO- EFCJSLVUVZBQŽMBDBLUŽS  #VLVUVOVOIBDNJFOGB[MBLBÀDN3UÑS \"  #  $  %  &   y = ( x - 3 )2 QBSBCPMÑOÑOÑ[FSJOEFLJCJS#OPL- UBTŽJMFPMVöUVSVMBOöFLJMEFLJ0\"#$EJLEÌSUHF- OJOJOBMBOŽFOÀPLLBÀCJSJNLBSFEJS \"  #  $  %  &  2. D 6 C 5. 5BCBOZBSŽÀBQŽCS ZÑLTFLMJôJCSPMBOEJLLP 66 OJOJOJÀJOFZFSMFöUJSJMFOFOCÑZÑLIBDJNMJLÑSF- OJOZBSŽÀ BQŽLBÀCJSJNEJS  A) 1 B) 2 C) 3 D) 4 E) 5 Ax B | | \"#$%ZBNVL  AB =YDN  | AD | = | DC | = | BC | =DN  #VOBHÌSF ZBNVôVOBMBOŽOŽONBLTJNVNPMNB- TŽJÀJOYLBÀDNPMNBMŽEŽS \"  #  $  %  &  6. :BSŽÀBQŽ  DN PMBO LÑSFOJO JÀJOF ZFSMFöUJSJMFCJ MFONBLTJNVNIBDJNMJEJLLPOJOJOIBDNJLBÀ rDN3UÑS 3. \"  #  $  220 3 y D) 256 4 3 E) 100 AD –2 B x OC 2 y = f(x)  õFLJMEFLJQBSBCPMJÀJOFZFSMFöUJSJMFO\"#$%EJL- 7. 5BCBOZBSŽÀBQŽCJSJN ZÑLTFLMJôJCJSJNPMBO EÌSUHFOJOJOBMBOŽFOÀPLLBÀCJSJNEJS LPOJOJO JÀJOF ZFSMFöUJSJMFO FO CÑZÑL IBDJNMJ TJ- 16 3 83 32 3 MJOEJSJOIBDNJLBÀrCJSJNLÑQUÑS A) B) C) \"  #  $  %  &  9 3 9 16 3 40 3 E) D) 3 9 B B C 94 & C % B

.BLTJNVN.JOJNVN1SPCMFNMFSJ TEST - 27 1. /FIJSLFOBSŽOEBEJLEËSUHFOõFLMJOEFLJCJSCBI¿FOJO 4. #JSLJMJNÐSFUJDJTJ UBOFTJ- YMJSBPMBOLJMJN- FUSBGŽOFIJSUBSBGŽOEBLJLFOBSIBSJ¿NFUSFUFMJMF MFSEFOIBGUBEBYUBOFTBUŽZPSYUBOFLJMJNJOUPQMBN ¿FWSJMFDFLUJS NBMJZFUJY+MJSBEŽS  #V LJMJNDJOJO FO ZÑLTFL L»SŽ FMEF FEFCJMNFTJ BAHÇE JÀJOIBGUBEBLBÀBEFULJMJNTBUŽMNBMŽEŽS A) 600 B) 500 C) 450 D) 400 E) 300 5. V  #VOB HÌSF  UFM JMF ÀFWSJMFO CBIÀFOJO BMBOŽ FO 2 = 1 km / sa ÀPLLBÀNFUSFLBSFPMBCJMJS \"  #  $  %  &  A 2. ôFLJMEFBMBOŽDN2PMBOEJLEËSUHFOCJ¿JNJOEFLJ 6km LBSUPOVOJ¿FSJTJOFTBóWFTPMEBODN BMUWFÐTUTŽ- 60° OŽSMBSEBODNV[BLMŽLPMBDBLõFLJMEFSFTJNZFSMFõ- B UJSJMJZPS V1 = 3km/sa 2 DC  :VLBSŽEBLJõFLJMEF\"WF#OPLUBMBSŽOEBO71WF72 11 IBSFLFUMJMFSJ TŽSBTŽZMB  LNTB WF  LNTB IŽ[MBSMB AB ZPMB¿ŽLŽZPSMBS 2  \" WF # OPLUBMBSŽ BSBTŽ V[BLMŽL  LN PMEVôVOB  #VOBHÌSF SFTNJOBMBOŽFOÀPLLBÀDN2PMVS \"  #  $  %  &  HÌSF CVJLJIBSFLFUMJOJOLBÀTBBUTPOSBBSBMBSŽO- EBLJNFT BGFFOLŽTBPMVS A) 2 3 C) 4 5 E) 1 7 B) 7 D) 7 7 6. %FOJ[EFZÐ[FOCJSLJõJOJOLŽZŽZBV[BLMŽóŽNFU SFEJS OTEL A 2000 m 500 m CB 3. #JS LBNZPO GBCSJLBTŽ ZŽMEB UBOFTJ  MJSBEBO  | AB | =NFUSFEJS#VLJõJOJOZÐ[NFIŽ[Ž  LBNZPO TBUŽZPS )FS CJS LBNZPOVO  MJSB NEL ZÐSÐNFIŽ[ŽNELEŽS EBIB VDV[B TBUŽMNBTŽ IBMJOEF ZŽMEB  LBNZPO EBIBGB[MBTBUŽMBCJMJZPS  #V LJöJ FO LŽTB TÑSFEF PUFMJOF WBSNBTŽ JÀJO \" EBO LBÀ NFUSF V[BLMŽLUB $ OPLUBTŽOB ÀŽLNBMŽ  #VOBHÌSF ZŽMMŽLFOCÑZÑLLB[BODŽTBôMBZBDBL EŽS LBNZPOGJZBUŽLBÀMJSBPMNBMŽEŽS 100 150 200 250 300 A) 55000 B) 50000 C) 45000 A) B) C) D) E) D) 40000 E) 35000 6 6 666 A C % 95 B B %

TEST - 28 .BLTJNVN.JOJNVN1SPCMFNMFSJ 1. y = x 5. \"ó[ŽB¿ŽLTJMJOEJSõFLMJOEFLJUFOFLFLBWBOP[-TV  FôSJTJOJO\"   OPLUBTŽOBFOZBLŽOOPLUBTŽOŽO BMBCJMNFLUFEJS BQTJTJLBÀUŽS  ÷NBMBUUBLVMMBOŽMBOUFOFLFOJONJOJNVNNJLUBS- A) 1 B) 2 5 E) 7 EBPMBCJMNFTJJÀJO TJMJOEJSJLLVUVOVOUBCBOZBSŽ- C) D) 3 ÀBQŽLBÀDNPMNBMŽEŽS 22 A) 2000 B) 3 2000 C) 3 1000 π π π 1000 E) 100r D) π 2. y = 4 - x2 QBSBCPMÑOÑOCJSJODJCÌMHFEFLJHSBGJ ôJOJOÑ[FSJOEFLJCJS\" B C OPLUBTŽOEBOÀJ[JMFO UFôFUJOLPPSEJOBUFLTFOMFSJJMFPMVöUVSEVôVÑÀ HFOJOBMBOŽONJOJNVNPMNBTŽJÀJOBLBÀPMNBMŽ EŽS 3 3 23 6. :BSŽ¿BQŽYDNPMBOCJSEBJSFEFOCJSEJMJNLFTJMJQLŽW A) B) C) SŽMBSBLCJSEJLLPOJOJOZBOZÐ[ÐLBQBUŽMBDBLUŽS 9 3 3 E) 2 3 D) 3  ,POJOJO FO CÑZÑL IBDJNMJ PMNBTŽ JÀJO LFTJMFO EJMJNJO NFSLF[ BÀŽTŽOŽO ÌMÀÑTÑ LBÀ EFSFDF PM NBMŽEŽS A) 180  # 0 C) 120 6 2 E) 360 D) 240 3. A ( 3, 4 ) OPLUBTŽOEBOHFÀFOWF*CÌMHFEFLPPS EJOBU FLTFOMFSJZMF NJOJNVN BMBOMŽ CJS ÑÀHFO PMVöUVSBOEPôSVOVOFôJNJLBÀUŽS A) -2 B) - 4 C) -1 D) - 2 E) - 1 7. 0 1 x 1 3 4 PMNBLÐ[FSF 3 3 3  y = 1 x2 2  y= x 4. y = k  FôSJMFSJOJOPMVöUVSEVôVLBQBMŽCÌMHFEF FôSJMFSF ÀJ[JMFOWFYFLTFOJOFEJLPMBOLJSJöMFSEFOV[VO x MVôVFOCÑZÑLPMBOŽOŽOV[VOMVôVLBÀCJSJNEJS  GPOLTJZPOVOVO CBöMBOHŽÀ OPLUBTŽOB FO ZBL ŽO A) 3 1 - 3 1 B) 3 1 OPLUBTŽOŽO CBöMBOHŽÀ OPLUBTŽOB V[BLMŽôŽ 4 2  2 128 2 PMEVôVOBHÌSF LHFSÀFMTBZŽTŽLBÀUŽS C) 3 1 - 3 1 D) 3 1 - 3 1 A) 1 B) 4 C) 9 D) 16 E) 25 8 72 16 512 E) 3 1 16 & C B % 96 B C A

www.aydinyayinlari.com.tr -÷.÷57&5·3&7 .0%·- ·/÷7&34÷5&:&)\";*3-*, 10-÷/0.(3\"'÷,-&3÷ TANIM ÖRNEK 1 P ( x ) = anxn + an-1xn-1 ++ a0 f ( x ) = x2 - 3x + 2 QPMJOPNVOVOHSBGJôJOJÀJ[JOJ[  CJ¿JNJOEFLJ GPOLTJZPOMBSŽO QPMJOPN  HSBGJLMFSJ ¿J[JMJSLFO G Y =jY2-Y+= y y = f(x) 1. P ( x ) =   EFOLMFNJOJO WBSTB LËLMFSJ CVMV- Y=WFY= OVS %FSFDFTJ UFL PMBO LËLMFS FLTFOJ LFTFS- 23 x LFO ¿JGUPMBOMBSFLTFOFUFóFUPMVS Gh Y =Y- O 122 y J  P(x) = Y-B MPLBM 3 – 1 PMBSBLHSBGJLWFYFLTFOJ- 2 4 –+ a O a x OJLFTFSHF¿FS 99 1 - +2 =- 42 4 y JJ P ( x ) =  Y - b)2n  ÖRNEK 2 (n ` /+ J¿JO  MPLBM PMB- b SBL HSBGJL Y FLTFOJOF UF- f ( x ) = ( 2 - x ) ( x + 1 ) QPMJOPNVOVOHSBGJôJOJÀJ[JOJ[ Ob x óFUPMVS y JJJ P(x) = Y-D 2n + 1 G Y =JTFY1= Y2=-1 cO c (n `/+J¿JO MPLBMPMBSBL Gh Y =-Y-+-Y=-Y-1 x HSBGJLYFLTFOJOJIFNLF- 1  y TFS IFN EF Y FLTFOJOF 2 3 UFóFUPMVS +– 4 P ( x ) = k (x - a) (x - b)2 (x -D 3J¿JO  2 a < b <DWFL` R-JTF –1 2 x d2- 1 nd 1 +1n= 3 O1 2 22 4 y = f(x) ab x ekseni c 2. #BõMBOHŽ¿WFCJUJõCËMHFMFSJJODFMFOJS BO O FOTPM FOTBô ÖRNEK 3 QP[JUJG UFL CËMHF CËMHF f ( x ) = ( x - 1) (x + 2) ( x + 1 ) QP[JUJG ¿JGU CËMHF CËMHF QPMJOPNVOVOHSBGJôJOJÀJ[JOJ[ OFHBUJG UFL CËMHF CËMHF Y= Y=-WFY=-UFLEFSFDFMJLÌLMFS y OFHBUJG ¿JGU CËMHF CËMHF y = f(x) 3. 5ÐSFW ZBSEŽNŽZMB QPMJOPNVO BSUŽQ  B[BMEŽóŽ –2 –1 O 1 x ZFSMFS  ZFSFM FLTUSFNVN WF NVUMBL FLTUSF- –2 NVNOPLUBMBSŽCVMVOVS 97

·/÷7&34÷5&:&)\";*3-*, .0%·- -÷.÷57&5·3&7 www.aydinyayinlari.com.tr ÖRNEK 4 ÖRNEK 6 f ( x ) = ( x - 1) ( 2 - x )2 ( 3 - x ) f ( x ) = x3 -YWFH Y = 4 - 2x2GPOLTJZPOMBSŽWFSJMJZPS QPMJOPNVOVOHSBGJôJOJÀJ[JOJ[ #VOBHÌSF G Y =H Y FöJUMJôJOJTBôMBZBOLBÀUBOFY HFSÀFMTBZŽTŽWBSEŽS Y= Y=UFLLBU Y=ÀJGULBULÌLMFSEJSG  =-12 G Y =Y3-Y –1 1 G Y = Y2-Y+  Y- 2 Gh Y =Y- + –+ =-[ Y- 4- Y- 2]   3 WF - 3  Gh Y =-  Y- 2- Y-   =-  Y-   Y- 2-  UFLLBULÌL H Y =-Y2  x = 2 ve x = - 2 UFLLBULÌL   ZF- 2– 1 2+ 1 SFMNBLTJNVN  2 22 + –+– y  OPLUB FöJUMJôJ TBô- MBS BWFC  y = f(x) y 1 3 x –3 bx O 2–1 2 2+1 aO 3 2 2 –12 y = f(x) ÖRNEK 5 ÖRNEK 7 f ( x ) = ( x - 1)3 (x + 1)2 f ( x ) = 2x3 - 6x2 -Y+ 5 QPMJOPNVOVOHSBGJôJOJÀJ[JOJ[ GPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ Y= Y=EFSFDFEFOUFLLBU Y=-ÀJGULBULÌL  Gh Y =Y2-Y-= –1 3  Y-  Y+ + – + G  =-1  Y- 2 Y+ 2+ Y+  Y- 3 f(–1) = 15 f(3) = 49 Y- 2 Y+  (134x4+4432+ 24x4-423)  y 5x + 1 y 15 y = f(x) –1/5 O y = f(x) 5 3 x –1 x –1 O 1 –1 –1 –1/5 1 –49 + – ++ 98 UBOF


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook