Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دليل أول ثانوي أدبي

دليل أول ثانوي أدبي

Published by أم ورد, 2020-12-07 20:57:01

Description: دليل أول ثانوي أدبي

Search

Read the Text Version

‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫الاقتران الحقيقي‪.‬‬ ‫الف�صل ا ألول‪:‬‬ ‫النتاجات‬ ‫‪- -‬ير�سم منحنى اقتران من الدرجة الثانية على ا ألكثر‪.‬‬ ‫‪- -‬يجد المجال والمدى لاقتران من الدرجة الثانية على الأكثر‪.‬‬ ‫‪- -‬ي�ستق�صي المجال والمدى لاقترانات الجذور‪.‬‬ ‫‪- -‬يتعرف الاقتران الن�سبي‪.‬‬ ‫‪- -‬يجد مجال الاقتران الن�سبي‪.‬‬ ‫‪ - -‬يتعرف الاقتران الك�سري‪.‬‬ ‫‪ - -‬يجد مجال الاقتران الك�سري‪.‬‬ ‫‪ - -‬يميز بين الاقتران الن�سبي والاقتران الك�سري‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫الاقتران الحقيقي‪ ,‬اقترانات الجذور‪ ،‬الاقترانات الن�سبية‪ ،‬الاقترانات الك�سرية‪ ،‬المجال‪ ،‬المدى‪.‬‬ ‫التكامل الر أ��سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صف العا�شر‪ ،‬اقترانات كثيرات الحدود‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)50-42‬‬ ‫التعلم القبلي‬ ‫مفهوم المجال‪ ،‬مفهوم المدى‪ ،‬ر�سم الاقتران التربيعي‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة وا ألجوبة)‪ ،‬التعلم في مجموعات (التعلم التعاوني الجماعي)‪ ،‬حل الم�شكلات والا�ستق�صاء‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬مراجعة الطلبة في مفهوم المجال ومفهوم المدى‪ ،‬و إ�يجاد كل منهما لبع�ض الاقترانات‪ ،‬مثل‪:‬‬ ‫ق(�س) = ‪�5‬س ‪ ،1 +‬هـ(�س) = ‪ ،8‬م(�س) = ‪� - 5‬س‪.‬‬ ‫‪49‬‬

‫‪ - 2‬مراجعة الطلبة في خطوات ر�سم منحنى الاقتران التربيعي (القطع المكافئ)‪.‬‬ ‫‪ - 3‬مناق�شة الطلبة في حل المثال (‪ )2‬الذي يت�ضمن تحديد المجال والمدى للقطع المكافئ‪.‬‬ ‫‪ - 4‬توجيه الطلبة إ�لى حل التدريب (‪ )1‬في دفاترهم‪ ،‬والتجول بينهم مو ِّج ًها وم�ساع ًدا ومر�ش ًدا‪ ،‬ثم كتابة‬ ‫ا إلجابات على اللوح‪ ،‬ومناق�شتهم فيها‪.‬‬ ‫‪ - 5‬تعريف مفهوم (الاقتران الحقيقي) للطلبة‪ ،‬ثم عر�ض أ�مثلة متنوعة عليه (خطية‪ ،‬تربيعية‪ ،‬كثيرات حدود)‪،‬‬ ‫ولفت انتباههم �إلى وجود أ�نواع جديدة من الاقترانات الحقيقية تت�ضمنها هذه الوحدة‪ ،‬مثل‪ :‬اقترانات‬ ‫الجذور‪ ،‬والاقترانات الك�سرية‪ ،‬والاقترانات الن�سبية‪.‬‬ ‫‪ - 6‬تعريف الطلبة باقترانات الجذور‪ ،‬ثم عر�ض ا ألمثلة ا آلتية عليها‪:‬‬ ‫ق(�س) = �س ‪ ،‬هـ(�س) = �س ‪ ، 1 -‬ل(�س) = ‪�7 - 15 3‬س ‪.‬‬ ‫‪ - 7‬توزيع الطلبة إ�لى مجموعات غير متجان�سة؛ لمناق�شة ورقة العمل (‪ )1-2‬التي تت�ضمن ا�ستق�صاء المجال‬ ‫والمدى لاقترانات الجذور‪ ،‬والتجول بينهم مو ِّج ًها وم�ساع ًدا ومر�ش ًدا‪ ،‬ثم كتابة التعميمات التي يتو�صل‬ ‫إ�ليها على اللوح‪.‬‬ ‫‪ - 8‬مناق�شة الطلبة في حل المثالين (‪ ،)3‬و(‪)4‬؛ لإيجاد المجال والمدى لاقترانات الجذر التربيعي‪،‬‬ ‫وتمثيل الاقتران بيان ًّيا‪.‬‬ ‫‪ - 9‬مناق�شة الطلبة في حل المثال (‪)5‬؛ إليجاد المجال والمدى لاقتران الجذر التكعيبي‪ ،‬و�س�ؤالهم‪ :‬هل‬ ‫يوجد فرق بين اقتران الجذر التربيعي واقتران الجذر التكعيبي؟ هل يوجد قيد على المجال؟ وبذلك‬ ‫يمكنهم ا�ستنتاج مجال اقتران الجذر التكعيبي‪.‬‬ ‫‪ -10‬توجيه الطلبة �ضمن مجموعات ثنائية �إلى حل التدريبين (‪ ،)2‬و(‪ ،)3‬ومتابعتهم في �أثناء الحل‪،‬‬ ‫وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ -11‬تعريف مفهوم (الاقتران الن�سبي) للطلبة‪ ،‬ثم عر�ض أ�مثلة عليه‪.‬‬ ‫‪ -12‬عر�ض الأمثلة (‪ ،)7‬و(‪ ،)8‬و(‪ ،)9‬ثم مناق�شة الطلبة فيها لتقديم مجال الاقتران الن�سبي‪.‬‬ ‫‪ -13‬توزيع الطلبة إ�لى مجموعات غير متجان�سة‪ ،‬ثم توجيههم �إلى حل التدريب (‪ ،)4‬ومتابعتهم في �أثناء‬ ‫الحل‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ -14‬تعريف الاقتران الك�سري‪ ،‬ثم عر�ض �أمثلة عليه للتمييز بين الاقتران الك�سري والاقتران الن�سبي‪ ،‬ثم‬ ‫مناق�شة حل المثال (‪ )10‬على اللوح الذي يت�ضمن �إيجاد مجال الاقتران الك�سري‪.‬‬ ‫‪ -15‬توجيه كل طالب �إلى حل التدريب (‪ )5‬في دفتره‪ ،‬ثم مقارنة حل كل منهم بحل زميله الذي بجانبه‪،‬‬ ‫ثم مناق�شتهم في ا إلجابة ال�صحيحة على اللوح‪.‬‬ ‫‪50‬‬

‫ختم الدر�س‬ ‫‪- -‬تعيين واجب بيتي للطلبة من أ��سئلة الدر�س‪ ،‬ثم حل بقية ا أل�سئلة في الح�صة اللاحقة‪.‬‬ ‫‪- -‬مراجعة التعميمات الخا�صة بمجال الاقتران الحقيقي‪ ،‬واقتران الجذور‪ ،‬والاقتران الن�سبي‪ ،‬والاقتران‬ ‫الك�سري‪.‬‬ ‫معلومات �إ�ضافية‬ ‫‪- -‬قد تبدو بع�ض الاقترانات غير ن�سبية‪ ،‬ولكن يمكن تب�سيطها بتوحيد المقامات مثلاً ‪ ،‬فت�صبح ن�سبية‪ ،‬مثل‪:‬‬ ‫‪.‬‬ ‫‪1‬‬ ‫‪-‬‬ ‫�‪1‬س‬ ‫هـ(�س) =‬ ‫‪،‬‬ ‫�س‪�5 + 3-‬س ‪2 +‬‬ ‫ق(�س) =‬ ‫‪2‬‬ ‫�س‪� - 2‬س‬ ‫‪�2‬س ‪4 -‬‬ ‫‪- -‬يمكن الا�ستعانة ببرمجيات ر�سم منحنيات الاقترانات‪ ،‬وتدريب الطلبة على ا�ستخدامها؛ لتعميق فهمهم‬ ‫خ�صائ�ص المنحنيات‪ ،‬ويمكن الح�صول على هذه البرمجيات من التطبيقات المتاحة في الهواتف الذكية‪.‬‬ ‫�أخطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة بعدم ا�ستثناء �أ�صفار مقام الاقتران الن�سبي والاقتران الك�سري من المجال‪.‬‬ ‫الفروق الفردية‬ ‫؟‬ ‫�س‪9 - 2‬‬ ‫علاج‬ ‫�س ‪3 +‬‬ ‫‪- -‬ما مجال الاقتران ق(�س) =‬ ‫‪- -‬ما مجال الاقتران هـ(�س) = �س ‪3 -‬؟‬ ‫‪- -‬هل مجال ق(�س) ي�ساوي مجال هـ(�س)؟ ف�سرِّ إ�جابتك‪.‬‬ ‫‪.‬‬ ‫�س‪9 - 2‬‬ ‫�إثـراء‬ ‫�س ‪3 +‬‬ ‫‪- -‬جد مجال الاقتران ق(�س) =‬ ‫�س ‪ 5 +‬؟ ب ِّرر إ�جابتك‪.‬‬ ‫ي�ساوي مجال هـ(�س) =‬ ‫�س‪25 - 2‬‬ ‫‪- -‬هل مجال ق(�س) =‬ ‫�س ‪5 -‬‬ ‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬التقويم المعتمد على الأداء‪ ،‬مراجعة الذات‪.‬‬ ‫أ�داة التقويم‪� :‬سلم التقدير (‪� ،)1-2‬سجل و�صف �سير التعلم (‪.)8-1‬‬ ‫‪51‬‬

‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫�أكبر قيمة هي عندما �س= �صف ًرا‪ ،‬وهي ق(‪ ،4 = )0‬ومجال الاقتران ق هو ح‪ ،‬ومداه (‪.]4 ,∞ -‬‬ ‫التدريب (‪)2‬‬ ‫‪� +1‬س‪� ≥ 2‬صفر‪ ،‬ومنه‪ :‬مجال ق(�س) هو مجموعة الأعداد الحقيقية ح‪.‬‬ ‫التدريب (‪)3‬‬ ‫ق(‪ ،2- = 8 - 3 = 9 - 1 3 =)9‬مجال ق(�س) هو ح‪ ،‬ومداه ح‪.‬‬ ‫التدريب (‪)4‬‬ ‫مجال الب�سط ح‪ ،‬ومجال المقام ح ‪ ،}5-{ -‬وعليه ف�إن مجال ق (�س) هو ح ‪.}5-{ -‬‬ ‫التدريب (‪)5‬‬ ‫‪.‬‬ ‫‪10‬‬ ‫‪ )1‬مجال هـ (�س) هو [‪.)∞ ،5-‬‬ ‫‪26‬‬ ‫‪ )2‬هـ(‪ ،0 = )5-‬هـ(‪ ، 5 = )0‬هـ(‪= )5‬‬ ‫ا أل�سئلة‬ ‫�س‪ :‬مجاله مجموعة الأعداد الحقيقية (ح)‪ ،‬ومداه ح‪.‬‬ ‫‪1-‬‬ ‫ق(�س) =‬ ‫)‬ ‫�أ‬ ‫‪)1‬‬ ‫‪2‬‬ ‫ب) هـ(�س) = ‪�2 + 4‬س‪ :‬مجاله مجموعة الأعداد الحقيقية (ح)‪ ،‬ومداه ح‪.‬‬ ‫جــ) د(�س) = �س‪ :1 + 2‬مجاله ح‪ ،‬ومداه [‪.)∞ ،1‬‬ ‫ب) مجال ق(�س) هو‪.)∞ ،3[ ،]3- ,∞ -( :‬‬ ‫‪)2‬‬ ‫�أ ) ق(‪ ،0 = )3‬ق(‪ ،0 = )3-‬ق(‪4 = )5‬‬ ‫جـ) مجاله ح ‪.}5-{ -‬‬ ‫ب) مجاله ح‪.‬‬ ‫‪)3‬‬ ‫�أ ) مجاله (‪.)∞ ,3-‬‬ ‫د ) مجاله (‪ .)∞ ,2-[ ،]3- ,∞ -‬هـ ) مجاله ح ‪.}4،1-{ -‬‬ ‫ز ) مجاله (‪ .]4 ,∞ -‬ح) مجاله ح‪.‬‬ ‫و ) مجاله ح ‪.}2{ -‬‬ ‫‪ )4‬المجال ح‪ ،‬والمدى = [‪.)∞ ،0‬‬ ‫‪ )5‬ن ≥ ‪ ,3‬إ�ذن مجاله [‪.)∞ ،3‬‬ ‫‪52‬‬

‫الف�صل الثاني‪ :‬اقترانات خاصة‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫الاقترانات المت�شعبة‪.‬‬ ‫�أو اًل‪:‬‬ ‫النتاجات الخا�صة‬ ‫‪ - -‬يتعرف الاقتران المت�شعب‪.‬‬ ‫‪ - -‬يمثل الاقتران المت�شعب بيان ًّيا‪.‬‬ ‫‪ - -‬يكتب قاعدة اقتران ممثل بيان ًّيا‪.‬‬ ‫‪ - -‬ي�ستخدم الاقتران المت�شعب في حل م�سائل حياتية‪.‬‬ ‫‪ - -‬يقدر أ�همية الاقترانات المت�شعبة في الحياة‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫الاقتران المت�شعب‪ ،‬نقطة الت�شعب‪ ،‬مجال الاقتران المت�شعب‪.‬‬ ‫التكامل الر�أ�سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صف العا�شر‪ ،‬كثيرات الحدود وتمثيلها بيان ًّيا‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)56-51‬‬ ‫‪- -‬اللوح البياني‪.‬‬ ‫‪ -‬تمثيل الاقتران بيان ًّيا‪.‬‬ ‫التعلم القبلي‬ ‫‪- -‬مفهوم الاقتران‪ ،‬ومفهوم المجال‪.‬‬ ‫‪- -‬خطوات حل الم�س�ألة‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (الأ�سئلة وا ألجوبة)‪ ,‬التعلم في مجموعات (المناق�شة‪ ،‬فكر‪ -‬انت ِق زميلًا‪� -‬شارك)‪ ،‬ا�ستراتيجية بوليا لحل الم�س أ�لة‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬طرح �أ�سئلة عن مفهوم الاقتران ومجاله‪ ،‬ثم توجيه الطلبة �إلى تمثيل الاقتران ق(�س) = ‪�2‬س‪ ،‬والاقتران‬ ‫هـ(�س) = �س‪ 1 + 2‬في دفاترهم‪.‬‬ ‫‪53‬‬

‫‪ - 2‬مراجعة الطلبة في ا�ستراتيجية بوليا لحل الم�س�ألة الريا�ضية (فهم الم�س�ألة‪ ،‬التخطيط للحل‪ ،‬تنفيذ الحل‪،‬‬ ‫التحقق من �صحة الحل �أو معقوليته)‪.‬‬ ‫‪ - 3‬قراءة الم�س�ألة الوارد ذكرها في بداية الدر�س‪ ،‬ثم طرح �أ�سئلة عنها‪ ،‬مثل‪:‬‬ ‫• ما عدد �ساعات العمل الر�سمي؟‬ ‫• ماذا ن�سمي �ساعات العمل التي تزيد على �ساعات العمل الر�سمي؟‬ ‫• كم أ�جرة �ساعة العمل الر�سمي؟‬ ‫• كم أ�جرة �ساعة العمل الإ�ضافي؟‬ ‫• اكتب الاقتران ق(�س) الذي يمثل �ساعات العمل الر�سمي‪.‬‬ ‫• اكتب الاقتران هـ(�س) الذي يمثل �ساعات العمل ا إل�ضافي‪.‬‬ ‫‪ - 4‬كتابة الاقتران الذي يمثل هذه الم�س أ�لة على اللوح با�ستخدام ا�ستراتيجية بوليا لحل الم�س أ�لة‪ ،‬وتو�ضيح �أن‬ ‫هذا النوع من الاقترانات ي�سمى اقترا ًنا مت�شع ًبا‪ ،‬وبيان �أن النقطة (�س‪ ،‬ق(�س)) التي تتغير عندها �صورة‬ ‫الاقتران ت�سمى نقطة الت�شعب‪ ،‬ثم تو�ضيح كيفية توزيع الاقتران ق على خط ا ألعداد‪.‬‬ ‫‪ - 5‬عر�ض نماذج لفواتير كهرباء‪ ،‬وبيان كيفية ح�ساب قيمة الا�ستهلاك بح�سب الفئة‪ ،‬وتو�ضيح أ�ن ذلك‬ ‫يمثل اقترا ًنا مت�شع ًبا‪ ،‬وتوجيه الطلبة إ�لى ذكر أ�مثلة �أخرى حياتية على اقترانات مت�شعبة‪.‬‬ ‫‪ - 6‬مناق�شة الطلبة في حل المثال (‪ )1‬في ال�صفحة (‪ )52‬من الكتاب المدر�سي؛ لتدريبهم على �إيجاد �صور‬ ‫بع�ض العنا�صر في الاقتران المت�شعب‪ ،‬ثم توجيههم إ�لى حل التدريب (‪� )1‬ضمن مجموعات ثنائية‪،‬‬ ‫ومتابعتهم في �أثناء الحل‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ - 7‬مناق�شة الطلبة في حل المثالين (‪ ،)2‬و(‪)3‬؛ لتدريبهم على كيفية تمثيل الاقتران با�ستخدام اللوح البياني‪،‬‬ ‫مع مراعاة دقة الأبعاد‪ ،‬والتركيز على �صورة الاقتران المت�شعب عند نقطة الت�شعب‪ ،‬ومعنى الحلقة‬ ‫المر�سومة عند نقطة الت�شعب (التفرع)‪.‬‬ ‫‪ - 8‬توجيه الطلبة إ�لى حل التدريب (‪ )2‬في ال�صفحة (‪ )54‬في دفاتر الر�سم البياني‪ ،‬ومتابعتهم في �أثناء‬ ‫الحل‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ - 9‬تذكير الطلبة بالر�سم البياني للاقتران ق (�س) = أ� ‪ ,‬والاقتران هـ (�س) = �أ�س ‪ +‬ب‪ ,‬والاقتران‬ ‫و(�س) = �أ ‪ -‬ب �س‪ ،‬والاقتران م(�س) = �س‪.2‬‬ ‫‪ -10‬مناقـ�شة الطلبة في حل المثال (‪ )4‬على اللـوح‪ ،‬وتـدريبهم عـلى قـراءة ال�شـكل البيـاني‪ ،‬وا�سـتخراج‬ ‫المعلومات منه‪ ،‬عن طريق طرح الأ�سئلة ا آلتية‪:‬‬ ‫• كم قاعدة للاقتران ق(�س) الممثل بيان ًّيا؟‬ ‫• ما قيمة �س التي يت�شعب عندها الاقتران ق؟‬ ‫‪54‬‬

‫• ما قاعدة الاقتران ق عندما �س > �صفر؟‬ ‫• ما قاعدة الاقتران عندما �س ≤ �صفر؟‬ ‫• اكتب قاعدة الاقتران المت�شعب ق(�س)‪.‬‬ ‫‪ -11‬مناق�شة الطلبة في حل المثال (‪ )5‬بطريقة م�شابهة للمثال الرابع‪.‬‬ ‫‪ -12‬حل الطلبة �أ�سئلة ن�شاط (فكر) با�ستخدام ا�ستراتيجية (فكر‪ -‬انت ِق زميلاً ‪� -‬شارك)‪.‬‬ ‫‪ -13‬حل الطلبة التدريب (‪� )3‬ضمن مجموعات ثنائية‪ ،‬ثم م�شاركة كل مجموعة بقية المجموعات في حلها‪.‬‬ ‫‪ -14‬مناق�شة الطلبة في حل المثال (‪ ،)6‬وبيان �أن هذا المثال هو من التطبيقات الحياتية للاقتران المت�شعب‪.‬‬ ‫‪ -15‬تكليف الطلبة حل �أ�سئلة الدر�س‪ ،‬ومتابعتهم في هذه الأثناء‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫ختم الدر�س‬ ‫‪- -‬توجيه كل طالب إ�لى تعبئة نموذج بطاقة الخروج‪ ،‬بحيث يكتب فيه المو�ضوع الأكثر و�ضو ًحا‪ ،‬والمو�ضوع‬ ‫الأكثر غمو ً�ضا في الدر�س‪.‬‬ ‫�أخطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة عند ر�سم الاقتران المت�شعب‪ ،‬بحيث لا ي�ضعون دائرة مفتوحة في المكان المنا�سب؛ لذا‬ ‫ُيبينِّ لهم المعلم بالأمثلة �أن عدم وجود دائرة مفتوحة عند نقطة الت�شعب يعني وجود �أكثر من �صورة للنقطة‪،‬‬ ‫و أ�ن هذا يناق�ض تعريف الاقتران‪.‬‬ ‫الفروق الفردية‬ ‫‪�2‬س ‪� ,‬س ≤ ‪1‬‬ ‫علاج‬ ‫‪� -‬إذا كان ق(�س) =‬ ‫�س ‪� ، 3 +‬س > ‪1‬‬ ‫‪{،‬‬ ‫فجد ق(‪ ،)1-‬ق(‪ ،)0‬ق(‪ ،)1‬ق(‪ ،)2‬ق(‪.)5‬‬ ‫إ�ثـراء‬ ‫‪ -‬يمثل الجدول الآتي تعرفة فاتورة الكهرباء‪:‬‬ ‫التعرفة (فل�س‪/‬كيلوواط(‬ ‫كمية الا�ستهلاك ال�شهري‬ ‫الفئة‬ ‫‪33‬‬ ‫‪77‬‬ ‫من (‪ )160-1‬كيلوواط‪�/‬ساعة‬ ‫الأولى‬ ‫‪86‬‬ ‫من (‪ )300-161‬كيلوواط‪�/‬ساعة‬ ‫الثانية‬ ‫من (‪ )500-301‬كيلوواط‪/‬ثانية‬ ‫الثالثة‬ ‫اكتب الاقتران الذي يمثل كمية الا�ستهلاك‪.‬‬ ‫‪55‬‬

‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬مراجعة الذات‪ ،‬الملاحظة‪.‬‬ ‫�أداة التقويم‪ :‬نموذج بطاقة الخروج (‪ ،)9-1‬قائمة الر�صد (‪.)6-1‬‬ ‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫ق(‪ ، 3 = )1‬ق(‪ ، 6٫25 = )2٫5‬ق(‪ ، 1 = )0‬ق(‪ ، 2 = )3‬ق(‪3 = )4‬‬ ‫‪� , 2‬س < ‪{1-‬‬ ‫التدريب (‪)3‬‬ ‫‪�2‬س ‪� ≤ 1- ،‬س ≤ ‪1‬‬ ‫ق (�س) =‬ ‫‪� -‬س ‪� ,‬س ≥ ‪1‬‬ ‫ق(‪5 - = )2-‬‬ ‫ق(‪، 5 = )4-‬‬ ‫الأ�سئلة‬ ‫ق(‪2 - = )0٫5 -‬‬ ‫ق(‪، 5 = )1‬‬ ‫‪)1‬‬ ‫ق(‪، 5 = )2‬‬ ‫ق(‪، 5 = )0‬‬ ‫‪� , 2-‬س < ‪{1-‬‬ ‫هـ (�س) =‬ ‫�س ‪� ,‬س ≤ ‪{0‬‬ ‫‪)2‬‬ ‫ق (�س) =‬ ‫�س ‪� ≤ 1- ،‬س < ‪1‬‬ ‫�س‪� ، 2‬س > ‪0‬‬ ‫‪� , 1‬س ≥ ‪1‬‬ ‫‪�2‬س ‪� ,‬س ≤ ‪{8‬‬ ‫‪)3‬‬ ‫ق (�س) =‬ ‫‪�3 + 16‬س ‪� ،‬س > ‪8‬‬ ‫‪56‬‬

‫الف�صل الثاني‪ :‬اقترانات خاصة‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫اقتران القيمة المطلقة‪.‬‬ ‫ثان ًيا‪:‬‬ ‫النتاجات‬ ‫‪- -‬يتعرف اقتران القيمة المطلقة‪.‬‬ ‫‪- -‬يعيد تعريف اقتران القيمة المطلقة‪.‬‬ ‫‪- -‬يمثل اقتران القيمة المطلقة بيان ًّيا‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫اقتران القيمة المطلقة‪ ،‬رمز القيمة المطلقة للاقتران ق(�س)‪ |:‬ق(�س) |‪� ،‬إعادة تعريف الاقتران‪.‬‬ ‫التكامل الر أ��سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صف ال�سابع‪ ،‬القيمة المطلقة للعدد‪.‬‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفوف‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬والعا�شر‪ ،‬الاقترانات‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)61-57‬‬ ‫التعلم القبلي‬ ‫القيمة المطلقة للعدد‪ ،‬درا�سة �إ�شارة الاقتران‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة وا ألجوبة)‪ ،‬التعلم في مجموعات (المناق�شة‪ ،‬فكر‪ -‬انت ِق زميلاً ‪� -‬شارك)‪ ،‬حل الم�شكلات والا�ستق�صاء‪.‬‬ ‫إ�جراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬مراجعة الطلبة في أ�نواع الاقترانات التي در�سوها‪ ،‬وعر�ض مثال على كل منها‪.‬‬ ‫‪ - 2‬طرح �أ�سئلة عن ال�شكل (‪ )9-2‬في ال�صفحة (‪ )57‬من الكتاب المدر�سي‪ ،‬مثل‪:‬‬ ‫• ما مجال الاقتران ق؟‬ ‫• ما مداه؟‬ ‫• ما قيمة كل من‪ :‬ق(‪ ، )2‬ق(‪ ،)2-‬ق(‪ ،)3‬ق(‪)3-‬؟‬ ‫‪57‬‬

‫• ما العلاقة بين المنحنى الذي على يمين محور ال�صادات والمنحنى الذي على ي�ساره؟‬ ‫• ما معادلة محور التماثل لمنحنى الاقتران ق؟‬ ‫• �أين يقع منحنى الاقتران ق بالن�سبة لمحور ال�سينات؟‬ ‫• اقترح ا�س ًما للاقتران‪.‬‬ ‫‪ - 3‬ذكر ا�سم هذا الاقتران‪ ،‬وهو اقتران القيمة المطلقة‪.‬‬ ‫‪ - 4‬مراجعة الطلبة في مفهوم القيمة المطلقة للعدد‪ ،‬و إ�يجاد قيمة كل من‪ ،|5-| ،|3| :‬و|‪.|0|،|675-‬‬ ‫‪ - 5‬تعريف اقتران القيمة المطلقة‪ ،‬وبيان رمزه‪.‬‬ ‫‪ - 6‬مناق�شة الطلبة في حل المثال (‪)1‬؛ لإيجاد �صور بع�ض العنا�صر في اقتران القيمة المطلقة‪.‬‬ ‫‪ - 7‬تكليف كل طالب حل التدريب (‪ ،)1‬ثم توجيه كل منهم إ�لى مقارنة حله بحل زميله الذي بجانبه‪،‬‬ ‫ومتابعتهم في هذه الأثناء‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ - 8‬مناق�شة الطلبة في حل المثال (‪)2‬؛ لتدريبهم على �إعادة كتابة الاقتران ب�صورة مجز�أة من دون ا�ستخدام‬ ‫رمز القيمة المطلقة‪ ،‬وكتابة الإجراء �إزاء كل خطوة بلون مميز‪ ،‬ثم تمثيله بيان ًّيا‪ ،‬وت�أكيد أ�ن المنحنى‬ ‫يكون متماثلاً حول المحور الذي يمثل م�ستقي ًما يوازي محور ال�صادات‪ ،‬ويمر ب�صفر الاقتران عندما‬ ‫يكون الاقتران داخل القيمة المطلقة خط ًّيا‪.‬‬ ‫‪ - 9‬مناق�شة الطلبة في ن�شاط (فكر) با�ستخدام ا�ستراتيجية (فكر ‪ -‬انت ِق زميلاً ‪� -‬شارك)‪.‬‬ ‫‪ -10‬تكليف الطلبة حل التدريب (‪� )3‬ضمن مجموعات ثنائية‪ ،‬ثم مناق�شتهم في الحل‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ -11‬مناق�شة الطلبة في حل المثال (‪)3‬؛ لإعادة تعريف اقتران قيمة مطلقة يت�ضمن اقترا ًنا من الدرجة الثانية‪،‬‬ ‫و إ�يجاد �صور العنا�صر فيه (من دون تمثيله بيان ًّيا)‪ ،‬ثم توجيههم إ�لى حل �س�ؤال م�شابه يكتبه المعلم على‬ ‫اللوح بعد توزيعهم إ�لى مجموعات ثنائية‪ ،‬ومتابعتهم في �أثناء الحل‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ -12‬تعيين واجب بيتي للطلبة من �أ�سئلة الدر�س‪ ،‬ثم حل بقية الأ�سئلة في الح�صة اللاحقة‪.‬‬ ‫ختم الدر�س‬ ‫‪ -‬مراجعة الطلبة في الأفكار التي نوق�شت با�ستخدام بطاقة الخروج‪.‬‬ ‫‪58‬‬

‫�أخطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة عند حل المعادلة �س‪ ،4 = 2‬ب أ�خذ الجذر التربيعي للطرفين‪ ،‬وكتابة الإجابة �س = ‪،2‬‬ ‫وال�صواب‪:‬‬ ‫�س = ‪2±‬‬ ‫| �س | = ‪2‬‬ ‫�س‪4 = 2‬‬ ‫الفروق الفردية‬ ‫علاج‬ ‫‪ - -‬إ�ذا كان ق(�س) = | �س ‪: | 4 +‬‬ ‫�أ ) جد ق(‪ ، )1‬ق(‪ ،)4‬ق(‪ ،)4-‬ق(‪ ،)5-‬ق(‪ ،)7-‬ق(‪.)0‬‬ ‫ب) أ�عد تعريف الاقتران ق‪.‬‬ ‫‪�- -‬أعد تعريف هـ(�س) = | �س‪. | 1 - 2‬‬ ‫�إثـراء‬ ‫‪� - -‬أعد تعريف كل من‪:‬‬ ‫�أ ) ق(�س) = �س‪� | 2‬س ‪| 1 -‬‬ ‫‪�4 -‬س ‪� ،‬س ≠ ‪1-‬‬ ‫| �س |‬ ‫ب) هـ(�س) =‬ ‫�س ‪1 +‬‬ ‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬الملاحظة‪ ،‬مراجعة الذات‪.‬‬ ‫�أداة التقويم‪� :‬سلم التقدير (‪ ،)2-2‬نموذج بطاقة الخروج (‪.)9-1‬‬ ‫‪59‬‬

‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫ق (‪ ،3 = )2-‬ق (‪ ،1.5 = )6٫5 -‬ق (‪ ،5 = )0‬ق (‪ ،5 = )10-‬ق(ـــ‪41‬ــ) = ــــ‪14‬ـ ‪5‬‬ ‫التدريب (‪)2‬‬ ‫‪�2- 5‬س ‪� ,‬س ≤ ـــ‪52‬ــ{‬ ‫ق (�س) =‬ ‫‪�2‬س‪� ، 5 -‬س > ــــ‪25‬ـ‬ ‫ا أل�سئلة‬ ‫‪ )1‬ق ( ‪ ،0 = ) 2-‬ق ( ‪ ،10 = ) 3‬ق ( ‪ ،4 = ) 0‬ق (‪6 = ) 5-‬‬ ‫‪�3‬س ‪� , 4 +‬س ≥ ـــ‪-‬ـ‪3‬ـ‪4‬ـ{‬ ‫‪ )2‬ق (�س) =‬ ‫‪�3-‬س‪� ، 4-‬س < ـــ‪-‬ـ‪3‬ـ‪4‬ـ‬ ‫�س‪� , 4 - 2‬س < ‪{2-‬‬ ‫‪ )3‬ق (�س) =‬ ‫‪� - 4‬س‪� ≤ 2- ، 2‬س ≤ ‪2‬‬ ‫�س‪� , 4 - 2‬س > ‪2‬‬ ‫‪� -‬س ‪� , 2-‬س < ‪{1‬‬ ‫‪ )4‬ق (�س) =‬ ‫�س ‪� ، 4 -‬س ≥ ‪1‬‬ ‫�س‪�5 - 2‬س ‪� , 6 +‬س ≤ ‪{2‬‬ ‫‪ )5‬ق (�س) =‬ ‫‪�( -‬س‪�5 - 2‬س ‪� < 2 ، )6 +‬س < ‪3‬‬ ‫�س‪�5 - 2‬س ‪� , 6 +‬س ≥ ‪3‬‬ ‫�س ‪� , 6 -‬س ≥ ‪{6‬‬ ‫ق(�س) = | �س ‪.|6 -‬‬ ‫‪ )6‬ق (�س) =‬ ‫‪� - 6‬س ‪� ،‬س < ‪6‬‬ ‫�س‪� - 2‬س ‪� ,‬س ≤ ‪{0‬‬ ‫‪ )7‬ق (�س) =‬ ‫�س ‪� -‬س‪� < 0 ، 2‬س < ‪1‬‬ ‫�س‪� - 2‬س ‪� ,‬س ≥ ‪1‬‬ ‫‪60‬‬

‫الف�صل الثالث‪ :‬العمليات على الاقترانات‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫تركيب الاقترانات‪.‬‬ ‫�أو اًل‪:‬‬ ‫النتاجات‬ ‫‪- -‬يجد الاقتران الناتج من عملية تركيب اقترانين‪.‬‬ ‫‪- -‬يجد قيمة الاقتران (ق ‪ 5‬هـ)(�س) عند نقطة‪.‬‬ ‫‪- -‬ي�ستق�صي عدم وجود الخا�صية التبديلية لعملية تركيب الاقترانات‪.‬‬ ‫‪- -‬يحل معادلات با�ستخدام تركيب الاقترانات‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫تركيب الاقترانات‪( :‬ق‪ 5‬هـ)(�س)‪ ،‬ق(هـ(�س))‪.‬‬ ‫التكامل الر أ��سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفوف‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬والعا�شر‪ ،‬الاقترانات‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)69-62‬‬ ‫التعلم القبلي‬ ‫إ�يجاد �صورة نقطة تحت ت أ�ثير اقتران معطى‪� ،‬إيجاد المجال والمدى لاقترانات حقيقية‪ ،‬الخا�صية التبديلية‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة وا ألجوبة)‪ ،‬حل الم�شكلات والا�ستق�صاء‪ ،‬التعلم في مجموعات (فكر‪ -‬انت ِق زميلاً ‪� -‬شارك)‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬طرح �أ�سئلة عن عمليات الاقترانات التي تعلمها الطالب �ساب ًقا‪ ،‬مثل‪ :‬جمع الاقترانات‪ ،‬وطرحها‪ ،‬و�ضربها‪،‬‬ ‫وق�سمتها‪ ،‬ثم حل ال�س�ؤال ا آلتي‪:‬‬ ‫�إذا كان ق(�س) = �س‪�3 + 3‬س ‪ ،5 +‬هـ(�س) = �س ‪ ،3 -‬فجد كلاًّ مما ي أ�تي‪:‬‬ ‫ق‬ ‫)(�س)‪.‬‬ ‫هـ‬ ‫(‬ ‫هـ)(�س)‪،‬‬ ‫(ق×‬ ‫هـ)(�س)‪،‬‬ ‫(ق‪-‬‬ ‫هـ)(�س)‪،‬‬ ‫(ق‪+‬‬ ‫‪61‬‬

‫‪ - 2‬مناق�شة الطلبة في ال�س�ؤال الوارد ذكره في بداية الدر�س‪ ،‬وبيان �أن الحل يتكون من خطوتين‪ ،‬هما‪:‬‬ ‫�إيجاد ن�صف القطر من العلاقة المعطاة‪ ،‬ثم �إيجاد م�ساحة �سطح الماء لن�صف القطر الناتج‪ ،‬وهذا‬ ‫ُيع َرف بتركيب الاقترانات‪.‬‬ ‫‪ - 3‬تو�ضيح مفهوم (تركيب الاقترانات) عن طريق المخطط ال�سهمي‪ ،‬ثم كتابة تعريفه على اللوح‪.‬‬ ‫‪ - 4‬مناق�شة الطلبة في حل المثال (‪ ،)1‬وتكليف كل طالب إ�يجاد ناتج تركيب اقترانين عند نقطة ما‪ ،‬والتحقق‬ ‫من �شرط التركيب‪ ،‬وهو �أن يكون مدى ق مجموعة جزئية من مجال هـ عند �إيجاد (هـ ‪ 5‬ق)(�س)‪.‬‬ ‫‪ - 5‬تكليف الطلبة حل التدريب (‪� )1‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في �أثناء الحل‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ - 6‬تنفيذ ن�شاط (فكر) با�ستخدام ا�ستراتيجية (فكر ‪ -‬انت ِق زميلاً ‪� -‬شارك)‪.‬‬ ‫‪ - 7‬مناق�شة الطلبة في حل المثال (‪)2‬؛ لإيجاد قاعدة تركيب اقترانين بوجه عام‪ ،‬والتركيز على درا�سة‬ ‫المجال والمدى‪.‬‬ ‫‪ - 8‬تكليف الطلبة حل التدريبين (‪ ،)2‬و(‪� )5‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في أ�ثناء الحل‪ ،‬وتقديم‬ ‫التغذية الراجعة لهم‪.‬‬ ‫‪ - 9‬مناق�شة الطلبة في حل المثال (‪.)3‬‬ ‫‪ -10‬تكليف الطلبة حل التدريب (‪� )3‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في أ�ثناء الحل‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ -11‬مناق�شة الطلبة في حل المثال (‪ ،)4‬ثم الطلب إ�ليهم حل معادلات تت�ضمن تركيب الاقترانات‪ ،‬ثم‬ ‫توجيههم �إلى حل التدريب (‪ )4‬ب�صورة فردية‪ ،‬ومتابعتهم في أ�ثناء الحل‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ -12‬مناق�شة الطلبة في حل المثال (‪� )5‬ضمن مجموعات ثنائية‪ ،‬ليكون مقدمة للدر�س القادم (الاقتران العك�سي)‪.‬‬ ‫‪ -13‬تعيين واجب بيتي للطلبة من �أ�سئلة الدر�س في ال�صفحة (‪ ،)69‬ثم حل بقية الأ�سئلة في الح�صة اللاحقة‪.‬‬ ‫ختم الدر�س‬ ‫‪- -‬طرح ال�س�ؤال ا آلتي على الطلبة‪ :‬ماذا تعلمتم في هذا الدر�س؟‬ ‫�أخطاء �شائعة‬ ‫ُيغ ِفل معظم الطلبة عند تركيب الاقترانين (ق‪5‬هـ)(�س) درا�سة مدى الاقتران هـ(�س)‪ ،‬والتحقق من �أنه‬ ‫يمثل مجموعة جزئية من مجال الاقتران ق(�س)‪.‬‬ ‫‪62‬‬

‫الفروق الفردية‬ ‫علاج‬ ‫‪�- -‬إذا كان ق(�س) = �س ‪ ، 1 -‬هـ(�س) = ‪�2‬س ‪ ،‬ف أ�جب عما ي�أتي‪:‬‬ ‫�أ ) هـ(‪ ، )1‬ق(‪( ، )2‬ق ‪ 5‬هـ)(‪.)1‬‬ ‫ب) هـ(‪ ، )0‬ق(‪( ، )0‬ق ‪ 5‬هـ)(‪.)0‬‬ ‫جـ) هـ(‪ ، )2-‬ق(‪( ، )4-‬ق ‪ 5‬هـ)(‪.)2-‬‬ ‫د ) (ق ‪ 5‬هـ)(�س)‪.‬‬ ‫هـ) (هـ ‪ 5‬ق)(�س)‪.‬‬ ‫إ�ثـراء‬ ‫‪ - -‬إ�ذا كان ق(�س) = �س‪ ، 2‬هـ(�س) = �س ‪ ، 2 +‬فجد قيمة �س التي يكون عندها‬ ‫(ق ‪ 5‬هـ)(�س) = (هـ ‪ 5‬ق)(�س)‪.‬‬ ‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬التقويم المعتمد على الأداء‪ ،‬الملاحظة‪.‬‬ ‫أ�داة التقويم‪� :‬سلم التقدير اللفظي (‪ ،)7-1‬قائمة الر�صد (‪.)6-1‬‬ ‫إجابات التدريبات والأسئلة‬ ‫‪( )2‬هـ ‪ 5‬ق)(‪2 = )1‬‬ ‫التدريبات‬ ‫‪( )4‬ق ‪ 5‬هـ)(‪10 = )3‬‬ ‫التدريب (‪)1‬‬ ‫‪( )6‬هـ ‪ 5‬هـ) (‪26 = )2-‬‬ ‫‪( )1‬ق ‪ 5‬هـ) (‪، 2 = )1‬‬ ‫‪( )3‬هـ ‪ 5‬ق) (‪، 4 = )3‬‬ ‫‪( )5‬ق ‪ 5‬ق) (‪، 2 = )4‬‬ ‫‪1‬‬ ‫التدريب (‪)2‬‬ ‫‪� 3‬س ‪1 +‬‬ ‫)=‬ ‫�س‬ ‫‪( )1‬ق ‪ 5‬هـ)(�س) = ق( ‪3‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫=‬ ‫‪)1‬‬ ‫‪1‬‬ ‫�س‬ ‫(‬ ‫هـ‬ ‫=‬ ‫ق)(�س)‬ ‫‪5‬‬ ‫(هـ‬ ‫‪)2‬‬ ‫�س ‪1 +‬‬ ‫‪+‬‬ ‫‪63‬‬

‫‪( )2‬هـ ‪ 5‬ق)(‪25- = )3‬‬ ‫التدريب (‪)3‬‬ ‫‪( )1‬ق ‪ 5‬هـ)(‪1 = )1‬‬ ‫التدريب (‪)4‬‬ ‫‪�(3‬س‪ ، 15 = )1+ 2‬ومنه‪� :‬س = ‪2±‬‬ ‫التدريب (‪)5‬‬ ‫متر‪ ،‬م�ساحة �سطح الماء = م�ساحة الدائرة = ‪ π‬ر‪2‬‬ ‫‪2‬‬ ‫ر=‬ ‫‪3‬‬ ‫‪π4‬‬ ‫‪2‬‬ ‫م‪2‬‬ ‫‪9‬‬ ‫)=‬ ‫‪3‬‬ ‫م�ساحة �سطح الماء = م�ساحة الدائرة عندما ( ر =‬ ‫الأ�سئلة‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪)1‬‬ ‫‪18‬‬ ‫‪2‬‬ ‫‪9‬‬ ‫=‬ ‫ق)(‪)2-‬‬ ‫‪5‬‬ ‫(هـ‬ ‫‪،‬‬ ‫(هـ ‪ 5‬ق)(‪= )0‬‬ ‫‪،‬‬ ‫(ق ‪ 5‬هـ)(‪= )1‬‬ ‫)‬ ‫�أ‬ ‫ب) (ق ‪ 5‬هـ)(‪( ، 8 = )1‬هـ ‪ 5‬ق)(‪( ، 1 = )0‬هـ ‪ 5‬ق)(‪7 = )2-‬‬ ‫جـ) (ق ‪ 5‬هـ)(‪( ، 2- = )1‬هـ ‪ 5‬ق)(‪( ، 7 = )0‬هـ ‪ 5‬ق)(‪13 = )2-‬‬ ‫د ) (ق ‪ 5‬هـ)(‪( ، 3- = )1‬هـ ‪ 5‬ق)(‪( ، 2 = )0‬هـ ‪ 5‬ق)(‪2 = )2-‬‬ ‫‪)2‬‬ ‫�أ ) (ق ‪ 5‬هـ)(�س) = �س ‪( ،‬ق ‪ 5‬ق)(�س) = ‪�9‬س ‪( ، 4 -‬هـ ‪ 5‬ق)(�س) = �س‪.‬‬ ‫ب) (ق ‪ 5‬هـ)(�س) = ‪� 3 2‬س ‪( ،‬ق ‪ 5‬ق)(�س) = ‪�4‬س ‪( ،‬هـ ‪ 5‬ق)(�س) = ‪�2 3‬س‬ ‫(‪( )2‬ق ‪ 5‬هـ)(‪2 = )3‬‬ ‫‪)3‬‬ ‫�أ )‬ ‫(‪( )1‬هـ ‪ 5‬ق)(‪، 4 = )5‬‬ ‫(‪ )4‬ق(هـ (‪0 = ))2‬‬ ‫(‪ )3‬هـ(ق(‪، 2 = ))4‬‬ ‫ ب) هل يمكن �إيجاد ق(هـ(‪))5‬؟ لماذا؟‬ ‫لا‪ ،‬لا يمكن ذلك؛ لأنه لا توجد �صورة لـ هـ (�س) �ضمن الجدول‪.‬‬ ‫ب) (هـ ‪ 5‬ق)(�س) = �س‪.‬‬ ‫‪)4‬‬ ‫�أ ) (ق ‪ 5‬هـ)(�س) = �س ‪.‬‬ ‫‪64‬‬

‫الف�صل الثالث‪ :‬العمليات على الاقترانات‪.‬‬ ‫عدد الح�ص�ص‪� :‬أربع ح�ص�ص‪.‬‬ ‫الاقتران العك�سي‪.‬‬ ‫ثان ًيا‪:‬‬ ‫النتاجات‬ ‫‪- -‬يتعرف مفهوم الاقتران واحد لواحد‪.‬‬ ‫‪- -‬ي�ستخدم اختبار الخط الأفقي في تحديد الاقتران واحد لواحد‪.‬‬ ‫‪- -‬ي�ستنتج قاعدة الاقتران العك�سي لاقتران واحد لواحد‪.‬‬ ‫‪- -‬ي�ستنتج علاقة ق(�س) بـ ق‪�(1-‬س)‪.‬‬ ‫‪- -‬يتعرف مفهوم الاقتران المحايد‪.‬‬ ‫‪- -‬يجد الاقتران العك�سي لاقترانات معطاة‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫اقتران واحد لواحد‪ ،‬اختبار الخط الأفقي‪ ،‬الاقتران العك�سي‪ :‬ق‪�(1-‬س)‪ ،‬الاقتران المحايد‪.‬‬ ‫التكامل الر�أ�سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفوف‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬والعا�شر‪ ،‬الاقترانات‪.‬‬ ‫م�صادر التع ّلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)77–70‬‬ ‫‪- -‬اللوح البياني‪.‬‬ ‫التعلم القبلي‬ ‫تركيب الاقترانات‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة والأجوبة)‪ ،‬حل الم�شكلات والا�ستق�صاء‪ ،‬التعلم في مجموعات (فكر‪ -‬انت ِق زميلاً ‪� -‬شارك)‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬مراجعة الطلبة في حل ال�س�ؤال الرابع من �أ�سئلة الدر�س ال�سابق‪ ،‬وبيان �أنه عندما يكون (ق‪5‬هـ)(�س) = �س‬ ‫‪65‬‬

‫ف�إن الاقتران هـ ي�سمى الاقتران العك�سي للاقتران ق‪ ،‬و أ�ن هذا هو مو�ضوع الدر�س‪ ،‬ثم ا�ستعرا�ض نتاجات‬ ‫الدر�س معهم‪.‬‬ ‫‪ - 2‬مناق�شة الطلبة في ال�شكل (‪ )13-2‬في ال�صفحة (‪ )70‬من الكتاب المدر�سي‪ ،‬ثم طرح الأ�سئلة ا آلتية عليهم‪:‬‬ ‫• هل يمثل المخطط ق اقترا ًنا؟‬ ‫• ما مجال الاقتران ق ومداه؟‬ ‫• هل يمثل المخطط هـ اقترا ًنا؟‬ ‫• ما مجال المخطط هـ ومداه؟‬ ‫• في أ�ي المخططين ارتبط كل عن�صر في مداه بعن�صر واحد فقط في مجاله؟‬ ‫• ماذا ن�سمي هذا الاقتران؟‬ ‫‪ - 3‬كتابة تعريف الاقتران واحد لواحد على اللوح‪.‬‬ ‫‪ - 4‬لفت انتباه الطلبة إ�لى وجود أ�داة لفح�ص الاقتران واحد لواحد‪ ،‬وهي اختبار الخـط ا ألفـقي‪ ،‬ثم‬ ‫تو�ضيحهـا‪ ،‬وتطبيقـهـا عن طريـق منـاق�شـة المثال (‪ )1‬با�سـتخدام اللوح البياني‪ ،‬وتمثيل اقترانـات‬ ‫خطية تربيعية وتكعيبية وفح�صها‪.‬‬ ‫‪ - 5‬توزيع الطلبة إ�لى مجموعات‪ ،‬ثم تكليفهم حل التدريب (‪ ،)1‬ومتابعتهم في أ�ثناء الحل‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ - 6‬تنفيذ ن�شاط (فكر) با�ستخدام ا�ستراتيجية (فكر ‪ -‬انت ِق زمي اًل ‪� -‬شارك)‪.‬‬ ‫‪ - 7‬عر�ض ا إلجراءات الوارد ذكرها في ال�صفحة (‪)72‬؛ لا�ستق�صاء �شرط �إيجاد الاقتران العك�سي لاقتران‬ ‫معطى‪ ،‬ثم كتابة الا�ستنتاج على اللوح‪.‬‬ ‫‪ - 8‬مناق�شة الطلبة في حل المثال (‪)2‬؛ إليجاد الاقتران العك�سي لاقتران معطى‪ ،‬وطرح �أ�سئلة عن ناتج‬ ‫تركيب اقتران مع معكو�سه‪.‬‬ ‫‪ - 9‬تكليف الطلبة حل التدريب (‪� )2‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في أ�ثناء الحل‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ -10‬تعريف مفهوم (الاقتران المحايد) للطلبة‪.‬‬ ‫‪ -11‬مناق�شة الطلبة في حل المثال (‪ ،)3‬بحيث ُير�َسم منحنى الاقتران ق(�س) على اللوح‪ ،‬ثم ُيط َّبق اختبار‬ ‫الخط الأفقي إلثبات أ�ن ق هو اقتران واحد لواحد‪ ،‬ثم عر�ض الطريقتين الوارد ذكرهما في الكتاب‬ ‫المدر�سي إليجاد الاقتران العك�سي‪.‬‬ ‫‪ -12‬توجيه الطلبة إ�لى حل التدريب (‪ )3‬ب�صورة فردية‪ ،‬بحيث يترك للطالب اختيار الطريقة التي يف�ضلها‬ ‫‪66‬‬

‫إليجاد الاقتران العك�سي‪ ،‬ثم توجيه كل منهم إ�لى مقارنة إ�جابته ب إ�جابة زميله الذي بجانبه للت�أكد من‬ ‫�صحة الحل‪.‬‬ ‫‪ -13‬تنفيذ ن�شاط (فكر) با�ستخدام ا�ستراتيجية (فكر‪ ،‬انت ِق زمي اًل‪� ،‬شارك)‪.‬‬ ‫‪ -14‬التمهيد لمناق�شة المثال (‪ )3‬بطرح ال�س�ؤال ا آلتي على الطلبة‪:‬‬ ‫�إذا �أعطيت ق(�س)‪ ,‬ق‪�(1-‬س)‪ ،‬فكيف تتحقق من �أن ق‪�(1-‬س) هو الاقتران العك�سي للاقتران ق(�س)؟‬ ‫‪ -15‬الا�ستماع �إلى ا إلجابات‪ ،‬ثم مناق�شتها‪ ،‬وتعزيز ال�صحيح منها‪.‬‬ ‫‪ -16‬توجيه الطلبة �إلى حل التدريب (‪� )4‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في �أثناء الحل‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ -17‬تعيين واجب بيتي للطلبة من �أ�سئلة الدر�س في ال�صفحة (‪ ،)77‬ثم حل بقية ا أل�سئلة في الح�صة اللاحقة‪.‬‬ ‫ختم الدر�س‬ ‫‪ -‬عمل اختبار ق�صير يقي�س نتاجات التعلم الوارد ذكرها في الدر�س‪.‬‬ ‫معلومات �إ�ضافية‬ ‫الاقتران ق‪�(1-‬س) هو انعكا�س للاقتران ق حول محور �ص = �س‪.‬‬ ‫�أخطاء �شائعة‬ ‫‪ -‬قد يخطئ بع�ض الطلبة عند إ�يجاد الاقتران العك�سي من دون الت أ�كد �أن الاقتران هو واحد لواحد‪.‬‬ ‫‪1‬‬ ‫‪ -‬قد يخطئ بع�ض الطلبة حين يعتقدون �أن ق‪�(1-‬س) =‬ ‫ق(�س)‬ ‫الفروق الفردية‬ ‫علاج‬ ‫‪ -‬إ�ذا كان ع(�س) = { (‪ ،})6 ،4( ، )3 ،0( ، )4 ،2( ، )1 ،1-‬فجد كلاًّ مما ي أ�تي‪:‬‬ ‫ع(‪ ، )0‬ع‪ ، )3(1-‬ع(‪ ، )2‬ع‪ ، )1(1-‬ع‪( ، )4(1-‬ع ‪ 5‬ع‪( ، )3()1-‬ع‪ 5 1-‬ع)(‪.)1-‬‬ ‫‪� -‬إذا كان ق(�س) = �س ‪ ،2 -‬فهل ق(�س) هو اقتران واحد لواحد؟ جد ق‪�(1-‬س) ( إ�ن أ�مكن)‪.‬‬ ‫إ�ثـراء‬ ‫‪�- -‬إذا كان ق(�س) = �س‪ ، 5 + 3‬فجد ق‪�(1-‬س) (�إن �أمكن)‪.‬‬ ‫‪67‬‬

‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬التقويم المعتمد على ا ألداء‪ ،‬الورقة والقلم‪.‬‬ ‫أ�داة التقويم‪� :‬سلم التقدير اللفظي لحل الم�س�ألة (‪ ،)7-1‬الاختبار الق�صير‪.‬‬ ‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫‪ )1‬الاقتران ق(�س) واحد لواحد؛ لأنه خطي‪.‬‬ ‫‪ )2‬الاقتران ق يمثل اقتران واحد لواحد؛ ألن كل عن�صر في المدى هو �صورة لعن�صر واحد فقط في‬ ‫المجال‪� .‬أ ّما الاقتران هـ فلي�س اقتران واحد لواحد؛ نظ ًرا إ�لى وجود عن�صرين لهما ال�صورة نف�سها‪.‬‬ ‫التدريب (‪)2‬‬ ‫‪ )1‬هـ‪.})7 ،4( ,)6 ،3( ،)5 ،2( )4 ،1({ = 1-‬‬ ‫‪ )2‬هـ‪ ،5 = )2(1-‬هـ‪ ، 7 = )4(1-‬هـ (‪ ، 2 = )5‬هـ (‪4 = )7‬‬ ‫(هـ ‪ 5‬هـ‪2 = )2()1-‬‬ ‫(هـ‪ 5 1-‬هـ)(‪، 6 = )6‬‬ ‫‪.‬‬ ‫‪6‬‬ ‫�س ‪+‬‬ ‫=‬ ‫التدريب (‪)3‬‬ ‫‪3‬‬ ‫‪ )1‬ق‪�(1-‬س)‬ ‫‪( )2‬ق ‪ 5‬ق‪�()1-‬س) = �س‪.‬‬ ‫�س‬ ‫�س‬ ‫التدريب (‪)4‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫لـ ع(�س)‪.‬‬ ‫) = �س ‪ ,‬ومنه‪ :‬ل (�س) اقتران عك�سي‬ ‫) = ‪(2‬‬ ‫(ل ‪5‬ع)(�س) = ل(‬ ‫‪)1‬‬ ‫‪� -‬س‬ ‫‪74‬‬ ‫=‬ ‫‪1‬‬ ‫= ‪� -15‬س ‪-‬‬ ‫‪1‬‬ ‫�س) ‪-‬‬ ‫‪1‬‬ ‫�س) = ‪- 5( 3‬‬ ‫‪1‬‬ ‫(ع ‪ 5‬ل)(�س) =ع (‪-5‬‬ ‫‪)2‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫∴ ل(�س) لي�س اقترا ًنا عك�س ًّيا لـ ع(�س)‪.‬‬ ‫‪68‬‬

‫الأ�سئلة‬ ‫‪)1‬‬ ‫�أ ) ق‪.})5-،4-( ، )4-،3-( ، )3-،2-( ، )2-،1-({ =1-‬‬ ‫ب) ق‪�(1-‬س) = ‪� -‬س ‪.‬‬ ‫‪.‬‬ ‫‪� + 2‬س‬ ‫ق‪�(1-‬س) =‬ ‫جـ)‬ ‫‪3‬‬ ‫�س‬ ‫�س‬ ‫‪)2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪� =6- )3+‬س‪ ،‬ق هو الاقتران العك�سي لـ هـ(�س)‪.‬‬ ‫‪(2‬‬ ‫=‬ ‫‪)3‬‬ ‫‪+‬‬ ‫(‬ ‫ق‬ ‫=‬ ‫(�س)‬ ‫هـ)‬ ‫‪5‬‬ ‫(ق‬ ‫)‬ ‫�أ‬ ‫ب) (ق ‪ 5‬هـ) (�س) = ق(‪� – 1‬س) = ‪� - 2‬س ‪ ،‬ق لي�س اقترا ًنا عك�س ًّيا لـ هـ (�س)‪.‬‬ ‫ب) (ق‪ 5 1-‬ق)(‪5 = )5‬‬ ‫‪)3‬‬ ‫�أ ) (ق ‪ 5‬ق‪2- = )2-()1-‬‬ ‫جـ) ق‪5 = )3( 1-‬‬ ‫‪5‬‬ ‫‪)4‬‬ ‫‪9‬‬ ‫(ف‪.)32 -‬‬ ‫�س =‬ ‫)‬ ‫�أ‬ ‫ب)‬ ‫�س ‪30 35 45 20‬‬ ‫ف ‪86 95 113 68‬‬ ‫‪) (2‬‬ ‫هـ ‪60 -‬‬ ‫‪)5‬‬ ‫‪3‬‬ ‫�س =‬ ‫‪.‬‬ ‫‪69‬‬

‫إجابات أسئلة الوحدة‬ ‫‪)1‬‬ ‫�أ ) مجـال ق(�س)‪.)∞ ،2( ,)2- ،∞ -( :‬‬ ‫ق(‪ )0‬غير معرف‪.‬‬ ‫‪،‬‬ ‫‪2‬‬ ‫ق(‪= )3‬‬ ‫‪،‬‬ ‫‪1-‬‬ ‫ب) ق(‪= )6-‬‬ ‫‪5‬‬ ‫‪32‬‬ ‫‪)2‬‬ ‫د) ق(‪1 = )0‬‬ ‫�أ ) ق(‪ 16 = )5-‬ب) ق(‪ ، 2٫5 = )1٫5 -‬جـ) ق(‪1 = )2-‬‬ ‫لواحد‪.‬‬ ‫واحد‬ ‫اقتران‬ ‫ق‬ ‫‪،‬‬ ‫‪7‬‬ ‫�س ‪-‬‬ ‫=‬ ‫ق‪�(1-‬س)‬ ‫‪)3‬‬ ‫‪3‬‬ ‫�أ ) قيم �ص التي تجعل الاقتران ع واح ًدا لواحد هي‪ :‬ح ‪.}3 ، 5 ،1-{ -‬‬ ‫‪)4‬‬ ‫ب) قيم �ص التي لا تجعل الاقتران ع واح ًدا لواحد هي‪.}3 ، 5 ،1-{ :‬‬ ‫‪)5‬‬ ‫�أ ) (ق ‪ 5‬ق)(�س) = ‪�9‬س‪20 +‬‬ ‫�س‪13 -2‬‬ ‫‪3‬‬ ‫ب) (ق ‪ 5‬هـ)(�س) =‬ ‫‪2‬‬ ‫جـ) (هـ ‪ 5‬ق‪�()1-‬س)‪.‬‬ ‫�س ‪5 -‬‬ ‫ق‪�(1-‬س) =‬ ‫‪3‬‬ ‫‪) (6 -2‬‬‫�س ‪5 -‬‬ ‫‪3‬‬ ‫(هـ ‪ 5‬ق‪�()1-‬س) =‬ ‫‪3‬‬ ‫‪2‬‬ ‫د) (ق ‪ 5‬ق‪�()1-‬س) = �س‪.‬‬ ‫هـ ) (هـ ‪ 5‬هـ)(‪4- = )4-‬‬ ‫�س‪� , 4 - 2‬س < ‪{2-‬‬ ‫‪)6‬‬ ‫�أ ) هـ (�س) =‬ ‫‪� - 4‬س‪� ≤ 2- ، 2‬س ≤ ‪2‬‬ ‫�س‪� , 4 - 2‬س > ‪2‬‬ ‫‪� , 1-‬س < ‪{0‬‬ ‫ب) ق (�س) =‬ ‫‪� ، 1‬س > ‪0‬‬ ‫‪70‬‬

‫‪)7‬‬ ‫�أ ) مجال ق(�س)‪.}3{ - )∞ ,2-[ :‬‬ ‫‪2‬‬ ‫‪ ،‬ق(‪= )1-‬‬ ‫‪6‬‬ ‫ب) ق(‪= )1‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫جـ) يمكن �إيجاد ق(‪)4‬؛ لأن ‪ 4‬مجال الاقتران ق‪.‬‬ ‫لا يمكن إ�يجاد كل من‪ :‬ق(‪ ،)3‬و ق(‪)5-‬؛ لأن العددين (‪ ،)3‬و(‪ )5-‬لا ينتميان إ�لى مجال‬ ‫الاقتران‪.‬‬ ‫‪)8‬‬ ‫�أ ) الا�ستعانة ببرمجية إ�ك�سل‪� ،‬أو برامج الر�سم التي يمكن تحميلها في الهواتف الذكية‪.‬‬ ‫ب) ق(‪ , 0 = )0‬ق(‪ ، 2- = )1-‬ق(‪ ، 2- = )1‬ق(‪ ، 8- = )3-‬ق(‪1= )2‬‬ ‫‪( ) 9‬ق ‪ 5‬هـ )(�س) = �س ‪4 +‬‬ ‫∴ الاقتران ق(�س) لا يمثل الاقتران العك�سي للاقتران هـ (�س)‪.‬‬ ‫‪)10‬‬ ‫�أ ) ف (ن) = ‪ 50‬ن‬ ‫‪.‬‬ ‫ف‬ ‫الاقتران العك�سي لهذا الاقتران هو‪ :‬ن(ف) =‬ ‫ب)‬ ‫‪50‬‬ ‫‪)11‬‬ ‫رقم ال�س ؤ�ال ‪7 6 5 4 3 2 1‬‬ ‫د جـ ب ب د جـ‬ ‫أ�‬ ‫رمز ا إلجابة‬ ‫ال�صحيحة‬ ‫‪71‬‬

‫ورقة العمل (‪ :)1-2‬اقترانات الجذور‪.‬‬ ‫المجموعة الثانية‬ ‫المجموعة ا ألولى‬ ‫ك (�س) = ‪� 3‬س‬ ‫ق(�س) = �س‬ ‫ل (�س) = ‪� 3‬س ‪1-‬‬ ‫و (�س) = �س ‪1-‬‬ ‫ع (�س) = ‪� - 6 3‬س‪2‬‬ ‫م (�س) = ‪� - 4‬س‪2‬‬ ‫معتم ًدا الاقترانات الوارد ذكرها في الجدول‪� ،‬أجب عن الأ�سئلة ا آلتية‪:‬‬ ‫‪ - 1‬جد قيمة ق(‪ ،)9‬و(‪ ،)5‬م(‪.)0‬‬ ‫‪ - 2‬هل يمكنك إ�يجاد ق(‪ ،)4-‬و(‪)0‬؟ لماذا؟‬ ‫‪ - 3‬اكتب مجموعة قيم �س التي يمكنك تعوي�ضها لكل اقتران في المجموعة الأولى‪.‬‬ ‫‪ - 4‬حل المتباينة هـ(�س) ≥ ‪ ،0‬عل ًما �أن ق(�س) = هـ (�س) ‪ ،‬لكل اقتران في المجموعة ا ألولى‪.‬‬ ‫‪ - 5‬ار�سم منحنى الاقتران ق(�س)‪ ،‬ثم ح ِّدد مداه‪ ،‬لكل اقتران في المجموعة ا ألولى‪.‬‬ ‫‪� - 6‬أكمل التعميم ا آلتي‪:‬‬ ‫مجال الاقتران ق(�س) = هـ (�س) هو ‪ ،....................‬ومداه هو ‪. ....................‬‬ ‫‪ - 7‬اكتب مجموعة قيم �س التي يمكنك تعوي�ضها لكل اقتران في المجموعة الثانية‪.‬‬ ‫‪� - 8‬أكمل التعميم الآتي‪:‬‬ ‫مجال الاقتران ق(�س) = ‪ 3‬هـ (�س) هو ‪ ،....................‬ومداه هو ‪. ....................‬‬ ‫‪72‬‬

‫ا�ستراتيجية التقويم‪ :‬التقويم المعتمد على الأداء‪.‬‬ ‫�أداة التقويم‪� :‬سلم التقدير (‪.)1-2‬‬ ‫النتاج‪ :‬يجد المجال والمدى لاقترانات حقيقية‪.‬‬ ‫‪321‬‬ ‫م�ؤ�شرات ا ألداء‬ ‫البند‬ ‫• اقتران كثير حدود من الدرجة الثانية على الأكثر‬ ‫‪1‬‬ ‫‪ - 1‬يجد المجال لاقتران من الدرجة الثانية على ا ألكثر جبر ًّيا‪.‬‬ ‫‪2‬‬ ‫‪ - 2‬يجد المدى لاقتران من الدرجة الثانية على الأكثر جبر ًّيا‪.‬‬ ‫‪3‬‬ ‫‪ - 3‬يجد المجال لاقتران من الدرجة الثانية على الأكثر بيان ًّيا‪.‬‬ ‫‪4‬‬ ‫‪ - 4‬يجد المدى لاقتران من الدرجة الثانية على الأكثر بيان ًّيا‪.‬‬ ‫• اقترانات الجذور‬ ‫‪ - 1‬يجد المجال لاقترانات الجذور جبر ًّيا‪.‬‬ ‫‪ - 2‬يجد المدى لاقترانات الجذور جبر ًّيا‪.‬‬ ‫‪ - 3‬يجد المجال لاقترانات الجذور بيان ًّيا‪.‬‬ ‫‪ - 4‬يجد المدى لاقترانات الجذور بيان ًّيا‪.‬‬ ‫• الاقتران الن�سبي‬ ‫‪ - 1‬يجد المجال لاقتران ن�سبي جبر ًّيا‪.‬‬ ‫‪ - 2‬يجد المجال لاقتران ن�سبي بيان ًّيا‪.‬‬ ‫• الاقتران الك�سري‬ ‫‪ - 1‬يميز بين الاقتران الن�سبي والاقتران الك�سري‪.‬‬ ‫‪ - 2‬يجد المجال لاقتران ك�سري جبر ًّيا‪.‬‬ ‫(‪� )3‬أنجز المهمة ب�صورة �صحيحة من دون خط�أ‪ ،‬ومن دون م�ساعدة‪.‬‬ ‫(‪� )2‬أنجز المهمة ب�صورة �صحيحة من دون خط�أ‪ ،‬وبوجود م�ساعدة‪.‬‬ ‫(‪� )1‬أنجز المهمة بوجود �أخطاء‪ ،‬ووجود م�ساعدة‪.‬‬ ‫‪73‬‬

‫ا�ستراتيجية التقويم‪ :‬الملاحظة‪.‬‬ ‫أ�داة التقويم‪� :‬سلم التقدير (‪.)2-2‬‬ ‫اقتران القيمة المطلقة‬ ‫النتاج‪ :‬يعيد تعريف اقتران القيمة المطلقة‪ ،‬وير�سم منحناه‪.‬‬ ‫مقبول �ضعيف‬ ‫ممتاز جيد ج ًّدا جيد‬ ‫م�ؤ�شرات الأداء‬ ‫الرقم‬ ‫‪ 1‬يجد �صورة عدد تحت ت�أثير اقتران القيمة المطلقة‪.‬‬ ‫‪ 2‬يعيد تعريف اقتران قيمة مطلقة من الدرجة ا ألولى‪.‬‬ ‫‪ 3‬يعيد تعريف اقتران قيمة مطلقة من الدرجة الثانية‪.‬‬ ‫‪ 4‬ير�سم منحنى اقتران قيمة مطلقة من الدرجة ا ألولى‪.‬‬ ‫ممتاز‪� :‬أنجز المهمة ب�صورة �صحيحة من دون خط�أ‪ ،‬ومن دون م�ساعدة‪.‬‬ ‫جيد ج ًّدا‪� :‬أنجز المهمة ب�صورة �صحيحة من دون خط�أ‪ ،‬وبوجود م�ساعدة‪.‬‬ ‫جيد‪� :‬أنجز المهمة بوجود خط�أ ب�سيط‪ ،‬ومن دون م�ساعدة‪.‬‬ ‫مقبول‪� :‬أنجز المهمة بوجود خط�أ ب�سيط‪ ،‬وبوجود م�ساعدة‪.‬‬ ‫�ضعيف‪� :‬أنجز المهمة بوجود �أخطاء‪ ،‬ووجود م�ساعدة‪.‬‬ ‫‪74‬‬

‫الف�صل الدرا�سي الثاني‬



77

‫تهيئة‬ ‫‪ ) 1‬اكتب ك ًاّل مما ي�أتي با�ستخدام الأ�س�س‪:‬‬ ‫د ) ‪64‬‬ ‫جـ) ‪625‬‬ ‫ب) ‪32-‬‬ ‫�أ ) ‪216‬‬ ‫‪ )2‬اكتب ك ًّال مما ي�أتي بو�صفه قوة واحدة‪:‬‬ ‫جـ) �س‪� ÷ 17‬س‪7‬‬ ‫ب) ( ‪6) 11 ( * 6) 11‬‬ ‫�أ ) ل‪ * 3‬ل‪5‬‬ ‫(‪5)7‬‬ ‫*‬ ‫)‪5‬‬ ‫‪1‬‬ ‫(‬ ‫و)‬ ‫‪122‬‬ ‫هـ)‬ ‫ع‪7‬‬ ‫د)‬ ‫‪14‬‬ ‫‪125‬‬ ‫ع‪8‬‬ ‫‪ )3‬حل المعادلات الآتية‪:‬‬ ‫ب) ‪�7‬س * ‪97 = 37‬‬ ‫‪3‬‬ ‫�أ ) �س‪= 1-‬‬ ‫د ) (‪�11‬س)‪24)11( = 3‬‬ ‫‪7‬‬ ‫جـ) �س‪3-7 = 3‬‬ ‫و ) (‪�)15‬س ÷ (‪10)15( = 6)15‬‬ ‫هـ ) �س‪4) 5 ( * 4) 5 ( = 4‬‬ ‫‪� )4‬ضع دائرة حول رمز الإجابة ال�صحيحة في ما ي�أتي‪:‬‬ ‫(‪ )1‬حل المعادلة‪�)81( :‬س = ‪:363‬‬ ‫د ) ‪36‬‬ ‫جـ) ‪18‬‬ ‫ب) ‪9‬‬ ‫�أ ) ‪4‬‬ ‫(‪ )2‬حل المعادلة‪� :‬س‪:125 = 3 - 7‬‬ ‫د ) ‪128‬‬ ‫جـ) ‪125‬‬ ‫ب) ‪5‬‬ ‫�أ ) ‪2‬‬ ‫د ) ‪24‬‬ ‫(‪ )3‬حل المعادلة‪�10 :‬س * ‪:2110 = 1000‬‬ ‫د ) ‪4-‬‬ ‫د ) ‪40‬‬ ‫جـ) ‪21‬‬ ‫ب) ‪18‬‬ ‫�أ ) ‪7‬‬ ‫‪:‬‬ ‫‪625‬‬ ‫)�س =‬ ‫‪2‬‬ ‫حل المعادلة‪( :‬‬ ‫(‪)4‬‬ ‫‪16‬‬ ‫‪5‬‬ ‫جـ) ‪4‬‬ ‫‪2‬‬ ‫ب)‬ ‫‪2‬‬ ‫�أ )‬ ‫‪5‬‬ ‫‪5‬‬ ‫(‪ )5‬حل المعادلة‪�13( :‬س)‪:40)13( = 5‬‬ ‫جـ) ‪8‬‬ ‫ب) ‪5‬‬ ‫�أ ) ‪35‬‬ ‫‪78‬‬

‫إجابات أسئلة التهيئة‬ ‫د ) (‪6)2‬‬ ‫جـ) (‪4)5‬‬ ‫ب) (‪5)2-‬‬ ‫‪ )1‬‬ ‫�أ ) (‪3)6‬‬ ‫‪66‬‬ ‫‪)2‬‬ ‫ب) ‪77 = 7 * 11‬‬ ‫�أ ) ل‪8‬‬ ‫جـ) �س‪) ( ) (10‬‬ ‫)‪5‬‬ ‫‪1‬‬ ‫(‬ ‫=‬ ‫)‪5‬‬ ‫‪7‬‬ ‫(‬ ‫و)‬ ‫)‪12‬‬ ‫‪2‬‬ ‫(‬ ‫هـ)‬ ‫‪1‬‬ ‫د ) ع‪= 1-‬‬ ‫‪2‬‬ ‫‪14‬‬ ‫‪5‬‬ ‫ع‬ ‫‪1‬‬ ‫جـ) �س =‬ ‫ب) �س = ‪6‬‬ ‫‪7‬‬ ‫‪)3‬‬ ‫‪7‬‬ ‫هـ ) �س = ‪5‬‬ ‫‪3‬‬ ‫�أ ) �س =‬ ‫و ) �س = ‪16‬‬ ‫د ) �س = ‪8‬‬ ‫‪)4‬‬ ‫رقم ال�س ؤ�ال ‪5 4 3 2 1‬‬ ‫رمز ا إلجابة ال�صحيحة ب �أ ب د جـ‬ ‫‪79‬‬

‫الف�صل الأول‪ :‬الاقترانات والمعادلات الأسية‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫الاقتران الأ�سي‪.‬‬ ‫�أو اًل‪:‬‬ ‫النتاجات‬ ‫‪- -‬يتعرف الاقتران الأ�سي‪.‬‬ ‫‪- -‬يتعرف الاقتران ا أل�سي الطبيعي‪.‬‬ ‫‪- -‬ي�ستخدم الآلة الحا�سبة في إ�يجاد �صورة عدد في الاقتران ا أل�سي الطبيعي‪.‬‬ ‫‪- -‬ي�ستخدم الاقتران ا أل�سي في حل م�سائل حياتية اقت�صادية‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫الاقتران ا أل�سي‪ ،‬الاقتران الأ�سي الطبيعي‪.‬‬ ‫التكامل الر�أ�سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفان‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬قوانين الأ�س�س‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)89-84‬‬ ‫‪- -‬الآلة الحا�سبة‪.‬‬ ‫التعلم القبلي‬ ‫قوانين الأ�س�س‪ ،‬المقادير ا أل�سية‪ ،‬مجال الاقتران ومداه‪� ،‬صورة العدد‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (الأ�سئلة وا ألجوبة)‪ ،‬التفكير الناقد‪ ،‬التعلم في مجموعات (فكر ‪ -‬انت ِق زمي اًل ‪� -‬شارك)‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬مراجعة الطلبة في مفهوم كل من‪ :‬الاقتران‪ ،‬والمجال‪ ،‬والمدى‪ ،‬و�صورة العدد‪.‬‬ ‫‪ - 2‬عر�ض الم�س�ألة الوارد ذكرها في بداية الدر�س‪ ،‬ثم مناق�شتها لبيان �أهمية الاقتران ا أل�سي‪.‬‬ ‫‪ - 3‬كتابة تعريف الاقتران الأ�سي على اللوح‪ ،‬ثم توجيه الطلبة إ�لى ذكر �أمثلة متنوعة عليه‪.‬‬ ‫‪ - 4‬ذكر مثال يمثل مفهوم الاقتران الأ�سي‪ ،‬ومثال �آخر لا يمثله‪.‬‬ ‫‪80‬‬

‫‪ - 5‬تكليف الطلبة حل التدريبين (‪ ،)2‬و(‪� )3‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في هذه ا ألثناء‪ ،‬وتقديم‬ ‫التغذية الراجعة لهم‪ ،‬وتعزيز �إجاباتهم‪.‬‬ ‫‪ - 6‬مناق�شة الطلبة في حل المثال (‪ ،)2‬ثم الطلب �إليهم حل التدريب (‪ ،)3‬ومتابعتهم في هذه ا ألثناء‪،‬‬ ‫وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ - 7‬مناق�شة الطلبة في مفهوم الاقتران ا أل�سي الطبيعي‪ ،‬وكيفية ا�ستعمال الآلة الحا�سبة لإيجاد �صورة عدد‬ ‫ما في الاقتران الأ�سي الطبيعي‪ ،‬ثم الطلب �إليهم حل التدريب (‪ ،)4‬ثم مناق�شتهم في الإجابات‪.‬‬ ‫‪ - 8‬مناق�شة الطلبة في حل المثالين (‪ ،)4‬و(‪)5‬؛ لتو�ضيح �أهمية الاقتران ا أل�سي في التطبيقات الحياتية‪،‬‬ ‫ثم تكليفهم حل التدريبين (‪ ،)5‬و(‪� )6‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في هذه ا ألثناء‪ ،‬وتقديم‬ ‫التغذية الراجعة لهم‪.‬‬ ‫‪ - 9‬كتابة المثال (‪ )6‬على اللوح‪ ،‬وا�ستعمال ا�ستراتيجية (فكر‪ -‬انت ِق زمي ًال ‪� -‬شارك) لحله‪ ،‬ثم مناق�شة‬ ‫الطلبة في الإجابة ال�صحيحة‪.‬‬ ‫‪ -10‬توجيه كل طالب �إلى حل الأ�سئلة في ال�صفحة (‪ ،)89‬ومتابعتهم في هذه ا ألثناء‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ -11‬توجيه الطلبة إ�لى حل ال�س�ؤال (‪ )5‬با�ستخدام ا�ستراتيجية (فكر‪ -‬انت ِق زمي اًل ‪� -‬شارك)‪.‬‬ ‫ختم الدر�س‬ ‫‪- -‬طرح ال�س ؤ�الين ا آلتيين على الطلبة‪:‬‬ ‫Ÿ Ÿماذا يعني الاقتران الأ�سي؟‬ ‫Ÿ Ÿما الفرق بينه وبين الاقتران كثير الحدود؟‬ ‫أ�خطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة في إ�يجاد �صورة عدد �سالب في الاقتران ا أل�سي بحيث يكون الناتج (ال�صورة) بال�سالب‪.‬‬ ‫مراعاة الفروق الفردية‬ ‫علاج‬ ‫‪ -‬إ�ذا كان ق(�س) = (‪�)2‬س ‪ ،‬فجد ق(‪ ، )0‬ق(‪ ، )2‬ق(‪ ، )3‬ق(‪ ، )2-‬ق(‪.)3-‬‬ ‫‪ -‬إ�ذا كان هـ(�س) = (‪�)2-‬س ‪ ،‬فجد ق(‪ ، )0‬ق(‪ ، )2‬ق(‪ ، )3‬ق(‪ ، )2-‬ق(‪.)3-‬‬ ‫�إثـراء‬ ‫‪�- -‬أودع �أحمد مبلغ (‪ )500‬دينار في م�صرف لقاء فائدة مركبة بمع َّدل ‪� ٪6‬سنو ًّيا‪ ،‬ما الم َّدة الزمنية اللازمة‬ ‫لي�صبح كامل المبلغ في نهايتها (‪ )595٫5‬دينا ًرا؟‬ ‫‪81‬‬

‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬الملاحظة‪ ،‬التوا�صل‪.‬‬ ‫أ�داة التقويم‪ :‬قائمة الر�صد (‪.)1-3‬‬ ‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫الاقترانات ا أل�سية هي‪ :‬ق(�س)‪ ،‬م(�س)‪.‬‬ ‫التدريب (‪)2‬‬ ‫‪ )1‬ق(�س) = (‪� -)4‬س‬ ‫‪ )2‬هـ (�س) = (‪�)3‬س‪1+‬‬ ‫‪ )3‬ل(�س) = (‪�)4‬س – ‪2‬‬ ‫‪2‬‬ ‫ق(‪= )2-‬‬ ‫ق(‪18 = )2‬‬ ‫التدريب (‪)3‬‬ ‫‪9‬‬ ‫ق(‪6 = )1‬‬ ‫التدريب (‪)4‬‬ ‫ق(‪( = )3‬هـ)‪( = 1+3-‬هـ)‪0٫14 = 2-‬‬ ‫ق(‪( = )2-‬هـ)‪( = 1+2-‬هـ)‪0٫37 = 1-‬‬ ‫ق(‪( = )0٫3‬هـ)‪( = 1+0٫3-‬هـ)‪2٫01 = 0٫7‬‬ ‫التدريب (‪)5‬‬ ‫المبلغ‪ )6000( :‬دينار‪ ،‬الم َّدة ن‪� )10( :‬سنوات‪ ،‬ن�سبة الفائدة ف‪. ٪6 :‬‬ ‫جـ = م * (‪ +1‬ف)ن‬ ‫جـ = ‪10)0٫06 + 1( 6000‬‬ ‫جـ = ‪10)0٫06( * 6000‬‬ ‫جـ = ‪1٫7908 * 6000‬‬ ‫جـ = ‪ 10745٫086‬دينا ًرا‪.‬‬ ‫‪82‬‬

‫التدريب (‪)6‬‬ ‫المبلغ‪ )2000( :‬دينار‪ ،‬الم َّدة ن‪� )10( :‬سنوات‪ ،‬ن�سبة الفائدة ف‪. ٪6 :‬‬ ‫جـ = م * (هـ)ف*ن‬ ‫جـ = ‪( * 2000‬هـ)‪10*0٫06‬‬ ‫جـ = ‪ * 2000‬هـ‪0٫6‬‬ ‫جـ = ‪ 3644٫2376‬دينا ًرا‪.‬‬ ‫�أ = ‪3‬‬ ‫التدريب (‪)7‬‬ ‫ب = ‪ ، 2‬ب = ‪( 2-‬تهمل)‪.‬‬ ‫ق(�س) = �أ * ب�س‬ ‫ق(‪� = )0‬أ * ب‪0‬‬ ‫ق(‪� = )2‬أ * ب‪2‬‬ ‫‪ * 3 = 12‬ب‪2‬‬ ‫∴ ق(�س) = ‪�2 * 3‬س‬ ‫ا أل�سئلة‬ ‫‪)1‬‬ ‫الاقتران ا أل�سي هو ع(�س)‪.‬‬ ‫‪1‬‬ ‫جـ) ق(‪= )1-‬‬ ‫ب) ق(‪9 = )4‬‬ ‫‪)2‬‬ ‫‪27‬‬ ‫�أ ) ق(‪1 = 03 =2-2)3( = )2‬‬ ‫‪)3‬‬ ‫�أ ) ق(‪( - 2 = )3‬هـ)‪51٫14- = 1+3‬‬ ‫ب) ق(‪1٫632 = )2-‬‬ ‫جـ) ق(‪17٫683- = )2‬‬ ‫‪ )4‬ق(�س) = �أ * ب�س ‪ ،‬ق(‪ ،4 = )1‬ق(‪ ، 8 = )2‬ومنه‪ :‬ب = ‪ ، 2‬أ� = ‪2‬‬ ‫∴ ق(�س) = ‪�2 * 2‬س‬ ‫= (‪�)2‬س‪1+‬‬ ‫‪83‬‬

‫‪)5‬‬ ‫ع(ن) = ع‪( × 0‬هـ)�أ ن ‪ ،‬حيث ع‪� ، 300 = 0‬أ = ‪ ، 0٫04 = ٪4‬ن = ‪ 25‬عا ًما‪.‬‬ ‫ع(‪( * 300 = )25‬هـ)‪ 810 = 25*0٫04‬ن�سمة عدد �سكان البلدة عام ‪2025‬م‪.‬‬ ‫‪)6‬‬ ‫جـ = م (‪ +1‬ف)ن ‪ ،‬حيث جـ = ‪ ،3370٫8‬ف = ‪ ، ٪6‬ن = ‪� 5‬سنوات‪.‬‬ ‫‪ = 3370٫8‬م (‪5)0٫06 + 1‬‬ ‫‪ = 3370٫8‬م (‪5)1٫06‬‬ ‫م = ‪ 2518٫86‬دينا ًرا قيمة المبلغ الذي �أودعه �أحمد‪.‬‬ ‫‪84‬‬

‫الف�صل ا ألول‪ :‬الاقترانات والمعادلات الأسية‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫ر�سم الاقتران الأ�سي‪.‬‬ ‫ثان ًيا‪:‬‬ ‫النتاجات‬ ‫‪- -‬يمثل الاقتران الأ�سي بيان ًّيا‪.‬‬ ‫‪- -‬يمثل الاقتران الأ�سي با�ستخدام برمجية �إك�سل‪.‬‬ ‫‪- -‬ي�ستق�صي خ�صائ�ص الاقتران ا أل�سي‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫الاقتران ا أل�سي‪ ،‬الاقتران المتزايد‪ ،‬الاقتران المتناق�ص‪� ،‬صورة العدد في الاقتران‪.‬‬ ‫التكامل الر أ��سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفان‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬قوانين ا أل�س�س‪.‬‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفوف‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬والعا�شر‪ ،‬الاقترانات وخ�صائ�صها‪.‬‬ ‫التكامل ا ألفقي‬ ‫‪- -‬تطبيقات برمجية إ�ك�سل‪ ،‬مبحث الحا�سوب‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪)96-90‬‬ ‫‪- -‬اللوح‪ ،‬جهاز الحا�سوب‪.‬‬ ‫‪- -‬البرمجيات التطبيقية لر�سم المنحنيات‪.‬‬ ‫التعلم القبلي‬ ‫قوانين ا أل�س�س‪ ،‬الاقتران ا أل�سي‪ ،‬المقادير الأ�سية‪ ،‬برمجية إ�ك�سل‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة وا ألجوبة)‪ ،‬التفكير الناقد‪ ،‬التعلم في مجموعات (التعلم التعاوني الجماعي)‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬مراجعة الطلبة في مفهوم كل من‪ :‬الاقتران‪ ،‬والمجال‪ ،‬والمدى‪ ،‬و�صورة العدد في الاقتران‪ ،‬وكيفية تمثيل‬ ‫‪85‬‬

‫الاقتران بيان ًّيا‪.‬‬ ‫‪ - 2‬مناق�شة الطلبة في الم�س أ�لة الوارد ذكرها في بداية الدر�س‪.‬‬ ‫‪ - 3‬مراجعة الطلبة في تعريف الاقتران الأ�سي‪ ،‬وت أ�كيد مفهومه‪.‬‬ ‫‪ - 4‬مناق�شة الطلبة في تمثيل الاقتران ق(�س) = (‪�)2‬س على اللوح‪ ،‬والتركيز على �ضرورة عمل جدول‪ ،‬و�س�ؤالهم‪:‬‬ ‫ما عدد قيم �س اللازم اختيارها ل�ضمان الدقة في الر�سم؟‬ ‫‪ - 5‬الا�ستماع �إلى الإجابات ثم مناق�شتها‪.‬‬ ‫‪ - 6‬توزيع الطلبة �إلى مجموعات‪ ،‬ثم الطلب إ�ليهم حل التدريب (‪ ،)1‬ومتابعتهم في هذه ا ألثناء‪ ،‬وتقديم التغذية‬ ‫الراجعة لهم‪.‬‬ ‫‪ - 7‬مناق�شة الطلبة في حل المثال (‪ ،)2‬وا�ستخدام جميع الر�سوم ال�سابقة في ا�ستنتاج خ�صائ�ص الاقتران ا أل�سي‪،‬‬ ‫وتو�ضيح كيفية إ�يجاد مجال الاقتران ومداه با�ستخدام التمثيل البياني (مهارة قراءة الر�سوم وتف�سيرها)‪.‬‬ ‫‪ - 8‬توجيه الطلبة إ�لى حل التدريب (‪ )2‬فرادى‪ ،‬ثم مناق�شتهم في الحل �ضمن مجموعات ثنائية‪.‬‬ ‫‪ - 9‬مناق�شة الطلبة في كيفية تمثيل الاقتران الأ�سي با�ستخدام برمجية إ�ك�سل في مختبر الحا�سوب‪ ،‬وت�أكيد كيفية‬ ‫تحديد مجال الاقتران‪ ،‬ومداه‪ ،‬والمقطع ال�صادي با�ستخدام الر�سوم‪.‬‬ ‫‪ -10‬تعيين واجب بيتي للطلبة من �أ�سئلة الدر�س في ال�صفحة (‪ ،)96‬ثم حل بقية الأ�سئلة في الح�صة اللاحقة‪.‬‬ ‫ختم الدر�س‬ ‫‪ -‬طرح ال�س�ؤال الآتي على الطلبة‪:‬‬ ‫ •ما خ�صائ�ص الاقتران ا أل�سي؟‬ ‫‪ -‬تكليف الطلبة تعبئة نموذج �سجل و�صف �سير التعلم (‪.)8-1‬‬ ‫معلومات إ��ضافية‬ ‫يمكن الا�ستعانة ببرمجيات ر�سم منحنيات الاقترانات‪ ،‬وتدريب الطلبة على ا�ستخدامها لتعميق فهمهم‬ ‫خ�صائ�ص المنحنيات‪ ،‬ويمكن الح�صول على هذه البرمجيات من التطبيقات الموجودة في الهواتف الذكية‪.‬‬ ‫�أخطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة في إ�يجاد �صورة عدد �سالب في الاقتران الأ�سي بحيث يكون الناتج (ال�صورة) بال�سالب‪.‬‬ ‫‪86‬‬

‫الفروق الفردية‬ ‫علاج‬ ‫‪ -‬إ�ذا كان ق(�س) = (‪�)3‬س ‪ ،‬فجد‪:‬‬ ‫ق (‪ ، )1‬ق (‪ ، )3‬ق (‪ ، )0‬ق (‪ ، )2-‬ق (‪.)1-‬‬ ‫‪ -‬إ�ذا كان هـ(�س) = (‪�-)2‬س ‪ ،‬فجد‪:‬‬ ‫هـ (‪ ، )0‬هـ (‪ ، )1‬هـ (‪ ، )3‬هـ (‪ ، )1-‬هـ (‪.)2-‬‬ ‫إ�ثـراء‬ ‫‪ -‬ار�سم منحنى الاقتران ق(�س) = (‪�)2‬س ‪ ، 4 +‬مقار ًنا خ�صائ�صه بخ�صائ�ص الاقتران هـ(�س) = (‪�)2‬س‪.‬‬ ‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬الملاحظة‪ ،‬التوا�صل‪ ،‬مراجعة الذات‪.‬‬ ‫أ�داة التقويم‪ :‬قائمة الر�صد (‪� ،)1-3‬سجل و�صف �سير التعلم (‪.)8-1‬‬ ‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫‪ )1‬يمكن الا�ستعانة ببرمجيات ر�سم منحنيات الاقترانات الموجودة في الهواتف الذكية‪.‬‬ ‫التدريب (‪)2‬‬ ‫‪ )1‬يمكن الا�ستعانة ببرمجيات ر�سم منحنيات الاقترانات الموجودة في الهواتف الذكية‪.‬‬ ‫‪ )2‬مجال الاقتران ق هو مجموعة ا ألعداد الحقيقية ( ح )�س‪.1+‬‬ ‫‪ )3‬مدى الاقتران ق هو مجموعة ا ألعداد الحقيقية الموجبة ( ح‪.)+‬‬ ‫‪ )4‬المقطع ال�صادي (‪.)2‬‬ ‫‪ )5‬لا يوجد مقطع �سيني‪.‬‬ ‫‪ )6‬الاقتران متزايد‪.‬‬ ‫‪87‬‬

‫ا أل�سئلة‬ ‫‪ )1‬خ�صائ�ص منحنى الاقتران ق (�س) = (‪�)2‬س‪.1-‬‬ ‫�أ ) مجاله هو مجموعة ا ألعداد الحقيقية (ح)‪ ،‬ومداه هو (ح‪.)+‬‬ ‫)‪.‬‬ ‫‪1‬‬ ‫لا يوجد مقطع �سيني‪.‬‬ ‫ب)‬ ‫‪2‬‬ ‫المقطع ال�صادي ( �ص =‬ ‫جـ)‬ ‫د ) الاقتران واحد لواحد‪.‬‬ ‫هـ ) الاقتران متزايد‪.‬‬ ‫[‪.]4 ، 3-‬‬ ‫‪ )2‬خ�صائ�ص منحنى الاقتران ق (�س) = (‪�)5‬س ‪� ،‬س‬ ‫�أ ) مجاله هو �س [‪.]4 ، 3-‬‬ ‫ب) لا يوجد مقطع �سيني‪.‬‬ ‫جـ) المقطع ال�صادي ( �ص = ‪.)1‬‬ ‫د ) الاقتران واحد لواحد‪.‬‬ ‫هـ ) الاقتران متزايد‪.‬‬ ‫‪ )3‬ال�شكل الذي يمثل اقترا ًنا �أ�س ًّيا هو ال�شكل (جـ)‪.‬‬ ‫‪)4‬‬ ‫ال�سبب‬ ‫رقم ال�شكل‬ ‫الاقتران‬ ‫ألن الاقتران متناق�ص‪.‬‬ ‫�أ ) ق(�س) = (‪�–)2‬س (‪)2‬‬ ‫ألن المقطع ال�صادي = ‪.1‬‬ ‫(‪)3‬‬ ‫ب) هـ (�س) = (‪�)2‬س‬ ‫لأن المقطع ال�صادي = ‪.2‬‬ ‫(‪)1‬‬ ‫جـ) ل(�س) = (‪�()2‬س‪)1+‬‬ ‫‪88‬‬

‫الف�صل الأول‪ :‬الاقترانات والمعادلات الأسية‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫المعادلة ا أل�سية‪.‬‬ ‫ثال ًثا‪:‬‬ ‫النتاجات‬ ‫‪- -‬يتعرف المعادلة ا أل�سية‪.‬‬ ‫‪- -‬يحل معادلة �أ�سية‪.‬‬ ‫‪- -‬ي�ستخدم المعادلات ا أل�سية في حل م�سائل حياتية‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫‪ -‬معادلة �أ�سية‪ ،‬حل المعادلة ا أل�سية‪.‬‬ ‫التكامل الر أ��سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفان‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬قوانين ا أل�س�س‪.‬‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفوف‪ :‬ال�سابع‪ ،‬والثامن‪ ،‬والتا�سع‪ ،‬والعا�شر‪ ،‬حل المعادلات‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)101-97‬‬ ‫‪- -‬ا آللة الحا�سبة‪.‬‬ ‫التعلم القبلي‬ ‫مفهوم المعادلة‪ ،‬حل المعادلة‪ ،‬قوانين ا أل�س�س‪ ،‬الاقتران ا أل�سي‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة وا ألجوبة)‪ ،‬التعلم في مجموعات (فكر ‪ -‬انت ِق زمي اًل ‪� -‬شارك)‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬مراجعة الطلبة في قوانين ا أل�س�س‪ ,‬ومفهوم المعادلة وحلها‪ ,‬ثم �س ؤ�الهم‪:‬‬ ‫ •بر�أيك‪ ،‬كيف تكون المعادلة ا أل�سية؟‬ ‫ •كيف يمكن حلها؟‬ ‫‪ - 2‬الا�ستماع �إلى ا إلجابات‪ ،‬ثم مناق�شتها‪.‬‬ ‫‪89‬‬

‫‪ - 3‬تقديم مفهوم (المعادلة الأ�سية) عن طريق التعريف‪.‬‬ ‫‪ - 4‬ذكر مثال يمثل مفهوم المعادلة الأ�سية‪ ،‬ومثال �آخر لا يمثله‪.‬‬ ‫‪ - 5‬مناق�شة الطلبة في حل المثال (‪ ،)1‬ثم الطلب �إليهم حل التدريب (‪ ،)1‬ومتابعتهم في هذه الأثناء‪ ،‬وتقديم‬ ‫التغذية الراجعة لهم‪.‬‬ ‫‪ - 6‬مناق�شة الطلبة في مفهوم حل المعادلة ا أل�سية عن طريق �شرح المثال (‪ ،)2‬و إ��شراك الطلبة في حله‪.‬‬ ‫‪ - 7‬تق�سيم الطلبة إ�لى مجموعات غير متجان�سة‪ ،‬ثم الطلب �إلى أ�فرادها حل التدريب (‪ ,)2‬ومتابعتهم في هذه‬ ‫ا ألثناء‪ ،‬ثم مناق�شة ا إلجابات‪ ،‬وتقديم التغذية الراجعة لهم‪ ,‬والتركيز على �ضرورة ا�ستخدام قوانين ا أل�س�س‬ ‫ب�صورتها ال�صحيحة‪.‬‬ ‫‪ - 8‬مناق�شة الطلبة في حل المثال (‪ ،)3‬وتو�ضيح �أهمية ا�ستخدام قوانين ا أل�س�س لت�صبح المعادلة ب�صورة معادلة‬ ‫أ��سية يمكنهم حلها‪ ,‬ثم الطلب �إليهم حل التدريبين (‪ ،)3‬و(‪� )4‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في‬ ‫هذه ا ألثناء‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ - 9‬تعيين واجب بيتي للطلبة من �أ�سئلة الدر�س في ال�صفحة (‪ ،)101‬ثم حل بقية الأ�سئلة في الح�صة اللاحقة‪.‬‬ ‫ختم الدر�س‬ ‫‪ -‬تكليف الطلبة تعبئة نموذج �سجل و�صف �سير التعلم (‪.)8-1‬‬ ‫أ�خطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة عند حل معادلة �أ�سية بعدم توحيد ا أل�سا�س للطرفين‪.‬‬ ‫مراعاة الفروق الفردية‬ ‫علاج‬ ‫‪ -‬أ�ي المعادلتين الآتيتين تع ُّد معادلة �أ�سية‪:‬‬ ‫ب) (‪�)2‬س = ‪ 32‬؟‬ ‫�أ ) �س‪32 = 5‬‬ ‫‪ -‬حل المعادلة ا أل�سية‪�)3( :‬س = ‪81‬‬ ‫‪�-35‬س‬ ‫�س‬ ‫إ�ثـراء‬ ‫*‬ ‫=‬ ‫‪4‬‬‫�س( ) ( ) ( )‬ ‫‪3‬‬ ‫‪27‬‬ ‫‪ -‬حل المعادلة‪:‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪64‬‬ ‫‪.‬‬ ‫‪90‬‬

‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬التقويم المعتمد على ا ألداء‪ ،‬مراجعة الذات‪.‬‬ ‫أ�داة التقويم‪� :‬سلم التقدير (‪� ،)2-3‬سجل و�صف �سير التعلم (‪.)8-1‬‬ ‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫التدريب (‪)1‬‬ ‫المعادلات التي تع ُّد معادلة �أ�سية يمثلها الفرعان‪ ،)1( :‬و(‪.)3‬‬ ‫التدريب (‪)2‬‬ ‫‪�)5( )1‬س‪�)5( = 2‬س‬ ‫�س‪� = 2‬س ‪ ،‬ومنه‪ :‬مجموعة الحل = {‪.}1 , 0‬‬ ‫‪�-)2( )2‬س = ‪32‬‬ ‫(‪�-)2‬س = (‪ ، 5)2‬ومنه‪� :‬س = ‪5 -‬‬ ‫‪�)7( )3‬س‪�-2‬س = ‪0)7( = 1‬‬ ‫�س‪� - 2‬س = ‪ ، 0‬ومنه‪ :‬مجموعة الحل = {‪.}1 , 0‬‬ ‫‪�2)4( )4‬س‪�2)8( = 1-‬س‬ ‫(‪�2(2)2‬س‪�6)2( = )1-‬س‬ ‫‪�4‬س ‪�6 = 2 -‬س ‪ ،‬ومنه‪� :‬س = ‪1-‬‬ ‫التدريب (‪)3‬‬ ‫‪�-)5( )1‬س * (‪�)5‬س‪�-)125( = 2-‬س‬ ‫‪2‬‬ ‫‪3‬‬ ‫ومنه‪� :‬س =‬ ‫(‪�3-)5( = 2-)5‬س ‪،‬‬ ‫�س = ‪0‬‬ ‫(‪�)2‬س‪4)2( = 4+‬‬ ‫(‪4)2‬‬ ‫=‬ ‫(‪�2)2‬س‪4+‬‬ ‫‪)2‬‬ ‫(‪�)2‬س‬ ‫‪91‬‬

‫�أ = ‪ ، ٪4‬ع‪ = 0‬؟‬ ‫التدريب (‪)4‬‬ ‫ع‪10000 = 0‬‬ ‫ن = ‪ ، 25‬ع (‪، 27000 = )25‬‬ ‫بتطبيق العلاقة ع (ن) = ع‪ *0‬هـ�أ ن ‪:‬‬ ‫‪ = 27000‬ع‪( *0‬هـ)‪25*0٫04‬‬ ‫�س = ‪2‬‬ ‫(‪�3)2‬س = (‪6)2‬‬ ‫ا أل�سئلة‬ ‫‪)1‬‬ ‫�س = {‪}0 ، 1- , 1‬‬ ‫�س‪� - 3‬س = ‪0‬‬ ‫(‪�2)3‬س‪5)3( = 1-‬‬ ‫�أ ) (‪�3)2‬س = ‪64‬‬ ‫�س = ‪3‬‬ ‫�س = ‪5 -‬‬ ‫ب) (‪�)5‬س‪�-3‬س = ‪6‬‬ ‫جـ) (‪�2)3‬س‪243 = 1-‬‬ ‫د ) (‪�)9‬س‪�(3)3( = 1-‬س‪)1+‬‬ ‫‪5‬‬ ‫=‬ ‫�س‬ ‫‪)2‬‬ ‫‪3‬‬ ‫�أ ) (‪�)3‬س‪�2)3( * 2-‬س = ‪27‬‬ ‫(‪�3)3‬س‪3)3( = 2-‬‬ ‫�س = ‪6‬‬ ‫= (‪3-)5‬‬ ‫(‪�)5‬س‪1+‬‬ ‫ب)‬ ‫(‪�2)5‬س‪1-‬‬ ‫�س = ‪3‬‬ ‫جـ) (‪�)2‬س‪4)2( = 1+‬‬ ‫�س = ‪2‬‬ ‫(‪�)4‬س‪4 = 1-‬‬ ‫د ) (‪�)4( * )3‬س‪12 = 1-‬‬ ‫‪)3‬‬ ‫(هـ)�س ‪( * 6 = 5 +‬هـ)�س‬ ‫�س = ‪0‬‬ ‫(هـ)�س = ‪1‬‬ ‫‪( * 5‬هـ)�س = ‪5‬‬ ‫‪)4‬‬ ‫(هـ)�س ‪(4 = 21 +‬هـ)�س‬ ‫؛ لذا‪( :‬هـ)‪�2‬س = ‪49‬‬ ‫(هـ)�س = ‪7‬‬ ‫‪( 3‬هـ)�س = ‪21‬‬ ‫‪)5‬‬ ‫ع = ‪�0٫004)2( 0٫5 - 500‬س‬ ‫‪�0٫004)2( 0٫5 - 500 = 492‬س‬ ‫�س = ‪1000‬‬ ‫(‪�0٫004)2‬س = ‪16‬‬ ‫‪�0٫004)2( * 0٫5‬س = ‪8‬‬ ‫‪92‬‬

‫الف�صل الثاني‪ :‬الاقترانات اللوغاريتمية‪.‬‬ ‫عدد الح�ص�ص‪ :‬ثلاث ح�ص�ص‪.‬‬ ‫اللوغاريتمات‪.‬‬ ‫�أو ًال‪:‬‬ ‫النتاجات‬ ‫‪- -‬يتعرف مفهوم اللوغاريتم الاعتيادي‪.‬‬ ‫‪- -‬يتعرف مفهوم اللوغاريتم الطبيعي‪.‬‬ ‫‪- -‬يجد قيمة لوغاريتم معطى‪.‬‬ ‫‪- -‬ي�ستق�صي قوانين اللوغاريتمات‪.‬‬ ‫‪- -‬يطبق قوانين اللوغاريتمات‪.‬‬ ‫‪- -‬ي�ستخدم الآلة الحا�سبة في �إيجاد قيمة تقريبية للوغاريتم معطى‪.‬‬ ‫المفاهيم والم�صطلحات والرموز‬ ‫اللوغاريتم الاعتيادي‪� :‬أ ‪ ،‬اللوغاريتم الطبيعي‪.‬‬ ‫التكامل الر أ��سي‬ ‫‪- -‬كتاب الريا�ضيات‪ ،‬ال�صفان‪ :‬الثامن‪ ،‬والتا�سع‪ ،‬قوانين ا أل�س�س‪.‬‬ ‫م�صادر التعلم‬ ‫‪- -‬الكتاب المدر�سي‪ ،‬ال�صفحات (‪.)113-102‬‬ ‫‪- -‬ا آللة الحا�سبة‪.‬‬ ‫التعلم القبلي‬ ‫قوانين ا أل�س�س‪ ،‬الاقتران ا أل�سي‪.‬‬ ‫استراتيجيات التدريس‬ ‫التدري�س المبا�شر (ا أل�سئلة وا ألجوبة)‪ ،‬التعلم في مجموعات (فكر ‪ -‬انت ِق زمي اًل ‪� -‬شارك)‪.‬‬ ‫�إجراءات التنفيذ‬ ‫التمهيد‬ ‫‪ - 1‬تقديم مفهوم (اللوغاريتم) عن طريق ن�شاط يمثل الأ�س�س للأ�سا�س (‪ ،)2‬واللوغاريتم ل أل�سا�س (‪ ،)2‬وربطهما‬ ‫م ًعا لا�ستنتاج العلاقة بين ا أل�س�س واللوغاريتمات‪.‬‬ ‫‪ - 2‬كتابة تعريف اللوغاريتم على اللوح‪ ،‬وتو�ضيحه عن طريق مناق�شة المثال (‪ ،)1‬ثم كتابة ا إلجابة على اللوح‬ ‫بم�شاركة الطلبة‪.‬‬ ‫‪93‬‬

‫‪ - 3‬توجيه الطلبة إ�لى حل التدريب (‪ )1‬فرادى‪ ،‬ومتابعتهم في هذه الأثناء‪ ،‬وتقديم التغذية الراجعة لهم‪ ,‬ثم‬ ‫الطلب �إليهم حل التدريب (‪� )2‬ضمن مجموعات ثنائية‪ ,‬ثم مناق�شة الإجابات جماع ًّيا على اللوح‪.‬‬ ‫‪ - 4‬مناق�شة الطلبة في حل المثال (‪ )2‬على اللوح‪ ,‬والتركيز على العلاقة بين الأ�س�س واللوغاريتم‪ ,‬و�أهميتها‬ ‫في �إيجاد لوغاريتم معطى‪ ,‬ثم الطلب إ�ليهم حل التدريب (‪� )3‬ضمن مجموعات ثنائية‪ ،‬ومتابعتهم في‬ ‫هذه الأثناء‪ ،‬وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ - 5‬توزيع الطلبة �إلى مجموعات‪.‬‬ ‫‪ - 6‬توزيع بطاقات على المجموعات ت�شمل أ��سئلة م�شابهة للتدريبين (‪ ،)4‬و(‪ ،)5‬ثم الطلب إ�لى �أفراد‬ ‫المجموعات حلها‪ ،‬ثم تدوين الإجابات‪.‬‬ ‫‪ - 7‬كتابة قانوني اللوغاريتمات (‪ ،)1‬و(‪� )2‬أمام الطلبة‪ ,‬أ�و عر�ضهما في و�سيلة تعليمية على اللوح‪.‬‬ ‫‪ - 8‬تكرار الخطوة ال�سابقة لا�ستنتاج قوانين اللوغاريتمات (‪ ،)3‬و(‪ ،)4‬و(‪ ،)5‬و(‪.)6‬‬ ‫‪ - 9‬تكليف الطلبة �ضمن مجموعاتهم حل التدريبات (‪ ،)6‬و(‪ ،)7‬و(‪ ،)8‬و(‪ ،)9‬ومتابعتهم في هذه الأثناء‪،‬‬ ‫وتقديم التغذية الراجعة لهم‪.‬‬ ‫‪ -10‬تدريب الطلبة على ا�ستخدام الآلة الحا�سبة في إ�يجاد قيم تقريبية للوغاريتمات مختلفة (اعتيادية‪ ,‬وطبيعية)‪.‬‬ ‫‪ -11‬تعيين واجب بيتي للطلبة من أ��سئلة الدر�س في ال�صفحة (‪ ،)113‬ثم حل بقية الأ�سئلة في الح�صة اللاحقة‪.‬‬ ‫ختم الدر�س‬ ‫‪ -‬طرح ال�س ؤ�ال ا آلتي على الطلبة‪ :‬ماذا تعلمتم في هذا الدر�س؟‬ ‫أ�و ممار�سة لعبة إ�يجاد قيم لوغاريتمات معطاة با�ستخدام الآلة الحا�سبة‪� ،‬أو با�ستخدام قوانين اللوغاريتمات‪.‬‬ ‫أ�خطاء �شائعة‬ ‫قد يخطئ بع�ض الطلبة في ا�ستخدام القانون الخا�ص بكل حالة‪.‬‬ ‫مراعاة الفروق الفردية‬ ‫علاج‬ ‫‪1‬‬ ‫اللوغاريتمية‪:‬‬ ‫بال�صورة‬ ‫عن كل مما ي أ�تي‬ ‫ع ِرّب‬ ‫‪-‬‬ ‫‪125‬‬ ‫ب) ‪= 3-5‬‬ ‫‪81 = 43‬‬ ‫�أ )‬ ‫‪ -‬ع ِّرب عن كل مما ي أ�تي بال�صورة الأ�سية‪:‬‬ ‫ب) لـو‪1 = 4949‬‬ ‫�أ ) لـو‪4 = 625 5‬‬ ‫‪94‬‬

‫‪ -‬جد قيمة‪ :‬لـو ‪ ، 2‬لـو ‪ ، 6‬لـو ‪7‬‬ ‫‪49 6 4‬‬ ‫إ�ثـراء‬ ‫‪ -‬حل المعادلة‪ :‬لـو (�س ‪ + )4 +‬لـو (�س ‪ ، 2 = )4 -‬حيث �س ≥ ‪4‬‬ ‫‪33‬‬ ‫استراتيجيات التقويم وأدواته‬ ‫ا�ستراتيجية التقويم‪ :‬الملاحظة‪ ,‬مراجعة الذات‪.‬‬ ‫أ�داة التقويم‪� :‬سلم التقدير (‪� ،)3-3‬سجل و�صف �سير التعلم (‪.)8-1‬‬ ‫‪95‬‬

‫إجابات التدريبات والأسئلة‬ ‫التدريبات‬ ‫‪1‬‬ ‫‪1‬‬ ‫التدريب (‪)1‬‬ ‫‪125‬‬ ‫‪3‬‬ ‫‪3-‬‬ ‫=‬ ‫لـو‬ ‫‪)2‬‬ ‫لـو ‪= 3‬‬ ‫‪)1‬‬ ‫‪)4‬‬ ‫‪5‬‬ ‫‪27‬‬ ‫‪0‬‬ ‫=‬ ‫لـو ‪1‬‬ ‫‪5‬‬ ‫=‬ ‫لـو ‪243‬‬ ‫‪)3‬‬ ‫هـ‬ ‫‪3‬‬ ‫التدريب (‪)2‬‬ ‫‪5 = 1)5( )2‬‬ ‫‪81 = 43 )1‬‬ ‫‪10000 = 410 )4‬‬ ‫‪ )2‬هـ‪ = 2‬هـ‪2‬‬ ‫‪1٫6094 )4‬‬ ‫‪1‬‬ ‫‪)3‬‬ ‫‪3 )2‬‬ ‫التدريب (‪)3‬‬ ‫‪6‬‬ ‫‪3- )1‬‬ ‫التدريب (‪)4‬‬ ‫‪ )1‬لـو‪ ، 0 = 12‬لـو‪ ، 0 = 13‬لـو‪0 = 15‬‬ ‫لاحظ �أن لـو�أ ‪0 = 1‬‬ ‫‪ )2‬لـو‪ ، 1 = 22‬لـو‪ ، 1 = 33‬لـو‪1 = 55‬‬ ‫التدريب (‪)5‬‬ ‫‪2- )4‬‬ ‫‪2- )3‬‬ ‫‪3 )2‬‬ ‫‪3 )1‬‬ ‫التدريب (‪)6‬‬ ‫‪2 - )4‬‬ ‫‪4 )3‬‬ ‫‪1 )2‬‬ ‫‪0 )1‬‬ ‫التدريب (‪)7‬‬ ‫‪ )1‬لـو (‪ = )64*32‬لـو ‪ + 32‬لـو ‪64‬‬ ‫‪22‬‬ ‫‪2‬‬ ‫= لـو (‪ + 5)2‬لـو (‪6)2‬‬ ‫‪22‬‬ ‫= ‪11 = 6 + 5‬‬ ‫لـو ‪16‬‬ ‫لـو ‪- 128‬‬ ‫=‬ ‫)‬ ‫‪128‬‬ ‫لـو (‬ ‫‪)2‬‬ ‫‪16‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫= لـو (‪ - 7)2‬لـو (‪4)2‬‬ ‫‪22‬‬ ‫= ‪3=4-7‬‬ ‫‪96‬‬

‫=‪1‬‬ ‫لـو ‪7‬‬ ‫)=‬ ‫‪14‬‬ ‫لـو (‬ ‫لـو ‪ - 14‬لـو ‪= 2‬‬ ‫‪)3‬‬ ‫‪2‬‬ ‫‪7‬‬ ‫‪2‬‬ ‫‪77‬‬ ‫‪ )4‬لـو‪ + 50‬لـو‪ = 2‬لـو(‪ = )2 * 50‬لـو‪2 = 100‬‬ ‫التدريب (‪)8‬‬ ‫‪3 )4‬‬ ‫‪15‬‬ ‫‪)3‬‬ ‫‪9- )2‬‬ ‫‪3‬‬ ‫‪)1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫التدريب (‪)9‬‬ ‫لـو ‪ ( * 27‬لـو ‪ * 2‬لـو ‪)6‬‬ ‫=‬ ‫لـو ‪6‬‬ ‫*‬ ‫لـو ‪2‬‬ ‫لـو ‪* 27‬‬ ‫‪)1‬‬ ‫‪36‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫=‬ ‫لـو ‪27‬‬ ‫=‬ ‫لـو ‪2‬‬ ‫لـو ‪* 27‬‬ ‫=‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫التدريب (‪)10‬‬ ‫‪1٫74 )2‬‬ ‫‪2٫57 )1‬‬ ‫‪0٫778‬‬ ‫=‬ ‫لو ‪6‬‬ ‫‪ )3‬لـو ‪= 6‬‬ ‫‪0٫699‬‬ ‫لو ‪5‬‬ ‫‪5‬‬ ‫التدريب (‪)11‬‬ ‫‪ )1‬ل = ‪ 1٫5 + 8٫8‬لو‪60‬‬ ‫= ‪11٫47 = 2٫67 + 8٫8 = 1٫78 * 1٫5 + 8٫8‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫الأ�سئلة‬ ‫‪2‬‬ ‫‪64‬‬ ‫=‬ ‫لـو ‪7‬‬ ‫جـ)‬ ‫‪3-‬‬ ‫)=‬ ‫لـو (‬ ‫ب)‬ ‫‪3‬‬ ‫=‬ ‫لـو ‪125‬‬ ‫)‬ ‫�أ‬ ‫‪)1‬‬ ‫‪49‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫جـ) (‪5 = 1)5‬‬ ‫‪1‬‬ ‫‪� )2‬أ ) (‪32 = 5)2‬‬ ‫ب) (‪2 = 2 )4‬‬ ‫�س‬ ‫‪)3‬‬ ‫=‬ ‫لـو ‪625‬‬ ‫�أ )‬ ‫‪5‬‬ ‫�س = ‪4‬‬ ‫(‪�)5‬س = ‪4)5( = 625‬‬ ‫�س = ‪3-‬‬ ‫(‪�)3( = 3-)3‬س‬ ‫(‪�)3‬س‬ ‫=‬ ‫‪1‬‬ ‫ب)‬ ‫‪27‬‬ ‫لـو ‪ + 1‬لو ‪3 = 3 + 0 = 310‬‬ ‫لو‪= 1000‬‬ ‫لـو ‪+ 1‬‬ ‫جـ)‬ ‫‪25‬‬ ‫‪25‬‬ ‫‪97‬‬

‫د ) لـو هـ‪2 = 2‬‬ ‫هـ‬ ‫‪)4‬‬ ‫�أ ) لـو‪ = )625 * 25 ( 3‬لـو‪ + 255‬لـو‪6 = 6255‬‬ ‫لـو‪25‬‬ ‫لـو ‪* 10‬‬ ‫)*‬ ‫‪27‬‬ ‫لـو (‬ ‫ب)‬ ‫‪81‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫لـو ‪25‬‬ ‫*‬ ‫)‬ ‫‪27‬‬ ‫لـو (‬ ‫‪81‬‬ ‫‪5‬‬ ‫‪3‬‬ ‫( لـو ‪ - 27‬لـو ‪2 - = 2 * )4 - 3( = 2 * )81‬‬ ‫‪33‬‬ ‫= لـو ‪1 = 6‬‬ ‫‪)3‬‬ ‫*‬ ‫(‪2‬‬ ‫لـو‬ ‫=‬ ‫لـو ‪3‬‬ ‫‪+‬‬ ‫لـو ‪2‬‬ ‫جـ)‬ ‫‪6‬‬ ‫‪60‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫= لـو‪1 = 10‬‬ ‫لـو‪ - 60‬لـو ‪ = 6‬لـو‬ ‫د)‬ ‫‪3‬‬ ‫=‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪1‬‬ ‫=‬ ‫لـو ‪7‬‬ ‫‪2+‬‬ ‫لـو ‪9‬‬ ‫=‬ ‫لـو ‪49‬‬ ‫‪ 2‬لـو ‪+ 3‬‬ ‫جـ)‬ ‫‪7‬‬ ‫‪9‬‬ ‫‪7‬‬ ‫‪9‬‬ ‫‪)5‬‬ ‫�أ ) لـو ‪ = 6‬لو (‪ = )3 * 2‬لـو‪ + 2‬لـو‪3‬‬ ‫= ‪0٫7781 = 0٫4771 + 0٫3010‬‬ ‫‪3‬‬ ‫‪15‬‬ ‫‪2‬‬ ‫‪10‬‬ ‫= ‪0٫1761‬‬ ‫لـو‪2‬‬ ‫لـو‪- 3‬‬ ‫=‬ ‫)‬ ‫لو (‬ ‫=‬ ‫لـو‬ ‫ب)‬ ‫جـ) لـو‪ * 2 = 4‬لـو‪0٫6020 = 2‬‬ ‫= ‪1٫5850‬‬ ‫‪0٫4771‬‬ ‫=‬ ‫لو‪3‬‬ ‫د ) لـو ‪= 3‬‬ ‫‪0٫3010‬‬ ‫لو‪2‬‬ ‫‪2‬‬ ‫‪)6‬‬ ‫�أ ) ال�صواب‪ :‬لـو (‪ = )27 * 9‬لـو ‪ + 9‬لـو ‪5 = 27‬‬ ‫‪33‬‬ ‫‪3‬‬ ‫ب) ال�صواب‪ :‬لـو (‪ = )4 + 2‬لـو ‪1 = 6‬‬ ‫‪66‬‬ ‫جـ) ال�صواب‪ :‬لـو (‪ = )4 * 2‬لـو ‪ + 2‬لـو ‪3 = 4‬‬ ‫‪22‬‬ ‫‪2‬‬ ‫د ) ال�صواب‪( :‬لـو ‪ = 2)9‬لـو ‪) (4 = 2)2( =2 23‬‬ ‫‪33‬‬ ‫هـ) ال�صواب‪ :‬لـو (‪ = )4 - 8‬لـو ‪2 = 4‬‬ ‫‪22‬‬ ‫‪32‬‬ ‫=‪1‬‬ ‫لـو ‪8‬‬ ‫=‬ ‫)‬ ‫‪4‬‬ ‫لـو (‬ ‫ال�صواب‪:‬‬ ‫و)‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪98‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook