Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore M1-Allens Made Maths Theory + Exercise [I]

M1-Allens Made Maths Theory + Exercise [I]

Published by Willington Island, 2021-07-15 04:05:04

Description: M1-Allens Made Maths Theory + Exercise [I]

Search

Read the Text Version

JEE-Mathematics 1 0 . Area  of  shaded  region  belongs  to  -   [JEE  05  (screening)  3M] P(2–1,2) (A)    z  :  |z  +  1|  >  2,  |arg  (z  +  1)|  <  /4     (B)    z  :  |z  –  1|  >  2,  |arg  (z  –  1)|  <  /4 (C)    z  :  |z  +  1|  <  2,  |arg  (z  +  1)|  <  /2 A /4 (D)    z  :  |z  –  1|  <  2,  |arg  (z  –  1)|  <  /2 (–1,0) (1,0) Q(2–1,– 2) 1 1 . If  one  of  the  vertices  of  the  square  circumscribing  the  circle  |z  –  1|  =  2   is  2  3i .  Find  the  other  vertices  of square.                                                               [JEE  05  (Mains)  4  out  of  60] 1 2 . If  w  =   i   where    0   and  z    1,  satisfies  the  condition  that  w  wz   is  purely  real,  then  the  set  of  values  of 1z z is -           [JEE  06,  3M] (A)  {z  :  |z|=1} (B)  {z  :  z  = z } (C)  {z  :  z   1} (D)  {z  :  |z|  =  1,  z  1} 1 3 . A  man  walks  a  distance  of  3  units  from  the  origin  towards  the  north-east  (N  45°  E)  direction.  From  there, he  walks  a  distance  of  4  units  towards  the  north-west  (N  45°  W)  direction  to  reach  a  point  P.  Then  the position  of  P  in  the  Argand  plane  is  : [JEE  07,  3M] (D)  (3  +  4i)ei/4 (A)  3ei/4  +  4i (B)  (3  –  4i)ei/4 (C)  (4  +  3i)ei/4 z [JEE  07,  3M] 1 4 . If  |z|  =  1  and  z    ±  1,  then  all  the  values  of  1  z2   lie  on  : (A)  a  line  not  passing  through  the  origin (B)  |z|  = 2 (C)  the  x-axis (D)  the  y-axis Comprehension  (for  15  to  17)  : Let  A,  B,  C  be  three  sets  of  complex  numbers  as  defined  below [JEE  2008,  4M,  –1M] A  z : Im z  1 B  z :| z  2  i| 3 C  z : Re((1  i)z)  2 1 5 . The  number  of  elements  in  the  set  A   B   C  is  - (A)  0 (B)  1 (C)  2 (D)   1 6 . Let  z  be  any  point  in  A   B    C.  Then  |z  +  1  –  i|2  +  |z  –  5  –  i|2  lies  between  - (A)  25  and  29 (B)  30  and  34 (C)  35  and  39 (D)  40  and  44 1 7 . Let  z  be  any  point  in    A   B    C  and  let    be  any  point  satisfying  |  –  2  –  i|  <  3.  Then, |z|–||  +  3  lies  between  - NODE6\\E\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#11\\Eng\\02.Complex number.p65 (A)  –6  and  3 (B)  –3  and  6 (C)  –6  and  6 (D)  –3  and  9 18. A  particle  P  starts  from  the  point  z   =  1  +  2i,  where  i  = 1 .  It  moves  first  horizontally  away  from  origin 0 by  5  units  and  then  vertically  away  from  origin  by  3  units  to  reach  a  point  z .  From  z   the  particle  moves 11 2   units  in  the  direction  of  the  vector  ˆi  ˆj   and  then  it  moves  through  an  angle     in    anticlockwise  direction 2 on  a  circle  with  centre  at  origin,  to  reach  a  point  z .  The  point  z   is  given  by  -    [JEE  2008,  3M,  –1M] 22 (A)  6  +  7i (B)  –7  +  6i (C)  7  +  6i (D)  –6  +  7i 15 [JEE  2009,  3M,  –1M] 1 9 . Let z  = cos    + i  sin  .  Then the  value of  Im(z2m1 )   at    = 2°  is  - m 1 1 1 1 1 (A)  (B)  (C)  (D)  sin 2 3 sin 2 2 sin 2 4 sin 2 2 0 . Let  z  =  x  +  iy  be  a  complex  number  where  x  and  y  are  integers.  Then  the  area  of  the  rectangle  whose  vertices are  the  roots  of  the  equation  zz 3  zz3  350   is  - [JEE  2009,  3M,  –1M] (D)  80 (A)  48 (B)  32 (C)  40 E 61

JEE-Mathematics 2 1 . Match  the  conics  in  Column  I  with  the  statements/  expressions  in  Column  II. [JEE  2009,  8M]             Column  I Column  II (A) Circle (P) The  locus  of  the  point  (h,  k)  for  which  the  line (B) Parabola hx  +  ky  =  1  touches  the  circle  x2  +  y2  =  4 (C) Ellipse (D) Hyperbola (Q) Points  z  in  the  complex  plane  satisfying  |  z  +  2  |  –  |  z  –  2  |=  ±  3 (R) Points  of  the  conic  have  parametric  representation x 3 1  t2  ,  y =  2t   t2   t2  1  1 (S) The  eccentricity  of  the  conic  lies  in  the  interval  1    x    <   (T) Points  z  in  the  complex  plane  satisfying    Re  (z  +  1)2  =  |  z  |  2  +  1 2 2 . Let  z1  and  z2  be  two  distinct  complex  numbers  and  let  z  =  (1  –  t)z1  +  tz2  for  some  real  number  t  with 0  <  t  <  1.  If  Arg(w)  denotes  the  principal  argument  of  a  nonzero  complex  number  w,  then (A)  |z –  z |+|z –  z |=|z   –  z | (B)  Arg(z  –  z ) =  Arg(z  –  z ) [JEE  10,  3M]  1  2 12 1  2 z  z1 z  z1  0 (D)  Arg(z  –  z1)  =  Arg(z2  –  z1) (C) z2  z1 z2  z1 23. Let    be  the  complex  number  cos 2  i sin 2 .  Then  the  number  of  distinct  complex  numbers  z  satisfying 3 3 z 1  2  z  2 1  0   is  equal  to                   [JEE  10,  3M] 2 1 z   2 4 . Match  the  statements  in  Column-I  with  those  in  Column-II. [JEE  10,  8M] [Note  :  Here  z  takes  values  in  the  complex  plane  and  Im  z  and  Re  z  denote,  respectively,  the  imaginary part  and  the  real  part  of  z.]                               Column  I                                     Column  II (A) The  set  of  points  z  satisfying  z  i z  z  i z 4 NODE6\\E\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#11\\Eng\\02.Complex number.p65 (p) an  ellipse  with  eccentricity  is  contained  in  or  equal  to (B) The  set  of  points  z  satisfying 5 (q) the  set  of  points  z  satisfying  Im  z  =  0 |z  +  4|  +  |z  –  4|  =  10 is  contained  in  or  equal  to (t) the  set  of  points  z  satisfying  |Im  z|  <  1 (C) If  |w|=  2,  then  the  set  of  points z  w  1   is  contained  in  or  equal  to w (D) If  |w|  =  1,  then  the  set  of  points (s) the  set  of  points  z  satisfying  |Re  z|  2 (t) the  set  of  points  z  satisfying  |z|  3 z  w  1   is  contained  in  or  equal  to w 25. Comprehension  (3  questions  together) Let  a,b  and  c  be  three  real  numbers  satisfying 1 9 7 ...(E) a b c8 2 7  0 0 0 7 3 7 (i) If  the  point  P(a,b,c),  with  reference  to  (E),  lies  on  the  plane  2x  +  y  +  z  =  1,  then  the value  of  7a+b+c  is (A)  0 (B)  12 (C)  7 (D)  6 62 E

JEE-Mathematics ( i i ) Let    be  a  solution  of  x3  –  1  =  0  with  Im()  >  0.  If  a  =  2  with  b  and  c  satisfying  (E), 313 then  the  value  of      is  equal  to  - a b c (A)  –2 (B)  2 (C)  3 (D)  –3 (iii) Let  b  =  6,  with  a  and  c  satisfying  (E).  If    and    are  the  roots  of  the  quadratic  equation  1 1 n ax2  +  bx  +  c  =  0,  then         is  -   n 0 (A)  6 (B)  7 6 (D)   (C)  7 [JEE  2011,  3+3+3] 26 . If  z  is  any  complex  number  satisfying  |z  –  3  –  2i|  <  2,  then  the  minimum  value  of  |2z  –  6  +  5i| is   [JEE  2011,  4M] 2 7 . Let    ei/ 3 ,  and  a,  b,  c,  x,  y,  z  be  non-zero  complex  numbers  such  that a  +  b  +  c  =  x a  +  b  +  c2  =  y a  +  b2  +  c  =  z. | x|2 | y|2 | z|2 [JEE  2011,  4M] Then  the  value  of  | a|2 | b|2 | c|2   is Column  II 2 8 . Match  the  statements  given  in  Column  I  with  the  values  given  in  Column  II  Column  I (p) 6 (A) If    ˆj  3kˆ,   ˆj  3 kˆ   and    2 3kˆ   form  a  triangle, a b c  then  the  internal  angle  of  the  triangle  between  a   and  b   is (B) If  b (ƒ( x )  3x)dx  a2  b2 ,  then  the  value  of  ƒ      is 2 a  6  (q) 3 (C) 2 5 6   is  The  value  of  n3 (r) 3 se c( x ) dx 7/6 (D) The  maximum  value  of  A rg  1 1 z    for (s)     |z|  =  1,  z    1  is  given  by  (t) 2 [JEE  2011,  2+2+2+2M] NODE6\\E\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#11\\Eng\\02.Complex number.p65 2 9 . Match  the  statements  given  in  Column  I  with  the  intervals/union  of  intervals  given  in  Column  II Column  I Column  II (A) The  set   e  1 2iz 2  : z  is a co m plex n um ber, | z| = 1, z   (p) (, 1)  (1,) R  z  1    is (B) The  domain  of  the  function  ƒ( x )  sin 1  8(3)x2    is (q) (,0)  (0, )    1  32( x 1 )  1 tan  1  2 (C) If  ƒ()   tan  1 tan  ,  then  the  set  ƒ() : 0       is (r) [2,) 1  tan  1    (D) If  ƒ(x)  =  x3/2(3x  –  10),  x    0,  then  ƒ(x)  is  increasing  in (s) (, 1]  [1, ) (t) (,0]  [2,) [JEE  2011,  2+2+2+2M] E 63

JEE-Mathematics 3 0 . Let  z  be  a  complex  number  such  that  the  imaginary  part  of  z  is  nonzero  and  a  =  z2  +  z  +  1  is  real.  Then a  cannot  take  the  value  -   [JEE  2012,  3M,  –1M] (A)  –1 1 1 3 (B)  3 (C)  (D)  2 4 31. Let  complex  numbers    and    1   lie  on  circles  (x  –  x0)2  +  (y  –  y0)2  =  r2  and  (x  –  x0)2  +  (y  –  y0)2  =  4r2  respectively.  If  z0  =  x0  +  iy0  satisfies  the  equation  2|z0|2  =  r2  +  2,  then  ||  = [JEE(Advanced)  2013,  2M] 1 1 1 1 (A)  (B)  (C)  7 (D)  3 2 2 3 2 . Let    be  a  complex  cube  root  of  unity  with      1  and  P  =  [pij]  be  a  n  ×  n  matrix  with  pij  =  i+j.  Then P2    0,  when  n  =                                           [JEE(Advanced)  2013,  3,  (–1)] (A)  57 (B)  55 (C)  58 (D)  56 33. Let  w  3 i   and  P  =  {wn  :  n  =  1,  2,  3,  .....}.  Further  H1  = z  C : Re z  1    and  H 2  z  C : Re z  1  , 2  2   2    where  C  is  the  set  of  all  complex  numbers.  If  z1    P    H1,  z2    P    H2  and  O  represents  the  origin,  then z1Oz2  =                                               [JEE-Advanced  2013,  4,  (–1)]   2 5 (A)  (B)  6 (C)  3 (D)  6 2 Paragraph  for  Question  34  and  35 Let  S  =  S1    S2   S3,  where  S1=  {z    C  :  |z|  <  4},  S2  z  C : Im  z 1  3i   0    and      1  3i   S3  =  {z    C  :  Re  z  >  0}. 34. min|1  3i  z| [JEE(Advanced)  2013,  3,  (–1)] zS (A)  2  3 (B)  2  3 (C)  3  3 (D)  3  3 NODE6\\E\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#11\\Eng\\02.Complex number.p65 2 2 2 2 3 5 . Area  of  S  = 20 16 [JEE(Advanced)  2013,  3,  (–1)] 10 (B)  3 (C)  3 32 (A)  3 (D)  3 PREVIOUS  YEARS  QUESTIONS ANSWER  KEY EXERCISE-5  [B] 1 . (a) A  (b) A 2 . (a)  C,  (b)D 3 . (a)  B ; (b) B 4. A 7. B 9. B 10. A 8.   k2 & 1 |   k2|2 (k2 | |2 | |2 )(k2  1) 1  k2 k2 1 1 1 . ( 3 i) ,  (1  3 ) + i  and  (1  3 )  –  i 12.  D 13.  D 14.  D 15. B 1 6 .  C 1 7 . D 1 8 . D 1 9 . D 2 0 . A 21.    A    (P)  ;  B    (S,  T)  ;  C    (R)  ;  D    (Q,  S) 2 2 . A,C,D 2 3 . 1 2 4 . (A)    (q,r),  (B)    (p),  (C)    (p,s,t),  (D)    (q,r,s,t) 2 5 . (i)  D,  (ii)  A,  (iii)  B 26.5 2 7 . Bonus 28.    (A)    (q);  (B)    (p)  or  (p,  q,  r,  s,  t);  (C)    (s);  (D)    (t) 2 9 . (A)    (s);  (B)    (t);  (C)    (r);  (D)    (r) 30. D 31. C 32 . B,C,D 33 . C,D 34.C 35. B 64 E

JEE-Mathematics CONTINUITY 1 . CONTINUOUS FUNCTIONS : A function for which a small change in the independent variable causes only a small change and not a sudden jump in the dependent variable are called continuous functions. Naively, we may say that a function is continuous at a fixed point if we can draw the graph of the function around that point without lifting the pen from the plane of the paper. a a a a a continuous discontinuous discontinuous discontinuous discontinuous Continuity of a function at a point : A function f(x) is said to be continuous at x = a, if Lim f(x)  f(a) . Symbolically f is continuous at x = a if xa b gLim f(a  h)  Lim f(a  h)  f a , h > 0 h0 h0 i.e. (LHL = RHL ) equals value of ‘f’ at x = a. It should be noted that continuity of a function at x = a can x=a x=a be discussed only if the function is defined in the immediate neighbourhood of x = a, not necessarily at x = a. Ex. Continuity at x = 0 for the curve can not be discussed. o Illustration 1 : If f(x)  sin x , x  1 then find whether f(x) is continuous or not at x = 1, where [ ] denotes  2 [x] x  1 greatest integer function. f(x)  sin x , x 1  2 Solution : [x] , x  1 For continuity at x = 1, we determine, f(1), lim f(x) and lim f(x). x 1 x 1 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 Now, f(1) = [1] = 1 x  lim f(x) = lim sin = sin =1 and lim f(x) = lim [x] =1 x 1 x 1 2 2 x 1 x 1 so f(1) = lim f(x) = lim f(x) x 1 x 1  f(x) is continuous at x = 1 8x  4x  2x 1 , x  0 Define the function at x = 0 if possible, so that f(x)  Illustration 2 : Consider f(x )   x2 e x sin x  x  kn4, x  0 becomes continuous at x = 0. Solution : f(0+) = lim 8h  4h  2h 1 = lim 4h (2h  1)  (2h  1) h0 h0 h2 h2 = lim (4h  1) (2h  1) = n4 . n2 h0 h h  f(0–) = lim ex sin x  x  kn4 = kn4 x0 f(x) is continuous at x = 0,  f(0+) = f(0–) = f(0)  n4.n2  kn4  k = n2  f(0) = (n4)(n2) 28 E

JEE-Mathematics  a(1  x sin x)  b cos x  5 x0  x 0 x2 Illustration 3 : Let f(x) =  3 x 0 Solution :  1    cx  dx 3   x  1  x2     If f is continuous at x = 0, then find out the values of a, b, c and d. Since f(x) is continuous at x = 0, so at x = 0, both left and right limits must exist and both must be equal to 3. Now a (1  x sin x)  b cos x  5 (a  b  5)   a  b x2  ... x2  2  Lim = Lim = 3 (By the expansions of sinx and cosx) x2 x 0  x 0  b If lim f(x) exists then a + b + 5 = 0 and –a – = 3  a = –1 and b = – 4 x0 2 1   cx  dx3  x cx  dx3 1  x2   x2 since lim  exists  lim =0c=0 x0 x0 Now lim 1 = lim  1 d = ed (1  dx) dx  x0 (1  dx) x x 0  So ed = 3  d = n 3,  Hence a = – 1, b = – 4, c = 0 and d = n 3. Do yourself -1 : (i) If ƒ( x )  cos x; x  0 find the value of k if ƒ (x) is continuous at x = 0. x  k; x  0  | x  2| ; x  2  then discuss the continuity of ƒ (x) at x=–2 (ii) If ƒ( x )   tan 1 (x  2)  2 ; x  2 2. CONTINUITY OF THE FUNCTION IN AN INTERVAL : E ( a ) A function is said to be continuous in (a,b) if f is continuous at each & every point belonging to (a, b). Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 ( b ) A function is said to be continuous in a closed interval [a,b] if : ( i ) f is continuous in the open interval (a,b) (ii) f is right continuous at ‘a’ i.e. Lim f x  f a = a finite quantity (iii) Note : b g b gxa f is left continuous at ‘b’ i.e. Lim f x  f b  a finite quantity xb (i) Obseve that lim ƒ(x) and lim ƒ(x) do not make sense. As a consequence of this definition, if ƒ(x) is xa xb defined only at one point, it is continuous there, i.e., if the domain of ƒ(x) is a singleton, ƒ(x) is a continuous function. Example : Consider ƒ(x) = a  x  x  a . ƒ(x) is a singleton function defined only at x = a. Hence ƒ(x) is a continuous function. (ii) All polynomials, trigonometrical functions, exponential & logarithmic functions are continuous in their domains. (iii) If ƒ (x) & g(x) are two functions that are continuous at x = c then the function defined by : b g b g b g b g b g b g b g b gF1 x  f x  g x ; F2 x  K f x , where K is any real number ; F3 x  f x .g x are also continuous at x = c. b gf x b g b gFurther, if g(c) is not zero, then F4 x  is also continuous at x = c. g x 29

JEE-Mathematics (iii) Some continuous functions : Function f(x) Interval in which f(x) is continuous (–) Constant function (–) xn, n is an integer  0 (–) – {0} x–n, n is a positive integer (–) (–) |x – a| (–) – {x : q(x) = 0} p(x) = a xn + a xn – 1 + a xn – 2 + ..... + a 01 2 n (–) (–) – {(2n + 1)/2 : n  I} p(x) (–) – {n : n  I} q(x) , where p(x) and q(x) are polynomial in x (0) sinx, cosx, ex Points of discontinuity tanx, secx Every Integer cotx, cosecx x    ,  3 , ..... nx 22 (iv) Some Discontinuous Functions : x  0 ,   ,  2 ,..... Functions x=0 [x], {x} tanx, secx cotx, cosecx 1 11 sin , cos , , e1/x x xx  x  1 , x  2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 Illustration 4 : Discuss the continuity of f(x) =  2 x  3 , 2  x  0  , 0x3   x2  3 x3  15 , x  3  x  1 , x  2 Solution : We write f(x) as f(x) =  2x  3 , 2  x  0  , 0x3  x2  3 x3  15 , x  3 As we can see, f(x) is defined as a polynomial function in each of intervals (– , –2), (–2,0), (0,3) and (3,). Therefore, it is continuous in each of these four open intervals. Thus we check the continuity at x = –2,0,3. At the point x = –2 lim f(x) = lim (–x – 1) = + 2 – 1 = 1 x2  x  2  lim f(x) = lim (2x + 3) = 2. (–2) + 3 = – 1 x2  x  2  30 E

JEE-Mathematics Therefore, lim f(x) does not exist and hence f(x) is discontinuous at x = –2. x  2 At the point x = 0 lim f(x) = lim (2x + 3) = 3 x0 x0 lim f(x) = lim (x2 + 3) = 3 x0 x0 f(0) = 02 + 3 = 3 Therefore f(x) is continuous at x = 0. At the point x = 3 lim f(x) = lim (x2 + 3) = 32 + 3 = 12 x3 x3 lim f(x) = lim (x3 – 15) = 33 – 15 = 12 x3 x3 f(3) = 33 – 15 = 12 Therefore, f(x) is continuous at x = 3. We find that f(x) is continuous at all points in R except at x = – 2 Do yourself -2 :  x2 ; 0  x 1 ; 1  x  2 then find the value of a & b if ƒ (x) is continuous in [0,)  a 1 (i) If ƒ( x )     2 b 2  4b   x2 ; 2 x  | x  3| ; 0  x  1 ; 1x Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 (ii) Discuss the continuity of ƒ (x) =  sin x 2 in [0,3)    ;   x 3  log  x 2 2 3 . REASONS OF DISCONTINUITY : ( a ) Limit does not exist i.e. Lim f(x)  Lim f(x) xa xa ( b ) f(x) is not defined at x = a ( c ) Lim f(x)  f(a) 0 1 2 34 xa Geometrically, the graph of the function will exhibit Lim f(x) f(1) a break at x = a, if the function is discontinuous at x = a. The graph as shown is discontinuous at x 1 x = 1 , 2 and 3. Lim f(x) does not exist x 2 f(x) is not defined at x = 3 E 31

JEE-Mathematics 4. TYPES OF DISCONTINUITIES : Type-1 : (Removable type of discontinuities) : - In case Lim f(x) exists but is not equal to f(a) then the xa function is said to have a removable discontinuity or discontinuity of the first kind. In this case we can redefine the b gfunction such that Lim f(x)  f a & make it continuous at x = a. Removable type of discontinuity can be further xa classified as: (a) Missing point discontinuity : Where Lim f(x) exists but f(a) is not defined. xa (b) Isolated point discontinuity : Where Lim f(x) exists & f(a) also exists but; Lim f(x)  f(a). xa xa  x 1 , x  0  Illustration 5 : Examine the function , f(x) =  1 / 4 , x  0 . Discuss the continuity, and if discontinuous remove x2  1 , x  0 the discontinuity by redefining the function (if possible). Solution : Graph of f(x) is shown, from graph it is seen that y lim f(x) = lim f(x) = – 1 , but f(0) = 1/4 x0 x0 Thus, f(x) has removable discontinuity and f(x) could 1/4 1 x be made continuous by taking f(0) = – 1 O –1  x 1 , x  0   f(x) =  1 , x0 x2  1 , x  0 y = f(x) before redefining Do yourself -3 : 1 ; 0x2 ; 2x4  x 1 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 x2  3 , then discuss the types of discontinuity for the function.  ; x4 5 (i) If ƒ( x )      x1/2 ; x 4 14  2 Type-2 : (Non-Removable type of discontinuities) :- In case Lim f(x) does not exist then it is not possible to make the function continuous by redefining it. Such a xa discontinuity is known as non-removable discontinuity or discontinuity of the 2nd kind. Non-removable type of discontinuity can be further classified as : ( i ) Finite type discontinuity : In such type of discontinuity left hand limit and right hand limit at a point exists but are not equal. (ii) Infinite type discontinuity : In such type of discontinuity atleast one of the limit viz. LHL and RHL is tending to infinity. 32 E

JEE-Mathematics (iii) Oscillatory type discontinuity : b ge.g. f x  sin  at x = 0 x b gf x  sin  y= sin(/x) x y 1 –1 x 1 –1 f(x) has non removable oscillatory type discontinuity at x = 0 Example : From the adjacent graph note that (i) f is continuous at x = –1 -1 0 12 (ii) f has isolated discontinuity at x = 1 (iii) f has missing point discontinuity at x = 2 (iv) f has non removable (finite type) discontinuity at the origin. Note : In case of non-removable (finite type) discontinuity the non-negative difference between the value of the RHL at x = a & LHL at x = a is called the jump of discontinuity. A function having a finite number of jumps in a given interval I is called a piece wise continuous or sectionally continuous function in this interval. e1/ x 1 ; when x  0  ; when x  0 Illustration 6 : Show that the function, f(x) =  e1 / x 1 has non-removable discontinuity at x = 0.  0, Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 e1/ x 1 ; when x  0  ; when x  0 Solution : We have, f(x) =  e1 / x 1  0, 1 1 1  e1/h  lim f(x) = lim f(0 + h) = lim eh 1 = lim 1 = 1 [ e1/h ] x 0 h0 h0 1 h0 eh 1 1  e1/ h  lim f(x) = lim e 1 / h  1 = 0 1 =–1 [ h  0 ; e–1/h  0] e 1 / h  1 0 1 x0 h0 lim f(x) = – 1 x0  lim f(x)  lim f(x). Thus f(x) has non-removable discontinuity. x0 x0 co s 1 {co t x } x  2 Illustration 7 : f(x) = ; find jump of discontinuity, where [ ] denotes greatest integer & x  [x]  1 2  { } denotes fractional part function. E 33

JEE-Mathematics c o s 1 {cot x } x  2 Solution : f(x) = x  [x]  1 2  cos–1 {cot x} = cot   h    lim f(x) = lim   2   x  x  lim co s 1    lim co s 1 tanh 2 h 0 h 0 22 = lim f(x)  lim [x] 1  lim    h   1   1 2  x   x   h 0 22   jump of discontinuity =  – 1 – 2 = 2 – 1 Do yourself -4 :  1 ; x  1  (i) Discuss the type of discontinuity for ƒ( x )   | x| ; 1  x  1 ; x 1 (x  1) 5 . THE INTERMEDIATE VALUE THEOREM : y f(b) Suppose f(x) is continuous on an interval I, and a and b are any two points of I. Then if y0 y is a number between f(a) and f(b), there f(a) 0 exists a number c between a and b such that f(c) = y x 0 0 a cb The function f, being continuous on [a,b] takes on every value between f(a) and f(b) Note that a function f which is continuous in [a,b] possesses the following properties : (i) If f(a) & f(b) posses opposite signs, then there exists atleast one root of the equation Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 f(x) = 0 in the open interval (a,b). (ii) If K is any real number between f(a) & f(b), then there exists atleast one root of the equation f(x) = K in the open interval (a,b). Note : In above cases the number of roots is always odd. Illustration 8 : Show that the function, f(x) = (x – a)2(x – b)2 + x, takes the value a  b for some x0  (a, b) 2 Solution : f(x) = (x – a)2(x – b)2 + x f(a) = a f(b) = b ab &  (f(a), f(b)) 2  By intermediate value theorem, there is atleast one x0  (a, b) such that f(x0) =ab . 2 Illustr ation 9 : Let f : [0, 1] onto [0, 1] be a continuous function, then prove that f(x) = x for atleast one x  [0, 1] 34 E

Solution : Consider g(x) = f(x) – x JEE-Mathematics g(0) = f(0) – 0 = f(0)  0  0  f(x)  1 g(1) = f(1) – 1  0  g(0) . g(1)  0  g(x) = 0 has atleast one root in [0, 1]  f(x) = x for atleast one x  [0, 1] Do yourself -5 : 2ƒ(a )  3ƒ(b) ( i ) If ƒ (x) is continuous in [a,b] such that ƒ (c) = 5 , then prove that c  (a,b) 6 . SOME IMPORTANT POINTS : ( a ) If f(x) is continuous & g(x) is discontinuous at x = a then the product function (x)  f(x).g(x) will not necessarily be discontinuous at x = a, e.g. Lsin  x  0 b g b g Mf x  x & g x  x NM0 x  0 f(x) is continuous at x = 0 & g(x) is discontinuous at x = 0, but f(x).g(x) is continuous at x = 0. ( b ) If f (x) and g (x) both are discontinuous at x = a then the product function (x)  f(x).g(x) is not necessarily be discontinuous at x = a , e.g. L1 x  0 b g b g Mf x  g x  N1 x  0 f(x) & g(x) both are discontinuous at x = 0 but the product function f.g(x) is still continuous at x = 0 ( c ) If f (x) and g (x) both are discontinuous at x = a then f(x) ± g(x) is not necessarily be discontinuous at x=a ( d ) A continuous function whose domain is closed must have a range also in closed interval. ( e ) If f is continuous at x = a & g is continuous at x = f (a) then the composite g[f(x)] is continuous at x = a. eg. x sin x b g b g b gf x  x2  2 & g x  x x sin x will also be are continuous at x =0, hence the composite (gof) x  x2  2 continuous at x = 0 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 Illustration 10 : If f(x) = x 1 and g(x)  1 , then discuss the continuity of f(x), g(x) and fog (x) in R. x 1 x 2 Solution : x 1 f(x) = E x 1 f(x) is a rational function it must be continuous in its domain and f is not defined at x = 1.  f is discontinuous at x = 1 1 g(x) = x 2 g(x) is also a rational function. It must be continuous in its domain and g is not defined at x = 2.  g is discontinuous at x = 2 Now fog(x) will be discontinuous at x = 2 (point of discontinuity of g(x)) Consider g(x) = 1 (when g(x) = point of discontinuity of f(x)) 1 =1  x= 3 x 2  fog(x) is discontinuous at x = 2 & x = 3. 35

JEE-Mathematics Do yourself -6 : ( i ) Let ƒ (x) = [x] & g(x) = sgn(x) (where [.] denotes greatest integer function) , then discuss the continuity of ƒ( x ) ƒ (x) ± g(x), ƒ (x).g(x) & g(x) at x= 0. ƒ( x ) ( i i ) If ƒ (x) = sin|x|& g(x) = tan|x| then discuss the continuity of ƒ (x) ± g(x) ; g(x) & ƒ (x) g(x) 7 . SINGLE POINT CONTINUITY : Functions which are continuous only at one point are said to exhibit single point continuity Illustration 11: If ƒ x  x if x  Q Solution : x , find the points where ƒ(x) is continuous if x  Q Let x = a be the point at which ƒ(x) is continuous. lim ƒ(x)  lim ƒ(x)  xa x a through rational through irrational  a = –a  a = 0  function is continuous at x = 0. Do yourself -7 : (i) If g x  x if x  Q 0 if x  Q , then find the points where function is continuous. (ii)  x2 ; xQ If ƒ(x)  1  x2 ; x  Q , then find the points where function is continuous. ANSWERS FOR DO YOURSELF Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 1. (i) 1 ( i i ) discontinuous at x =–2 2 . (i) a=–1 & b=1  ( i i ) Discontinuous at x = 1 & continuous at x = 2 3 . ( i ) Missing point removable discontinuity at x = 1, isolated point removable discontinuity at x = 4 . 4 . ( i ) Finite type non-removable discontinuity at x=–1,1 6 . ( i ) All are discontinuous at x = 0. ( i i ) ƒ (x) g(x) & ƒ (x) ± g(x) are discontinuous at x  (2n  1)  ; n  I 2 ƒ(x) n g(x) is discontinuous at x = 2 ; n  I 7. (i) x = 0 (ii) x   1 2 36 E

EXERCISE - 01 JEE-Mathematics CHECK YOUR GRASP SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER) x  2 , when x  1 1 . If f x  4 x  1 , when 1  x  3 , then correct statement is - x2  5 , when x  3 (A) lim f x  lim f x (B) f(x) is continuous at x = 3 x 1 x3 (D) f(x) is continuous at x = 1 and 3 (C) f(x) is continuous at x = 1 1 , x 0  , then - 2. If f x   e1 / x 1 0 , x  0 (A) lim f x  1 (B) lim f x   0 x0 x0 (C) f(x) is discontinuous at x = 0 (D) f(x) is continuous 3 . If function f(x) = 1x 31x , is continuous function, then f(0) is equal to - x (A) 2 (B) 1/4 (C) 1/6 (D) 1/3 x2  a  2 x  2a  , x  2 is continuous at x = 2, then a is equal to - 4. If f  x    x 2 2 , x  2 (A) 0 (B) 1 (C) –1 (D) 2 log(1  2ax)  log(1  bx) , x  0 , is continuous at x = 0 , then k is equal to -  5. If f(x) =  x  k , x0 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 (A) 2a + b (B) 2a – b (C) b – 2a (D) a + b 6. If f(x)  [x]  [x], x 2 f is continuous at x = 2 then  is (where [.] denotes greatest integer) - x 2 ,  ,  (A) –1 (B) 0 (C) 1 (D) 2  1  cos 4x , x0   x2  7 . If f(x) =  a , x  0 , then correct statement is -  x , x0   16  x  4 (A) f(x) is discontinuous at x = 0 for any value of a (B) f(x) is continuous at x = 0 when a = 8 (C) f(x) is continuous at x = 0 when a = 0 (D) none of these E 37

JEE-Mathematics 1 8 . Function f(x) = log| x| is discontinuous at - (A) one point (B) two points (C) three points (D) infinite number of points 9 . Which of the following functions has finite number of points of discontinuity in R (where [.] denotes greatest integer) (A) tan x (B) |x| / x (C) x + [x] (D) sin [ x] 10. If f(x) = 1  tan x , x   , x  0,  is a continuous functions, then f(/4) is equal to - 4x   4 2  (A) –1/2 (B) 1/2 (C) 1 (D) –1 1 1 . The value of f(0), so that function, f(x) = a2  ax  x2  a2  ax  x2 becomes continuous for all x, is given ax  ax by - (A) a a (B) – a (C) a (D) –a a 12. If f(x)  x  ex  cos2x , x  0 is continuous at x = 0, then - x2 5 (B) [f(0)] = –2 (C) {f(0)} = –0.5 (D) [f(0)].{f(0)}= –1.5 (A) f(0) = 2 where [x] and {x} denotes greatest integer and fractional part function. 1 3 . Let f(x) = x(1  a cos x)  b sin x , x  0 and f(0) = 1. The value of a and b so that f is a continuous function are - x3 (A) 5/2, 3/2 (B) 5/2, –3/2 (C) –5/2, –3/2 (D) none of these b g1 4 . ‘f’ is a continuous function on the real line. Given that x2  (f x  2)x  3 .f(x)  2 3  3  0 . Then the value of e jf 3 is - 2( 3  2) (B) 2 (1  3 ) (C) zero (D) cannot be determined Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 (A) 3 SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS) 1 5 . The value(s) of x for which ƒ (x) = e sin x is continuous, is (are) - 4  x2  9 (A) 3 (B) –3 (C) 5 (D) all x  (–, –3]  [3, ) 1 6 . Which of the following function(s) not defined at x = 0 has/have removable discontinuity at the origin ? (A) f(x)  1  1 x  sin x  2cot (B) f(x)  cos  x  (C) f(x)  x sin  1 x (D) f(x) = n x 38 E

JEE-Mathematics 1 7 . Function whose jump (non-negative difference of LHL & RHL) of discontinuity is greater than or equal to one, is/are - (e1 / x  1) ; x 0  x1 / 3  1 ; x 1  x 0  ; 1  x 1  (e1 / x 1)  x1 / 2  1 2  nx (A) ƒ (x)  (B) g(x) = (1  cos x) ; (x  1)  x  sin 1 2x ; x   0, 1    2  (C) u(x) =  tan 1 3 x (D) v(x) = log3 (x  2) ; x  2 | sin x| ; x0  (x2  5) ; x 2  x log1 / 2 18. If 1 ƒ  2  is discontinuous at x = ƒ (x)  x2  17x  66 , then  x 2  (A) 2 7 24 (D) 6,11 (B) 3 (C) 11  0; x  Z 1 9 . Let ƒ (x) = [x] & g(x)  x2 ; x  R  Z , then (where [.] denotes greatest integer function) - (A) Lim g(x) exists, but g(x) is not continuous at x= 1. x 1 (B) Lim f(x) does not exist and ƒ (x) is not continuous at x=1. x 1 (C) gof is continuous for all x. (D) fog is continuous for all x. Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 CHECK YOUR GRASP ANSWER KEY EXERCISE-1 Que. 1 2 3 4 5 6 7 8 9 10 Ans. C C C A A A B C B A Que. 11 12 13 14 15 16 18 18 19 Ans. B D C B A,B B,C,D A,C,D A,B,C A,B,C E 39

JEE-Mathematics BRAIN TEASERS EXERCISE - 02 SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)  x if x  0  1 . Consider the piecewise defined function f(x)  0 if 0  x  4 choose the answer which best describes the continuity of this function - x  4 if x  4 (A) the function is unbounded and therefore cannot be continuous (B) the function is right continuous at x = 0 (C) the function has a removable discontinuity at 0 and 4, but is continuous on the rest of the real line (D) the function is continuous on the entire real line 2 . f(x) is continuous at x=0, then which of the following are always true ? (A) Lim f(x)  0 (B) f(x) is non continuous at x=1 x0 (C) g(x) = x2f(x) is continuous at x = 0 (D) Lim (f(x)  f(0))  0 x 0  b g3 . Indicate all correct alternatives if, f x  x  1 , then on the interval [0,] 2 b g1 b g(B) tan (f(x)) & 1 are both discontinuous fx (A) tan (f (x)) & are both continuous fx (C) tan (f (x))& f –1(x) are both continuous b g1 (D) tan (f(x)) is continuous but f x is not 4 . If f(x) = sgn(cos2x – 2 sinx + 3), where sgn ( ) is the signum function, then f(x) - (A) is continuous over its domain (B) has a missing point discontinuity (C) has isolated point discontinuity (D) has irremovable discontinuity. 5. 2 cos x  sin 2x ; ecos x  1 f(x)  (  2x)2 g(x)  8x  4 h(x) = f(x) for x</2 = g(x) for x>/2 then which of the followings does not holds ? (A) h is continuous at x = /2 (B) h has an irremovable discontinuity at x=/2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 (C) h has a removable discontinuity at x = /2       (D) f  2   g  2  6 . The number of points where f(x) = [sinx + cosx] (where [ ] denotes the greatest integer function), x  (0, 2) is not continuous is - (A) 3 (B) 4 (C) 5 (D) 6 ( x  |1x| 1  x  7. On the interval I= [–2, 2], the function f(x) =  1)e (x  0) 0 (x  0) then which one of the following hold good ? (A) is continuous for all values of x  I (B) is continuous for x  I –(0) (C) assumes all intermediate values from f(–2) & f(2) (D) has a maximum value equal to 3/e 8.  cos    x  1 ; where [x] is the greatest integer function of x, then f(x) is continuous at - If f(x) = cos  x   2 (A) x = 0 (B) x = 1 (C) x = 2 (D) none of these 40 E

JEE-Mathematics      9. 3  co t 1 2x3 3  for x 0  x2  for  where { } & [ ] denotes the fractional part and the integral part Given f(x)  x 0  x2 cos e1 / x functions respectively, then which of the following statement does not hold good - (A) f (0– ) = 0 (B) f(0+)=3 (C) f(0)=0  continuity of f at x = 0 (D) irremovable discontinuity of f at x = 0 10. Let ‘f’ be a continuous function on R. If f (1 / 4n )  (sin en )en2  n2 then f(0) is - n2  1 (A) not unique (B) 1 (C) data sufficient to find f(0) (D) data insufficient to find f(0) 1 1 . Given f(x) = b ([x]2 + [x]) + 1 for x  1 = sin ((x  a)) for x < – 1 where [x] denotes the integral part of x, then for what values of a, b the function is continuous at x = – 1 ? (A) a  2n  (3 / 2); b  R ; n  I (B) a  4n  2 ; b  R ; n  I (C) a  4n  (3 / 2) ; b  R  ; n  I (D) a  4n  1 ; b  R  ; n  I x[x]2log(1+x) 2 for –1 < x < 0 1 2 . Consider f(x) = e jln ex2  2 {x} where [*] & {*} are the greatest integer function & tan x for 0 < x < 1 fractional part function respectively, then - (B) f(0) = 2  f is continuous at x = 0 (A) f(0) = ln2  f is continuous at x = 0 (D) f has an irremovable discontinuity at x = 0 (C) f(0) = e2    f is continuous at x = 0 13. Let f(x)  a sin2n x for x  0 and n   then -  Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 b cos2m x  1 for x  0 and m   (A) f(0–)  f(0+) (B) f(0+)  f(0) (C) f(0–)  f(0) (D) f is continuous at x = 0 b g1 4 . f x  Lim xn  sin xn for x  0, x  1 f(1)=0 Consider xn  sin xn then - n (A) f is continuous at x = 1 (B) f has a finite discontinuity at x = 1 (C) f has an infinite or oscillatory discontinuity at x = 1 (D) f has a removable type of discontinuity at x=1 BRAIN TEASERS ANSWER KEY EXERCISE-2 Que. 1 2 3 45 6 7 8 9 10 Ans. D C,D C,D C A,C,D C B,C,D B,C B,D B,C Que. 11 12 13 14 Ans. A,C B D A E 41

JEE-Mathematics EXERCISE - 03 MISCELLANEOUS TYPE QUESTIONS TRUE / FALSE 1 1 . is discontinuous at infinite points. ([ ] denotes greatest integer function) x [x] 2 . sin|x| + |sinx| is not continuous for all x. 3 . If f is continuous and g is discontinuous at x = a, then f(x).g(x) is discontinuous at x = a. 4 . There exists a continuous onto function f : [0, 1]   [0, 10], but there exists no continuous onto function g : [0, 1]  (0, 10) tan( / 4  x)   5 . If f(x) = for x  , then the value which can be given to f(x) at x = so that the function cos 2 x 44 becomes continuous every where in (0, /2) is 1/4. 6 . The function f, defined by f(x) = 1 is continuous for real x. 1  2tan x 7. f(x) = lim 1 is continuous at x = 1. n  1  n sin2 x 8. If f(x) is continuous in [0, 1] and f(x) = 1 for all rational numbers in [0, 1] then f  1 = 1.    2  MATCH THE COLUMN Following questions contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. 1 . Column-I Column-II sin{x}; x  1 (p) 1 (A) If f(x) = cos x  a ; x  1 where {.} denotes the fractional part function, such that f(x) is continuous at x = 1. If |k| = a 2 sin (4  ) 4 then k is Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 (1  cos(sin x)) (q) 0 (B) If the function f(x) = x2 is continuous at x = 0, then f(0) is  x , xQ (r) –1 (C) f(x) = 1  x , x  Q , then the values 1 of x at which f(x) is continuous (s) 2 (D) If f(x) = x + {–x} + [x], where [x] and {x} represents integral and fractional part E of x, then the values of x at which f(x) is discontinuous 42

2 . Column-I JEE-Mathematics Column-II (A) If f(x) = 1/(1–x), then the points at which 1 (p) 2 the function fofof(x) is discontinuous (q) 0 11 (B) f(u) = u2  u  2 , where u= x 1 . The values of x at which 'f' is discontinuous (C) f(x) = u2, where u x  1, x  0 (r) 2 = x  1, x  0 The number of values of x at which (s) 1 'f' is discontinuous (D) The number of value of x at which the 2x5  8x2  11 function f(x) = x4  4x3  8x2  8x  4 is discontinuous ASSERTION & REASON These questions contains, Statement I (assertion) and Statement II (reason). (A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I. (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I. (C) Statement-I is true, Statement-II is false. (D) Statement-I is false, Statement-II is true. 1 . Statement-I : f(x) = sinx + [x] is discontinuous at x = 0 Because Statement-II : If g(x) is continuous & h(x) is discontinuous at x = a, then g(x) + h(x) will necessarily be discontinuous at x = a (A) A (B) B (C) C (D) D 2 sin(a cos1 x) if x (0,1)  Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 2 . Consider ƒ (x) =  3 if x  0 ax  b if x  0 Statement-I : If b = 2 then ƒ (x) is continuous in (–, 1) 3 and a = 3 Because Statement-II : If a function is defined on an interval I and limit exist at every point of interval I then function is continuous in I. (A) A (B) B (C) C (D) D  cos x  ex2 / 2  x3 3. Let ƒ( x )   , x  0 then 0 , x  0 Statement-I : ƒ (x) is continuous at x = 0. Because Statement-II : lim cos x  ex2 / 2  1 . xx0 4 12 (A) A (B) B (C) C (D) D E 43

JEE-Mathematics x3 1 4 . Statement-I : The equation  sin x  3  2 has atleast one solution in [–2, 2] 43 Because Statement-II : If f:[a, b]  R be a function & let 'c' be a number such that f(a) < c < f(b), then there is atleast one number n  (a, b) such that f(n) = c. (A) A (B) B (C) C (D) D 5. Statement-I : Range of ƒ (x) =  e2x  e 2 x   x2  x4 is not R. x  e2x  e 2 x  Because Statement-II : Range of a continuous even function can not be R. (A) A (B) B (C) C (D) D (D) D Ax  B x  1 6 . Let ƒ (x) = 2x2  3Ax  B x  (1, 1] 4 x  1 31 Statement-I : ƒ (x) is continuous at all x if A = 4 , B = – 4 . Because Statement-II : Polynomial function is always continuous. (A) A (B) B (C) C COMPREHENSION BASED QUESTIONS Comprehension # 1 If x x2 x2n and x > 1 Sn (x)  x  1  (x  1)(x2  1)  .........  (x  1)(x2  1).....(x2n  1) lim S n (x)   n  Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65  ax  b 1 ,  x x 0 g(x)   1 , x  0 h : R  R h(x) = x9 – 6x8 – 2x7 + 12x6 + x4 – 7x3 + 6x2 + x – 7 On the basis of above information, answer the following questions : 1 . If g(x) is continuous at x = 0 then a + b is equal to - (A) 0 (B) 1 (C) 2 (D) 3 2 . If g(x) is continuous at x = 0 then g'(0) is equal to - (A)  h(6) (C) a – 2b (D) does not exist (B) 2 3 . Identify the incorrect option - (A) h(x) is surjective (B) domain of g(x) is [–1/2, ) (D)  = 1 (C) h(x) is bounded 44 E

JEE-Mathematics Comprehension # 2 Road B N WE A man leaves his home early in the morning to have a walk. He arrives at a junction of road A & road B as shown in S figure. He takes the following steps in later journey : (a) 1 km in north direction (b) changes direction & moves in north-east direction for 2 2 kms. Road A (c) changes direction & moves southwards for distance of 2 km. Home (d) finally he changes the direction & moves in south-east direction to reach road A again. Visible/Invisible path :- The path traced by the man in the direction parallel to road A & road B is called invisible path, the remaining path traced is visible. Visible points :- The points about which the man changes direction are called visible points except the point from where he changes direction last time Now if road A & road B are taken as x-axis & y-axis then visible path & visible point represents the graph of y = f(x). On the basis of above information, answer the following questions : 1 . The value of x at which the function is discontinuous - (A) 2 (B) 0 (C) 1 (D) 3 2 . The value of x at which fof(x) is discontinuous - (A) 0 (B) 1 (C) 2 (D) 3 3 . If f(x) is periodic with period 3, then f(19) is - (A) 2 (B) 3 (C) 19 (D) none of these Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 MISCELLANEOUS TYPE QUESTION ANSWER KEY EXERCISE -3  True / False 5. F 6. F 7. F 8. T 1. T 2. F 3. F 4. T  Match the Column 1. (A)  (p, r); (B)  (s); (C)  (s); (D)  (p, q, r) 2. (A)  (q, s); (B)  (p, r, s); (C)  (q); (D)  (q)  Assertion & Reason 1. A 2. C 3. A 4. C 5. A 6. B  Comprehension Based Questions C omp r eh ens i on # 1 : 1 . D 2 . B 3 . C C omp r eh ens i on # 2 : 1 . A 2 . B,C 3. A E 45

JEE-Mathematics CONCEPTUAL SUBJECTIVE EXERCISE EXERCISE - 4 [A] x2, when x  0 5 x  4, when 0 1. If f(x)    x  1 , discuss the continuity of f(x) in R. 4 x 2  3x, when 1  x  2 3x  4, when x  2  2 sin x for   x     2     x   . If f is continuous on ,  then find the values of a & b. 22 2. Let f x  a sin x  b for  for   x   2 cos x  sin a  1 x  sin x for x  0  x 3 . Determine the values of a,b & c for which the function f x  c for x  0   1/2 x1 / 2  x  bx2   bx 3 / 2 for x  0 is continuous at x = 0 21 / x  1 4 . Determine the kind of discontinuity of the function y   21 / x  1 at the point x = 0 b g5 .  fx , x3 Suppose that f x  x3  3x2  4x  12 and h  x    x  3 then  K x  3 (a) find all zeros of ‘f’ (b) find the value of K that makes ‘h’ continuous at x =3 (c) using the value of K found in (b) determine whether ‘h’ is an even function. b g6 . Draw the graph of the function f x  x  x  x2 ,  1  x  1 & discuss the continuity or discontinuity of f in the interval 1  x  1 . Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 b g b g7 . If f x  sin 3x  A sin 2x  B sin x x  0 is continuous at x = 0, then find A & B. Also find f(0). x5 8 . (a) Let f(x + y) = f(x) + f(y) for all x, y & if the function f(x) is continuous at x = 0, then show that f(x) is continuous at all x. (b) If f(x . y) = f(x) . f(y) for all x, y and f(x) is continuous at x = 1. Prove that f(x) is continuous for all x except at x = 0. Given f(1)  0. 9 . Examine the continuity at x= 0 of the sum function of the infinite series : b gb g b gb gx  x  x .......... x  1 x  1 2x  1 2x  1 3x  1 1 0 . Show that : (a) a polynomial of an odd degree has at least one real root (b) a polynomial of an even degree has at least two real roots if it attains at least one value opposite in sign to the coefficient of its highest-degree term. CONCEPTUAL SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(A) 1 . continuous every where except at x = 0 2 . a = –1 b = 1 E 3 . a = –3/2, b  0 , c = 1/2 4 . non-removable - finite type 5 . (a) –2, 2, 3 (b) K= 5 (c) even 6 . f is continuous in –1  x  1 7 . A = –4, B = 5, f( 0) = 1 9 . discontinuous at x = 0 46

EXERCISE - 4 [B] JEE-Mathematics BRAIN STORMING SUBJECTIVE EXERCISE b g FHG JIK HFG KIJn x x 1. Given f x  tan sec ; r,n N 2r 2r 1 r 1  ln  f x  tan x    f x  tan x n . sin  tan x  2n   2n       2  ; x  /4  g x  Lnim  x  n   2n   1  f x  tan K ; x   / 4 GF JIwhere [ ] denotes the greatest integer function and the domain of g(x) is 0,  . Find the value of k, if possible, H K2 b gso that g(x) is continuous at x   / 4 . Also state the points of discontinuity of g(x) in 0, / 4 , if any. 2. Let f(x)= 1  x3 , x0 g(x)  ( x  1)1 / 3 , x0 Discuss the continuity of g(f(x)). 3.  ;   1)1 / 2 , x 0 4.  x 2  1, ( x 5. x 0 6. L 4x  5 [x] for x  1 7. b g MDiscuss the continuity of ‘f’ in [0,2] where f x  ; where [x] is the greatest integer not E N[cos x] for x  1 greater than x. Also draw the graph b g b gln 2  x  x2n sin x Discuss the continuity of the function f x  Lim 1  x2n at x = 1 n 1  a x  xa xn a for x  0  where a > 0. Consider the function g(x)=  axx2 for x  0 2x ax  xn2  xn a 1  x2  Find the value of ‘a’ & ‘g(0)’ so that the function g(x) is continuous at x = 0.    sin1 1  {x}2  .sin1 1  {x} Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65   2 {x} {x}3   2 for x  0 where {x} is the fractional part of x. Let f(x) = for x  0     2 Consider another function g(x); such that f(x) for x  0 g(x) =  2 2 f(x) for x < 0 Discuss the continuity of the functions f(x) & g(x) at x = 0. f(x)  asin x  atan x for x  0 tan x  sin x = n(1  x  x2 )  n(1  x  x2 ) for x < 0, if ‘f’ is continuous at x = 0, find ‘a’ sec x  cos x now if g(x)= n  2  x .cot(x – a) for x  a, a  0, a > 0. If ‘g’ is continuous at x = a then show that g(e–1) = –e  a  47

JEE-Mathematics 8 . Let [x] denote the greatest integer function & f(x) be defined in a neighbourhood of 2 by    [x1] , x2  exp x  2 n4 4  16  f(x)   4x 16  1  cos(x  2) , x 2 A (x  2) tan(x  2) Find the value of A & f(2) in order that f(x) may be continuous at x = 2. 9 . If g : [a, b] onto [a, b] is continuous show that there is some c  [a, b] such that g(c) = c. b g e j e j10. x2 x2 x2 x2 b g b gandyx yn x . Discuss the continuity of Let yn x   1 x2  1  x2 2 ......... 1 x2 n1  Lim n b g b gy n x n  1,2,3.....n and y (x) at x = 0 BRAIN STORMING SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(B) Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 b g M1 . k  0 ; g x  LM b gln tan x if 0  x  4 . Hence g(x) is continuous everywhere. M0 if   x   MN 4 2 2 . gof is discontinuous at x = 0, 1 and –1 1 3. the function ‘f’ is continuous everywhere in [0,2] except for x = 0, ,1 & 2 2 4 . discontinuous at x = 1 1 n22 5 . a = , g(0)= 28   6. f(0+) = ; f(0–) =  ‘f’ is dicontinuous at x = 0 ; g(0+) = g(0–) = g(0) =  ‘g’ is continuous at x = 0 24 2 2 7 . a = e–1 8 . A = 1 ; f(2) = 1/2 1 0 . y (x) is continuous at x = 0 for all n and y (x) is discontinuous at x = 0 E n 48

EXERCISE - 05 [A] JEE-Mathematics JEE-[MAIN] : PREVIOUS YEAR QUESTIONS 1. x x Q If f(x) = x , then f is continuous at- x Q [AIEEE 2002] (1) Only at zero (2) only at 0, 1 (3) all real numbers (4) all rational numbers x |1x|  1  x  2. If f(x) = e , x  0 then f(x) is- [AIEEE 2003]  0 , x  0 (1) discontinuous everywhere (2) continuous as well as differentiable for all x (3) continuous for all x but not differentiable at x=0 (4) neither differentiable nor continuous at x = 0 3. Let f(x) = 1  tan x  x  0,  , If f(x) is continuous in 0,  , then f    is- [AIEEE 2004] ,x  4 , 2  2   4  4x  (1) 1 (2) 1/2 (3) –1/2 (4) –1 12 4 . The function f : R/{0}  R given by f(x) = x – e2x 1 can be made continuous at x = 0 by defining f(0) as- [AIEEE 2007] (1) 2 (2) –1 (3) 0 (4) 1 sin(p  1)x  sin x , x0  x  q , x0 5 . The values of p and q for which the function f(x) =  is continuous for all x in R,  x  x2  x , x0 3  x 2 are:- [AIEEE 2011] 31 13 13 51 (1) p = – , q = (2) p = , q = (3) p = , q = – (4) p = , q = 22 22 22 22 6. Define F(x) as the product of two real functions f1(x) = x, x  IR, and f2 (x)  sin 1 , if x  0 as follows:  x  0, if x  0 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 F (x)  f1 ( x ).f2 (x ) if x 0  0, if x 0 [AIEEE 2011] Statement-1 : F(x) is continuous on IR. Statement-2 : f1(x) and f2(x) are continuous on IR. (1) Statemen-1 is false, statement-2 is true. (2) Statemen-1 is true, statement-2 is true; Statement-2 is correct explanation for statement-1. (3) Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1 (4) Statement-1 is true, statement-2 is false 7 . Consider the function, f(x) = |x – 2| + |x – 5|, x  R. Statement–1 : f'(4) = 0. Statement–2 : f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5). [AIEEE 2012] (1) Statement–1 is true, Statement–2 is false. (2) Statement–1 is false, Statement–2 is true. (3) Statement–1 is true, Statement–2 is true ; Statement–2 is a correct explanation for Statement–1. (4) Statement–1 is true, Statement–2 is true ; Statement–2 is not a correct explanation for Statement–1. PREVIOUS YEARS QUESTIONS ANSWER KEY EXERCISE-5 [A] Que. 1 2345 6 7 Ans 1 3341 4 4 E 49

JEE-Mathematics JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS EXERCISE - 05 [B]  e1 /( x 1)  2 , x 1  1. Discuss the continuity of the function ƒ( x )   e1 /( x 1 )  2 at x = 1.  1, x 1 [REE 2001 (Mains), 3] 2. For every integer n, let a and b be real numbers. Let function ƒ : IR  IR be given by n n ƒ( x )   an  sin x, for x  2n,2n  1  for bn  cos x, x  2n  1,2n  , for all integers n. If ƒ is continuous, then which of the following holds(s) for all n ? [JEE 2012, 4] (D) a – b = –1 (A) a – b = 0 (B) a – b = 1 (C) a – b = 1 n–1 n–1 nn n n+1 n–1 n PREVIOUS YEARS QUESTIONS ANSWER KEY EXERCISE-5 [B] Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#04\\Eng\\02.CONTINUITY\\CONTINUITY.P65 1 . Discontinuous at x = 1 ; f(1+) = 1 and f(1–) = –1 2 . B,D E 50



JEE-Mathematics DEFINITE  INTEGR ATION b A  definite  integral  is  denoted  by  f(x)dx   which  represent  the  algebraic  area  bounded  by  the  curve  y  =  f(x),  the a ordinates  x  =  a,  x  =  b  and  the  x  axis. 1 . THE  FUNDA MENTAL  THEOREM  OF  CALCULUS  : The  Fundamental  Theorem  of  Calculus  is  appropriately  named  because  it  establishes  a  connection  between  the two  branches  of  calculus  :  differential  calculus  and  integral  calculus.  Differential  calculus  arose  from  the  tangent problem,  whereas  integral  calculus  arose  from  a  seemingly  unrelated  problem,  the  area  problem.  Newton's teacher  at  Cambridge,  Isaac  Barrow  (1630-1677),  discovered  that  these  two  problems  are  actually  closely related.  In  fact,  he  realized  that  differentiation  and  integration                Y are  inverse  processes.  The  Fundamental  Theorem  of  Calculus gives  the  precise  inverse  relationship  between  the  derivative y = f(t) and  the  integral.  It  was  Newton  and  Leibnitz  who  exploited this  relationship  and  used  it  to  develop  calculus  into  a area = g(x) systematic  mathematical  method.  In  particular,  they  saw  that the  Fundamental  Theorem  enabled  them  to  compute  areas and  integrals  very  easily  without  having  to  compute  them  as Oa x b t limits  of  sums. The  Fundamental  Theorem  of  Calculus,  Part  1   If  f  is  continuous  on  [a,  b],  then  the  function  g  defined  by x axb g(x)   f(t)dt a is  continuous  on  [a,  b]  and  differentiable  on  (a,  b),  and  g'(x)  =  f(x). NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 The  Fundamental  Theorem  of  Calculus,  Part  2   If  f  is  continuous  on  [a,  b],  then b  f(x)dx  F(b)  F(a) a where  F  is  any  antiderivative  of  f,  that  is,  a  function  such  that  F '=  f. 3. b E Note  :   If  f(x)dx  0   then  the equation  f(x) =  0 has  atleast one  root lying  in (a,  b) provided  f is  a continuous a function  in  (a,b). PROPERTIES  OF  DEFINITE  INTEGRAL  : bb ( a )  f(x)dx   f(t) dt  provided    f  is  same aa ba (b )  f(x)dx   f(x) dx ab b cb ( c )  f(x)dx   f(x) dx  f(x) dx ,  where  c  may lie inside or outside the interval [a,b ]. This property is to be a ac used  when  f  is  piecewise  continuous  in  (a,  b). 31

JEE-Mathematics 3 then  evaluate  f(x)dx x 2 , If  f(x)  =  Illustration  1  : 0  x 2 Solution  : 3x  4, 2  x  3 0 Illustration  2  : 32 3 23  f(x)dx  f(x)dx   f(x)dx   x2dx  (3x  4)dx 00 2 02   x3 2  3x2 3   8  27  12 6 8  37 / 6 Ans.  3  0   2  4 x 2 3 2 3[x ]  5| x|, x 0 2  x If  f(x)dx   is  equal  to  ([.]  denotes  the  greatest  integer  function) f(x)  =   then  2, x 0 3 / 2 11 7 (C)  –6 17 (A)  – (B)  – (D)   2 2 2 Solution  : 3[x]  –  5 x  3[x]  5 ,  if    x  >  0 y x 2 =  3[x]  +  5,    if  x  <  0   1 1 2 1 01 2 –2 –3/2 2 x –2   f(x)dx =  (1)dx   (2)dx   (5)dx   (2)dx 3 / 2 3 / 2 1 0 1 =  –  1  1  3  2(1)  1( 5 )  (2)   =   1  2  5  2  11 –5 Ans.  (A)  2  2  2 Illustration  3  : 2 The  value  of  (x[x2 ]  [x2 ]x )dx ,  where  [.]  denotes  the  greatest  integer  function,  is  equal  to  - 1 5 3  (2 3  2 2 )  1 (9  3 3 ) (A)  4  log 3 5 3 2 1 (2 3  2 2 )  1 (9  3 3 ) (B)  4   3 log 2 log 3 5 2 1 (2 3  2 2 )  1 (9  3 3 ) (C)  4   3 log 2 log 3 (D)  none  of  these 2 23 2 Solution  : We  have,    I  = (x[x2 ]  [x2 ]x )dx = (x  1)dx  (x2  2x )dx  (x3  3x )dx 1 12 3  x2  2  x3 2x  3  x4 3x 2 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 =   2  x1   3  log 2  2   4  log 3  3 5 3 2 1 (2 3  2 2 )  1 (32  3 3 ) Ans.  (B) =  4   3 log 2 log 3 Ans. 20   Here  [.]  is  the  greatest  integer  function. E Illustration  4  : Evaluate  :  [cot1 x]dx . 10 Solution  : 20 I  =  [cot1 x]dx ,  we  know  cot–1  x    (0,  )    x    R 10 3, x  (, cot 3) x  (cot 3, cot 2) Thus  [cot–1  x]  =  2, x  (cot 2, cot1) 1, x  (cot1, ) 0 cot 3 cot 2 cot1 20 Hence  I  =   3dx   2dx   1dx   0dx   =  30  +  cot1  +  cot2  +  cot3 10 cot 3 cot 2 cot1 32

JEE-Mathematics Do  yourself  -1  : Evaluate  : 3 ( i ) | x2  x  2| dx 0 4 ( i i ) {x}dx ,  where  {.}  denotes  fractional  part  of  x. 0 /2 (iii)  | sin x  cos x|dx 0 2 0  x 1 2 x ,  where  [.]  denotes  the  greatest  integer  function.  Evaluate  ( i v ) ƒ( x ) dx If    ƒ( x )   [x] 1 x 3 0 a a 0 ; if  f(x) is an odd function a   ( d ) f(x)  a dx [f(x)  f (  x )]dx  2 f(x)dx ; if f(x) is an even function 0 0 Illustration  5  : 1/2 n  1  x Evaluate  1 / 2 cos x  1  x  dx Solution  : f(–x) =  cos(–x) n 1  x =  –cos n 1  x =  –f(x)  1  x   1  x   f(x) is  odd Hence,  the  value  of  the  given  integral  =  0. Ans. cos x e x2 2x cos2 x / 2 /2 If  f(x)  =  x2 sec x Illustration  6  : sin x  x3 ,  then  the  value  of  (x2  1)(f(x)  f ''(x))dx 1 2 x  tan x  / 2 (A)  1 (B)  –1 (C)  2 (D)  none  of  these NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 Solution  : cos x e x2 2x cos2 x / 2 As,  f(x) =  x2 sec x sin x  x3 x  tan x 1 2  f(–x)  =  –  f(x)  f(x) is  odd  f'(x) is  even  f''(x)  is  odd Thus,  f(x)  +  f''(x)  is  odd  function  let, (x)  =  (x2  +  1).{f(x)  +  f''(x)}  (–x)  =   (x) i.e.  (x)  is  odd /2 Ans.  (D)   (x)dx  0  / 2 Do  yourself  -2  : (i i ) /2 n   4  sin   d  Evaluate  :  / 2 2  4  sin    /2 33 ( i ) (x2 sin3 x  cos x)dx  / 2 E

JEE-Mathematics bb aa ( e )  f(x)dx   f(a  b  x) dx ,    In  particular   f(x)dx   f(a  x) dx 00 aa Illustration  7  : If  f,  g,  h  be  continuous  functions  on  [0,  a]  such  that  f(a  –  x)  =  –f(x),  g(a  –  x)  =  g(x)  and a 3h(x)  –  4h(a  –  x)  =  5,  then  prove  that   f(x)g(x)h(x)dx  0 0 aa a Solution  : I  =   f(x)g(x)h(x)dx   f(a  x)g(a  x)h(a  x)dx =   f(x)g(x)h(a  x)dx 00 0 7I  =  3I  + 4I aa =   f(x)g(x) 3h(x)  4h(a  x) dx =  5 f(x)g(x)dx  0 00 (since  f(a  –  x)  g(a  –  x)  =  –f(x)g(x))     I  =  0 Ans. Ans. Illustration  8  : Evaluate   x sin x dx  ex  1 0 x sin x  x sin x Solution  :  I  =   e x  1 dx  0 e x  1 dx  I1  I2 0 x sin x where  I1 =   e x  1 dx Put  x  =  –t    dx  =  –  dt  I1  =  0 (t) sin(t)(dt)  t sin t dt  et t sin t dt  ex x sin x dx  et  1 0 et 1 0 ex 1         et 1 0  ex x sin x  x sin x dx  0 ex  1 dx  Hence  I  =  I1  +  I2  =  0 ex 1   I  =  x sin xdx     x sin   x dx   sin xdx  I 00 0   0 2I  =  sin xdx    cos x  2  I NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65  0 2 dx Illu str ation  9  : Evaluate  0 (17  8 x  4 x2 )[e6(1x)  1] Solution  : 2 dx Let  I  =  0 (17  8 x  4 x2 )[e6(1x)  1] 2 dx  aa  Also  I  =  0 (17  8 x  4 x2 )[e6(1x)  1]  f(x)dx   f(a  x)dx 0  Adding,  we  get 0 2I  =2 17  1  4x2  1 1  1  dx 0 8x  e6(1x ) e 6 (1 x )  1         =2 1 dx   1 2 x2 dx 0 17  8x  4x2 4 0  2x 17 / 4 34 E

JEE-Mathematics  x 1  2 x 1  1 2 (x dx  1 1  21  0  1)2  21 / 4 4 2  21 log     =  2  4  2 21  2 0  21  2 1  2  21  log 2  21  log  log     =  1 2x 2                I  =  4 21  2x  2  21 0 8 21  2  21 21  2     =  1  21  2  Ans. log  4 21  2  21  /2 dx Illustration  10  : Evaluate     1 tan x 0 Solution  :   / 2 dx /2 cos x dx .....(i) I  =  = 0 1  tan x 0 cos x  sin x   / 2 cos( / 2  x)dx /2 sin x dx sin x  cos x then  I  = = .....(ii) 0 cos( / 2  x)  sin( / 2  x) 0 Adding  (i)  and  (ii),  we  get   / 2 2I  = sin x /2 cos x dx 0 sin x  cos x .dx + 0 sin x  cos x   / 2 /2  2    = 1.dx 0 0 sin x  cosx .dx  =   x 0 / 2  0 sin x  cos x  Ans. 2I =  2      I  =  4 Illustration  11  : 1  cot1 (1  x  x2 )dx   equals  - 0 (A)    log 2 (B)    log 2 (C)    –  log  2 (D)  none  of  these 2 2 1 tan 1  1  dx 1 1  x  (1  x)  Solution  :   0  x   0 tan  1  x(1  x)  dx 1  x2 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 11 dx  1 tan 1 (1  x) dx 0 [tan 1 x  tan 1 (1  x )] dx    tan 1 x       00 1 x tan 1 x  1 log(1  x2 ) 1 =  2   log 2    log 2 Ans.  (B) 2 0 4 2     2 tan 1 x dx  2 0 / 2 a sin x  b cos x Illustration  12  :    dx sin x  cos x 0 /2 a sin x  b cos x Solution  :   dx sin x  cos x .....(i) 0     / 2 a sin( / 2  x)  b cos( / 2  x) dx   / 2 a cos x  b sin x dx .....(ii) 0 sin( / 2  x)  cos( / 2  x) 0 sin x  cos x / 2 (a  b)(sin x  cos x) dx /2 0 sin x  cos x      2   (a  b)dx  (a  b) / 2    (a  b) / 4 Ans. 0 E 35

JEE-Mathematics 2 / 2 sin x Illustration  13  : 0 2sin x  2cos x dx   equals  - (A)  2 (B)     (C)  4 (D)  2 2 / 2 sin x 2 / 2 sin ( / 2x ) 2 / 2 cos x 2sin x  2cos x dx    dx dx Solution  :      2cos x  2sin x 2  2sin x (  / 2 x ) cos (  / 2 x ) 0 0 0 2 /2 dx      0  2              4 Ans.  (C) Do  yourself  -3  : Evaluate  : 5x dx /3 dx (i)  x 6x  (ii)    / 6 1  tan5 x 1 2a a a a ; 2 f(x) dx if f(2a  x)  f(x)   f(x) dx  f(2a (f) f(x)dx    x) dx  0 0 00 0 ; if f(2a  x)  f(x)  xdx Illustration  14  : Evaluate  0 1  cos2 x  xdx  (  x)dx  dx I 0 1  cos2 0 1  cos2 (  x) 0 1  cos2 Solution  :   Let  I  =  x    =  x  dx  / 2 dx /2 sec2 xdx 0 1  cos2 2 2 0 1  cos2 0 2  tan2 x      2I  =  x  x   =  Let  tan  x  =  t  so  that  for  x    0,  t    0  and  for  x    /2,    t   .  Hence  we  can  write,  dt  1  ta n 1 t    =  2 Ans. 2  2 0 22 I  = 0 2  t2 /2 /2  NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 Illustration  15  : Prove  that   log(sin x)dx   log(cos x)dx   log 2 Solution  : 2 0 0 /2 ........  (i) Let    log(sin x)dx 0 /2 log sin   x  dx /2 log(cos x)dx  then 0  2   0 I  =  ........  (ii) adding  (i)  and  (ii),  we  get /2 /2 /2 2I  =   log sin x dx   log cos x dx   =   (log sin x  log cos x)dx 0 00 /2 x cos x)dx /2 log  2 sin x cos x dx 0  2  log(sin 0    2I  =  /2 log  sin 2x  dx /2 log(sin 2x)dx /2 (log 2)dx 0  2  0 0       =    36 E

JEE-Mathematics /2     =  log sin 2x . dx  log 2 x0 / 2 0 /2   log(sin 2x)dx  log 2  2I  =  2 .........  (iii) 0 /2 putting  2x  =  t,  we  get Let I1  =   log(sin 2x)dx, 0  log sin t dt 1  1 /2 2 .2 log(sin t)dt 02 log sin tdt 20 0   I1  =     =  /2 I1  =   log(sin x)dx 0  (iii)  becomes  ;  2I  =  I  –   log 2 2 /2  Hence             log sin x dx   log 2 Ans. 2 0 /2 Illustration  16  :  (2 log sin x  log sin 2x)dx   equals  - 0 (A)    log  2 (B)  –  log  2 (C)  (/2)  log  2 (D)  –(/2)  log  2 Solution  : /2 /2    (2 log sin x  log 2 sin x cos x)dx     (2 logsin x  log 2  log sin x  log cos x)dx Ans.  (D) 00 /2 /2 /2        log sin xdx   log 2dx   log cos xdx   = – (/2)  log  2 0 00 Do  yourself  -4  : Evaluate  : NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 3 dx /2 ( i )  3 (1  ex )(1  x2 )  (i i )  n sin2 x cos x dx (i ii ) / 2 sin x  cos x dx 0 0 1  sin x cos x /2 (iv)  cos x  cos3 x dx  / 2 nT T ( g )  f(x)dx  n  f(x) dx ,      (n    I)  ;  where  ‘T’  is  the  period  of  the  function  i.e.  f(T  +  x)  =  f(x) 00 Tx T Note  that  :   f(t)dt will  be  independent  of  x  and  equal  to  f(t)dt x0 bnT b ( h )  f(x)dx   f(x)dx       where  f(x)  is  periodic  with  period  T  &  n    I. anT a nT T ( i )  f(x)dx  (n  m ) f(x)dx ,    (n,  m    I)  if  f(x)  is  periodic  with  period  ‘T’. mT 0 E 37

JEE-Mathematics Illustration  17  : 4 Solution  : Evaluate | cos x| dx 0 Note  that  |cos x|  is  a  periodic  function  with  period  .  Hence  the  given  integral.    2    /2  | cos  sin x 0  sin x /2  4 1  1   I  =  4   =  4 cos cos xdx =  4   8 Ans. x| dx xdx  0  0   2 2[ x 14 ] Illustration  18  :   x  dx {x }  14]dx The  value  of  x  satisfying    2   ,  is  equal  to  (where  [.]  and  {.}  denotes  the    [x 0 0 greatest  integer  and  fractional  part of  (x) (A)  [–14,  –13) (B) (0,  1) (C)  (–15,  –14] (d)  none  of  these  2[x14]  x  {x }  28 2[x]  x {x } 0  2   Solution  :   dx  [x  14]dx       0 2 dx  (14  [x])dx 0  0 28 x  28 2[x]  x  2 x  2[x]  x  0 2  28 2           14 dx  dx  (1 4  [x]){x}      2 dx   2 dx  (1 4  [ x ]){x } 0      0  nT T a nT nT {using   f(x)dx  n f(x)dx   and   f(x)dx   f(x)dx   where  T  is  period  of  f(x)} a0 00  14  +  [x]  =  (14  +  [x]){x}                  (14  +  [x])(1  –  {x})  =  0  [x]  = –14       x    [–14,  –13) Ans.  (A) 16 / 3 Illustration  19  : Evaluate  | sin x| dx 0 16 / 3 5 5/ 3  /3 Solution  :  | sin x| dx   =  | sin x| dx   | sin x| dx =  5| sin x| dx   | sin x| dx 0 0 5 00 =  5  cos x0   cos x0 / 3   =  10  +    1  1  21 Ans.  2 2 2n NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 Illustration  20  : Evaluate  :  [sin x  cos x]dx .  Here  [.]  is  the  greatest  integer  function. 0 Solution  : 2n 2 Let  I  =  [sin x  cos x]dx  n  [sin x  cos x]dx 00 ( [sinx  +  cosx]  is  periodic  function  with  period  2] 1, 0x  2    x  3 0, 24 3  x 1, 4    x  3 [sin x  cos x ]   2 2, 3  x  7 24  7  x  2 4 1,   0, 38 E

JEE-Mathematics  / 2 3 / 4  3/2 7 / 4 2  Hence  I  =  n   1dx   0dx   1dx   2dx   1dx   0dx  0  / 2 3  / 4   3/2 7 / 4 I  =  n   0    3  3  2   7  3  0   n  Ans.  2 4 4 2  Do  yourself  -5  : 20  Evaluate  : 3 10 (i i )  (sin x  cos x)dx 20  ( i ) {2x}dx ,  where  {.}  denotes  fractional  part  of  x. 6 1.5 [x] 3x (i i i ) 0 3[x] dx ,  where  [.]  denotes  greatest  integer  function. 4 . WALLI’S  FORMULA    : /2 /2 (n  1)(n  3 ).....(1 or 2) sin n cosn  ( a ) x dx  x dx  n(n  2).....(1 or 2) K 00 where  K  =   / 2 if n is even 1 if n is odd /2 x. co s m x dx  [(n  1)(n  3)(n  5)....1 or 2][(m  1)(m  3)....1 or 2] K sinn ( b ) 0 (m  n)(m  n  2)(m  n  4)....1 or 2      if both m an d n a re e ve n  (m , n  N )  Where    K  =  2 1    otherwise Illustration  21  : /2  sin4 x cos6 x dx   / 2 3 3 3 3 (A)  (B)  572 (C)  (D)  64 256 128 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65  / 2 /2 cos6 x.dx   =  2 3.1 5.3.1 .   3   sin4 x 2 sin4 x Solution  : cos6 x dx  Ans.  (C) /2 0 10.8.6.4.2 2 256 5 . DERIVATIVE  OF  ANTIDERIVATIVE  FUNCTION  (Newton-Leibnitz  Formula)  : d h(x) f(t)dt  f[h(x)].h '(x)  f[g(x)].g '(x) If  h(x)  &  g(x)    are  differentiable  functions  of  x  then,   dx g(x) x2 t2  5t  4 dt Illustration  22  : Find the points  of maxima/minima of   2  et 0 Solution  : Let  f(x)  = x2 t2  5 t  4 dt y E 0 2  et x 2 x4  5x2  4 (x  1)(x  1)(x  2)(x  2)2x –2 –1 0 1  f'(x) =  2  ex2 2x  0  2  ex2             Graph of f'(x) 39

JEE-Mathematics From  the  wavy  curve,  it  is  clear  that  f'(x)  changes  its  sign  at  x  =  ±  2,  ±1,  0  and  hence  the  points of  maxima  are  –1,  1  and  of  the  minima  are  –2,  0,  2. d t3 1 Evaluate  Illustration  23  : dx dt t2 log x Solution  : d t3 1 dx  1 t3 . d (t3 )  1 t2 . d (t2 )   =  3 3t2  2t  t(t 1) Ans. t2 log x log dt log dt log t 2 log t log t dt Do  yourself  -  6  : x ( i ) If  ƒ(x)   sin t dt ,  then  find  ƒ '(1). 1/x x y dy dx 3  sin2 tdt  cos tdt  0 ,  then  evaluate  .  (ii) /3 0 6 . DEFINITE  INTEGRAL  AS  LIMIT  OF  A  SUM    : bb An  alternative  way  of  describing   ƒ(x)dx is  that  the  definite  integral   ƒ(x)dx is  a  limiting  case  of  the  summation a a of  an  infinite  series,  provided  ƒ(x)  is  continuous  on  [a,b] b n 1 b  a h  i.e.  ƒ( x ) dx  lim ƒ(a  rh) where  h  n .  The  converse  is  also  true  i.e.,  if  we  have  an  infinite  series  of  the a n r 0 above  form,  it  can  be  expressed  as  a  definite  integral. Step  I  : Express  the  given  series  in  the  form   1 f  r  n  n  Step  II  : Then  the  limit  is  its  sum  when  n  ,  i.e.  lim 1 f  r  Step  III  : n  n  n  Replace  r by  x  and  1 by  dx  and  lim   by  the  sign  of   n n n  Step  IV  : r NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 The  lower  and  the  upper  limit  of  integration  are  the  limiting  values  of  for  the  first  and  the  last n term  of  r  respectively. Some  particular  cases  of  the  above  are.   ( a ) lim n 1 f  r  lim n 1 1 f  r   1 ƒ( x )dx r 1 n  n   or  r 0 n  n  0 n  n   ( b ) lim pn 1  r    ƒ( x )dx r 1 n  n   x  r (as  r  =  1) where    lim  0 x n r (as  r  =  pn) and    lin  p n n 40 E

JEE-Mathematics Illustration  24  : Evaluate  Lim  1 1  1 2  .........  1   2n  2n  6n  n  4n 1 4n 1  1 1 1 1 Solution  : Let  Sn =    .........    =   . 2n 1 2n 2 6n 2n  r n2  r  r 1 r 1   n  Lim S 4 dx  [n| 2  x| ]04 n6  n2 n3 02x n  S  =  n    Ans. Illustration  25  : n n n  .......  1 Evaluate  Lim  n 2  2 3 2  4 n 2   3 3 3 4 n 2 49n  n  3  4 n n n lim  n 2  2 3 2  4 n 2  .........   Solution  : n   Let  p  =  3 4 n 3 n 4 n 2 Analyzing  the  expression  with  the  view  of  increasing  integral  value  we  get  the  expression  in  terms of r  as n nn 11 dx   r =  lim  2  lim  2  x 3 x  42 n  r 1 3 r 4 n n r 1 r r 0 n n 3 n  4 3 dx  dt x Put  3 x  4  t,     2 Hence  p  = 2 7 dt  2  1 7  2   1  1   1 Ans. 3 4 t2 3 t 3  7 4  14  4 Do  yourself  -  7  : Evaluate  :  1 1 1 1  n 1 1 (i) lim  n  2.1  n  2.2  n  2.3 ....... 3n  (ii) lim n r 0 n2  r2 n NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 7 . ESTIMATION  OF  DEFINITE  INTEGR AL  : b ( a ) If  f(x)  is  continuous  in  [a,  b]  and  it’s  range  in  this  interval  is  [m,  M],  then  m(b  –  a)      f(x)dx  M(b  a) a 3 Illustration  26  : Prove  that  4  3  x3 dx  2 30 1 Solution  : Since  the  function  f(x)  =  3  x2   increases  monotonically  on  the  interval [1,  3],  m  =  2,  M  =  30 ,  b  –  a  =2. Ans. 33 Hence,  2.2   3  x3 dx  2 30  4   3  x3 dx  2 30 11 bb ( b ) If f(x)    (x)  for a   x     b then   f(x)dx   (x) dx aa E 41

JEE-Mathematics Illustration  27  :  1 dx  Solution  : Prove  that    6 0 4  x2  x3 4 2 Since  4  –  x2    4  –  x2  –  x3    4  –  2x2  >  0    x   [0,  1] 4  x2  4  x2  x3  4  2 x2  0  x [0, 1]  0 11 1    x [0 1] 4  x2 4  x2  x3 4  2x2 1 dx 1 dx 1 dx   x [0, 1] 0 4  x2 0 4  x2  x3 0 4  2x2    sin 1 x 1 1 dx 1 sin 1 x 1  1 dx   0 4  x2  x3 2 2 6 0 4  x2  x3 4 2       0  Ans. 2 0     bb (c)  f(x)dx   f(x) dx . aa Illustration  28  : Prove  that  19 sin x dx <  10–7 10 1  x8 19 sin x 19 sin x dx dx 10 1  x8  I  =  Solution  : To  find  10 1  x8 .......  (i) .......  (iii) Since | sin x| 1 for x  10 The  inequality sin x 1 .......  (ii) 1  x8 |1  x8| also,  10   x    19 1  +  x8  >  108  1 1   or  1  1 0 8 from  (ii) and  (iii)  ; 1  x8  x | 1 8 | NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 108 sin x  108 1  x8  19 sin x dx 19 10 1  x8  108 dx 10  19 sin x dx  (19  10).108  107 Ans. 10 1  x8 Illustration  29  : If  ƒ  (x)  is  integrable  function  such  that  |ƒ  (x)  –  ƒ  (y)  |  <  |x2  –  y2|,    x,  y    [a,b]  then  prove  that b ƒ(x)  ƒ(a) dx  (a  b)2 . xa 2 a 42 E

JEE-Mathematics Solution  : b ƒ(x)  ƒ(a) dx b ƒ(x)  ƒ(a) dx   Given,  a xa a xa b x2  a2 b b (a  b)2  x a dx  | x  a| dx   (x  a)dx  2 a aa b ( d ) If  f(x)  0      on  the  interval  [a,b],  then   f(x)dx  0 . a Illustration  30: 8 Solution  : If  ƒ  (x)  is  a  continous  function  such  that  ƒ  (x)  >  0    x    [2,10]  and  ƒ(x) dx  0 ,  then  find  ƒ  (6). 4 ƒ  (x)  is  above  the  x-axis  or  on  the  x-axis  for  all  x    [2,10].  If  ƒ(x)  is  greater  than  zero  for  any  sub 88  interval  of  [4,8],  then  ƒ(x)dx must  be  greater  than  zero.  But  ƒ(x)dx  0   ƒ  (x)  =  0    x    [4,8] 44  ƒ (6)  = 0. Do  yourself  -  8  : 3  2 dx .   ( i ) Prove  that  4   3  x2 dx  4 3 (ii) Prove  that  4 5  3 sin x 0 1 Show  that  3 1 x4   (iii) 21 / 3  1  dx  1 5 0 (1  x6 )2 / 3 Miscelleneous  Illustrations  :  x3 cos4 x sin2 x Illustration  31  : Evaluate  :  0 (2  3x  3x2 ) dx Solution  :  x3 cos4 x sin2 x ........  (i) NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 Let    I  = 0 (2  3x  3x2 ) dx  (  x)3 cos4 (  x) sin2 (  x)dx =  (By.  Prop.) 2  3(  x)  3(  x)2 0  (3  x3  32 x  3x2 ) cos4 x sin2 x dx =  .........  (ii) (2  3x  3x2 ) 0 Adding  (i)  and  (ii)  we  have  (3  32 x  3x2 ) cos4 x sin2 x 2I  =   dx (2  3x  3x2 ) 0  /2   2I  =   cos4 x sin2 xdx  2I  =  2 cos4 x sin2 xdx 00 /2  I  =  cos4 x sin2 x dx 0 Using  walli's  formula,  we  get    I  =  (3.1)(1)    =  2 Ans.  6.4.2 2 32 E 43

JEE-Mathematics Illustration  32  : Let  f  be  an  injective  function  such  that    f(x)  f(y)  +  2  =  f(x)  +  f(y)  +  f(xy)  for  all  non  negative  real x  and  y  with  f(0)  =  1  and  f'(1)  =  2  find  f(x)  and  show  that  3 f(x)dx  x(f(x)  2) is  a  constant. Solution  : We  have  f(x)f(y)  +  2  =  f(x)  +  f(y)  +  f(xy) Putting  x  =  1  &  y  =  1 then f(1)f(1)  +  2  =  3f(1) we  get  f(1)  =  1,2 f(1)    1 (  f(0)  =  1  &  function  is  injective) then  f(1)  =  2 1 Replacing  y  by  x   in  (1)  then f(x)f  1  2  f(x)  f  1   f (1)  f ( x)f  1   f(x)  f  1   x   x   x   x  Hence  f(x)  is  of  the  type f(x)  =  1  ±  xn  f(1)  =  2  f(x)  =  1  +  xn and f'(x)  =  nxn–1       f'(1)  =  n  =  2 f(x)  =  1  +  x2  3 f(x)dx  x(f(x)  2)  3 (1  x2 )dx  x(1  x2  2)   =  3   x3   x(3  x2 )  c =  c  =  constant  x 3  1 Illustration  33  : Evaluate  :  [x[1  sin x]  1]dx ,  [.]  is  the  greatest  integer  function. 1 Solution  : 1 01 Illustration  34  : Let    I  =   [x[1  sin x]  1]dx   =   [x[1  sin x]  1]dx   [x[1  sin x]  1]dx 1 1 0 Now [1  +  sinx]  =  0  if    –1  <  x  <  0 [1  +  sinx]  =  1  if    0  <  x  <  1 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 01 1  I  =  1.dx   [x  1]dx   =  1  +  1  dx   =  1  +  1  =  2. Ans. 1 0 0 Find  the  limit,  when  n    of 1  1  1  .....  1 (2n  12 ) (4n  22 ) (6n  32 ) n Solution  : Let  1 1 1 1 P  =  Lim     ....   n  2n  12 6n  32 n  4n  22 Lim 1 1 1 1      ....         n  1(2n)  12 2(2n)  22 3(2n)  32 n(2n)  n2  n 1 n 11 dx  (2x  x2 )       Lim   Lim  r 2 n  r 1 r(2n)  r2 n r  n  r 1 n  0 n. 2  44 E

JEE-Mathematics Put  x  =  t2        dx  =  2t  dt 1 2tdt =  sin 1  t  1  2 s in 1  1   2   2  t2 2   2   4  P  =  0t  2   0 Hence P  =  /2. Ans. 1  x , x 1 5 Illustration  35  : If  f(x)  =   x  1, x  1   ,    and    g(x)  =  f(x  –  1)  +  f(x  +  1).    Find  the  value  of   g(x ) dx . Solution  :  3 Given, x  1, x  1 x, x  1  1  x0 1  x  1  0  0 x 1 f(x)  =  1  x, 1  x 0     ;        f(x–1)  =  x, 0  x 1 1  1x2 1  x, 0x 1 2  x 1 1  x2 x, x  1, x 1 x  2, Similarly x  2, x  1  1  x  2 1  x  1  0   2  x  1 f(x+1)  =   x  2, 0  x 1 1  1  x  0 x, x 1 1  x0 x, 2 x  2 x  2 2, 2  x  1 2 x, 1  x  0  g(x)  =  f(x  –  1)  +  f(x  +  1)  =  2x, 0  x 1 2, 1  x  2  2x  2, 2  x Clearly  g(x)  is  even, Now 5 g(x )dx   =  3   +  5 =  1 dx  2  3  2 ) dx    +  5  2) dx   =  24   2 g(x) dx  g(x) dx 22x  2 dx  (2x  (2x 3 0 3  0 1 2  3 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 ANSWERS  FOR  DO  YOURSELF 1  : (i ) 31 (ii) 2 (iii) 2( 2 1) 9 2  : (i ) 6 (iv) 3  : (i ) 2 ( i i ) n2 4  : (i ) 2 (ii) /12 2 5  : (i )  (ii) –  3  n2 (iii) 0 4 3  2  (iv) 3 6  : (i ) 23  (ii) 3 1 2[x] 7  : (i ) 4 (i i i ) n3 E 3 sin1 (ii) dy   3  sin2 x 2 dx cos y  1 n3 2 (ii) 2 45

JEE-Mathematics CHECK YOUR GRASP EXERCISE - 01 SELECT  THE  CORRECT  ALTERNATIVE  (ONLY  ONE  CORRECT  ANSWER) / 3 cos x  3 2 3 0  4 sin  3   then  k is- 1 .If  3 x dx  k log 1 1 1 1 (A)  2 (B)  3 (C)  4 (D)  8 (D)  1  +  e eeee dx 2 . eee xnx.n(nx).n(n(nx))   equals  - (A)  1 (B)  1/e (C)  e  –  1  3 . The  value  of  the  definite  integral  (e x1  e3x )1 dx  is 1   (C)  1    tan 1 1  (A)  4e2 (B)  e2  2 e  (D)  2e2 (D)  ee(e  –  1)  +  e 4e e 4 . The  value  of  the  definite  integral   (x  1)ex .nx dx   is  - 1 (A)  e (B)  ee  +  1 (C)  ee(e  –  1) 12  5 . Let  a,  b,  c    be  non-zero  real  numbers  such  that  ;  (1  cos8 x)(ax2  bx  c)dx  (1  cos8 x)(ax2  bx  c)dx , 00 then  the  quadratic  equation  ax2  +  bx  +  c  =  0  has  - (A)  no  root  in  (0,2) (B)  atleast  one  root  in  (0,2) (C)  a  double  root  in  (0,2) (D)  none  x   1 1 2A  2   2  2   and  f(x)dx  ,  then  the  constant  A  and  B  are- 0 6 . If  f(x)  =  A  sin    +  B,  f'   2 4 4 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 (A)  2  and  2 (B)    and  3 (C)  0  and  (D)    and  0    /4 7 . tann xdx lim If  In  =    then  n  (In  +  In–2)  = n 0 (A)  1 (B)  1/2 (C)   (D)    x tan 1 x 8 . dx 0 (1  x2 )2     (A)  (B)  (C)  (D)  2 4 6 8 e f(x) 1 9 . dx  ,    then  the  value  of Suppose  f,  f'  and  f''  are  continuous  on  [0,  e]  and  that  f'(e)  =  f(e)  =  f(1)  =  1  and  x2 2 1 e (B)  1 (C)  2 (D)  none  of  these  f ''(x)n x dx   equals  - 46 1 (A)  0 E

JEE-Mathematics 1 0 . 2 1 sin  x  1  dx   has  the  value  equal  to  - /2 x  x  1 (A)  0 3 5 (D)  2 (B)  (C)  (D)  4 4 4 (C)  2 4 logx 22  1 1 . lo g x 2  n2  dx =   2 (A)  0 (B)  1 sin x 3 sin 2x 1 2 . Suppose  that  F(x)  is  an  antiderivative  of  f(x)  =  ,  x  >  0  then  dx  can  be  expressed  as  - x1 x (A)  F(6)  –  F(2) 1 1 (D)  2(F(6)  –  F(2)) (B)  (F(6)  –  F(2)) (C)  (F(3)  –  F(1)) 2 2 1 3 . f  x  1 . nx dx 0  x x (A)  is  equal  to  zero (B)  is  equal  to  one 1 (D)  can  not  be  evaluated (C)  is  equal  to  2 1 2 (D)  1 4 . Integral  | sin 2x| dx   is  equal  to  - 1  (C)  0  (D)  none 1 (A)  0 1 (C)  (B)   5  3x dx   x 15. (5  x)  2 1 1 (A)  (B)  2 3  [JEE  1985] (D)  none  of  these 1 6 . For  any  integer  n  the  integral   ecos2 x cos3 (2n 1) xdx   has  the  value (D)  5/2 0 [JEE  1981] (A)   (B)  1 (C)  0 (D)  none  of  these NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 1 7 .3 2x2 (x  2)2 53 dx   is  equal  to  - (D)  2 2 10x  (D)  7  23 (A)  2 (B)  1 (C)  1/2 2 1 1 8 . The  value  of  the  definite  integral   (1  ex2 ) dx   is - 0 (A)  –1 (B)  2 (C)  1  +  e–1  1 9 . (cos ax  sin bx)2 dx   where  a  and  b  are  integer  is  equal  to  -  (A)  – (B)  0 (C)    2 0 . The  value  of  (1  x2 ) sin x cos2 xdx   is  -  (A)  0 (B)    3 (C)  2  –  3 3 E 47

JEE-Mathematics 2 2 1 . The  value  of   [2 sin x]dx ,  where  [  ]  represents  the  greatest  integer  function  is  -  (A)   5 (B)  – 5 (D)  –2 3 (C)  3 f(x) 2 2 . If   t2 dt  x cos x ,  then  f'(9) 0 1 1 1 (D)  is  non  existent (A)  is  equal  to  – (B)  is  equal  to  – (C)  is  equal  to  9 3 3 ƒ( x) 2t 2 3 . lim x 1 dt   is  - Let  ƒ  :  R    R  be  a  differentiable  function  and  ƒ  (1)  =  4.  Then  the  value  of  x 1 4 [JEE  1990] (A)  8ƒ '(1) (B)  4ƒ '(1) (C)  2ƒ '(1) (D)  ƒ '(1) x [JEE  1997] g(x) 2 4 . If  g(x)  = cos4 t dt ,  then  g(x  +  )  equals  - (D)  g() 0 (A)  g(x)  +  g() (B)  g(x)  –  g() (C)  g(x)g() n V 1  cos 2 x dx  2 2 For  n    N,  the  value  of  the  definite  integral  0 2 5 .   where   V     is  - (A)  2n  +  1  –  cosV (B)  2n  –  sinV (C)  2n  +  2  –  sinV (D)  2n  +  1  –  sinV SELECT  THE  CORRECT  ALTERNATIVES  (ONE  OR  MORE  THAN  ONE  CORRECT  ANSWERS) x 2 6 . dx 0 (1  x )(1  x2 )   (A)  (B)  4 2  dx (D)  cannot  be  evaluated (C)  is  same  as  0 (1  x)(1  x2 ) 2 7 . Which  of  the  following  are  true ? a x.f(sin x)dx  a f (sin x)dx aa NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65  (A) a  2 . (B)   f(x2 )dx  2. f(x2 )dx a a 0 n  bc b (C)   f(cos2 x)dx  n. f(cos2 x)dx (D)   f(x  c)dx   f(x)dx 00 0c x dt 2 8 . Let  f(x)  =  and  g  be  the  inverse  of  f.  Then  the  value  of  g'(0)  is  - 2 1  t4 (A)  1 (B)  17 (C)  17 (D)  none  of  these x nt 2 9 . If  f(x)  =  1 1  t dt  where  x  >  0  then  the  value(s)  of  x  satisfying  the  equation,  f(x)  +  f(1/x)  =  2  is  - (A)  2 (B)  e (C)  e–2 (D)  e2 r 4 n n 3 0 . The  value  of  Lim  n r 1   is  equal  to  - 2 r 3 r 4 n 1 1 1 1 (A)  (B)  (C)  (D)  35 14 10 5 48 E

JEE-Mathematics 11 2 2    3 1 . If  I1  2 x2 dx, I2  2x3 dx   I3  2 x2 dx  and   I4  2x3 dx  then - 1 1 00 (A)  I3  >  I4 (B)  I3 =  I4 (C)  I1  >  I2 (D)  I2  >  I1 nnn  ........  1 32. Let  Sn  =    ,  then  Lim Sn   is  - (n  1)(n  2) (n  2)(n  4) (n  3)(n  6) 6n n (A)  n 3 (B)  n 9 (C)  greater  than  one (D)  less  than  two 2 2 /2 cot x dx   is- 3 3 . The  value  of  the  integral   [JEE  1983] 0 cot x  tan x 3/ 8 cot x /2 dx (C)   dx (A)  /4 (B)  /2 cot x  tan x (D)  0 1  tan3 x /8 kk I1  3 4 . Let  ƒ  be  a  positive  function,  let  I1  x ƒ [x(1  x)]dx ,  I2  ƒ [x(1  x)]dx ,  where  2k  –  1  >  0.  Then  I2 1k 1k is  - [JEE  1997] (A)  2 (B)  k 1 (D)  less  than  1 (C)  2 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 CHECK  YOUR  GRASP ANSWER  KEY EXERCISE-1 Que. 1 234 5678 9 10 Ans. C AAD BDAD DA Que. 11 12 13 14 15 16 17 18 19 20 Ans. A AAD ACCD DA Que. 21 22 23 24 25 26 27 28 29 30 Ans. A AAA C A,C A,B,C,D C C,D C Que. 31 32 33 34 Ans. C A,D A,D C,D 49 E

JEE-Mathematics BRAIN TEASERS EXERCISE - 02 SELECT  THE  CORRECT  ALTERNATIVES  (ONE  OR  MORE  THEN  ONE  CORRECT  ANSWERS) 1 2x2  3x  3 1 . The  value  of  0 (x  1)(x2  2x  2) dx   is  - (A)    2n2  tan 1 2 (B)    2n2  tan 1 1 (C)  2n2  cot1 3 (D)     n4  cot1 2 4 43 4 If 2 .In 1 dx ;  n    N,  then  which  of  the  following  statements  hold  good ? 0 (1  x2 )n 1 1 5 (A)  2nIn+1  =2–n  +  (2n – 1)In (B)  I2  8  4 (C)  I2  8  4 (D)  I3  16  48 3 . If  a,  b,  c    R  and  satisfy  3a  +  5b  +  15c  =  0,  the  equation  ax4  +  bx2  +  c  =  0  has  - (A)  atleast  one  root  in  (–1,  0) (B)  atleast  one  root  in  (0,  1) (C)  atleast  two  roots  in  (–1,  1) (D)  no  root  in  (–1,  1)  dx  x2dx  4 . Let  u  =  0 x4  7x2  1   &  v  =  0 x4  7x2  1   then  - (A)  v  >  u (B)  6v  =   (C)  3u  +  2v  =  5/6 (D)  u  +  v  =  /3 5 . Let  f(x)  be  a  function  satisfying  f'(x)  =  f(x)  with  f(0)  =  1  and  g  be  the  function  satisfying  f(x)  +  g(x)  =  x2.  The  value 1 of  the  integral   f(x)g(x)dx   is  - 0 (A)  e  – 1 e2  5 (B) e  –  e2  –  3 1 (D)  e  1 e2  3 22 (C)  (e  3) 22 2 For  f(x)  =  x4  +|x|,  let  I1  =     and  I2 =  /2 I1 I2 f(cos x)dx f(sin x)dx 0 0  6 .   then    has  the  value  equal  to  - (A)  1 (B)  1/2 (C)  2 (D)  4   7 . x  28  4 3 x 1  3 2 x 1 Number  of  values  of  x  satisfying  the  equation  8 t 2  t dt  ,  is  - 1 log (x 1) NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 (A)  0 (B)  1 (C)  2 (D)  3 0 zez dz 8 . The  value  of  definite  integral   1  e2z (A)  –  n2 (B)   n2 (C)  –n2 1 2 2 (D)  n 2 /4 9 . (cos 2x)3 / 2 .cos x dx  0 3 3 3 3 2 (A)  (B)  (C)  (D)  16 32 16 2 16   1 0 . 1  n  n 1  The  value  of  0  r 1 (x  r )  k 1 x  k  dx   equals (A)  n (B)  n! (C)  (n+1)! (D)  n.n! 50 E

JEE-Mathematics 2 e4  1 1 . If  the  value  of  the  integral  ex2 dx   is  ,  then  the  value  of  nx dx   is  - 1e (A)  e4  –  e  –   (B)  2e4  –  e  –   (C)  2(e4 –  e)  –   (D)  2e4  –  1  –   dx r3 1 2 . The  value  of  Lim dr   is  - x dx (r  1)(r  1) 3 (A)  0 (B)  1 1 (D)  non  existent (C)  2  1 3 . [2ex ]dx where  [x]  denotes  the  greatest  interger  function  is  - 0 (A)  0 (B)  n2 (C)  e2 (D)  2/e Let  f(x)  sin x ,  then  /2   x  = 1 4 . = x 0 f(x)f  2  dx 2   1 (A)   f(x)dx (D)   f(x)dx  (B)   f(x)dx (C)   f(x)dx  0 0 0 0 1 1 2 f(x)dx If  for  a  non-zero  x,  af(x)  +  bf  x  x 1 1 5 .   5 ,  where  a    b,  then   = (A)  a2 1 b2  a log 2  5a  7b (B)  a2 1 b2  a log 2  5a  7b   2    2  (C)   a2 1 b2  a log 2  5a  7b (D)  none  of  these   2  n  1 t bx)c / x  1 6 .  t 0 dx If  a,  b  and  c  are  real  numbers  then  the  value  of  Lim (1  a sin   equals  - t0 (A)  abc ab bc ca (B)  c (C)  a (D)  b NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 x x2 2 t2 ƒ (t)dt / 4 ƒ (x)  x9  x3  x 1 dx   1 7 . 2 2 x / 4 cos2 x Let  y  =  ƒ  (x)  be  a  differentiable  curve  satisfying  ƒ (t)dt     ,  then  equals - (B)  1 (C)  2 (D)  4 (A)  0 1 8 . If  y  =  ƒ(x)  is  a  linear  function  satisfying  the  relation  ƒ(xy)  =  ƒ(x).ƒ(y)   x, y  R ,  then  the  curve x y2  (sin t  a2 t3  bt)dt  ,  R    cuts  y  =  ƒ–1(x)  at  - 0 (A)  no  point (B)  exactly  one  point (C)  atleast  two  points (D)  infinite  points 48 1 9 . If ƒ (8 – t) = ƒ (t) and   ƒ ()d  8 , then   ƒ ()d  is  - 00 (A)  4 (B)  8 (C)  16 (D)  32 E 51

JEE-Mathematics t2 z 2 tan z  1  tan2 z  t2 1  tan2 z 2 tan z   z sec2 z   2z sec2 z  If  x  e dz z  0  2 0 . y  e dz  2  &   .  0   Then  the  inclination  of  the  tangent  to  the  curve  at  t  =    is  - 4    3 (A)  (B)  3 (C)  (D)  4 2 4  2 1 . The  value  of  integral   x ƒ(sin x)dx = 0 (A)    ƒ(sin x)dx /2 /2 (D)   ƒ(cos x)dx 2 0 2 0 (B)    ƒ(sin x)dx (C)    ƒ(cos x)dx 0 0 BRAIN  TEASERS ANSWER  KEY EXERCISE-2 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 Que. 1 2 3 4 5 6 789 10 D C B A,D C D Ans. A,C,D A,B A,B,C B,C,D 15 16 17 18 19 20 B A CCC D Que. 11 12 13 14 52 E Ans. B C B A Que. 21 Ans. A,B,C


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook