Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore M1-Allens Made Maths Theory + Exercise [I]

M1-Allens Made Maths Theory + Exercise [I]

Published by Willington Island, 2021-07-15 04:05:04

Description: M1-Allens Made Maths Theory + Exercise [I]

Search

Read the Text Version

EXERCISE - 03 JEE-Mathematics MISCELLANEOUS TYPE QUESTIONS TRUE  /  FALSE 0 1 . The  value  of  the  integral x.ex dx  is  not  finite.  1 2 . If  n  is  a  positive  integer  then (nx)n dx  (1)n n ! . 0 1 1 3 . 1 xp dx  p  1 , where p  R – {1} 4 . The  average  value  of  the  function  f(x)  =  sin2xcos3x  on  the  interval  [– ]  is  0. sec x cos x sec2 x cot x cos ecx /2 1532  5 . If  f(x)  =  cos2 x cos2 x cosec 2x   .  Then   f(x) dx   =  –  60  [JEE  1987] 1 cos2 x cos2 x 0 2 x sin2n x 6 . dx  [JEE  1996] For  n  >  0,  sin2n x  cos2n x 0 MATCH  THE  COLUMN Following questions contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given s t a t e m e n t  i n  C o l u m n - I  c a n  h a v e  c o r r e c t  m a t c h i n g  w i t h  O N E  s t a t e m e n t  i n  C o l u m n - I I . 1 . Column-I Column-II 10 [x2 ]dx 1 (p) (A) = 100 4 [x2  28x  196]  [x2 ] (q) 3 {where  [.]  denotes  greatest  integer  function} 1 2| x| (r) (B) dx  3 1 x (s) 1 (C) lim 199  299  .....  n99  n NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 n100 1 x200 dx 1 , 5050  1 (D)    then    = 2. Column-I Column-II (p) 7 E 1 3x2 1 (A) 1 1  4 tan x dx = (q) 8 sin x2dx 2 (r) 1 (B) 6 sin x2  sin(x  14)2  (s) 2 1 13 (C)  [x]dx  156 1 {where  [.]  denotes  greatest  integer  function} 1 0 n sin 2xdx n2 /2 (D)  53

JEE-Mathematics 3. Column-I Column-II (A) If  [  ]  denotes  the  greatest  integer  function  and (p) 1 f(x)  3[x]  5| x| x 0 2 f(x)dx  ; ,  then  is  equal  to  x 2 ; x  0 3 / 2 /2 cos x dx of  is 11 (B) The  value  of (q) – /2 1  ex 2  (C) sin  x cos ec  1 dx  then  the 3 If  I  =   x2 dx and  I = 1 x(x2  1) (r) 1 11 2  2 I1 I12 I2 value  of  e I1 I2 I22 1 ,  is I12  I22 1 1 (D) If  f(x)  and  g(x)  are  two  continuous  functions  defined  on (s) 0 a R,  then  the  value  of  {f(x)  f(x)}{g(x)  g(x)}dx,   is a ASSERTION    &    REASON These  questions  contains,  Statement-I  (assertion)  and  Statement-II  (reason). (A)  Statement-I  is  true,  Statement-II  is  true  ;  Statement-II  is  correct  explanation    for  Statement-I. (B)  Statement-I  is  true,  Statement-II  is  true  ;  Statement-II  is  NOT  a  correct  explanation  for  statement-I. (C)  Statement-I  is  true,  Statement-II  is  false. (D)  Statement-I  is  false,  Statement-II  is  true. 1 . Statement-I  :  The  equation  4x3  –  9x2  +  2x  +  1  =  0  has  atleast  one  real  root  in  (0,  1). because b Statement-II  :  If  'f'  is  a  continuous  function  such  that   f(x)  0 ,  then  the  equation  f(x)  =  0  has  atleast  one  real a root  in  (a,  b). (A)  A (B)  B (C)  C (D)  D 2. Statement-I  :   xdx    tan x cos3 xdx . x tan x cos3  0 2 0 because b a b b NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 xƒ (x)dx ƒ (x)dx  Statement-II  :   . a 2a (A)  A (B)  B (C)  C (D)  D 3 . x ntdt >  0),  f(x)  =   1  Statement-I  :  If  f(x)  =  1 1  t  t2 (x  then  – f  x  because Statement-II  :  If  f(x)  =  x ntdt ,  then  f(x)  + f  1   1 nx2 . 1 t 1  x  2 (A)  A (B)  B (C)  C (D)  D 4 . Let  f(x)  =  x  –  x2  +  1. Statement-I  :    g(x)  =  max{f(t)  :  0    t    x},  then  1 g(x)dx  29 0 24 because Statement-II  :  f(x)  is  increasing  in   0, 1   and  decreasing  in   1 , 1 .  2   2 (A)  A (B)  B (C)  C (D)  D 54 E

JEE-Mathematics      5 . (sin m x. sin n x )dx Statement-I  :  Let  m  &  n  be  positive  integers.  a  =  cos ,  if  m    n  &        b  =  cos  (sin m x. sin n x )dx     if  m  =  n,  then  a  +  b  =  2.   because Statement-II  :   m x. sin n x )dx  0, m  n ,  where  m  &  n  are  positive  integers. , m n (sin  (A)  A (B)  B (C)  C (D)  D Statement-I  3 1 cosec99  1  . 6 . :  1/3 x  x  x  dx  0 because a Statement-II  :   ƒ (x)dx  0   if  ƒ (–x)  =  –  ƒ (x). a (A)  A (B)  B (C)  C (D)  D n 1 1  r  1 n 1 r    7 . Statement-I  :  r0 n  n  1   ( x  1) dx  r1 n  n  1  ,  n    N. 0 because n 1 1  r  1 n 1  r  r0 n  n  r 1 n  n  ƒ ( x )dx 0   Statement-II  :  If  ƒ  (x)  is  continuous  and  increasing  in  [0,  1],  then  ƒ   ƒ , where  n    N (A)  A (B)  B (C)  C (D)  D COMPREHENSION  BASED  QUESTIONS Comprehension  #  1 ƒ (t) 3 x Let  g(x)  =  ƒ  t  dt ,  where  ƒ  is  a  function 2 1 0 whose  graph  is  show  adjacently. 0 1 23 4 5 6 7t On  t he  basis  of  above  i nfor mat ion,  a nswer  t he  fol low i ng  que st ions  : –1 1 . Maximum  value  of  g(x)  in  x    [0,  7]  is  - –2 (A)  3 (B)  9/2 –3 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 (C)  3/2 (D)  6 2 . Value  of  x  at  which  g(x)  becomes  zero,  is  - (A)  3 (B)  4 (C)  5 (D)  6 3 . Set  of  values  of  x  in  [0,  7]  for  which  g(x)  is  negative  is  - (A)  (2,  7) (B)  (3,  7) (C)  (4,  6) (D)  (5,  7) Comprehension  #  2 The  average  value  of  a  function  f(x)  over  the  interval,  [a,  b]  is  the  number 1b µ   f(x)dx b  a a  b 1 / 2 a  The  square  root   b 1 a  f ( x )2 d x   is  called  the  root  mean  square  of  f  on  [a,  b].  The  average  value  of  µ  is    attained  if  f  is  continuous  on  [a,  b]. On  the  basis  of  above  information,  answer  the  following  questions  : 1. The  average  ordinate  of  y  =  sin  x  over  the  interval  [0,  ]  is  - E (A)  1/ (B)  2/ (C)  4/2 (D)  2/2 55

JEE-Mathematics 2 . The  average  value  of  the  pressure  varying  from  2  to  10  atm  if  the  pressure  p  and  the  volume  v  are related  by  pv3/2  =  160  is  - 20 10 40 160 (B)  3 10  3 2 (A)  3 20 3 10  3 2  (C)  3 20 3 10  3 2  (D)  3 20 3 10  3 2  cos2 x 3 . The  average  value  of  f(x)  =  sin2 x  4 cos2 x   on  [0,  /2]  is  - (A)  /6 (B)  4/ (C)  6/ (D)  1/6 Comprehension  #  3  m ax . ƒ  t   m in .  ƒ  t  , 0  t   0  x 4  x 4  x 5  2  x5 Consider  g(x)  | x  5| | x  4|    6  x  ta n  sin 1       x2 12x  37 where  ƒ (x)  =  x2  –  4x  +  3. On  the  basis  of  above  information,  answer  the  following  questions  : 5 (B)  3 (C)  13/3 (D)  3/2 1 .  g(x) dx   is  equal  to 2 (A)  5/3 x2 2 . If  h(x)   g(t)dt ,  then  complete  set  of  values  of  x  in  the  interval  [0,  7]  for  which  h(x)  is  decreasing,  is  - 0 (A)  (6,  7] (B)  (5,  7] (C)  6, 7  (D)  6, 7    3. lim g(x)  g(2)   is  equal  to  - n(cos(4  x)) x 4 (A)  0 (B)  1 (C)  2 (D)  does  not  exist MISCELLANEOUS  TYPE  QUESTION ANSWER  KEY EXERCISE-3 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65  True  /  False E 1. F 2. T 3. F 4. T 5. T 6. F  Match  the  Column 1 . (A)(q),  (B)(s),  (C)(p),  (D)(p) 2 . (A)(r),  (B)(r),  (C)(q),  (D)(q) 3 . (A)(q), (B)(p), (C)(s), (D)(s)  Assertion  &  Reason 1. A 2. C 3. D 4. A 5. D 6. A 7. A  Comprehension  Based  Questions Comprehension  #  1  : 1. B 2. C 3. D Comprehension  #  2  : 1 . B 2. C 3. D Comprehension  #  3  : 1 . B 2. D 3. A 56

EXERCISE - 04 [A] JEE-Mathematics CONCEPTUAL SUBJECTIVE EXERCISE 1 . Compute  the  integrals  : 13 dx 1  1 xdx  (a) 2 5 (3  x )4 (b) (ex  1)4 ex dx 3 xdx (d) 1  x 0 0 (c)  sin2 x 2 dx 4 (e) 3 1  x2 (f) 2 x5 x2  1 1 dx 1 x2 3 dx (g) 0 (2x2  1) x2  1    2   x  x 2.   Prove  that :   (a)    (x  ) (  x)  dx =  8 (b)      dx  =       2   dx    where      ,    >  0  x . d x =       where    <   =     (c)    x (d)   (x  ) (  x) 2 (x  ) (  x)   3  3 . Evaluate  : (a)   | (x  1)(x  2)| dx (b) | cos x| dx 0 0 x 2 , for 0  x 1 2  4 . = Given  function  f(x)  .    Evaluate    f(x)dx  x, for 1  x  2 0 2 1 5 . Evaluate  :      (a)    [x2 ]dx (b)    [cos1 x] dx ,    where  [.]  represents  the  greatest  integer  function 0 1  2t f(x) dx  6 . Evaluate  : (a)    log(1  cos x)dx (b) f(x)  f(2t  x) 0 0   4 2 x sin 2xdx (c)    log(1  tan x)dx (d)   0 cos4 x  sin4 x 0 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 7 . Prove  that  for  any  positive  integer  k,  sin 2kx =  2[cosx  +  cos3x  +  ......  +  cos(2k  –  1)x] sin x /2  Hence  prove  that   sin 2kx cot x dx   =  [JEE  1990] 2 0 8 . 1 x4 (1  x)4 dx Evaluate  :  0 1  x2 / 2 a sin x  b cos x 9 . Evaluate  :  dx  0sin   x 4 2 dx  10. Evaluate  :  2  sin 2x 0 Evaluate  :   2 2 x7 3 x6 10 x5 7 x3 12 x2  x 1 11. x2 2 dx E 2 57

JEE-Mathematics 1 5 1 2 . Evaluate  :    (a)    1 1  x . dx (b)  2 x2 1 n 1  x  1  dx 1  x2  x  0 1 x x  x2  x3 x4 1  ecos x         [JEE  1999] 1 3 . Integrate  :  0 ecos x  e cos x dx 1 sin 1 x 1 4 . Evaluate  :  0 x2  x  1 dx / 4 cos x  sin x  15. Evaluate  :  10  sin 2 x dx 0  x sin 2 x sin   cos x   2  16. Evaluate     dx [JEE  1991] 2x  0 1 7 . 2 ex cos    x dx Evaluate  :  0  4 2  2 (x2  1)dx  u   where  u  and  v  are  in  their  lowest  form.  Find  the  value  of  (1000)u 18. 1 x3. 2x4  2x2 1 v v e Prove  that  if  Jm  n m ,  then  =  e  –  mJ   integer). 1 9 . xdx J  m  –  (m  a  positive  m 1 1 2 0 . Prove    the    inequalities    :  1 dx 2 2 1 2 dx 5 (c) (a)  8 (b) 2  e1/4   <  e x2  x   dx    <    2e²  6 0 4  x2  x3 2 0 2  x2 6 0 2 1 . Suppose  g(x)  is  the  inverse  of  f(x)  and  f(x)  has  a  domain  x    [a,  b].  Given  f(a)  =    and  f(b)  =  ,  then  find  the  value NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 b of   f(x)dx   g(y )dy  in terms of a, b,  and   a 1 2 2 . Let     be  the  distinct  positive  roots  of  the  equation  tan  x  =  2x  then  evaluate   (sin x.sin x)dx   independent  of 0   and  . d sin x then  compute  the  value  of  j(0)  where 2 3 . Let  h(x)  =  (fog)(x)  +  K  where  K  is  any  constant.  If  (h(x)) = dx cos2 (cos x) j(x)  = f(x) f(t) dt ,  where  f  and  g  are  trigonometric  functions. g(x) g(t) cos2 x tdt  cos1 0 2 4 . (a)  sin2 x t dt, x  0,    determine  f(x) (b) 2  f(x)  sin1 0 f ( x ) e3 x tdt , x  0   find  differential  coefficient  of  f(x)  w.r.t.  nx  when  x  =  n2 ex nt 58 E

JEE-Mathematics 2 5 . Given  a  function  f(x)  such  that [JEE  1984] (a) it  is  integrable  over  every  interval  on  the  real  line  and aT (b) f(T  +  x)  =  f(x),  for  every  x  and  a  real  T,  then  show  that  the  integral   f(x) dx   is  independent  of  a. a x2 x x2 2  sin xdx  e dx   lim  0  2 6 . Find  the  limits  : (a) lim 0 (b) x 0 x3 x  x e2 x2 dx 0 2 7 . Evaluate  : (a) lim  1  1  .....  1  [JEE  1981]  n 1 n 2 6n  n   Limit 1 1 2 3n n n n 1  n  2  .....  4 n  (b)    (c) Limit  n ! 1 / n n  nn  CONCEPTUAL  SUBJECTIVE  EXERCISE ANSWER  KEY EXERCISE-4(A) NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 1 . (a)  5  5 16  1 (b)  0.2  (e  –  1)5 (9  4 3 )  1 n 3     (e)  2  2  n 2  3 (c)  (d)  2  36 2 2 2 3 1 2 1 7 3  1 11 1 4 2 1 (f)  32    2  8 (g)  arc tan 2 3 . (a)  (b)  2 4. 3 6 (b)  t (c)    log 2 5 . (a)  5  2  3 (b)  cos1  +  cos2  +  cos3  +  3 6 . (a)   log 2 8 2 (d)   8 8.  22   9. (a  b) 2 11.  16 2  (b)   n2  7 22 10.  1 2 . (a)  8 22 5 3 3  2 1 2 1 8 3 2 e2 1 13 .  14 . 1 5 . 3  arc tan 3  arc tan 3  16.    2 17.  5 2 63 1 8 .1 2 5 2 1 . b – a 22. 0 2 3 .   sec(1)  –  1 2 4 . (a)  f(x)  =  /4 (b)  60 2 2 6 . (a)  ; (b)  0 3 27.    (a) log 6;    (b)    3    n  4  (c)    1 e E 59

JEE-Mathematics BRAIN STORMING SUBJECTIVE EXERCISE EXERCISE - 04 [B] b xn1 (n  2)x2  (n  1)(a  b)x  nab bn 1  a n 1 1 . Prove  that  :   dx  (x  a)2 (x  b)2 2(a  b) a If a , a  and a  are the three values of a which satisfy the equation  /2 x)3 dx 4a /2 2 0 (sin 0  2 . x x cos 2 12 3  a cos  x dx   then  find  the  value  of  1000 a12  a 2  a 2 . 2 3 5 2 / 3  3 . Show  that  the  sum  of  the  two  integrals  e(x5)2 dx  +  3  e9(x2 / 3)2   dx  is  zero. 4 1 / 3  if  (0, ) if  (, 2)  dx 1 dx sin  0 2x cos  2x cos    2  4 . 2 Show  that  x2  1 =  x2  1   =  0  sin  5. Evaluate  :  / 4 x2 (sin 2x  cos 2x) dx (1  sin 2x ) cos2 x 0 1 6 . Comment  upon  the  nature  of  roots  of  the  quadratic  equation  x2  +  2x  =  k  + t  k dt depending  on  the  value 0 of  k  R. 7 . If  the  derivative  of  f(x)  wrt  x  is  cos x   then  show  that  f(x)  is  a  periodic    function. f(x) 1 8 . Determine    a    positive    integer    n    5,    such    that  ex (x    1)n    dx  =  16    6  e      . 0 9. (a) If  x  <  1    prove  that  1  2 x 2 x 4 x3 4 x3 8 x7 1 2 x . 1 x  x2  1 x2  x4  1x4  x8 ......  1  x  x2 1 x1 x 1 x1 x (b) Prove  the  identity  f(x)  =  tan x  tan  22 tan  .......  2n1 tan  cot  2 cot2x 22 22 2 n 1 2 n 1 2 n 1 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 1 1 0 . If  f(x)  =  x  +  [xy²  +  x²y]  f(y)  dy  where  x  and  y  are  independent  variables.    Find    f(x). 0 11. Given  that  U  =  {x(1    x)}n  &    n    2  prove  that  d2 U n   =  n  (n    1)  U    2  n(2n    1)U , n d x2 n2 n1 1 further  if  V   = ex  .  U  dx,    prove  that  when    n    2,  V  +  2n  (2n    1).Vn1  n  (n    1)  V  =  0 n n n n2 0 1 2 . Evaluate  : Limit  1  1    22    32  .....   n2  1 / n n  n2  1 n2  1 n2  1  (a)   n 2   1 (b) For  potitive  integers  n,  let  A   =  {(n  +  1)  +  (n  +  2)  +.......(n  +  n)},  B   =  {(n  +  1)(n  +  2).......(n  +  n)}1/n. nn n If  Lim A n  ae   where  a,  b    N  and  relatively  prime  find  the  value  of  (a  +  b). n Bn b 60 E

JEE-Mathematics 1 m! n! (m  n 1)! Prove    that  : (a) I  =  xm . (1   x)n dx  =  m,  n 1 3 .  m , n   N. 0 1 n! (m 1)n1 (b)   I   =  xm .  (n  x)n  dx  =  (1)n     m  ,  n    N. m,  n 0 1 4 . Prove  that  the  sum  to  (n  +1)  terms  of  C0  C1  C2 1  .......   equals  x n1.(1  x)n1 dx n(n  1) (n  1)(n  2) (n  2)(n  3) 0 &  evaluate  the  integral. 5  1 5 . Evaluate  the  integral  :   x  2 2x  4  x  2 2x  4 dx 3 xu  x 16. Prove  that     f ( t ) dt  du   f ( u ).( x  u)du 0 0 0 1 1 7 . Evaluate   (tx 1  x)n dx ,  where  n  is  a  positive  integer  and  t  is  a  parameter  independent  of  x.  Hence  show 0 that  1 dx  = 1   for  k  =  0,  1,  ........  n. [JEE  1981] [nCk (n +  1)]  xk (1  x )n k 0 x 1 8 . If  'f'  is  a  continuous  function  with   f(t) dt   as |x| ,          (0, 2) 0A then  show  that  every  line  y  =  mx O (xp, 0) X [JEE  1991] B (0, –2) x intersects  the  curve  y2  +   f(t) dt   =  2! 0 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 BRAIN  STORMING  SUBJECTIVE  EXERCISE ANSWER  KEY EXERCISE-4(B) 2. 5250   5. 2    n2 6 . real  &  distinct    k    R 8 . n  =  3 16 4 1 2 . (a)  2  e(1/2) (  4)        (b)    11 1 4 . n 1!(n  1)! 61 80 1 0 .f(x)  =  x  +    x  +   x² (2n  1)! 119 119 1 5 . 2 2  4 3 3  2 2  tn1  1 17.    (t 1) (n 1) 3 E 61

JEE-Mathematics JEE-[MAIN] : PREVIOUS YEAR QUESTIONS EXERCISE - 05 [A] / 4 (3)  /4                          [AIEEE-2002] (4)  n 1 . If  In =  tann x dx   then  the  value  of  n(In–1 +  In+1)  is- 0 (1)  1 (2)  /2 2 .  2x(1  sin x)   = (2)  2/4 (3)  /8 [AIEEE-2002]  1  cos2 x (4)  2/8 (1)  2 10 [AIEEE-2002] [AIEEE-2002] 3 .  | sin x|dx   =  (1)  9 (2)  10 (3)  18 (4)  20 2 4 .  [x2 ] dx   is  equal  to      (where  [.]  denotes  greatest  integer  function) 0 (1)  2  – 1 (2)  2( 2   –  1) (3)  2 (4)  none  of  these 1 5 . lim 1P 2P  3P ....  nP   equals  -       [AIEEE-2002] n nP 1 (3)  P2 (4)  P2 1 (1)  1 (2)  P 1 d  esin x  4 3 e sin x3 dx  x  1 x 6 . Let  F(x)  =  ,  x  >  0.  If  dx  =  F(k)  –  F(1),  then  one  of  the  possible  values  of  k,  is-    [AIEEE-2003] (1)  64 (2)  15 (3)  16 (4)  63 b                             [AIEEE-2003] 7 . If  f(a  +  b  –  x)  =  f(x),  then   x f(x) dx  is  equal  to- a ab b ab b ab b ba b NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 (1)   f(a  b  x) dx (2)   f(b  x) dx (3)   f(x) dx (4)   f(x) dx 2 2 2 2 a a a a 1                               [AIEEE-2003] 11 8 . The  value  of  the  integral  I  =  x(1  x)n dx   is- 0 (4)   –  n 1 n 2 11 1 1 (1)    +  (2)  (3)  n 1 n 2 n 1 n 2 x2  sec2 t dt 9 . The  value  of  lim 0 x0 x sin x   is  - [AIEEE-2003] (1)  0 (2)  3 (3)  2 (4)  1                               [AIEEE-2003] 10.  lim (1)4  2  34 ...  n4 – lim (1)3  23  33 ....  n3   is  equal  to  - n n5 n n5 (4)  1/4 (1)  1/5 (2)  1/30 (3)  zero 62 E

JEE-Mathematics t                             [AIEEE-2003] 1 1 . If  f(y)  =  ey,  g(y)  =  y;  y  >  0  and  F(t)  =  f(t  y) g(y ) dy,  then- 0 (1)  F(t)  =  te–t (2)  F(t)  =  1  –  e–1(1  +  t) (3)  F(t)  =  et –  (1  +  t) (4)  F(t)  =  tet 12 . Let  f(x)  be  a  function  satisfying  f'(x)  =  f(x)  with  f(0)  =  1  and  g(x)  be  a  function  that  satisfies 1 f(x)  +  g(x)  =  x2.  Then  the  value  of  the  integral  f(x) g(x) dx  is  - [AIEEE-2003] 0 e2 3 e2 5 e2 5 e2 3 (4) e –   –  (1)  e  +    +  (2) e –   –  (3)  e +    –  22 22 22 22 lim n 1 er / n   is- nn  r 1 1 3 .                           [AIEEE-2004] (1)  e (2)  e  –  1 (3)  1  –  e (4)  e  +  1 3 [AIEEE-2004] 1 4 . The  value  of  |1  x2 |dx   is- (4)  1/3 2                                 [AIEEE-2004] (1)  28/3 (2)  14/3 (3)  7/3 (4)  3 (3)  2                               [AIEEE-2004] / 2 (sin x  cos x)2 (3)  /4 1 5 . The  value  of  I  =  dx  is- (4)  2 0 1  sin 2x (1)  0 (2)  1  /2 1 6 . If   x f(sin x) dx  =  A  f (sin x) dx , then  A is  - 00 (1)  0 (2)   ex f(a) f(a) I2 If f(x) =  1  e x I1 xg{x(1  x)}dx  and I2 =  g{x(1  x)}dx , then the value of  f (a ) f (– a )  1 7 .   is-                         [AIEEE-2004] ,  I1 =  (1)  2 (2)  –3 (3)  –1 (4)  1 18. lim 1 sec2 1 2 sec2 4 ...  1 se c2 1    equals-                             [AIEEE-2005]  n2 n2  n2 n  n n2 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 1 1 (3)  tan1 1 (1)  sec 1 (2)  cosec 1 (4)  tan1 2 2 2 112 2 1 9 . If  I =  2 x2 dx,  I =  2 x3 dx,  I =  2 x2 dx  and  I =  2 x3 dx  then-    1  2  3  4                              [AIEEE-2005] 001 1 (1)  I >  I (2)  I >  I (3)  I =  I (4)  I >  I 2  1 1  2 3  4 3  4 1  lim f(x) 4t3  48  .  Then  6 x 2 2 0 . x 2 Let  f  :  R   R  be  a  differentiable  function  having  f(2)  =  6,  f'(2)  =  dt  equals  - [AIEEE-2005] (1)  24 (2)  36 (3)  12 (4)  18 2 1 . The  value  of   cos2 x dx,  a  >  0  is- [AIEEE-2005]  1  ax (4)  2 (1)  a   (2)  (3)  a 2 E 63

JEE-Mathematics 6x                               [AIEEE-2006] 2 2 . The  value  of  the  integral,  dx  is  - 1 (4)  3 9x  x 2 3 (2)  2 (3)  1 (1)  2 / 2 2 3 . [(x  )3  cos2 (x  3)] dx   is  equal  to-                               [AIEEE-2006] 3  / 2 (4)  4/32 (1)  (4/32)  +  (/2) (2)  /2 (3)  (/4)  –  1  2 4 .  x f(sin x) dx   is  equal  to- [AIEEE-2006] 0   /2 /2  (2)   f (sin x)dx (1)    f(sin x) dx 2 (3)    f(cos x) dx (4)    f(cos x)dx 0 0 0 0 a 2 5 . The  value  of  [x]f '(x) dx ,  a  >  1,  where  [x]  denotes  the  greatest  integer  not  exceeding  x  is- [AIEEE-2006] 1 (1)  [a]  f(a)  –  {f(1)  +  f(2)  +  ...  +  f([a])} (2)  [a]  f([a])  –  {f(1)  +  f(2)  +  ...  +  f(a)} (3)  a  f([a])  –  {f(1)  +  f(2)  +  ...  +  f(a)} (4)  a  f(a)  –  {f(1)  +  f(2)  +  ...  +  f([a])}  1  x log t                                 [AIEEE-2007] 2 6 . Let  F(x)  =  f(x)  +  f  x  ,  where  f(x)  =  1 1  t dt.  Then  F(e)  equals- 1 (1)  (2)  0 (3)  1 (4)  2 2 x dt  2 7 . The  solution  for  x  of  the  equation   =    is-   [AIEEE-2007] 2 t t2 1 12 (1)  2 (2)   (3)  3 /2  (4)  2 2  2 8 . Let  I  =  1 sin x dx  and  J  =  1 cos x dx.  Then  which  one  of  the  following  is  true  ? [AIEEE-2008] 0x 0x 2 2 2 2 (1)  I  >  3   and  J  >  2 (2)  I  <  3   and  J  <  2 (3)  I  <  3   and  J  >  2 (4)  I  >  3   and  J  <  2 z [AIEEE-2009] 2 9 . [cot x]dx ,  where  [ . ]  denotes  the  greatest  integer  function,  is  equal  to  - NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 0 (1)  –1   (4)  1 (2)  –  (3)  2 2 3 0 . Let  p(x)  be  a  function  defined  on  R  such  that  p'(x)  =  p'(1  –  x),  for  all  x    [0,  1],  p(0)  =  1  and  p(1)  =  41.  Then 1 (2)  21 (3)  41                         [AIEEE-2010] (4)  42  p(x)  dx equals :- 0 (1)  41 3 1 . The  value  of  1 8log(1  x) dx   is  :- [AIEEE-2011] 1 x2 0 E  (2)  log  2  (1)  log 2 (3)    log  2    (4)  8 log 2 64 2

JEE-Mathematics 3 2 . Let  [.]  denote  the  greatest  integet  function  then  the  value  of  1.5 xx2 dx   is  :-   [AIEEE-2011] 0 5 (2)  0 3 3 (1)  (3)  (4)  4 2 4 x (3)  g(x)  +  g() [AIEEE-2012] 3 3 . If  g(x)  cos 4t dt ,  then  g(x  +  )  equals  : (4)  g(x)  –  g() 0 (1)  g(x)  .  g() g(x) (2)  g() / 3 dx  3 4 . tan x   is  equal  to  6 . Statement-I  :  The  value  of  the  integral  [JEE-MAIN-2013] /6 1  bb Statement-II  :   ƒ(x)dx   ƒ(a  b  x)dx . aa (1) Statement-I  is  true,  Statement-II  is  true;  Statement-II  is  a  correct  explanation  for  Statement-I. (2)  Statement-I  is  true,  Statement-II  is  true;  Statement-II  is  not  a  correct  explanation  for  Statement-I. (3)  Statement-I  is  true,  Statement-II  is  false. (4)  Statement-I  is  false,  Statement-II  is  true. NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 PREVIOUS  YEARS  QUESTIONS ANSWER  KEY EXERCISE-5  [A] Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Ans 1 1 3 1 2 1 3 4 4 1 3 4 2 1 3 Que. 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Ans 2 1 4 2 4 2 1 2 3 1 1 1 2 2 2 Que. 31 32 33 34 Ans 3 4 3,4 4 E 65

JEE-Mathematics EXERCISE - 05 [B] JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS 1 . (a)    The  value  of  the  integral  e2 loge x   dx  is  - xe 1 (A)    3/2 (B)    5/2 (C)    3 (D)    5 x (b)    Let      g(x)    =   f(t)   dt,    where    f    is  such  that  1  f(t)  1   for  t    (0,  1]    and  0  f(t)  1   for  t    (1,  2]. 02 2 Then    g(2)  satisfies  the  inequality  - (A)   3  g(2)  1 (B)   0  g(2)  2 35 (D)   2  g(2)  4 22 (C)   2  g(2)  2  ecos x .sin x for x 2 3 (c)    If  f(x)    =   .    Then  f(x)dx   - 2 otherwise 2 (A)      0 (B)      1 (D)      3 (C)      2           [JEE  2000,  Screening,  1+1+1+1M  out  of  35] x nt dt .  Find  the  function    f(x)  +  f(1/x)  and  show  that,  f(e)  +  f(1/e)  =  1/2. ( d ) For    x  >  0,  let    f(x)  =  11t   [JEE  2000,  (Mains)  5M  out  of  100]  cos2 x dx, a The  value  of  [JEE  2001] 2 .  1  ax  0 is  - (A)     (B)    a  (D)    2 (C)   2 [JEE  2001] x 3 . Let  f  :  (0,  )    R  and  F(x)  =  f(t)dt. If  F(x2)  =  x2  (1  +  x),  then  f(4)  equals  - 0 5 (B)   7 (C)    4 (D)    2 (A)  4 x NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 4 . (a)    Let    f(x)  =  2  t2 dt.  Then  the  real  roots  of  the  equation  x2  –  f’  (x)  =  0  are  - 1 (A)    ±1 1 1 (D)    0  and  1 (B)    (C)    2 2 (b)    Let    T  >  0  be  a  fixed  real  number.  Suppose  f  is  a  continuous  function  such  that  for  all  x    R  f  (x  +  T)  =  f(x). T 33T If  I  =   f(x) dx  then  the  value  of   f(2x) dx  is  - 03 (A)   3 I (B)    2I (C)  3I (D)   6I 2 1 2  1  x  [ x ]  1  x    (c)   n   dx  equals  - The  integral   1 2 1 (B)   0 (C)    1 (D)    2 n  1  (A)     2  66 2 [JEE  2002  (Screening)  3+3+3M] E

JEE-Mathematics z1 5 . ( a ) If  (m,  n)  =  t m (1  t) n dt ,  then  the  expression  for  (m,  n)  in  terms  of  (m  +  1,  n  –  1)  is  - 0 (A)    m (m  +  1,  n  –  1) (B)     n (m  +  1, n  –  1) n 1 m 1 2n  n (m  +  1,  n  –  1) 2n  n (m  +  1,  n  –  1) (C)    (D)    m 1 m 1 m 1 m 1 zx2 1 ( b ) If  function  f  defined  by  f(x) = e -t2 dt   increases  in  the  interval  - x2 (A)    nowhere (B)    x    0 (C)   x    [–2,  2] (D)    x    0 [JEE  2003  (Screening)  3+3M] /2 /4 z z6 . If  f(x)  is  an  even  function,  then  prove  that  f (cos 2x) cos x dx  2 f (sin 2x) cos x dx 00 [JEE  2003  (Mains)  2M  out  of  60] 1 1x 7 . ( a ) The  value  of  the  integral  dx  is  - [JEE  2004] 0 1x (A)    1 (B)    1 (C)  –1 (D)  1 2 2 t2 z GF JI( b ) If  f(x)  is  differentiable  and  x f(x) dx  2 t 5 ,  then  f 4   equals  - H K5 25 0 2 (B)    5 (C)  1 5 (A)   5 2 (D)    2 [JEE  2004  (Screening)] y(x) x2 cos x. cos  d ,  then  find  dy ( c )If   2 / 16 1  sin2  dx   at  x  =  . NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 /3   4x3 dx ( d ) Evaluate  :                                     [JEE  2004  (Mains)  2+4M  out  of  60] |                                           [JEE  2005  (Screening)  3+3M]  / 3 2  cos x |  3  8. 1 1   is  - 9. z GF JI( a ) If  t2 (f (t)) dt  (1  sin x)  then  f H Ksin x 3 E (A)    1/3 (B)   1 / 3 (C)    3 (D)   3 z0 ( b ) (x 3  3x 2  3x  3  (x  1) cos(x  1)) dx   is  equal  to  - 2 (A)    –  4 (B)   0 (C)    4 (D)    6  z GFH HGF IKJ FHG KIJIJEvaluate  e|cos x| 2 sin 1 cos x  3 cos 1 cos x sin x dx                           [JEE  2005,  (Mains),  2M  out  of  60] K2 2 0 67

JEE-Mathematics 10  to  12  are  based  on  the  following  Comprehension zb f(x) dx  b a (f(a )  f(b)) 2 Suppose  we  define  the  definite  integral  using  the  following  formula  ,  for  more  accurate a result  for  c  (a , b) F(c)  c  a (f(a)  f(c))  b  c (f(b)  f(c)) . 22 zWhen  b ba 4 c  a b ,  f(x) dx  (f(a)  f(b)  2f(c)) 2 a z1 0 . sin x dx   is equal  to  - /2 0 (A)    (1  2) (B)   (1  2 )   8 4 (C)  8 2 (D)   4 2 [JEE  2006,  5M  out  of  184] 1 1 . If  f''(x)  0,  x (a , b)   and  c  is  a  point  such  that  a  <  c  <  b  and  (c,  f(c))  is  the  point  lying  on  the  curve  for  which F(c)  is  maximum  then  f'(c)  is  equal  to  - f(b)  f(a) 2(f(b)  f(a)) 2(f(b)  f(a)) (D)    0 (A)   b  a (B)   b  a (C)  2b  a t [JEE  2006,  5M  out  of  184] z FG IJf(x) dx  t  a (f(t)  f(a)) H K2 1 2 . If  f(x)  is  a  polynomial  and  if  lim a  0   for  all  a,  then  the  degree  of  f(x)  can  atmost  be - (t  a)3 ta (A)    1 (B)   2 (C)    3 (D)    4 z1 [JEE  2006,  5M  out  of  184] 5050 (1  x 50 )100 dx 1 3 . The  value  of  z0   is.       [JEE  2006,  6M] 1 (1  x 50 )101 dx 0                         [JEE  2006,  (1.5,  +1.5)M  out  of  184] 1 4 . Match  the  following  :                                 Column-I                               Column-II NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 (p) 4/3 /2 (q) 1 z l q(A) (sin x)cos x cos x cot x  sin x . ln(sin x) dx 0 z z1 0 z z1 0 (r) 1  x dx  1  x dx (B) (1  y 2 ) dy  (y 2  1) dy 0 1 01 sec2 x  f(t)dt 1 5 . Lim 2     equals  - [JEE  2007] x x2  2 4 16 8 2 (C)  2 f  1  (D)    4f(2) (A)   f(2) (B)  f(2)   2    68 E

JEE-Mathematics 1 6 . Match  the  integrals  in  Column-I  with  the  values  in  Column-II [JEE  2007,  6M]                                 Column-I                               Column-II 1 dx (p) 1 log  2  2  3  (A) 1 1  x2 (q) 2 lo g  2  1 dx  3  (B) 0 1  x2 (C) 3 dx  2 1  x2 (r) 3 (D) 2 dx   (s) x2 1 1x 2 nn n 1 n  1 7 . [JEE  2008,  4M] Let  Sn  =  n2  kn  k2   and  Tn  =  n2  kn  k2 k 1 k 0 for  n  =  1,  2,  3,  ........  Then,     (A)  Sn  <  3 3 (B)  Sn  >  3 3 (C)  Tn  <  3 3 (D)  Tn  >  3 3 xx  1 8 . Let  ƒ  be  a  non-negative  function  defined  on  the  interval  [0,  1].  If  1  (ƒ '(t))2 dt  ƒ(t)dt, 0    x    1,  and 00 ƒ (0)  =  0,  then  - [JEE  2009,  3M,  –1M] 1 1 1 1 1 1 1 1 (A) ƒ   2  <  2  and ƒ   3   >  3 (B) ƒ   2   >  2  and ƒ   3   >  3 1 1 1 1 1 1 1 1 (C) ƒ   2  <  2  and ƒ   3   <  3 (D) ƒ   2   >  2  and ƒ   3   <  3   sin nx dx,  n  =  0,  1,  2,  ...,  then  - [JEE  2009,  4M,  –1M] 1 9 . If  I   =  NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 n  1  x sin x (A)  I   =  I 10 10 (D)    I   =  I n n+2 n n+1 (B)  I2m1  10 (C)  I2m  0 m 1 m 1 x 2 0 . Let  f:  R   R  be  a  continuous  function  which  satisfies  f(x)  =  f(t)dt .Then  the  value  of  f(ln  5)  is................ 0 [JEE  2009,  4M,  –1M] 2 1 . lim 1 x tn(1  t)dt [JEE  10,  3M,  –1M] The  value  of  x3 0 t4  4   is x 0 (A)  0 1 1 1 (B)  (C)  (D)  64 12 24 The  of  1 x4 (1  x)4 dx   is  (are) 22. value(s)  0 1  x2 [JEE  10,  3M] E (A)  22   2 (C)  0 (D)  71  3 7 (B)  105 15 2 69

JEE-Mathematics 2 3 . For  any  real  number  x,  let  [x]  denote  the  largest  integer  less  than  or  equal  to  x.  Let  f  be  a  real  valued  function defined  on  the  interval  [–10,  10]  by f(x)   x  [x] x if [x] is odd, 1  [x]  if [x]is even   Then  the  value  of    2 10 f(x) cos x dx   is [JEE  10,  3M] 10 10 x 2 4 . Let  f  be  a  real-valued  function  defined  on  the  interval  (–1,1)  such  that  ex f(x)  2  t4  1dt ,  for  all 0 x    (1,1),  and  let  f–1  be  the  inverse  function  of  f.  Then  (f–1)'  (2)  is  equal  to  - [JEE  10,  5M,  –2M] (A)  1 1 1 1 (B)  3 (C)  (D)  e 2 ln 3 x sin x2 dx   is [JEE  2011,  3  (–1)M] 2 5 . The  value  of  sin x2  sin(ln 6  x2 ) ln 2 (A)   n 3 (B)   n 3 (C)  n 3 (D)   n 3 42 22 2 62 2 6 . Let  S  be  the  area  of  the  region  enclosed  by  y  ex2 ,  y  =  0,  x  =  0,  and  x  =  1.  Then - [JEE  2012,  4M] (A)  S  1 (B)  S  1  1 e e (C)  S  1   1 (D)  S  1 1 1  1 4 1   e    2  e 2 2 7 . /2  x 2 ln   x  cos xdx   is [JEE  2012,  3M,  –1M] The  value  of  the  integral  / 2     x  2 (D)  (A)  0 (B)  2  4 (C)  2  4 2 2 2 2 8 . For  a    R  (the  set  of  all  real  numbers),  a    –1. lim (1a  2a  ......  n a )  1 NODE6\\ E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#06\\Eng\\02-Definite integration.p65 n (n  1)a1 [(na  1)  (na  2)  ......  (na  n )] 60 Then  a  = [JEE(Advanced)  2013,  3,  (–1)M] (A)  5 (B)  7 15 17 (C)  (D)  2 2 PREVIOUS  YEARS  QUESTIONS ANSWER  KEY EXERCISE-5  [B] 1 . (a)    B (b)  B   (c)  C (d)   1  n2 x    2. C 3 . C 4.   (a) A; (b) C;  (c)  B 5 . (a)   D (b)  B 2 HGFe cos  1KJI 7 . (a)  B (b)  A (c)    2  (d)   4 tan 1 1 8 . (a)  C  (b)  C 9.    24 HFG 1 IKJ  e sin HFG 1 IKJ 32 5 2 2 2 1 0 . A 1 1 . A 12.    A 13. 5051 14.    (A)(q),  (B)(p,  r) 15.    A 1 6 . (A)(s);  (B)(s);  (C)(p);  (D)(r) 1 7 . A,  D 18. C 19.  A,B,C 20.  0 B 21. B 22. A 23. 4 24. B 25.  A 26.  A,B,D 27.  B 28. 70 E

JEE-Mathematics EXERCISE - 01 CHECK YOUR GRASP SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER) ab bc ca 1 . The value of determinant b  c c  a a  b is equal to - ca ab bc (A) abc (B) 2abc (C) 0 (D) 4abc 2. sin 2x cos2 x cos 4x 3. 4. If cos2 x cos 2x sin2 x = a0 + a1 (sinx) + a2 (sin2x) +.......+ an (sinnx) then the value of a0 is - 5. cos4 x sin2 x sin 2x 6. 7. (A) –1 (B) 1 (C) 0 (D) 2 8. 9. a b c The value of the determinant a b c is equal to - E a b c (A) 0 (B) (a – b)(b – c)(c – a) (C) (a + b)(b + c)(c + a) (D) 4abc For any ABC, the value of determinant sin2 A cot A 1 is equal to - sin2 B cot B 1 sin2 C cot C 1 (A) 0 (B) 1 (C) sin A sin B sin C (D) sin A + sin B + sin C If Dp = p 15 8 p2 35 9 , then D1 + D2 + D3 + D4 + D5 is equal to - p3 25 10 (A) 0 (B) 25 (C) 625 (D) none of these E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 sin(A  B  C) sin B cos C If A + B + C = , then  sin B 0 tan A is equal to - cos(A  B)  tan A 0 (A) 0 (B) 2 sin B tan A cos C (C) 1 (D) none of these The number of real values of x satisfying x 3x 2 2x 1 = 0 is - 2x 1 4x 3x 1 7x 2 17x 6 12x 1 (A) 3 (B) 0 (C) 1 (D) infinite log a p 1 is equal to - If a, b, c are pth, qth and rth terms of a GP, then log b q 1 log c r 1 (A) 0 (B) 1 (C) log abc (D) pqr If a , a ,.......a , a ,...... are in GP and a > 0 i, then log an log an2 log an4 is equal to - 12 n n+1 i log an6 log an8 log an10 log an12 log an14 log a n 16 (A) 0 (B) n log a (C) n(n + 1) log a (D) none of these n n 17

JEE-Mathematics 1 0 . If px4 + qx3 + rx2 + sx + t = x2  3x x 1 x3 then t is equal to - x 1 2x x 3 x 3 x4 3x (A) 33 (B) 0 (C) 21 (D) none 1 logx y logx z 1 1 . For positive numbers x, y and z, the numerical value of the determinant logy x 1 logy z is - logz x logz y 1 (A) 0 (B) log xyz (C) log(x + y + z) (D) logx logy logz (ax  ax )2 (ax  ax )2 1 1 2 . If a, b, c > 0 and x, y, z  R, then the determinant (by  by )2 (by  by )2 1 is equal to - (cz  cz )2 (cz  cz )2 1 (A) axbycx (B) a–xb–yc–z (C) a2xb2yc2z (D) zero a2  b2 c c c b2  c2 a =  abc, then the values of  is - 1 3 . For a non-zero real a, b and c a a c2  a2 b b b (A) –4 (B) 0 (C) 2 (D) 4 (1  x)2 (1  x)2 (2  x2 ) (1  x)2 2x 1 x 1 1 4 . The equation 2x  1 3x 3x 2x 2x 1  5 x  (1  x)2 2x 3 =0 x 1 3x 2 2 3x 1 2x (A) has no real solution (B) has 4 real solutions (C) has two real and two non-real solutions (D) has infinite number of solutions, real or non-real a bc px qy rz E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 1 5 . Let a determinant is given by A = p q r and suppose determinant A = 6. If B = a  x b  y c  z xyz ap bq cr then - (B) det. B = –6 (C) det. B = 12 (D) det. B = –12 (A) det. B = 6 abc 1 6 . If a  b  c and a2 b2 c2 = 0 then - bc ca ab (A) a + b+ c = 0 (B) ab + bc + ca = 0 (C) a2 + b2 + c2 = ab + bc + ca (D) abc = 0 b2c2 bc b  c 1 7 . If a, b, & c are nonzero real numbers, then c2a2 ca c  a is equal to - a2b2 ab a  b (A) a2b2c2(a + b + c) (B) abc(a + b + c)2 (C) zero (D) none of these 1 x x 1 x(x 1) 1 8 . If f(x) = 2x x(x 1)(x  2) (x  1)x , then f (100) is equal to - [JEE 98] (x 1)x (x 1) 3x(x 1) (B) 1 E (A) 0 (C) 100 (D) –100 18

JEE-Mathematics ab0 1 9 . The value of the determinant 0 a b is equal to - b0a (A) a3 – b3 (B) a3 + b3 (C) 0 (D) none of these 2 0 . An equilateral triangle has each of its sides of length 6 cm. If (x1, y1); (x2, y2) & (x3, y3) are its vertices then the x1 y1 1 2 value of the determinant, x2 y2 1 is equal to - x3 y3 1 (A) 192 (B) 243 (C) 486 (D) 972 2 1 . If the system of equations x + 2y + 3z =4, x + py + 2z = 3,  x + 4y + z = 3 has an infinite number of solutions, then - (A) p = 2, µ = 3 (B) p =2, µ= 4 (C) 3p = 2µ (D) none of these SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS) aax 2 2 . If m m m  0 , then x may be equal to - bxb (A) a (B) b (C) a + b (D) m sin 2x ex sin x  x cos x sin x  x2 cos x 2 3 . If D(x)  cos x  sin x ex  x 1  x2 , then the value of |n cos (Dx)| will be - ex cos x e2x ex (A) independent of x (B) dependent on x (C) 0 (D) non-existent   2 4 . The value of the determinant  x n is x (A) independent of  (B) independent of n (C) (x – )(x – ) (D)(x – )(x – n) E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 2 5 . If the system of linear equations x + ay + az = 0, x + by + bz = 0, x + cy + cz = 0 has a non-zero solution then (A) System has always non-trivial solutions. (B) System is consistent only when a = b = c (C) If a  b  c then x = 0, y = t, z=–t  t  R (D) If a = b = c then y = t1, z = t2, x = –a(t1+ t2)  t1,t2  R 2 6 . If the system of equations x + y – 3 = 0, (1 + K ) x + (2 + K ) y – 8 = 0 & x – (1 + K) y + (2 + K) = 0 is consistent then the value of K may be - (A) 1 3 5 (D) 2 (B) 5 (C) – 3 CHECK YOUR GRASP ANSWER KEY EXERCISE-1 Que. 1 2 3 4 5 6 7 8 9 10 Ans. C A D A D A D A A C Que. 11 12 13 14 15 16 17 18 19 20 Ans. A D D D C A C A B D Que. 21 22 23 24 25 26 Ans. D A,B A,C B,C A,C,D A,C E 19

JEE-Mathematics BRAIN TEASERS EXERCISE - 02 SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS) 1 . Which of the following determinant(s) vanish(es) ? 1 bc bc(b  c) 1 ab 1  1 (B) 1 ab (A) 1 ca ca(c  a) 1 ab ab(a  b) 1 bc 1  1 bc 11 ca  ca 0 a b a c logx xyz logx y logx z 0 bc 1 logy z (C) b  a (D) logy xyz c a cb 0 logz xyz logz y 1 mx mx  p mx  p 2 . If f'(x) = n np n p , then y = f(x) represents - mx  2n mx  2n  p mx  2n  p (A) a straight line parallel to x–axis (B) a straight line parallel to y–axis (C) parabola (D) a straight line with negative slope a2 a2  (b  c)2 bc 3 . The determinant b2 b2  (c  a )2 ca is divisible by - c2 c2  (a  b)2 ab (A) a + b + c (B) (a + b) (b + c) (c + a) (C) a2 + b2 + c2 (D) (a – b)(b – c) (c – a) a b a  b 4 . The determinant b c b  c is equal to zero, if - a  b b  c 0 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 (A) a, b, c are in AP (B) a, b, c are in GP (C)  is a root of the equation ax2+bx+c=0 (D) (x–  ) is a factor of ax2 + 2bx + c 1  sin2 x cos2 x 4 sin 2x 5 . Let f(x) = sin2 x 1  cos2 x 4 sin 2x , then the maximum value of f(x) = sin2 x cos2 x 1  4 sin 2x (A) 2 (B) 4 (C) 6 (D) 8 1 a a2 6 . The parameter on which the value of the determinant cos(p  d)x cos px cos(p  d)x does not depend upon sin(p  d)x sin px sin(p  d)x is- (A) a (B) p (C) d (D) x 1  a2 x (1  b2 )x (1  c2 )x 7 . If a2 + b2 + c2 = -2 and f(x)  (1  a2 )x 1  b2 x (1  c2 )x , then f(x) is a polynomial of degree- (1  a2 )x (1  b2 )x 1  c2 x (A) 2 (B) 3 (C) 0 (D) 1 20 E

JEE-Mathematics p q px  qy 8 . Given that q2 –pr < 0, p > 0, then the value of q r qx  ry is- px  qy qx  ry 0 (A) zero (B) positive (C) negative (D) q2 + pr 9 . The value of  lying between   &  and 0  A   and satisfying the equation 42 2 1  sin2 A cos2 A 2 sin 4 sin2 A 1  cos2 A 2 sin 4 = 0 are - sin2 A cos2 A 1  2 sin 4 (A) A =  ,     (B) A = 3   (C) A   ,     (D) A  ,   3 48 8 58 6 8 1 0 . The set of equations x – y + 3z = 2, 2x – y + z = 4, x – 2y +  z = 3 has - (A) unique solution only for  = 0 (B) unique solution for   8 (C) infinite number of solutions of  = 8 (D) no solution for  = 8 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 BRAIN TEASERS ANSWER KEY EXERCISE-2 Que. 1 2 3 45 6 7 8 9 10 Ans. A,B,C,D A A,C,D B,D C B A C A,B,C,D B,D E 21

JEE-Mathematics EXERCISE - 03 MISCELLANEOUS TYPE QUESTIONS TRUE / FALSE abc 1 . If a, b, c are sides of scalene triangle, then the value of b c a is positive. cab ahg 2 . If ax2 + 2hxy + by2 + 2gx + 2fy + c  (1x + m1y + n1) (2x + m2y + n2), then h b f = 0. gfc 3 . If x = cy + bz, y = az + cx, z = bx + ay, where x, y, z are not all zero, then a2 + b2 + c2 + 2abc + 1 = 0. 333 3 33 x1 x2 x3 2      4 .2 2 2 If x i  y i  z i 1 and xi yi  yizi  zi xi  0 then y1 y2 y3  1 i 1 i 1 i 1 i 1 i 1 i 1 z1 z2 z3 5 . Consider the system of equations aix + biy + ciz = di where i = 1, 2, 3. a1 b1 c1 d1 b1 c1 a1 d1 c1 a1 b1 d1 If a2 b2 c2 = d2 b2 c2 = a2 d2 c2 = a2 b2 d2 = 0 a3 b3 c3 d3 b3 c3 a3 d3 c3 a3 b3 d3 then the system of equations has infinite solutions. MATCH THE COLUMN Following question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with ONE statement in Column-II. 1 . Column-I Column-II ap x uf (p) 3 (A) If the determinant b  q m  y v  g E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 cr nz wh splits into exactly K determinants of order 3, (q) 8 (r) 5 each element of which contains only one term, then the values of K is (B) The values of  for which the system of equations x + y + z = 6, x + 2y + 3z = 10 & x + 2y + z = 12 is inconsistent (C) If x, y, z are in A.P. then the value of the determinant a 2 a 3 a 2x is a 3 a 4 a 2y a 4 a 5 a 2z (D) Let p be the sum of all possible (s) 0 determinants of order 2 having 0, 1, 2 & 3 as their four elements E (without repeatition of digits). The value of 'p' is 22

JEE-Mathematics ASSERTION & REASON These questions contain, Statement I (assertion) and Statement II (reason). (A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I. (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I. (C) Statement-I is true, Statement-II is false. (D) Statement-I is false, Statement-II is true. a1 a2 a3 1 . Statement - I : Consider D = b1 b2 b3 c1 c2 c3 Let B1, B2, B3 be the co-factors of b1, b2, and b3 respectively then a1B1 + a2B2 + a3B3 = 0 Because Statement - II : If any two rows (or columns) in a determinant are identical then value of determinant is zero. (A) A (B) B (C) C (D) D 2 . Statement - I : Consider the system of equations, 2x + 3y + 4z = 5 x+y+z=1 x + 2y + 3z = 4 This system of equations has infinite solutions. Because Statement - II : If the system of equations is e1 : a1x + b1y + c1z – d1 = 0 & a1  b1 e2 : a2x + b2y + c2z – d2 = 0 a2 b2 e3 : e1 + e2 = 0, where  R Then such system of equations has infinite solutions. (A) A (B) B (C) C (D) D 3 . Statement - I : If a, b, c  R and a  b  c and x,y,z are non zero. Then the system of equations E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 ax + by + cz = 0 bx + cy + az = 0 cx + ay + bz = 0 has infinite solutions. Because Statement - II : If the homogeneous system of equations has non trivial solution, then it has infinitely many solutions. (A) A (B) B (C) C (D) D COMPREHENSION BASED QUESTIONS Comprehension # 1 x x3 x4 1 Let x, y, z  R+ & D = y y3 y4 1 z z3 z4 1 On the basis of above information, answer the following questions : 1. If x  y  z & x, y, z are in GP and D = 0, then y is equal to - 2. (A) 1 (B) 2 (C) 4 (D) none of these E If x, y, z are the roots of t3 – 21t2 + bt – 343 = 0, b  R, then D is equal to- (A) 1 (B) 0 (C) dependent on x, y, z (D) data inadequate 23

JEE-Mathematics 3 . If x  y  z & x, y, z are in A.P. and D = 0, then 2xy2z + x2z2 is equal to- (A) 1 (B) 2 (C) 3 (D) none of these Comprehension # 2 Consider the system of linear equations x + y + z = m x + y + z = n and x + y + z = p On the basis of above information, answer the following questions : 1 . If   1, – 2 then the system has - (A) no solution (B) infinte solutions (C) unique solution (D) trivial solution if m  n  p 2 . If  = –2 & m + n + p  0 then system of linear equations has - (A) no solution (B) infinite solutions (C) unique solution (D) finitely many solution 3 . If  = 1 & m  p then the system of linear equations has - (A) no solution (B) infinite solutions (C) unique solution (D) unique solution if p = n MISCELLANEOUS TYPE QUESTION ANSWER KEY EXERCISE-3 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65  True / False 3. F 4. T 5. F E 1. F 2. T  Match the Column 1. (A)  (q); (B)  (p); (C)  (s); (D)  (s)  Assertion & Reason 1. A 2. A 3. A  Comprehension Based Questions Comprehension # 1 : 1. A 2. B 3. C 3. A Comprehension # 2 : 1. C 2. A 24

EXERCISE - 04 [A] JEE-Mathematics CONCEPTUAL SUBJECTIVE EXERCISE 1 . Without expanding the determinant prove that : 0 b c 0 pq pr (a) b 0 a = 0 (b) q p 0 q r = 0 c a 0 rp rq 0 2 . Prove that : ax by cz a b c 1 a a2 b c (a) x2 y2 z2 = x y z (b) 1 b b2 c a = 0 1 1 1 yz zx xy 1 c c2 a b a2 2 a 2 a 1 1 3 . Prove that : 2 a 1 a  2 1 = (a  1)3 3 31 18 40 89 4 . Using properties of determinants or otherwise evaluate 40 89 198 . 89 198 440 abc bc ca ab 5 . If D = c a b and D = a  b b  c c  a then prove that D = 2 D. bca ca ab bc 1  a2 b2 2 ab 2 b 6 . Prove that 2 ab 1  a2  b2 2 a = (1 + a² + b²)3 . 2 b 2 a 1 a2 b2 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 a bc cb 7 . Prove that a  c b c  a  (a  b  c)(a2  b2  c2 ) ab ba c x 2 2x  3 3x  4 8 . Solve for x, 2 x  3 3 x  4 4 x  5 = 0. 3 x  5 5 x  8 10 x  17 ax c b 9 . If a + b + c = 0 , solve for x : c b  x a = 0. b a cx bc bc ' b 'c b 'c ' 1 0 . Prove that ca ca ' c 'a c 'a '  (ab ' a 'b)(bc ' b 'c)(ca ' c 'a) . ab ab ' a 'b a ' b ' 1 1 . Let the three digit numbers A28, 3B9, and 62C, where A, B, and C are integers between 0 and 9, be A36 divisible by a fixed integer k. Show that the determinant 8 9 C is divisible by k. 2B2 E 25

JEE-Mathematics n! (n 1)! (n 2)! D   (n !)3  12. For a fixed positive integer n, if D = (n 1)! (n 2)! (n 3)! then show that  4 is divisible by n. (n 2)! (n 3)! (n 4)!    2r 1 2 3r 1 4 5r 1 n 1 3 . If Dr = x y z then prove that Dr = 0. 2n 1 3n 1 5n 1 r 1 1 1 (x  y) z  z2 z 1 x 1 14. Find the value of the determinant (y  z) x  2y  z x  x2 xz y(x  y)  xz2 y (y  z)  x2z       4       2 1 1 5 . Prove that        4       2 1 =  64(  ) (  )(  ) (  ) (  ) ( )       4       2 1 a1 l1  b1 m1 a1 l2  b1 m2 a1 l3  b1 m 3 1 6 . Show that a2 l1  b2 m1 a2 l2  b2 m 2 a2 l3  b2 m 3 = 0. a3 l1  b3 m1 a3 l2  b3 m2 a3 l3  b3 m3 1 7 . Solve the following sets of equations using Cramer’s rule and remark about their consistency. xy z60 x 2y  z 1 x 3y  z 2 7x  7 y 5 z  3 (a) 2 x  y  z  1  0 (b) 3 x  y  z  6 (c) 3 x  y  z  6 (d) 3 x  y  5z  7 x  y  2z  3  0 x  2y 0 5x  y  3z  3 2 x  3y  5 z  5 1 8 . Investigate for what values of ,  the simultaneous equations x + y + z = 6 ; x + 2 y + 3 z = 10 & E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 x + 2 y +  z =  have : (a) A unique solution. (b) An infinite number of solutions. (c) No solution. 1 9 . Find the values of c for which the equations 2x +3y = 0 (c + 2) x + (c + 4)y = c + 6 (c + 2)2x + (c + 4)2 y = (c + 6)2 are consistent. Also solve above equations for these values of c. 20. Let 1, 2 and 1, 2 be the roots of ax2 + bx + c = 0 and px2 + qx + r = 0 respectively. If the system of b2 ac equations 1y + 2z = 0 and 1y + 2z = 0 has a non-trivial solution, then prove that . q2 pr CONCEPTUAL SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(A) 4. 1 8 . x =  1 or x =  2  9 . x = 0 or x = ± 3 a2  b2  c2 14. 0 2 1 7 . (a) x = 1 , y = 2 , z = 3; consistent (b) x = 2 , y =  1 , z = 1 ; consistent 13 7 35 (d) inconsistent (c) x = 3 , y =  6 , z =  6 ; consistent 1 8 . (a)   3 (b)  = 3,  = 10 (c)  = 3,   10 10 E 1 9 . c = –6,–1, for c = –6, x = 0 = y & for c=–1, x = –5 , y = 3 26

JEE-Mathematics EXERCISE - 04 [B] BRAIN STORMING SUBJECTIVE EXERCISE 1 . Let a, b, c, d be real numbers in G.P. If u, v, w satisf y the system of equations u + 2v + 3w = 6, 4u + 5v + 6w = 12, 6u + 9v = 4, then show that the roots of the equations 1  1  1  x2 + [ (b – c)2 + (c – a)2 + (d – b)2 ] x + u + v + w = 0 and 20x2 +10 (a – d)2 x – 9 = 0 are reciprocals  u v w  of each other. [JEE 99] bc  a2 c a  b2 a b  c2 2 . Prove that  b c  c a  a b b c  c a  a b b c  c a  a b = 3 . (b  c) (c  a) (a  b) (a + b + c) (ab + bc + ca) (a  b) (a  c) (b  c) (b  a) (c a) (c  b) 3 . If a2 + b2 + c2 = 1 then show that the value of the determinant a2  (b2  c2 ) cos  ba(1  cos ) ca(1  cos ) simplifies to cos2 ab(1  cos ) b2  (c2  a2 ) cos  cb(1  cos ) ac(1  cos ) c2  (a2  b2 ) cos  bc(1  cos ) cos(x  y) cos(y  z) cos(z  x) 4 . Find the value of the determinant cos(x  y ) cos(y  z) cos(z  x) . sin(x  y) sin(y  z) sin(z  x) S0 S1 S2 5 . If Sr = r + r + r then show that S1 S2 S3 = (  )2 ( )2 (  )2 . 6 . If S2 S3 S4 ax1² + by1² + cz12 = ax22 + by22 + cz22 = ax32 + by32 + cz32 = d and ax x + by y + cz z = ax x + by y + cz z = ax x + by y + cz z = f, 2 3 23 23 3 1 31 31 1 2 12 12 then prove that x1 y1 z1 = (d  f) d  2 f 1/2 (a , b , c  0) x2 y2 z2  abc x3 y3 z3   E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 7 . If u = ax2 + 2 bxy + cy2 , u = ax2 + 2 bxy + cy2, then prove that- y2  xy x2 ax  by bx cy 1 u u a b c   ax  by . ax  by bx  cy y ax  by a b c z  a y  a2x  a3  0  8. Solve the system of equations : z  by  b2 x  b3  0  where a  b  c. z  cy  c2 x  c3  0   9 . If x,y,z are not all zero and if ax + by + cz = 0; bx + cy + az = 0; cx + ay + bz = 0 Prove that x : y : z = 1 : 1 : 1 or 1 :  : 2 or 1 : 2 : . 1 0 . Prove that the system of equations in x and y ; ax + hy + g = 0, hx + by + ƒ = 0, ax2 + 2hxy + by2 + 2gx + 2ƒy ahg ah + c = t is consistent if t  h b ƒ  hb gƒc BRAIN STORMING SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(B) 4. 2sin(x – y) sin(y – z) sin(x – z) 8 . x = (a + b + c) , y = ab + bc + ca , z = abc E 27

JEE-Mathematics JEE-[MAIN] : PREVIOUS YEAR QUESTIONS EXERCISE - 05 [A] log a p 1 1 . If a, b, c are pth, qth and rth terms of a GP, and all are positive then log b q 1 is equal to- [AIEEE-2002] log c r 1 (1) 0 (2) 1 (3) log abc (4) pqr 1 n 2n [AIEEE-2003] 2 . If 1, , 2 are cube roots of unity and n  3p, p  Z, then 2n 1 n is equal to- n 2n 1 (1) 0 (2)  (3) 2 (4) 1 a a2 1  a3 3 . If b b2 1  b3 = 0 and vectors (1 , a , a2 ), (1 , b,b2) and (1 , c, c2) are non-coplanar, then the product abc c c2 1  c3 equals- [AIEEE-2003] (1) 1 (2) 0 (3) 2 (4) –1 log an log an2 log an4 4. If a , a ,.......a , a ,...... are in GP and a > 0 i, then log an6 log an8 log an10 is equal to- 12 n n+1 i log a n 12 log a n 14 log a n 16 [AIEEE-04,05] (1) 0 (4) none of these (2) n log a (3) n(n + 1) log a n n 1  a2 x (1  b2 )x (1  c2 )x 5 . If a2 + b2 + c2 = –2 and f(x)  (1  a2 )x 1  b2 x (1  c2 )x , then f(x) is a polynomial of degree- [AIEEE 2005] (1  a2 )x (1  b2 )x 1  c2 x (1) 2 (2) 3 (3) 0 (4) 1 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 6 . The system of equations x + y + z =  – 1 x + y + z =  – 1 x + y +  z =  – 1 has no solution, If  is [AIEEE 2005] (1) 1 (2) not –2 (3) either -2 or 1 (4) –2 11 1 7 . If D = 1 1  x 1 for x 0, y 0 then D is- [AIEEE - 2007] 1 1 1y (1) Divisible by both x and y (2) Divisible by x but not y (4) Divsible by neither x nor y (3) Divisible by y but not x 5 5   [AIEEE - 2007] 8 . Let A = 0  5 , if |A2| = 25 then || equals- 0 0 5  (1) 5 (2) 52 (3) 1 (4) 1/5 9 . Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all zero such that x = cy + bz, y = az + cx and z = bx + ay, then a2 + b2 + c2 + 2abc is equal to [AIEEE - 2008] (1) 2 (2) –1 (3) 0 (4) 1 28 E

JEE-Mathematics a a 1 a 1 a 1 b1 c1 1 0 . Let a, b, c be such that b(a + c)  0. If b b 1 b 1 + a  1 b  1 c  1 = 0, c c 1 c 1 (1)n2 a (1)n1 b (1)n c then the value of n is :- [AIEEE - 2009] (1) Any odd integer (2) Any integer (3) Zero (4) Any even integer 1 1 . Consider the system of linear equations : x1 + 2x2 + x3 = 3 2x1 + 3x2 + x3 = 3 3x1 + 5x2 + 2x3 = 1 The system has [AIEEE - 2010] (1) Infinite number of solutions (2) Exactly 3 solutions (3) A unique solution (4) No solution 1 2 . The number of values of k for which the linear equations 4x + ky + 2z = 0 kx + 4y + z = 0 2x + 2y + z = 0 possess a non-zero solution is :- [AIEEE - 2011] (1) 1 (2) zero (3) 3 (4) 2 1 3 . If the trivial solution is the only solution of the system of equations x – ky + z = 0 kx + 3y – kz = 0 3x + y – z = 0 Then the set of all values of k is: [AIEEE - 2011] (1) {2, –3} (2) R – {2, –3} (3) R – {2} (4) R – {–3} E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 PREVIOUS YEARS QUESTIONS ANSWER KEY EXERCISE-5 [A] Que. 1 2 3 456 7 8 9 10 114 1 441 Ans. 1 1 4 Que. 11 12 13 Ans. 4 4 2 E 29

JEE-Mathematics JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS EXERCISE - 05 [B] a2 a 1 1 . Solve for x the equation sin(n  1)x sin nx sin(n  1)x  0 cos(n  1)x cos nx cos(n 1)x [REE 2001, (Mains), 3 out 100] 2 . Test the consistency and solve them when consistent, the following system of equations for all values of   x+y+z=1 x + 3y – 2z =  3x +( + 2)y – 3z = 2  +1 [REE 2001,(Mains), 5 out 100] 3 . Let a, b, c, be real numbers with a2 + b2 + c2 = 1, Show that the equation ax  by  c bx  ay cx  a represents a straight line. bx  ay ax  by  c cy  b  0 cx  a ax  by  c cy  b [JEE 2001,(Mains), 6 out 100] 4 . The number of values of k for which the system of equations (k +1) x + 8y = 4k kx + (k +3)y = 3k – 1 has infinitely many solutions is [JEE 2002,(Screening), 3] (A) 0 (B) 1 (C) 2 (D) infinite 5 . The value of  for which the system of equations 2x – y – z = 12, x – 2y + z = –4, x + y + z = 4 has no solution is [JEE 2004 (Screening)] (A) 3 (B) –3 (C) 2 (D) –2 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 6 . (a) Consider three point P = (–sin( – ), – cos), Q = (cos( – ), sin) and R = (cos(  ), sin( )), where 0 <  /4 (A) P lies on the line segment RQ (B) Q lies on the line segment PR (C) R lies on the line segment QP (D) P, Q, R are non collinear (b) Consider the system of equations x – 2y + 3z = –1; –x + y – 2z = k; x – 3y + 4z = 1. Statement-I : The system of equations has no solution for k  3. and 1 3 1 [JEE 2008, 3+3] Statement-II : The determinant 1 2 k  0, for k  3. 141 (A) Statement-I is true, Statement-II is true ; Statement-II is correct explanation for Statement-I. E (B) Statement-I is true, Statement-II is true ; Statement-II is NOT a correct explanation for statement-I. (C) Statement-I is true, Statement-II is false. (D) Statement-I is false, Statement-II is true. 30

JEE-Mathematics 7 . The number of all possible values of , where 0 <   , for which the system of equations (y + z)cos3 = (xyz)sin3 x sin 3  2 cos 3  2 sin 3 yz (xyz)sin3 = (y + 2z)cos3 + ysin3 have a solution (x , y, z) with yz  0, is [JEE 2010, 3] 0 0 0 00 E_NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\02.EXERCISES.p65 PREVIOUS YEARS QUESTIONS ANSWER KEY EXERCISE-5 [B] 1 . x = n, n  I 2 . If  = 5, system is consistent with infinite solution given by z = K, y  1 (3K  4) and x  1 (5K  2) where K R 2  2 If   5 , system is consistent with unique solution given by z  1 (1  ); x  1 (  2) and y = 0. 33 4. B 5. D 6. (a) D; (b) A 7. 3 E 31



JEE-Mathematics DETERMINANT 1. INTRODUCTION : If the equations a1x + b1 = 0, a2x + b2 = 0 are satisfied by the same value of x, then a1b2 – a2b1 = 0. The expression a b – a b is called a determinant of the second order, and is denoted by : 12 21 a1 b1 a2 b2 A determinant of second order consists of two rows and two columns. Next consider the system of equations a1x + b1y + c1 = 0, a2x + b2y + c2 = 0, a3x + b3y + c3 = 0 If these equations are satisfied by the same values of x and y, then on eliminating x and y we get. a1(b2c3 – b3c2) + b1(c2a3 – c3a2) + c1(a2b3 – a3b2) = 0 The expression on the left is called a determinant of the third order, and is denoted by a1 b1 c1 a2 b2 c2 a3 b3 c3 A determinant of third order consists of three rows and three columns. Illustration 1 : Eliminate , m, n from the equations a + cm + bn = 0, c + bm + an = 0, b + am + cn = 0 Solution : and express the result in the simplest form. The given set of equations can also be written as (if n  0) : a     c  m   b  0 ; c     b  m   a  0 ; b     a  m   c  0  n   n   n   n   n   n  Then, let  m y x; nn  System of equations : ax + cy + b = 0 ...(i) cx + by + a = 0 ...(ii) bx + ay + c = 0 ...(iii) We have to eliminate x & y from these simultaneous linear equations. NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 Since these equations are satisfied by the same values of x and y, then eliminating x and y we get, acb c b a 0 bac 2. VALUE OF A DETERMINANT : E a1 b1 c1 b2 c2 a2 c2 a2 b2 b3 c3 a3 c3 a3 b3 = a1(b2c3 – b3c2) – b1(a2c3 – a3c2) + c1(a2b3 – a3b2) D  a2 b2 c2  a1  b1  c1 a3 b3 c3 Note : Sarrus diagram to get the value of determinant of order three : –ve –ve –ve a1 b1 c1 a1 b1 c1 a1 b1 D  a2 b2 c2 = a2 b2 c2 a2 b2 = (a1b2c3 + a2b3c1 +a3b1c2) – (a3b2c1 + a2b1c3 + a1b3c2) a3 b3 c3 a3 b3 c3 a3 b3 +ve +ve +ve Note that the product of the terms in first bracket (i.e. a a a b b b c c c ) is same as the product of the terms 123 1 2 3123 in second bracket. 1

JEE-Mathematics Illustration 2 : 1 23 is - The value of 4 3 6 2 7 9 (A) 213 (B) – 231 (C) 231 (D) 39 1 23 36 4 6 4 3 Solution : 4 3 6 = 1 7 9 –2 2 3 7 92 2 7 9 = (27 + 42) – 2 (–36 –12) + 3 (28 – 6) = 231 Alternative : By sarrus diagram 1 2 3 1 2 31 2 4 3 6 = 4 3 6 4 3 2 7 9 2 7 9 2 7 = (27 + 24 + 84) – (18 – 42 – 72)= 135 – (18 – 114) = 231 Ans. (C) 3 . MINORS & COFACTORS : The minor of a given element of determinant is the determinant obtained by deleting the row & the column in which the given element stands. For example, the minor of a1 in a1 b1 c1 is b2 c2 & the minor of b2 is a1 c1 . a2 b2 c2 b3 c3 a3 c3 a3 b3 c3 Hence a determinant of order three will have “9 minors”. NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 If M represents the minor of the element belonging to ith row and jth column then the cofactor of that element is ij given by : Cij = (–1)i + j. Mij Illustration 3 : 2 3 1 Find the minors and cofactors of elements '–3', '5', '–1' & '7' in the determinant 4 0 5 1 6 7 Solution : 45 Minor of –3 = 1 7 = 33 ; Cofactor of – 3 = –33 Minor of 5 = 2 3  9 ; Cofactor of 5 = –9 1 6 3 1 Minor of –1 = 0 5  15 ; Cofactor of –1 = –15 Minor of 7 = 2 3  12 ; Cofactor of 7 = 12 40 2 E

JEE-Mathematics 4 . EXPANSION OF A DETERMINANT IN TERMS OF THE ELEMENTS OF AN Y ROW OR COLUMN : a1 b1 c1 Let D = a2 b2 c2 a3 b3 c3 (i) The sum of the product of elements of any row (column) with their corresponding cofactors is always equal to the value of the determinant. D can be expressed in any of the six forms : a1A1 + b1B1 + c1C1, a1A1 + a2A2 + a3A3, a2A2 + b2B2 + c2C2, b1B1 + b2B2 + b3B3, a3A3 + b3B3 + c3C3, c1C1 + c2C2 + c3C3, where A ,B & C (i = 1,2,3) denote cofactors of a ,b & c respectively. ii i ii i (ii) The sum of the product of elements of any row (column) with the cofactors of other row (column) is always equal to zero. Hence, a A + b B + c C = 0, 21 21 21 b A + b A + b A = 0 and so on. 11 22 33 where A ,B & C (i = 1,2,3) denote cofactors of a ,b & c respectively.i ii ii i Do yourself -1 : 213 ( i ) Find minors & cofactors of elements '6', '5', '0' & '4' of the determinant 6 5 7 . 304 5 3 7 ( i i ) Calculate the value of the determinant 2 4 8 9 3 10 NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 ab0 (i i i ) The value of the determinant 0 a b is equal to - b0a (A) a3 – b3 (B) a3 + b3 (C) 0 (D) none of these 120 ( i v ) Find the value of 'k', if 2 3 1  4 3k2 1 z y ( v ) Prove that z 1 x  1  x2  y2  z2 y x 1 5. PROPERTIES OF DETERMINANTS : ( a) The value of a determinant remains unaltered, if the rows & columns are inter-changed, E e.g. if a1 b1 c1 a1 a2 a3 D  a2 b2 c2  b1 b2 b3 b3 c3 c1 c2 c3 a3 3

JEE-Mathematics ( b ) If any two rows (or columns) of a determinant be interchanged, the value of determinant is changed in sign only. e.g. a1 b1 c1 a2 b2 c2 Let D  a2 b2 c2 & D1  a1 b1 c1 Then D1 = – D. a3 b3 c3 a3 b3 c3 ( c ) If all the elements of a row (or column) are zero, then the value of the determinant is zero. ( d ) If all the elements of any row (or column) are multiplied by the same number, then the determinant is multiplied by that number. a1 b1 c1 Ka1 Kb1 Kc1 e.g. If D = a2 b2 c2 and D1 = a2 b2 c2 Then D1 = KD a3 b3 c3 a3 b3 c3 ( e ) If all the elements of a row (or column) are proportional (or identical) to the element of any other row, then the determinant vanishes, i.e. its value is zero. a1 b1 c1 a1 b1 c1 e.g. If D = a1 b1 c1  D = 0 ; If D1  ka1 kb1 kc1  D1  0 a3 b3 c3 a3 b3 c3 abc ybq Illustration 4 : Prove that x y z  x a p pqr zc r Solution : abc axp (By interchanging rows & columns) D= x y z= b y q pqr cz r xap (C  C) NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 = y b q 1 2 zcr ybq (R  R ) =x a p 12 zcr a2 ab ac Illustration 5 : Find the value of the determinant ab b2 bc ac bc c2 a2 ab ac abc abc Solution : D = ab b2 bc = a ab b2 bc = abc a b c = 0 ac bc c2 ac bc c2 abc Since all rows are same, hence value of the determinant is zero. 4 E

JEE-Mathematics Do yourself -2 : ap  r n c ( i ) Without expanding the determinant prove that b q m  q m b  0 cr n pa (ii)   2 2 is equal to - If D    , then 2 2 (A) D (B) 2D (C) 4D (D) 16D pq r (i ii ) If D  x y z , then KD is equal to - mn Kp q r pq r p Kx  Kp Kx K (A) x Ky z (C) q Ky m (D) Kq Ky Km (B) x y z  m Kn K Km Kn r Kz n Kr Kz Kn ( f ) If each element of any row (or column) is expressed as a sum of two (or more) terms, then the determinant can be expressed as the sum of two (or more) determinants. a1  x b1  y c1  z a1 b1 c1 xyz e.g. a2 b2 c2  a2 b2 c2  a2 b2 c2 a3 b3 c3 a3 b3 c3 a3 b3 c3 ƒ(r) g(r) h(r) Note that : If Dr  a b c a1 b1 c1 where r  N and a,b,c, a1, b1,c1 are constants, then NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 n n n  ƒ(r)  g(r ) h(r) n r 1 r 1 r 1 Dr  a b c ar 1 b1 c1 1 ( g ) Row - column operation : The value of a determinant remains unaltered under a column (C ) operation i of the form C  C + Cj + Ck (j, k  i) or row (R ) operation of the form R  R + Rj + Rk (j, k  i). i i i i i In other words, the value of a determinant is not altered by adding the elements of any row (or column) to the same multiples of the corresponding elements of any other row (or column) e.g. Let a1 b1 c1 D = a2 b2 c2 a3 b3 c3 a1  a2 b1  b2 c1  c2 (R1  R1 + R2; R3  R3 + R2) D = a2 b2 c2 a3  a1 b3  b1 c3  c1 Note : (i) By using the operation R  xR + yR + zR (j, k  i), the value of the determinant becomes x i i j k times the original one. (ii) While applying this property ATLEAST ONE ROW (OR COLUMN) must remain unchanged. E5

JEE-Mathematics Illustration 6 : r r3 2 If D r  n n3 n  n(n  1) 2 n(n 1)  2  2n , find Dr . 2 r 0 2(n 1) n n n n(n 1)  n(n  1) 2 2(n 1) 2n = 0 r r3 2   2  2(n 1) n r 0 r 0 r0 2 Solution : Dr  n n3 2n  n n3 Ans. r 0  n(n  1) 2 2(n 1) n(n 1)  n(n  1) 2 2 n(n 1)    2  2  2  a  b  c 2a 2a Illustration 7 : Prove that 2b b  c  a 2b  (a  b  c)3 2c 2c c  a  b a  b  c 2a 2a Solution : D  2b b  c  a 2b 2c 2c c  a  b abc abc a b c (R  R + R + R) D  2b b c a 2b 1 1 2 3 2c 2c c a b 11 1 D  (a  b  c) 2b b  c  a 2b 2c 2c c  a  b 1 0 0 (C3 C – C; C  C – C) NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 D  (a  b  c) 2b (a  b  c) 0 3 1 2 2 1 (a  b  c) 2c 0 D = (a + b + c)3 Illustration 8 : Determinant a  b  nc (n 1)a (n 1)b (n  1)c b  c  na (n  1)b is equal to - (n  1)c (n  1)a c  a  nb (A) (a + b + c)3 (B) n (a + b + c)3 (C) (n – 1) (a + b + c)3 (D) none of these Solution : Applying C  C + (C + C) 1 1 2 3 1 (n 1)a (n 1)b D = n(a + b + c) 1 b  c  na (n  1)b 1 (n 1)a c  a  nb 1 (n 1)a (n 1)b R2  R2  R1  D = n(a + b + c) 0 a  b  c 0 R 3   R3  R 1  0 0 abc Ans. (B) = n(a + b + c)3 E 6

JEE-Mathematics 32  k 42 32  3  k Illustration 9 : If 42  k 52 42  4  k = 0, then the value of k is- 52  k 62 52  5  k (A) 2 (B) 1 (C) –1 (D) 0 (R  R – R ; R  R – R ) Solution : Applying (C  C – C ) 3 31 3 3 22 2 1 32  k 42 3 D  42  k 52 4  0 52  k 62 5 9  k 16 3 Ans. (B)  7 9 1 0 9 11 1 k – 1 = 0  k = 1 Do yourself - 3 : x 20 ( i i ) Solve for x : 2  x 5 1  0 53 106 159 ( i ) Find the value of 52 65 91 . 5x 1 2 102 153 221 1 bc a(b  c) (iii) Using row-column operations prove that (b) 1 ca b(c  a)  0 xa xb xc 1 ab c(a  b) (a) y  a y  b y  c = 0 za zb zc 2r 1 n n ( i v ) Dr . If D = 1 2 3 , then find the value of r 3 21 r 1 NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 ( h ) Factor theorem : If the elements of a determinant D are rational integral functions of x and two rows (or columns) become identical when x = a then (x – a) is a factor of D. Note that if r rows become identical when a is substituted for x, then (x – a)r–1 is a factor of D. aax Illustration 10 : Prove that m m m  m (x  a)(x  b) bxb Solution : Using factor theorem, Put x = a aaa D= m m m=0 bab Since R and R are proportional which makes D = 0, therefore (x – a) is a factor of D. 12 Similarly, by putting x = b, D becomes zero, therefore (x – b) is a factor of D. E7

JEE-Mathematics aax ..........(i) D = m m m  (x  a)(x  b) bxb To get the value of  put x = 0 in equation (i) aa0 m m m  ab b0b amb = ab   = m  D = m(x – a)(x – b) (x  a)2 (x  b)2 (x  c)2 = 2(x – y) (y – z) (z – x) (a – b) (b – c) (c – a) Illustration 11 : Prove that (y  a)2 (y  b)2 (y  c)2 (z  b)2 (z  c)2 (z  a)2 Solution : (x  a)2 (x  b)2 (x  c)2 D = (y  a)2 (y  b)2 (y  c)2 (z  b)2 (z  c)2 (z  a)2 Using factor theorem, Put x = y (y  a)2 (y  b)2 (y  c)2 D  (y  a)2 (y  b)2 (y  c)2 (z  b)2 (z  c)2 (z  a)2 R and R are identical which makes D = 0. Therefore, (x–y) is a factor of D. NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 12 Similarly (y – z) & (z – x) are factors of D Now put a = b (x  b)2 (x  b)2 (x  c)2 D  (y  b)2 (y  b)2 (y  c)2 (z  b)2 (z  c)2 (z  b)2 C and C become identical which makes D = 0. Therefore, (a–b) is a factor of D. 12 Similarly (b–c) and (c–a) are factors of D. Therefore, D = (x – y) (y – z) (z – x) (a – b) (b – c) (c – a) To get the value of  put x = –1 = a, y = 0 = b and z = 1 = c 014 D  1 0 1  (1)(1)(2)(1)(1)(2) 410  4 = 8   = 2 E  D = 2(x – y) (y – z) (z – x) (a – b) (b – c) (c – a) 8

JEE-Mathematics Do yourself - 4 : 1 a bc ( i ) Without expanding the determinant prove that 1 b ca  (a  b)(b  c)(c  a) 1 c ab 1 4 20 ( i i ) Using factor theorem, find the solution set of the equation 1 2 5  0 1 2x 5x2 6 . MULTIPLICATION OF T WO DETERMINANTS : a1 b1  l1 m1  a1 l1  b1 l2 a1 m1  b1 m 2 a2 b2 l2 m 2 a2 l1  b2 l2 a2 m1  b2 m 2 Similarly two determinants of order three are multiplied. ( a ) Here we have multiplied row by column. We can also multiply row by row, column by row and column by column. (b ) If D1 is the determinant formed by replacing the elements of determinant D of order n by their corresponding cofactors then D1 = Dn–1 (a  x)2 (b  x)2 (c  x )2 (1  ax )2 (1  bx)2 (1  cx)2 Illustration 12 : If a, b, c x, y, z  R, then prove that (a  y )2 (b  y)2 (c  y )2  (1  ay )2 (1  by )2 (1  cy )2 (b  z)2 (c  z)2 (1  az)2 (1  bz)2 (1  cz)2 (a  z)2 Solution :NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 (a  x)2 (b  x)2 (c  x)2 a2  2ax  x2 b2  2bx  x2 c2  2cx  x2 (b  y)2 (c  y)2  a2  2ay  y2 b2  2by  y2 c2  2cy  y2 E L.H.S. = (a  y)2 (b  z)2 (c  z)2 a2  2az  z2 b2  2bz  z2 c2  2az  z2 (a  z)2 1 x x2 a2 2a 1 = 1 y y2  b2 2b 1 (Row by Row) 1 z z2 c2 2c 1 1 x x2 a2 2a 1 = 1 y y2  (1) b2 2b 1 1 z z2 c2 2c 1 1 x x2 1 2a a2 = 1 y y2  (1)(1) 1 2b b2 (C  C) 1 3 1 z z2 1 2c c2 9

JEE-Mathematics 1 x x2 1 2a a2  1 y y2  1 2b b2 1 z z2 1 2c c2 Multiplying row by row 1  2ax  a2x2 1  2bx  b2x2 1  2cx  c2x2 = 1  2ay  a2y2 1  2by  b2y2 1  2cy  c2y2 1  2bz  b2z2 1  2cz  c2z2 1  2az  a2z2 (1  ax )2 (1  bx)2 (1  cx)2  (1  ay )2 (1  by )2 (1  cy )2 (1  bz)2 (1  cz)2 (1  az)2 = R.H.S. Illustration 13 : Let   be the roots of equation ax2 + bx + c = 0 and S = n + n for n  1. Evaluate the value n 3 1  S1 1  S2 of the determinant 1  S1 1  S2 1  S3 . 1  S2 1  S3 1  S4 3 1  S1 1  S2 1 11 1 1  2  2 D = 1  S1 1  S2 1  2  2 1  3  3 Solution : 1  S3 1  S3 = 1     1  3  3 1  4  4 1  S2 1  S4 1  2  2 11 1 1 1 1 1 1 12 = 1  2  1   = 1  2 =[(1 – )(1 – )( – )]2 1  2 1 2 2 1  2 D = ()2 ( 1)2 NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65     are roots of the equation ax 2 + bx + c = 0      b &   c      b2  4ac a a a (b2  4ac)  a  b  c 2 (b2  4ac)(a  b  c)2 D = a2  a  = Ans. a4 y5z6 (z3  y3 ) x4z6 (x3  z3 ) x4y5 (y3  x3 ) x y2 z3 Illustration 14 : If D1  y2 z3 (y6  z6 ) xz3 (z6  x6 ) xy2 (x6  y 6 ) and D2  x 4 y5 z6 . Then D D is equal to - y2z3 (z3  y3 ) xz3 (x3  z3 ) 12 xy2 (y3  x3 ) x7 y8 z9 (A) D 3 (B) D 2 (C) D 4 (D) none of these 2 2 2 Solution : The given determinant D is obtained by corresponding cofactors of determinant D . 12 Hence D = D 2  D1D2  D 2 D 2  D 3 Ans. (A) 12 2 2 E 10

JEE-Mathematics Do yourself - 5 : 11 1 100 (i) If the determinant D =    2  2 2 and D1  0   , then find the determinant D 2    2 2  2 0 D such that D = . 2 D1 ab2  ac2 bc2  a2b a2c  b2c 111 ( i i ) If D1  ac  ab ab  bc bc  ac & D2  a b c , then D D is equal to - cb a c 12 b  a bc ac ab (A) 0 (B) D12 (C) D 2 (D) D23 2 7. SPECIAL DETERMINANTS : (a) Cyclic Determinant : The elements of the rows (or columns) are in cyclic arrangement. abc b c a  (a3  b3  c3  3abc) = –(a + b + c) (a2 + b2 + c2 – ab – bc – ac) ca b NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65   1 (a  b  c) {(a  b)2  (b  c)2  (c  a )2 } 2 = – (a + b + c) (a + b + c2) (a + b2 + c), where  ,2 are cube roots of unity (b) Other Important Determinants : 0 b c (i) b 0 a  0 c a 0 111 11 1 (ii) a b c  a b c  (a  b)(b  c)(c  a) bc ac ab a2 b2 c2 11 1 (iii) a b c  (a  b)(b  c)(c  a)(a  b  c) a3 b3 c3 111 (iv) a2 b2 c2  (a  b) (b  c)(c  a) (ab  bc  ca) a3 b3 c3 11 1 (v) a b c  (a  b) (b  c) (c  a) (a2  b2  c2  ab  bc  ca) a4 b4 c4 E 11

JEE-Mathematics 1  2 Illustration 15 : Prove that  2 1 = –(1– 3)2. 2 1  Solution : This is a cyclic determinant. 1  2   2 1 = – (1 + 2)(1 + 2 + 4 –  – 2 – 3) 2 1  = – (1 +  + 2)(– + 1 – 3 + 4) = – (1 +  + 2)(1 – )2(1 +  + 2) = – (1 – )2(1 +  + 2)2 = –(1 – 3)2 Do yourself - 6 : ka k2  a2 1 ( i ) The value of the determinant kb k2  b2 1 is kc k2  c2 1 (A) k(a + b)(b + c)(c + a) (B) kabc(a2 + b2 + c2) (C) k(a – b)(b – c)(c – a) (D) k(a + b – c)(b + c – a)(c + a – b) a2  b2 a2  c2 a2  c2 ( i i ) Find the value of the determinant a2 0 c2  a2 . b2 c2 b2 abc NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 (i i i ) Prove that bc ca ab  (a  b  c)(a  b)(b  c)(c  a) bc ca ab 8 . CR A MER'S RULE (SYSTEM OF LINE AR EQUATIONS) : Simultaneous linear equations Consistent Inconsistent (at least one solution) (no solution) Exactly one solution Infinite solutions or Unique solution Trivial solution Non trivial solution All variable At least one zero is the non zero variable only solution satisfies the system 12 E

JEE-Mathematics (a) Equations involving two variables : (i) Consistent Equations : Definite & unique solution (Intersecting lines) (ii) Inconsistent Equations : No solution (Parallel lines) (iii) Dependent Equations : Infinite solutions (Identical lines) Let, a1x + b1y + c1 = 0 a2x + b2y + c2 = 0 then : (1) a1  b1  Given equations are consistent with unique solution a2 b2 (2) a1  b1  c1  Given equations are inconsistent a2 b2 c2 (3) a1  b1  c1  Given equations are consistent with infinite solutions a2 b2 c2 (b) Equations Involving Three variables : Let a x + b y + c z = d ............ (i) 1 111 a x + b y + c z = d ............ (ii) 2 222 a x + b y + c z = d ............ (iii) 3 333 Then, x = D1 , y = D2 , z = D3 . DDD a1 b1 c1 d1 b1 c1 a1 d1 c1 a1 b1 d1 Where D = a2 b2 c2 ; D = d2 b2 c2 ; D = a2 d2 c2 & D = a2 b2 d2 1 2 3 a3 b3 c3 d3 b3 c3 a3 d3 c3 a3 b3 d3 Note : (i) If D  0 and atleast one of D , D , D  0, then the given system of equations is consistent 1 2 3 and has unique non trivial solution. NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 (ii) If D0 & D = D = D = 0, then the given system of equations is consistent and has trivial 123 solution only. (iii) If D = D = D = D = 0, then the given system of equations is consistent and has infinite solutions. 123 a1x  b1y  c1z  d1   Note that In case a1x  b1y  c1z  d 2  (Atleast two of d1 , d2 & d3 are not equal) a1x  b1y  c1z  d 3   D = D1= D2 = D3 = 0. But these three equations represent three parallel planes. Hence the system is inconsistent. (iv) If D = 0 but atleast one of D , D , D is not zero then the equations are inconsistent and have 123 no solution. (c) Homogeneous system of linear equations : Let a1x + b1y + c1z = 0 ............ (i) a x + b y + c z = 0 ............ (ii) 2 22 a x + b y + c z = 0 ............ (iii) 3 33  D =D =D =0 123 E 13

JEE-Mathematics  The system always possesses atleast one solution x = 0, y = 0, z = 0, which is called Trivial solution, i.e. this system is always consistent. Check value of D D 0  D = 0 Unique Trivial solution Trivial & Non-Trivial solutions (infinite solutions) Note that if a given system of linear equations has Only Zero solutions for all its variables then the given equations are said to have TRIVIAL SOLUTION. Also, note that if the system of equations a x + b y + c = 0; a x + b y + c = 0; a x + b y + c = 0 1 11 2 22 3 33 a1 b1 c1 is always consistent then a2 b2 c2  0 but converse is NOT true. a3 b3 c3 9 . APPLICATION OF DETERMINANTS IN GEOMETRY : ( a ) The lines : a x + b y + c = 0 ........ (i) 1 11 a x + b y + c = 0 ........ (ii) 2 22 a3x + b3y + c3 = 0 ........ (iii) a1 b1 c1 are concurrent if a2 b2 c2 = 0. a3 b3 c3 This is the condition for consistency of three simultaneous linear equations in 2 variables. ( b ) Equation ax² + 2 hxy + by² + 2 gx + 2 fy + c = 0 represents a pair of straight lines if : ahg abc + 2 fgh  af²  bg²  ch² = 0 = h b f gfc (c) Area of a triangle whose vertices are (x , y ) ; r=1,2,3 is D= 1 x1 y1 1 NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 rr 2 x2 y2 1 x3 y3 1 If D = 0 then the three points are collinear. x y1 ( d ) Equation of a straight line passing through points (x1 , y1) & (x2 , y2) is x1 y1 1 = 0 x2 y2 1 Illustration 16 : Find the nature of solution for the given system of equations : x + 2y + 3z = 1; 2x + 3y + 4z = 3; 3x + 4y + 5z = 0 Solution : 123 D= 2 3 4 =0 345 123 Now, D = 3 3 4 = 5 1 045  D = 0 but D  0 1 Hence no solution. Ans. 14 E

JEE-Mathematics Illustration 17 : Find the value of , if the following equations are consistent : Solution : x + y – 3 = 0; (1 + )x + (2 + )y – 8 = 0; x – (1 + )y + (2 + ) = 0 The given equations in two unknowns are consistent, then  = 0 1 1 3 i.e. 1   2   8  0 1 (1  ) 2   Applying C  C – C and C  C + 3C 2 2 1 3 3 1 10 0  1   1 3  5  0 1 2   5    (5  )  (3  5)(2  )  0  32  2  5  0    1,  5 / 3 Illustration 18 : If the system of equations x + y + 1 = 0, x + y + 1 = 0 & x + y +  = 0. is consistent then find the value of . Solution : For consistency of the given system of equations 1 1  (–1)2 ( + 2) = 0   = 1 or  =–2 Ans. D   1 1 0 11  3 = 1 + 1 + 3 or 3 – 3 + 2 = 0 Illustration 19 : If x, y, z are not all simultaneously equal to zero, satisfying the system of equations sin(3) x – y + z = 0; cos(2)x + 4y + 3z = 0; 2x + 7y + 7z = 0, then find the values of (0    2) . NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 Solution : Given system of equations is a system of homogeneous linear equations which posses non-zero solution set, therefore D = 0. sin3 1 1 sin 3 1 0 (C  C + C)  D = cos 2 4 3 3 3 2  D = cos2 4 7 2 77 2 7 14 sin 3 1 0 (R  R – R3 ) D = cos2 1 0.5 0 2 2 2 2 7 14 D = 14  sin 3  cos 2  1   2   D=0  sin3 + 2cos2 – 2 = 0  3sin – 4sin3 = 4sin2  (sin)(4sin2 + 4sin – 3) = 0 E 15

JEE-Mathematics  (sin)(2sin – 1)(2sin + 3) = 0  sin = 0 ; sin   1 ; 3 sin  = – 22 sin = 0   = 0, , 2; sin   1     , 5 ; 3  no solution. 2 66 sin    2    0,  , 5 , , 2 Ans. 66 Do yourself -7 : ( i ) Find nature of solution for given system of equations 2x + y + z = 3; x + 2y + z = 4 ; 3x + z = 2 ( i i ) If the system of equations x + y + z = 2, 2x + y – z = 3 & 3x + 2y + kz = 4 has a unique solution then (A) k  0 (B) –1 < k < 1 (C) –2 < k < 1 (D) k = 0 (i i i ) The system of equations x + y + z = 0, –x + y + z = 0 = 0 & –x – y + z = 0 has a non-trivial solution, then possible values of  are - (A) 0 (B) 1 (C) –3 (D) 3 ANSWERS FOR DO YOURSELF NODE6 (E)\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Maths\\Unit#02\\ENG\\Part-1\\01.Determinants\\01.Theory.p65 1 . ( i ) minors : 4, –1, –4, 4 ; cofactors : –4, –1, 4, 4 (ii) –98 (iii) B (iv) 0 2. (ii) C (iii) B,C 3 . (i) 0 (ii) 2 (iv) 0 4 . ( i i ) x = –1, 2 5. (i) 11 1 (ii) D 1 1 6. (i) C (ii) 0 7 . ( i ) infinite solutions (ii) A (iii) A 16 E


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook