JEE-Physics UNIT # 01 (PART – I) BASIC MATHEMATICS USED IN PHYSICS, UNIT & DIMENSIONS AND VECTORS EXERCISE –I 8 . Resultant = 32 42 122 52 122 13N 1 . Enclosed area : A = r2 9 . Required unit vector so dA = 2r dr 3ˆi 6ˆj 2kˆ 1 dt dt A B 32 62 22 = =A B = 7 3i 6ˆj 2kˆ dr 1 1 . For zero resultant, sum of any two forces remaining Here r = 8 cm, dt = 5 cm/s force dA = (2) (8) (5) = 80 cm2/s dt dy 1 3 . R P Q, R P 2Q 2 . Slope = 3x2 – 6x –9 dx R P P 2Q P 0 P2 2Q.P 0 0 dy if tangent is parallel to the x–axis then =0 R2 = P2+Q2 + 2P.Q =P2 + Q2 – P2 = Q2 R=Q dx 3x2 – 6x – 9 = 0 x2 –2x –3 = 0 14. a c RP and b c RQ but RP RQ x2 – 3x + +x –3 = 0 (x–3) (x+1) = 0 b 2c RP RQ b a a 2c x=3 or x =–1 y = –20 or y=12 3 . p = tnt 10 10 1 5 . cos 600 = r r = 1 / 2 = 20 units dp d 1 y F = dt = dt t =1 tnt = (1)nt+ (t) +nt F = 0 1 + nt = 0 nt =–1 t = e–1 = 1 r x e 300 dx 600 4 . Let side of cube be x then dt =3 cm/s 10 V= x3 dV = 3x2 dx =3 × 102 × 3=900 cm3/s N dt dt W 16. Starting 5 . Check A.B = 0 point E S 6 . Let forces be A and B and B < A then A + B = 16 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 R 17. vˆ 4 1ˆi 2 2ˆj 3 3 kˆ 3 ˆi 4 ˆj A 4 12 2 22 3 32 5 5 B A cos = R = 8 and A sin = B 10 3 ˆi 4 ˆj 6ˆi 8ˆj v 5 5 A2 = 82 + B2 A2–B2 = 64 (A–B) (A+B) = 64 A–B = 4 1 9 . Use R2 = A2 + B2 + 2ABcos or see options A = 10N & B = 6N 7. 0.52 0.82 c2 =1 2 0 . Displacement = 122 52 62 = 144 25 36 205 14.31 m E 0.25 + 0.64 + c2 =1 c2 = 0.11 c = ± 0.11 2 1 . Required angle = 2 360 = 300 = 12 12 1
JEE-Physics 23. 3AB cos g 10 3 kg kg A B 3 A B AB sin 3 6 . 0.5 cc = 0.5 10 6 m 3 = 500 m 3 tan 3 =60° A B A2 B2 2AB cos 60 1 u1 M1L 1 T12 2 37. nu = nu n = u2 n = M 2 L 2 T22 (n ) A2 B2 2A B A2 B2 AB 11 22 2 1 1 n2 1000g 100cm 12 10 2 4 . A.B =ABcos A.B 1 Projection of A cos A .Bˆ 10g10cm 0.12 A on B B 1N = 10 × Unit of force in new system So unit of force in new system = 0.1N 25 . P Q R Q R P OR Q2 = R2 + P2 – 2RP cos1 As [F] = MLT–2 so unit of force = (10g) (10 cm( 0.1s)–2 1 = (10–2 kg) (10–1m) 100(s)–2 cos 1 = 2 = 3 = 0.1 (kg) (m) (s)–2 = 0.1 N Now P Q R 0 P R Q P2 + R2 + 2PRcos2 = Q2 cos 2 1 2 2 3 8 . t2 must be dimensionless 2 3 2 6 . Resultant = x2 y2 3 9 . TensionForce but surface tensionForce / length = x y2 x y2 2 x yx y cos 4 1 . F MLT–2, A LT–2 L = AT2 x2 + y2 = 2(x2+y2) + 2 (x2–y2)cos 1 x2 y2 v LT 1 4 2 . [a] = t = = LT–2, [C] = [t] = T cos = y2 x2 T 2 [b] = [vt] = LT–1T = L 2 8 . Projection on x–y plane = 32 12 = 10 29. Velocity of one ball ˆi 3ˆj EXERCISE –II v1 1 . At any instant x2 + y2 = 52 Veocity of second ball 2ˆi 2ˆj v2 Angle between their path : 5m yu cos = v1.v2 2 2 3 1 3 3m = 15° v1v2 2 2 2 2 2 2ms-1 4m 31. e1 e2 12 12 2 1 1 cos 2 sin x node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 2 3 3 . In a clockwise system kˆ ˆj ˆi 2x dy Differentiating w.r.t. time 2x dt + 2y dt = 0 ˆi ˆj kˆ 34. v r = 1 2 2 dx dy 8 m/s Here =2, =u u= dt dt 3 0 4 3 = ˆi (6–8) – ˆj (–3) + kˆ (4) = – 2ˆi 3ˆj 4kˆ 2 . x2 + 4 = y 2xdx = dy but dy = 2dx So 2xdx = 2dx 2x =2 x=1 y =12 + 4 = 5 v = 22 32 42 = 4 9 16 = 29 2E
JEE-Physics 3. I = 2 MR2 = 2 4 R 3 R2 8 R 5 1 5 . 1 cal = 4.2 J 1 cal=4.2 kgm2s–2 55 3 15 4.2 12 2 kg m 2 s2 dI=8 5R4 dR 8 M (5R4) 15 dt = 15 4 / 3 R 3 1 6 . Angle between a and b , dt dR dR = 2 (1) (1) (2) = 4 kg m2s–1 a.b x 2 x 1 = 2MR dt cos = = dt ab 1 4 1 x2 12 x 12 1kg 1kg 6.67 1011 kg2 = 3 0 4. 1 notwen = G = 1km 2 106 m2 6 x 2 1 x 12 = 6.67 × 10–17 newton Length = v2 v 17. Q 5. , time t = a a 150° 120° 90° P 12 1 R ratio of unit of length = 3 = 9 and ratio of unit of time = 1/3 7 . n1u1 = n2u2 P Q R sin120 sin 90 sin150 n2 u1 M 1 L31 T12 M 1L3 T 2 1 n1 u2 1 M 1 2L 3 T 2 8 P QR = 3 /2 = 1 = 1/2 M L1 3 T22 22 9 . [k] = [] [v2] = [ML–3] [L2T–2] = ML–1T–2 2P Q 2R Force 3 = 1 = 1 = k (constant) = Area = Modulus of elasticity 3k k P : Q: R = 2 : k : 2 = 3 : 2 :1 b 1/ t x 18. = a2 b2 c2 2 a.b 1 0 . c = 1 / x = t = wave velocity abc b.c c.a 0 , c 0 & a b 0 a b c b a c 0 a b b c c a 11. P + aT2 = (RT+b) V–c a2 b2 c2 32 42 52 5 2 abc V node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 P = (RT +b) V–C – aT2 V–1 = AVm –BVn m= – c and n = – 1 1 9 . | a b c| 1 | a|2 | b|2 | c|2 2(ab bc ca ) 1 12. A =m A 1 +1 +1 +2(cos 1 + cos 2 + cos3) = 1 B B = m cos1 + cos2 + cos 3 =–1 MLT 2 20. aˆ bˆ 1 [B] = ML1 = [L2T–2] = latent heat 2 cos 2 =1 hc co s = 1 1 4 . C LT–1, G M–1L3T–2, h M1L2T–1 M = 2 2 2 3 G E3
JEE-Physics aˆ bˆ = 2 sin =2× 3 3 2ˆi 3ˆj ˆi k ˆj dx 0 (2–k)dx = 0 k=2 2 = 3 2 21. a = 2a , cos = az = cos 135° = – 1 3 2 . Here = 45° so inclination of AC with x–axis is x y a 2 45°. So unit vector along AC a a 52 = cos 45ˆi sin 45ˆj ˆi ˆj z = – 2 =– = –5 2 2 Now a 2 a 2 a 2 50 4 a 2 a 2 25 50 3 3 . a 3b.7a 5b 0 x y z y y a 2 5 a y 5 a x 2 5 ...(i) y 7a2 – 15b2 + 16 a b =0 and a 4b 7a 2b 0 2 3 . C A B C2 = A2 + B2 + 2ABcos If C2 < A2 + B2 then cos < 0. 7a2 + 8b2 – 30 a b 0 ...(ii) Therefore > 900 By adding (i) and (ii) 25. Area of triangle = 1 1 b c 1 c b2 a b a –23b2 + 46 a b 0 2a b 222 So 7a2 – 15b2 + 8b2 = 0 a2 = b2 2 6 . F1 F2 F3 F4 2abcos = b2 2cos=1 = 4ˆi 5ˆj 5kˆ 5ˆi 8ˆj 6kˆ 3ˆi 4ˆj 7kˆ = cos–1(1/2) = 60° + 12ˆi 3ˆj 2kˆ = 4ˆj 2kˆ 3 4 . For triangle ABC : AB BC CA 0 motion will be in y–z plane ˆi ˆj kˆ Now AB BC 2CA 28. = 7 3 1 = 14ˆi 38ˆj 16kˆ r F AB BC CA CA 0 CA CA 3 1 5 29. a cos tˆi a sin tˆj EXERCISE –III r velocity = =– a sin tˆi a cos tˆj Tr u e /IfFa Alse B B v dr 2. A AB dt then 0 r d 2 r Acceleration= dt2 = – a2 cos t ˆi a2 sin tˆj = – 2 3 . Two vectors are always coplanar. Fill in the blanks 3 0 . A B AB cos 8 , A B AB sin 8 3 F.d 1.W 10ˆi 3ˆj 8kˆ . 10ˆi 2ˆj 7kˆ 6ˆi 5ˆj 3kˆ node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 tan 8 8 3 3 = 60°, 120° = 10ˆi 3ˆj 8kˆ · 4ˆi 7ˆj 10kˆ = 40 + 21 + 80 = 141 J 31. Displacement dr dxˆi dyˆj 2 . Required vector but 3y + kx =5 so 3dy + kdx = 0 baˆ 3ˆi 4ˆj 72 242 32 42 dxˆi k dxˆj ˆi k ˆj dx dr 3 3 Work done is zero if 2 5 3ˆi 4ˆj 15ˆi 20ˆj F.dr 0 5 4E
JEE-Physics a b 3. x1ˆi y1ˆj x2ˆi y 2ˆj 4. ab PV 3 V 2 M 0 L6 T 0 RT PV x1 y2kˆ x2 y1kˆ 0 xy = xy 12 21 5 . [RT]=[PV] = (ML–1T–2)(L3) = ML2T–2 = [Energy] 5 . Let unknown displacement be s3 then N Comprehension 2 y WE 1 . 100 2t2 200 4t2 x S 2ˆi 5 V cos 370 ˆi sin 370 ˆj s3 6ˆi s3 3ˆj 2m/s 1 1 1002t ab 6 . Area = 22 ˆi ˆj kˆ 3ˆi 4m/s W = 1 3kˆ 3ˆj 1 3 2 3 O 2 2 2 200 4t 7 . According to question 8Bˆ Aˆi 2Aˆj d 2 . For shortest distance dt = 0 t = 50 sec 8Bˆ A 2ˆj ˆi 8 A 5 A 8 3 . min 100 2 502 200 4 502 0 5 8 . According to question u and v Comprehension 3 v u uv 0 2 1 . x = at, y = – bt2 a2y + bx2 = 0 v2 2u v 4 dr dr aˆi u2 u v 0 & u2 v2 2. dt = aˆi 2btˆj at t = 0, dt 3 v2 u2 cos 3 150 d 2 42 r 3. = 2bˆj dt2 9. k1 1 / x = t = s/m Comprehension 4 k2 1 / t x 1 . Let unit of length, time and mass be L ,T and M 1 10 . T PadbEc 11 respectively. T = ML1T 2 a ML3 b ML2 T 2 c According to question a + b + c = 0, –a – 3b + 2c = 0, –2a –2c = 1 9.8 LT–2 = 3 L T –2 11 a= 5 1 1 1 ,b= ,c= (272.1) (448)2 ML2T–2 = 100 M L 2T –2 62 3 2 11 1 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 Comprehension 1 (272.1) (448) MLT–1 = 10 M L T 1 . [b] = [V] 11 1 2. a P [a] = [PV2] by solving above equation L = 153.6 L V2 1 = 153.6 m 3 . [PV] = [RT], [Pb] = [PV] = [RT] 2 . By solving above equation T = 6.857T a PV2 P RT and 1 V2 V 2 = 6.857 s ab PV2 V PV RT 3 . By solving above equation M = 544.2 M V2 1 V 2 = 544.2 kg E 5
JEE-Physics EXERCISE –IV(A) 4. Component along the vector i j 1 . A = 4, A =6 so A + B = 10 and A + B = 9 (3i 4j).(i j) xy xx yy ) B ( A .B ) B ( 2 )2 (i j) (i) B = 10 – 4 = 6m and B = 9 – 6 = 3m = (A cos B2 xy (ii) length = B 2 B 2 = 36 9 45m x y By 3 = 3 4 (i j) 7 (i j) 6 22 (iii) = t a n –1 = tan 1 tan 1 1 2 B x Component along the vector i j 2 . (i) B (3i 4j).(i j)(i j) Let the angle between A and B is , then ( A .B ) ( 2 )2 = (A cos ) B2 B cos A B AB 2ˆi 2ˆj kˆ ˆi ˆj 0 0 = (3 4) (i j) 1 (i j) 2ˆi 2ˆj kˆ ˆi ˆj 22 32 = 90° (ii) Resultant 6. Let two forces are A and B then e j e j e j R = 2i 2j k i j = 3i j k A + B = P, A – B = Q A = PQ ,B= P Q =AB Projection of resultant on x–axis = 3 22 (iii) Required vector Resultant k A2 B2 2AB cos e j= j A = j 2i 2j k = 2i 3j k P Q2 P Q2 P Q P Q 2 2 2 2 2 cos 2 HGF JKI3. (i) Component of A along B = A.B B P2 Q2 1 (P2 Q2 ) cos 2 B 2 22 = A.B B 3ˆi ˆj . ˆj 2kˆ ˆj 2kˆ 1 ˆj 2kˆ P2 Q2 B 5 5 5 (1 cos 2) (1 cos 2) B 22 P2 cos2 Q2 sin2 Component of A B | A B| A 2 B2 2AB cos 7. (10)2 (6 )2 2(10)(6 ) cos 60 2 19 A A B 1 Bˆ 3ˆi ˆj 5 ˆj 2kˆ B (ii) Area of the parallelogram i j k tan 6 sin 60 6 3 / 2 3 3 node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 AB 3 1 0 10 6 cos 60 10 3 7 2i 6j 3k = = 012 = b g= 22 6 2 32 = 7 units 3 3 8. = tan–1 7 Resultant force in vertical direction (iii) Unit vector perpendicular to both A & B = 2i 6j 3k = 2 i 6 j 3 k 30° 30° n = A B 7 777 503N 100N 1003N AB = 503cos 30° + 100 + 1003 cos 30° E 6
JEE-Physics = 50 3 +100 + 100 × 3 (iv) 3t2 6 t ˆi 4 t3 ˆj 2 =325 N L rp 2 Resultant force in horizontal direction 36 t 1ˆi 72t2ˆj = 1003sin30° – 503 sin30° = 72t4 288 t3 kˆ 3 50 3 25 3N 100 22 3i 4j 5 P j, Pi, (6i 8j)P 15. F1 F2 4 F3 10P 5 so resultant pull = (325)2 (25 3 )2 = 327.9N 15P ((i 3i) (j 4j)) 12Pi 9Pj F4 5 x2 9 . x = at, y = –bt2 = –b a 5Pj 4Pi 6Pi 8Pj F F1 F2 F3 F4 1 1 . (i) |displacement|= (3)2 (4)2 (5)2 50m –12Pi 9Pj = 2Pi 4Pj Distance | F| P (2)2 (4 )2 20P 5 4 4 tan = = tan–1 (–2) 3 2 (ii) L (7)2 (5 )2 74m 1 7 . Displacement N 40 km = (30)2 (40)2 50km w E c 30km 12. Let is c xˆi c yˆj then according to question = c 2 c 2 5 40 s x y tan 30 = 53° N to E c2 + c2 = 25 ....(i) x y and a.c 0 3 c + 4 c = 0 – ...(ii) 1 9 . Speed = v 9 25 16 5 2m / s x y K.E. = 1 mv2 1 200 103 50 J= 5J from equation (i) and (ii) c = ± 4, c = 3 22 xy 14. = (6t – 6) i + (–12t2) j m/s v dr dt dv 90 50 40 dv =2 20. From graph dx 40 20 20 dx a dv (6i 24tj) m/s2 dt v (at x = 20) = 50 m/s node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 (i) 6(6i 2 4 tj) (36i 144 tj)N dv F ma a =v a = 50 × 2 = 100 m/s2 dx r F (ii) (3 t 2 6 t)i (4 t3 )j 36i 144 tj = [(–144 × 3t2) + (144 × 6t2) + 144 t3] k 21. (i) v v 0ˆi a0 b0e b0tkˆ (ii) v v 2 a 2 b 2 e 2 b 0 t 0 0 0 = (–288 t3 + 864 t2) k (iii) a b 2 e b0 t kˆ a 0 0 (iii) = 6[(6 t 6)i (12t2 )j] p mv [36(t 1)i 72t2 j] 2 2 . Dimension of t = M0L0T0 Dimension of = M0L0T–1 E7
JEE-Physics Dimension of v0 = L1 EXERCISE –IV(B) 1. Surface tension (S) Dimension of v0 = M0L1 T–1 2. Q 4. work done Energy E E Area Area A L2 2 3 . (i) c = m [T2 T1] [M1L2 T 2 ] E Dimension of c = [M1L0T 0 ][M 0L0T 0K1] L = vT S= (vT)2 = Ev–2 T–2 1 0 = [L2T–2K–1] 0 (T2 T1 ) (ii) Dimension of joule = ML2T–2 [M 0L1T 0 ] Value of 1 joule in star system Dimension of [M 0L1T 0 ] [M 0L0T 0K1] = (10–20) (10–8)2(10–3)–2=10–30star joule M1L1T 2 L3 Let v i & = xi yj = x i + d j mol K v PV OP R= = =[M1L2T–2 K–1mol–1] nT (iii) 2 4 . Dimensions of ax = M°L°T° [a] = MLT L1 and [0] = [M1L2T–2] so (xˆi dˆj ) vˆi dvkˆ [L ] v OP (d = is constant) which is independent of position. 2 5 . m [v]k [d]x [g]y 5. Vector 5ˆi 5kˆ and [M1L0T0] = [LT–1]k [ML–3]x [LT–2]y PP1 P1P2 4ˆi 3kˆ x = 1, k –3x + y = 0, –K–2y = 0 x = 1, y=–3, and K = 6 P1( 1, 1,0) 2 6 . R vagb [L] = [LT–1]a [LT–2]b M a + b = 1, –a – 2b = 0 v2 P(4,1,5) P2(3, 1, 3) a = 2, b=–1 R g Let angle between these vectors be then 2 7 . [b] = [v] = [L3] dimensions of a =[M°L°T°] cos 5ˆi 5kˆ 4ˆi 3kˆ 1 5 25 52 RTV [a] = dimensions of RTV As PM = PP1sin node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 = M1L2 T 2 [L3] = [M1L5T–2 mol–1] so PM 5 2 7 7 m × [k] × 52 k mol Therefore t 7 m 3.5 s 2 m/s 2 8 . Y (v)x(a)y(F)z [M1L–1T–2] = [LT–1]x [LT–2]y[MLT–2]z = [M]z [L]x+y+z [T]–x–2y –2z 6. 30 tan = 10 3 = 60° z=1, x + y + z =–1, –x–2y–2z = –2 z=1, y=2, x=–4 Y = F a2v–4 20 tan = = 45° – = 15° 20 8 E
JEE-Physics 7 . Area of triangle 12. Aˆi 3Bt2 2 ˆj 2ct 4 kˆ v (3ij+2k) 1 1 At t=2, Aˆi 12B 2ˆj 4c 4 kˆ 3ˆi 22ˆj A B = = 4kˆ 2ˆj Thus, A =3, B=2, C=1 22 2i ˆj 2k 3ˆi 6t2 2ˆj 2 t 4 kˆ A v ( i j +2k ) ( 2 i +j +k ) At t=4, v 3ˆi 96 2ˆj 8 4 kˆ 3ˆi 94ˆj 4 kˆ A 5m2 tˆi tˆj a 13. 5 cos 3 sin 8 . By law of reflection i = r dtˆi 3 sin tdtˆj dv 5 cos t 2x 4 2 vt = 4–2x = x 3x = 2 x= x 23 Therefore 5 cos tdt dvx v= 5 sint–3 x 3 0 A 2ˆi 2ˆj ; 4 ˆi 4ˆj ; C 2ˆi 2ˆj xt 3 B 3 dx dt = (5sint–3) dx 5 sin t 3dt 2 4 3 0 B A 10 , 10 , C 2 2 x+3=5 – 5 cost – 3t x =2 – 5 cost–3t Similarly, 33 L /2 L kL2 vt 9 . M1 0 A 0 kx dx 0 2 8 A dvy 3 sin tdt 20 L v –2= 3 (cost–1) v = 3 cost–1 y y A 2x2dx 2 L3 L3 1 4 L3 M 2 3 8 24 A yt L/2 dy 3 cos t 1 dt 20 14L3 L kL2 y–2 = 3 sint–t y=2 + 3sint–t 0 2 8 A M= M +M = 24 Thus, 5 sin t 3ˆi| 3 cos t 1ˆj total 12 v and 2 5 cos t 3t ˆi 2 3 sin t t ˆj s 1 0 . m = k tan 2x x 14. tˆi t2 ˆj tkˆ dm = k sec2 d r 2 2 dm k sec2 4 m = k tan d ˆi tˆj kˆ (i) v dr (iii) speed v t2 2 dt dm = d = 2d ˆj m sin cos sin 2 (iii) a dv (iv) a 1 dt % error is minimum when sin2 (v) node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 a ˆi tˆj kˆ ˆi tˆj kˆ aT vˆ vˆ ˆj t2 2 t2 2 has maximum value hence 2 = or = 45° 2 dr a T 11. dt = 1.2ˆi 1.8 tˆj 1.8 t2kˆ t vˆ t ˆi tˆj kˆ ; t v t2 aT t2 2 = t2 2 2 At t= 4s, 1.2ˆi 7.2ˆj 2 8 .8 kˆ As a 2 + a 2 = a2 v N T so aN a2 a 2 2 T t2 2 P F.v 60ˆi 25ˆj 40kˆ 1.2ˆi 7.2ˆj 28.8kˆ = 1044W E9
JEE-Physics EXERCISE –V(A) EXERCISE –V(B) 1 . The dimensions of torque and work are[ML2T–2] Fill in the blanks : 1. E h h E M L2 T 2 M L2 T 1 1 / T 2 . As we know that formula of velocity is v 1 v2 1 [LT 1 ]2 2 . [X] = [ capacitance] = [M–1L–2T2Q2] and 0 0 0 0 [Z] = [Magnetic induction] = [MT–1Q–1] Therefore X 1 M 1L2 T 2 Q 2 M T 1 Q 1 2 L2 T 2 [Y] 00 = M 3 L2 T 4 Q 4 Z 2 3 . Electrical conductivity 3 . Planck's constant (in terms of unit) J I/ A I/ A I2 t (h) = J-s = [ML2T–2][T] =[ML2T–1] E F / q F / It FA Momentum (p) A2T M 1L3 T 3 A 2 = kg-ms–1 = [M][L][T–1]=[MLT–1] M LT 2 L2 4 . By Newton's formula 4. P a a PV 2 ML1T 2 L6 ML5 T 2 dimensions of force V2 = Single Choice dimensions of area × dimensions of velocity gradient MLT 2 ML1 T 1 6. 1 0 E2 = [M–1 L–3 T4I2] [M2L2T–6I–2]= [M1L–1T–2] L2 T 1 2 V [M1L2 T 3 I1 ] 7. 0 L t =[M–1L–3T4I2] [L] [T1] = [I] 5. A B B A This is only possible if the value of both vectors 8. Dimension formula of Boltzman constant A B and B A is zero. This occurs when the k [M1L2T–2–1] angle between A and B is . [L1 ] M1L2 T 21 1 M 0 L0 T 0 0 7 . Moment of inertia and moment of a force do not [M1L1 T 2 ] have same dimensions. [M1L1T 2 ] = [M1L1T–2]; [L2 ] 8 . Dimensions of inductance, i.e. henry are [ML2/Q2] (i) Dipole moment = Charge × Length node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 9. Dipole moment = [I1T1] [L1] = [L1I1T1] 10. F qvB B MLT 2 M C 1 T 1 q [I1T1 ] C LT 1 (ii) Electric flux = 0 [M L1 3 T 4 I2 ] = [M1L3T–3I–1] 1 q1q2 [MLT–2] = 1 A2T2 F F r2 L2 (iii) Electric field= q 11. 0 4 0 [M1L1T 2 ] Electric field = [I1T1 ] = [M1L1T I–3 –1] [0] = [M–1L–3T4A2] 10 E
JEE-Physics MCQ'S 1 8 . Match List I with List II and select the correct answer using the codes given below the lists : 1 A2T2 1 q1q2 MLT–2 = [IIT-JEE 2013] 13. F = 4 0 r2 0 L2 List I List II P. Boltzmann constant 1. [ML2T–1] 1 M1L3A–2T–4 M–1L–3A+2T4 Q. Coefficient of viscosity 2. [ML–1T–1] 0 = 0] = R. Planck constant 3 . [MLT–3K–1] F 0 i1i2 S. Thermal conductivity 4. [ML2T–2K–1] L 4 r Codes : P QR S 0 A 2 (A) 3 12 4 L [ML–2] = 0 MLA 2 T 2 (B) 3 21 4 di volt sec (C) 4 21 3 dt Ampere 14. e L = L(Henery) (D) 4 12 3 Ans. (C) L (P) Boltzmann constant R = Time constant; [L]= ohm–sec Energy ML2 T 2 weber = LI Ampere = L(Henery) Temperature K M L2 T 2K 1 (Q) Coefficient of viscosity () : E= 1 Joule Z(Henery) Fx , MLT 2 L M L1 T 1 2 LI2 = (Ampere)2 A V L2 LT 1 (R) Plank constant (h) : 17. Match the Column ML2 T 2 [h]= T 1 GMeMs E = hv; M L2 T 1 R2 (A) F = GMeMs = F × L2 (S) Thermal conductivity = Work × Metre Q = Coulomb × Volt × Metre K = t A = ML2T–2 × Metre = (Kg) (Metre)3 (S)–2 ML2 T 2 L [K]= T L2 K = MLT–3K–1 3 ( B ) RT = Kinetic energy 2 3RT = v2 (Metre)2(S)–2 M node6\\E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit 1 & 2\\01 Basic Maths.p65 1 QV = Energy 2 QV Energy (farad)(volt)2 M m kg F2 q2 2 2 q2B2 q2B2 B (C) v2 (r,s) ( D ) GMe Work done (Velocity)2 (r, s) R Mass E 11
JEE-Physics UNIT # 07 (PART - I) ELECTROSTATICS EXERCISE –I KQ 9 109 50 106 6ˆi 8ˆj r2 100 10 1 . A2T2 E = ˆr = Q2 MLT 2 L2 0 M 1L3 T 4 A 2 = 4500 V/m. F42 K 9eq Keq 31 1 1 . Work done by external force = U r= 12 cm [It is state function] 2. r2 16 r 2 r 16 r (= U 3. [] ) 2q 1 2 . Charge moves r to the field lines. So the work done will be zero. Hence net force is along BD ( (BD ) ) 13. Ui = Q1q + KQ2q R R R R2 R2 q 4 . Same charges repels each other. KQ1q KQ2q R R2 R2 R () Uf = + (0,a) QKQx Work done by external force : U U f U i 5. q F = QE = R x2 3 / 2 (: U U f U i ) (2a,0) F (–x) 1 4 . By mechanical energy conservation q (required equation for SHM) ( ) (0,a) (PE + KE)i = (PE + KE)f 7 . Force between two line charges On a unit length () 1 mv2 KQ2 1 v 2 2 d 2 2 = 2K = 2 9 109 5 106 2 = 4.5 N/m 0 0 = m x2 r 0.1 ( from momentum conservation at closet approach, both particle will move with a common 8. t = x 2x m t m m speed v/2) ( = qE v/2 ) a q t2 m p 4KQ2 [when x, q & E are same] t1 = m e d = mv2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 9. If particle will loose KE (in that direction) against n -1 KQ KQ V n 1 r KK r2 E 15. V = r , E work done by electric field 2 = qEd E = 2qd 1 6 . Let distance of closest approach be 'd' then ( (d ) () K = qEd E = K ) 1 mv2 K 2e92e d 10 12 cm 2qd 2 2 d2 (2,3) 1 7 . F = QE 300 = 3 × E E = 100 N/C 10. (8, 5) E = dV V 1 = 10 V P dx 100 r 10 1
JEE-Physics 1 8 . Slope from x axis (x- ) 2 3 . In figure (–d,0) to (d,0) on x–axis the direction of E in +ve x–axis and left side of (–d,0) the direction y = 3 + x; tan = 1 = 45° ˆi ˆj Electric field in vector from E 100 2 in –ve x–axis, but on y–axis, at any point the net ( electric field along the x–axis. E (1,3 ) x- (–d,0) (d,0) V = – E dr x–(–d,0) ( 3 ,1 ) y– 100 1 3 x– 2 dy V = 3 dx = 50 2 [–2 + 2] = 0 1 E ENet Alternate solution : The direction of electric field E and the slope of line A (3,1) & (1,3) is to each others so the becomes zero. +q dot product E.d r ( d,0) q (d,0) : A (3,1) (1,3) E.d r 2 4 . W=(–pEcos) – (–pE)=PE(1–cos) 1 9 . Equipotential lines are always r to the electric 2 5 . Electric field lines can't be closed field strength lines . slope of equipotential lines =2 () Slope of electric field must be = – 1/2 2 6 . = Eq enclosed flux = Q Electric field strength vector 8ˆi 4ˆj From flux = E.ds 0 0 0.2 dx 7 1012 C 2 7 . q 0 E x.dx 0 x =2 600 0.1 = – 1/2 8ˆi 4ˆj ) 2 8 . Area(100 m2 ) in xy plane so area vector in kˆ 20. E =– V ˆi V ˆj V kˆ =– k 4 xˆi 2yˆj 2 zkˆ (xy 100 m2 kˆ x y z so flux ( ) = – k 16 4 4 = 2k 6 = 3 k.100k =173.2 Ez dS = 2 1 . Slope of equipotential lines will be = 1/2 3 k.100k =173.2 Slope of electric lines must be = – 2 = Ez dS = = 1/2 = – 2) QQ OR 29. d Ex V 4 2V 1 0 0 V /m d/2{ x 4 2cm y constant Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 V 2 4 V 10d y 1 0 cm Ey 200 V/m 1 Qq qQ x constant F 2 0 d2 0 4 0 19 d 361 0 2 2 2 . – E.d is the potential at the centre of the ring which is +3Q Q V = dV Kdq Kq 30. R P 3Q 0.5 E P 4 0 R 2 0.5 V = 9 109 1.11 1010 2 2 volt 1 2
JEE-Physics 3 1 . In hollow sphere potential remains constant inside KQH qE q the shell.mg = q × R 2 H2 3 / 2 mg 3 2 . The potential difference (work done against field) between the shell & sphere is due to the field present inside that region which is only due to the R sphere. ( 2E 2 2 ˆi E ) 3.Enet 4 0 R 2 0 R y 3 3 . For any metallic surface, electric field lines are r 2 to the surface. 2 3 4 . 1, 2, & 3 are wrong because in metallic solid 2E E x sphere, there is no field inside the sphere. Option E (4) is correct from given reason and also it has field lines perpendicular to the surface (as required in 2E metallic surface) (1, 2, 3 E (4) Enet ( E ) 4 . Potential at any point is a scalar quantity. EXERCISE –II () Positive charge = negative charge i.e. the net charge is equal to zero. Hence potential is zero. 1 . T sin = qE cos 45° and Tcos+qE sin 45° = mg Electric field is a vector quantity so it depends not only distance but also the way of distribution of charge. = qE T 45° mg KQr 5 . E = R 2 r2 3 / 2 . KQH R It is maximum at r = ± 2 and also E is not a 2 . mg = q × R 2 H2 3 / 2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 The field due to ring on its axis will be maximum at linear function of r. ( r = ± R 2 R H = ± 2 i.e. above that point qE force will Er decrease and resultant force becomes in downward direction (equilibrium position) and also in same 6. dF way for below point. H = ± R dq 2 d qE () 3
JEE-Physics dF dq 2 qd 1 1 . Equal electrostatic force (mutual interaction) acts 0 R 2 0 R on X and Y but in opposite direction which accelerate Y but retards X. After long time the /2 q velocity of X becomes zero while Y becomes u. Fnet 0 2dF cos 2 0 R ( ) X Y Y X / 2 q R X 2 0 Y u cos d 0 7 . At point A the field lines are much closer than B 1 2 . Here potential decreases 2V as we moves unit hence EA > EB. distance. Hence for point (1, 1, 1) from (0, 0, 0). Work done by external force in direction of field The total potential decrease is 2 +2 +2 = 6V. lines is negative, hence VB > VA. Hence the potential at point will (10–6) = 4V. A B 1 3 . Here total charge is zero. E A > EB 1C 6C VB > VA KQ 9 109 10 8 O 8 . V = r = 1 4 2 3 72 2 22 =18V 2C C and electric field lines will be in all three direction. KQ 9 109 10 8 Any point on z–axis, having the same distance from the each vertex of a square. So the potential due V = r = 1 4 2 3 72 2 22 =18V to all is zero at that point. z– 9 . No point exist in between the charges where field is zero. 1 4 . VA = 3 volt, VB = 7 volt From energy conservation (Energy)A = (Energy)B ()A = ()B 1/2 mv2 – e × 7V = – e × 3V + 0 Q Q/4 EQ/4 P EQ 1/2 mv2 = 4eV P : 1 5 . Velocity due to acceleration ( ) Q 10 6 300 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 K = 103 × 10 = 3 m/s E KQ 4 0r x Then the resultant velocity may be between 1 m/s r x2 r2 and 7 m/s 1 0 . If Y is fixed i.e. another force is exist on Y additional (1 m/s 7 m/s ) to the mutual interaction between X & Y. So the net force on system (X &Y) is not zero so p is 1 6 . If electric field and gravitational field will be in same changed but total energy always remain conserved. line then the path may be straight line otherwise Y X Y parabola. Y (X Y) P 4
JEE-Physics 1 7 . By work energy theorem Wg + Welec = KE q,q P 60° P - Wg + Welec = KE p q L 45° o mg +q q L y +q y mg 1 1 qE 1 mv2 0 23. 2 22 mg u 2g +q q E u = 2g ; W = 1 8 . Given VA due to +Q is V, so VB = 4V Rsin 22R -q x +Q A V VB = 4V x -q By energy conservation Dipole moment ( ) ( ) Q +Q u 1 mu2 qV 4qV a 4a 2 2R 2 2qR 2 = (q) 6qV 2 4 . Force on a dipole () F = p E u x m At x R , E 0 , so () F = 0 1 9 . As E 2 0 r 2 x q +q P ENet 25. so V nr W n r2 +q 2 0 2 0 r1 Clockwise W n 2 2 n 2 3 n 2 Eq E+q 2 0 1 2 0 2 2 0 1 ENet q 2 0 n2 V V V 26. Interaction energy ( ) U x x z p1 E kˆ 20. E = – ˆi ˆj 2Kp2 cos Kp2 sin ˆ r3 r3 where () E ˆr V V V ˆi . Here x Emin = x0 and p1 p1ˆr X0 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 2 1 . The mass of deuteron is twice,so momentum is Therefore U 2Kp1p2 cos different. r3 2 7 . Electric flux depends on the total charge enclosed by the closed surface S. Hence flux is related with 2 2 . Potential at centroid of ( ) charge Q1. Electric field at a point is the vector sum of the all electric field intensities due to all Kq Kq K2q 2q charges. = 0 r S rr r rr Q1 Dipole moment of system () = 2p cos 30° = 3p +q +q = 3 q L 5
JEE-Physics 2 8 . Electric flux depends only on the total charge KQ 1 KQ R2 R 2 2R 3 4 enclosed by the Gaussian surface. Hence[A]. 33. mu2 3R 2 0 1 4 1 11 4 R 3 Potential at a distance r (r ) = Kq 4 0 3 2 3 R R 3 mu2 r 8 2R2 Total charge of dipole ( ) = 0 u = R 2 1/2 2 9 . Electric field ( ) 4m 0 34. r = 0 due to infinitely uniform charged. Electric flux ( ) Q3 Q2 Q1 q enclosed R2 x2 2r 3r = 0 = 0 Potential at outermost shell ( ) 30. Potential at 5 cm from surface = KQ 100 R 5 = KQ1 + KQ2 + KQ3 =0 3r 3r 3r (5 ) Q1 + Q2 + Q3 = 0 ...(i) Potential at 10 cm from surface and potential at innermost surface (10 ) () = KQ 75 R = 10 cm KQ1 KQ2 KQ3 =0 R 10 r 2r 3r Potential at surface = KQ 100 15 150V K 6Q1 3Q2 2Q3 0 ....(ii) R 10 6r () From eq. (i) & (ii) Q1 = – Q2 and also Q3 =3. 4 Q1 KQ 100 15V cm Electric field on surface= R2 100cm2 3 5 . Due to the induction, the opposite nature of charge = 1500 V/m is induced at near by surface. ( 3 1 . As the electric field converges at the origin so total ) charge contained in any spherical volume, irrespective of the location, is negative. +Q-q ( ) -Q P r q b K Q q a +Q By Gauss theorem ( ) E ds 0 36. from figure VP b We have E 4r2 q q 3 1013 C Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 0 3 2 . Energy at surface = Energy at centre 37. = DC BA a +q q' q 2a 1 mu2 Kq q 3 Kq q 0 3a 2 R 2R 4a q Potential at C = Kq Kq Kq 0 q' = – q U= 4 0 mR 3a 4a 3a 4 6
JEE-Physics Kq Kq K q Kq EXERCISE –III 4 Potential at A = . FILL IN THE BLANKS 2a 4a 3a 6a Kq 2 . Magnitude of electric field is greatest at a point Hence VA –VC = 6a where electric lines of force are most close to each 3 9 . Surface charge density at inner surface of X is other. (X ) 2QA Q 3 . Due to electrostatic repulsion the charges will move Electric field at B due to this is 2 0 = 4 0 as farthest as possible and the angle between the two strings will be 180° as shown in figure. Tension Q in each string will be equal to the electrostatic B 2 0 = 4 0 repulsion between the two charges. Thus, Towards right and in same direction of same value 180° due to induced charged present inside surface of p(lateY Y. QT O TQ ) Fe L Fe L 180° 4 0 . Final charge distribution on plate T = Fe = 1 QQ Q2 L2 4 0 16 0 () 2L 2 WFe = F.d = rs rp 4 . +3Q 3Q +5Q 5Q qEˆi 2 2 2 Q 2 +32Q = qEˆi aˆi bˆj = – qEa 2 5. V ˆi V ˆj V kˆ ; where V = 4x2. E x y z I II III IV d d V V V Therefore x = 8 x and y = 0 = z E 8 xˆi qE Therefore 2m) 8ˆi V/m At (1m, 0, E is 41. a fa mg 6 . Force on –q due to charges at 1 & 4 are equal and opposite. Similarly, forces on –q due to charges at 2 a n d 5 a r e a l s o e q u a l a n d o p p o s i t e . T h e r e f o r e , n e t P force on –q due to charge at 1, 2, 4 and 5 is zero. Only unbalanced force is between –q and +q at 3 which is qE Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 For rotational equilibrium, P 0 1 q2 q2 (attraction). equal to 40 L2 = 9.0 × 109 L2 () 1 4 –q mg 2 5 –q 2q mgacos –qE (2acos) = 0 E 1, 2, 4 5 –q 3 1 q2 = 9.0 × 109 q2 L2 L2 –q +q 40 7
JEE-Physics MATCH THE COLUMN [A] Here = 180° U = – PEcos 180° = PE (+ve) [B] Here =0° U = –PE cos = –PE (–ve) 1 . Electric field due to metallic plates remains same [C] & [D] : < 90° U = –ve and constant at near by points. 4. (A) Electric field at a point is the vector sum of all individual fields at that point [A] For 1 + 2 = 0 1 = –2 Electric field at a point is equal & opposite in direction. q enc dS 0 1 + 2 = 0 1 = –2 (B) Electric flux ( ) E = E dS = [B] 1 + 2 > 0 1 & 2 [densities] (C) q enclosed either both positive or opposite but positive has a Electric flux 0 greater magnitude. So the net electric field will be away from the plates in region I & III. 5 . (A) Initially, the potential difference exist between 1 + 2 > 0 1 2 [] both shells, so positive charge is flow from high to low potential. Every system wants to acquire minimum I III potential energy if possible for stability. So charge flown to achieve it. [C] Same explanation according to [B]. 2. Electric field V ˆi V ˆj E x y 1 ˆj For (A) : E ˆi 3 (B) As explained in [A], charge flow does not depend on the size of sphere. For (B) : E ˆi [A] For (C) : E ˆi 3ˆj 1 ˆi 3ˆj (C) Charge flow through wire until the potential For (D) : E 3 becomes same for both shells. 3 . Electric field due to an electric dipole at a point on equatorial line of dipole makes either 0° or 180° (D) Potential is same everywhere inside a with the dipole moment of another dipole. conducting shell. So no charge is flow through connecting wire, so no heat is produced. Torque on dipole P E become s zero ( = 0 or = 180°) Hence in column II, [P] option is suit for every queries for column I. Electrostatic potential energy (U) =– PE cos = Angle between moment & electric field. [A] Here = 180° U = – PEcos 180° = PE (+ve) Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 [B] Here =0° U = –PE cos = –PE (–ve) 7 . Electrostatic potential energy [C] & [D] : < 90° U = –ve = self energy + interaction energy = + (A)Self energy of uniformly charged thin shell 0° 180° P E ( = 0 or = 180°) II I = KQ2 (radius a) 2a [P] (B) Self energy ( ) = KQ2 & (U) =– P E cos = 5a 2 2 8
JEE-Physics Interaction energy ( ) =K5Qa2 4. a = qE m a h= u2 sin2 m 2 qE 2 3KQ2 mm h q [ tan u, & E is constant] (C) Self energy of solid sphere of radius 'a'= 5a Comprehention# 3 'a'= 3K Q2 4Å 5a 2 × 1030 C 1030 COMPREHENSION BASED QUESTIONS 1. Comprehention# 1 12Å For first particle 1 . Velocity of B, when it strikes 'A' is v 2 103 2 B A a = r = 4 1010 = 2.5 × 1015 m/s2 1 10 2 . Acceleration of second particle vB 2 1 1.8 6 m/s From COLM between 'A' & 'B' is = v2 2 103 2 4 1016 = 5 × 1015 m/s2 A B r 8 8 10 10 0 + 1 × 6 = (1+1) × v = 3m/s [left] 3 . Velocity of centre of mass 2 . Equilibrium position Fext 0 1×1 0 AB Kx = 1030 2 103 = 2 103 m /s 10 5 2 10 30 10 30 3 Kx = 10 x = 18 = 9 (Left from x = 0) 4 . Both particles move in a circular orbit about their 3 . At equilibrium position the spring is compressed centre of mass. by x = 5/9. Let the amplitude of oscillation be 'A' x = 5/9 'A' 1 KA2 1 Kx2 1 mv2 5 . Angular velocity 2 2 2 v 4Å x2 m v2 = 25 2 106 = r C A = K 81 18 9 = 9 103 4 1010 = 2.5 × 1012 rad/s Comprehention# 2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 1 . Gravity is absent and path of the particle is Comprehention# 4 parabola i.e. a downward (qE) force is necessary. 1.Let th e potential wi ll b e zer o at x di stance f rom –2q. (qE) –2q x 2 . Acceleration of the particle is given by 2q q (3a,0) (3a,0) 6a-x qE q a = m a m 2 Kx 2q Kq 0 x = 4a x u2 sin2 1 00 1 00 1 6a x 2 3. h = = = 125 m 2a 2 1 10 Kx 2q Kq x 6a x =0 x = – 12a 1 9
JEE-Physics OR q 3R 2q 3 . Electric field at r = 2 [Before connecting] ( 3a,0) (3a,0) r = 3R [] 6a 2 2 . At x = – 3a & x = 3a, the potential becomes – E1 = 1 × 4R 2 0 & + respectively and from the above question 4 0 3R 2 potential becomes zero at (a, 0) and (9a, 0) 2 x = – 3a x = 3a – + After connecting ( ) E2 = 0. (a, 0) (9a, 0) Hence ( ) E2 0 E1 Comprehention# 5 1. Comprehention# 7 q1=2 × 105C 4m 1. KQ Er2 = 13C q2=4 × 104 E r2 Q K Comprehention# 8 From energy conservation ( ) 1. P.E. = 1 Qe and KE = 1 mv2 4 0 r 2 Kq1q2 0 0 2 1 mv2 0 42 32 2 eQ Hence total energy is greater than 4 0 r 9 109 2 105 4 104 3 2 2 eQ v 3.1 m/s 4 0 r 55 2. Kq1q2 1 mv2 v = 2 2 . After long time sphere gets positive charge so the 52 5 trajectory of the proton is (4) due to repulsion. Comprehention# 6 4 1 . Q1 = × 4R2 3 . From the angular momentum conservation Q2 = – × 4 (2R)2 =– 4Q1 Potential at outer shell R () 2R mv0 × R = mv R v = v0 2 2 = K Q1 Q2 K Q1 4Q1 4 . Limiting electric potential = change in KE 2R 2R = KE 1 3 4R 3 R = 4 0 2R = 2 0 2 (KE)i = 1 m v 2 ; (KE)f = 1 m v0 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 2 0 2 2 2 . Electric field ( r > 2R) before connecting the shells Electric potential ( ) = 3 m v 2 0 (r > 2R) 1 4 R 2 4 2 R2 4R2 8e E1= 4 0 r 2 2 r2 r2 1 4 0 R 4 5 . From previous questions we can see that the final r 0 = potential energy of the sphere is equal to the 3/4 After connecting ( ) : of initial kinetic energy 1 R2 4R2 3/4 0 r2 r2 E2 4 0 Q1 Q2 3 r2 4 2.56 = 1.92 kV E1 / E2 =1 10
JEE-Physics Comprehention# 9 EXERCISE –IV(A) 1. E dV 30 A dr ; 0 0.3 8.85 1012 102 = 8.85 × 10–10 C/m2 1. r r FB B r F 2 . Positive charge has a tendency to move from higher A a potential to lower potential hence it will move from B (–20V) to A (–30V). a B (–20V) A (– BaC 30V) 2Kq2 3 3Kq2 FB = 2F cos 30° = = a2 3 . Here () VDE = VD– VE = 20 – (–20) = 40V a2 2 Work done ( ) = qVDE For Charge at B : 2r cos 30° =a = – 1 × 10–6 × 40 = – 4 × 10–5 J a r = 3 Comprehention# 10 T T sin = FB 1 . As given in paragraph, it is treated as +q and –q FB r T cos = mg point charge at a distance 2a mg tan = FB mg 2a +q –q 1 qq sin 99 10 2 3 9 109 q2 1 F = 10 3 10 4 0 2 d 2 cos 3 10 2 3 102 2 q = 3.17 × 10–9C F dr 2. Potential energy ( ) = – Q d q2 1 q2 2 . (FQ)total = FQq FQq FqQ q Q 2r2 dr 4 0 4d O = 2Fq cos 45° + FQ Fq 4 0 q 1 q2 1 KQq KQ2 FQ O = 2 × 2 × a2 + 2a2 Fq Note : Here potential energy 4 0 2d because it is not an electrostatic field. Q 2 1 q = = = – C 22 22 2 1 q2 4 0 2d consider an element of thickness dx at a 3. We distance x from q 3 . Work done by external force is change in potential q x dx Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 energy . dL q x dx 1 dQ.q Force on q (q ) = 4 0 x2 Q KQq dL dx KQq Where dQ = L dx then ,F = L d x2 = d d L 11
JEE-Physics 4 . We consider an element subtending angle d at the centre d 7. d d + + + ++ Tcos d Tcos d + 2 2 dE d T T Tsin d Tsin d 2 2 d 2 d 2 2q2dEsin 8q ++ + ++ dE + + + + ++ + + +++ + /2 + E net 2 dE sin 0 F = electrostatic force on element Kq Rd () /2 R / 2 sin 4Kq R 2 KQ R d 2 R2 2R 0 = KdQ.q = = KQq d R2 2R 2 R2 q 4Kq ˆi N/C E R 2 d 2T KQqd T Qq r2 2Tsin 2 2 2R 2 8 2 0 8 . Ex = E0 + 2E0 cos 30° + 2E0 cos 60°= 2 3 E0 5. 0 +q1 q2 +q3 Ey 1 q1 = + 10 C = q3 = q5 Ey = E0; tan = E x = 2 × 2– 3 ; = 15 3 q2 = q4 = q6 = – 10 C r1 = 1m The hour hand will point towards 9 : 30 r2 = 3m q 2q q r3 = 9 m = 32m Eat 0 = Kq1 Kq2 Kq3 Kq4 +.... 1 0 q E0 E0 r12 r22 r32 r42 4q q E0 3q 1 1 1 1 .... E0 12 32 34 36 E0 E0 = Kq 7q 5q 6q = Kq 9 Kq = 9 × 9 × 109 × 1 × 10–6 9 . The charge at 'P' is in equilibrium. 1 8 8 1 32 P = 8.1 104 N / C 8 Hence () EP = 0; E P E Pa E Pb 0 2 3 / 2 5 6 . Charge on outer plates = A 2A A A Kqa K q a b 2 a a2 a 2 3 / 2 a2 b2 3 / 2 0 =2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 Charge distribution ( ) q 2 3/2 5 P QR q Field at A : EA = 0 + ++ a + ++ b + ++ (A : EA = 0) + ++ (z=a) + ++ P Field at B : + A +B + + ++ B : + ++ + ++ + ++ 2 EA 0 + ++ 0 EB + +2 2 EB = 12
JEE-Physics 1 0 . Conservation of momentum (COM) ++ () 0 + mV = (m+m) Vf, Vf = V ++ 2 ++ ++ + COME : 1 mV2 1 m V 2 1 m V 2 KQ2 ++ 2 2 2 2 2 d ++ ++ Q2 ++ d= m 0 v 2 ++ KQ2 2KQ2 Q 1 4 . Uinitial = a 2 a KQ2 2 4KQ2 Net force on upper half = 2 2 0 Ufinal = a a ( ) 2 Q Q Torque on upper half = 2KQ2 2 2 0 4 U a = 1.8 × 108 J = P t () 1.8 108 t = 103 sec = 1.8 × 105 sec 1 5 . For minimum potential energy of the system, q [ = distance from hinge point for centre of mass] 4 [ = ] should be placed in the middle ( 4 q Total torque on rod () 2q q 8q = 2 2 = I = m 2 3 12 2m 0 4 2 0 11. K2q q Kq8q x +6q 3q +3q/2 3q/2 100 9 x 100 Usystem = + A B A B + K 2q 8q 100 9 +3q/2 0 +3q/4 +3q/4 AC AC dU Kq2 100 2 9 8 0 x = 3 cm dx x2 +3q/4 +3q/2 9q/4 9q/4 x2 C B C B Electric field at the position of Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 1 2 . Utotal = U12 + U13 + U14 + U23 + U24 + U34 K 2q K 8q Kq2 Kq2 Kq2 Kq2 Kq2 Kq (q ) q = 0.032 0.062 =0 Uinitial = a a 2a a 2a a 1 6 . COME : Ki + Ui = Kf + Uf Kq2 Kq2 Kq2 Kq2 Kq2 Kq R Ufinal= 2a 2a 2a 2a 2a 2a 0 + 0 = 1 mV 2 KQ2 U = Uf–Ui = – 3 2 Kq2 2R a 2KQ2 V = 13. V mR m,Q m,Q VV 22 13
JEE-Physics 1 7 . From work energy theorem (WET) KQ 2KQ × q = 3a x – 3a x for x < 3a 20 mg [C] A positive charge when released will move from high potential to low potential [C] COME : K1 + U1 = K2 + U2 WEF + Wmg = KE 0 + q KQ 2KQ 1 mv2+0 V = Qq 2a 8a = 2 8 0 ma q0 L sin mgL q 2 0 2 1 . Force at A 2 0 r 100 1 cos 0 A B B B E.dr q0 L 2 sin cos q 100 2 2 0 0.2 dv A = 2 0 2 A 2 ; tan q0 r2 dr = n r2 = mgL × 2 sin2 2 2 0 mg r 2 0 r1 VB – VA = 2 0 2 r1 18. A +q q VA – VB = n r2 n2 DC 2 0 r1 2 0 B +q COME : KA + UA = KB + UB COME : KC + UC = KD + UD 0 + Q n2 1 mv2 ;20 n2 = 1 × 0.1 × V2 0 2 2 Kq q Kq 2 4 + 2 5 =0 + r V = 20 n2 2 9 109 25 10 10 K P c o s 4 5 y 4 – Ex y 22. 3 ˆi 5 23. = 2 9 109 25 1010 ; r = 9 m P sin P(0,y) Ey Pcos45° r 2 x y3 4 5 ˆj Psin45° OD = AD2 OA 2 = 92 32 = 8.48m KP x EP 2y3 19. VA KQ KQ ˆi 2ˆj 2 KQ KQ KQ 3 VA VB 2 2 3 KP kˆ KQ P 13 VB 3 2 Electric field due to dipole 1 2 P 3 = 9 × 109 × 10–6 = 3000 volt 2K P P 23 2 Electric field due to dipole kˆ Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 2 S(x,y) 20. P Q P (+3a,0) e (3a,0) 2 Resultant electric field = – 7 KPkˆ 8 KQ 2KQ () [A] VS = 0 = x 3a 2 y2 – x 3a 2 y2 24. VP E P (x–5a)2 + y2 = (4a)2 C = 5a,0 and radius = 4a KP cos KP 1 r2 r3 r2 3 KQ 2KQ 1 3 cos2 ; cos = [B] V(x) = x 3a – x 3a for x > 3a 14
JEE-Physics r2–3 1; r 2 30. + Now cos 1 r 5 = 1 + 2 r2 3 a b then = 45°, 135°, 225°, 315° c 2 5 . Eight cubes encloses a charge. For a cube, the three surfaces meeting the charge contribute to zero flux. Hence the rest three surfaces including 1 a2 4b2 4c2 the shaded surface have equal flux passing through (i) VA = 4 0 a b c q them and are equal to 24 0 . = 0 (a–b+c) 8 1 4a2 4b2 4c2 VB = 4 0 b b c q 1 4a2 4b2 4 c2 V C = 4 0 c c c 24 0 a2 b2 26. Flux () = q q 1 cos = 0 c c c = a2 b2 4 0 0 2 (ii) VA = VC; 0 (a–b+c) – 0 c c c ;c = (a+b) where is the semi–vertex angle 1 aR cos = 2 a2 R 2 ; a= 3 3 1 . From mass conservation 27. L/2 L/2 27 × 4 r 3 = 4 R 3 ; R = 3r 3 3 ++++ Q Kq Minimum flux through cube = 2 0 Given that V0 = r then Vbigdrop () K 27q K 27q 9Kq 28. P = R = 3r = r = 9V0 x Kq KQ o 3 2 . After earthing Vinner shell = 0; R + 3R =0 R Force on charge at position P Q q = 3 (charge on inner shell) (P ) Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 =– 1 Q x q = – m2x 1 Q2 4 0 R3 3 3 . (Uself)initial = 4 0 2R qQ 1 Q2 T = 2 4 0 mR 3 (Uself )final = 4 0 4R 2 9 . q1 + q2 = Q Workdone against electric forces = U 4r2 4R 2 Q q1 q2 1 Q2 2R 3 Q r = – 4 0 = – 4R 0 4r2 R2 R 1 4r2 4R 2 Q r R Vcentre = 4 0 r R = 4 0 r 2 R 2 15
JEE-Physics EXERCISE –IV(B) K.E. at 'P' must be sufficient to reach the charge particle at the centre of the ring. 1. 2 v Time to fall first ball P 1U 1 2 (ME)P = (ME)centre of ring h2 t = v h1 = 2 g v2 1 mv2 K 2Rq K 2Rq h1 Height of 2nd ball 2 R2 3R 2 = O + R 1 2 v = 2 q K 1 = h2 – 2 g v 2 0 m 4 0 1 2 2 2 y pr = h2 + 2 g v2 – g v2 ; h2 +h1 – g v2 5. +q 2 . A q=0.2C BC +q P EAB x +q z +q D P.E. of outer ring charges does not change 1.5 Kdx = – K 2 2 = 0.5 x2 3 3 0 E AB = Kq2 Kq2 8Kq2 ; Uf = Kq2 4 . R 2 + 2 = 5R 3R 3R From the wire CD Hence () W electron = – U EII= K cos 2 cos 1 and Welectron = – (Vf – Vi) = – Kq2 4 8 = Kq2 8 4 r R 5 3 R 3 5 3 . K 6. From the energy conservation r 2 0, 1 tan 12 & E = sin 2 sin 1 m v m v R 2Re = 1 mv2 – R e Momentum of 1st ball q1 q2 2 0 2 dqE 2 0 () Re Re 1 eR 3R 2 0 0 2 m 0 v mv2 Pi = mvi; Pf = m 2 cos 60ˆi sin 60ˆj dqE change in momentum ( ) +++++ 8 . 2 3v ˆi 3v ˆj 2 Rd E 0R cos F R ++++ P = Pf – Pi = – 4 4 0 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 Momentum of IInd ball : ( ) 2 Pi mvˆi Pf mvˆj 2R 2E 0 cos d 2R 2E0 FR 0 Change in momentum () = mv ˆj ˆi F = 2RE0 y 9. E0 x ˆi E dS = 0 q 0 E0x 2 a 2 4. P 3R,0,0 dxˆi dyˆj dzkˆ = 0 0 z 3R Put given values 2.2 × 10–12 C 16
JEE-Physics 1 0 . [i] r < a Point inside E=0 (Let the total charge of balls be Q) [ii] a < r < b Point outside the inner and inside (Q ) the outer so field due to only inner cylinder Q Q1 2 a < r < b U = 0 + K Q 2 K 2R2 1 2R1 dU Here for it's minimum value dQ1 0 hence () E = 2 r [iii] r > b point outside from both cylinders so the c rh >a br ge( p )e r unit length( r( >) b is) zero for point ( r > b) E =E 0 = 0 = K 22QR112 Q Q 1 0 1 = 0 R2 2 R Q1 Q2 0 Q Q1 Q1 R1 R1 R2 Q2 R2 0 r 4R 4 dq R 4r2 dr = 0 R Q2 1 1 . 0 0R 3 (i)q= 1 4 . From the energy conservation ( ) (ii) KQ K 0r 4 KQr2 w h e r e KQq 1 mv2 11 KQq 0 E = r2 = r2 R = R4 r2 8R Q r x 4 x 2 dx = 0 4 r4 0 r 4 v = 2KQq 11 R R 4R R mR 8 r 0 0 1 2 . The direction of electric field inside the cavity 1 5 . Let nth number last drop that can entre a n in –ve x direction and of constant magnitude . 3 0 x KQ2 n =mg (h–R) n = 4 0 mg h RR a R Q2 3 0 Kq KQ Kq dx K dQ 0 16. + =0 x2 2r cos45° x R dt R dt e y 45° dQ qv q 2a R q a 2a i dt x2 R = 2aR 2 R x For touch the sphere again, electron must move V=(R 2a)m/s RA 2r cos45° (as shown) distance qx 2r cos45° 1 7 . Solid angle = 2 (1–cos) () q1 1 cos q2 1 cos 1 a e t2 2 0 2 0 3 0 m 2r Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 2 sin2 sin2 q1 2 = q2 2 t 6 2mr 0 q1 q2 ea 13. R1 R2 sin = q1 sin 2 q2 2 q1 sin =2sin–1 q2 Electrostatic energy = Interaction + Self Energy 2 of system Energy = + 17
JEE-Physics EXERCISE-V-A kQq FAE r / 2 2 cos 45ˆi sin 45 ˆj 1 . Work done = (charge) (P.D.) Work done 2J 0.1V Q P.D. = Charge 20C On solving we get q 4 1 2 2 2. (1) q(2) 7. q T Tcos qq Tsin qE q 0 0 6 0 6 0 VP Kq KQ 2Q q mg 3. R R / 2 4 0 R 4 0 R q T sin 0 and T cos mg 4 . Let charges on B & C be Q then final charges on B At equilibrium tan FE q tan Q 3Q mg mg0 and C will be and respectively. 24 B C Q B C Q 3Q 8 . Due to two charges of opposite nature, E will be zero on the line joining the two charges and nearer 24 to the charge of smaller magnitude. Therefore FBC K Q / 23Q / 4 3 F E r2 8 5 . At the distance of closest approach x=0 -2q x=L P +8q Kinitial = PEfinal 1 mv2 Kq1q2 r0 1 K8Q K2q 2 r0 v2 x2 x L 2 x 2L r20 v1 2 v 2 1 r10 +q -q r10 v2 2v 4 4 R2+d 2 Hence, r20 R 6. -Q -Q 9. 1 d 2 A B y q E x 1 q q q q Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 4 0 R D C V1 V2 R2 d2 R -Q -Q R 2 d2 On establishing equilibrium on charge at A q 1 1 2 0 A = R R2 d2 1 0 . An electric dipole when made to interact with a non- FAC kQ2 cos 45 ˆi sin 45ˆj uniform electric field in a direction other than the 2 2r direction of the electric field, experiences force as kQ2 well as torque. F; AD FAB r2 ˆi kQ 2 ˆj r2 18
JEE-Physics A B 2KQ2 Q a q 1mm 2mm F1 F2 a2 a a Q F2 11. KQ2 a F3 q ( 2a)2 5cm from (i) At equilibrium, the potential on the surface of both 2KQq KQ2 H F3 spheres will be same. Also, for equal potential a2 0 ( 2a)2 2KQq KQ2 Q = –2 2q a2 2a2 1 EA rB 2 E 1 8 . q = –100 × 1.6 × 10–19 C radius E B rA 1 V = –14volt W= qV = 2.24 × 10–16 J 1 2 . Distance of point A from origin 1 9 . r1 Q r.(4r2 )dr 4Q r14 Q'= dV 0 R 4 R4 4 A = 22 02 = 2 units Distance of point B from origin E = KQ ' 4 1 r12 Q r14 Q r12 r12 0 4R 4 4 0 R 4 B = 22 02 = 2 units 2k 2 q E As point A & B are situated at equal distance, 4 0 r r 2 0 . r ˆj ˆj so v =v AB A B v=v AB 1 3 . Potential remains same as it depends on algebraic 2 1 . Total charge r r 5 r 4r2 dr 4 R sum of charges but electric field E changes.Q0 dV 0 0 E r 5r2 r3 20 = 40 0 4 R dr 1 4 . V(x) = x2 4 The electric field E along all such lines where 5r3 r4 potential is a function of position = 40 1 2 4R E KQ 1 5 r3 r4 E 0 4 0 12 4R r2 4 r2 V x2 4 0 20 2x 40x 0 r 5 r So x 4 0 3 R x2 4 2 = x2 4 2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 E 40x ˆi At x = 4 m 22. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ x2 4 2 40 4 160 10 ˆi V /m Fe Fe/K 9 E 42 4 2 mg 144 Therefore K =2 Q mg=(1- 10 ..86 )= mg/2 1 5 . E(r) = 0 for 0 r < R = 4 0 r2 for r > R 1 6 . Here F1 F2 F3 0 ...... (i) 19
JEE-Physics F Net 2F sin 2 kqq 0 . y 2 3 . tan = Mg (since small) a2 y2 a2 y2 2 8 . force 1 2 F T cos T 2Fsin = Mg F = Mg FF T sin KQ2 x x2 Mg F x Mg Mg Mg y Q2 = K x3 Q = K x3/2 q q a a dQ Mg 3 x1/2 dx = constant 2kqq0 2kqq0y y dt K 2 dt a3 3 a2 y2 2 dx K Q dx so x–1/2 Or V x–1/2 v x–1/2 L dt 2 9 . 2L Potential at O ln(2) 2 4 . Er = – r –2ar Lx 4 0 L q dq = dx = q dx By gauss theorem 4r2Er = 0 L O x dx dq (4r2 dr) EXERCISE –V(B) By differention 4d (r2Er) = 0 0 r2dEr + 2rEr dr = 1 r2 dr 1 . Potential at origin will be given by 0 E r 2 r r Er 0 = –60a q 1 1 1 1 V = 4 0 x 2x0 3x0 4 x0 ... 2 5 . K = W = Q(VA – VB) q a 2aA q 0 2kq 2kq = q 1 1 1 1 1 ... 0 4 0 x0 2 3 4 = Q a 2a B a 5 2KqQ 1 – q – q = q n 2 = a 1 5 40 x0 2 . Net electrostatic energy of the configuration will be 2 7 . For uniformly charged sphere U=K q.q Q.q Q.q O Q 2 q 2a 2 2 Kqr a a E = R3 (r < R) Kq 3 . Electric lines of force never form a closed loop. Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 E = R2 (r = R) Therefore, options (B) and (D) are wrong. Electric Kq E = r2 (r > R) lines of force emanate from positive charge and terminate on negative charge, therefore, option(A) E is also wrong. (B) (D) 1 r2 so Er E (A) 4 . Potential decreases in the direction of electric field. Rr Dotted lines are equipotential lines. 20
JEE-Physics y 1 0 . There will be an electric field between two cylinders CE (using Gauss theorem). This electric field will produce a potential difference. () AB x 1 1 . Charge will be induced in the conducting sphere, but net charge on it will be zero. VA = VC and VA > VB q Qq q Q q 1 2 . Inside the cavity, field at any point is uniform and 5. x= a x=0 x=+a x=a x=x x=a non–zero. initial position final position 2KQq 1 1 Ui = a and Uf = KQq a x a x 2KQqx2 1 3 . A a,0,0 , B 0,a,0 U a3 for x<<a U x2 y 6. Electric field is zero everywhere inside a metal B Q x (conductor) i.e., field lines do not enter a metal. A Simultaneously these are perpendicular to a metal surface (equipotential surface). Q z Point charge is moved from A to B () A B VA = VB = 0 W=0 7 . According to option (d) the electric field due to P 120 1 4 . BC = 2Rsin 2 = 3 R and S and due to Q and T add to zero. While due to U and R will be added up. Hence, the correct option is (D). (D) P S Q T U R Bq 3 30° (D) C 30°120° 60° 2q 60° 60° O 8 . At any point over the spherical Gaussian surface, 3 30° 60° net electric field is the vector sum of electric fields Aq due to +q1, –q1 and q2. 3 Don't confuse with the electric flux which is zero Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 (net) passing over the Gaussian surface as the net • Electric field at O (O ) charge enclosing the surface is zero. +q1, –q1 1 2q 3 q R q2 =4 2 6 R 2 0 0 along negative X-axis. ( x ) 9 . All the three plates will produce electric field at P • The potential energy of the system is non zero along negative z–axis. Hence, P z– • Force between B & C B (B C ) 1 q 3 2q 3 = q2 2 kˆ Ep 0 4 54 2 kˆ 0 R2 2 0 20 2 0 20 3R 21
JEE-Physics • Potential at O (O ) Similarly, when it courses the origin, the force is again towards centre O. = 1 q q 2q 0 Thus, the motion of the particle is periodic for all 4 3 3 3 values of z0 lying between 0 and . 0 Secondly, if z0 <<R, (R2 + z02)3/2 R3 15. = q inclosed 0 O 3c 2c z0 (0 ) –7c –2C = Q1+Q2+Q3 z0 <<R, (R2 + z02)3/2 R3 0 – (Q2+Q1) 1 Qq 16. Q = 4 R 2 = k ( s a y ) Q1 + Fe – 40 R 3 z0 (From Eq. 1) 1 (Q 2+ Q –Q 1 Q + Q = 4(4R2) = 4k 1 2 1) Q + Q + Q = ( 4 ) ( 9 r 2 ) = 9 k i.e., the restoring force Fe –z0. Hence, the motion of the particle will be simple harmonic. 1 2 3 (Here negative sign implies that the force is On solving, Q : Q : Q : : 1 : 3 : 5 1 2 3 1 7 . Since torque about central charge is zero angular towards its mean position). momentum is conserved. ( Fe –z0 ) MCQ's 1Q 1. Let Q be the charge on the ring, the negative 2. Inside the sphere E= 40 R 3 r E r for rR charge –q is released from point P (0,0, z0). The 1Q electric field at P due to the charged ring will be E=40 R3 r E r (rR ) along positive z–axis and its magnitude will be i.e., E at centre = 0 (r=0) Q P (0,0, z0) –q P E = 0 (r=0 ) z– 1 Q 4 0 r2 and E at surface = (r = R) 1 Qz0 E = 1 Q 4 0 r2 E = R2 z 2 3/2 (r = R) 4 0 0 E = 0 at centre of the ring because z0 =0 Outside the sphere E 1 . Q (r R) or E 1 Therefore, force on charge P will be towards 4 0 r2 r2 centre as shown, and its magnitude is z0 =0 P E =0E4 1 . Q (r R ) E 1 r2 r2 0 Thus, variation of electric field (E) with distance (r) from the centre will be as follows : (E) (r) : 1 Qq Er Fe = qE = 40 . R 2 z20 3 / 2 z0 ..(i) Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 y x E Q E 1Q E 1 O -q E=40 R2 r2 R P(0,0,z0) z O r=R r Fe 22
JEE-Physics 3 . Under electrostatic condition, all points lying on Comprehension Bassed Question the conductor are in same potential. Therefore, (Ze) Ze potential at A=potential at B. Hence, option (C) is 1. E(4R2)= E = 4 R2 correct. From Gauss theorem, total flux through 00 q Independent of a (r) the surface of the cavity will be 0 . d A = B 2. dRr 1 (C) r q = 1 R d O r Charge contained r=R 0 4 . The given graph is of charged conducting sphere R 4 1 r R of radius R0. The whole charge q distributes on the = Ze = r 2 dr d surface of the sphere. 0 R0 = 4d R r 2 r3 dr = 4d R3 R4 R 3 4R 0 4 R 3 ; q = 4 3 32 5 . q = 1 2 3 2R R 2 dR 3 3Ze 1 = 4d 12 = 3 d = R 3 1 2 3 . For E r, charge density should be constant so a = R A R B 2R Subjective 2R 2R 1 . Capacities of conducting spheres are in the ratio of their radii. Let C1 and C2 be the capacities of S1 if E = 0 at point A then and S2, then C2 R net C1 r A E = 0 net kq1 kq2 0 q1 4 1 32 C 2 R q2 2 1 r 2R 2 5 R 2 S1 S2 C1 C2 C 25 25 if E = 0 at point B then (i) Charges are distributed in the ratio of their B E = 0 capacities. Let in the first contact, charge acquired kq1 kq2R q1 1 1 4 by S2, is q1,. Therefore, charge on S1 will be Q–q1. q2 2 2R 2 2R 3 2 S2 q1,. S1 Q–q1 (–q1') 6. Say it i s q'1. q 1 q1 C2 R q Q q1 C1 r P '1 AB It implies that Q charge is to be distributed in S2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 and S1 in the ratio of R/r. S2 Electric field at point P (P ) S1 Q R/r R q1 Q R r ...(i) AP BP AP BP AB = = In the second contact, S1 again acquires the same 3 0 3 0 3 0 3 0 = constant in both magnitude and direction at every charge Q. Therefore, total charge in S1 and S2 will point of overlap region. be (S1 Q Also E is non zero so potential is not same at all S1 S2 points. R Q + q 1 = Q 1 R r E This charge is again distributed in the same ratio. 23
JEE-Physics Therefore, charge on S2 in second contact,dV = 41 dq where x= H2 r2 S2 x 0 1 R R R R 2 dV 1 2rdr rdr R R 4 0 20 H2 r2 q1 = Q =Q R r R r H2 r2 r r Potential due to the complete disc Similarly(), R R 2 R 3 ra ra rdr R R Vp H2 r2 q3 = Q R r dV = 20 r r r0 r 0 R R 2 ... R n a2 H2 H and() qn = Q R r R r Vp = 20 R r a R R n a 1 rn Potential at centre,(O) will be VO = 20 H=0 r 1 R r qn = Q ...(i) S n 1 r a Therefore, electrostatic energy of S2 after n such contacts (O) VO = 20 H=0 n S2 (i) Particle is released from P and it just reaches point O. Therefore, from conservation of q 2 q 2 q 2 mechanical energy. n n n Decrease in gravitational potential energy Un = Un = = Increase in electrostatic potential energy 2C = 2 4 0 R 8 0 R (KE=0 because K1=Kf=0) where qn can be written from Eq. (2) P O (2) qn = (ii) qn = QR R r ... ... R n 1 (KE=0 because K1=Kf=0) Rr 1 R R r q mgh =q [VO–Vp] gH = m 20 as () n q = QR 1 QR R r Q R Rr R R r r r 1 R r a a2 H 2 H ...(i) S a q 40g q 2g 1 r m 20m q 2 Q2R2 / r2 U Q2R Substituting in Eq. (i), we get = 8 0R 8 0 r 2 U = 2C gH = 2g [a+H– a2 H2 ] 2 . Potential at a height H on the axis of the disc V(P): H Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 The charge dq contained in the ring shown in figure 2 =(a+H)– a2 H2 Potential of p due to this ring H H V(P) dq a2 H2 =a+ 2 P H2 +aH 3 H2 aH P(q,m) a2 + H2=a2 + 4 4 xH H= 4 a and H=0 H= 4 a 3 3 O r dr (ii) Potential energy of the particle at height a H = Electrostatic potential energy + gravitational potential energy H = 24
JEE-Physics + 3. In the figure () U=qV + mgH y Here V= Potential at height H + 27 / 2 m B +Q V= H + 3 / 2 m A q q U = 20 a2 H2 H mgH ...(ii) O x P V0 m x q0 At equilibrium position F= dU 0 – 3/ 2 m C q dH –27 / 2 m D +Q () Di fferen t i at i n g E q. ( i i ) w. r. t. H (ii) H q 1 2H 1 q = 1C=10–6C, q0 = + 0.1 C=10–7C 20 2 1 0 and mg + a2 H2 m=6 × 10–4kg and Q =8C = 8× 10–6C Let P be any point at a distance x from origin O. q 2mg Then 20 x P H 1 0 AP =CP = 3 x2 mg + 2mg a2 H2 2 2H 2H BP = DP = 27 x2 1+ a2 H2 –2 =0 a2 H2 =1 2 H2 1 a Electric potential at point P will be 3H2=a2 H= a2 H2 4 3 P From Eq. (ii), we can write U–H equation as 2KQ 2Kq V= (ii) U–H BP AP U=mg 2 a2 H2 H where () 1 K = 40 = 9× 109 N/m2/C2 (Parabolic variation) () U=2mga at H=0 (H = 0 ) a V 2 9 109 8 106 10 6 and () U=Umin = 3mga at H= 3 27 x2 3 2 2 x2 therefore, U–H graph will be as shown. U –H 8 1 U 27 x2 V = 1.8 × 104 3 x2 ..(i) 2mga 2 2 3mga Electric field at P is (P ) Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 O H= a H dV 3 E = – = 1.8 × 104 dx a 1 27 3 1 3 3 Note that at H= 3 , U is minimum. 2 2 2 2 2 2 8 x 2 x 2 (2x) a H = 3 U E=0 on x–axis where –x = 0 or a x–E = 0 –x = 0 Therefore, H= is stable equilibrium 81 3 = position. 27 3 / 2 3 3 / 2 2 2 x2 x2 H = a 3 25
JEE-Physics 43 / 2 1 v0 2q0V m 27 3 / 2 3 3/2 2 2 x2 x2 Substituting the values () 27 x 2 4 3 x 2 2 107 2.7 104 2 2 v0 = 6 104 v0 = 3 m/s 5 Minimum value of v0 is 3m/s This equation gives x= ± 2 m v0 3m/s The least value of kinetic energyof the particle at infinity should be enough to take the particle upto From eq. (i), potential at origin (x=0) is 55 (i), (x = 0) x=+ m because at x=+ m, E=0 22 8 1 V0 = 1.8 × 104 2.4 × 104 V 3 27 x=+ 5 m 2 2 2 Let K be the kinetic energy of the particle at x=+ 5 m E=0 origin. Applying energy conservation at x=0 and x= 2 Electrostatic force on charge q is zero or Fe=0. K x=0 x= 5 For at x> 2 m, E is repulsive (towards x–axis) 11 K + q0V0 = 2 mv02But 2 mv02 = q0V [from Eq. (ii)] 5 and for x< m, E is attractive (towards K=q0(V–V0) = (10–7) (2.7 × 104–2.4 × 104) K=3 × 10–4 J 2 negative x–axis). q Fe=0. 5 4. Given (): q=1C = 10–6C 2 x> m E (x– Fe v T=0 ) x< 5 m E ( x–) 2 5 mg Now, from Eq. (i), potential at x= m q 2 (i) x = 5 m 2 u 8 1 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 27 5 V= 1.8 × 104 3 5 m = 2 × 10–3 kg and = 0.8 m 2 2 2 2 Let u be the speed of the particle at its lowest point and v its speed at high point. At highest V = 2.7 × 104 volt point three forces are acting on the particle. Applying energy conservation at x= and v x= 5 m; 1 m v 2 q0V ...(ii) u 2 2 0 (i) Electrostatic repulsion () x= x= 5 m; Fe 1 q2 (outwards) () 4 0 2 2 1 m v 2 q0V ...(ii) 2 0 (ii) Weight () W =mg (inwards) () 26
JEE-Physics (iii) Tension () T (inwards) () 1 q2 =– 5.824 40 a T=0, if the particle has just to complete the circle and the necessary centripetal force provided by T=0, The binding energy of this system is therefore, 1 q2 W–Fe i.e.(), mv2 W Fe U 5.824 40 a 1 q2 So, work done by external forces in disassembling, v2 = m mg 40 2 this system of charges is ( 0.8 103 10 9.0 109 106 2 ) v2= 2 103 2 0.8 2 1 q2 W = 5.824 40 a v2 = 2.4 m2/s2 ...(i) 6. (i) Applying energy conservation principle, increase in kinetic energy of the dipole=decrease in Now, the electrostatic potential energy at the electrostatic potential energy of the dipole. lowest and highest points are equal. Hence, from conservation of mechanical energy. = KE of dipole at distance d from origin = Ui – Uf Increase in gravitational potential energy d = U i – U f = Decrease in kinetic energy. 1 q ˆi qp = p E pE 0 d2 4 0d2 KE=0– pˆi 4 = mg 2 1 m u2 v2 u2–v2=4g (ii) Electric field at origin due to the dipole, 2 Substituting the values of v2 from Eq. (i), we get E axis p E (i) v2 1 2p ˆi 4 0 d3 u2 = 2.4 +4 (10) (0.8) = 34.4 m2/s2 u= 5.86 m/s Force on charge q at distance d Therefore, minimum horizontal velocity imparted d q to the lower ball, so that it can make complete revolution, is 5.86 m/s. pq ˆi F qE 20 d3 5 . For potential energy of the system of charges, total 7 . Electric field near a large metallic plate is given by number of charge pairs will be 8C2 or 28 of these 28 pairs 12 unlike charges are at a separation a, E=. In between the plates the two fields will be Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 in opposite direction. Hence, 12 like charges are at separation 2 a and 4 E=. unlike charges are at separation 3 a. Therefore, the potential energy of the system Enet= 1 2 =E0 (say) () 8C2 28 28 12 0 a 12 Now, W=(q) (potential difference) =q (E0acos45°) 2a 4 W=(q) () =q (E0acos45°) 3 a 1 2 a 1 2 qa =(q) 0 2 = 1 12 q q 12 qq 4 q q 20 U= 40 a 3a 2a 27
JEE-Physics 8 . Let q be the charge on the bubble, then 9 . E 4r2 = kra 4r2dr q 0 Kq Here K= 1 q Va ra2dr r dr V= 4 0 K R E(r2) = a 0 Let after collapsing the radius of droplet becomes R, then equating the volume, we have r a 3 r a 1 R E(r2) = a 3 0 E = a 3 0 4 1 R a1 1 (4a2)t = R3 R= (3a2t)1/3 E(R/2) = E E(R) 2 = (R) 8 3 8 Kq 2a+1 = 23 a=2 Now, potential of droplet will be V' = R () Substituting the values, we have () K Va a 1/3 K V'=V 3t V 3a2 t1 / 3 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-07 & 08\\01-Electrostatics.p65 28
JEE-Physics UNIT # 09 MAGNETIC EFFECT OF CURRENT EXERCISE –I iB cos 1 1 . For constant velocity a=0 = gsin – m 0 I 0 I BO B arc B st.wire = 2 R 2 R 1 . kˆ kˆ B mg tan i 2. B = 0 I 2 R n2r r R 1 2 . If I1 and I2 are in same direction, the attractive 2 R n force, F (per unit length) = 0 I1I2 0 In 2 d 2 B' = R / n n2B 0 2I1 I2 2F Now F' = – 2 3d 3 0 I1 3. B1 = 2 R 3 10 5 T 0 I2 1 3 . F = 0 I1I2 = 2 10 7 1 1 = 2 × 10–7 N/m 2 R 4 105 T 2 d 1 B2 = B = B 2 B 2 = 5 × 10–5 T 14. Angle between and is 1 2 M B 2 4 . Total magnetic field at point P is zero. 1 5 . F1 > F2 Fnet = F1 – F2 (attractive) 5. = 0 + 0 I 2kˆ AB B B arc B st.line 4 R 1 i F2 6 . Baxis = 2 (Bcentre) C F1 D 0 2R I 0 2 I 1 4 R 2 1 6 . M NIAnˆ 4 R2 x2 3 /2 = 1 × 10 × 0.1 × 0.1 i cos 60 kˆcos 30 x = 0.766 R = 0.05 ˆi 3kˆ A m2 7 . B due to closed loop is zero in all cases. B due to straight lead wires is non–zero in case (c). 17. B = 0 2e 2 0 1.6 1019 = 0 1019 T 8 . B due to XY wire on wire PQ is into the plane. 4 0.8 2 r T Force on wire PQ = id B 1 8 . L is along the axis of rotation but M is opposite Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 ˆi kˆ ˆj to it as it is negative charged. id i dB = B = (downward) 19. Force on electron, F qv B 9 . For radial component of magnetic field, the total F ˆj ev ˆi B Bˆ Bˆ kˆ force will be either in the upward or in the downward direction depending on the direction of 2 0 . FForcee von kˆcosmBicˆ jra y=s ,evBˆi (towards East) current. Force = ILB = I (2a) Bsin 1 0 . Force = I (Leff)B 1 e2 2 1 . Fe = 4 0 r2 Leff = length normal to B RQ 4 Fm = 0 e2v2 Fe 1 c2 Force = 5 × × 2 = 0.4 N 4 r2 Fm 0 0 v2 v2 100 1
JEE-Physics mv 2mK 32. 0 ; ˆi 0 ; 2 2 . R = qB = qB B z wire B y wire 2 a R1 m1 2 ˆj 0i 0i R 2 = m2 2 a B 2 a B x wire m1 = R1 ˆj ˆi m2 R 2 m v 2 m v 2 r1 v0B 2 3 . Electrostatic force on electron, Fe eEˆj 0 0 r2 E 33. qE = and qvB = r1 r2 Magnetic force on electron, 34. R = mv d v = qBd qB m Fm = ev ˆj Bkˆ = evBˆi The electron moves in circle with radius on x–axis. 2 4 . Positive charge moves to the left and negative E charge to the right. 3 5 . q E vB 0 v = B 2 5 . Magnetic force acts normal to velocity and hence mv mE KE does not change but momentum changes. Radius, R = qB qB2 2mK 8mK 9.1 1031 3.2 105 2 6 . R = qB ; R= 2qB ; = 1.6 1019 4 106 0.455m 2mK 4mK mv 2mqV d qB2d2 RP = qB ; Rd = qB qB qB 2 8V 36. R = m = 2 7 . The velocity, vector normal to B gives rise to magnetic force which rotates the charge particle 3 7 . v = (g sin)t m cot in a circle. The velocity vector parallel to B moves N = mg cos – qvB = 0 t = qB it in a straight line. The resultant is a helical path. 28. B = 0 I (sin 30° + sin 30°) 4 a cos 30 3 8 . Net force will have –x and +y 1 1 1 .... 0 I n 4 kˆ components I2 2 3 B 4 3a D I1 C 39. M B I E Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 29. F q B 0 q 10ˆi Bˆj 104 kˆ 0 MR2 v B = 103 Wb/m2 NIA × B × sin90° = 2 30. 0 I 0 I = 30I 1 × 4 × R2 × 10 × 1 = 2 R2 × B 4 2r 4 r 8r 2 = 40 rad/s2 3 1 . Magnetic field around a current carrying wire has 20 v2 B2 40. E = M0L0T0 circular symmetry. Hence zero B line lies in the c 2 same plane of wires. The locus of zero B is a straight line. 2
JEE-Physics EXERCISE –II 10. T = 2m = 2 R = mv | x| 1m qB qB | x| B1 0 i1 2 (2 r ) 1 1. B2 2r 3 i1 1 At t = ; charge will complete half circle. i2 0i2 6 x = 0; y = 1 qE t2 1 1 1 2 = 2 2 m 2 1 2 2 . Effective resistance in each upper and lower arms are equal. Hence equal currents flows and z = 2R = 2m produces zero M.F. in P and R configuration. 1 3 i j) 1k i 3 j F qv B 2 11. 1 2 ( 3. Ig = 150 × 10–3 = 0.015 A i 3 j 10 R mv 1 1 Vg R qB 1 1 1 r2 r1 2 Ig 150 × 10–3 = 0.075 V G = Vg = 2 = 5 If R = resistance to be added in series, I (G+R)=V i 3 j ( 3i j) 0.015 (5+R) = 150 × 1 R = 9995 r2 =centre's coordinates = 2 4. A and B observe electrostatic fields. But B observes 12 . Effective length, length normal to B , remains magnetic field due to moving charge. same. v Z 13. t 2 /6 m /6 ×××××××××× qB / m 3qB ××× C /6 B,D Distance travelled 5. AY × 30º×× x m v v ×××××××× = RQ = 3 qB ×× × ×× ××× ×× × ×× × ××××× ×× A and C have same M.F. and B and D have same Velocity of exit = v0 (cos 60i sin 60j) M.F. / 2 2 2 t t T (2m / qB ) 6 . In B1 and B4 M.F. add up. 14. In B2 and B3, M.F. oppose each other. 7. 0 I1 k 0 I2 j t m R R mv B 2qB 2v qB 2 (AP) 2 (PB) 2 10 7 2 k 2 107 3 j 1 5 . Work done by E.F. = qE2a = 1 m(4v2–v2) 1 0 2 2 102 2 3mv2 E (3 105 T )j (4 105 T )k 4qa Rate of work done by E.F. at ××× 3 mv2 3mv3 qE.v 4 qa 4a Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 ××× P = = qv = 8. R = mv v =2d 4d × × × Rate of work done by E.F. and qB B ××× ××× M.F. at Q : q (E.v B ) = 0 v .v Angle substended at the centre = 2mK 1 6 . R H qB = R Time to stay in magnetic field T H+ He+ 2 B 2 2mK O2+ R He qB =2 R 9. 2mK R O2 2 qB 2R H+ is deflected most 3
JEE-Physics d d 2 3 mv0 3 v0 3 Ampere's Law B2 2 4 2 qB0 2 B0 2 17. = 0 J 27. R sin = R ; = /3 B 0 .dJ ˆj Bnet = 2B = 0 dJˆj ×××××××× v0 4 2 /3 × × × × × ×R× × qv i j B(k ) i j × × × × ×/3× × × ( 3/2R,0) F 2 2 ×××××××× 18. = qvB ×××××××× ×××××××× ×××××××× ×××××××× × × × × (0×,0)× × × F i j x-coordinate 2 3 2 = R v0 cos t 1 9 . From work energy theorem W = KE qE0x0 = 1 mv2 3v0 v0 2 2B0 2 t 3B0 E0x0 = 1 (42 + 32) x0 25 (i j) ()qv 0Bk 2 2E 0 F qv B B 28. qv 0 F ev B 20. 2 m 2 t 2 qB qB T 2 m qB 2j 2i (B1 i j k T t = e B2 B 3 ) B2 = 0 2i = –e 2j (B1 i B2 j B 3 k ) B1 = 0 v0 X = v0t = B 0 ; Y = 0 Z = –2R 2Mv 0 2v0 Then e 2k ( B 3 k ) 0 F 2B 0 B 0 v 2M v 2 9 . In magnetic fieldy the path is circle and the motion 2 1 . T1 = QB =T0 is uniform. 2 (2 M ) B × × × × × × T2 = QB = 2T0 v||=vcos × × × × × × They will meet at time 2T0. B P × R × × × × × v0 × × × × × × × × 4Mv cos v × 2( ) × QB × ×R × × Distance from origin=vcos × 2T0 ×× Q× × × × × × 2 2 . Impulse = change in momentum ×××××× m 2gh v = v0 2gh 0) itq = B (iBt) = m ( 2mv0 sin 2 qB T t PQ = 2R sin = 2 3 . F = 0 mg sin – f = 0, f = mg sin ...(i) 2 2( ) t 2m( ) Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 T = 0 MB sin– fR = 0 2m t Bq iR2 Bsin = mgsinR B = mg qB iR 3 0 . Leffective = AB = 4j 24. M B IA (k ) B ( j) IAB ( i ) (Leftward) | F|| IL B | = ILeff B =2. 4j × 4 (– k ) = –32 i N 22 j BB 2IRB0 k F IL B I 2 5 . In configurations (C) and (D) , equal currents flow 31 . R in each arm. Hence B at centre will be zero. Possible values of B B0 i and B B0 (i j) F 26. q(v cos j v sin k ) Bj qvB sin (i) 22 Hence the x-coordinate of proton can never be +ve. 3 2 . Force acting on unit length = B0I 4
JEE-Physics 0 i 0i r2 R 2 33. T M B 2 r 2r 2 For outer cylinder B = Torque is directed at right angle to hour hand. R 2 R 2 Hence minute hand will be in the direction of 3 2 torque after 20 minutes. T = M × B × sin = NIAB sin 90 43. 6 2 (0.15)2 70 1 = 0.0594 Nm AB AB AB 1000 I1 I2 I 3 4 . The lines of force will be concentric circles with IR2 I R / 22 centres on wire. I1 = ; I2 = All points lying on the circle have same magnitude 3R2 3R2 of magnetic field. 4 4 Magnetic field at a point from the wire varies inversely with distance from the wire. Field at A = B I1 B I2 = 0 + 0i ˆj 3 R 3 5 . Magnetic field exerts force on a moving charge Field at B = B I1 B I2 = 0I ˆj 0 normal to it and the force also acts normal to both 3 R of them and hence kinetic energy remains same. 0ic T1 2 m 2m 1 44. BC B I1 B I2 = 0 T2 qB qB 2b2 a2 36. a = b mv sin 30 mv sin 60 tan 30 45. add up is the left and the right zone. But in the qB qB B middle zone B becomes zero. v sin 60T 4 6 . Baxial point c = v|| × T = v sin 30T = tan 60° bc = 1 = a abc = 1 0 M 2 10 7 8 2 10 4 T 4 r3 = 2 = 0 .2 3 38. 0 vb 0 M 04 T F q[E v B] | E|| v B|| vB| 4 r3 Beq. point = E 2E v B 2B (direction remaining same) 39. 0 vB MB F q[E v B] | E || v B | 4 7 . W = MB (1–cos 60°) = E =|1.5×10–6( j ) × 1( k )| 2 MB = |1.5 × 10–6 i | N/C T = MB sin60° 3 2 3 W RA (mv / qB)A mA 12 1 4 8 . MB sin = T M × 0.16 × 2 = 0.032 R B (mv / qB)B mB 13 M = 0.4 J/T Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 0 I 2 sin 90 45 = 2 1 0I kˆ 49. Both rings experience torque due to other's BP 4 R/ magnetic field . 4 R 40. Q 5 0 . Charge per unit area = R 2 +e I dr Charge on elemental ring, r 41. d d dQ = Q 2rdr = 2Qrdr R 2 R2 e I B at centre = 0 dQ Equivalent form 2 r 2 B at mid point = 0 R 4 2 . For inner cylinder B = 0 ir = 0 2Q 0Q 4 R2 dr = 2R 2 R 2 1 0 B = 0 i 2 r F qv B 5 1 . For air space 4ˆi 3ˆj 1013 1.6 1019 5
JEE-Physics 2.5 107 kˆ B1ˆi B2ˆj B3kˆ EXERCISE –III B1 = – 0.075, B2 = + 0.1 Fill in the blanks : F qv B ; q= – 1.6 × 10–19 Again : 1.5ˆi 2ˆj 107 0.075ˆi 0.1ˆj B3kˆ 1 . Magnetic field exerts force on moving charges (free electrons). B3=0 B 0.075ˆi 0.1ˆj 2 L iL2 52. 0 I kˆ 0 I sin sin kˆ 2. L= 2R M = iA = iR2 = i 2 = 4 B0 2 2 4 R 4 R cos 2 0 I 2 kˆ 3 . M=(qf) A=(1.6 × 10–19) × (1016) × × (0.5 × 10–10)2 B0 4 R 2 = tan 0 = 126 × 10–23 Am2 4. e v ( i ) Bj = evB k B 0 is directed outwards. Felectrons 5 3 . vy = v0 All negative charges accumulate one face ABCD. Hence the potential of this face decreases. vx = qE 0 t ;v= v 2 qE 0 2 =2v0 t = 3mv0 Match the column m 0 m qE t 2m 1. (A) I = q T 2 m I v0 5 4 . T = qB (Time period of rotation) T qB 2. For motion in E.F. q q Mv 2 x T T qB 1 at2 1 qE t2 (B) M= IA = R 2 M v2 2 2 m 3. s = ut + 0 = vt – 2mv vB (C) B = 0 qv B v2 t = qE =nT n = E = An integer 4 r2 mv R mv =R0 5 5 . Radius, R = qB mv = qBR qB R where R sin = y; R (1–cos) =x Position 1 y2 RA = 2R0 4 R = 2 x x RB = –4R0 1 qB y2 RC = –2R0 2 mv = 2 x x y RD = +R0 3 5 6 . Rsin= d (A) Magnetic moment = NIA k mv sin 3mv (B) Torque = M k Bk 0 qB 5qB = 37° (C) P.E. = M k.B k MB Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 = 53° + = 90° (D) P.E. is minimum, equilibrium is stable mv 4. 5 7 . R = qB (A) B.d = 0 (i – i – i) = –0i The radius may be decease if v decreases or B increases. loop1 5 8 . Since B depends on x-coordinate the net force acts along -x axis. Y (B) B.d = 0 (i + i – i) = 0i loop2 (C) B.d = 0 (i – i – i) = –0i loop3 F (D) X B.d = 0 (i – i + i) = 0i Z loop4 6
JEE-Physics 5 . Since magnetic moment = 0 hence torque = 0 C o m pr eh ens io n# 2 (A) B0 i | i B 2 iB 23B0 v0cos6600 B0 B F | 2 v0 B0/2 (B) B0 j | i B 2 iB B F | 2 B0 (i j) i eff B 0 v0sin60=23 v0 B | F| 2 (C) (Leff =0) 2 2 1. 2m v0 1 2m Mv 0 B F Pitch = v0cos60 qB0 2 qB 0 qB 0 (D) B 0 k iB 2 iB 2 2 iB 2 2 6 . A charge at rest produces E.F. 3 A charge with uniform velocity produces 2 . z component of velocity is 2 v0 after M.F. + E.F. T m An accelerated charge produces t M.F. + E.F. +EM waves. 4 2B0q 7 . (A) M = q r2 qr2 2 2 3. (z-coordinate)max 2R mv0 3 2 qB0 2 (B) M q r2 qr2 3mv0 2 2 qB 0 4 . When z-co-ordinate has maximum value its velocity (C) M R q (2 rdr ) r 2 qr 2 = v0cos60° (i cos 60 j sin 60) 0 R 2 2 4 i 3 j v0 v 0 (i 3 j) /2 q 2 2 4 (D) M / 2 4R 2 (2R cos )(Rd) 2 (R cos )2 qr 2 Comprehension#5 From graph : 1 . rc > ra 3 2 . (Bmax)a > (Bmax)c (E) M R 4 q (R 2 y2 )dy (R 2 y2 ) R 3 R 3 2 0 Jr 3. B 2 for a and c : Jara = Jcrc Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 qr 2 Ja > Jc ( rc > ra) Comprehension#6 5 1 . Force per unit length Comprehension#1 = mg =g = 0 I1 I2 d = 0 I1I2 2 d 2 g 1 . =I M B I 2. For equilibrium, the magnetic force must be repulsive for the upper wire. Hence currents must (3i 4j) (4i 3j) = I = 10–2 be opposite in each wire. = 2500 rad/s2 2. 1 I2 = U 1 × 10–2 × 2= Umax – Umin = 25 3 . Total mechanical energy change s due to 2 2 displacement from mean position. = 50 2 rad/s 4 . If P.E. due to M.F. is same, the P.E. due to gravity is different. 7
JEE-Physics EXERCISE –IV(A) 7 . BO Barc BMN 1 . From Biot–Savart law : 0 I 3 0 I 1 1 4 R 2 4 R/ 2 2 = 2 id ˆi ˆj r BP 0 107 10 xˆi yj 4 r3 = 12 12 3 / 2 B0 = 3.35 × 10–5 T = 7 .0 7 1 0 10 kˆ T where x y 103 m 8 . B d =0I = 0 (I1 + I2 + I3 – I4 – I6) = 0 (1 + 2 + 3 –1 –4) = 0 2 . B O B SM B SQ BLR B RP = 0 + 0 i kˆ 0 0 i kˆ 9. F = qvdB = e J B = e I B 4 d 4 d e A e = 10–4 k T (d = 0.02 m, i = 10A) IB 5 0.1 = 10 5 1029 = = 5 × 10–25N A 3 . B P B due to B due to long wire square 1 0 . Magnetic moment = 0 a i 2 0 a i 1 1 4 kˆ of the system r dr 2 / 4 2 / 2 2 2 2 10i Adq q dr q2 BP T 0 6 a = Adi = r 2 = 2 4 . B O B PQ B QS B SR B RP = 2B PQ 2B QS 11. For wire r + 2r = ; r = 2 = 2 × 0 I a a b2 kˆ 4 a2 b / 2 a2 b2 Ir2 I 2 Magnetic moment, M = 2 = 2 2 2 0 I b b k 4 / (a 2) a2 b2 a2 b2 1 2 . (i) Initial torque = M B = MB sin90° = MB 20I a2 b2 Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 B 0 ab Final torque = MB sin 0° = 0 5. B0 = Barc + Bst. wires = 0 I – 0 I 2 0 I 4 R 4 R G = 2 radian 0 1 1 1 50 I (ii) KE = – U; 1 I2 MB , 2MB B0 4 r 2r 3r 2 4 r 2 I 6. I = 8
JEE-Physics 1 3 . (i) Magnetic moment, M = NIA EXERCISE –IV(B) = 2000 × 4 × 1.6 × 10–4 = 1.28 Am2 1. +q qvi B(k ) = qvB j F (ii) Torque, T= M B MB sin = 1.28 × 7.5 × 10–2 × 1 = 0.048 Nm + 2 i L+ v Force, Fnet = 0 + external = = qvB ( j) a F F 1 4 . (i) Torque on solenoid = MBsin = NIA B sin 30° 2. Y = 1000 × 2 × 2 × 10–4 × 0.16 × 1/2 F2 = 3.2 × 10–2 Nm a (ii) Work done = U QR = MB (cos 0° – cos 90°) = 1000 × 2 × 2 × 10–4× 0.16 × (1–0) I B a F3 = 0.064 J F1 S x P F4 iL (i) B(k ) 0 as (B=0) F4 F1 F3 0 1 5 . (i) Configurations AB1 and AB2 F2 iLi B(k ) = iLB j = ia(a) j = ia2 j have zero force and non–zero torques. 3 . For interval point : (ii) Potential energy of the configurations are r1 b (2 )r13 B.2r1 = 0 0 3 (i) br (2 rdr ) U AB1 0; U AB4 0 ; U AB3 0 ; U AB2 0 U AB5 0 ; U AB6 0 B = 0 br12 3 AB4 and AB5 are unstable and AB3 and AB6 are stable configurations. (ii) For external point :- (iii) Configuration AB6 has lower energy than configuration AB3 as magnetic field due to A at B3 B2r2= R B 0 bR 3 is half of the magnitude of magnetic field at B6. 2 r2 0 (br)(2rdr) 0 4 . Current I =n e (n no. of protons falling per sec) 1 6 . Net force on electron Force , F = mvn = mv I mIE [ E = vB] e eB I = 4A 0 v i vj 0 a tan 30 0 I1 x eE ev B d B a2 x2 a2 x2 I2dxB sin I2dx Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 6. F 2 a tan 60 600 = 0.1 T and kˆ B B 10 3 2 B 3 106 dx 18. B B smaller arc B bigger arc B st. line 30° a tan30° x 1 0 I kˆ 1 0 I kˆ 0 I 0 I 3 ˆj I1 60° a 4 2R 4 4R 4 R 4 R 4 I1 = ˆj = kˆ a tan60° 1 9 . Force on arc = I × Leff × B = I 2R B 0 I1I2 a / 3 xdx 0 2 a2 x2 4 where Leff is the shortest length of the arc. I1 I2 n3 (along –z axis) 3a 9
JEE-Physics 7 . From work energy theoram : 1 1 . (i) WMF + Wgravity =KE += mg –UMF – Ug = 0 MB = 2 mg I II 2 I2B = B = mg .2 (2R) = 0JR2 (k ) 2I BI 8 . F.T = m(v–u) b) 0 Ja2 (k ) B II.2(2R ILBt = m ( 2gh 0) qLB = m 2gh 0 J R a2 ( k ) B x2R R 4 4 2 b 10 1 q 1000 2 10 3 0.2 0.1 (ii) BI q 15 C BII 9 . Both particles collide after × × × completing semi-circle. q,m,v v,m,q Time to collide = T 2 m m B (B I B II cos )2 (B II sin )2 2 2qB qB 10. Let v xˆi v yˆj 0JR 0 JR a 2 2 0 Ja 2 b 2 v 4 4R2 b2 2(4R 2 b2 ) We know v 2 v 2 v0 ...(i) x y ˆi ˆj kˆ 1 2 . m 1 1026 k g vx vy 0 q q q 1.6 1019 C F v B v 1.28 106 m / s 0 0 B 0 1 y d kV 1 y v yˆi ˆjqv x B 0 1 y E z 102.4 m ma d d qB0 B y 8 102 wb / m2 m 1 y 1 y Force by electric field a xˆi a yˆj d ˆi d qB0 v y qB0 vx 10 19 103 kˆ N FE qE 1.6 102.4 max qB0 v y 1 y & ma y qB0 v x 1 y Force by magnetic field = Fm q d d v B = 1.6 1019 1.28 106 ˆi 8 102 ˆj N Node-6\\E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Solution\\Unit-9 & 12\\01.Magnetic effect of current.p65 mv y dv y qB0 v 2 v 2 1 y = 1.6 1019 102.4 103 k N dy 0 y d {By using equation (i)} {Till t = 6 × 10–6 sec} FE FM vy vy qB0 d 1 y So till t = 5 × 10–6 sec it moves without deflection m d So x coordinate = vt = 1.28 × 106 × 5 × 10–6 2 2 dv y 0 dy 0 y 0 v v = 6.4 m 3 qB0 d 2 So coordinate = (6.4 m, 0, 0) v0 2m v y v 2 0 After 2 sec E is switched off, so force on the particle is due to magnetic field which is towards v x v0 3 qB0 d +z axis. 2 m tt22 –=t1 7=. 425. 4×5 1×0 –160 s–6e csec 10
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420