اﻟﻤﻤﻠﻜﺔ اﻟﻌﺮﺑﻴﺔ اﻟﺴﻌﻮدﻳﺔ
Glencoe Mathematics © 2010 ASSESSMENT GUIDE- TEACHEAR EDITION Geometry www.obeikaneducation.com EAnllgrliigshhtEsdrietsieornveCdopyright© the McGrawHill CompaniesInc © Arabic Edition is published by Obeikan under agreement with © e McGrawHill CompaniesInc© 2008
(1) (1) (2A) (2B) (3)
4 ............................................................... 27 .................................................. 28 ...................................... 30 ............................... (2) (1) 8 .................................................. 31 ............................... (4) (3) 9 ...................................... 32 ................................... 11 .............................. (2) (1) 33 .............................................. 12 ............................... (4) (3) 34 ......................... (1) 13 ................................... 36 ...................... (2A) 14 .............................................. 38 ........................(2B) 15 ......................... (1) 40 ......................... (3) 17 ...................... (2A) 42 ................... 19 ........................(2B) 43 ............... (1, 2) 21 ......................... (3) 23 ................... 24 .......................(1)
65 .................................................. 46 .................................................. 66 ...................................... 47 ...................................... 68 ............................... (2) (1) 49 .............................. (2) (1) 69 ............................... (4) (3) 50 ............................... (4) (3) 70 ................................... 51 ................................... 71 .............................................. 52 .............................................. 72 ......................... (1) 53 ......................... (1) 73 ...................... (2A) 55 ...................... (2A) 76 ........................(2B) 57 ........................(2B) 78 ......................... (3) 59 ......................... (3) 80 ................... 61 ................... 81 ....................................... 62 .................(1-3) 84 ...............................................
1 1ﻗﺒﻞ ﺑﺪﺀ ﺍﻟﻔﺼﻞ ﺍﻷﻭﻝ • ﺍﻗﺮﺃ ﻛﻞ ﺟﻤﻠﺔ. • ﻗ ﹼﺮﺭ ﻣﺎ ﺇﺫﺍ ﻛﻨﺖ ﻣﻮﺍﻓ ﹰﻘﺎ )ﻡ( ﻋﻠﻰ ﻣﻀﻤﻮﻧﻬﺎ ،ﺃﻭ ﻏﻴﺮ ﻣﻮﺍﻓﻖ )ﻍ(. • ﺍﻛﺘﺐ )ﻡ( ﺃﻭ )ﻍ( ﰲ ﺍﻟﻌﻤﻮﺩ ﺍﻷﻭﻝ ،ﻭﺇﺫﺍ ﻛﻨﺖ ﻏﲑ ﻣﺘﺄﻛ ﹴﺪ ﻣﻦ ﻣﻮﺍﻓﻘﺘﻚ ﻓﺎﻛﺘﺐ )ﻍ ﻡ(. 2 1 (1ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﻫﻮ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻟﺬﻱ ﻳﺴﺘﻌﻤﻞ ﺍﻟﺤﻘﺎﺋﻖ ﻟﻠﻮﺻﻮﻝ ﺇﻟﻰ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﻤﻨﻄﻘﻴﺔ. (2ﺍﻟﺘﺨﻤﻴﻦ ﻫﻮ ﺗﻮﻗﻊ ﻳﺴﺘﻨﺪ ﺇﻟﻰ ﻣﻌﻠﻮﻣﺎﺕ ﻣﻌﺮﻭﻓﺔ. (3ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻫﻲ ﻋﺒﺎﺭﺓ ﻣﺮﻛﺒﺔ ﺗﻨﺘﺞ ﻋﻦ ﺭﺑﻂ ﻋﺒﺎﺭﺗﻴﻦ ﺑﺄﺩﺍﺓ ﺍﻟﺮﺑﻂ \"ﺃﻭ\". (4ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﺑﺼﻴﻐﺔ )ﺇﺫﺍ ﻛﺎﻥ ...ﻓﺈﻥ (...ﺗﺴﻤﻰ ﻋﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ. (5ﺗﻜﻮﻥ ﺍﻟﻌﺒﺎﺭﺗﺎﻥ ﻣﺘﻜﺎﻓﺌﺘﻴﻦ ﻣﻨﻄﻘ ﹼﹰﻴﺎ ،ﺇﺫﺍ ﻛﺎﻥ ﻟﻬﻤﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﻧﻔﺴﻬﺎ. (6ﹸﺗﺴﺘﻌﻤﻞ ﺍﻷﻣﺜﻠﺔ ﰲ ﺍﻟﺘﱪﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻻﺳﺘﻨﺒﺎﻁ ﺍﻟﻨﺘﻴﺠﺔ. (7ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﻫﻲ ﻋﺒﺎﺭﺓ ﺭﻳﺎﺿﻴﺔ ﻳﺘﻌﻴﻦ ﻋﻠﻴﻚ ﺇﺛﺒﺎﺕ ﺻﺤﺘﻬﺎ. (8ﺍﻟﻔﻘﺮﺓ ﺍﻟﺘﻲ ﹸﺗﻜﺘﺐ ﻟﺘﻮﺿﻴﺢ ﺍﻷﺳﺒﺎﺏ ﺍﻟﺘﻲ ﺗﺠﻌﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴ ﹰﺤﺎ ﺗﺴﻤﻰ ﺑﺮﻫﺎ ﹰﻧﺎ ﺣ ﹼﹰﺮﺍ. (9ﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﺟﻤﻴﻊ ﺧﺼﺎﺋﺺ ﺍﻟﻤﺴﺎﻭﺍﺓ ﻭﺍﻟﻤﺴ ﹼﻠﻤﺎﺕ ﻭﺍﻟﻨﻈﺮﻳﺎﺕ؛ ﻟﺘﺒﺮﻳﺮ ﺧﻄﻮﺍﺕ ﺍﻟﺒﺮﻫﺎﻥ. (10ﻋﻨﺪﻣﺎ ﺗﺜﺒﺖ ﺻﺤﺔ ﻋﺒﺎﺭﺓ ،ﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻟﻬﺎ ﻹﺛﺒﺎﺕ ﻋﺒﺎﺭﺍﺕ ﹸﺃﺧﺮ. (11ﻋﻼﻗﺔ ﺗﻄﺎﺑﻖ ﺍﻟﺰﻭﺍﻳﺎ ﻫﻲ ﻋﻼﻗﺔ ﺍﻧﻌﻜﺎ ﹴﺱ ﻭﺗﻤﺎﺛ ﹴﻞ ﻻ ﻋﻼﻗﺔ ﺗﻌ ﱟﺪ. 2ﺑﻌﺪ ﺇﻛﲈﻝ ﺍﻟﻔﺼﻞ ﺍﻷﻭﻝ • ﺃﻋﺪ ﻗﺮﺍﺀﺓ ﻛﻞ ﺟﻤﻠﺔ ﺃﻋﻼﻩ ،ﺛﻢ ﺍﻣﻸ ﺍﻟﻌﻤﻮﺩ ﺍﻷﺧﻴﺮ ﺑﻜﺘﺎﺑﺔ )ﻡ( ﺃﻭ )ﻍ(. • ﻫﻞ ﺗﻐ ﹼﻴﺮ ﺭﺃﻳﻚ ﻓﻲ ﺍﻟﺠﻤﻞ ﺍﻟﺴﺎﺑﻘﺔ ﻋ ﹼﻤﺎ ﻫﻮ ﻓﻲ ﺍﻟﻌﻤﻮﺩ ﺍﻷﻭﻝ؟ • ﺍﺳﺘﻌﻤﻞ ﻭﺭﻗ ﹰﺔ ﺇﺿﺎﻓﻴ ﹰﺔ ﺗﺒ ﹼﻴﻦ ﻓﻴﻬﺎ ﺳﺒﺐ ﻋﺪﻡ ﻣﻮﺍﻓﻘﺘﻚ ﻋﻠﻰ ﺑﻌﺾ ﺍﻟﺠﻤﻞ ،ﺩﺍﻋ ﹰﻤﺎ ﺫﻟﻚ ﺑﺎﻷﻣﺜﻠﺔ ﺇﻥ ﺃﻣﻜﻦ. 1 8
1 ﻫﺬﻩ ﻗﺎﺋﻤﺔ ﺑﺎﳌﻔﺮﺩﺍﺕ ﺍﳉﺪﻳﺪﺓ ﺍﻟﺘﻲ ﺳﺘﺘﻌﻠﻤﻬﺎ ﰲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺘﻚ ﺍﻟﻔﺼﻞ .1ﺍﻛﺘﺐ ﺗﻌﺮﻳ ﹰﻔﺎ ﺃﻭ ﻭﺻ ﹰﻔﺎ ﻟﻜﻞ ﻣﻔﺮﺩﺓ ﰲ ﺍﳉﺪﻭﻝ ﺣﲔ ﺗﻈﻬﺮ ﻟﻚ ﰲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺔ ﺍﻟﻔﺼﻞ ،ﺛﻢ ﺃﺿﻒ ﺭﻗﻢ ﺍﻟﺼﻔﺤﺔ ﺍﻟﺘﻲ ﻭﺭﺩﺕ ﻓﻴﻬﺎ ﺍﳌﻔﺮﺩﺓ ﺃﻭﻝ ﻣﺮﺓ ﰲ ﺍﻟﻌﻤﻮﺩ ﺍﳌﺨ ﱠﺼﺺ .ﺍﺳﺘﻌﻤﻞ ﻫﺬﻩ ﺍﻟﻘﺎﺋﻤﺔ ﰲ ﺃﺛﻨﺎﺀ ﺍﳌﺮﺍﺟﻌﺔ ﻭﺍﻻﺳﺘﻌﺪﺍﺩ ﻻﺧﺘﺒﺎﺭ ﺍﻟﻔﺼﻞ. ﺍﻟﺘﺨﻤﲔ ﺍﻟﺘﱪﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﺍﳌﺜﺎﻝ ﺍﳌﻀﺎﺩ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ ﺍﳌﺮﻛﺒﺔ ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﻌﺒﺎﺭﺓ ﻋﺒﺎﺭﺓ ﺍﻟﻮﺻﻞ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﴩﻃﻴﺔ ﺍﻟ ﹶﻔﺮﺽ 1 9
1 ﺍﳌﻌﺎﻛﺲ ﺍﻹﳚﺎﰊ ﺍﻟﻌﻜﺲ ﺍﳌﻌﻜﻮﺱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﴩﻃﻴﺔ ﺍﳌﺮﺗﺒﻄﺔ ﺍﻟﺘﻜﺎﻓﺆ ﺍﳌﻨﻄﻘﻲ ﺍﻟﺘﱪﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﳌﻨﻄﻘﻲ ﺍﳌﺴ ﹼﻠﻤﺔ ﺍﻟﱪﻫﺎﻥ ﺍﻟﱪﻫﺎﻥ ﺍﳊﺮ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﱪﻫﺎﻥ ﺍﳉﱪﻱ ﺍﻟﱪﻫﺎﻥ ﺫﻭ ﺍﻟﻌﻤﻮﺩﻳﻦ 1 10
(1-1,1-2) (1) 1 ________________(1 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: (1ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ،ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ∆ABCﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ. \" (2ﺇﺫﺍ ﻛﺎﻧﺖ ∠Aﹶﻭ ∠Bﻣﺘﺘﺎﻣﺘﻴﻦ ،ﻓﺈﻥ ،\"m ∠A=45ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻳﺒ ﱢﻴﻦ ﻋﺪﻡ ﺻﺤﺔ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ________________(2 . ________________(3 (3ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ،(p ∧ q) ∨ rﺣﻴﺚ .(-4)2 > 0 :p :qﻟﻠﻤﺜﻠﺚ ﺍﳌﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﲔ ﺿﻠﻌﺎﻥ ﻣﺘﻄﺎﺑﻘﺎﻥ. :rﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻠﺘﺎﻥ ﳎﻤﻮﻉ ﻗﻴﺎ ﹶﺳﻴﻬﲈ ﻳﺴﺎﻭﻱ ،90°ﺗﻜﻮﻧﺎﻥ ﻣﺘﻜﺎﻣﻠﺘﲔ. ________________(4 (4ﺍﻓﺘﺮﺽ ﺃﻥ pﻭ qﻛﻼﻫﻤﺎ ﺧﺎﻃﺌﺔ ،ﻓﻤﺎ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ(p ∧ ∼q) ∨∼p :؟ ________________(5 (5ﺃﻭﺟﺪ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ .1, 4, 9, 16, 25, ….. (1-3,1-4)(2) 1 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ________________(1 (1ﺣ ﹼﺪﺩ ﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ: ﺇﻣﺎ ﺃﻥ x = 2ﺃﻭ ، x = -2ﺇﺫﺍ ﻛﺎﻥ .x2 = 4 ________________(2 (2ﺍﻛﺘﺐ ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ\" :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﻭﻣﺘﻄﺎﺑﻘﺘﻴﻦ ،ﻓﺈﻧﻬﻤﺎ ﻗﺎﺋﻤﺘﺎﻥ\". (3ﻣﺴﺘﻌﻤ ﹰﻼ ﻗﺎﻧﻮﻥ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺍﳌﻨﻄﻘﻲ ،ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺘﻴﺠﺔ ﺻﺤﻴﺤﺔ ﺃﻡ ﻻ ،ﺍﻋﺘﲈ ﹰﺩﺍ ﻋﲆ ﺍﳌﻌﻄﻴﺎﺕ________________(3 ، ﻭﺍﻛﺘﺐ \"ﺻﺤﻴﺤﺔ\" ﺃﻭ \"ﻏﲑ ﺻﺤﻴﺤﺔ\" ﺇﺫﺍ ﹸﻗﺪﺕ ﺍﻟﺴﻴﺎﺭﺓ ﺑﺴﺮﻋ ﹴﺔ ﺗﺰﻳﺪ ﻋﻠﻰ 65ﻣﻴ ﹰﻼ ﻓﻲ ﺍﻟﺴﺎﻋﺔ ،ﻓﺴﺘﻘﻊ ﻓﻲ ﻣﺨﺎﻟﻔﺔ ﻣﺮﻭﺭﻳﺔ. ﻭﻗﻊ ﻋ ﹼﲇ ﰲ ﳐﺎﻟﻔﺔ. ﻗﺎﺩ ﻋﻠ ﹼﻲ ﺳﻴﺎﺭﺗﻪ ﺑﺴﺮﻋﺔ ﺗﺰﻳﺪ ﻋﻠﻰ 65ﻣﻴ ﹰﻼ ﻓﻲ ﺍﻟﺴﺎﻋﺔ. ________________(4 (4ﺣ ﹼﺪﺩ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﺗﻨﺘﺞ ﻣﻨﻄﻘ ﹰﹼﻴﺎ ﻋﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ) (1ﹶﻭ ).(2 ) (1ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻤﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻓﺈﻥ ﻟﻪ ﺛﻼﺛﺔ ﺃﺿﻼﻉ ﻣﺘﻄﺎﺑﻘﺔ. ) (2ﺇﺫﺍ ﻛﺎﻧﺖ ﲨﻴﻊ ﺃﺿﻼﻉ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻘﺔ ،ﻓﺈﻥ ﻗﻴﺎﺱ ﻛﻞ ﺯﺍﻭﻳﺔ ﻣﻦ ﺯﻭﺍﻳﺎﻩ .60° (Aﺇﺫﺍ ﱂ ﻳﻜﻦ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻓﺈﻧﻪ ﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﻓﻴﻪ ﺯﻭﺍﻳﺎ ﻣﺘﻄﺎﺑﻘﺔ. (Bﺍﻟﺸﻜﻞ ﺍﻟﺬﻱ ﻟﻪ ﺛﻼﺛﺔ ﺃﺿﻼﻉ ﻣﺘﻄﺎﺑﻘﺔ ،ﻳﻜﻮﻥ ﻣﺜﻠ ﹰﺜﺎ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ﺩﺍﺋ ﹰﲈ. (Cﺇﺫﺍ ﱂ ﻳﻜﻦ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻓﻠﻴﺲ ﻓﻴﻪ ﺯﺍﻭﻳﺔ ﻗﻴﺎﺳﻬﺎ .60° (Dﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻓﺈﻥ ﻗﻴﺎﺱ ﻛﻞ ﺯﺍﻭﻳ ﹴﺔ ﻣﻦ ﺯﻭﺍﻳﺎﻩ .60° 1 11
(1-5, 1-6) (3) 1 ________________(1 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ﺣ ﱢﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﺟﻤﻠ ﹴﺔ ﻣﻤﺎ ﻳﻠﻲ ﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﻤﺎ ،ﺃﻭ ﺻﺤﻴﺤﺔ ﺃﺣﻴﺎ ﹰﻧﺎ ،ﺃﻭ ﻏﻴﺮ ﺻﺤﻴﺤﺔ ﺃﺑ ﹰﺪﺍ، ﻭﺑ ﹼﺮﺭ ﺇﺟﺎﺑﺘﻚ. (1ﻷﻱ ﻣﺴﺘﻘﻴﻢ ﻭﻧﻘﻄﺔ ﻻ ﺗﻘﻊ ﻋﻠﻴﻪ ﻳﻤﺮ ﺑﻬﻤﺎ ﻣﺴﺘﻮ ﻭﺍﺣﺪ ﻓﻘﻂ. ________________(2 (2ﻷﻱ ﺛﻼﺙ ﻧﻘﺎﻁ ﻳﻮﺟﺪ ﻣﺴﺘﻮ ﻭﺍﺣ ﹲﺪ ﻓﻘﻂ ﻳﺤﻮﻳﻬﺎ. ________________(3 (3ﺃﻛﻤﻞ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ: ﺇﺫﺍ ﻛﺎﻥ ،AB = BCﻭﻛﺎﻧﺖ ﺍﻟﻨﻘﺎﻁ A,B,Cﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ ،ﻓﺈﻥ .CA ________ B ________________(4 ﺍﺫﻛﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﻛﻞ ﻋﺒﺎﺭﺓ ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ : 4, 5 ________________(5 (4ﺇﺫﺍ ﻛﺎﻧﺖ ،x = 2ﻓﺈﻥ 2 = x ________________(6 (5ﺇﺫﺍ ﻛﺎﻥ ،x + 3 = yﻓﺈﻥ .x = y - 3 (6ﺣﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺨﻤﲔ ﺍﻵﰐ ﺻﺤﻴ ﹰﺤﺎ ﺃﻡ ﺧﺎﻃ ﹰﺌﺎ. ﻣﺴﺘﻮﻳﺎﻥ ﻣﺘﻘﺎﻃﻌﺎﻥ. ﻳﻤﻜﻦ ﺃﻥ ﻳﺘﻘﺎﻃﻊ ﺍﳌﺴﺘﻮﻳﺎﻥ ﰲ ﻧﻘﻄ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ ﻓﻘﻂ. (1-7, 1-8) (4) ________________(1 1 ________________(2 ________________(3 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ________________(4 _________________(5 ﺍﺫﻛﺮ ﺍﻟﺘﻌﺮﻳﻒ ﺃﻭ ﺍﻟﺨﺎﺻﻴﺔ ﺃﻭ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ :1 – 4 1 (1ﺇﺫﺍ ﻛﺎﻧﺖ ، DE FGﻓﺈﻥ . FG DE (2ﺇﺫﺍ ﻛﺎﻥ ،XY = WZﻓﺈﻥ.XY + TU = WZ + TU : (3ﺇﺫﺍ ﻛﺎﻥ m ∠1 + m ∠2 = 180° :ﹶﻭ ،m ∠2 + m ∠3 = 180°ﻓﺈﻥ .∠1 ∠3 (4ﺇﺫﺍ ﻛﺎﻧﺖ ∠1ﻭ ∠2ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ ،ﻓﺈﻥ .∠1 ∠2 (5ﺇﺫﺍ ﻛﺎﻥ ، m ∠A = (5x - 12)° :ﹶﻭ ،m ∠B = (2x + 18)°ﻭﻛﺎﻧﺖ ∠Aﻭ ∠Cﻣﺘﻜﺎﻣﻠﺘﻴﻦ، ﻭ ∠Bﻭ ∠Cﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﺃﻳ ﹰﻀﺎ ،ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x 12
(1-5 1-1) 1 __________(1 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: (1ﺣ ﱢﺪﺩ ﺃ ﹼﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﺗﻤﺜﻞ ﺗﺨﻤﻴﻨﹰﺎ ﻣﻨﺎﺳ ﹰﺒﺎ :ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﺍﻟﻨﻘﺎﻁ A,B,Cﺗﻘﻊ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ، ﻭﺃﻥ.AC + CB = AB : (Cﺗﻘﻊ Bﺑﲔ Aﻭ C (Aﺗﻘﻊ Cﺑﲔ Aﻭ B ∆ABC (Dﻣﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ (Bﺗﻘﻊ Aﺑﲔ Bﻭ C __________(2 (2ﺇﺫﺍ ﻛﺎﻧﺖ ﻛ ﱞﻞ ﻣﻦ pﻭ rﺻﺎﺋﺒﺔ q ،ﺧﺎﻃﺌﺔ ،ﻓﻤﺎ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ (~ p ∨q) ∧ r؟ __________(3 (Dﺍﳌﻌﻄﻴﺎﺕ ﻏﲑ ﻛﺎﻓﻴﺔ (Aﺻﺎﺋﺒﺔ (Bﺧﺎﻃﺌﺔ T (C __________(4 __________(5 (3ﺇﺫﺍ ﻛﺎﻧﺖ ﻛ ﱞﻞ ﻣﻦ pﻭ rﺻﺎﺋﺒﺔ q ،ﺧﺎﻃﺌ ﹰﺔ ،ﻓﻤﺎ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ (~ p ∨ q) ∨ r؟ (Dﺍﳌﻌﻄﻴﺎﺕ ﻏﲑ ﻛﺎﻓﻴﺔ ~ T (C (Bﺧﺎﻃﺌﺔ (Aﺻﺎﺋﺒﺔ ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 4ﻭ 5ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﻌﺒﺎﺭﺓ\":ﺇﺫﺍ ﹶﻧ ﱠﺼ ﹶﻒ ﻣﺴﺘﻘﻴ ﹲﻢ ﺯﺍﻭﻳ ﹰﺔ ،ﻓﺈﻧﻪ ﻳﻘﺴﻤﻬﺎ ﺇﻟﻰ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﻄﺎﺑﻘﺘﻴﻦ\"، ﻭﺍﻟﺒﺪﺍﺋﻞ ﺍﻵﺗﻴﺔ : (Fﺇﺫﺍ ﻗﺴﻢ ﻧﹺﺼ ﹸﻒ ﻣﺴﺘﻘﻴﻢ ) ( ABﺯﺍﻭﻳ ﹰﺔ ﺇﱃ ﺯﺍﻭﻳﺘﲔ ﻣﺘﻄﺎﺑﻘﺘﲔ ،ﻓﺈﻧﻪ ﻳﻨ ﹼﺼﻒ ﻫﺬﻩ ﺍﻟﺰﺍﻭﻳﺔ. (Gﻳﻨ ﹼﺼﻒ ﻧﹺﺼ ﹸﻒ ﺍﳌﺴﺘﻘﻴﻢ ) ( ABﺍﻟﺰﺍﻭﻳﺔ ،ﺇﺫﺍ ﻭﻓﻘﻂ ﺇﺫﺍ ﻗﺴﻤﻬﺎ ﺇﱃ ﺯﺍﻭﻳﺘﲔ ﻣﺘﻄﺎﺑﻘﺘﲔ. (Hﺇﺫﺍ ﱂ ﻳﻨ ﹼﺼﻒ ﻧﹺﺼ ﹸﻒ ﺍﳌﺴﺘﻘﻴﻢ ) ( ABﺍﻟﺰﺍﻭﻳﺔ ،ﻓﺈﻧﻪ ﻻ ﻳﻘﺴﻤﻬﺎ ﺇﱃ ﺯﺍﻭﻳﺘﲔ ﻣﺘﻄﺎﺑﻘﺘﲔ. (Jﺇﺫﺍ ﱂ ﻳﻘﺴﻢ ﻧﹺﺼ ﹸﻒ ﺍﳌﺴﺘﻘﻴﻢ ) ( ABﺍﻟﺰﺍﻭﻳﺔ ﺇﱃ ﺯﺍﻭﻳﺘﲔ ﻣﺘﻄﺎﺑﻘﺘﲔ ،ﻓﺈﻧﻪ ﻻ ﻳﻨ ﹼﺼﻔﻬﺎ. (4ﻣﺎ ﺍﻟﺒﺪﻳﻞ ﺍﻟﺬﻱ ﹸﻳﻌ ﹼﺪ ﻣﻌﻜﻮ ﹰﺳﺎ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟ ﹸﻤﻌﻄﺎﺓ؟ (5ﻣﺎ ﺍﻟﺒﺪﻳﻞ ﺍﻟﺬﻱ ﹸﻳﻌ ﹼﺪ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟ ﹸﻤﻌﻄﺎﺓ؟ __________(6 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: .a = 6 .2a2 = 72 (6 ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ ﻳﺒﻴﻦ ﻋﺪﻡ ﺻﺤﺔ ﻫﺬﺍ ﺍﻟﺘﺨﻤﻴﻦ. __________(7 (7ﺍﻛﺘﺐ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ ﺑﺼﻴﻐﺔ )ﺇﺫﺍ ...ﻓﺈﻥ:(... \"ﲨﻴﻊ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻘﺎﺋﻤﺔ ﻣﺘﻄﺎﺑﻘﺔ\". __________(8 (8ﺍﺳﺘﻌﻤﻞ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﻟﻤﻨﻄﻘﻲ ﻟﻜﺘﺎﺑﺔ ﻧﺘﻴﺠ ﹴﺔ ﺻﺤﻴﺤ ﹴﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ) (1ﹶﻭ ).(2 ) (1ﺟﻤﻴﻊ ﺍﻷﺳﻤﺎﻙ ﺗﺴﺒﺢ. __________(9 _________(10 ) (2ﺍﻟﺴﻠﻤﻮﻥ ﺃﺣﺪ ﺃﻧﻮﺍﻉ ﺍﻟﺴﻤﻚ. F K ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﻜﻞ ﺍﳌﺠﺎﻭﺭ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻟﺴﺆﺍﻟﲔ :9 , 10 (9ﺇﺫﺍ ﻛﺎﻧﺖ ، AB BCﻓ ﹺﺼ ﹺﻒ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﻨﻘﺎﻁ Aﻭ Bﻭ .C B C (10ﺳ ﹼﻢ ﻧﻘﺎ ﹰﻃﺎ ﺗﺤ ﹼﺪﺩ ﺍﻟﻤﺴﺘﻮ .K A 1 13 C02-23A-873959
1 ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺘﺨﻤﲔ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﴩﻃﻴﺔ ﺍﳌﺮﺗﺒﻄﺔ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻔ ﹾﺼﻞ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﴩﻃﻴﺔ ﺍﻟﱪﻫﺎﻥ ﺍﳊﺮ ﺍﻟﺘﱪﻳﺮ ﺍﻻﺳﺘﻘﺮﺍﺋﻲ ﺍﻟﱪﻫﺎﻥ ﺍﳉﱪﻱ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﻜﺎﻓﺆ ﺍﳌﻨﻄﻘﻲ ﺍﻟﻌﻜﺲ ﺍﳌﻌﻜﻮﺱ ﺍﻟﻔﺮﺽ ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﺟﻤﻠﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ﺻﺤﻴﺤﺔ ﺃﻡ ﺧﺎﻃﺌﺔ ،ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺧﺎﻃﺌﺔ ،ﻓﻐ ﹼﻴﺮ ﻣﺎ ﺗﺤﺘﻪ ﺧﻂ ﻟﺘﺠﻌﻠﻬﺎ ﺻﺤﻴﺤ ﹰﺔ: ________________(1 (1ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﻫﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﹸﺃﺛﺒﺘﺖ. (2ﺍﻟﻨﻈﺮﻳﺔ ﻫﻲ ﻋﺒﺎﺭﺓ ﺗﺼﻒ ﻋﻼﻗﺔ ﺃﺳﺎﺳﻴﺔ ﺑﻴﻦ ﻣﻔﺮﺩﺍﺕ ﺃﺳﺎﺳﻴﺔ ﻓﻲ ﺍﻟﻬﻨﺪﺳﺔ ،ﻭ ﹸﺗ ﹾﻘ ﹶﺒﻞ ﻋ ﹶﻠﻰ ﺃﻧﻬﺎ ________________(2 ﺻﺤﻴﺤﺔ ﻣﻦ ﺩﻭﻥ ﺑﺮﻫﺎﻥ. (3ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺗﻔﻴﺪ ﻣﻌﻨﻰ ﻣﻀﺎ ﹼﹰﺩﺍ ﻟﻤﻌﻨﻰ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﺻﻠﻴﺔ ،ﻭﻟﻬﺎ ﻋﻜﺲ ﻗﻴﻤﺔ ﺻﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻷﺻﻠﻴﺔ________________(3 ، ﹸﺗﺴﻤﻰ ﻧﻔﻲ ﺍﻟﻌﺒﺎﺭﺓ. ________________(4 (4ﺍﻟﺒﺮﻫﺎﻥ ﺍﻟﺬﻱ ﺗﻜﺘﺐ ﻓﻴﻪ ﻓﻘﺮﺓ ﺗﻔﺴﺮ ﺃﺳﺒﺎﺏ ﺻﺤﺔ ﺍﻟﺘﺨﻤﻴﻦ ﻳﺴﻤﻰ ﺍﻟﺒﺮﻫﺎﻥ ﺫﺍ ﺍﻟﻌﻤﻮﺩﻳﻦ. ________________(5 (5ﻳﻘﻮﻡ ﺍﻟﺘﺒﺮﻳﺮ ﺍﻻﺳﺘﻨﺘﺎﺟﻲ ﻋﻠﻰ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﺤﻘﺎﺋﻖ ،ﻭﺍﻟﻘﻮﺍﻋﺪ ﻭﺍﻟﺘﻌﺮﻳﻔﺎﺕ ﻭﺍﻟﺨﺼﺎﺋﺺ ﻟﻠﻮﺻﻮﻝ ﺇﻟﻰ ﻧﺘﺎﺋﺞ ﻣﻨﻄﻘﻴﺔ. ________________(6 (6ﻋﺒﺎﺭﺓ \" ﹸﻳﻘﻴﻢ ﻃﻼﻝ ﻓﻲ ﺍﻟﺮﻳﺎﺽ ﺃﻭ ﹸﻳﻘﻴﻢ ﻓﻲ ﺟﺪﺓ\" ﻣﺜﺎﻝ ﻋﻠﻰ ﻋﺒﺎﺭﺓ ﺍﻟ ﹶﻮ ﹾﺻﻞ . ________________(7 ﺃﻛﻤﻞ ﺍﻟﺠﻤﻞ ﺍﻵﺗﻴﺔ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﻤﻔﺮﺩﺓ ﺍﻟﻤﻨﺎﺳﺒﺔ ﻣﻦ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺃﻋﻼﻩ: ________________(8 (7ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺗﻠﻲ ﻛﻠﻤﺔ \"ﻓﺈﻥ\" ﻣﺒﺎﺷﺮﺓ ﻓﻲ ﻋﺒﺎﺭﺓ )ﺇﺫﺍ ...ﻓﺈﻥ ،(...ﹸﺗﺴﻤﻰ _____؟_____ ________________(9 (8ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﺗﻠﻲ ﻛﻠﻤﺔ \"ﺇﺫﺍ ﻛﺎﻥ\" ﻣﺒﺎﺷﺮ ﹰﺓ ﻓﻲ ﻋﺒﺎﺭﺓ )،ﺇﺫﺍ...ﻓﺈﻥ (..ﹸﺗﺴﻤﻰ ___؟______ _______________(10 1 ____ (9؟______ ﻫﻮ ﺗﻮﻗﻊ ﻳﺴﺘﻨﺪ ﺇﻟﻰ ﻣﻌﻠﻮﻣﺎﺕ ﻭﺣﻘﺎﺋﻖ ﻣﻌﺮﻭﻓﺔ. (10ﹸﻳﺼﺎﻍ ____؟______ ﺑﻨﻔﻲ ﺍﻟﻔﺮﺽ ﻭﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ. 14
(1) 1 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: __________(1 (1ﺃﻭﺟﺪ ﺍﻟﺤ ﹼﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ.92, 87, 82, 77, 72,….. : __________(2 __________(3 77 (D 67 (C 62 (B -5 (A (2ﺃ ﱞﻱ ﻣﻤﺎ ﻳﺄﺗﻲ ﹸﻳﻌ ﱡﺪ ﺗﺨﻤﻴﻨﹰﺎ ﻣﻨﺎﺳ ﹰﺒﺎ ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ Mﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ . BC M (Jﺗﻨﺼﻒ ∠C MC = BC (H BM = MC (G BM = BC (F (3ﺇﺫﺍ ﻛﺎﻥ a + b ≤ 8 :ﻭ ،a = 2ﻓﺈﻥ ،b ≤ 5ﻓﺄ ﱞﻱ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﹸﻳﻌ ﹼﺪ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ؟ b = a (D b = 6 (C b = 5 (B b = 3 (A p q ~p ~p ∨q ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 4ﻭ 5ﻣﺴﺘﻌﻤ ﹰﻼ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻤﺠﺎﻭﺭ. __________(4 TT (4ﻣﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﻲ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ p؟ TF FT T F F T (C F T F T (A FT T T F F (D F F T T (B __________(5 (5ﻣﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﻲ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ ~ p ∨ q؟ T F T T (J T T T T (H T T T F (G F F T F (F __________(6 (6ﻋ ﹼﻴﻦ ﺍﻟﻔﺮﺽ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ :ﺇﺫﺍ ﻛﺎﻥ ، x + 4 = 5ﻓﺈﻥ . x = 1 x + 4 = 5 (C (Aﺇﺫﺍ ﻛﺎﻥ ، x = 1ﻓﺈﻥ .x + 4 = 5 x = 1 (D (Bﺇﺫﺍ ﻛﺎﻥ x+4 ≠ 5ﻓﺈﻥ . x ≠ 1 __________(7 (7ﺃ ﱡﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﺗﻤ ﱢﺜﻞ ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ\" :ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻘﻄﻄﺔ ﺗﻄﻴﺮ ،ﻓﺈﻥ ﺍﻟﺒﻄﺔ ﺗﺰﺃﺭ\". (Aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻘﻄﻄﺔ ﻻ ﺗﻄﲑ ،ﻓﺈﻥ ﺍﻟﺒﻄﺔ ﻻ ﺗﺰﺃﺭ (C .ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻘﻄﻄﺔ ﺗﺰﺃﺭ ،ﻓﺈﻥ ﺍﻟﺒﻄﺔ ﺗﻄﲑ. (Bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺒﻄﺔ ﻻ ﺗﺰﺃﺭ ،ﻓﺈﻥ ﺍﻟﻘﻄﻄﺔ ﻻ ﺗﻄﲑ (D .ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺒﻄﺔ ﺗﺰﺃﺭ ،ﻓﺈﻥ ﺍﻟﻘﻄﻄﺔ ﺗﻄﲑ. __________(8 (8ﻋ ﹼﻴﻦ ﻣﻌﻜﻮﺱ ﺍﻟﻌﺒﺎﺭﺓ \" :ﺇﺫﺍ ﻛﺎﻥ ﻟﻠﻤﺜﻠﺚ ﺛﻼﺛﺔ ﺃﺿﻼﻉ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ ،ﻓﺈﻧﻪ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ\". (Aﺇﺫﺍ ﱂ ﻳﻜﻦ ﻟﻠﻤﺜﻠﺚ ﺛﻼﺛﺔ ﺃﺿﻼﻉ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ ،ﻓﺈﻧﻪ ﻟﻴﺲ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ. (Bﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻓﺈﻥ ﻟﻪ ﺛﻼﺛﺔ ﺃﺿﻼﻉ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ. (Cﺇﺫﺍ ﱂ ﻳﻜﻦ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻓﻠﻴﺲ ﻟﻪ ﺛﻼﺛﺔ ﺃﺿﻼﻉ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻟﻄﻮﻝ. (Dﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻻ ﺿﻠﻌﲔ ﰲ ﻣﺜﻠ ﹴﺚ ﻣﺎ ﻣﺘﺴﺎﻭﻳﲔ ،ﻓﺈﻥ ﺍﳌﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﲔ. __________(9 (9ﺃ ﱡﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﺗﻮﺿﺢ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﻟﻤﻨﻄﻘﻲ؟ [(p → q) ∧ q)] → p (C [(p → q) ∨ (q → r)] → (p → r) (A [(p → q) ∧ p)] → q (D [(p → q) ∧ (q → r)]→ (p → r) (B 1 15
(1) 1 _________(10 [(p → q) ∧ q)] → p (C (10ﺃ ﱞﻱ ﻣﻤﺎ ﻳﺄﺗﻲ ﻳﻮﺿﺢ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ؟ _________(11 [(p → q) ∧ p)] → q (D _________(12 [(p → q) ∨ (q → r)]→ (p → r) (A [(p → q) ∧ (q → r)] → (p → r) (B (11ﺍﳉﻤﻠﺔ\" :ﳛﺘﻮﻱ ﺍﳌﺴﺘﻮ ﻋﲆ ﺛﻼﺙ ﻧﻘﺎﻁ ﻋﲆ ﺍﻷﻗﻞ ﻟﻴﺴﺖ ﻭﺍﻗﻌ ﹰﺔ ﻋﲆ ﺍﳌﺴﺘﻘﻴﻢ ﻧﻔﺴﻪ\" ﺗﻜﻮﻥ: (Cﻟﻴﺴﺖ ﺻﺤﻴﺤﺔ ﺃﺑ ﹰﺪﺍ. (Aﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﲈ. (Dﺍﳌﻌﻄﻴﺎﺕ ﻏﲑ ﻛﺎﻓﻴﺔ. (Bﺻﺤﻴﺤﺔ ﺃﺣﻴﺎ ﹰﻧﺎ. (12ﺃ ﹼﻱ ﺃﻧﻮﺍﻉ ﺍﻟﺒﺮﺍﻫﻴﻦ ﺗﻜﺘﺐ ﻓﻴﻪ ﻓﻘﺮﺓ ﻟﺘﻔﺴﻴﺮ ﺍﻷﺳﺒﺎﺏ ﺍﻟﺘﻲ ﺗﺠﻌﻞ ﺍﻟﺘﺨﻤﻴﻦ ﺻﺤﻴ ﹰﺤﺎ ﻓﻲ ﻣﻮﻗﻒ ﹸﻣﻌ ﹰﻄﻰ؟ (Cﺍﻟﱪﻫﺎﻥ ﺍﳊﺮ (Aﺍﻟﱪﻫﺎﻥ ﺍﳍﻨﺪﳼ (Dﺍﻟﱪﻫﺎﻥ ﺫﻭ ﺍﻟﻌﻤﻮﺩﻳﻦ (Bﺍﻟﱪﻫﺎﻥ ﺍﳉﱪﻱ _________(13 ﺍﺧﺘﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ :13-15 _________(14 (13ﺇﺫﺍ ﻛﺎﻥ ،3x = 6ﻓﺈﻥ .x = 2 _________(15 _________(16 (Fﺍﳉﻤﻊ ﻟﻠﻤﺴﺎﻭﺍﺓ (Gﺍﻟﻄﺮﺡ ﻟﻠﻤﺴﺎﻭﺍﺓ (Hﺍﻟﺘﻌﺪﻱ ﻟﻠﻤﺴﺎﻭﺍﺓ (Jﺍﻟﻘﺴﻤﺔ ﻟﻠﻤﺴﺎﻭﺍﺓ (14ﺇﺫﺍ ﻛﺎﻧﺖ ، y = 10 ، x = 10 :ﻓﺈﻥx = y : (Cﺍﻟﺘﻌﻮﻳﺾ ﻟﻠﻤﺴﺎﻭﺍﺓ (Aﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﻤﺴﺎﻭﺍﺓ (Dﺍﳉﻤﻊ ﻟﻠﻤﺴﺎﻭﺍﺓ (Bﺍﻟﺘﲈﺛﻞ ﻟﻠﻤﺴﺎﻭﺍﺓ (15ﺇﺫﺍ ﻛﺎﻥ ،DS WXﻓﺈﻥ .DS = WX (Cﺗﻌﺮﻳﻒ ﺍﻟﻘﻄﻊ ﺍﳌﺴﺘﻘﻴﻤﺔ ﺍﳌﺘﻄﺎﺑﻘﺔ (Aﺍﻻﻧﻌﻜﺎﺱ (Eﺍﻟﺘﻌ ﹼﺪﻱ (Bﺍﻟﺘﲈﺛﻞ (Dﺍﳌﻌﻄﻴﺎﺕ ﻏﲑ ﻛﺎﻓﻴﺔ (16ﺇﺫﺍ ﻛﺎﻧﺖ A,N,Bﺛﻼﺙ ﻧﻘﺎﻁ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ ،ﻭﻛﺎﻥ ،AB + BN = AN ﻓﺄﻱ ﻧﻘﻄﺔ ﺗﻘﻊ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺘﻴﻦ ﺍﻷﺧﺮﻳﻴﻦ؟ N (C B (B A (A _________(17 (17ﺃﻭﺟﺪ ﻗﻴﻤﺔ xﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ55° (x + 30)° . _________(18 _________(19 125 (J 55 (H 35 (G 25 (F Geo-AS02-01-860179 A D (18ﺇﺫﺍ ﻛﺎﻥ m ∠ABD = 56°ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ،ﻓﺄﻭﺟﺪ .m ∠DBC BC 44° (C 124° (A Geo-AS02-02-8346°01(D79 56° (B (19ﺇﺫﺍ ﻗﺴﻤﺖ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻘﺎﺋﻤﺔ ﺇﻟﻰ ﺛﻼﺛﺔ ﺃﺟﺰﺍﺀ ﻣﺘﺴﺎﻭﻳﺔ ،ﻓﻤﺎ ﻗﻴﺎﺱ ﻛﻞ ﺯﺍﻭﻳﺔ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺼﻐﻴﺮﺓ؟ 90° (D 60° (C 45° (B 30° (A 1 16
(2A) __________(1 1 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ. G(eDo-AS02-04-8601(7C9 (1ﺃﻭﺟﺪ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻵﺗﻴﺔ: (B (A __________(2 -(027-860179ﺃ2ﻱ 0ﺍﻟSﺒAﺪﺍ-ﺋo9ﻞe7ﺍ1ﻵ0Gﺗﻴ6ﺔ ﹸﻳ-8ﻌ ﹼﺪ 6ﻣ0ﺜ-ﺎ ﹰ2ﻻ0ﻣSﻀﺎ Aﹰ-ﺩﺍoﻟ9ﻠeﻌ7ﺒﺎ1Gﺭ0ﺓ5n-826:ﻋ0ﺪ-ﹰﺩﺍ2ﻣ0ﻮSﺟ ﹰﺒAﺎ-ﺩﺍ9oﺋ ﹰ7eﻤﺎGeo-AS02-08-860G.1 0 (D -1 (C 4 (B 10 (A p q ~q p ∧~q ﺍﺳﺘﻌﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻤﺠﺎﻭﺭ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 3, 4 __________(3 TT (3ﺃ ﱡﻱ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻵﺗﻴﺔ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ ~q؟ TF FT F T F T (C F F T T (A FF T F T F (D T T F F (B __________(4 (4ﺃ ﱡﻱ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻵﺗﻴﺔ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ p ∧ ~ q؟ __________(5 T F T F (D F T F T (C T T F F (B F T F F (A (5ﻋ ﹼﻴﻦ ﺍﻟﻨﺘﻴﺠﺔ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ\" :ﺳﻴﺬﻫﺐ ﺻﺎﻟﺢ ﺇﻟﻰ ﺍﻟﻤﺪﺭﺳﺔ ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻴﻮﻡ ﻫﻮ ﺍﻷﺣﺪ\". (Cﺍﻟﻴﻮﻡ ﻫﻮ ﺍﻷﺣﺪ. (Aﺳﻴﺬﻫﺐ ﺻﺎﻟﺢ ﺇﱃ ﺍﳌﺪﺭﺳﺔ. (Dﺍﻟﻴﻮﻡ ﻟﻴﺲ ﻫﻮ ﺍﻷﺣﺪ. (Bﻟﻦ ﻳﺬﻫﺐ ﺻﺎﻟﺢ ﺇﱃ ﺍﳌﺪﺭﺳﺔ. __________(6 (6ﻋ ﹼﻴﻦ ﻣﻌﻜﻮﺱ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ :ﺇﺫﺍ ﻛﺎﻥ ،x = 2ﻓﺈﻥ .x + 3 = 5 __________(7 (Cﺇﺫﺍ ﻛﺎﻥ ، x ≠ 2ﻓﺈﻥ .x + 3 ≠ 5 (Aﺇﺫﺍ ﻛﺎﻥ ،x + 3 = 5ﻓﺈﻥ x = 2 x = 2 (Dﻭ x + 3 = 5 (Bﺇﺫﺍ ﻛﺎﻥ ،x + 3 ≠ 5ﻓﺈﻥ x ≠ 2 (7ﻋ ﹼﻴﻦ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ :ﺇﺫﺍ ﻛﺎﻥ ،x = 2ﻓﺈﻥ .x + 3 = 5 (Cﺇﺫﺍ ﻛﺎﻥ ، x ≠ 2ﻓﺈﻥ . x + 3 ≠ 5 (Aﺇﺫﺍ ﻛﺎﻥ ، x+3= 5ﻓﺈﻥ .x = 2 x = 2 (Dﻭ .x + 3 = 5 (Bﺇﺫﺍ ﻛﺎﻥ ، x + 3 ≠ 5ﻓﺈﻥ x ≠ 2 __________(8 (8ﻣﺎ ﺍﻟﺬﻱ ﻳﺴﺘﻌﻤﻞ ﻟﺒﻴﺎﻥ ﺻﺤﺔ ﺍﻟﻨﺘﻴﺠﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻄﺎﺓ؟ 1 ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺔ ﺣﺎﺩ ﹰﺓ ،ﻓﻤﻦ ﺍﳌﺴﺘﺤﻴﻞ ﺃﻥ ﺗﻜﻮﻥ ﻣﻨﻔﺮﺟﺔ ∠A ،ﺯﺍﻭﻳﺔ ﺣﺎﺩﺓ. ﻳﺴﺘﺤﻴﻞ ﺃﻥ ﺗﻜﻮﻥ ∠Aﻣﻨﻔﺮﺟ ﹰﺔ. (Cﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﳌﻨﻄﻘﻲ (Aﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ (Dﻗﺎﻧﻮﻧﺎ ﺍﻟﻔﺼﻞ ﻭﺍﻟﻘﻴﺎﺱ ﺍﳌﻨﻄﻘﻲ (Bﺍﻟﺘﺨﻤﲔ 17
(2A) 1 _________(10 (9ﻣﺎ ﺍﻟﺬﻱ ﻳﺴﺘﻌﻤﻞ ﻟﺒﻴﺎﻥ ﺻﺤﺔ ﺍﻟﻨﺘﻴﺠﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻄﺎﺓ؟ ﺇﺫﺍ ﻛﺎﻥ ﻟﻠﺸﻜﻞ ﺃﺭﺑﻊ ﺯﻭﺍﻳﺎ ﻗﺎﺋﻤﺔ ،ﻓﺈﻧﻪ ﻣﺴﺘﻄﻴﻞ .ﻟﻠﻤﺴﺘﻄﻴﻞ ﺯﻭﺟﺎﻥ ﻣﻦ ﺍﻷﺿﻼﻉ ﺍﳌﺘﻮﺍﺯﻳﺔ. ﺇﺫﺍ ﻛﺎﻥ ﻟﻠﺸﻜﻞ ﺃﺭﺑﻊ ﺯﻭﺍﻳﺎ ﻗﺎﺋﻤﺔ ،ﻓﺈﻥ ﻟﻪ ﺯﻭﺟﲔ ﻣﻦ ﺍﻷﺿﻼﻉ ﺍﳌﺘﻮﺍﺯﻳﺔ. (Cﺍﻟﺘﺨﻤﲔ (Aﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ (Dﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﻭﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ (Bﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﳌﻨﻄﻘﻲ _________(11 (10ﺍﻟﺠﻤﻠﺔ \"ﺇﺫﺍ ﺗﻘﺎﻃﻊ ﻣﺴﺘﻮﻳﺎﻥ ،ﻓﺈﻥ ﺗﻘﺎﻃﻌﻬﻤﺎ ﻳﻜﻮﻥ ﻧﻘﻄﺔ\" ﺗﻜﻮﻥ: (Dﻻ ﻳﻤﻜﻦ ﺍﻟﺘﺤﺪﻳﺪ (Aﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﲈ (Bﺻﺤﻴﺤﺔ ﺃﺣﻴﺎ ﹰﻧﺎ (Cﻏﲑ ﺻﺤﻴﺤﺔ ﺃﺑ ﹰﺪﺍ _________(12 (11ﻣﺎ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻟﺬﻱ ﹸﻳﺴﺘﺨﺪﻡ ﻟﻜﺘﺎﺑﺔ ﻣﻌﺎﺩﻟ ﹴﺔ ﺑﺪﻻﻟﺔ ﻣﻌﺎﺩﻟ ﹴﺔ ﻣﻌﻄﺎ ﹴﺓ؟ _________(13 _________(14 (Cﺍﻟﱪﻫﺎﻥ ﺍﳍﻨﺪﳼ (Aﺍﻟﱪﻫﺎﻥ ﺫﻭ ﺍﻟﻌﻤﻮﺩﻳﻦ _________(15 (Dﺍﻟﱪﻫﺎﻥ ﺍﳉﱪﻱ (Bﺍﻟﱪﻫﺎﻥ ﺍﳊﺮ _________(16 (12ﺍﺧﺘﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ\" :ﺇﺫﺍ ﻛﺎﻥ x = 2 :ﻭ ،x + y = 3ﻓﺈﻥ .\"2 + y = 3 (Aﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﻤﺴﺎﻭﺍﺓ (Bﺍﻟﺘﲈﺛﻞ ﻟﻠﻤﺴﺎﻭﺍﺓ (Cﺍﻟﺘﻌ ﹼﺪﻱ ﻟﻠﻤﺴﺎﻭﺍﺓ (Dﺍﻟﺘﻌﻮﻳﺾ ﻟﻠﻤﺴﺎﻭﺍﺓ (13ﺍﺧﺘﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ.\"m ∠A = m ∠A\" : (Aﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﻤﺴﺎﻭﺍﺓ (Bﺍﻟﺘﲈﺛﻞ ﻟﻠﻤﺴﺎﻭﺍﺓ (Cﺍﻟﺘﻌ ﹼﺪﻱ ﻟﻠﻤﺴﺎﻭﺍﺓ (Dﺍﻟﺘﻌﻮﻳﺾ ﻟﻠﻤﺴﺎﻭﺍﺓ (14ﺍﺧﺘﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ\" :ﺇﺫﺍ ﻛﺎﻥ ،GH FDﻓﺈﻥ .\"FD GH (Cﺍﻟﺘﻌﺪﻱ ﻟﻠﺘﻄﺎﺑﻖ (Aﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﺘﻄﺎﺑﻖ (Dﺗﻌﺮﻳﻒ ﺍﻟﻘﻄﻊ ﺍﳌﺴﺘﻘﻴﻤﺔ ﺍﳌﺘﻄﺎﺑﻘﺔ (Bﺍﻟﺘﲈﺛﻞ ﻟﻠﺘﻄﺎﺑﻖ (15ﺇﺫﺍ ﻛﺎﻧﺖ X,Y,Zﻋﻠﻰ ﺍﺳﺘﻘﺎﻣ ﹴﺔ ﻭﺍﺣﺪ ﹴﺓ ،ﻭﻛﺎﻥ XY = 6 :ﹶﻭ YZ = 4ﹶﻭ ،XZ = 2 ﻓﺄ ﱡﻱ ﻧﻘﻄ ﹴﺔ ﺗﻘﻊ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺘﻴﻦ ﺍﻷﺧﺮﻳﻴﻦ؟ (D Z (C Y (B X (Aﺍﳌﻌﻄﻴﺎﺕ ﻏﲑ ﻛﺎﻓﻴﺔ AFB ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 16ﹶﻭ 17ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. (16ﺇﺫﺍ ﻛﺎﻥ ، m ∠BFC = 70°ﻓﺄﻭﺟﺪ . m ∠EFD _________(17 ED C _________(18 70° (DGeo-AS02-09-83650°17(9C 20° (B 10° (A _________(19 _________(20 (17ﺇﺫﺍ ﻛﺎﻥ m ∠AFB = (5x - 10)°ﹶﻭ ، m∠BFC = (3x + 20)°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x 23.3 (D 21.25 (C 15 (B 10 (A AJ E G ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 18ﹶﻭ 19ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻠﻴﻦ ﺍﻟﻤﺠﺎﻭﺭﻳﻦ. C (18ﺇﺫﺍ ﻛﺎﻧﺖ ∠ABC ∠EFG :ﹶﻭ ،m∠ABC = 72°ﻓﺄﻭﺟﺪ B D F H.m∠GFH 108° (D 90° (C 72° (B 18° (A (19ﺇﺫﺍ ﻛﺎﻥ ،m ∠ABJ = 28°, ∠ABC ∠DBJ :ﻓﺄﻭﺟﺪ .m ∠JBC 34° (D 45° (C 56° (B 90° (A 1 18
(2B) ______________(1 1 ______________(2 ______________(3 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ______________(4 (1ﺃﻭﺟﺪ ﺍﻟﺤ ﹼﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ-11,-7, -3, 1, 5,…. : ______________(5 ______________(6 (2ﺇﺫﺍ ﻛﺎﻥ ، XY = YZﻓﺈﻥ Yﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ .XZ ______________(7 ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ ﻳﺒ ﱢﲔ ﻋﺪﻡ ﺻﺤﺔ ﻫﺬﺍ ﺍﻟﺘﺨﻤﲔ. ______________(8 (3ﻣﺎ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ؟ ______________(9 √16 =-4ﹶﻭ 2 > 2 ______________(10 (4ﺍﻓﺘﺮﺽ ﺃﻥ pﺻﺎﺋﺒﺔ ﹶﻭ qﺧﺎﻃﺌﺔ، 1 ﻓﲈ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻠﻌﺒﺎﺭﺓ ~p ∨ ~ q؟ (5ﺍﻛﺘﺐ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ ﺑﺼﻴﻐﺔ )ﺇﺫﺍ ...ﻓﺈﻥ:(... \"ﻟﻜﻞ ﺣﺼﺎﻥ ﺃﺭﺑﻊ ﺃﺭﺟﻞ\" . (6ﻋ ﹼﻴﻦ ﺍﻟﻔﺮﺽ ﻓﻲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ: \"ﺇﺫﺍ ﻛﻨﺖ ﺗﻘﻴﻢ ﰲ ﺍﻟﺪ ﹼﻣﺎﻡ ،ﻓﺈﻧﻚ ﺗﻘﻴﻢ ﰲ ﺍﻟﺴﻌﻮﺩﻳﺔ\". (7ﺍﻛﺘﺐ ﻋﻜﺲ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﺍﻵﺗﻴﺔ: \"ﺇﺫﺍ ﻋﺎﻣﺪ ﻣﺴﺘﻘﻴﲈﻥ ﺍﳌﺴﺘﻘﻴﻢ ﻧﻔﺴﻪ ،ﻓﺈﳖﲈ ﻣﺘﻮﺍﺯﻳﺎﻥ\". (8ﺍﺳﺘﻌﻤﻞ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ ﻟﻜﺘﺎﺑﺔ ﻧﺘﻴﺠﺔ ﺻﺤﻴﺤﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﲔ ):(2) ،(1 ) (1ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﻜﺎﻣﻠﺘﲔ ،ﻓﺈﻥ ﳎﻤﻮﻉ ﻗﻴﺎﺳﻴﻬﲈ .180° ) ∠X (2ﻭ ∠Yﻣﺘﻜﺎﻣﻠﺘﺎﻥ. (9ﺍﺳﺘﻌﻤﻞ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ ﻟﻜﺘﺎﺑﺔ ﻧﺘﻴﺠ ﹴﺔ ﺻﺤﻴﺤ ﹴﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ):(2) ،(1 ) (1ﺇﺫﺍ ﻛﺎﻥ ﻫﺬﺍ ﺍﻟﻴﻮﻡ ﻫﻮ ﺍﻷﻭﻝ ﻣﻦ ﺷ ﹼﻮﺍﻝ ،ﻓﺈﻧﻪ ﻳﻮﻡ ﻋﻴﺪ ﺍﻟﻔﻄﺮ. ) (2ﺇﺫﺍ ﻛﺎﻥ ﻫﺬﺍ ﺍﻟﻴﻮﻡ ﻫﻮ ﻳﻮﻡ ﻋﻴﺪ ﺍﻟﻔﻄﺮ ،ﻓﺈﻧﻪ ﻳﻮﻡ ﻋﻄﻠ ﹴﺔ ﺭﺳﻤﻴ ﹴﺔ. (10ﺍﺫﻛﺮ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻟﺘﻲ ﺗﺤ ﹼﻮﻝ ﺍﻟﻤﻌﺎﺩﻟﺔ 3x + 6 = 5x – 8 :ﺇﻟﻰ ،3x = 5x – 14 ﺛﻢ ﺃﻭﺟﺪ ﻗﻴﻤﺔ .x 19
(2B) 1 _______________(11 (11ﺍﻛﺘﺐ ﺍﻟﻤﺒﺮﺭ ﻟﻠﺨﻄﻮﺓ ﺍﻟﺮﺍﺑﻌﺔ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻵﺗﻲ : _______________(12 =.x __11 ،2x – 7 = 4ﻓﺈﻥ ﺇﺫﺍ ﻛﺎﻥ 2 (1 (1ﹸﻣﻌﻄﻰ 2x – 7 = 4 (2ﺧﺎﺻﻴﺔ ﺍﻟﺠﻤﻊ ﻟﻠﻤﺴﺎﻭﺍﺓ 2x – 7 + 7 = 4 + 7 (2 (3ﺑﺎﻟﺘﺒﺴﻴﻂ 2x = 11 (3 ___________ (4 __2x = __11 (4 (5 (5ﺑﺎﻟﺘﺒﺴﻴﻂ 2 2 x = __11 2 (12ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ،ﺇﺫﺍ ﻛﺎﻥ،m ∠1 = x +50 ، m ∠2 = 3x -20 : ﻓﺄﻭﺟﺪ 1 2 .m ∠1 C ﺍﻛﺘﺐ ﻓﻲ ﻓﺮﺍﻏﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 13ﹶﻭ 14ﻣﺒﺮﺭﺍﺕ ﺍﻟﺨﻄﻮﺗﻴﻦ 94ﹶﻭ0617ﻋ6ﻠ8ﻰ ﺍﻟ-ﺘ3ﺮﺗ1ﻴ-ﺐ2ﻓ0ﻲ ﺍSﻟﺒAﺮﻫ-ﺎoﻥ ﺍeﻟﺘﺎGﻟﻲ: 24 AC ﺗﻨ ﹼﺼﻒ AC ، ∠BADﺗﻨ ﹼﺼﻒ ∠BCD ، ∠1 ∠2 BD ∠3 ∠4 13 A Geo-AS02-14-860179 (1ﻣﻌﻄﻰ AC (1ﺗﻨ ﹼﺼﻒ ∠BAD (2ﻣﻌﻄﻰ AC (2ﺗﻨ ﹼﺼﻒ ∠BCD (3ﻣﻌﻄﻰ ∠1 ∠2 (3 _______________(13 ∠1 ∠3 (4ﻭ (4 ∠2 ∠4 _______________(14 (5ﺧﺎﺻﻴﺔ ﺍﻟﺘﻌﺪﻱ ∠1 ∠4 (5 (6 ∠3 ∠4 (6 _______________(15 ﺍﺫﻛﺮ ﺍﻟﺘﻌﺮﻳﻒ ﺃﻭ ﺍﻟﺨﺎﺻﻴﺔ ﺃﻭ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ :15-19 _______________(16 (15ﺇﺫﺍ ﻛﺎﻧﺖ Mﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ،ABﻓﺈﻥ . MA MB _______________(17 (16ﺇﺫﺍ ﻛﺎﻧﺖ ∠A ∠B :ﹶﻭ ،∠B ∠Cﻓﺈﻥ .∠A ∠C _______________(18 (17ﺇﺫﺍ ﻛﺎﻧﺖ ∠Xﻭ ∠Yﻣﺘﺘﺎﻣﺘﻴﻦ ،ﹶﻭ ∠Qﻭ ∠Zﻣﺘﺘﺎﻣﺘﻴﻦ ﺃﻳ ﹰﻀﺎ، _______________(19 _______________(20 ﻭﻛﺎﻧﺖ ،∠Z ∠Xﻓﺈﻥ .∠Y ∠Q (18ﺇﺫﺍ ﻛﺎﻧﺖ ، PR QTﻓﺈﻥ .PR = QT 1 (19ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. AB + BC = AC ، (20ﺍﻛﺘﺐ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ\" :ﺍﻟﻤﻌﻴﻦ ﻣﺘﻮﺍﺯﻱ ﺃﺿﻼﻉ\". 20
(3) _______________(1 1 _______________(2 _______________(3 ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: _______________(4 (1ﺍﻛﺘﺐ ﺗﺨﻤﻴﻨﹰﺎ ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ m ∠A = m ∠B :ﻭ .m ∠B = m ∠C _______________(5 (2ﺇﺫﺍ ﻛﺎﻥ AB CD :ﻭ ،BD ACﻓﺈﻥ ABCDﻣﺴﺘﻄﻴﻞ .ﺃﻋ ﹺﻂ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹼﹰﺩﺍ ﻳﺒ ﱢﲔ ﻋﺪﻡ ﺻﺤﺔ _______________(6 ﻫﺬﺍ ﺍﻟﺘﺨﻤﲔ. _______________(7 _______________(8 (3ﻣﺎ ﻗﻴﻤﺔ ﺻﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ \" :ﻟﻠﻤﺮﺑﻊ 4ﺃﺿﻼﻉ ﻣﺘﻄﺎﺑﻘﺔ ،ﻭﻟﻠﻤﺴﺘﻄﻴﻞ 4ﺃﺿﻼﻉ ﻣﺘﻮﺍﺯﻳﺔ\"؟ _______________(9 (4ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺜﻼﺙ r, q, pﲨﻴﻌﻬﺎ ﺧﺎﻃﺌﺔ، ______________(10 ﻓﲈ ﻗﻴﻤﺔ ﺻﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ(p ∨ ~q) ∧ ~ r :؟ 1 (5ﻓﻲ ﺍﺳﺘﻄﻼﻉ ﻵﺭﺍﺀ 30ﻃﺎﻟ ﹰﺒﺎ ﻣﻦ ﺍﻟﺼﻒ ﺍﻷﻭﻝ ﺍﻟﺜﺎﻧﻮﻱ ،ﺣﻮﻝ ﺍﻟﺮﻳﺎﺿﺔ ﺍﻟﺘﻲ ﳛ ﹼﺒﻮﻥ ﻣﺸﺎﻫﺪﲥﺎ ،ﹸﻭﺟﺪ ﺃﻥ 22ﻃﺎﻟ ﹰﺒﺎ ﳛ ﹼﺒﻮﻥ ﻣﺸﺎﻫﺪﺓ ﻛﺮﺓ ﺍﻟﻘﺪﻡ ،ﻭﺃﻥ 17ﻃﺎﻟ ﹰﺒﺎ ﳛ ﹼﺒﻮﻥ ﻣﺸﺎﻫﺪﺓ ﻛﺮﺓ ﺍﻟﺴﻠﺔ ،ﻭﺃﻥ 12ﻃﺎﻟ ﹰﺒﺎ ﳛ ﹼﺒﻮﻥ ﻣﺸﺎﻫﺪﺓ ﻛﻠﺘﺎ ﺍﻟﻠﻌﺒﺘﲔ .ﻣ ﹼﺜﻞ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺄﺷﻜﺎﻝ ﭬﻦ ،ﻭﻣﺎ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺍﻟﺬﻳﻦ ﻻ ﳛ ﹼﺒﻮﻥ ﻣﺸﺎﻫﺪﺓ ﺃ ﹼﻱ ﻣﻦ ﺍﻟﻠﻌﺒﺘﲔ؟ (6ﺍﻛﺘﺐ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ ﺑﺼﻴﻐﺔ )ﺇﺫﺍ ...ﻓﺈﻥ\" :(...ﺍﻟﻔﻴﻞ ﻣﻦ ﺍﻟﺜﺪﻳﻴﺎﺕ\". (7ﺍﻛﺘﺐ ﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻠﻌﺒﺎﺭﺓ\" :ﺇﺫﺍ ﻛﺎﻧﺖ ﺯﺍﻭﻳﺘﺎﻥ ﻣﻜ ﹼﻤﻠﺘﻴﻦ ﻟﻠﺰﺍﻭﻳﺔ ﻧﻔﺴﻬﺎ، ﻓﺈﻥ ﻫﺎﺗﻴﻦ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ\". (8ﺍﺳﺘﻌﻤﻞ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﻟﻤﻨﻄﻘﻲ؛ ﻟﻜﺘﺎﺑﺔ ﻧﺘﻴﺠ ﹴﺔ ﺻﺤﻴﺤ ﹴﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ) (1ﻭ ).(2 ) (1ﻳﺘﺪﺭﺏ ﻓﺮﻳﻖ ﺍﻟﺴﺒﺎﺣﺔ ﻳﻮﻡ ﺍﻟﺴﺒﺖ. ) (2ﻣﺎﺟﺪ ﺃﺣﺪ ﺃﻋﻀﺎﺀ ﻓﺮﻳﻖ ﺍﻟﺴﺒﺎﺣﺔ. (9ﺍﺳﺘﻌﻤﻞ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ؛ ﻟﻜﺘﺎﺑﺔ ﻧﺘﻴﺠ ﹴﺔ ﺻﺤﻴﺤ ﹴﺔ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺗﻴﻦ ) (1ﻭ ).(2 ) (1ﺇﺫﺍ ﻛﺎﻥ ،x + 6 = 10ﻓﺈﻥ .x = 4 ) (2ﺇﺫﺍ ﻛﺎﻥ ،x = 4ﻓﺈﻥ .x2 = 16 (10ﻓﻲ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ ،ﺍﺫﻛﺮ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﻳﻤﻜﻦ ﺍﺳﺘﻌﻤﺎﻟﻬﺎ ﻻﺳﺘﻨﺘﺎﺝ ﺃﻥ،AB BC ، AD DB : ﻭ ،BE ECﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ Bﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ،ACﻭﺃﻥ Dﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ،ABﻭﺃﻥ Eﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ .BC ADB E C 21 Geo-AS02-19-860179
(3) 1 ______________(11 ﺍﻛﺘﺐ ﻓﻲ ﻓﺮﺍﻏﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 11, 12ﻣﺒﺮﺭﺍﺕ ﺍﻟﺨﻄﻮﺗﻴﻦ 2, 4ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻟﺘﺎﻟﻲ: ______________(12 3 - 2(4 - x) = 11 + 6x : ______________(13 x = - 4 ______________(14 ______________(15 ______________(16 ______________(17 ______________(18 (1ﻣﻌﻄﻴﺎﺕ 3 - 2 (4 - x) = 11 + 6x (1 ______________(19 ______________(20 (2 3 -8 + 2x = 11 + 6x (2 1 (3ﺑﺎﻟﺘﺒﺴﻴﻂ -5 + 2x = 11 + 6x (3 (4 2x = 16 + 6x (4 (5ﺧﺎﺻﻴﺔ ﺍﻟﻄﺮﺡ ﻟﻠﻤﺴﺎﻭﺍﺓ -4x = 16 (5 (6ﺧﺎﺻﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻟﻠﻤﺴﺎﻭﺍﺓ x = -4 (6 ﺍﻛﺘﺐ ﻓﻲ ﻓﺮﺍﻏﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 13, 14ﻣﺒﺮﺭﺍﺕ ﺍﻟﺨﻄﻮﺗﻴﻦ 5, 8ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻟﺘﺎﻟﻲ: ∠EFG ،AB⊥BD ﻭ ∠CBDﻣﺘﺘﺎ ﹼﻣﺘﺎﻥ A C E ∠EFG ∠ABC B DF G G eo- AS02-21-860179 (1ﻣﻌﻄﻴﺎﺕ AB ⊥ BD (1 ∠CBD , ∠EFG (2ﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﺘﺎﻣﺘﺎﻥ (2ﻣﻌﻄﻴﺎﺕ (3ﺍﳌﺴﺘﻘﻴﲈﺕ ﺍﳌﺘﻌﺎﻣﺪﺓ ﺗﻜ ﹼﻮﻥ ﺯﺍﻭﻳ ﹰﺔ ﻗﺎﺋﻤ ﹰﺔ. ∠ABD (3ﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ (4ﺗﻌﺮﻳﻒ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻘﺎﺋﻤﺔ m ∠ABD =90 (4 (5 m ∠ABC+ m ∠CBD= m ∠ABD (5 (6ﺑﺎﻟﺘﻌﻮﻳﺾ m ∠ABC+ m ∠CBD= 90 (6 (7ﺗﻌﺮﻳﻒ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺘﺎ ﹼﻣﺘﲔ ∠ABC (7ﻭ ∠CBDﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﺘﺎﻣﺘﺎﻥ (8 ∠EFG ∠ABC (8 ﺍﺫﻛﺮ ﺍﻟﺘﻌﺮﻳﻒ ﺃﻭ ﺍﻟﺨﺎﺻﻴﺔ ﺃﻭ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﻛﻞ ﻋﺒﺎﺭ ﹴﺓ )ﻓﻲ ﺍﻷﺳﺌﻠﺔ :(15-20 (15ﺍﻟﻨﻘﺎﻁ Aﻭ Cﻭ Eﺗﻘﻊ ﻓﻲ ﻣﺴﺘﻮ ﻭﺍﺣ ﹴﺪ. (16ﺇﺫﺍ ﻛﺎﻧﺖ ،AB CDﻓﺈﻥ.AB + EF= CD + EF : (17ﺇﺫﺍ ﻛﺎﻥ ،AB XYﻓﺈﻥ .XY AB (18ﺇﺫﺍ ﻛﺎﻥ ،x(y + z) = aﻓﺈﻥ .xy + xz = a (19ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ ،ﻓﺈﻧﻬﻤﺎ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ. (20ﺇﺫﺍ ﻛﺎﻧﺖ ∠1ﻭ ∠2ﻗﺎﺋﻤﺘﻴﻦ ،ﻓﺈﻥ .∠1 ∠2 22
1 ﹸﺣ ﹼﻞ ﻛﻞ ﻣﺴﺄﻟﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﺑﺼﻮﺭ ﹴﺓ ﻭﺍﺿﺤ ﹴﺔ ﻭﺩﻗﻴﻘ ﹴﺔ ﻣﺴﺘﻔﻴ ﹰﺪﺍ ﻣﻦ ﻣﻌﺮﻓﺘﻚ ﺍﻟﺴﺎﺑﻘﺔ ،ﺛﻢ ﺗﺤ ﹼﻘﻖ ﻣﻦ ﺗﻀﻤﻴﻨﻚ ﺍﻟﺤﻞ ﺍﻟﺮﺳﻮﻡ ﻭﺍﻟﺘﺒﺮﻳﺮﺍﺕ ﺍﻟﻼﺯﻣﺔ ،ﻛﻤﺎ ﻳﻤﻜﻨﻚ ﻋﺮﺽ ﺍﻟﺤ ﹼﻞ ﺑﺄﻛﺜﺮ ﻣﻦ ﻃﺮﻳﻘﺔ ،ﺃﻭ ﺃﻥ ﺗﺴﺘﻘﺼﻲ ﺃﻛﺜﺮ ﻣﻤﺎ ﻫﻮ ﻣﻄﻠﻮﺏ ﻓﻲ ﺍﻟﻤﺴﺄﻟﺔ) .ﺍﺳﺘﻌﻤﻞ ﻭﺭﻗﺔ ﻣﻨﻔﺼﻠﺔ ﺇﺫﺍ ﻛﺎﻥ ﺫﻟﻚ ﺿﺮﻭﺭ ﹼﹰﻳﺎ(. (1ﺍﺳﺘﻌﻤﻞ ﺟﺪﺍﻭﻝ ﺍﻟﺼﻮﺍﺏ ﻹﺛﺒﺎﺕ ﺃﻥ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃﻴﺔ ﻭﺍﻟﻤﻌﺎﻛﺲ ﺍﻹﻳﺠﺎﺑﻲ ﻟﻬﺎ ﻣﺘﻜﺎﻓﺌﺎﻥ ،ﻭﺃﻥ ﻋﻜﺴﻬﺎ ﻭﻣﻌﻜﻮﺳﻬﺎ ﻣﺘﻜﺎﻓﺌﺎﻥ ﺃﻳ ﹰﻀﺎ. (2ﺍﻛﺘﺐ ﻋﺒﺎﺭﺍ ﹴﺕ ﺗﻮﺿﺢ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ. (3ﺍﻛﺘﺐ ﻋﺒﺎﺭﺍ ﹴﺕ ﺗﻮﺿﺢ ﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﻟﻤﻨﻄﻘﻲ . (4ﺍﻛﺘﺐ ﻣﺜﺎ ﹰﻻ ﻋﻠﻰ ﺧﺎﺻﻴﺔ ﺍﻟﺘﻌ ﹼﺪﻱ ،ﻭﻣﺜﺎ ﹰﻻ ﺁﺧﺮ ﻋﻠﻰ ﺧﺎﺻﻴﺔ ﺍﻟﺘﻌﻮﻳﺾ ،ﺗﻮﺿﺢ ﻣﻦ ﺧﻼﻟﻬﻤﺎ ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﺍﻟﺨﺎﺻﻴﺘﻴﻦ. (5ﺍﺭﺳﻢ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻨﻬﻤﺎ ،40°ﻭﻋ ﹼﱪ ﻋﻦ ﻗﻴﺎ ﹶﳼ ﻫﺎﺗﲔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺑﻤﻘﺎﺩﻳﺮ ﺟﱪﻳﺔ ﲢﻮﻱ ،xﺛﻢ ﹸﺣ ﹼﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﻨﺎﲡﺔ ،ﻭﺃﺛﺒﺖ ﺃﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺰﺍﻭﻳﺘﲔ ﻳﺴﺎﻭﻱ .40° (a (6ﺍﻛﺘﺐ ﻋﺒﺎﺭ ﹰﺓ ﺻﺤﻴﺤ ﹰﺔ ﺑﺼﻴﻐﺔ )ﺇﺫﺍ ...ﻓﺈﻥ (...ﰲ ﺣﲔ ﻳﻜﻮﻥ ﻋﻜﺴﻬﺎ ﺧﺎﻃ ﹰﺌﺎ. (bﺍﻛﺘﺐ ﺍﻟﻌﻜﺲ ﻭﺍﳌﻌﻜﻮﺱ ﻭﺍﳌﻌﺎﻛﺲ ﺍﻹﳚﺎﰊ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺘﻲ ﻛﺘﺒﺘﻬﺎ. (cﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺼﻮﺍﺏ ﻟﻜﻞ ﻋﺒﺎﺭﺓ ﻛﺘﺒﺘﻬﺎ ﰲ ﺍﻟﻔﺮﻉ .b (7ﺍﺭﺳﻢ ﺷﻜ ﹰﻼ ﻳﻮﺿﺢ ﻛ ﹼﹰﻼ ﻣﻦ ﺍﻟﻨﻈﺮﻳﺎﺕ ﺍﻵﺗﻴﺔ ،ﻭﺳ ﱢﻢ ﺍﻟﺰﻭﺍﻳﺎ ،ﺛﻢ ﹺﺻ ﹾﻒ ﻛﻞ ﻧﻈﺮﻳﺔ ﺑﻜﺘﺎﺑﺔ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺘﻲ ﺳ ﱠﻤﻴ ﹶﺘﻬﺎ. (aﻧﻈﺮﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﻜﺎﻣﻠﺘﲔ . (bﻧﻈﺮﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺘﺎﻣﺘﲔ . (cﻧﻈﺮﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﻘﺎﺑﻠﺘﲔ ﺑﺎﻟﺮﺃﺱ. 1 23
(1) 1 ﺍﻟﺠﺰﺀ :1ﺍﺳﺌﻠﺔ ﺍﻻﺧﺘﻴﺎﺭ ﻣﻦ ﻣﺘﻌﺪﺩ ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﰲ ﺍﳌﻜﺎﻥ ﺍﳌﺨﺼﺺ ﻟﺬﻟﻚ. \" (1ﺇﺫﺍ ﻛﺎﻥ 3b + 4 < 16ﻓﺈﻥ ،\"b > 0ﺃﻱ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﹸﻳﻌ ﹼﺪ ﻣﺜﺎ ﹰﻻ ﻣﻀﺎ ﹰﹼﺩﺍ ﻟﻠﻌﺒﺎﺭﺓ ﺍﻟﺴﺎﺑﻘﺔ؟ 1-1 ________(1 b = 4 (D b = 3.5 (C b = 16 (B b = -1 (A ________(2 ________(3 (2ﻣﺎ ﺍﻟﺬﻱ ﻳﺴﺘﻌﻤﻞ ﻟﺒﻴﺎﻥ ﺻﺤﺔ ﺍﻟﻨﺘﻴﺠﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻤﻌﻠﻮﻣﺎﺕ ﺍﻟﻤﻌﻄﺎﺓ؟ ________(4 ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﻌﺪﺩ ﻳﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﲆ ، 9ﻓﺈﻧﻪ ﻳﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﲆ . 3ﺍﻟﻌﺪﺩ 144ﻳﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﲆ .9 ________(5 ﺍﻟﻌﺪﺩ 144ﻳﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﲆ 1-4 .3 (Cﺍﻟﺘﺨﻤﲔ (Aﻗﺎﻧﻮﻥ ﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ (Dﻗﺎﻧﻮﻧﺎ ﺍﻟﻘﻴﺎﺱ ﻭﺍﻟﻔﺼﻞ ﺍﳌﻨﻄﻘﻲ (Bﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﳌﻨﻄﻘﻲ (3ﺇﺫﺍ ﻛﺎﻧﺖ p qﻋﺒﺎﺭﺓ ﺷﺮﻃﻴﺔ ،ﻓﺈﻥ ﻋﻜﺴﻬﺎ ﻫﻮ ______؟ 1-3 q → ~p (D q → p (C ~q → p (B ~q → ~p (A (4ﺃ ﹼﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﺻﺤﻴﺤﺔ ﺩﺍﺋ ﹰﻤﺎ؟ 1-2 x ≠ 0 (D 3(x + 1) = 4x (C 3(x+1)+5 = 3x + 8 (B x = 2 (A (5ﻋﻠﻢ ﺣﻤ ﹲﺪ ﺃﻥ ∠1 ∠2 :ﹶﻭ ،∠2 ∠3ﻓﺎﺳﺘﻨﺘﺞ ﺛﻼﺙ ﻧﺘﺎﺋﺞ ﻫﻲ1-6 : m ∠1 = m ∠2 (I ∠1 ∠3 (II m∠1 + m ∠2 = m ∠3 (III ﻓﺄﻱ ﻧﺘﺎﺋﺞ ﲪﺪ ﻫﻲ ﺍﻟﺼﺤﻴﺤﺔ؟ III, I (D II, I (C II (Bﻓﻘﻂ III, II, I (A ﺍﺫﻛﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 6ﻭ: 7 (6ﺇﺫﺍ ﻛﺎﻥ AB = CD :ﻭ ،CD = 11ﻓﺈﻥ 1-7 .AB = 11 ________(6 (Dﺍﻻﻧﻌﻜﺎﺱ (Cﺍﻟﺘﻄﺎﺑﻖ (Bﺍﻟﺘﲈﺛﻞ (Aﺍﻟﺘﻌ ﹼﺪﻱ (7ﺇﺫﺍ ﻛﺎﻧﺖ ،∠YXZ ∠PQRﻓﺈﻥ1-8 . ∠PQR ∠XYZ (Dﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﺘﻄﺎﺑﻖ ________(7 (Cﺍﻟﺘﻌﻮﻳﺾ (Aﺍﻟﺘﻌ ﹼﺪﻱ ﻟﻠﺘﻄﺎﺑﻖ (Bﺍﻟﺘﲈﺛﻞ ﻟﻠﺘﻄﺎﺑﻖ (8ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻨﺴﺒﺔ ﺑﻴﻦ ﻗﻴﺎ ﹶﺳﻲ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ ﻫﻲ ،4:1ﻓﻤﺎ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻜﺒﺮ؟ .1-8 ________(8 144° (D 160° (C 118° (B 72° (A 1 24
)(1 (1) 1 (9ﺇﺫﺍ ﻛﺎﻧﺖ ∠1ﻭ ∠2ﻣﺘﻘﺎﺑﻠﺘﻴﻦ ﺑﺎﻟﺮﺃﺱ ،ﻭﻛﺎﻥ ،m∠1 = (17 - x)° ________(9 ، m ∠2 = (2x - 7 )°ﻓﺄﻭﺟﺪ 1-8 .m ∠1 _______(10 18° (D 16° (C 9° (B 8° (A _______(11 _______(12 ﺍﺳﺘﻌﻤﻞ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻵﺗﻲ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻷﺳﺌﻠﺔ 1-6 :10-12 _______(13 1 x + 3 = 15x - 53 .x = 4 (1ﻣﻌﻄﻴﺎﺕ x + 3 = 15x - 53 (1 (2ﺧﺎﺻﻴﺔ ﺍﻟﻄﺮﺡ ﻟﻠﻤﺴﺎﻭﺍﺓ x - x + 3 = 15x - x– 53 (2 (3ﺑﺎﻟﺘﺒﺴﻴﻂ (3 (4 3 + 53 = 14x - 53 + 53 (4 (5ﺑﺎﻟﺘﺒﺴﻴﻂ 56 = 14x (5 (6ﺧﺎﺻﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻟﻠﻤﺴﺎﻭﺍﺓ (6 (7ﺑﺎﻟﺘﺒﺴﻴﻂ 4 = x (7 (8ﺧﺎﺻﻴﺔ ﺍﻟﺘﲈﺛﻞ x = 4 (8 3 = 14x - 53 (H (10ﻣﺎ ﺍﻟﻌﺒﺎﺭﺓ ) (3ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺃﻋﻼﻩ؟ 3x = 14 (J 3x = 15x - 53 (F (Cﺧﺎﺻﻴﺔ ﺍﻟﺘﻌﻮﻳﺾ ﻟﻠﻤﺴﺎﻭﺍﺓ x = 16x + 56 (G (Dﺧﺎﺻﻴﺔ ﺍﳉﻤﻊ ﻟﻠﻤﺴﺎﻭﺍﺓ (11ﻣﺎ ﻣﺒ ﱢﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ ) (4ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺃﻋﻼﻩ؟ (Aﺧﺎﺻﻴﺔ ﺍﻟﺘﲈﺛﻞ ﻟﻠﻤﺴﺎﻭﺍﺓ (Bﺧﺎﺻﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻟﻠﻤﺴﺎﻭﺍﺓ (12ﻣﺎ ﺍﻟﻌﺒﺎﺭﺓ ) (6ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺃﻋﻼﻩ؟ __5_6 = __1_4x (H =x _1_4 (F 14 14 56 =__55_66 _1_4_x (J 56 -14 = x (G 56 C (13ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ،ﺇﺫﺍ ﻛﺎﻥ،m ∠1 = 23° ، m∠ABC = 131° : 1 ﻓﺄﻭﺟﺪ 1-8. m∠3 2 35° (C 23° (A 3B 18° (D 67° (B A 25
)(2 (1) 1 ﺍﻟﺠﺰﺀ :2ﺃﺳﺌﻠﺔ ﺫﺍﺕ ﺇﺟﺎﺑﺎﺕ ﻗﺼﻴﺮﺓ ﺍﻗﺮﺃ ﻛﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﰲ ﺍﳌﻜﺎﻥ ﺍﳌﺨﺼﺺ ﻟﺬﻟﻚ. ______________(14 (14ﺃﻭﺟﺪ ﺍﻟﺤﺪ ﺍﻟﺘﺎﻟﻲ ﻓﻲ ﺍﻟﻤﺘﺘﺎﺑﻌﺔ ﺍﻵﺗﻴﺔ1-1 : …3,3,6,9,15, ﺍﻟﺴﺒﺎﺣﺔ ﺍﻟﺘﻨﺲ ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 15ﻭ ،16ﻣﺴﺘﻌﻤ ﹰﻼ ﺷﻜﻞ ﻓﻦ ﺍﻟﻤﺠﺎﻭﺭ ،ﻭﺍﻟﺬﻱ 36 ﻧﻳﺒﺎ ﹼﻴ ﹴﺩﻦﺭﻳﻧﺎﺘﺎﺋﺿﺞﻲ.ﺩﺭﺍﺳ ﹴﺔ ﻣﺴﺤﻴ ﹴﺔ ﺷﻤﻠﺖ 229ﻋﻀ ﹰﻮﺍ ﻓﻲ 12 5 62 19 ﺍﳉﺮﻱ 45 ______________(15 (15ﻣﺎ ﻋﺪﺩ ﺍﻷﻋﻀﺎﺀ ﺍﻟﺬﻳﻦ ﻳﻤﺎﺭﺳﻮﻥ ﺭﻳﺎﺿ ﹶﺘﻲ ﺍﻟﺴﺒﺎﺣﺔ ﺃﻭ ﺍﻟﺘﻨﺲ؟ 1-2 ______________(16 (16ﻣﺎ ﻋﺪﺩ ﺍﻷﻋﻀﺎﺀ ﺍﻟﺬﻳﻦ ﻻ ﻳﲈﺭﺳﻮﻥ ﺃ ﹰﹼﻳﺎ ﻣﻦ ﺍﻷﻧﺸﻄﺔ ﺍﻟﺜﻼﺛﺔ؟ 1-2 ______________(17 (17ﺇﺫﺍ ﻭﻗﻌﺖ Bﰲ ﺩﺍﺧﻞ ،∠DEFﻭﻛﺎﻥm ∠DEB = 27.2° : ﻭ ،m ∠DEF = 92.5°ﻓﺄﻭﺟﺪ 1-8 . m ∠BEF ﺍﺳﺘﻌﻤﻞ ﺟﺪﻭﻝ ﺍﻟﺼﻮﺍﺏ ﺍﻟﻤﺠﺎﻭﺭ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻷﺳﺌﻠﺔ p q ~p ~p ∨ q q→(~p ∨ q) :18-20 TT TF FT FF ______________(18 (18ﻣﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﻲ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ ~p؟ 1-2 ______________(19 (19ﻣﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﻲ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ ~p∨q؟ 1-2 ______________(20 (20ﻣﺎ ﻗﻴﻢ ﺍﻟﺼﻮﺍﺏ ﺍﻟﺘﻲ ﻳﺠﺐ ﺃﻥ ﹸﺗﻜﺘﺐ ﻓﻲ ﻋﻤﻮﺩ ])[q→(~p∨q؟ 1-3 ﺍﻋﺘﻤﺪ ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺍﻵﺗﻲ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻷﺳﺌﻠﺔ 1-8 21 - 23 ______________(21 T ______________(22 S ______________(23 ˚48 1 W UR V (21ﺳ ﹼﻢ ﺯﻭ ﹰﺟﺎ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﺘﻜﺎﻣﻠﺔ. (22ﺳ ﹼﻢ ﺯﻭ ﹰﺟﺎ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﺘﺘﺎﻣﺔ. (23ﺃﻭﺟﺪ .m ∠RUV 26
2 1ﻗﺒﻞ ﺑﺪﺀ ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﲏ • ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺟﻤﻠﺔ. • ﻗ ﹼﺮﺭ ﻣﺎ ﺇﺫﺍ ﻛﻨﺖ ﻣﻮﺍﻓ ﹰﻘﺎ )ﻡ( ﻋﻠﻰ ﻣﻀﻤﻮﻧﻬﺎ ،ﺃﻭ ﻏﻴﺮ ﻣﻮﺍﻓﻖ )ﻍ(. • ﺍﻛﺘﺐ )ﻡ( ﺃﻭ )ﻍ( ﰲ ﺍﻟﻌﻤﻮﺩ ﺍﻷﻭﻝ ،ﻭﺇﺫﺍ ﻛﻨﺖ ﻏﲑ ﻣﺘﺄﻛﺪ ﻣﻦ ﻣﻮﺍﻓﻘﺘﻚ ﻓﺎﻛﺘﺐ )ﻍ ﻡ(. 2 1 (1ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﻏﻴﺮ ﺍﻟﻤﺘﻘﺎﻃﻌﻴﻦ ﺍﻟﻮﺍﻗﻌﺎﻥ ﻓﻲ ﻣﺴﺘﻮﻳﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻳﻜﻮﻧﺎﻥ ﻣﺘﻮﺍﺯﻳﻴﻦ. (2ﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺍﻟﻤﺴﺘﻮﻳﺎﺕ ﻣﺘﻮﺍﺯﻳ ﹰﺔ ﻣﺜﻞ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ. (3ﺍﻟﻘﺎﻃﻊ ﻫﻮ ﻣﺴﺘﻘﻴ ﹲﻢ ﻳﻘﻄﻊ ﻣﺴﺘﻘﻴﻤﺎ ﹴﺕ ﻣﺘﻮﺍﺯﻳ ﹰﺔ ﻓﻲ ﻧﻘﺎ ﹴﻁ ﻣﺨﺘﻠﻔ ﹴﺔ. (4ﺇﺫﺍ ﻗﻄﻊ ﻗﺎﻃﻊ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﻮﺍﺯﻳﻴﻦ ،ﻓﺈﻥ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﺍﻟﻤﺘﻨﺎﻇﺮﺗﻴﻦ ﺗﻜﻮﻧﺎﻥ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ. (5ﻓﻲ ﺍﻟﻤﺴﺘﻮ ،ﺇﺫﺍ ﻛﺎﻥ ﻣﺴﺘﻘﻴ ﹲﻢ ﻣﺎ ﻋﻤﻮﺩ ﹰﹼﻳﺎ ﻋﻠﻰ ﺃﺣﺪ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﻮﺍﺯﻳﻴﻦ ،ﻓﺈﻧﻪ ﻳﻜﻮﻥ ﻋﻤﻮﺩ ﹼﹰﻳﺎ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻵﺧﺮ ﺃﻳ ﹰﻀﺎ. (6ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﻳﺴﺎﻭﻱ ﻧﺴﺒﺔ ﺍﻟﺘﻐﻴﺮ ﺍﻟﺮﺃﺳﻲ ﺇﻟﻰ ﺍﻟﺘﻐﻴﺮ ﺍﻷﻓﻘﻲ. (7ﺣﺎﺻﻞ ﺿﺮﺏ ﻣﻴ ﹶﻠﻲ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﻌﺎﻣﺪﻳﻦ ﻳﺴﺎﻭﻱ .1 (8ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻌﺎﺩﻟﺔ ﻣﺴﺘﻘﻴ ﹴﻢ ، y – 4 = 2(x – 7) :ﻓﺈﻧﻪ ﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ ).(-4 ,-7 (9ﺇﺫﺍ ﻗﻄﻊ ﻗﺎﻃ ﹲﻊ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻓﻲ ﻣﺴﺘﻮ ،ﻭﻛﺎﻧﺖ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹼﹰﻴﺎ ﻣﺘﻄﺎﺑﻘﺘﻴﻦ ،ﻓﺈﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﻮﺍﺯﻳﺎﻥ. (10ﺃﻗﺼﺮ ﻣﺴﺎﻓﺔ ﻣﻦ ﻧﻘﻄ ﹴﺔ ﺇﻟﻰ ﻣﺴﺘﻘﻴ ﹴﻢ ﻫﻲ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻟﻌﻤﻮﺩﻳﺔ. 2ﺑﻌﺪ ﺇﻛﲈﻝ ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﲏ • ﺃﻋﺪ ﻗﺮﺍﺀﺓ ﻛ ﹼﻞ ﺟﻤﻠﺔ ﺃﻋﻼﻩ ،ﻭﺍﻣﻸ ﺍﻟﻌﻤﻮﺩ ﺍﻷﺧﻴﺮ ﺑﻜﺘﺎﺑﺔ )ﻡ( ﺃﻭ )ﻍ(. • ﻫﻞ ﺗﻐ ﹼﻴﺮ ﺭﺃﻳﻚ ﻓﻲ ﺍﻟﺠﻤﻞ ﺍﻟﺴﺎﺑﻘﺔ ﻋ ﹼﻤﺎ ﻫﻮ ﻓﻲ ﺍﻟﻌﻤﻮﺩ ﺍﻷﻭﻝ؟ • ﺍﺳﺘﻌﻤﻞ ﻭﺭﻗﺔ ﺇﺿﺎﻓﻴﺔ ﺗﺒ ﹼﻴﻦ ﻓﻴﻬﺎ ﺳﺒﺐ ﻋﺪﻡ ﻣﻮﺍﻓﻘﺘﻚ ﻋﻠﻰ ﺑﻌﺾ ﺍﻟﺠﻤﻞ ،ﺩﺍﻋ ﹰﻤﺎ ﺫﻟﻚ ﺑﺎﻷﻣﺜﻠﺔ ﺇﻥ ﺃﻣﻜﻦ. 2 27
2 ﻫﺬﻩ ﻗﺎﺋﻤﺔ ﺑﺎﳌﻔﺮﺩﺍﺕ ﺍﳉﺪﻳﺪﺓ ﺍﻟﺘﻲ ﺳﺘﺘﻌﻠﻤﻬﺎ ﰲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺘﻚ ﺍﻟﻔﺼﻞ .2ﺍﻛﺘﺐ ﺗﻌﺮﻳ ﹰﻔﺎ ﺃﻭ ﻭﺻ ﹰﻔﺎ ﻟﻜﻞ ﻣﻔﺮﺩ ﹴﺓ ﰲ ﺍﳉﺪﻭﻝ ﺣﲔ ﺗﻈﻬﺮ ﻟﻚ ﰲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺔ ﺍﻟﻔﺼﻞ ،ﺛﻢ ﺃﺿﻒ ﺭﻗﻢ ﺍﻟﺼﻔﺤﺔ ﺍﻟﺘﻲ ﻭﺭﺩﺕ ﻓﻴﻬﺎ ﺍﳌﻔﺮﺩﺓ ﺃﻭﻝ ﻣﺮﺓ ﰲ ﺍﻟﻌﻤﻮﺩ ﺍﳌﺨ ﱠﺼﺺ .ﺍﺳﺘﻌﻤﻞ ﻫﺬﻩ ﺍﻟﻘﺎﺋﻤﺔ ﰲ ﺃﺛﻨﺎﺀ ﺍﳌﺮﺍﺟﻌﺔ ﻭﺍﻻﺳﺘﻌﺪﺍﺩ ﻻﺧﺘﺒﺎﺭ ﺍﻟﻔﺼﻞ. ﺍﳌﺴﺘﻘﻴﲈﻥ ﺍﳌﺘﺨﺎﻟﻔﺎﻥ ﺍﳌﺴﺘﻮﻳﺎﻥ ﺍﳌﺘﻮﺍﺯﻳﺎﻥ ﺍﳌﺴﺘﻘﻴﲈﻥ ﺍﳌﺘﻮﺍﺯﻳﺎﻥ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹼﹰﻴﺎ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹰﹼﻴﺎ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﺤﺎﻟﻔﺘﺎﻥ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﻨﺎﻇﺮﺗﺎﻥ 2 ﺍﻟﻘﺎﻃﻊ 28
() 2 ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺪﺍﺧﻠﻴﺔ ﺍﻟﺰﻭﺍﻳﺎ ﺍﳋﺎﺭﺟﻴﺔ ﺍﳌﻴﻞ ﻣﻌ ﹼﺪﻝ ﺍﻟﺘﻐﲑ ﺻﻴﻐﺔ ﺍﳌﻴﻞ ﻭﻧﻘﻄﺔ ﺻﻴﻐﺔ ﺍﳌﻴﻞ ﻭﺍﳌﻘﻄﻊ ﻣﺘﺴﺎﻭﻱ ﺍﻟﺒﻌﺪ ﺍﳌﺤﻞ ﺍﳍﻨﺪﳼ 2 29
(2-2 2-1) (1) 2 GH ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ﺣ ﱢﺪﺩ ﻛ ﹰﹼﻼ ﻣﻤﺎ ﻳﺄﺗﻲ ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 1ﻭ 2ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. ________________(1 E C L J F DM K (1ﻣﺴﺘﻮ ﻳﻮﺍﺯﻱ ﺍﻟﻤﺴﺘﻮ EGH ________________(2 BA (2ﺗﻘﺎﻃﻊ ﺍﻟﻤﺴﺘﻮﻳﻴﻦ ABCﻭ .EFB Geo-AS03-33-860180 ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ 3-8ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. ________________ (3 a 12 63 4 ﺻ ﹼﻨﻒ ﻛ ﹼﻞ ﺯﻭﺝ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﺍﻷﺳﺌﻠﺔ 3-6ﺇﻟﻰ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺩﺍﺧﻠ ﹰﹼﻴﺎ، 87 5 ________________ (4 b 9 10 11 12 ﺃﻭ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺧﺎﺭﺟ ﹼﹰﻴﺎ ،ﺃﻭ ﻣﺘﻨﺎﻇﺮﺗﻴﻦ ،ﺃﻭ ﻣﺘﺤﺎﻟﻔﺘﻴﻦ : 16 15 14 13 cd ________________ (5 ∠6 (4ﻭ ∠12 ∠2 (3ﻭ ∠10 ________________ (6 ∠14 (6ﻭ ∠15 ∠1 (5ﻭ∠5 ﺇﺫﺍ ﻛﺎﻥ a b :ﹶﻭ ، m∠7 = 94°ﻓﺄﻭﺟﺪ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﺍ0ﻵﺗ8ﻴﺘ1ﻴ0ﻦ________________ (7 Geo-AS03-34-8:6 ________________ (8 a ∠9 (8 ∠10 (7 ________________ (9 (5x - 7)° (4y + 3)° b (9ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ x, yﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. (3x + 17)° _______ (10 U (10ﺍﺧﺘﻴﺎﺭ ﻣﻦ ﻣﺘﻌﺪﺩ :ﺃﻭﺟﺪ m∠UVWﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. 138° 81° (C 39° (A V Geo-AS031-3385° -(D860180 42° (B 39° W Geo-AS03-36-860180 (2-3)(2) 2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: g ﻫﻞ ﻳﻤﻜﻦ ﺇﺛﺒﺎﺕ ﺃﻥ ﺃ ﹰﹼﻳﺎ ﻣﻦ ﻣﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺸﻜﻞ ﻣﺘﻮﺍﺯﻳﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ h 1 34 ﻋﻠﻰ ﺍﻟﻤﻌﻄﻴﺎﺕ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ،1-4ﻭﺇﺫﺍ ﻛﺎﻥ ﺃ ﱡﻳﻬﺎ ﻣﺘﻮﺍﺯ ﹼﹰﻳﺎ، 2 5 6 ﻓﺎﺫﻛﺮ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺇﺟﺎﺑﺘﻚ. 78 9 ________________(1 p qj ________________(2 ∠2 ∠3 (2 ∠1 ∠ 6 (1 ________________(3 ________________(4 m∠ 7 + m∠ 6 = 180 (4 ∠4 ∠9 (3 Geo-AS03-37-860180 ________________(5 (5ﺇﺫﺍ ﻛﺎﻥ m∠3 = (5x - 17)° :ﹶﻭ ، m∠7 = (3x + 35)° 2 ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ xﺣﺘﻰ ﻳﻜﻮﻥ . g h 30
(2-4 ,2-5) (3) ________________(1 2 ________________(2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ﻋ ﹼﻴﻦ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻤ ﹼﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ﺍﻟﻤﺤ ﹼﺪﺩﺗﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ: Y(-1, -12), P(3, 8) (2 E(-5,6), Z(4, -3)) (1 ________________(3 R(-5,-7), Q(5, -5) (4 B(-2, 7), N(8, -8) (3 ________________(4 ________________(5 (5ﺃﻭﺟﺪ ﻗﻴﻤﺔ yﺍﻟﺘﻲ ﺗﺠﻌﻞ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺎﺭ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ )B(-7, -2), A(-9, y ________________(6 ﻳﺴﺎﻭﻱ .-3 ________________(7 ________________(8 .(3, )8 ﺑﺎﻟﻨﻘﻄﺔ ﻭﻳﻤ ﹼﺮ ، - __1 ﻣﻴﻠﻪ ﺍﻟﺬﻱ ﺍﻟﻤﺴﺘﻘﻴﻢ ﻣﻌﺎﺩﻟﺔ ﻭﺍﻟﻨﻘﻄﺔ ﺍﻟﻤﻴﻞ ﺑﺼﻴﻐﺔ ﺍﻛﺘﺐ (6 3 (7ﺍﻛﺘﺐ ﺑﺼﻴﻐﺔ ﺍﻟﻤﻴﻞ ﻭﺍﻟﻤﻘﻄﻊ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻴﻠﻪ_ ،_35ﻭﻣﻘﻄﻌﻪ ﺍﻟﻤﺤﻮﺭ yﻳﺴﺎﻭﻱ .-2 (8ﺍﻛﺘﺐ ﺑﺼﻴﻐﺔ ﺍﻟﻤﻴﻞ ﻭﺍﻟﻤﻘﻄﻊ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺎ ﹼﺭ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ) (-1, 7ﻭ).(3, -9 (9ﺗﺘﻘﺎ ﹶﺿﻰ ﺷﺮﻛﺔ ﺍﺗﺼﺎﻻﺕ ﺭﺳﻮ ﹰﻣﺎ ﺷﻬﺮﻳﺔ ﻣﻘﺪﺍﺭﻫﺎ 30ﺭﻳﺎ ﹰﻻ ﺇﺿﺎﻓﺔ ﺇﻟﻰ 0.30ﺭﻳﺎ ﹰﻻﻋﻦ ﻛﻞ ﺩﻗﻴﻘﺔ ________________(9 ﺍﺗﺼﺎﻝ .ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟ ﹰﺔ ﺗﻤ ﹼﺜﻞ ﺍﻟﺘﻜﻠﻔﺔ ﺍﻟﺸﻬﺮﻳﺔ Cﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﺩﻗﺎﺋﻖ ﺍﻻﺗﺼﺎﻝ .b (2-6) (4) ________________(1 2 ________________(2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ. ________________(3 (1ﺃﻧﺸﺊ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻟﺘﻲ ﺗﻤ ﹼﺜﻞ ﺍﻟ ﹸﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ Bﹶﻭ . DC ________________(4 ________________(5 (2ﻳﻤ ﱡﺮ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ) ،(0, 4), (1, -3ﺇﺫﺍ ﻛﺎﻥ ﺇﺣﺪﺍﺛ ﹼﻴﺎ ﺍﻟﻨﻘﻄﺔ 2 Hﻫﻤﺎ ) ،(-1, 3ﻓﺄﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ Hﻭﺍﻟﻤﺴﺘﻘﻴﻢ . ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﻛ ﹼﻞ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﻮﺍﺯﻳﻴﻦ ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ ﺍﻵﺗﻴﻴﻦ: y = -x - 9 (4 y = -8 (3 y=-x–7 y=4 (5ﻣﺎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ ) A(-1, 5ﻭﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ 4x - 5y = 12؟ 31
(2-3 2-1) 2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: __________(1 G J ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 1ﻭ 2ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. __________(2 H (1ﺃ ﹼﻱ ﻗﻄﻌ ﹴﺔ ﻣﺴﺘﻘﻴﻤ ﹴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﺗﺨﺎﻟﻒ IJ؟ __________(3 F EI __________(4 __________(5 B A HI (C GH (A CD AJ (B AB (D (2ﺃ ﹼﻱ ﻣﺴﺘﻮ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﻳﻮﺍﺯﻱ ﺍﻟﻤﺴﺘﻮ CDF؟ Geo-AS03-41-860180 (Hﺍﳌﺴﺘﻮ ABE (Fﺍﳌﺴﺘﻮ BEF (Jﺍﳌﺴﺘﻮ ABC (Gﺍﳌﺴﺘﻮ HIJ 17 p ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ 5-3ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. 28 q 54131190 r ﺍﺫﻛﺮ ﺍﻻﺳﻢ ﺍﻟﺨﺎﺹ ﻟﺰﻭﺝ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ: 4, 3 6 12 ∠2 (3ﻭ∠4 s (Cﻣﺘﻨﺎﻇﺮﺗﺎﻥ. (Aﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹼﹰﻴﺎ. (Dﻣﺘﺤﺎﻟﻔﺘﺎﻥ. (Bﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹰﹼﻴﺎ. (HﻣﺘﻨﺎﻇﺮﺗﺎﻥGeo-AS03-40-86018.0 ∠3 (4ﻭ ∠12 (Jﻣﺘﺤﺎﻟﻔﺘﺎﻥ. (Fﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹰﹼﻴﺎ. (Gﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹰﹼﻴﺎ. (5ﺇﺫﺍ ﻛﺎﻥ p r :ﻭ ،m∠8 = 119°ﻓﺄﻭﺟﺪ .m∠11 151° (D 119° (C 61° (B 29° (A ________________(6 (4x - 6)° (5y + 11)° ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: (3x + 22)° (6ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ x, yﰲ ﺍﻟﺸﻜﻞ ﺍﳌﺠﺎﻭﺭ. qt ﻫﻞ ﻳﻤﻜﻦ ﺇﺛﺒﺎﺕ ﺃﻥ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﻣﺴﺘﻘﻴﲈﺕ ﺍﻟﺸﻜﻞ ﺍﻵﰐ ﻣﺘﻮﺍﺯﻳ ﹰﺔ، ﺍﻋﺘﲈ ﹰﺩﺍ ﻋﲆ ﺍﳌﻌﻄﻴﺎﺕ ﰲ ﻛ ﱟﻞ ﳑﺎ ﻳﺄﰐ؟ ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﻣﺘﻮﺍﺯﻳ ﹰﺔ، Geo-1AS2303-642-860r 180 ﻓﺎﺫﻛﺮ ﺍﻟﻤﺴﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﱢﺮﺭ ﺇﺟﺎﺑﺘﻚ. ________________(7 4 56 s ∠3 ∠4 (7 ∠3 ∠6 (8 ________________(8 m ∠ 2 + m ∠ 6 = 180° (9 ________________(9 Geo-AS03-46-860180 2 32
2 ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﺤﺎﻟﻔﺘﺎﻥ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹼﹰﻴﺎ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹰﹼﻴﺎ ﺍﳌﺴﺘﻮﻳﺎﻥ ﺍﳌﺘﻮﺍﺯﻳﺎﻥ ﺍﳌﺴﺘﻘﻴﲈﻥ ﺍﳌﺘﻮﺍﺯﻳﺎﻥ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﻨﺎﻇﺮﺗﺎﻥ ﺍﳌﺴﺘﻘﻴﲈﻥ ﺍﳌﺘﺨﺎﻟﻔﺎﻥ ﻣﻌﺪﻝ ﺍﻟﺘﻐﲑ ﺻﻴﻐﺔ ﺍﳌﻴﻞ ﻭﻧﻘﻄﺔ ﺻﻴﻐﺔ ﺍﳌﻴﻞ ﻭﺍﳌﻘﻄﻊ ﺍﳌﻴﻞ ﺍﻟﻘﺎﻃﻊ r 12 ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ،1-4ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ،ﻭﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ 43 ﻛﺎﻧﺖ ﻛ ﹼﻞ ﺟﻤﻠﺔ ﻣﻤﺎ ﻳﺄﺗﻲ ﺻﺤﻴﺤﺔ ﺃﻡ ﺧﺎﻃﺌ ﹰﺔ ،ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺧﺎﻃﺌ ﹰﺔ، 65 t 78 ﻓﻐ ﹼﻴﺮ ﻣﺎ ﺗﺤﺘﻪ ﺧﻂ ﻟﺘﺠﻌﻠﻬﺎ ﺻﺤﻴﺤ ﹰﺔ: ________________(1 p ∠4 (1ﻭ ∠5ﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﻨﺎﻇﺮﺗﺎﻥ. ________________(2 ﻓﺈﻥ0ﺍﻟ8ﻤ1ﺴﺘ0ﻘﻴ6ﻢ r8ﻳ-ﻮﺍ2ﺯ3ﻱ ﺍ-ﻟﻤ3ﺴ0ﺘﻘSﻴﻢGeo-t A ﺍﻟﻤﺘﻮﺍﺯﻳﺎﻥ\"، \"ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﻣﺴ ﹼﻠﻤﺔ ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ (2 .∠ 3 ﺇﺫﺍ ﻛﺎﻧﺖ ∠8 ________________(3 (3ﺇﺫﺍ ﻛﺎﻥ ، r tﻓﺈﻥ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺤﺎﻟﻔﺘﲔ ∠4ﻭ ∠6ﻣﺘﻜﺎﻣﻠﺘﺎﻥ. ________________(4 (4ﺍﻟﻤﺴﺘﻘﻴﻢ pﻗﺎﻃﻊ ﻷ ﹼﻧﻪ ﻳﻘﻄﻊ ﻣﺴﺘﻘﻴﻤﻴﻦ ﺃﻭ ﺃﻛﺜﺮ ﻓﻲ ﺍﻟﻤﺴﺘﻮ ﻓﻲ ﻧﻘﺎ ﹴﻁ ﻣﺨﺘﻠﻔ ﹴﺔ. ________________(5 ﺍﺧﺘﺮ ﺍﻟﻤﻔﺮﺩﺓ ﺍﻟﻤﻨﺎﺳﺒﺔ ﺍﻟﺘﻲ ﺗﺠﻌﻞ ﺍﻟﺠﻤﻠﺔ ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 5ﹶﻭ 6ﺻﺤﻴﺤ ﹰﺔ: ________________(6 (5ﻋﻨﺪ ﻛﺘﺎﺑﺔ ﻣﻌﺎﺩﻟﺔ ﻣﺴﺘﻘﻴ ﹴﻢ ﺑﺼﻴﻐﺔ ،y = mx + bﺗﻤﺜﻞ m )ﻗﺎﻃﻊ ،ﻣﻴﻞ( ﺍﻟﻤﺴﺘﻘﻴﻢ ﻭ bﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ .y (6ﺗﻘﻊ )ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﻨﺎﻇﺮﺗﺎﻥ ،ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﻤﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹼﹰﻴﺎ( ﺑﻴﻦ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻳﻘﻄﻌﻬﻤﺎ ﻗﺎﻃﻊ. ________________(7 ﺃﻛﻤﻞ ﻛ ﹰﹼﻼ ﻣﻦ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﻤﻔﺮﺩﺓ ﺍﻟﻤﻨﺎﺳﺒﺔ ﻣﻦ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺃﻋﻼﻩ . ________________(8 (7ﺍﳌﻌﺎﺩﻟﺔ y + 6 = - _85_(x - 5) :ﹸﻛﺘﺒﺖ ﺑ ﹺـ _____؟_____ ________________(9 (8ﺇﺫﺍ ﹸﻗﻄﻊ ___؟______ ﺑﻘﺎﻃ ﹴﻊ ،ﻓﺈﻥ ﻛ ﹼﻞ ﺯﺍﻭﻳﺘﲔ ﻣﺘﺒﺎﺩﻟﺘﲔ ﺩﺍﺧﻠ ﹰﹼﻴﺎ ﺗﻜﻮﻧﺎﻥ ﻣﺘﻄﺎﺑﻘﺘﲔ. ________________(10 ____ (9؟_____ ﻳﺼﻒ ﻛﻴﻒ ﺗﺘﻐﲑ ﻛﻤﻴ ﹲﺔ ﻣﺎ ﻣﻊ ﺍﻟﺰﻣﻦ. 2 (10ﺍﳌﺴﺘﻘﻴﲈﻥ ﻏﲑ ﺍﳌﺘﻘﺎﻃﻌﲔ ﺍﻟﻠﺬﺍﻥ ﻻ ﻳﻘﻌﺎﻥ ﰲ ﻣﺴﺘ ﹰﻮ ﻭﺍﺣ ﹴﺪ ﹸﻳﺴ ﱠﻤﻴﺎﻥ _____؟____. 33
(1) 2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ،3-1ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭC . __________(1 B FD (1ﻋ ﹼﻴﻦ ﺍﻟﻤﺴﺘﻮ ﺍﻟﺬﻱ ﻳﻮﺍﺯﻱ ﺍﻟﻤﺴﺘﻮ .BCD __________(2 __________(3 (Cﺍﳌﺴﺘﻮ AEF (Aﺍﳌﺴﺘﻮ ABE (Dﺍﳌﺴﺘﻮ A E DEF (Bﺍﳌﺴﺘﻮ ABF __________(4 __________(5 Geo-AS03-01-860180 (2ﺃ ﱡﻱ ﻗﻄﻌ ﹴﺔ ﻣﺴﺘﻘﻴﻤ ﹴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﺗﻮﺍﺯﻱ CD؟ __________(6 __________(7 EF (J BC (H AE (G AB (F __________(8 __________(9 (3ﺃﻱ ﻗﻄﻌ ﹴﺔ ﻣﺴﺘﻘﻴﻤ ﹴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﺗﺨﺎﻟﻒ DE؟ _________(10 CD (D BD (C BC (B AB (A a 12 ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ،4-7ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. 34 ﺣ ﹼﺪﺩ ﺍﻻﺳﻢ ﺍﻟﺨﺎﺹ ﻟﺰﻭﺝ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 4ﻭ: 5 b 56 ∠1 (4ﻭ ∠8 78 ﻣﻣﺘﺘﻨﺤﺎﺎ0ﻟﻇ8ﻔﺮﺘﺗ1ﺎﺎ0ﻥﻥGeo-AS03-02-86.. (H (Fﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹰﹼﻴﺎ. (J (Gﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹼﹰﻴﺎ. ∠3 (5ﻭ∠7 (Cﻣﺘﺤﺎﻟﻔﺘﺎﻥ. (Aﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹼﹰﻴﺎ. (Dﻣﺘﻨﺎﻇﺮﺗﺎﻥ (Bﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹰﹼﻴﺎ. (6ﺇﺫﺍ ﻛﺎﻥ a b :ﹶﻭ ،m∠2 = 65°ﻓﺄﻭﺟﺪ .m∠6 140° (J 115° (H 65° (G 25° (F (7ﺇﺫﺍ ﻛﺎﻥ a b :ﹶﻭ m∠3 = (5 x + 10)°ﹶﻭ ،m∠5 = (3x + 10)°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ .x 2.5 (D 20 (C 70 (B 110 (A 3645 p ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ 8-10ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. m 1827 (8ﺃﻱ ﻋﻼﻗﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﺗﺒ ﹼﺮﺭ ﺃﻥ m؟ ∠4 ∠5 (H ∠1 ∠7 (F ∠6 ∠8 (J ∠3 ∠4 (G (9ﺇﺫﺍ ﻛﺎﻥ m∠2 = (6 x + 8)° :ﻭ ،m∠6 = (8x - 6)°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ xﺑﺤﻴﺚ ﻳﻜﻮﻥ . m Geo-AS03-0314-(8D60180 7 (C 1 (B -7 (A (10ﺇﺫﺍ ﻛﺎﻥ ،m∠6 + m∠7 = 180° :ﻓﺄ ﹼﻱ ﻣﺴ ﹼﻠﻤﺔ ﺃﻭ ﻧﻈﺮ ﹼﻳﺔ ﺗﺜﺒﺖ ﺃﻥ m؟ (Hﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺧﺎﺭﺟ ﹰﹼﻴﺎ. (Fﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺤﺎﻟﻔﺘﲔ. (Jﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺩﺍﺧﻠ ﹼﹰﻴﺎ. (Gﻣﺴ ﹼﻠﻤﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﻨﺎﻇﺮﺗﲔ. 2 34
)( (1) 2 _________(11 ﻋ ﹼﻴﻦ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺎﺭ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ﺍﻟﻤﺤ ﹼﺪﺩﺗﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 11ﻭ. 12 _________(12 _________(13 A(0,5), B(5,0) (11 _________(14 _________(15 5 (D 1 (C 0 (B -1 (A _________(16 _________(17 F(-2 ,-4) ,G(1 ,2) (12 _________(18 2 (D __1 (C - _1 (B -2 (A 2 2 (13ﺇﺫﺍ ﻛﺎﻧﺖ ،A(1, 7), B(8, 4), C(3, 10) :ﻓﻤﺎ ﺇﺣﺪﺍﺛ ﹼﻴﺎﺕ Dﺍﻟﺘﻲ ﺗﺠﻌﻞ ABﺗﻮﺍﺯﻱ CD؟ D(10, 13) (D D(10, 7) (C D(6, 17) (B D(0, 17) (A (14ﺇﺫﺍ ﻛﺎﻧﺖ ،A(-1, 4), B(2, -5), C(3, 4) :ﻓﻤﺎ ﺇﺣﺪﺍﺛ ﹼﻴﺎﺕ Dﺍﻟﺘﻲ ﺗﺠﻌﻞ ABﺗﻌﺎﻣﺪ CD؟ D(6, 3) (D D(5, -2) (C D(0, 3) (B D(0, 5) (A (15ﻣﺎ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻴﻠﻪ ، 4ﻭﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ yﻳﺴﺎﻭﻱ -3؟ y = 4x - _3 (D y =4x – 3 (C y = -3x + _3 (B y = -3x + 4 (A 4 4 (16ﻣﺎ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻴﻠﻪ ، 2ﻭﻳﻤ ﹼﺮ ﺑﺎﻟﻨﻘﻄﺔ )(3, 1؟ y – 3 = 2(x – 1) (C y – 1 = 2(x – 3) (A y – 3 = (x – 2) (D y + 1 = 2(x + 3) (B (17ﺍﺷﱰﻙ ﻳﺎ ﹲﴎ ﰲ ﻣﺮﻛ ﹴﺰ ﺭﻳﺎ ﱟﴈ ،ﻓﺪﻓﻊ 480ﺭﻳﺎ ﹰﻻ ﺭﺳﻢ ﺍﺷﱰﺍ ﹴﻙ ﺳﻨﻮ ﱟﻱ. ﻭﺑﺎﻹﺿﺎﻓﺔﺇﱃ ﺫﻟﻚ ﻳﻜ ﱢﻠﻔﺔ ﺗﻌ ﹼﻠﻢ ﺍﻟﺴﺒﺎﺣﺔ 20ﺭﻳﺎ ﹰﻻ ﻟﻠﺪﺭﺱ ﺍﻟﻮﺍﺣﺪ، ﻓﲈ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻲ ﲤ ﹼﺜﻞ ﺍﻟﺘﻜﻠﻔﺔ ﺍﻟﻜﻠ ﹼﻴﺔ ﺍﻟﺴﻨﻮﻳﺔ Cﳊﻀﻮﺭ ﻣﻦ ﺩﺭﻭﺱ ﺍﻟﺴﺒﺎﺣﺔ؟ C = 20 - 480 (C C = 20 (A C = 20( + 120) (D C = 20ℓ + 480 (B yn (18ﻣﺎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ Pﻭﺍﻟﻤﺴﺘﻘﻴﻢ nﻓﻲ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻟﻤﺠﺎﻭﺭ؟ P 2 (C -2 (A √2 (D 1 (B Ox _________(19 ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ ﺍﻟﻤﺘﻮﺍﺯﻳﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ20, 19 _________(20 2 y = 4 (19 y=6 10 (D 6 (C 4 (B 2 (A 2 (D y = x (20 y=x+2 √2 (C 1.5 (B 1 (A 35
(2A) 2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ. RS ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ ، 2، 1ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. __________(1 Q P (1ﻋ ﹼﻴﻦ ﺍﻟﻤﺴﺘﻮ ﺍﻟﻤﻮﺍﺯﻱ ﻟﻠﻤﺴﺘﻮ .PQT __________(2 V (Aﺍﳌﺴﺘﻮ PQS (Cﺍﳌﺴﺘﻮ W RSV (Bﺍﳌﺴﺘﻮ PTS __________(3 __________(4 (Dﺍﳌﺴﺘﻮ TUW __________(5 __________(6 UT (2ﺃ ﹼﻱ ﺍﻟﻘﻄﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﺔ ﺍﻵﺗﻴﺔ ﺗﺨﺎﻟﻒ RV؟ __________(7 __________(8 GeoS-P (AJS03-05-860S1W80(H RQ (G RS (F __________(9 _________(10 r 1 2 ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ، 3- 10ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. 4 3 ﺣ ﹼﺪﺩ ﺍﻻﺳﻢ ﺍﻟﺨﺎﺹ ﻟﺰﻭﺝ ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 3ﻭ:4 5 6 ∠3 (3ﻭ∠10 8 7 s 9 10 13 14 (Cﻣﺘﺤﺎﻟﻔﺘﺎﻥ. (Aﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹰﹼﻴﺎ. 12 1p1 16 15 (Dﻣﺘﻨﺎﻇﺮﺗﺎﻥ. (Bﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹰﹼﻴﺎ. q Geo-AS03-06-860180 ∠9 (4ﻭ∠13 (Hﻣﺘﺤﺎﻟﻔﺘﺎﻥ. (Fﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹼﹰﻴﺎ. (Jﻣﺘﻨﺎﻇﺮﺗﺎﻥ. (Gﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹼﹰﻴﺎ. (5ﺇﺫﺍ ﻛﺎﻥ p q :ﹶﻭ ،m∠3 = 75°ﻓﺈﻥ m∠5ﺗﺴﺎﻭﻱ: 120° (D 105° (C 75° (B 15° (A (6ﺇﺫﺍ ﻛﺎﻥ p q :ﹶﻭ m∠10 = (3x - 7)°ﻭ ،m∠13 = (4x - 9)°ﻓﺈﻥ ﻗﻴﻤﺔ xﺗﺴﺎﻭﻱ: 28 (J 16 (H 2 (G -2 (F (7ﺇﺫﺍ ﻛﺎﻧﺖ ،∠1 ∠5ﻓﺄﻱ ﻣﺴ ﹼﻠﻤ ﹴﺔ ﺃﻭ ﻧﻈﺮ ﹼﻳ ﹴﺔ ﺗﺒ ﹼﺮﺭ ﺃﻥ p q؟ (Cﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺧﺎﺭﺟ ﹰﹼﻴﺎ. (Aﻣﺴ ﹼﻠﻤﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﻨﺎﻇﺮﺗﲔ. (Dﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺩﺍﺧﻠ ﹼﹰﻴﺎ. (Bﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺤﺎﻟﻔﺘﲔ. (8ﺇﺫﺍ ﻛﺎﻧﺖ ،∠12 ∠14ﻓﺄﻱ ﻣﺴ ﹼﻠﻤ ﹴﺔ ﺃﻭ ﻧﻈﺮ ﹼﻳ ﹴﺔ ﺗﺒ ﹼﺮﺭ ﺃﻥ p q؟ (Hﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺧﺎﺭﺟ ﹰﹼﻴﺎ. (Fﻣﺴ ﹼﻠﻤﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﻨﺎﻇﺮﺗﲔ. (Jﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺩﺍﺧﻠ ﹼﹰﻴﺎ. (Gﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺤﺎﻟﻔﺘﲔ. (9ﺇﺫﺍ ﻛﺎﻥ p qﻭﻓﻖ ﻧﻈﺮ ﹼﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ ﺍﻟﻤﺘﺤﺎﻟﻔﺘﻴﻦ ،ﻓﺄﻱ ﺯﺍﻭﻳﺘﻴﻦ ﻳﺘﻌ ﹼﻴﻦ ﺃﻥ ﺗﻜﻮﻧﺎ ﻣﺘﻜﺎﻣﻠﺘﻴﻦ؟ ∠15 (Dﹶﻭ ∠16 ∠8 (Cﹶﻭ ∠ 13 ∠3 (Bﹶﻭ ∠8 ∠10 (Aﹶﻭ ∠3 (10ﺇﺫﺍ ﻛﺎﻥ ، m∠8 = (5x + 18)°, m∠4 = (7x – 20)° :ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ xﺣﺘﻰ ﻳﻜﻮﻥ .p q 19 (J 1 (H -1 (G 219 (F 2 36
)( (2A) 2 _________(11 ﺃﻭﺟﺪ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺎ ﹼﺭ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ﺍﻟﻤﺤ ﹼﺪﺩﺗﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ ﺍﻵﺗﻴﻴﻦ: _________(12 Q(12, 9), P(-6, 3) (11 _________(13 _________(14 3 (D __1 (C - __1 (B -3 (A _________(15 3 3 _________(16 _________(17 N(2, -11), M(-8, 14) (12 _________(18 __5 (J __2 (H - __2 (G - __5 (F _________(19 2 5 5 2 _________(20 (13ﺇﺫﺍ ﻛﺎﻧﺖ ،A(-1, 4), B(1, 5), C(-5, 3) :ﻓﻤﺎ ﺇﺣﺪﺍﺛ ﹼﻴﺎﺕ Dﺍﻟﺘﻲ ﺗﺠﻌﻞ ABﺗﻮﺍﺯﻱ CD؟ D(-3, 4) (D D(-4, 5) (C D(-6, 1 ) (B D(-7, 4) (A (14ﺇﺫﺍ ﻛﺎﻧﺖ ،A(2, 3), B(8, 7), C(6, 1) :ﻓﻤﺎ ﺇﺣﺪﺍﺛ ﹼﻴﺎﺕ Dﺍﻟﺘﻲ ﺗﺠﻌﻞ ABﺗﻌﺎﻣﺪ CD؟ D(9, 3) (J D(8, 4) (H D(4, 4 ) (G D(3, 3) (F (-4,؟ )7 ﺑﺎﻟﻨﻘﻄﺔ ﻭﻳﻤ ﹼﺮ __1 ﻣﻴﻠﻪ ﺍﻟﺬﻱ ﺍﻟﻤﺴﺘﻘﻴﻢ ﻣﻌﺎﺩﻟﺔ ﻣﺎ (15 2 y – 7 = -4x + __1 (C y – 7 = __1 (x + )4 (A 2 2 y + 7 = _21(x + 4) (D y – 7 = __1 (x – )4 (B 2 (16ﻣﺎ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ xﻟﻪ ﻳﺴﺎﻭﻱ ،2ﻭﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ yﻟﻪ ﻳﺴﺎﻭﻱ 12؟ y = 12x + 2 (J y = 6x + 12 (H y = 2x + 12 (G y = -6x + 12 (F (17ﻣﺎ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ) (1, -3ﻭ)(7, 15؟ y = 3x - 10 (D y = 3x – 6 (C y = 3x (B y = -3x + 8 (A (18ﻳﻨﺎﻝ ﺧﺎﻟﺪ 4ﺩﺭﺟﺎ ﹴﺕ ﻋﻦ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﻣﻦ qﻣﻦ ﺍﻷﺳﺌﻠﺔ ﻓﻲ ﺍﺧﺘﺒﺎﺭ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ، ﻭ 5ﺩﺭﺟﺎﺕ ﻋﻦ ﺳﺆﺍﻝ ﺇﺿﺎﻓ ﱟﻲ ﻭﺍﺣ ﹴﺪ ،ﺃ ﹼﻱ ﻣﻌﺎﺩﻟﺔ ﳑﹼﺎ ﻳﺄﰐ ﲤ ﹼﺜﻞ ﺍﳌﺠﻤﻮﻉ ﺍﻟﻜﲇ T ﻟﻠﺪﺭﺟﺎﺕ ﺍﻟﺘﻲ ﻳﻤﻜﻨﻪ ﺃﻥ ﻳﻨﺎﳍﺎ ﰲ ﺍﻻﺧﺘﺒﺎﺭ؟ 4 T = q + 5 (I T = 4(q + 5) (H T = 4q + 5 (G T + 5 = 4q (F (19ﻣﺎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ Dﻭﺍﻟﻤﺴﺘﻘﻴﻢ tﻓﻲ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻟﻤﺠﺎﻭﺭ؟ y D O x 5 (C 2 √5 (A √5 (D 3 (B t (20ﻣﺎ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ ﺍﻟﻤﺘﻮﺍﺯﻳﻴﻦ ﺍﻟﻠﺬﻳﻦ ﻣﻌﺎﺩﻟﺘﺎﻫﻤﺎ0y1=802x + 7 :ﹶﻭGeo-AS0.3y-=027x-–836 4 √2 (J 2 √5 (H √5 (G √2 (F 2 37
(2B) ______________(1 2 ______________(2 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ______________(3 ______________(4 ST ﻓﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 1ﻭ 2ﺣ ﱢﺪﺩ ﻛ ﹰﹼﻼ ﻣﻤﺎ ﻳﺄﺗﻲ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. ______________(5 VU ______________(6 (1ﺗﻘﺎﻃﻊ ﺍﻟﻤﺴﺘﻮ SVXﻭﺍﻟﻤﺴﺘﻮ . STU ______________(7 XW (2ﻗﻄﻌﺔ ﻣﺴﺘﻘﻴﻤﺔ ﲣﺎﻟﻒ . WY ______________(8 ______________(9 ZY ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ، 3-7ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. ______________(10 ﻣ5ﺘ–ﺤﺎﻟ3ﻔﺇﺘﻟﻴﻰﻦ:ﺯﺍ0ﻭﻳ8ﺘﻴ1ﻦ0ﻣ6ﺘﺒ8ﺎﺩﻟ-ﺘﻴ1ﻦ1ﺩﺍ-ﺧ3ﻠ ﹼﹰﻴ0ﺎGeo-AS، ﺍﻟﺰﻭﺍﻳﺎ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ ﺻ ﹼﻨﻒ ﺯﻭﺝ ______________(11 ﺧﺎﺭﺟ ﹰﹼﻴﺎ،ﺃﻭ ﻣﺘﻨﺎﻇﺮﺗﻴﻦ ،ﺃﻭ ﺃﻭ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ______________(12 ______________(13 1423 5 6 m ∠ 2 (3ﻭ∠12 ______________(14 8 7 n ∠3 (4ﻭ∠5 9121011s 2 13 14 16 15 t Geo-AS03-12-860180 ∠7 (5ﻭ∠15 (6ﺇﺫﺍ ﻛﺎﻥ m n :ﹶﻭ ،m∠8 = 86°ﻓﺄﻭﺟﺪ .m∠13 (7ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ xﻭ yﺇﺫﺍ ﻛﺎﻥ، m∠4 = (6x – 5)° ,m n : .m∠9 = (3y – 10)° , m∠10 = (5x + 8)° ﺃﻭﺟﺪ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ﺍﻟﻤﺤ ﹼﺪﺩﺗﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ :8-10 W(5, 5), V(-10, -4) (8 C(2, -15), A(-2, 9) (9 L(-3, 9), G(-6, 14) (10 ﻓﻲ ﺍﻷﺳﺌﻠﺔ ،11 – 13ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ CSﹶﻭ KPﻣﺘﻮﺍﺯﻳﻴﻦ ﺃﻭ ﻣﺘﻌﺎﻣﺪﻳﻦ ،ﺃﻭ ﻏﻴﺮ ﺫﻟﻚ. P(6, -6), K(1, 9), S(5, 4),C(1,-12) (11 P(1, 4), K(-2, 10), S(-3, 2), C(-5, 6) (12 P(9, 7), K(3, 3), S(-3, -5), C(-6, -7) (13 (14ﻳﺘﻘﺎ ﹶﺿﻰ ﻣﻜﺘﺐ ﺧﺪﻣﺎﺕ ﻃﻼﺑﻴﺔ ﻣﺒﻠﻎ 5.5ﺭﻳﺎ ﹰﻻ ﻋﻦ ﻛ ﹼﻞ ﺻﻔﺤ ﹴﺔ، ﻋﻨﺪ ﻃﺒﻊ ﺗﻘﺮﻳ ﹴﺮ ﻋﺪﺩ ﺻﻔﺤﺎﺗﻪ ، pﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻰ ﺫﻟﻚ 12ﺭﻳﺎ ﹰﻻ ﻟﺘﺠﻠﻴﺪﻩ. ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟ ﹰﺔ ﺗﻤ ﱢﺜﻞ ﺍﻟﺘﻜﻠﻔﺔ ﺍﻟﻜﻠﻴﺔ Cﻟﻄﺒﻊ ﻭﺗﺠﻠﻴﺪ ﺍﻟﺘﻘﺮﻳﺮ. ﻣﺎ ﺗﻜﻠﻔﺔ ﻃﺒﻊ ﻭﺗﺠﻠﻴﺪ ﺗﻘﺮﻳ ﹴﺮ ﻣﻜ ﹼﻮ ﹴﻥ ﻣﻦ 50ﺻﻔﺤ ﹰﺔ؟ 38
)( (2B) 2 ﺍﻛﺘﺐ ﺑﺼﻴﻐﺔ ﺍﻟﻤﻴﻞ ﻭﺍﻟﻤﻘﻄﻊ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﺤﻘﻖ ﺍﻟﺸﺮﻭﻁ ﺍﻟﻤﻌﻄﺎﺓ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻷﺳﺌﻠﺔ .15-17 _______________(15 ،m = -9 (15ﻭﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ yﻳﺴﺎﻭﻱ .3 _______________(16 ،m = 3 (16ﻭﻳﻤ ﹼﺮ ﺑﺎﻟﻨﻘﻄﺔ ).(-1, 5 _______________(17 (17ﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ xﻳﺴﺎﻭﻱ ، 3ﻭﻣﻘﻄﻊ ﺍﻟﻤﺤﻮﺭ yﻳﺴﺎﻭﻱ -1 _______________(18 (18ﺑﺪﺃﺕ ﻣﺠﻤﻮﻋﺔ ﻣﻦ ﺍﻟﻄﻼﺏ ﺗﻜﻮﻳﻦ ﻣﺠﻤﻮﻋ ﹴﺔ ﻟﻠﻤﺴﺎﻫﻤﺔ ﻓﻲ ﺍﻷﻧﺸﻄﺔ ﺍﻟﺘﻄﻮﻋﻴﺔ ،ﻭﰲ ﺃﻭﻝ ﺍﺟﺘﲈ ﹴﻉ ،ﺳ ﹼﺠﻞ 5ﻃﻼ ﹴﺏ ،ﻭﺑﻌﺪ 12ﻳﻮ ﹰﻣﺎ ﻭﺻﻞ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺇﱃ 23ﻃﺎﻟ ﹰﺒﺎ .ﺇﺫﺍ ﻛﺎﻥ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﻳﺰﺩﺍﺩ ﺑﺎﳌﻌﺪﻝ ﻧﻔﺴﻪ ،ﻓﻜﻢ ﺳﻴﻜﻮﻥ ﻋﺪﺩ ﺍﻟﻄﻼﺏ ﺑﻌﺪ ﺛﻼﺛﲔ ﻳﻮ ﹰﻣﺎ ﻣﻦ ﺍﻻﺟﺘﲈﻉ ﺍﻷﻭﻝ؟ _______________(19 AD ﺑﻨﺎ ﹰﺀ ﻋﻠﻰ ﺍﻟﻤﻌﻠﻮﻣﺎﺕ ﺍﻟﻤﻌﻄﺎﺓ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ، 19–21 _______________(20 1 ﻫﻞ ﻳﻤﻜﻦ ﺇﺛﺒﺎﺕ ﺃﻥ ﺃ ﹼﹰﻳﺎ ﻣﻦ ﻣﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺸﻜﻞ ﻣﺘﻮﺍﺯﻳﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ _______________(21 B 2E _______________(22 ﻋﻠﻰ ﺍﻟﻤﻌﻄﻴﺎﺕ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ،19 - 21ﻭﺇﺫﺍ ﻛﺎﻥ ﺃ ﱡﻳﻬﺎ ﻣﺘﻮﺍﺯ ﹼﹰﻳﺎ، CF ﻓﺎﺫﻛﺮ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺇﺟﺎﺑﺘﻚ. _______________(23 _______________(24 ∠1 ∠2 (19 _______________(25 Geo-AS03-13-860180 ∠DAB ∠EBC (20 m∠ ADE + m∠ BED = 180° (21 (9x - 44)° (22ﺃﻭﺟﺪ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻗﻴﻤﺔ xﺍﻟﺘﻲ ﺗﺠﻌﻞ .a b a (6x + 10)° b ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ ﺍﻟﻤﺘﻮﺍﺯﻳﻴﻦ ﻓﻲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ. 23, 24 Geo-AS03-14-860180 y = x – 6 (23 y=x+8 y = -2x + 10 (24 y = -2x – 5 (25ﺃﻧﺸﺊ ﻣﻦ ﺍﻟﻨﻘﻄﺔ ) B(-2,5ﻣﺴﺘﻘﻴ ﹰﻤﺎ ﻋﻤﻮﺩ ﹰﹼﻳﺎ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ، ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ Bﻭﺍﻟﻤﺴﺘﻘﻴﻢ . 2 39
(3) 2 _______________(1 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: _______________(2 (1ﺍﺭﺳﻢ ﻣﻨﺸﻮ ﹰﺭﺍ ﺛﻼﺛ ﹰﹼﻴﺎ ،ﻭﺳ ﹼﻢ ﺍﻟﻤﺴﺘﻮﻳﻴﻦ ﺍﻟﻤﺘﻮﺍﺯﻳﻴﻦ .ABC, DEF _______________(3 (2ﻋ ﹼﻴﻦ ﻣﺴﺘﻮﻳﻴﻦ ﻣﺘﻘﺎﻃﻌﻴﻦ ﻓﻲ ﺍﻟﻤﻨﺸﻮﺭ ﺍﻟﺜﻼﺛﻲ ﺍﻟﺬﻱ ﺭﺳﻤﺘﻪ ﻓﻲ ﺍﻟﺴﺆﺍﻝ ،1ﻭﺳ ﹼﻢ ﺗﻘﺎﻃﻌﻬﻤﺎ. _______________(4 _______________(5 (3ﺳ ﹼﻢ ﻣﺴﺘﻘﻴﻤﻴﻦ ﻣﺘﺨﺎﻟﻔﻴﻦ ﻓﻲ ﺍﻟﻤﻨﺸﻮﺭ ﺍﻟﺜﻼﺛﻲ ﺍﻟﺬﻱ ﺭﺳﻤﺘﻪ ﻓﻲ ﺍﻟﺴﺆﺍﻝ .1 _______________(6 _______________(7 f 2198 ﺻ ﱢﻨﻒ ،ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ،ﻛ ﹼﻞ ﺯﻭﺝ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ ﺇﻟﻰ ﺯﺍﻭﻳﺘﻴﻦ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺩﺍﺧﻠ ﹼﹰﻴﺎ ،ﺃﻭ ﻣﺘﺒﺎﺩﻟﺘﻴﻦ ﺧﺎﺭﺟ ﹼﹰﻴﺎ ،ﺃﻭ ﻣﺘﻨﺎﻇﺮﺗﻴﻦ ،ﺃﻭ ﻣﺘﺤﺎﻟﻔﺘﻴﻦ. g 43105 611217 ∠9 (4ﻭ∠12 ∠2 (5ﻭh ∠3 Geo-AS03-24-860180 ∠4 (6ﻭ∠11 12 p (7ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ،ﺇﺫﺍ ﻛﺎﻥ،m∠8 = 30° , m∠9 = 110° : 43 ﻓﺄﻭﺟﺪ m∠6 12 9 10 q 11 8 56 7 13 r t s14 _______________(8 Geo-AS03-25-860180 (8ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ z, y, xﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. (8x - 7)° (3x - 11)° (2y + 23)° (3z 2 - 5)° (4y + 8)° _______________(9 ﺃﻭﺟﺪ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻤ ﹼﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ﺍﻟﻤﺤ ﹼﺪﺩﺗﻴﻦ ﻓ0ﻲ8ﻛ1ﱟﻞ0ﻣ6ﻦ 8ﺍﻟ-ﺴ6ﺆﺍ2ﻟﻴ-ﻦ 093ﹶﻭGeo-:1A0S ______________(10 F(12, 23), D(-6, -7) (9 U(4, -2.5), V(-2, -0.25) (10 ______________(11 ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ RM , QVﻣﺘﻮﺍﺯﻳﻴﻦ ﺃﻭ ﻣﺘﻌﺎﻣﺪﻳﻦ ﺃﻭ ﻏﻴﺮ ﺫﻟﻚ. Q(-3, -8), V(5, 12), R(-2.5, 1), M(-5, 2) (11 ______________(12 2 Q(-2, 4.5), V(4, 9), R(-4, -12), M(10, -1.5) (12 40
)( (3) 2 ______________(13 (13ﺗﺘﺤﺮﻙ ﺳﻴﺎﺭﺗﺎﻥ ﻓﻲ ﻃﺮﻳﻘﻴﻦ ﻣﺘﻌﺎﻣﺪﻳﻦ. ﻓﺈﺫﺍ ﺑﺪﺃﺕ ﺍﻟﺴﻴﺎﺭﺓ ﺍﻷﻭﱃ ﺍﳊﺮﻛﺔ ﻋﲆ ﺧﺮﻳﻄﺔ ﺇﺣﺪﺍﺛﻴﺔ ﻣﻦ ﺍﻟﻨﻘﻄﺔ )،(-5, -8 ﺛﻢ ﺗﻮﻗﻔﺖ ﻋﻨﺪ ﺍﻟﻨﻘﻄﺔ ) ،(2, 7ﻭﺑﺪﺃﺕ ﺍﻟﺴﻴﺎﺭﺓ ﺍﻟﺜﺎﻧﻴﺔ ﻣﻦ ﺍﻟﻨﻘﻄﺔ )(-5, 1 ﺛﻢ ﺗﻮﻗﻔﺖ ﻋﻨﺪ ) ،(10,yﻓﲈ ﺍﻹﺣﺪﺍﺛﻲ yﻟﻠﻤﻮﻗﻒ ﺍﻟﻨﻬﺎﺋﻲ ﻟﻠﺴﻴﺎﺭﺓ ﺍﻟﺜﺎﻧﻴﺔ؟ ______________(14 (14ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺎﺭ ﺑﺎﻟﻨﻘﻄﺔ )،(-4, -5 ______________(15 ﻭﺍﻟﻌﻤﻮﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ .3x – 4y = 9 (15ﺗﺘﻘﺎ ﹶﺿﻰ ﺷﺮﻛﺔ ﺗﺄﺟﻴﺮ ﺳﻴﺎﺭﺍﺕ ﻣﺒﻠﻎ 120ﺭﻳﺎ ﹰﻻ ﻓﻲ ﺍﻟﻴﻮﻡ ﻣﻀﺎ ﹰﻓﺎ ﺇﻟﻴﻬﺎ 1.2ﺭﻳـﺎﻝ ﻋﻦ ﻛ ﹼﻞ ﻛﻴﻠﻮﻣﺘﺮ ﺑﻌﺪ ﺍﻟﻤﺎﺋﺔ ﻣﻦ mﻛﻴﻠﻮﻣﺘ ﹰﺮﺍ ﺗﻘﻄﻌﻬﺎ ﺍﻟﺴﻴﺎﺭﺓ ،ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺗﻤﺜﻞ ﺍﻟﺘﻜﻠﻔﺔ ﺍﻟﻜﻠﻴﺔ Cﻻﺳﺘﺌﺠﺎﺭ ﺳﻴﺎﺭ ﹴﺓ ﻣﺪﺓ 5ﺃﻳﺎ ﹴﻡ ،ﻭﻣﺎ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻜﻠﻲ ﺍﻟﺬﻱ ﺳﻴﺪﻓﻌﻪ ﺳﻌﺪ ﺇﺫﺍ ﺍﺳﺘﺄﺟﺮ ﺳﻴﺎﺭﺓ ﻣﺪﺓ 5ﺃﻳﺎ ﹴﻡ ﻭﻗﺎﺩﻫﺎ ﻣﺴﺎﻓﺔ 255 km؟ MNP ﻫﻞ ﻳﻤﻜﻦ ﺇﺛﺒﺎﺕ ﺃﻥ ﺃ ﹰﹼﻳﺎ ﻣﻦ ﻣﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺸﻜﻞ ﻣﺘﻮﺍﺯﻳﺔ ،ﺍﻋﺘﻤﺎ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻤﻌﻄﻴﺎﺕ ﻓﻲ ﺍﻷﺳﺌﻠﺔ ،16, 17ﻭﺇﺫﺍ ﻛﺎﻥ ﺃ ﱡﻳﻬﺎ ﻣﺘﻮﺍﺯ ﹰﹼﻳﺎ، ______________(16 R ST ______________(17 U V ﻓﺎﺫﻛﺮ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺇﺟﺎﺑﺘﻚ. ______________(18 ∠RNS ∠PSN (16 ______________(19 Geo-AS03-27-860180 .m∠MRS + m∠RSN = 180° (17 (229 - 4x)° (18ﺃﻭﺟﺪ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻗﻴﻤﺔ xﺍﻟﺘﻲ ﺗﺠﻌﻞ .a b ab (6x - 13)° (19ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ ﺍﻟﻤﺘﻮﺍﺯﻳﻴﻦ ﺍﻟﻠﺬﻳﻦ ﻣﻌﺎﺩﻟﺘﻴﻬﻤﺎ: Geo-AS03-28-860180 y = - _41_x + 2 , y = - _41_x - __9 4 ______________(20 (20ﻣ ﹼﺜﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ mﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ -6x – 3y = 9ﺑﻴﺎﻧ ﹰﹼﻴﺎ، ______________(21 ﻭﺃﻧﺰﻝ ﻣﻦ ﺍﻟﻨﻘﻄﺔ ) P (3,1ﻋﻤﻮ ﹰﺩﺍ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ،m ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ Pﻭﺍﻟﻤﺴﺘﻘﻴﻢ .m (21ﺍﻓﺘﺮﺽ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻢ pﻋﻤﻮﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ،sﻭﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻢ q ﻋﻤﻮﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻢ ،sﻓﻬﻞ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ pﹶﻭ qﻣﺘﻮﺍﺯﻳﺎﻥ ﺩﺍﺋ ﹰﻤﺎ؟ ﺍﺭﺳﻢ ﺷﻜ ﹰﻼ ﻳﻮ ﹼﺿﺢ ﺇﺟﺎﺑﺘﻚ. 2 41
2 ﹸﺣ ﹼﻞ ﻛ ﹼﻞ ﻣﺴﺄﻟ ﹴﺔ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﺑﺼﻮﺭ ﹴﺓ ﻭﺍﺿﺤ ﹴﺔ ﻭﺩﻗﻴﻘ ﹴﺔ ﻣﺴﺘﻌﻴ ﹰﻨﺎ ﺑﻤﻌﺮﻓﺘﻚ ﺍﻟﺴﺎﺑﻘﺔ ،ﺛﻢ ﺗﺤ ﹼﻘﻖ ﻣﻦ ﺗﻀﻤﻴﻨﻚ ﺍﻟﺤﻞ ﺍﻟﺮﺳﻮﻡ ﻭﺍﻟﺘﺒﺮﻳﺮﺍﺕ ﺍﻟﻼﺯﻣﺔ، ﻛﻤﺎ ﻳﻤﻜﻨﻚ ﻋﺮﺽ ﺍﻟﺤ ﹼﻞ ﺑﺄﻛﺜﺮ ﻣﻦ ﻃﺮﻳﻘ ﹴﺔ ،ﺃﻭ ﺃﻥ ﺗﺴﺘﻘﺼﻲ ﺃﻛﺜﺮ ﻣﻤﺎ ﻫﻮ ﻣﻄﻠﻮﺏ ﻓﻲ ﺍﻟﻤﺴﺄﻟﺔ) .ﺍﺳﺘﻌﻤﻞ ﻭﺭﻗ ﹰﺔ ﻣﻨﻔﺼﻠ ﹰﺔ ،ﺇﺫﺍ ﻛﺎﻥ ﺫﻟﻚ ﺿﺮﻭﺭ ﹰﹼﻳﺎ(. (1ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻵﺗﻲ ﺗﻤ ﹼﺜﻞ ﺗﻘﺎﻃﻌﺎﺕ ﺍﻟﺸﻮﺍﺭﻉ ﻗﺮﺏ ﺑﻴﺖ ﻣﺤﻤﺪ. ﻓﺘﻤ ﹼﺜﻞ ﻣﻮﻗﻊ ﺑﻴﺖ ﻣﺤﻤﺪ ،ﻭﺗﻤ ﹼﺜﻞ ﻣﻮﻗﻊ ﺍﻟﻤﻜﺘﺒﺔ ،ﻭﺗﻤ ﹼﺜﻞ ﺍﻷﺭﻗﺎﻡ 1, 2, 3, 4, 5 ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻦ ﻣﻦ ﺗﻘﺎﻃﻌﺎﺕ ﺍﻟﺸﻮﺍﺭﻉ. a 1B b 23 5A c 4 de f (aﺇﺫﺍ ﺃﺭﺩﺕ ﺃﻥ ﺗﺘﺄﻛﺪ ﻣﻦ ﺗﻮﺍﺯﻱ ﺍﻟﺸ0ﻮﺍ8ﺭ1ﻉ0ﺍﳌ6ﻤ 8ﱠﺜﻠﺔ -ﺑ1ﺎﳌ3ﺴﺘ-ﻘ3ﻴﲈS0ﺕG،ae،ob-، cA ﻓﲈ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﻟﺘﻲ ﲢﺘﺎﺝ ﺇﻟﻴﻬﺎ؟ ﻭ ﹼﺿﺢ ﺗﱪﻳﺮﻙ. (bﺍﻓﱰﺽ ﺃﻥ ﺍﻟﺸﺎﺭﻋﲔ ﺍﳌﻤ ﹼﺜ ﹶﻠﲔ ﺑﺎﳌﺴﺘﻘﻴﻤﲔ e, dﻣﺘﻮﺍﺯﻳﺎﻥ ،ﻭﺇﺫﺍ ﻛﺎﻥ ،m∠5 = 112° ﻓﺄﻭﺟﺪ ،m∠4ﻭﻭ ﹼﺿﺢ ﻛﻴﻒ ﻭﺟﺪﺕ ﺍﻟﻘﻴﺎﺱ. (cﺇﺫﺍ ﻛﺎﻥ m∠1 = (3x – 7)°ﻭ ،m∠4 = (2x + 20)°ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ xﺇﺫﺍ ﻛﺎﻥ ﺍﳌﺴﺘﻘﻴﲈﻥ c, aﻣﺘﻮﺍﺯﻳﲔ. ﻭ ﹼﺿﺢ ﻛﻴﻒ ﺗﻮ ﹼﺻﻠﺖ ﺇﱃ ﺇﺟﺎﺑﺘﻚ ،ﺛﻢ ﹺﺻ ﹾﻒ ﳌﺎﺫﺍ ﺗﺘﻴﺢ ﻫﺬﻩ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺇﻣﻜﺎﻧﻴﺔ ﲢﺪﻳﺪ ﺗﻮﺍﺯﻱ ﺍﳌﺴﺘﻘﻴﻤﲔ .c, a (dﻳﺮﻏﺐ ﳏﻤﺪ ﰲ ﺍﻟﺬﻫﺎﺏ ﻣﻦ ﺍﳌﻜﺘﺒﺔ ﺇﱃ ﺑﻴﺘﻪ .ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺸﺎﺭﻋﺎﻥ ﺍﳌﻤ ﹼﺜﻼﻥ ﺑﺎﳌﺴﺘﻘﻴﻤﲔ b, aﻣﺘﻮﺍﺯﻳﲔ، ﻓﻜﻴﻒ ﻳﺴﺘﻄﻴﻊ ﳏﻤﺪ ﺃﻥ ﳛ ﹼﺪﺩ ﺃﻗﴫ ﻣﺴﺎﻓﺔ ﺑﲔ ﺍﳌﻮﻗﻊ ﻭﺍﻟﺸﺎﺭﻉ bﺍﻟﺬﻱ ﻳﺴﻜﻦ ﻓﻴﻪ؟ ﺃﻋ ﹺﻂ ﺗﻔﺴ ﹰﲑﺍ ،ﻭﻭﺿﺢ ﺇﺟﺎﺑﺘﻚ ﺑﺎﻟﺮﺳﻢ. (2ﺍﺭﺳﻢ ﻋﻠﻰ ﺷﺒﻜﺔ ﺇﺣﺪﺍﺛ ﹼﻴﺔ ﺍﻟﻤﺴﺘﻘﻴ ﹶﻢ ﺍﻟﺬﻱ ﻳﻤ ﹼﺮ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ ).(2, 4), (-3, -1 (aﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﳌﺴﺘﻘﻴﻢ ﺑﺼﻴﻐﺔ ﺍﳌﻴﻞ ﻭﺍﳌﻘﻄﻊ .ﻭﺃﻋ ﹺﻂ ﺗﻔﺴ ﹰﲑﺍ ﻟﻜﻞ ﺧﻄﻮﺓ. (bﺇﺫﺍ ﺭﺳﻤﺖ ﻣﺴﺘﻘﻴ ﹰﲈ ﻣﻮﺍﺯ ﹰﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ ،ﻓﲈ ﻣﻴﻞ ﻫﺬﺍ ﺍﳌﺴﺘﻘﻴﻢ؟ ﻛﻴﻒ ﻋﺮﻓﺖ ﺫﻟﻚ؟ ﺍﺭﺳﻢ ﻣﻦ ﺍﻟﻨﻘﻄﺔ ) (1,5ﻣﺴﺘﻘﻴ ﹰﲈ ﻣﻮﺍﺯ ﹰﻳﺎ ﻟﻠﻤﺴﺘﻘﻴﻢ . (cﺃﻭﺟﺪ ﺍﻟﺒﻌﺪ ﺑﲔ ﺍﳌﺴﺘﻘﻴﻤﲔ .ﻭﻭ ﹼﺿﺢ ﻛﻴﻒ ﻭﺟﺪﺗﻪ. 2 42
(1,2) 2 ﺍﻟﺠﺰﺀ :1ﺍﻻﺧﺘﻴﺎﺭ ﻣﻦ ﻣﺘﻌﺪﺩ ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺭﻣﺰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ ﰲ ﺍﳌﻜﺎﻥ ﺍﳌﺨﺼﺺ ﻟﺬﻟﻚ. 3x (1ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺮﺳﻢ ﺍﻟﻤﻘﺎﺑﻞ ،ﺣ ﱢﺪﺩ ﺃ ﹼﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻵﺗﻴﺔ ﻟﻬﺎ ABC ﻗﻴﻤﺔ ﺻﻮﺍﺏ ﺍﻟﻌﺒﺎﺭﺓ 1-2 3 = 5 ________(1 BC = 3 + x (D AB = BC (C AB = 3 (B 3 = x (A (2ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ [(p q) ∧ (q r)] :ﺻﺤﻴﺤﺔ ،ﻓﺄ ﹼﻱ ﺍﻟﻌﺒ0ﺎ8ﺭﺍ01ﺕ6ﺍ8ﻵ-ﺗﻴ2ﺔGeo-ST03-0 ﺗﻜﻮﻥ ﺻﺤﻴﺤ ﹰﺔ ﻭﻓﻖ ﻗﺎﻧﻮﻥ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻤﻨﻄﻘﻲ؟ 1-4 ________(2 q p (H r p (F p r (J r q (G (3ﺇﺫﺍ ﻣ ﹼﺜﻞ ﺍﻟﺮﻣﺰ pﺍﻟﻌﺒﺎﺭﺓ\":ﻗﻄﺮﺍ ﺍﻟﻤﺮﺑﻊ ﻣﺘﻌﺎﻣﺪﺍﻥ\" ،ﻭﻣ ﹼﺜﻞ ﺍﻟﺮﻣﺰ qﺍﻟﻌﺒﺎﺭﺓ: \"ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﻨﻔﺮﺟﺔ ﺃﻗﻞ ﻣﻦ ،\"90ºﻓﺄ ﹼﻱ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﺮﻛﺒﺔ ﺍﻵﺗﻴﺔ ﺻﺤﻴﺤﺔ؟ 1-2 ________(3 p ∧ q (D ~p ∧ ~q (C p ∧ ~q (B ~ p ∧ q (A ________(4 (4ﻣﺎ ﻣﻌﻜﻮﺱ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺸﺮﻃ ﹼﻴﺔ ﺍﻵﺗﻴﺔ؟ 1-3 \"ﺇﺫﺍ ﻛﺎﻧﺖ ، ∠1 ∠2 :ﻓﺈﻥ\". m∠1 = m∠2 : ________(5 (Fﺇﺫﺍ ﻛﺎﻥ ، m∠1 = m∠2 :ﻓﺈﻥ.∠1 ∠2 : m (Gﺇﺫﺍ ﻛﺎﻥ ، m∠1 ≠ m∠2 :ﻓﺈﻥ.∠1 ∠2 : (Hﺇﺫﺍ ﻛﺎﻧﺖ ، ∠1 ∠2 :ﻓﺈﻥ.m∠1 ≠ m∠2 : ________(6 (Jﺇﺫﺍ ﻛﺎﻧﺖ ، ∠1 ∠2 :ﻓﺈﻥ.m∠1 = m∠2 : ________(7 (5ﺍﺫﻛﺮ ﺍﻟﺨﺎﺻﻴﺔ ﺍﻟﺘﻲ ﺗﺒ ﹼﺮﺭ ﺍﻟﻌﺒﺎﺭﺓ \"ﺇﺫﺍ ﻛﺎﻥ ،b = c, a + b = 25 :ﻓﺈﻥ1-6 \"a + c = 25 : (Cﺧﺎﺻﻴﺔ ﺍﻟﺘﻌﺪﻱ ﻟﻠﻤﺴﺎﻭﺍﺓ. (Aﺧﺎﺻﻴﺔ ﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﻤﺴﺎﻭﺍﺓ. (Dﺧﺎﺻﻴﺔ ﺍﻟﺘﻌﻮﻳﺾ ﻟﻠﻤﺴﺎﻭﺍﺓ. (Bﺧﺎﺻﻴﺔ ﺍﻟﺘﲈﺛﻞ ﻟﻠﻤﺴﺎﻭﺍﺓ. 12 9 10 q (Hﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﻨﺎﻇﺮﺗﺎﻥ. ﺃﺟﺐ ﻋﻦ ﺍﻷﺳﺌﻠﺔ ، 6-8ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ. 34 11 12 (6ﻣﺎ ﻧﻮﻉ ﺍﻟﺰﺍﻭﻳﺘﻴﻦ∠3ﻭ∠10؟ 2-1 56 (Fﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺩﺍﺧﻠ ﹼﹰﻴﺎ. p11531164 n7 8 (Jﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﺤﺎﻟﻔﺘﺎﻥ. (Gﺯﺍﻭﻳﺘﺎﻥ ﻣﺘﺒﺎﺩﻟﺘﺎﻥ ﺧﺎﺭﺟ ﹼﹰﻴﺎ. Geo-ST03-03-860180 (7ﺣﺪﺩ ﺍﻟﻘﺎﻃﻊ ﺍﻟﺬﻱ ﻳﻜ ﹼﻮﻥ2-1 .∠13 ,∠11 q (D p (C m (B (A (8ﺇﺫﺍ ﻛﺎﻥ ،m∠1 = 120°ﻓﺄﻭﺟﺪ .2-2 .m∠8 ________(8 140° (J 120° (H 110° (G 60° (F 2 43
)(1 (1,2) 2 (9ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﳌﺴﺘﻘﻴﲈﺕ j, k,ﺗﻘﻊ ﰲ ﺍﳌﺴﺘﻮ ﻧﻔﺴﻪ ،ﻭﺍﳌﺴﺘﻘﻴﲈﻥ k,ﻣﺘﻮﺍﺯﻳﲔ، ﻭﺍﳌﺴﺘﻘﻴﲈﻥ j,ﻣﺘﻌﺎﻣﺪﻳﻦ ،ﻓﺄ ﱞﻱ ﳑﹼﺎ ﻳﺄﰐ ﺗﺼﻒ ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺍﳌﺴﺘﻘﻴﻤﲔ k, j ﺑﺼﻮﺭ ﹴﺓ ﺻﺤﻴﺤ ﹴﺔ؟ 2-2 ______________(9 (Cﺍﳌﺴﺘﻘﻴﲈﻥ j, kﻣﺘﻌﺎﻣﺪﺍﻥ (Aﺍﳌﺴﺘﻘﻴﲈﻥ j, kﻣﺘﺨﺎﻟﻔﺎﻥ (Dﺍﳌﺴﺘﻘﻴﲈﻥ j, kﻻ ﻳﻘﻌﺎﻥ ﰲ ﻧﻔﺲ ﺍﳌﺴﺘﻮ (Bﺍﳌﺴﺘﻘﻴﲈﻥ j, kﻣﺘﻮﺍﺯﻳﺎﻥ (10ﺩﺭﺟﺔ ﺍﻧﺤﺪﺍﺭ ﺟﺰ ﹴﺀ ﻣﻦ ﻃﺮﻳﻖ ،9%ﺇﺫﺍ ﺗﺤﺮﻛﺖ ﺳﻴﺎﺭﺓ ﻣﻦ ﺑﺪﺍﻳﺔ ﺍﻟﺠﺰﺀ ﺍﻟﻤﻨﺤﺪﺭ ﻣﻦ ﺃﺳﻔﻞ ﺇﻟﻰ ﺃﻥ ﻭﺻﻠﺖ ﺇﻟﻰ ﺍﺭﺗﻔﺎﻉ 18 ftﻓﻮﻕ ﻣﺴﺘﻮ ﺍﻟﻄﺮﻳﻖ ﺍﻷﻓﻘﻲ، ﻓﻤﺎ ﺍﻟﻤﺴﺎﻓﺔ ﺍﻷﻓﻘﻴﺔ ﺍﻟﺘﻲ ﻗﻄﻌﺘﻬﺎ ﺍﻟﺴﻴﺎﺭﺓ؟ 2-4 ______________(10 200 ft (D 100 ft (C 50 ft (G 36 ft (A (11ﻣﺎ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ 2y + x = -3؟ 2-5 ______________(11 2 (D - _1 (C -2 (B -3 (A 2 (12ﻳﻘﻄﻊ ﻗﺎﻃ ﹲﻊ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ k,ﻣﻜ ﹼﻮ ﹰﻧﺎ ﺯﻭﺟﻴﻦ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﺘﺒﺎﺩﻟﺔ ﺩﺍﺧﻠ ﹼﹰﻴﺎ: ∠ 4ﻭ ∠3 ;∠5ﻭ ،∠6ﺃ ﱞﻱ ﻣ ﹼﻤﺎ ﻳﺄﺗﻲ ﹸﻳ ﹶﻌ ﱡﺪ ﺿﺮﻭﺭ ﹰﹼﻳﺎ ﻟﻜﻲ ﻳﻜﻮﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ k, lﻣﺘﻮﺍﺯﻳﻴﻦ؟ 2-3 ______________(12 ∠4 ∠ 5 (Cﻭ ∠3 ∠6 ∠4 ∠3 (A ______________(13 m∠3 + m∠6 = 90 (D m∠3 + m∠6 = 180 (B (13ﺃﻭﺟﺪ ﺍﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﺍﻟﻨﻘﻄﺔ ) (2, 3ﻭﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻣﻌﺎﺩﻟﺘﻪ 2-6 . y = x ______________(14 (14ﻣﺎ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺍﻟﺘﻲ ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻟﻬﺎ ﻹﺛﺒﺎﺕ ﺻﺤﺔ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻵﺗﻴﺔ؟ 1-5 ______________(15 ﻳﻤ ﹼﺮ ﺍﳌﺴﺘﻘﻴﻢ mﺑﺎﻟﻨﻘﻄﺘﲔ .A,F 2 (15ﺇﺫﺍ ﻛﺎﻥ ﻣﻴﻞ ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺎ ﹼﺭ ﺑﺎﻟﻨﻘﻄﺘﻴﻦ )C(a, -2), D(-3, 6 ﻳﺴﺎﻭﻱ _ ،_23ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ 2-4 .a 44
)(2 (1,2) 2 ______________(16 ﺍﻟﺠﺰﺀ : 2ﺍﻹﺟﺎﺑﺔ ﺍﻟﻘﺼﻴﺮﺓ ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﰲ ﺍﳌﻜﺎﻥ ﺍﳌﺨﺼﺺ ﻟﺬﻟﻚ. (16ﻣﻌﺎﺩﻟﺔ ﺍﳌﺴﺘﻘﻴﻢ ﺍﻟﻌﻤﻮﺩﻱ ﻋﲆ ، y = -xﻭﻳﻤﺮ ﺑﺎﻟﻨﻘﻄﺔ ) (2, 4ﻫﻲ: ___؟___ 2-5 y = x + ______________(17 (17ﺃﻭﺟﺪ ﻣﻴﻞ ﺍﳌﺴﺘﻘﻴﻢ ﺍﻟﺬﻱ ﻳﻮﺍﺯﻱ ﺍﳌﺴﺘﻘﻴﻢ 2-5 .3y – 6x = 9 ______________(18 2-3 (18ﺃﻭﺟﺪ ﻗﻴﻤﺔ xﺣﺘﻰ ﻳﻜﻮﻥ l mﻓﻲ ﺍﻟﺸﻜﻞ ﺃﺩﻧﺎﻩ. ______________(19 (7x + 15)° m 25° n _____________(20a _____________(20b Geo-ST03-06-860180 _____________(20c (19ﺍﻟﻤﺤﻮﺭ (y = 0) xﻭﺍﻟﻤﺤﻮﺭ (x = 0) yﻓﻲ ﺍﻟﻤﺴﺘﻮ ﺍﻹﺣﺪﺍﺛ ﹼﻲ ﻣﺘﻌﺎﻣﺪﺍﻥ، _____________(20d ﻭﺣﺎﺻﻞ ﺿﺮﺏ ﻣﻴ ﹶﻠﻲ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ ﺍﻟﻤﺘﻌﺎﻣﺪﻳﻦ ﻳﺴﺎﻭﻱ . -1 ﻭﺿ ﹼﺢ ﻟﻤﺎﺫﺍ ﻻ ﻳﻨﻄﺒﻖ ﻫﺬﺍ ﺍﻟﺘﻌﺮﻳﻒ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ y = 0ﻭ 2-4 .x = 0 (20ﻳﻜ ﹼﻠﻒ ﺍﺷﺘﺮﺍﻙ ﻓﻴﺼﻞ ﻓﻲ ﺍﻟﺘﺄﻣﻴﻦ ﺍﻟﻄﺒﻲ ﻓﻲ ﻧﻈﺎﻡ ﺍﻟﺸﺮﻛﺔ 3500 ،Aﺭﻳﺎ ﹴﻝ ﺳﻨﻮ ﹰﹼﻳﺎ ﹶﻭ 100ﺭﻳﺎﻝ ﻋﻦ ﻛﻞ ﺯﻳﺎﺭﺓ ﻋﻼﺝ ،ﻭﻓﻲ ﻧﻈﺎﻡ ﺍﻟﺸﺮﻛﺔ Bﻳﻜ ﹼﻠﻒ 4000ﺭﻳﺎ ﹴﻝ ﺳﻨﻮ ﹰﹼﻳﺎ ﹶﻭ 50ﺭﻳﺎ ﹰﻻ ﻋﻦ ﻛﻞ ﺯﻳﺎﺭﺓ ﻋﻼﺝ2-5 . (aﺍﻛﺘﺐ ﻣﻌﺎﺩﻟ ﹰﺔ ﻟﻜ ﹼﻞ ﺷﺮﻛﺔ ﺑﺼﻴﻐﺔ ﺍﻟﻤﻴﻞ ﻭﺍﻟﻤﻘﻄﻊ. (bﻛﻢ ﻳﺪﻓﻊ ﻓﻴﺼ ﹲﻞ ﻭﻓﻖ ﺧﻄﺔ ﺍﻟﺸﺮﻛﺔ ، Aﺇﺫﺍ ﺭﺍﺟﻊ ﺍﻟﻤﺮﺍﻛﺰ ﺍﻟﺼﺤﻴﺔ 20ﻣﺮ ﹰﺓ. (cﻫﻞ ﻳﻮﻓﺮ ﻓﻴﺼﻞ ﺑﻌﺾ ﺍﻟﻤﺎﻝ ﺇﺫﺍ ﺣ ﹼﻮﻝ ﺍﺷﺘﺮﺍﻛﻪ ﺇﻟﻰ ﺍﻟﺸﺮﻛﺔ Bﻓﻲ ﺣﺎﻝ ﺯﻳﺎﺭﺗﻪ 20ﻣﺮ ﹰﺓ ﻟﻠﻤﺮﺍﻛﺰ ﺍﻟﺼﺤﻴﺔ. (dﺃ ﱡﻱ ﺍﻟﴩﻛﺘﲔ ﺃﻗ ﹼﻞ ﺗﻜﻠﻔ ﹰﺔ ﺇﺫﺍ ﺭﺍﺟﻊ ﻓﻴﺼﻞ ﺍﳌﺮﺍﻛﺰ ﺍﻟﺼﺤﻴﺔ 10ﻣﺮﺍ ﹴﺕ؟ 2 45
3 1ﻗﺒﻞ ﺑﺪﺀ ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻟﺚ • ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺟﻤﻠﺔ. • ﻗ ﹼﺮﺭ ﻣﺎ ﺇﺫﺍ ﻛﻨﺖ ﻣﻮﺍﻓ ﹰﻘﺎ )ﻡ( ﻋﻠﻰ ﻣﻀﻤﻮﻧﻬﺎ ،ﺃﻭ ﻏﻴﺮ ﻣﻮﺍﻓﻖ )ﻍ(. • ﺍﻛﺘﺐ )ﻡ( ﺃﻭ )ﻍ( ﰲ ﺍﻟﻌﻤﻮﺩ ﺍﻷﻭﻝ ،ﻭﺇﺫﺍ ﻛﻨﺖ ﻏﲑ ﻣﺘﺄﻛﺪ ﻣﻦ ﻣﻮﺍﻓﻘﺘﻚ ﻓﺎﻛﺘﺐ )ﻍ ﻡ(. 2 1 (1ﺣﺘﻰ ﻳﻜﻮﻥ ﺍﻟﻤﺜﻠﺚ ﺣﺎ ﱠﺩ ﺍﻟﺰﻭﺍﻳﺎ ،ﻳﺘﻌ ﹼﻴﻦ ﺃﻥ ﺗﻜﻮﻥ ﺯﻭﺍﻳﺎﻩ ﺍﻟﺜﻼﺙ ﺣﺎﺩ ﹰﺓ. (2ﺃﺿﻼﻉ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ﺟﻤﻴﻌﻬﺎ ﻣﺘﻄﺎﺑﻘﺔ. (3ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺨﺎﺭﺟﻴﺔ ﻫﻲ ﺃﻳﺔ ﺯﺍﻭﻳﺔ ﺧﺎﺭﺝ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﻌﻠﻮﻡ. (4ﻣﺠﻤﻮﻉ ﻗﻴﺎﺳﺎﺕ ﺯﻭﺍﻳﺎ ﺍﻟﻤﺜﻠﺚ ﻳﺴﺎﻭﻱ .360º (5ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﻨﻔﺮﺝ ﺍﻟﺰﺍﻭﻳﺔ ﻫﻮ ﻣﺜﻠ ﹲﺚ ﻓﻴﻪ ﺛﻼﺙ ﺯﻭﺍﻳﺎ ﻣﻨﻔﺮﺟﺔ. (6ﺍﻟﻤﺜﻠﺜﺎﻥ ﺍﻟ ﱠﻠﺬﺍﻥ ﻟﻬﻤﺎ ﻧﻔﺲ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺰﻭﺍﻳﺎ ﻭﻧﻔﺲ ﻗﻴﺎﺳﺎﺕ ﺍﻷﺿﻼﻉ ﻣﺜﻠﺜﺎﻥ ﻣﺘﻄﺎﺑﻘﺎﻥ. (7ﺇﺫﺍ ﻃﺎﺑﻘﺖ ﺯﻭﺍﻳﺎ ﻣﺜﻠ ﹴﺚ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻤﻨﺎﻇﺮﺓ ﻟﻬﺎ ﻓﻲ ﻣﺜﻠ ﹴﺚ ﺁﺧﺮ ،ﻓﺈﻥ ﺍﻟﻤﺜﻠﺜﻴﻦ ﻣﺘﻄﺎﺑﻘﺎﻥ. (8ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﻴﻦ ﻣﺜﻠ ﹲﺚ ﻓﻴﻪ ﺿﻠﻌﺎﻥ ﻣﺘﻄﺎﺑﻘﺎﻥ. (9ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻤﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻟﺰﻭﺍﻳﺎ ﻭﻏﻴﺮ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ. (10ﻳﻤﻜﻦ ﺃﻥ ﺗﺠﻌﻞ ﺍﻟﺤﺴﺎﺑﺎﺕ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺍﻹﺣﺪﺍﺛﻲ ﺃﺳﻬﻞ ﺑﻮﺿﻊ ﻣﺮﻛﺰ ﺍﻟﻤﺜﻠﺚ ﺃﻭ ﺃﺣﺪ ﺭﺅﻭﺳﻪ ﻋﻨﺪ ﻧﻘﻄﺔ ﺍﻷﺻﻞ. 2ﺑﻌﺪ ﺇﻛﲈﻝ ﺍﻟﻔﺼﻞ ﺍﻟﺜﺎﻟﺚ • ﺃﻋﺪ ﻗﺮﺍﺀﺓ ﻛ ﹼﻞ ﺟﻤﻠﺔ ﺃﻋﻼﻩ ،ﺛﻢ ﺍﻣﻸ ﺍﻟﻌﻤﻮﺩ ﺍﻷﺧﻴﺮ ﺑﻜﺘﺎﺑﺔ )ﻡ( ﺃﻭ )ﻍ(. • ﻫﻞ ﺗﻐ ﹼﻴﺮ ﺭﺃﻳﻚ ﻓﻲ ﺍﻟﺠﻤﻞ ﺍﻟﺴﺎﺑﻘﺔ ﻋ ﹼﻤﺎ ﻫﻮ ﻓﻲ ﺍﻟﻌﻤﻮﺩ ﺍﻷﻭﻝ؟ • ﺍﺳﺘﻌﻤﻞ ﻭﺭﻗ ﹰﺔ ﺇﺿﺎﻓﻴ ﹰﺔ ﺗﺒ ﹼﻴﻦ ﻓﻴﻬﺎ ﺳﺒﺐ ﻋﺪﻡ ﻣﻮﺍﻓﻘﺘﻚ ﻋﻠﻰ ﺑﻌﺾ ﺍﻟﺠﻤﻞ ،ﺩﺍﻋ ﹰﻤﺎ ﺫﻟﻚ ﺑﺎﻷﻣﺜﻠﺔ ﺇﻥ ﺃﻣﻜﻦ. 3 46
3 ﻫﺬﻩ ﻗﺎﺋﻤﺔ ﺑﺎﳌﻔﺮﺩﺍﺕ ﺍﳉﺪﻳﺪﺓ ﺍﻟﺘﻲ ﺳﺘﺘﻌﻠﻤﻬﺎ ﰲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺘﻚ ﺍﻟﻔﺼﻞ .3ﺍﻛﺘﺐ ﺗﻌﺮﻳ ﹰﻔﺎ ﺃﻭ ﻭﺻ ﹰﻔﺎ ﻟﻜﻞ ﻣﻔﺮﺩﺓ ﰲ ﺍﳉﺪﻭﻝ ﺣﲔ ﺗﻈﻬﺮ ﻟﻚ ﰲ ﺃﺛﻨﺎﺀ ﺩﺭﺍﺳﺔ ﺍﻟﻔﺼﻞ ،ﺛﻢ ﺃﺿﻒ ﺭﻗﻢ ﺍﻟﺼﻔﺤﺔ ﺍﻟﺘﻲ ﻭﺭﺩﺕ ﻓﻴﻬﺎ ﺍﳌﻔﺮﺩﺓ ﺃﻭﻝ ﻣﺮﺓ ﰲ ﺍﻟﻌﻤﻮﺩ ﺍﳌﺨ ﱠﺼﺺ .ﺍﺳﺘﻌﻤﻞ ﻫﺬﻩ ﺍﻟﻘﺎﺋﻤﺔ ﰲ ﺃﺛﻨﺎﺀ ﺍﳌﺮﺍﺟﻌﺔ ﻭﺍﻻﺳﺘﻌﺪﺍﺩ ﻻﺧﺘﺒﺎﺭ ﺍﻟﻔﺼﻞ. ﺍﳌﺜﻠﺚ ﺍﳊﺎﺩ ﺍﻟﺰﻭﺍﻳﺎ ﺍﳌﺜﻠﺚ ﺍﳌﻨﻔﺮﺝ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳌﺜﻠﺚ ﺍﻟﻘﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳌﺜﻠﺚ ﺍﳌﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ﺍﳌﺜﻠﺚ ﺍﳌﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﲔ ﺍﳌﺜﻠﺚ ﺍﳌﺨﺘﻠﻒ ﺍﻷﺿﻼﻉ ﺍﳌﺴﺘﻘﻴﻢ ﺍﳌﺴﺎ ﹺﻋﺪ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳋﺎﺭﺟﻴﺔ ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﻟﺪﺍﺧﻠﻴﺘﺎﻥ ﺍﻟﺒﻌﻴﺪﺗﺎﻥ 3 ﺍﻟﱪﻫﺎﻥ ﺍﻟﺘﺴﻠﺴ ﹼﲇ 47
() 3 ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺘﻄﺎﺑﻖ ﺍﳌﻀﻠﻌﺎﺕ ﺍﳌﺘﻄﺎﺑﻘﺔ ﺍﻟﻌﻨﺎﴏ ﺍﳌﺘﻨﺎﻇﺮﺓ ﺍﻟﺰﺍﻭﻳﺔ ﺍﳌﺤﺼﻮﺭﺓ ﺍﻟﻀﻠﻊ ﺍﳌﺤﺼﻮﺭ ﺳﺎﻗﺎ ﺍﳌﺜﻠﺚ ﺍﳌﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﲔ ﺯﺍﻭﻳﺔ ﺍﻟﺮﺃﺱ ﺯﺍﻭﻳﺘﺎ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﱪﻫﺎﻥ ﺍﻹﺣﺪﺍﺛﻲ 3 48
15° 150° )3-2)15°(1 3 (3-1 , ________________(1 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ________________(2 120° ________________(3 (1ﺻ ﹼﻨﻒ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﺠﺎﻭﺭ ﻭﻓ ﹰﻘﺎ ﻟﺰﻭﺍﻳﺎﻩ ،ﻭﻭﻓ ﹰﻘﺎ ﻷﺿﻼﻋﻪ30° 30° . ________________(4 ________________(5 (2ﺇﺫﺍ ﻛﺎﻥ ∆ABCﻣﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﻴﻦ ﻓﻴﻪ ،AB = BC ________________(6 ﻭﻛﺎﻥ، AB = 6x + 3, BC = 8x - 1, AC = 10x - 10 : ________________(7 ________________(8 ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ ، xﻭﻃﻮﻝ ﻛ ﹼﻞ ﺿﻠ ﹴﻊ ﻣﻦ ﺃﺿﻼﻉ ﺍﻟﻤﺜﻠﺚ. ________________(9 (3ﺃﻭﺟﺪ ﺃﻃﻮﺍﻝ ﺃﺿﻼﻉ ∆ABCﺍﻟﺬﻱ ﺭﺅﻭﺳﻪ ) A(1, 5), B(3, -2), C(-3, 0ﻭﺻ ﹼﻨﻔﻪ ﻭﻓﻖ ﺃﺿﻼﻋﻪ. ﺃﻭﺟﺪ ﻣﻦ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻵﺗﻴﺔ1 : ∠5 (5 ∠4 (4 70° 5 65°2 3 ∠2 (7 ∠1 (6 6 107° 4 43° ∠6 (9 ∠3 (8 Geo-AS04-063-860181 (3-3,3-4) (2) 3 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍﻝ ﺑﻌﻨﺎﻳﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ. ________________(1 (1ﺍﺫﻛﺮ ﺍﻟﻤﺴﻠﻤﺔ ﺍﻟﺘﻲ ﺗﺜﺒﺖ ﺗﻄﺎﺑﻖ ﺍﻟﻤﺜﻠﺜﻴﻦ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ K . ________________(2 NL ________________(3 M (2ﺇﺫﺍ ﻛﺎﻥ ، JGO RWIﻓﻤﺎ ﺍﻟﺰﺍﻭﻳﺔ ________________(4 QS ﺍﻟﺘﻲ ﺗﻨﺎﻇﺮ ∠I؟ (3ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ QR SR :ﻭ ، PQ TS ﻭﺍﻟﻨﻘﻄﺔ Rﻧﻘﻄﺔ ﻣﻨﺘﺼﻒ ، PTﺣ ﹼﺪﺩ ﺍﻟﻨﻈﺮﻳﺔ ﺃﻭ ﺍﻟ1ﻤ8ﺴ1ﹼﻠ0ﻤﺔGeo-ASR 04-064-86 ﺍﻟﺘﻲ ﻳﻤﻜﻨﻚ ﺍﺳﺘﻌﻤﺎﻟﻬﺎ ﻹﺛﺒﺎﺕ ﺃﻥ P T . QRP SRT (4ﻣﺎ ﺍﻟﻌﻼﻗﺔ ﺑﻴﻦ ∠Qﻭ ∠Sﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺮﺍﻓﻖ ﻟﻠﺴﺆﺍﻝ 2؟ ________________(5 C04-28A-8(76y3-946)1° F ، ABC (5ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭDEF : 3 ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛ ﱟﻞ ﻣﻦ . x , y B E 10 80° 18.8 3x - y A 70° 30° CD 19.7 49
(3-5, 3-6) (3) 3 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ: ﺍﻛﺘﺐ ﻓﻲ ﻓﺮﺍ ﹶﻏﻲ ﺍﻟﺴﺆﺍﻟﻴﻦ 1, 2ﻣﺒ ﱢﺮﺭﺍﺕ ﺍﻟﺨﻄﻮﺗﻴﻦ 2, 4ﻋﻠﻰ ﺍﻟﺘﺮﺗﻴﺐ ﻓﻲ ﺍﻟﺒﺮﻫﺎﻥ ﺫﻱ ﺍﻟﻌﻤﻮﺩﻳﻦ ﺍﻵﺗﻲ: ZAC ∠Z ∠C AKﺗﻨﺼﻒ K .∠ZKC ﺇﺛﺒﺎﺕ ﺃﻥ . AKZ AKC Geo-AS04-067-860181 ________________(1 ________________(2 AK ، ∠Z ∠C (1ﺗﻨ ﹼﺼﻒ (1 .∠ZKCﻣﻌﻄﻴﺎﺕ (2؟ ∠ZKA ∠CKA (2 ________________(3 (3ﺧﺎﺻﻴﺔ ﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﺘﻄﺎﺑﻖ AK AK (3 (4؟ AKZ AKC (4 12 ﺃﺟﺐ ﻋﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ 3ﹶﻭ ، 4ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ: ________________(4 (4ﺃﻭﺟﺪ m∠2 (3ﺃﻭﺟﺪ m∠1 (5ﺇﺫﺍ ﻛﺎﻥ ﻗﻴﺎﺱ ﺇﺣﺪ ﺯﺍﻭﻳ ﹶﺘﻲ ﺍﻟﻘﺎﻋﺪﺓ ﻓﻲ ﻣﺜﻠ ﹴﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﻴﻦ ، 30°ﻓﻤﺎ ﻗﻴﺎﺱ ﺯﺍﻭﻳﺔ ﺭﺃﺳﻪ؟ ________________(5 Geo-AS04-068-860181 (3-7) (4) 3 ________________(1 ﺍﻗﺮﺃ ﻛ ﹼﻞ ﺳﺆﺍ ﹴﻝ ﺑﻌﻨﺎﻳ ﹴﺔ ،ﺛﻢ ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﻤﻜﺎﻥ ﺍﻟﻤﺨﺼﺺ ﻟﺬﻟﻚ. y (1ﺃﻭﺟﺪ ﺍﻹﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﻤﺠﻬﻮﻟﺔ ﻓﻲ ﺍﻟﻤﺜﻠﺚ ﺍﻟﻤﺠﺎﻭﺭI(?, ?) . ________________(2 M(-b, 0) C(?, ?) x (2ﺇﺫﺍ ﻛﺎﻥ DJLﻗﺎﺋﻢ ﺍﻟﺰﺍﻭﻳﺔ ،ﻭﻭﺗﺮﻩ ،DJﻭﻛﺎﻥ ، LJ = _21_DL ﻭﻃﻮﻝ DLﻳﺴﺎﻭﻱ aﻭﺣﺪ ﹰﺓ ،ﻓﻤ ﱢﺜﻞ DJLﻓﻲ ﺍﻟﻤﺴﺘﻮ ﺍﻹﺣﺪﺍﺛﻲ، Geo-AS04-069-860181 ﻭﺣ ﱢﺪﺩ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺅﻭﺳﻪ. ________________(3 (3ﺇﺫﺍ ﻛﺎﻧﺖ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺭﺅﻭﺱ ، A(-1, 1), B(5, 1), C(2, 6) ، ABC ﻓﻤﺎ ﻧﻮﻋﻪ؟ ﻭﻟﻤﺎﺫﺍ؟ 3 50
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103