™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™ËÌ›ˆÛË: ™Ù· Ï·›ÛÈÔ Ù˘ ‡·Ú͢ ÂÍ·ÈÚ¤ÛÂˆÓ Û οı ηÓfiÓ· ı· ‹Ù·Ó ›Ûˆ˜ ¯Ú‹ÛÈÌÔ Ó· ·ÚÔ˘- ÛÈ¿ÛÔ˘Ì ÛÙÔ˘˜ Ì·ıËÙ¤˜ Û¯‹Ì·Ù· Ù· ÔÔ›· ‰ÂÓ ¤¯Ô˘Ó Î·Ó¤Ó·Ó ¿ÍÔÓ· Û˘ÌÌÂÙÚ›·˜ (.¯. ÙÔ Ï¿ÁÈÔ ·Ú·ÏÏËÏfiÁÚ·ÌÌÔ). ∂Ê·ÚÌÔÁ¤˜ 1Ë & 2Ë ™ÙȘ ÂÚÈÛÛfiÙÂÚ˜ Û˘ÌÌÂÙÚÈΤ˜ ηٷÛÙ¿ÛÂȘ ÔÈ ¿ÍÔÓ˜ ¤¯Ô˘Ó Ï¿ÁÈ· ‰È‡ı˘ÓÛË ˆ˜ ÚÔ˜ ÙÔ ÂÚ›- ÁÚ·ÌÌ· ÙÔ˘ ‚È‚Ï›Ô˘ Î·È fi¯È ÔÚÈ˙fiÓÙÈ· ‹ ηٷÎfiÚ˘ÊË. ™Ùfi¯Ô˜ Â›Ó·È Ó· ·ÔÊ¢¯ı› Ô ÂÁÎψ‚ÈÛÌfi˜ ÙÔ˘ Ì·ıËÙ‹ ÛÙȘ ÚÔÓÔÌȷΤ˜ ηÙ¢ı‡ÓÛÂȘ ÙÔ˘ ÂÚÈ‚¿ÏÏÔÓÙÔ˜ Î·È Ó· ÌÂȈı› Ë Èı·ÓfiÙËÙ· Ó· ÎÈÓÂ›Ù·È ·Ú¿ÏÏËÏ· ÚÔ˜ ÙÔ ÂÚ›ÁÚ·ÌÌ· ÙÔ˘ ‚È‚Ï›Ô˘, ÁÂÁÔÓfi˜ Ô˘ Ô‰ËÁ› Û ϿıË fiˆ˜ Ê·›ÓÂÙ·È ÛÙÔ ‰ÈÏ·Ófi Û¯‹Ì· : ∏ ÚÒÙË Û˘ÛÙËÌ·ÙÈ΋ ηٷÛ΢‹ Û˘ÌÌÂÙÚÈÎÔ‡ Û¯‹Ì·ÙÔ˜ (ÂÊ·ÚÌÔÁ‹ 2Ë) Á›ÓÂÙ·È Û ÙÂÙÚ·ÁˆÓÈ- Ṳ̂ÓÔ ¯·ÚÙ› ÙÔ ÔÔ›Ô ‰È¢ÎÔχÓÂÈ ÙË Ì¤ÙÚËÛË ·ÏÏ¿ Î·È ÙËÓ Î›ÓËÛË fiÙ·Ó Ô ¿ÍÔÓ·˜ Â›Ó·È ÔÚÈ˙fiÓÙÈÔ˜ ‹ ηٷÎfiÚ˘ÊÔ˜. ™ËÌ›ˆÛË: ÙÔ ÙÂÙÚ·ÁˆÓÈṲ̂ÓÔ ¯·ÚÙ› ÂÌÔ‰›˙ÂÈ ÙË Ì¤ÙÚËÛË Î·È ÙËÓ Î›ÓËÛË fiÙ·Ó Ô ¿ÍÔÓ·˜ Â›Ó·È Ï¿ÁÈÔ˜. ŒÙÛÈ, ‰›ÓÂÙ·È Ë Â˘Î·ÈÚ›· Ó· ·Ó·‰Âȯı› Èı·Ó‹ ηٿÛÙ·ÛË ·ÔÙ˘¯›·˜ ÛÙÔÓ Ï¿- ÁÈÔ ¿ÍÔÓ· Î·È Ó· ·ÓÙÈÌÂÙˆÈÛÙ› ¿ÌÂÛ·. ∏ ÂÈÙ˘¯‹˜ ·ÓÙÈÌÂÙÒ- ÈÛË ÙÔ˘ Ê·ÈÓÔ̤ÓÔ˘ ı· ÂÈÙÚ¤„ÂÈ ÛÙÔ˘˜ Ì·ıËÙ¤˜ Ó· ·ÓÙÈÌÂÙˆ- ›ÛÔ˘Ó ¯ˆÚ›˜ ‰˘ÛÎÔÏ›· Û˘ÓËıÈṲ̂Ó˜ ηٷÛÙ¿ÛÂȘ ηٷÛ΢‹˜ Û˘ÌÌÂÙÚÈÎÔ‡ ۠ϢÎfi ¯·ÚÙ›, Ô˘ ı¤ÙÂÈ ÏÈÁfiÙÂÚ· ÂÌfi‰È· ÛÙËÓ ÂÚ›ÙˆÛË ÙÔ˘ Ï¿ÁÈÔ˘ ¿ÍÔÓ·. TETPA¢IO EP°A™IøN √È ·Û΋ÛÂȘ ÛÙÔ ∆ÂÙÚ¿‰ÈÔ ∂ÚÁ·ÛÈÒÓ ÍÂÎÈÓÔ‡Ó ·fi ÙËÓ ·Ó·ÁÓÒÚÈÛË Î·È Ô‰ËÁÔ‡Ó ÛÙËÓ Î·Ù·Û΢‹ Û˘ÌÌÂÙÚÈÎÒÓ Û¯Ë̿وÓ. ∏ ÔÚ›· Ô˘ ·ÎÔÏÔ˘ıÂ›Ù·È Â›Ó·È ·fi ÙÔ ÁÂÓÈÎfi ÛÙÔ ÂȉÈÎfi: ·fi ÙÔ ÌË Áˆ- ÌÂÙÚÈÎfi Û¯‹Ì· ÛÙÔ ÁˆÌÂÙÚÈÎfi Û¯‹Ì· ÒÛÙÂ Ë Ù˘È΋ ηٷÛ΢‹ Û˘ÌÌÂÙÚÈÎÔ‡ Û¯‹Ì·ÙÔ˜ ˆ˜ ÚÔ˜ ¿ÍÔÓ· Î·È Ë ‰È·Ù‡ˆÛ‹ Ù˘ Ó· ·Ó·‰ÂȯıÔ‡Ó Ì¤Û· ·fi ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ÙˆÓ Ì·ıËÙÒÓ. ÕÛÎËÛË 1Ë ¶Ú¤ÂÈ Ó· ¯·Ú¿ÍÔ˘Ó fiÛÔ˘˜ ¿ÍÔÓ˜ Û˘ÌÌÂÙÚ›·˜ ¤¯ÂÈ Î¿ı ۯ‹Ì·. ÕÛÎËÛË 2Ë ™˘ÌÌÂÙÚ›· (ˆ˜ ÚÔ˜ ÙÔÓ ¿ÍÔÓ· Ô˘ Â›Ó·È ¯·Ú·Á̤ÓÔ˜) ˘¿Ú¯ÂÈ ÌfiÓÔ ÛÙÔ Û¯‹Ì· Á. ÕÛÎËÛË 3Ë ∆Ô ÙÂÙÚ·ÁˆÓÈṲ̂ÓÔ ¯·ÚÙ› ı· ‚ÔËı‹ÛÂÈ Ôχ ÙÔ˘˜ Ì·ıËÙ¤˜ ÛÙË Û¯Â‰›·ÛË ÙˆÓ Û˘ÌÌÂÙÚÈÎÒÓ. ¶Úfi‚ÏËÌ· 1Ô ∞·ÓÙ‹ÛÂȘ ∆· ÁÚ¿ÌÌ·Ù· ∞, µ, ¢, ∂, ∫, §, ª, ¶, ™, ∆, À, æ Î·È ø ¤¯Ô˘Ó ¤Ó·Ó ¿ÍÔÓ· Û˘ÌÌÂÙÚ›·˜ Ù· ∏, £, π, •, √, º Î·È Ã ¤¯Ô˘Ó ‰˘Ô ¿ÍÔÓ˜ Û˘ÌÌÂÙÚ›·˜. ∆Ô ÁÚ¿ÌÌ· «√» ·Ó Â›Ó·È ÔÏÔÛÙÚfiÁÁ˘ÏÔ, Û·Ó Î‡ÎÏÔ˜ (Î·È fi¯È Ì·ÎÚfiÛÙÂÓÔ), ¤¯ÂÈ ¿ÂÈÚÔ˘˜ ¿ÍÔÓ˜ Û˘ÌÌÂÙÚ›·˜. ¢Ú·ÛÙËÚÈfiÙËÙ· Ì ÚÔÂÎÙ¿ÛÂȘ: «∏ Û˘ÌÌÂÙÚ›· ÛÙË Ê‡ÛË» ∏ Û˘ÁÎÂÎÚÈ̤ÓË ‰Ú·ÛÙËÚÈfiÙËÙ· ‰›ÓÂÈ ÛÙÔ˘˜ Ì·ıËÙ¤˜ ÙËÓ Â˘Î·ÈÚ›· ÁÈ· ¤ÎÙ·ÛË ÙÔ˘ ı¤Ì·ÙÔ˜ «Û˘ÌÌÂÙÚ›·» ÛÙË Ê‡ÛË Î·È ÙË ˙ˆ‹. ∏ ‚Ô‹ıÂÈ· Î·È ÔÈ Ô‰ËÁ›Â˜ ÙÔ˘ ‰·ÛοÏÔ˘ Â›Ó·È ÔχÙÈ̘ ÒÛÙ ٷ ·È‰È¿ Ó· ¿ÚÔ˘Ó ÙȘ ‚·ÛÈΤ˜ ηÙ¢ı‡ÓÛÂȘ ÛÙÔÓ ÙÚfiÔ Ì ÙÔÓ ÔÔ›Ô ı· ÂÚÁ·ÛÙÔ‡Ó Î·È ı· ÚÔÛÂÁÁ›- ÛÔ˘Ó ÙÔ ı¤Ì·. ∆Ô ‰Â‡ÙÂÚÔ ı¤Ì· ÁÈ· ‰ÈÂÚ‡ÓËÛË Î·È Û˘˙‹ÙËÛË ·ÚÔ˘ÛÈ¿˙ÂÈ Ôχ ÌÂÁ¿ÏÔ ÂӉȷʤÚÔÓ ÁÈ· Ù· ·È- ‰È¿ ηıÒ˜, ·Ó ÂÍÂÙ¿ÛÔ˘Ó ÙÔ Â›‰ˆÏÔ ÙÔ˘ ÌÈÛÔ‡ ÚÔÛÒÔ˘ ÌÈ·˜ ʈÙÔÁÚ·Ê›·˜ ÙÔ˘˜ Ì ηıÚ¤ÊÙË, ı· ‰È·ÈÛÙÒÛÔ˘Ó fiÙÈ ÙÔ ÚfiÛˆÔ «‰ÂÓ Â›Ó·È ÙÔ ‰ÈÎfi ÙÔ˘˜» ·ÊÔ‡ ÛÙË Ê‡ÛË Û¿ÓÈ· ˘¿Ú¯ÂÈ Ù¤ÏÂÈ· Û˘Ì- ÌÂÙÚ›·.150
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËKÂʿϷÈÔ 61Ô ªÂÙÚÒ ÂÈÊ¿ÓÂȘ Καλύπτω, βάφω, σκεπάζω√È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ηٷÓÔ› ÙË Ì¤ÙÚËÛË Ù˘ ÂÈÊ¿ÓÂÈ·˜ Î·È Ó· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi ÔÚıÔÁˆÓ›Ô˘. ✒ ¡· ÁÚ¿ÊÂÈ Î·È Ó· ‰È·‚¿˙ÂÈ ÌÂÙÚ‹ÛÂȘ ÂÈÊ·ÓÂÈÒÓ Ì ‰Âη‰ÈÎÔ‡˜, Û˘ÌÌÈÁ›˜ Î·È ÎÏ·ÛÌ·ÙÈÎÔ‡˜ ·ÚÈıÌÔ‡˜. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ Û¯ÂÙÈο Ì ÌÂÙÚ‹ÛÂȘ ÂÈÊ·ÓÂÈÒÓ.√ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi ÔÚıÔÁÒÓÈÔ˘ Û¯‹Ì·ÙÔ˜ Î·È Ó· ÙÔ ÂÎÊÚ¿˙ÂÈ Ì ‰Âη‰ÈÎÔ‡˜, Û˘ÌÌÈÁ›˜ Î·È ÎÏ·ÛÌ·ÙÈÎÔ‡˜ ·ÚÈıÌÔ‡˜.¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ¶·Ú·ÙËÚ‹ıËÎ·Ó ‰˘ÛÎÔϛ˜ ÛÙË ‰È·‰Èηۛ· ÂÎÙ›ÌËÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ ÌÈ·˜ ÂÈÊ¿ÓÂÈ·˜. ∆· ·È‰È¿,ÂÓÒ ÂÎÙÈÌÔ‡Ó Û¯ÂÙÈο ‡ÎÔÏ· ÙÔ Ì‹ÎÔ˜ ‹ ÙÔ Ï¿ÙÔ˜ ÌÈ·˜ ÂÈÊ¿ÓÂÈ·˜, ‰˘ÛÎÔχÔÓÙ·È Ó· ˘ÔÏÔÁ›-ÛÔ˘Ó ÙÔ ÂÌ‚·‰fi Ù˘ (Û˘Ó‰˘¿˙ÔÓÙ·˜ ÙȘ ‰˘Ô ÂÎÙÈÌ‹ÛÂȘ Ô˘ ¤Î·Ó·Ó) Î·È ·˘ı·›ÚÂÙ· ·Ó·Ê¤ÚÔ˘Ó ˆ˜ÂÌ‚·‰fi, ÙÔ Ì‹ÎÔ˜ Ù˘ ÌÂÁ·Ï‡ÙÂÚ˘ ÏÂ˘Ú¿˜ Û ÙÂÙÚ·ÁˆÓÈο ÂηÙÔÛÙ¿ ·Ó Ë ÂÈÊ¿ÓÂÈ· Â›Ó·È ÌÈÎÚ‹ ‹ÙÂÙÚ·ÁˆÓÈο ̤ÙÚ· ·Ó Ë ÂÈÊ¿ÓÂÈ· Â›Ó·È ÌÂÁ¿ÏË. √ ÚÔÛ‰ÈÔÚÈÛÌfi˜ (Î·È Ë Î·Ù·Û΢‹) ÙÔ˘ ÙÂÙÚ·ÁˆÓÈ-ÎÔ‡ ÂηÙÔÛÙÔ‡ Î·È ÙÔ˘ ÙÂÙÚ·ÁˆÓÈÎÔ‡ ‰ÂηÙfiÌÂÙÚÔ˘ ˆ˜ ÂÚÁ·Ï›ˆÓ ̤ÙÚËÛ˘ ÂÌ‚·‰Ô‡ Ô˘ ›ӷȿÌÂÛ· ¯ÂÈÚ›ÛÈÌ· ·fi ÙÔ˘˜ Ì·ıËÙ¤˜ (‰Ú·ÛÙËÚÈfiÙËÙ· 1Ë) ‚ÔËı¿ÂÈ ÛÙËÓ Î·Ù·ÓfiËÛË Î·È ÂÈÙ˘¯‹ ·ÓÙÈÌÂ-ÙÒÈÛË Ù¤ÙÔÈˆÓ ‰˘ÛÎÔÏÈÒÓ. ∫¿ÔȘ ¤ÓÓÔȘ ÛÙÔ ‚È‚Ï›Ô ÙÔ˘ Ì·ıËÙ‹ (fiˆ˜ ÛÙËÓ ÂÚ›ÙˆÛË ·˘Ù‹ ÙÔ ÙÂÙÚ·ÁˆÓÈÎfi ̤ÙÚÔ Î·È ÔÈ˘Ô‰È·ÈÚ¤ÛÂȘ ÙÔ˘) ÂÈÛ¿ÁÔÓÙ·È ¿ÌÂÛ· ¯ˆÚ›˜ Ó· ÚÔËÁËıÔ‡Ó ‰Ú·ÛÙËÚÈfiÙËÙ˜. ∏ ÂÈÏÔÁ‹ ·˘Ù‹ ¤ÁÈÓÂÛÎfiÈÌ·, ηıÒ˜ ÔÈ ·Ó·Áη›Â˜ ÁÈ· ÙËÓ ÚÔÛ¤ÁÁÈÛË ÙˆÓ ÂÓÓÔÈÒÓ ·˘ÙÒÓ ‰Ú·ÛÙËÚÈfiÙËÙ˜ ı· ‹Ù·Ó ÈÔÂÚ›ÏÔΘ ·fi ÙËÓ ¿ÌÂÛË ·ÚÔ˘Û›·ÛË ÌÈ·˜ ÌÂÚÈÎÒ˜ ÁÓˆÛÙ‹˜ ¤ÓÓÔÈ·˜. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ú¤ÂÈ Ó· ηٷÛ΢¿ÛÔ˘Ó ÙË ÌÔÓ¿‰· ̤ÙÚËÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡:ÙÔ ÙÂÙÚ·ÁˆÓÈÎfi ÂηÙÔÛÙfi Î·È ÙÔ ÙÂÙÚ·ÁˆÓÈÎfi ‰ÂηÙfiÌÂÙÚÔ. √È Ì·ıËÙ¤˜ ı· ‰È·ÈÛÙÒÛÔ˘Ó, ÚÔÛ·ıÒÓÙ·˜ Ó· ÌÂÙÚ‹ÛÔ˘Ó ÂÌ‚·‰¿ Ì ÙȘ ÌÔÓ¿‰Â˜ Ô˘ ηٷÛ·-·Û·Ó, ˆ˜ ÌÔÏÔÓfiÙÈ ¤¯Ô˘Ó ÙȘ ÌÔÓ¿‰Â˜ ̤ÙÚËÛ˘ ‰ÂÓ Â›Ó·È Â‡ÎÔÏÔ Ó· ÌÂÙÚ‹ÛÔ˘Ó ÙȘ ÂÈÊ¿ÓÂȘ ηÈÓ· ÊÙ¿ÛÔ˘Ó Û ·ÎÚÈ‚¤˜ ·ÔÙ¤ÏÂÛÌ·. ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ÚÔ¯ˆÚÔ‡Ó (ÌÂÙ¿ ÙË ‰È·›ÛÙˆÛË ÙˆÓ ‰˘ÛÎÔÏÈÒÓ Ô˘ ·Ó·Î‡-ÙÔ˘Ó Î·Ù¿ ÙÔÓ ˘ÔÏÔÁÈÛÌfi ÙÔ˘ ÂÌ‚·‰Ô‡ ÌÈ·˜ ÂÈÊ¿ÓÂÈ·˜ Ì ÙÔ ÙÂÙÚ·ÁˆÓÈÎfi ÂηÙÔÛÙfi ‹ ÙÔ ÙÂÙÚ·-ÁˆÓÈÎfi ‰ÂηÙfiÌÂÙÚÔ) ÛÙËÓ ÂÊ·ÚÌÔÁ‹ ÙÔ˘ «Ì·ıËÌ·ÙÈÎÔ‡ ÙÚfiÔ˘» ÁÈ· ÙÔÓ ˘ÔÏÔÁÈÛÌfi ÙÔ˘ ÂÌ‚·‰Ô‡.∂ÈϤÔÓ ÂȯÂÈÚÂ›Ù·È Ô ¤ÏÂÁ¯Ô˜ Ù˘ ÂÎÙ›ÌËÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ Ô˘ οÓÂÈ Ô Ì·ıËÙ‹˜ Ì ÙÔ ÓÔ˘ Ì ÙÔÚ·ÁÌ·ÙÈÎfi ÂÌ‚·‰fi, fiˆ˜ ˘ÔÏÔÁ›ÛÙËΠÌÂÙ¿ ·fi ̤ÙÚËÛË ÙˆÓ ‰È·ÛÙ¿ÛÂˆÓ Î·È ˘ÔÏÔÁÈÛÌÔ‡˜.∂Ó·ÏÏ·ÎÙÈÎÔ› ÙÚfiÔÈ Ì¤ÙÚËÛ˘ (‚‹Ì·Ù·, ¿ÓÔÈÁÌ· ·Ï¿Ì˘, ‰¿¯Ù˘Ï· Î.Ï.) ı· ‚ÔËı‹ÛÔ˘Ó ÙÔ˘˜ Ì·ıË-Ù¤˜ Ó· ÂÎÙÈÌÔ‡Ó Ì ÙÔ ÓÔ˘ ÈÔ Â‡ÎÔÏ· Î·È Ì ÌÂÁ·Ï‡ÙÂÚË ·ÎÚ›‚ÂÈ· Ù· ÂÌ‚·‰¿ ‰È¿ÊÔÚˆÓ ÂÈÊ·ÓÂÈÒÓ.∂›Û˘ Ì ÙËÓ ·ÚÔ˘Û›·ÛË ÙˆÓ ÌÔÓÙ¤ÏˆÓ «ÙÂÙÚ·ÁˆÓÈÎfi ̤ÙÚÔ» Î·È «ÌÈÛfi ÙÂÙÚ·ÁˆÓÈÎfi» ̤ÙÚÔ ı·ÔÙÈÎÔÔÈ‹ÛÔ˘Ó ÙȘ ¤ÓÓÔȘ Î·È ı· ‚ÔËıËıÔ‡Ó Î·Ù¿ ÙË ‰È·‰Èηۛ· ÂÎÙ›ÌËÛ˘. TETPA¢IO EP°A™IøN ∆Ô ‰Â‡ÙÂÚÔ Úfi‚ÏËÌ· Ú¤ÂÈ Ó· Ï˘ı› ÛÙÔ Û›ÙÈ, ηıÒ˜ οı ·È‰› ¯ÚÂÈ¿˙ÂÙ·È Ó· ÌÂÙÚ‹ÛÂÈ ÙȘ ‰È·-ÛÙ¿ÛÂȘ ÙÔ˘ ‰ˆÌ·Ù›Ô˘ ÙÔ˘. 151
™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ KÂʿϷÈÔ 62Ô µÚ›ÛΈ ÙÔ ÂÌ‚·‰fi ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ Πλαγιάζω αλλά δεν αλλάζω! √È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ‰È·ÈÛÙÒÛÂÈ fiÙÈ ‰È·ÊÔÚÂÙÈο Û¯‹Ì·Ù· ÌÔÚ› Ó· ¤¯Ô˘Ó ÙÔ ›‰ÈÔ ÂÌ‚·‰fi. ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi ÔÔÈÔ˘‰‹ÔÙ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ Ì ÙË ‚Ô‹ıÂÈ· Ù‡Ô˘. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ ˘ÔÏÔÁÈÛÌÔ‡ ÂÌ‚·‰Ô‡ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘. √ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi ÔÔÈÔ˘‰‹ÔÙ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ Î·È Ó· ÙÔ Û˘ÁÎÚ›ÓÂÈ Ì ¿ÏÏ· ÂÌ‚·‰¿. ¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∆· ‡„Ë ÙˆÓ ·Ú·ÏÏËÏÔÁÚ¿ÌÌˆÓ ÂÌÊ·Ó›˙Ô˘Ó ‰˘ÛÎÔϛ˜ ÂȉÈο ÛÙȘ ÂÚÈÙÒÛÂȘ ηٿ ÙȘ Ôԛ˜ ·ÊÔÚÔ‡Ó ¿ÏϘ, ÂÎÙfi˜ ·fi ÙËÓ Î·Ù·ÎfiÚ˘ÊË, ‰È¢ı‡ÓÛÂȘ. ∏ ÛˆÛÙ‹ ¯Ú‹ÛË ÙÔ˘ ÁÓÒÌÔÓ· ‚ÔËı¿ ÙfiÛÔ ÛÙÔ Í¤ڷÛÌ· ÙˆÓ ‰˘ÛÎÔÏÈÒÓ fiÛÔ Î·È ÛÙÔÓ ÂÌÏÔ˘ÙÈÛÌfi Ù˘ ÂÌÂÈÚ›·˜ ÙˆÓ Ì·ıËÙÒÓ ÁÈ· ηıÂÙfiÙË- Ù˜ ¤Íˆ ·fi ÙȘ ΢ڛ·Ú¯Â˜ ‰È¢ı‡ÓÛÂȘ (ÔÚÈ˙fiÓÙÈ· Î·È Î¿ıÂÙ·). ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ú¤ÂÈ Ó· «ÌÂÙ·ÊÚ¿ÛÔ˘Ó» ÙËÓ ÂÈÎfiÓ· Ì ÙÔ ·Ú·ÏÏËÏfiÁÚ·ÌÌÔ. ªÂ ¿ÏÏ· ÏfiÁÈ· Ú¤ÂÈ Ó· ÂÂÍÂÚÁ·ÛÙÔ‡Ó ÙȘ ÏËÚÔÊÔڛ˜ Ô˘ ·Ú¤¯ÂÈ ÁÈ· Ó· ··ÓÙ‹ÛÔ˘Ó ·Ó Ë πÊÈÁ¤- ÓÂÈ· ¤¯ÂÈ ‰›ÎÈÔ. ∂ȉÈÎfiÙÂÚ· Ú¤ÂÈ Ó· ·Ú·ÙËÚ‹ÛÔ˘Ó Ù· ‰‡Ô ÌÈÛ¿ ÙÚ›ÁˆÓ·, Ù· ÔÔ›· ÌÔÚÔ‡Ó Ó· ıˆ- ÚËıÔ‡Ó ˆ˜ ¤Ó·, Î·È Ó· ˘ÔÛÙËÚȯÙ› Ë ¿Ô„Ë fiÙÈ ÙÔ ÂÌ‚·‰fi Â›Ó·È 3 ÙÂÙÚ·ÁˆÓÈο ÂηÙÔÛÙ¿. ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ÌÂÏÂÙÔ‡Ó ÙȘ ȉÈfiÙËÙ˜ ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ ÙȘ Ôԛ˜ ¤¯Ô˘Ó Û˘Ó·ÓÙ‹ÛÂÈ Û ÚÔËÁÔ‡ÌÂÓ˜ Ù¿ÍÂȘ (‚¿ÛÂȘ Î·È ‡„Ô˜). ªÔÚÔ‡Ó Ó· ¯·Ú¿ÍÔ˘Ó fiÔÈÔ ·fi Ù· ‡„Ë ı¤ÏÔ˘Ó Û ÔÔÈÔ‰‹ÔÙ ˙‡ÁÔ˜ ·Ú¿ÏÏËÏˆÓ Ï¢ÚÒÓ. ÀÔÁÚ·ÌÌ›˙Ô˘Ì fiÙÈ ÔÈ Ï¢ڤ˜ ÙȘ Ôԛ˜ Ù¤ÌÓÂÈ ÙÔ ‡„Ô˜ ÔÓÔÌ¿˙ÔÓÙ·È ‚¿ÛÂȘ ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘. ™ÙË Û˘Ó¤¯ÂÈ· ÔÈ Ì·ıËÙ¤˜ ÚÔ¯ˆÚÔ‡Ó Û ÌÂÙ·Û¯ËÌ·ÙÈÛÌfi ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ Û ÔÚıÔÁÒÓÈÔ Ì ‰È·‰Èηۛ˜ ÎÔ‹˜ Î·È ·Ú¿ıÂÛ˘ ÙˆÓ ‰‡Ô ÎÔÌÌ·ÙÈÒÓ ÙÔ˘. ŒÙÛÈ ·Ó·Î·Ï‡ÙÔ˘Ó fiÙÈ ÔÈ ‚¿ÛÂȘ ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ Â›Ó·È ›Û˜ Ì ÙÔ Ï¿ÙÔ˜ ÙÔ˘ ÔÚıÔÁˆÓ›Ô˘ Î·È ÙÔ ‡„Ô˜ ÙÔ˘ Â›Ó·È ›ÛÔ Ì ÙÔ Ì‹ÎÔ˜ ÙÔ˘ ÔÚıÔÁˆÓ›Ô˘ ·ÓÙ›ÛÙÔȯ·. ™˘ÌÂÚ·›ÓÔ˘Ó fiÙÈ ÙÔ ÂÌ‚·‰fi ÙÔ˘˜ Â›Ó·È ÙÔ ›‰ÈÔ (Ë ·Ú¯È΋ ÂÈÊ¿ÓÂÈ· ·Ú·Ì¤ÓÂÈ Ë ›‰È·, ·Ú¿ ÙÔ˘˜ ÌÂÙ·Û¯ËÌ·ÙÈÛÌÔ‡˜, fiˆ˜ Î·È ÛÙÔ Ù¿ÓÁÎÚ·Ì ÛÙËÓ ÂÊ·ÚÌÔÁ‹ 1) Î·È ÙÂÏÈο ηٷϋÁÔ˘Ó ÛÙÔÓ Î·ÓfiÓ· Ô˘ ÔÚ›˙ÂÈ fiÙÈ «ÙÔ ÂÌ‚·‰fi ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ ÈÛÔ‡Ù·È Ì ÙÔ ÁÈÓfiÌÂÓÔ ÌÈ·˜ ‚¿Û˘ › ÙÔ ·ÓÙ›ÛÙÔÈ¯Ô ‡„Ô˜». TETPA¢IO EP°A™IøN ÕÛÎËÛË 2Ë ∏ Â͛ۈÛË Â›Ó·È 4,5 . ‚ = 38,25. ÕÛÎËÛË 3Ë ™ÙÔ ‰) ÌÔÚÔ‡Ó Ó· Û˘ÌÏËÚÒÛÔ˘Ó ÔÔÈÔ˘Û‰‹ÔÙ ·Ú¿ÁÔÓÙ˜ ‰›ÓÔ˘Ó ÁÈÓfiÌÂÓÔ ›ÛÔ Ì 225. ¶Úfi‚ÏËÌ· 1Ô ∆Ô Î·ı¤Ó· Â›Ó·È 16 . 12 = 192 Ù.Ì., Û˘ÓÔÏÈο 192 . 24 = 4.608 Ù.Ì. ¶Úfi‚ÏËÌ· 2Ô ∆Ô ÂÌ‚·‰fi ÙÔ˘ ˘Ê¿ÛÌ·ÙÔ˜ Â›Ó·È 25.368 Ù.ÂÎ. £· ¯ÚÂÈ·ÛÙԇ̠18% ÂÚÈÛÛfiÙÂÚÔ, ‰ËÏ·‰‹ 25.368 . 18% = 4.566,24. ™˘ÓÔÏÈο ı· ¯ÚÂÈ·ÛÙԇ̠29.934,24 ‹ 3 ÙÂÙÚ·ÁˆÓÈο ̤ÙÚ· ÂÚ›Ô˘ Ô˘ ı· ÎÔÛÙ›- ÛÔ˘Ó 45 ú.152
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËKÂʿϷÈÔ 63Ô µÚ›ÛΈ ÙÔ ÂÌ‚·‰fi ÙÚÈÁÒÓÔ˘ Αδυνάτισα! Μισός έµεινα!√È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ηٷÓÔ‹ÛÂÈ ÙË ‰È·‰Èηۛ· ‡ÚÂÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘ ÙÚÈÁÒÓÔ˘. ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi ÙÚÈÁÒÓÔ˘ Ì ÙË ‚Ô‹ıÂÈ· Ù‡Ô˘. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ ÂÌ‚·‰ÒÓ ÙÚÈÁÒÓÔ˘.√ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi ÙÚÈÁÒÓÔ˘.¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ¶·Ú·ÙËÚ‹ıËÎ·Ó ‰˘ÛÎÔϛ˜ ÛÙË ‰È·‰Èηۛ· ¯¿Ú·Í˘ ÙÔ˘ ‡„Ô˘˜ ÙÚÈÁÒÓÔ˘, ÂȉÈο ÛÙȘ ÂÚÈÙÒÛÂÈ˜Ô˘ ·ÊÔÚÔ‡Ó ¿ÏϘ, ÂÎÙfi˜ ·fi ÙËÓ Î·Ù·ÎfiÚ˘ÊË, ‰È¢ı‡ÓÛÂȘ, ‹ ‚Ú›ÛÎÔÓÙ·È ¤Íˆ ·fi ÙÔ Û¯‹Ì·. ∏ 2ˉڷÛÙËÚÈfiÙËÙ· ‚ÔËı¿ ÚÔ˜ ·˘Ù‹ ÙËÓ Î·Ù‡ı˘ÓÛË Î·ıÒ˜ ÔÈ Ì·ıËÙ¤˜ ηÏÔ‡ÓÙ·È Ó· ·ÓÙÈÌÂÙˆ›ÛÔ˘ÓÌfiÓÔÈ ÙÔ˘˜ ·˘Ù¤˜ ÙȘ ȉȷ›ÙÂÚ˜ ηٷÛÙ¿ÛÂȘ. ∏ ÛˆÛÙ‹ ¯Ú‹ÛË ÙÔ˘ ÁÓÒÌÔÓ· ‚ÔËı¿ÂÈ ÛÙËÓ ·ÓÙÈÌÂÙÒ-ÈÛË ·˘ÙÒÓ ÙˆÓ ‰˘ÛÎÔÏÈÒÓ. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ¢È·ÈÛÙÒÓÔ˘Ó fiÙÈ «ÙÔ ÂÌ‚·‰fi ÙÔ˘ ÙÚÈÁÒÓÔ˘ Â›Ó·È ›ÛÔ Ì ÙÔ ÌÈÛfi ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘ ÙÂÙÚ·ÁÒÓÔ˘». ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ÌÂÏÂÙÔ‡Ó Ù· ̤ÚË ÙÔ˘ ÙÚÈÁÒÓÔ˘ Î·È ÍÂÎÈÓÒÓÙ·˜ ·fi ÙË̤ÙÚËÛË ÙÔ˘ ÙÚÈÁÒÓÔ˘ ÚÔ¯ˆÚÔ‡Ó ÛÙË Û‡ÁÎÚÈÛË ÙÚÈÁÒÓÔ˘ Î·È ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘ Ì ڷÎÙÈÎfiÙÚfiÔ (Û‡ÓıÂÛË ‰‡Ô ·ÓÔÌÔÈfiÙ˘ˆÓ ÙÚÈÁÒÓˆÓ, ‰ËÌÈÔ˘ÚÁ›· ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘) Î·È Î·Ù·Ï‹ÁÔ˘ÓÛÙË ‰È·›ÛÙˆÛË fiÙÈ «ÙÔ ÂÌ‚·‰fi ÙÔ˘ ÙÚÈÁÒÓÔ˘ Â›Ó·È ›ÛÔ Ì ÙÔ ÌÈÛfi ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿Ì-ÌÔ˘ Ô˘ ¤¯ÂÈ ÙËÓ ›‰È· ‚¿ÛË Î·È ÙÔ ›‰ÈÔ ‡„Ô˜». ªÔÚÔ‡Ó ÛÙË Û˘Ó¤¯ÂÈ· Ó· ·ÏËı‡ÛÔ˘Ó ÙÔÓ Î·ÓfiÓ· οÓÔÓÙ·˜ ÙȘ Ú¿ÍÂȘ. ∂Âȉ‹ Ë ÁÂӛ΢ÛË ·˘Ù‹ Â›Ó·È ‰‡ÛÎÔÏË ÁÈ· ÙÔ˘˜ Ì·ıËÙ¤˜, ηÏfi ı· ‹Ù·Ó Ó· ÂÈÚ·Ì·ÙÈÛÙÔ‡Ó Û‰ȿÊÔÚ· ›‰Ë ÙÚÈÁÒÓˆÓ, ‰Ô˘Ï‡ÔÓÙ·˜ ·ÙÔÌÈο ‹ Û ÔÌ¿‰Â˜.∂Ê·ÚÌÔÁ‹ 1Ë ∆Ô Ù¿ÓÁÎÚ·Ì Î·Ïfi ı· Â›Ó·È Ó· ηٷÛ΢·ÛÙ› ·fi ¯·ÚÙfiÓÈ Ì ‰È·ÛÙ¿ÛÂȘ 10 x 10 ÂηÙÔÛÙ¿. ∏ÂÊ·ÚÌÔÁ‹ ·ÏËı‡ÂÈ (Ú·ÎÙÈο) ÙÔÓ Î·ÓfiÓ· Ì ÙÚÂȘ ÙÚfiÔ˘˜: ✒ ÂÓÒÓÔ˘Ì ٷ ÙÚ›ÁˆÓ· Î·È Û¯ËÌ·Ù›˙Ô˘Ì ¤Ó· ·Ú·ÏÏËÏfiÁÚ·ÌÌÔ. ∫·ÙfiÈÓ ˘ÔÏÔÁ›˙Ô˘Ì ÙÔ ÂÌ‚·‰fi ÙÔ˘ Î·È ÙÔ Û˘ÁÎÚ›ÓÔ˘Ì Ì ÙÔ ÂÌ‚·‰fi ÙÔ˘ ÙÂÙÚ·ÁÒÓÔ˘ (Â›Ó·È ›Û·). ✒ ÂÓÒÓÔ˘Ì ٷ ÙÚ›ÁˆÓ· Î·È Û¯ËÌ·Ù›˙Ô˘Ì ¤Ó· ÙÂÙÚ¿ÁˆÓÔ. ™˘ÁÎÚ›ÓÔ˘Ì ٷ ‰‡Ô ÙÂÙÚ¿ÁˆÓ· (Â›Ó·È ›Û·). ✒ ÙÔÔıÂÙԇ̠ٷ ÙÚ›ÁˆÓ· ¿ӈ ÛÙÔ ÙÂÙÚ¿ÁˆÓÔ Ì ÙÚfiÔ ÒÛÙ ӷ Û¯ËÌ·Ù›ÛÔ˘Ó ¤Ó· ÙÂÙÚ¿- ÁˆÓÔ. ∆· ‰‡Ô ÙÂÙÚ¿ÁˆÓ· (ÙÔ Â¿Óˆ Î·È ÙÔ Î¿Ùˆ) Û˘Ì›ÙÔ˘Ó. TETPA¢IO EP°A™IøN¶Úfi‚ÏËÌ· 1Ô ∆Ô ÂÌ‚·‰fi Â›Ó·È 32 . 16 : 2 = 256 Ù.Ì. 256 – 64 = 192 (¯ˆÚ›˜ ÙÔ Û›ÙÈ) 192 . 8 = 1.536 ú 153
™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ KÂʿϷÈÔ 64Ô µÚ›ÛΈ ÙÔ ÂÌ‚·‰fi ÙÚ·Â˙›Ô˘ Το εµβαδό του τραπεζίου;; √È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ·Ó·ÁÓˆÚ›˙ÂÈ ÙÔ ÙÚ·¤˙ÈÔ Î·È Ó· ηٷÓÔ› ÙË ‰È·‰Èηۛ· ‡ÚÂÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘. ✒ ¡· ‚Ú›ÛÎÂÈ ÙÔ ÂÌ‚·‰fi ÙÔ˘ ÙÚ·Â˙›Ô˘ Ì ÙË ‚Ô‹ıÂÈ· Ù‡Ô˘. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ ÂÌ‚·‰ÒÓ ÙÚ·Â˙›Ô˘ Î·È ¿ÏÏˆÓ ÔÏ˘ÁÒÓˆÓ. √ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ·Ó·ÁÓˆÚ›˙ÂÈ Ù· ÙÂÙÚ¿Ï¢ڷ, Ó· Ù· ÔÌ·‰ÔÔÈ› ·Ó¿ÏÔÁ· Ì ÙȘ ȉÈfiÙËÙ¤˜ ÙÔ˘˜ ✒ ¡· ‚Ú›ÛÎÂÈ ÙÔ ÂÌ‚·‰fi ÙÚ·Â˙›Ô˘ Î·È Ó· χÓÂÈ ÚԂϋ̷ٷ Ì ÂÌ‚·‰¿ ÙÂÙڷχڈÓ. ¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∆· ·Ú·ÏÏËÏfiÁÚ·ÌÌ· Â›Ó·È ÁÓˆÛÙ¿ ÛÙÔ˘˜ Ì·ıËÙ¤˜. øÛÙfiÛÔ ÂӉȷʤÚÔÓ ·ÚÔ˘ÛÈ¿˙ÂÈ Ë Î·Ù·- ÓfiËÛË ÙˆÓ ÎÔÈÓÒÓ Î·È ‰È·ÊÔÚÂÙÈÎÒÓ È‰ÈÔًوÓ, fiˆ˜ Î·È Ë ‰È·‰Ô¯È΋ ÔÚÁ¿ÓˆÛ‹ ÙÔ˘˜. ∏ ÚÒÙË ‰Ú·- ÛÙËÚÈfiÙËÙ· Â›Ó·È ‚ÔËıËÙÈ΋ ÚÔ˜ ·˘Ù‹ ÙËÓ Î·Ù‡ı˘ÓÛË. ∆· Û¯‹Ì·Ù· Ô˘ ·ÚÔ˘ÛÈ¿˙ÔÓÙ·È Â›Ó·È ‰È·- ÊÔÚÂÙÈÎÒÓ ÌÂÁÂıÒÓ Î·È ÚÔÛ·Ó·ÙÔÏÈÛÌÒÓ ÚÔÎÂÈ̤ÓÔ˘ Ó· ·ÔʇÁÂÙ·È Ë ÛÙÂÚÂfiÙ˘Ë ÂÎÌ¿ıËÛ‹ ÙÔ˘˜, fiˆ˜ ›ӷÈ, ÁÈ· ·Ú¿‰ÂÈÁÌ·, Ó· ÌËÓ ·Ó·ÁÓˆÚ›˙ÂÙ·È ¤Ó·˜ ÚfîԘ fiÙ·Ó ÙÔÔıÂÙÂ›Ù·È Ï¿ÁÈ· ‹ ¤Ó· ÙÂÙÚ¿ÁˆÓÔ fiÙ·Ó ÙÔÔıÂÙÂ›Ù·È fiˆ˜ Û˘ÓËı›˙ÂÙ·È ÁÈ· ÙÔ ÚfiÌ‚Ô. ™ÙËÓ ÂÓfiÙËÙ· ·˘Ù‹ Ú¤ÂÈ Ó· ‰Ôı› ȉȷ›ÙÂÚË ¤ÌÊ·ÛË Î·È ¯ÚfiÓÔ˜ ÛÙËÓ ÂÎÌ¿ıËÛË ÙˆÓ ÂȉÈÎÒÓ ¯·Ú·ÎÙËÚÈÛÙÈÎÒÓ Î¿ı ÙÂÙÚ¿Ï¢ÚÔ˘. ∆· ‡„Ë ÙˆÓ ·Ú·ÏÏËÏÔÁÚ¿ÌÌˆÓ ÂÌÊ·Ó›˙Ô˘Ó ÙȘ ›‰È˜ ‰˘ÛÎÔϛ˜ Ì ٷ ‡„Ë ÙˆÓ ÙÚÈÁÒÓˆÓ. ∏ ÛˆÛÙ‹ ¯Ú‹ÛË ÙÔ˘ ÁÓÒÌÔÓ· ‚ÔËı¿ ÙfiÛÔ ÛÙËÓ ¿ÚÛË ÙˆÓ ‰˘ÛÎÔÏÈÒÓ fiÛÔ Î·È ÛÙÔÓ ÂÌÏÔ˘ÙÈÛÌfi Ù˘ ÂÌÂÈÚ›·˜ ÙˆÓ Ì·ıËÙÒÓ ÁÈ· ηıÂÙfiÙËÙ˜ ¤Íˆ ·fi ÙȘ ΢ڛ·Ú¯Â˜ ‰È¢ı‡ÓÛÂȘ. ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ÌÂÏÂÙÔ‡Ó ÙÔ ÙÚ·¤˙ÈÔ Ì ڷÎÙÈÎfi ÙÚfiÔ. ŒÙÛÈ ¯ÚËÛÈÌÔÔÈÒ- ÓÙ·˜ ÙÔ ÌÈÏÈÌÂÙÚ¤ ¯·ÚÙ› ۯ‰ȿ˙Ô˘Ó ¤Ó· ÙÚ·¤˙ÈÔ, ÌÂÙÚÔ‡Ó Ù· ÙÂÙÚ¿ÁˆÓ¿ ÙÔ˘ Î·È ÂÎÙÈÌÔ‡Ó Ì ÙÔ ÓÔ˘ ÙÔ ÂÌ‚·‰fi. ™ÙË Û˘Ó¤¯ÂÈ· Îfi‚Ô˘Ó ‰‡Ô ·ÓÔÌÔÈfiÙ˘· (Ì ÙÔ Û¯¤‰Èfi ÙÔ˘˜) ÙÚ·¤˙È· Î·È Û˘Ó‰˘¿˙ÔÓÙ¿˜ Ù· Û¯ËÌ·Ù›˙Ô˘Ó ¤Ó· ·Ú·ÏÏËÏfiÁÚ·ÌÌÔ. ªÔÚÔ‡Ó Â‡ÎÔÏ· Ó· ˘ÔÏÔÁ›ÛÔ˘Ó ÙÔ ÂÌ‚·‰fi ÙÔ˘ ·Ú·ÏÏË- ÏÔÁÚ¿ÌÌÔ˘ ·ÏÏ¿ ··ÈÙÂ›Ù·È Ë ÂÓÂÚÁÔÔ›ËÛË Ù˘ ·Ú·ÙËÚËÙÈÎfiÙËÙ·˜ Î·È ‚ÔËıËÙÈÎÒÓ ÂÚˆÙ‹ÛÂˆÓ ÁÈ· Ó· ‚ÚÔ˘Ó ÙË Û¯¤ÛË ·Ó¿ÌÂÛ· ÛÙȘ ‚¿ÛÂȘ ÙÔ˘ ÙÚ·Â˙›Ô˘ Î·È ÙȘ ‚¿ÛÂȘ ÙÔ˘ ·Ú·ÏÏËÏÔÁÚ¿ÌÌÔ˘. ™ËÌ›ˆÛË: √ ˘ÔÏÔÁÈÛÌfi˜ ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘ ÙÚ·Â˙›Ô˘ Ì ÙÔÓ ÙÚfiÔ Ô˘ ÚÔÙ›ÓÂÙ·È ‰ÂÓ Â›Ó·È Ô ÌÔÓ·‰ÈÎfi˜ ·ÏÏ¿ ¤Ó·˜ ·fi ÌÈ· ÏËıÒÚ· ÙÚfiˆÓ Ô˘ ÌÔÚ› Ó· ÛÎÂÊÙÔ‡Ó ÔÈ Ì·ıËÙ¤˜. TETPA¢IO EP°A™IøN ¶Úfi‚ÏËÌ· 1o ∆Ô ÂÌ‚·‰fi οı ÙÚ·Â˙›Ô˘ Â›Ó·È (17 + 11) . 3 : 2 = 42 Ù.Ì. ∆Ô ÂÌ‚·‰fi οı ÙÚÈÁÒÓÔ˘ Â›Ó·È 6 . 3 : 2 = 9 Ù.Ì. Î·È ÙÔ Û˘ÓÔÏÈÎfi ÂÌ‚·‰fi 102 Ù.Ì. (ÌÔÚ› Ó· ‚ÚÂı› Î·È ˆ˜ 6 . 17 = 102). ¢Ú·ÛÙËÚÈfiÙËÙ· Ì ÚÔÂÎÙ¿ÛÂȘ: «ÈÛÔÚÚÔË̤ÓË ‰È·ÙÚÔÊ‹» ∆· ÎfiÎÎÈÓ· ΢ÎÏ¿ÎÈ· Â›Ó·È Ù· ÏÈ·Ú¿ Î·È Ù· ÌÏ ÙÚÈÁˆÓ¿ÎÈ· ÔÈ ˘‰·Ù¿ÓıڷΘ.154
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËKÂʿϷÈÔ 65Ô µÚ›ÛΈ ÙÔ ÂÌ‚·‰fi ΢ÎÏÈÎÔ‡ ‰›ÛÎÔ˘ Κόβω κύκλους!√È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ηٷÓÔ› ÙË ‰È·‰Èηۛ· ‡ÚÂÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘ ΢ÎÏÈÎÔ‡ ‰›ÛÎÔ˘. ✒ ¡· ‚Ú›ÛÎÂÈ ÙÔ ÂÌ‚·‰fi ÙÔ˘ ΢ÎÏÈÎÔ‡ ‰›ÛÎÔ˘ Ì ÙË ‚Ô‹ıÂÈ· Ù‡Ô˘. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ Ì ÂÌ‚·‰¿ ΢ÎÏÈÎÒÓ ‰›ÛΈÓ.√ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ·Ó·ÁÓˆÚ›˙ÂÈ ÙȘ ȉÈfiÙËÙ˜ ÙÔ˘ ·ÎÏÔ˘, Ó· ‚Ú›ÛÎÂÈ ÙÔ ÂÌ‚·‰fi ΢ÎÏÈÎÔ‡ ‰›ÛÎÔ˘ Î·È Ó· χÓÂÈ Û¯ÂÙÈο ÚԂϋ̷ٷ.¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∆Ô ÎÂʿϷÈÔ ·˘Ùfi ÛÙԯ‡ÂÈ ÛÙËÓ ˘ÂÓı‡ÌÈÛË ÙÔ˘ ·ÎÏÔ˘, ÙˆÓ ¯·Ú·ÎÙËÚÈÛÙÈÎÒÓ ÛÙÔȯ›ˆÓ ÙÔ˘ ηÈÛÙËÓ Â‡ÚÂÛË ÙÔ˘ ÂÌ‚·‰Ô‡ ÙÔ˘. √ ·ÎÏÔ˜ ˆ˜ Û¯‹Ì· ÂÌÊ·Ó›˙ÂÈ È‰È·ÈÙÂÚfiÙËÙ˜ Û ۯ¤ÛË Ì ٷ ¿ÏÏ· Û¯‹Ì·Ù·. ∞ÔÙÂÏ› ¤Ó·Û‡ÓÔÏÔ ÛËÌ›ˆÓ Ô˘ ÈÛ·¤¯Ô˘Ó ·fi ÙÔ Î¤ÓÙÚÔ, ‰ËÏ·‰‹ ¤Ó·Ó ÁˆÌÂÙÚÈÎfi ÙfiÔ Ô˘ ‰‡ÛÎÔÏ· Á›ÓÂÙ·È·ÓÙÈÏËÙfi˜ ·fi ÙÔ˘˜ Ì·ıËÙ¤˜ ÔÈ ÔÔ›ÔÈ ÙÔÓ ·ÓÙÈÌÂÙˆ›˙Ô˘Ó ˆ˜ ¤Ó· fiÏÔ (ÌÈ· Û˘Ó¯‹ η̇ÏËÁÚ·ÌÌ‹). ∏ ¯Ú‹ÛË ÙÔ˘ ‰È·‚‹ÙË Î·È Ù· ÚԂϋ̷ٷ ·ÔÛÙ¿ÛÂˆÓ ‚ÔËıÔ‡Ó ÙÔ˘˜ Ì·ıËÙ¤˜ ÛÙËÓ Î·Ï‡-ÙÂÚË Î·Ù·ÓfiËÛË Ù˘ ¤ÓÓÔÈ·˜ ÙÔ˘ ·ÎÏÔ˘. ™˘ÓËıÈṲ̂ÓË Â›Ó·È Â›Û˘ Ë Û‡Á¯˘ÛË Î‡ÎÏÔ˘ Î·È Î˘ÎÏÈÎÔ‡ ‰›ÛÎÔ˘ Ô˘ Ú¤ÂÈ Ó· ·ÓÙÈÌÂÙˆÈÛÙ› ÌÂȉȷ›ÙÂÚË Û˘˙‹ÙËÛË (Úfi‚ÏËÌ· 1Ô). ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ú¤ÂÈ Ó· ͯˆÚ›ÛÔ˘Ó Î˘ÎÏÈο Û¯‹Ì·Ù· ·fi ÙËÓ Î·ıËÌÂÚÈÓ‹˙ˆ‹, Ó· ·Ó·ÁÓˆÚ›ÛÔ˘Ó ÙȘ ȉÈfiÙËÙ˜ (ÂȉÈο ¯·Ú·ÎÙËÚÈÛÙÈο) ÙÔ˘ ·ÎÏÔ˘ Î·È Ó· ÂÈÎÂÓÙÚÒÛÔ˘Ó ÙËÓÚÔÛÔ¯‹ ÙÔ˘˜ ÛÙ· ¯·Ú·ÎÙËÚÈÛÙÈο Ù· ÔÔ›· ¯ÚËÛÈÌÂ‡Ô˘Ó ÁÈ· ÙËÓ ÂÚÈÁÚ·Ê‹ ÙÔ˘ ÌÂÁ¤ıÔ˘˜ ÙÔ˘. ¢È·-ÈÛÙÒÓÔ˘Ó fiÙÈ ÌÔÚԇ̠‡ÎÔÏ· Ó· ÌÂÙÚ‹ÛÔ˘Ì ÙËÓ ·ÎÙ›Ó· Î·È ÙË ‰È¿ÌÂÙÚÔ ÙÔ˘ ·ÎÏÔ˘ ÂÓÒ ÁÈ·ÔÔÈ·‰‹ÔÙ ¿ÏÏË Ì¤ÙÚËÛË ¯ÚÂÈ·˙fiÌ·ÛÙ ÙÔ . ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ª¤Û· ·fi ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜, ÚÔÛ·ıÒÓÙ·˜ Ó· ÂÎÙÈÌ‹ÛÔ˘Ó ÙÔ ÂÌ‚·‰fi ÙÔ˘ ÌÂÁ¿-ÏÔ˘ (Ì·‡ÚÔ˘) ΢ÎÏÈÎÔ‡ ‰›ÛÎÔ˘ Ô‰ËÁÔ‡ÓÙ·È ÛÙȘ ·ÎfiÏÔ˘ı˜ ‰È·ÈÛÙÒÛÂȘ: ✒ ∏ ·ÎÙ›Ó· ÙÔ˘ ·ÎÏÔ˘ Â›Ó·È ÛËÌ·ÓÙÈÎfi˜ ·Ú¿ÁÔÓÙ·˜. ✒ ∆Ô ÙÂÙÚ¿ÁˆÓÔ Ô˘ ÔÚ›˙ÂÙ·È Ì ÏÂ˘Ú¿ ÙËÓ ·ÎÙ›Ó· ÙÔ˘ ·ÎÏÔ˘ ¤¯ÂÈ ÂÌ‚·‰fi ÌÂÁ·Ï‡ÙÂÚÔ ·fi ÙÔ _ ÙÔ˘ ·ÎÏÔ˘. ✒ ¢ÂÓ Â›Ó·È Â‡ÎÔÏÔ Ó· ˘ÔÏÔÁ›ÛÔ˘Ì ÙÔ ÂÌ‚·‰fi ÙÔ˘ ·ÎÏÔ˘ ÔÚ›˙ÔÓÙ·˜ ˆ˜ ÌÔÓ¿‰· ̤ÙÚËÛ˘ ÙÔ ÙÂÙÚ¿ÁˆÓÔ Ù˘ ·ÎÙ›Ó·˜, ηıÒ˜ ÁÈ· Ó· ηχ„Ô˘Ì ÙËÓ ÂÈÊ¿ÓÂÈ· ÙÔ˘ ·ÎÏÔ˘ ¯ÚÂÈ·˙fiÌ·ÛÙ 3 Ì 4 ÙÂÙÚ¿ÁˆÓ· (Ù· ·È‰È¿ ı· ··ÓÙ‹ÛÔ˘Ó «ÂÚ›Ô˘ 3 ‹ ÂÚ›Ô˘ 4, ‹ ÏÈÁfiÙÂÚ· ·fi 4 ‹ Ï›ÁÔ ÂÚÈÛÛfiÙÂÚ· ·fi 3») ✒ ∂·Ó·Ï·Ì‚¿ÓÔÓÙ·˜ ÙË Ì¤ÙÚËÛË Ì ¿ÏÏÔ˘˜ ·ÎÏÔ˘˜ Ë ‰È·›ÛÙˆÛË Â›Ó·È Ë ›‰È·. ÀÂÓı˘Ì›˙Ô˘Ì ÛÙÔ ÛËÌÂ›Ô ·˘Ùfi ÙÔ Úfi‚ÏËÌ· Ù˘ ‡ÚÂÛ˘ Ù˘ ÙÔ˘ Ì‹ÎÔ˘˜ ÙÔ˘ ·ÎÏÔ˘ (·Ó·Ê¤Ú-ıËΠÛÙË ‰Ú·ÛÙËÚÈfiÙËÙ· 1). ∆Ô Ì‹ÎÔ˜ ÙÔ˘ ·ÎÏÔ˘ Â›Ó·È «Ï›ÁÔ ÂÚÈÛÛfiÙÂÚÔ ·fi 3 ÊÔÚ¤˜ Ë ‰È¿ÌÂÙÚÔ˜ÙÔ˘ ·ÎÏÔ˘» (3,14 ÊÔÚ¤˜ ‹ ). ¢ÔÎÈÌ¿˙Ô˘Ì ÙÔ Î·È Ì ÙÔ ÙÂÙÚ¿ÁˆÓÔ Ù˘ ·ÎÙ›Ó·˜ Î·È Ì ̤ÙÚËÛË (ÎψÛÙ‹, ÎÔ‹ ÂÓfi˜ ›‰ÈԢ·ÎÏÔ˘ Î·È Î‡ÏÈÛË ÛÙÔ ¯¿Ú·Î·) ·ÏËı‡ԢÌ ÙÔ ·ÔÙ¤ÏÂÛÌ·. 155
™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ KÂʿϷÈÔ 66Ô ∫‡‚Ô˜ Î·È ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏ›‰Ô: ¤‰Ú˜ Î·È ·Ó·Ù‡ÁÌ·Ù· Να το κάνω πακέτο; √È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ۯ‰ȿ˙ÂÈ ·Ó·Ù‡ÁÌ·Ù· Î·È Ó· ηٷÛ΢¿˙ÂÈ Î‡‚Ô˘˜ Î·È ÔÚıÔÁÒÓÈ· ·Ú·ÏÏËÏ›‰·. ✒ ¡· ·Ú·ÙËÚ› Î·È Ó· ·Ó·ÁÓˆÚ›˙ÂÈ ÔÌÔÈfiÙËÙ˜ Î·È ‰È·ÊÔÚ¤˜ ÛÙËÓ ÂÈÊ¿ÓÂÈ· ÙÔ˘ ·‚Ô˘ Î·È ÙÔ˘ ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘. ✒ ¡· ηٷÓÔ› ÙË ‰È·‰Èηۛ· ‡ÚÂÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ ÙˆÓ ‚¿ÛˆÓ, Ù˘ ·Ú¿Ï¢Ú˘ Î·È Ù˘ ÔÏÈ- ΋˜ ÂÈÊ¿ÓÂÈ·˜ ÙÔ˘ ·‚Ô˘ Î·È ÙÔ˘ ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘. √ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ·Ó·ÁÓˆÚ›˙ÂÈ ÙÔÓ Î‡‚Ô Î·È ÙÔ ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏ›‰Ô, Ó· ˘ÔÏÔÁ›˙ÂÈ ÙËÓ ·Ú¿Ï¢ÚË Î·È ÙËÓ ÔÏÈ΋ ÂÈÊ¿ÓÂÈ¿ ÙÔ˘˜ Î·È Ó· ·Ó·ÁÓˆÚ›˙ÂÈ ÙË Û¯¤ÛË ·Ó¿ÌÂÛ· ÛÙËÓ ÙÚÈۉȿÛÙ·ÙË ÌÔÚÊ‹ ÂÓfi˜ ÛÙÂÚÂÔ‡ Î·È ÛÙË ‰ÈۉȿÛÙ·ÙË ·Ó··Ú¿ÛÙ·Û‹ ÙÔ˘ (·Ó¿Ù˘ÁÌ·). ¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∆Ô ¤Ú·ÛÌ· ·fi ÙȘ ‰‡Ô ‰È·ÛÙ¿ÛÂȘ Ù˘ ÂȉÔÌÂÙÚ›·˜ ÛÙȘ ÙÚÂȘ ‰È·ÛÙ¿ÛÂȘ Ù˘ ÛÙÂÚÂÔÌÂÙÚ›·˜ ··ÈÙ› ÙËÓ ‡·ÚÍË ˘„ËÏÔ‡ ÂȤ‰Ô˘ ¯ˆÚÔÙ·ÍÈÎÒÓ ÈηÓÔÙ‹ÙˆÓ ·fi ÙËÓ ÏÂ˘Ú¿ ÙÔ˘ Ì·ıËÙ‹ Î·È ÙË Û˘ÛÙËÌ·ÙÈ΋ ÔÚÁ¿ÓˆÛË Î·È ÙË ‰È·¯Â›ÚÈÛË ÔÙÈÎÒÓ ÏËÚÔÊÔÚÈÒÓ ÁÈ· ÙËÓ Â›Ï˘ÛË ÙˆÓ Û¯ÂÙÈÎÒÓ ÚÔ- ‚ÏË̿وÓ. ™Ù· ·Ú¯Èο ÛÙ¿‰È· Ù˘ ÙÚÈۉȿÛÙ·Ù˘ ·ÂÈÎfiÓÈÛ˘ Â›Ó·È Ôχ ÛËÌ·ÓÙÈÎfi Ó· ·Ó··Ú›ÛÙ·Ù·È ÙÔ Úfi- ‚ÏËÌ· Ì ÙÚfiÔ ÔÙÈÎfi Î·È ¿ÌÂÛ· ¯ÂÈÚ›ÛÈÌÔ ·fi ÙÔ˘˜ Ì·ıËÙ¤˜, ÒÛÙ ÔÈ Î·Ù·Û΢¤˜ ÛÙÂÚÂÒÓ Ó· ÏÂÈ- ÙÔ˘ÚÁ‹ÛÔ˘Ó ˆ˜ ÌÔÓÙ¤ÏÔ Ù˘ ÚÔ‚ÏËÌ·ÙÈ΋˜ ηٿÛÙ·Û˘. ∆Ô ÂÔÙÈÎfi ˘ÏÈÎfi ı· ‚ÔËı‹ÛÂÈ ÙÔ Ì·ıËÙ‹ Ó· ηٷÛ΢¿ÛÂÈ ÌfiÓÔ˜ ÙȘ ‰ÈΤ˜ ÙÔ˘ ÂÈÎfiÓ˜ Î·È ıˆڛ˜, ÔÈ Ôԛ˜ ‰ÂÓ Û˘Ì›ÙÔ˘Ó Î·Ù’ ·Ó¿ÁÎË Ì ÙȘ ıˆڛ˜ ÙÔ˘ ‰·ÛοÏÔ˘ ÙÔ˘ ‹ ÙÔ˘ Û˘ÁÁڷʤ· ÙÔ˘ ‚È‚Ï›Ô˘. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ú¤ÂÈ Ó· ·Ó·ÁÓˆÚ›˙Ô˘Ó ÙÔÓ Î‡‚Ô Û ·ÓÙÈΛÌÂÓ· ηıËÌÂÚÈ- Ó‹˜ ¯Ú‹Û˘. ∞ÎfiÌ· ¤Ú¯ÔÓÙ·È Û ÚÒÙË Â·Ê‹ Ì ٷ ¯·Ú·ÎÙËÚÈÛÙÈο ÙÔ˘. ™ÙË Û˘Ó¤¯ÂÈ· ·ÓÙÈÌÂÙˆ›- ˙Ô˘Ó Ú·ÎÙÈο ÙÔ ·Ó¿Ù˘ÁÌ· ÙÔ˘ ·‚Ô˘ Û·Ó Î·Ù·Û΢‹ ˙·ÚÈÔ‡ ·fi ‰ÔṲ̂ÓÔ ·Ó¿Ù˘ÁÌ·. ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ì ÙËÓ ›‰È· ‰È·‰Èηۛ· ÌÂÏÂÙÔ‡Ó ÙÔ ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏ›- Â‰Ô Ì¤Û· ·fi ¤Ó· ηıËÌÂÚÈÓfi ·ÓÙÈΛÌÂÓÔ (ÎÔ˘Ù› ‰ËÌËÙÚÈ·ÎÒÓ, ÌÈÛÎfiÙˆÓ, Î.Ï.). ∂ÈÛËÌ·›ÓÔ˘Ó ÙȘ ‰È·ÊÔÚ¤˜ ÛÙ· ‰‡Ô ·Ó·Ù‡ÁÌ·Ù· Î·È ÙË ‰˘Ó·ÙfiÙËÙ· ÙÔ˘ ·‚Ô˘ Ó· ¤¯ÂÈ ÂÚÈÛÛfiÙÂÚ· ·Ó·Ù‡ÁÌ·Ù· (11 Û˘ÓÔÏÈο) ·fi fi,ÙÈ ÙÔ ·Ú·ÏÏËÏ›‰Ô. TETPA¢IO EP°A™IøN ÕÛÎËÛË 1Ë (™˘ÓÈÛÙ¿Ù·È Ë ¯Ú‹ÛË ¯¿ÚÙÈÓˆÓ ÌÔÓÙ¤ÏˆÓ fiÔ˘ ¯ÚÂÈ¿˙ÂÙ·È) §‡ÛË: ∆Ô ÚÒÙÔ Ù˘ ¿ӈ ÛÂÈÚ¿˜ Î·È ÙÔ ÙÂÏÂ˘Ù·›Ô Ù˘ οو. ÕÛÎËÛË 2Ë ∏ χÛË ·ÂÈÎÔÓ›˙ÂÙ·È ÛÙÔ Û¯‹Ì· ¿ӈ ‰ÂÍÈ¿. ¶Úfi‚ÏËÌ· 3Ô ∏ χÛË ·ÂÈÎÔÓ›˙ÂÙ·È ÛÙÔ ‰ÈÏ·Ófi Û¯‹Ì·.156
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËKÂʿϷÈÔ 67Ô ∫‡‚Ô˜ Î·È ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏ›‰Ô: ·Î̤˜ Î·È ÎÔÚ˘Ê¤˜ Συναρµολογώντας κοµµάτια√È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ·Ó·ÁÓˆÚ›˙ÂÈ ÙȘ ·Î̤˜ Î·È ÙȘ ÎÔÚ˘Ê¤˜ ÙˆÓ ÛÙÂÚÂÒÓ ÛˆÌ¿ÙˆÓ. ✒ ¡· ηٷÛ΢¿˙ÂÈ Î·È Ó· ·Ú·ÙËÚ› ÌÔÓ٤Ϸ ·‚ˆÓ Î·È ÔÚıÔÁÒÓÈˆÓ ·Ú·ÏÏËÏÂȤ‰ˆÓ. ✒ ¡· ۯ‰ȿ˙ÂÈ Î‡‚Ô Î·È ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏÂ›Â‰Ô Û ¯·ÚÙ›.√ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ·Ó·ÁÓˆÚ›˙ÂÈ ·Î̤˜ Î·È ÎÔÚ˘Ê¤˜ Î·È Ó· ηٷÛ΢¿˙ÂÈ ÌÔÓ٤Ϸ ·‚Ô˘ Î·È ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘. ✒ ¡· ·ÔÙ˘ÒÓÂÈ ÙÚÈۉȿÛٷٷ ·ÓÙÈΛÌÂÓ· Û ¯·ÚÙ›.¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∏ ‰È·‰Èηۛ· ·Ó··Ú¿ÛÙ·Û˘ ÙÔ˘ ÛÙÂÚÂÔ‡ ÛÙÔ Â›Â‰Ô ‰ÂÓ Â›Ó·È ÌÔÓ·‰È΋. ŒÓ·˜ ·fi ÙÔ˘˜ ÙÚfi-Ô˘˜ Ì ÙÔ ÔÔ›Ô ÌÔÚԇ̠ӷ ÙËÓ ÚÔÛÂÁÁ›ÛÔ˘ÌÂ Â›Ó·È Ù· ·Ó·Ù‡ÁÌ·Ù·. ªÂÁ¿ÏÔ ÂӉȷʤÚÔÓ ı·Â›¯Â ÁÈ· ÙÔ˘˜ Ì·ıËÙ¤˜ Î·È Ë ·ÓÙ›ÛÙÚÔÊË ‰È·‰Èηۛ·: ¤Ú·ÛÌ· ·fi ÙÔ Â›Â‰Ô ÛÙÔ ¯ÒÚÔ. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ·ÓÙÈÏ·Ì‚¿ÓÔÓÙ·È Ì ڷÎÙÈÎfi ÙÚfiÔ Î·È Ì¤Û· ·fi ‰Ú·ÛÙËÚÈfi-ÙËÙ˜ Ù˘ ηıËÌÂÚÈÓ‹˜ ˙ˆ‹˜ ÙȘ ·Î̤˜ Î·È ÙȘ ÎÔÚ˘Ê¤˜ ÙÔ˘ ·‚Ô˘. ™˘Ó¯›˙ÔÓÙ·˜ ÛÙË ‰Ú·ÛÙËÚÈfiÙËÙ·Û˘ÁÎÚ›ÓÔ˘Ó ÙÔÓ Î‡‚Ô Ì ÙÔ ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏÂ›Â‰Ô Î·È ‰È·ÈÛÙÒÓÔ˘Ó fiÙÈ ˘¿Ú¯ÂÈ Ô ›‰ÈÔ˜ ·ÚÈı-Ìfi˜ ·fi «Ú·Ê¤˜» Î·È «ÊÔ‡ÓÙ˜». ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ηٷÛ΢¿˙Ô˘Ó ÙÔ ÌÔÓÙ¤ÏÔ ÙÔ˘ ·‚Ô˘ Î·È ÙÔ˘ ÔÚıÔÁÒÓÈÔ˘·Ú·ÏÏËÏÂȤ‰Ô˘ Î·È ‰È·ÈÛÙÒÓÔ˘Ó Ì ڷÎÙÈÎfi ÙÚfiÔ ÙÔÓ ·ÚÈıÌfi ÙˆÓ ·ÎÌÒÓ Î·È ÙÔÓ ·ÚÈıÌfi ÙˆÓÎÔÚ˘ÊÒÓ ÛÙÔÓ Î‡‚Ô Î·ıÒ˜ ›Û˘ ÙÔÓ ·ÚÈıÌfi ÙˆÓ ‰È·ÊÔÚÂÙÈÎÒÓ ·ÎÌÒÓ Î·È ÎÔÚ˘ÊÒÓ ÛÙÔ ÔÚıÔÁÒÓÈÔ·Ú·ÏÏËÏ›‰Ô. ∆¤ÏÔ˜, Û˘ÁÎÚ›ÓÔ˘Ó ÙȘ ‰‡Ô ηٷÛ΢¤˜ Î·È Û˘ÌÂÚ·›ÓÔ˘Ó fiÙÈ Î·È ÔÈ ‰‡Ô ¤¯Ô˘ÓÙÔÓ ›‰ÈÔ ·ÚÈıÌfi ·ÎÌÒÓ Î·È ÎÔÚ˘ÊÒÓ.∫·ÓfiÓ·˜ Î·È ·Ú·‰Â›ÁÌ·Ù· ™ÙÔÓ Î·ÓfiÓ· ·Ó·Ê¤ÚÔÓÙ·È ÔÈ fiÚÔÈ «·Î̤˜» Î·È «ÎÔÚ˘Ê¤˜». ªÔÏÔÓfiÙÈ ÔÈ ¤ÓÓÔȘ ·˘Ù¤˜ Â›Ó·È ÁÓˆ-ÛÙ¤˜ Î·È Â‡ÎÔÏ· ηٷÓÔËÙ¤˜ ·fi Ù· ·È‰È¿, Ë Û¯¤ÛË ÙÔ˘˜ ‰ÂÓ Â›Ó·È ÙfiÛÔ ÚÔÊ·Ó‹˜. ∏ ηıÂÙfiÙËÙ·ÙÚÈÒÓ Â˘ıÂÈÒÓ Û ›‰· οıÂÙ· ÌÂٷ͇ ÙÔ˘˜ Â›Ó·È ÔˆÛ‰‹ÔÙ ‰‡ÛÎÔÏÔ Ó· Á›ÓÂÈ Î·Ù·ÓÔËÙ‹. ∏ÔÙÈÎÔÔ›ËÛË ÙˆÓ Û¯¤ÛÂˆÓ ÙˆÓ ·ÎÌÒÓ Î·È ÙˆÓ ÎÔÚ˘ÊÒÓ ‚ÔËı¿ ÛÙËÓ Î·Ù·ÓfiËÛË Ôχ ÂÚÈÛÛfiÙÂÚÔ·fi fi,ÙÈ Ë ÌÂϤÙË ÙÔ˘ ÛΛÙÛÔ˘ ÛÙÔ ·Ú¿‰ÂÈÁÌ· ÙÔ˘ ‚È‚Ï›Ô˘. TETPA¢IO EP°A™IøNÕÛÎËÛË 1Ë ∏ χÛË ·ÂÈÎÔÓ›˙ÂÙ·È ÛÙÔ ‰ÈÏ·Ófi Û¯‹Ì·.ÕÛÎËÛË 2Ë ∏ χÛË ·ÂÈÎÔÓ›˙ÂÙ·È ÛÙÔ ‰ÈÏ·Ófi Û¯‹Ì·. ∂ÌÊ·Ó›˙ÔÓÙ·ÈÌfiÓÔ ÔÈ ‚·ÛÈΤ˜ ·Î̤˜ Ì ·ÚÈıÌÔ‡˜ ÛÙȘ ÙÔ̤˜ ÙÔ˘˜. √È˘fiÏÔȘ Â›Ó·È ·Ïfi Ó· ‚ÚÂıÔ‡Ó. 157
™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ KÂʿϷÈÔ 68Ô ∫‡ÏÈÓ‰ÚÔ˜ Να το τυλίξω; √È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ۯ‰ȿ˙ÂÈ ÙÔ ·Ó¿Ù˘ÁÌ· Î·È Ó· ηٷÛ΢¿˙ÂÈ Î‡ÏÈÓ‰ÚÔ. ✒ ¡· ηٷÓÔ‹ÛÂÈ ÙË ‰È·‰Èηۛ· ‡ÚÂÛ˘ ÙÔ˘ ÂÌ‚·‰Ô‡ ÙˆÓ ‚¿ÛˆÓ, Ù˘ ·Ú¿Ï¢Ú˘ Î·È Ù˘ ÔÏÈ΋˜ ÂÈÊ¿ÓÂÈ·˜ ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘. ✒ ¡· ۯ‰ȿ˙ÂÈ Î‡ÏÈÓ‰ÚÔ ÛÂ Â›Â‰Ë ÂÈÊ¿ÓÂÈ·. √ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ۯ‰ȿ˙ÂÈ ÙÔ ·Ó¿Ù˘ÁÌ·, Ó· ˘ÔÏÔÁ›˙ÂÈ ÙÔ ÂÌ‚·‰fi (‚¿ÛÂˆÓ Î·È ·Ú¿Ï¢Ú˘ ÂÈÊ¿- ÓÂÈ·˜) Î·È Ó· ۯ‰ȿ˙ÂÈ Î‡ÏÈÓ‰ÚÔ Û ¯·ÚÙ›. ¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∏ ηٷÛ΢‹ Î·È Ë Ì¤ÙÚËÛË ÙÔ˘ ·Ó·Ù‡ÁÌ·ÙÔ˜ ÙˆÓ ÛÙÂÚÂÒÓ Ì ٷ ÔÔ›· ·Û¯ÔÏ‹ıËÎ·Ó Ì¤¯ÚÈ ÙÒÚ· Ù· ·È‰È¿ Û¯ÂÙ›˙ÔÓÙ·Ó Ì ÂÈÊ¿ÓÂȘ ›‰˜ fiÔ˘ ÔÈ ‰È·ÛÙ¿ÛÂȘ ‹Ù·Ó ‡ÎÔÏ· ÌÂÙÚ‹ÛÈ̘. ™ÙËÓ ÂÚ›ÙˆÛË ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘ fï˜ ÔÈ ‰˘ÛÎÔϛ˜ Ô˘ ·ÚÔ˘ÛÈ¿˙ÔÓÙ·È Û¯ÂÙ›˙ÔÓÙ·È Ì ÙÔ ÁÂÁÔÓfi˜ fiÙÈ Ù· ·È‰È¿ ‰ÂÓ ÌÔÚÔ‡Ó Ó· ÌÂÙÚ‹ÛÔ˘Ó Â‡ÎÔÏ· ÙËÓ ÂÈÊ¿ÓÂÈ·, ηıÒ˜ ÂÌϤÎÂÙ·È Ô Î‡ÎÏÔ˜ Î·È Î·Ù¿ Û˘Ó¤ÂÈ· Ô ·ÚÈıÌfi˜ . ∞˘Ùfi οÓÂÈ ‰‡ÛÎÔÏÔ ÙÔ ¯ÂÈÚÈÛÌfi ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘ Î·È ··ÈÙ› ÌÂÁ·Ï‡ÙÂÚË ÚÔÛ¿ıÂÈ· ÛÙËÓ Î·Ù·ÓfiËÛË ÙˆÓ Û¯¤ÛÂˆÓ Ô˘ ‰È¤Ô˘Ó ÙȘ ‚¿ÛÂȘ Î·È ÙËÓ ·Ú¿Ï¢ÚË ÂÈÊ¿ÓÂÈ¿ ÙÔ˘. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ì ηıËÌÂÚÈÓ¿ ·ÓÙÈΛÌÂÓ· (ÎÔ˘Ù› ·Ó·„˘ÎÙÈÎÔ‡, ÎÔ˘Ù› ·fi Û˘Ì˘Îӈ̤ÓÔ Á¿Ï· Î.Ï.) ÚÔÛÂÁÁ›˙Ô˘Ó ÙȘ ¤ÓÓÔȘ «·Ú¿Ï¢ÚË ÂÈÊ¿ÓÂÈ·» Î·È «·Ó¿Ù˘ÁÌ· Î˘Ï›Ó‰ÚÔ˘». ™ËÌÂÈÒÓÂÙ·È ˆ˜, ÂÂȉ‹ Â›Ó·È ‰‡ÛÎÔÏÔ Ó· Ê·ÓÙ·ÛÙÔ‡Ó ÙÔÓ Î‡ÏÈÓ‰ÚÔ ·Ê·ÈÚÂÙÈο, ı· ‹Ù·Ó ηÏfi Ó· ¤¯ÂÈ Ô Î·ı¤Ó·˜ ·fi ¤Ó· ΢ÏÈÓ‰ÚÈÎfi ÎÔ˘Ù› ÒÛÙ ·Ó ı¤ÏÂÈ Ó· ÙÔ ÓÙ‡ÛÂÈ Á‡Úˆ Ì ¯·ÚÙ› Î·È Ó· ÙÔ ÍÂÙ˘Ï›ÍÂÈ Î·ÙfiÈÓ ÁÈ· Ó· ‰ÂÈ ÙÔ Û¯‹Ì·. √ ‰¿ÛηÏÔ˜ Ú¤ÂÈ Ó· ·ÔʇÁÂÈ ÙËÓ ÚfiˆÚË «Ì·ıËÌ·ÙÈÎÔÔ›ËÛË» Î·È Ó· ˙ËÙ‹ÛÂÈ ·fi ÙÔ˘˜ Ì·ıËÙ¤˜ Ó· ÌÂÙÚ‹ÛÔ˘Ó ÙÔ˘˜ ·ÎÏÔ˘˜ ÙˆÓ ‚¿ÛˆÓ. ™ÙËÓ ÂÚÒÙËÛË «·Ó ·ÓÙÈÁÚ¿„ÂȘ ÙÔ ·Ó¿Ù˘ÁÌ· Ô˘ ¤ÊÙȷ͘ Û ¯·ÚÙ› Î·È ÙÔ Îfi„ÂȘ, ı· Á›ÓÂÈ Î‡ÏÈÓ- ‰ÚÔ˜;» οÔÈ· ·È‰È¿ ı· ··ÓÙ‹ÛÔ˘Ó ıÂÙÈο Î·È Î¿ÔÈ· ·ÚÓËÙÈο. ™˘ÓÈÛÙ¿Ù·È Ó· ÙÔ ‰ÔÎÈÌ¿ÛÔ˘Ó ÁÈ· Ó· ·Ó·Î·Ï‡„Ô˘Ó fiÙÈ ÁÈ· Ó· ÌÔÚ› ÙÔ ·Ó¿Ù˘ÁÌ· Ô˘ ۯ‰›·Û·Ó Ó· Á›ÓÂÈ Î‡ÏÈÓ‰ÚÔ˜, Ú¤ÂÈ ÙÔ Ì‹ÎÔ˜ ÙÔ˘ ·ÎÏÔ˘ (Ë ‚¿ÛË) Ó· Â›Ó·È ›ÛË Ì ÙÔ Ï¿ÙÔ˜ Ù˘ ·Ú¿Ï¢Ú˘ ÂÈÊ¿ÓÂÈ·˜ (ÂÙÈΤٷ˜ ÛÙÔ ÎÔ˘Ù›). ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ÚÔÛ·ıÔ‡Ó Ó· ˘ÔÏÔÁ›ÛÔ˘Ó ÙÔ ÂÌ‚·‰fi ÙÔ˘ ·Ó·Ù‡ÁÌ·ÙÔ˜ ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘. ™˘ÌÂÚ·›ÓÔ˘Ó ˆ˜ Ú¤ÂÈ Ó· ˘ÔÏÔÁ›ÛÔ˘Ó ÙÔ ÂÌ‚·‰fi Ù˘ ·Ú¿Ï¢Ú˘ ÂÈÊ¿- ÓÂÈ·˜ Î·È ÙÔ ÂÌ‚·‰fi ÙˆÓ ‰‡Ô ‚¿ÛˆÓ. ™ÙÔ Ù¤ÏÔ˜ Ù˘ ‰Ú·ÛÙËÚÈfiÙËÙ·˜ ˙ËÙÂ›Ù·È ·fi ÙÔ˘˜ Ì·ıËÙ¤˜ Ó· ÂÎÊÚ¿ÛÔ˘Ó ÙÔÓ ˘ÔÏÔÁÈÛÌfi ÙÔ˘ ÂÌ‚·‰Ô‡ Û ·Ê·ÈÚÂÙÈÎfi Â›Â‰Ô (¯ˆÚ›˜ Ó· ‚Ï¤Ô˘Ì ÙÔ ·Ó¿- Ù˘ÁÌ¿ ÙÔ˘). TETPA¢IO EP°A™IøN ¶Úfi‚ÏËÌ· 3Ô ∫¿ı η¤ÏÔ ¯ÚÂÈ¿˙ÂÙ·È ÙÔ ·Ú¿Ï¢ÚÔ ÂÌ‚·‰fi Û˘Ó ÙÔ ÂÌ‚·‰fi ÙÔ˘ ÌÂÁ¿ÏÔ˘ ·ÎÏÔ˘ (30 ÂÎ). ¶ÂÚ›ÌÂÙÚÔ˜ η¤ÏÔ˘: 14 . 3,14 = 43,96, 43,96 . 15 = 659,4 Ù.ÂÎ. ∂Ì‚·‰fi ·ÎÏÔ˘ 15 . 15 . 3,14 = 706,5. ™˘ÓÔÏÈÎfi ÂÌ‚·‰fi ¯·ÚÙÈÔ‡ 706,5 + 659,4 = 1365,9 Ù.ÂÎ.158
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËKÂʿϷÈÔ 69Ô ŸÁÎÔ˜ – ÈÚËÙÈÎfiÙËÙ· Γέµισε; Χωράω κι εγώ;√È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ηٷÓÔ› ÙÔ Ï›ÙÚÔ ˆ˜ ÌÔÓ¿‰· ¯ˆÚËÙÈÎfiÙËÙ·˜. ✒ ¡· ηٷÓÔ› ÙÔ Î˘‚ÈÎfi ÂηÙÔÛÙfi ˆ˜ ÌÔÓ¿‰· fiÁÎÔ˘ Î·È Ó· Ì¿ıÂÈ ÙË Û¯¤ÛË ÙÔ˘ Ì ٷ ÔÏÏ·Ï¿- ÛÈ¿ ÙÔ˘. ✒ ¡· ÂÎÊÚ¿˙ÂÈ ÙȘ ÌÂÙÚ‹ÛÂȘ fiÁÎÔ˘ ÌÂ Ê˘ÛÈÎÔ‡˜, ‰Âη‰ÈÎÔ‡˜ Î·È Û˘ÌÌÈÁ›˜ ·ÚÈıÌÔ‡˜. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ Ô˘ ·Ó·Ê¤ÚÔÓÙ·È Û fiÁÎÔ˘˜.√ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ÌÂÙÚ¿ fiÁÎÔ˘˜ Î·È ¯ˆÚËÙÈÎfiÙËÙ˜ Î·È Ó· χÓÂÈ Û¯ÂÙÈο ÚԂϋ̷ٷ.¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∆Ô ¤Ú·ÛÌ· ·fi ÙÔÓ fiÁÎÔ ÛÙË ¯ˆÚËÙÈÎfiÙËÙ· Â›Ó·È ¤Ó· Ôχ ‰‡ÛÎÔÏÔ ‚‹Ì· ÁÈ· ÙÔ˘˜ Ì·ıËÙ¤˜ ·˘Ù‹˜Ù˘ ËÏÈΛ·˜. √ Ì·ıËÙ‹˜ ¤¯ÂÈ Î·Ù·ÎÙ‹ÛÂÈ ÙȘ ¤ÓÓÔȘ «Î˘‚ÈÎfi ÂηÙÔÛÙfi», «Ì¤ÙÚËÛË fiÁÎÔ˘ ·‚Ô˘» ηȫ̤ÙÚËÛË fiÁÎÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘» Ì ÙË ¯Ú‹ÛË ÙÔ˘ ΢‚ÈÎÔ‡ ÂηÙÔÛÙÔ‡, ÌÈ·˜ ÌÔÓ¿‰·˜ ΢‚È΋˜ ÌÂÙËÓ ÔÔ›· ‡ÎÔÏ· ÌÔÚԇ̠ӷ Û¯ËÌ·Ù›ÛÔ˘Ì ÌÂÁ·Ï‡ÙÂÚÔ˘˜ ·‚Ô˘˜ ‹ ·Ú·ÏÏËÏ›‰·. ™ÙËÓ ÂÚ›-ÙˆÛË Ù˘ ¯ˆÚËÙÈÎfiÙËÙ·˜ Ë ¤ÓÓÔÈ· Ù˘ ¯ˆÚËÙÈÎfiÙËÙ·˜ ÂÓfi˜ ‰Ô¯Â›Ô˘, Ô fiÁÎÔ˜ ÙÔ˘ ‰Ô¯Â›Ô˘ Î·È Ô fiÁÎÔ˜ÙÔ˘ ˘ÁÚÔ‡ Â›Ó·È ¤ÓÓÔȘ Ô˘ Ù· ·È‰È¿ Û˘Á¯¤Ô˘Ó. ¢Ú·ÛÙËÚÈfiÙËÙ˜ Ì ÔÁÎÔÌÂÙÚÈÎÔ‡˜ Î˘Ï›Ó‰ÚÔ˘˜ ηȯÂÈÚÈÛÌfi˜ ÙÔ˘˜ ˆ˜ ‰È·‰Èηۛ· ÂϤÁ¯Ô˘ Û ˘ÔÏÔÁÈÛÌÔ‡˜ fiÁÎÔ˘ ı· ‰ÒÛÂÈ ÛÙÔ˘˜ Ì·ıËÙ¤˜ ÙËÓ ··Ú·›-ÙËÙË ÔÙÈ΋ ‰È¿ÛÙ·ÛË ÙˆÓ ÂÓÓÔÈÒÓ Ô˘ ‰È·Ú·ÁÌ·Ù‡ÔÓÙ·È. ∂›Û˘ ¯ÚÂÈ¿˙ÂÙ·È Ó· Û˘˙ËÙËı› Ë ÔÏ˘-ÏÔÎfiÙËÙ· Ù˘ ¤ÓÓÔÈ·˜ ÙÔ˘ fiÁÎÔ˘. ∂Ó‰ÂÈÎÙÈο ÌÔÚԇ̠ӷ ˘Ô‚¿ÏÏÔ˘Ì ÙȘ ·ÎfiÏÔ˘ı˜ ÂÚˆÙ‹ÛÂȘ:«ÙÈ Â›Ó·È Ë ¯ˆÚËÙÈÎfiÙËÙ·;», «ÙÈ Û˘Ì‚·›ÓÂÈ ·Ó ¤Ó· ‰Ô¯Â›Ô ¤¯ÂÈ ¯ÔÓÙÚ¿ ÙÔȯÒÌ·Ù·;», «ÙÈ Û˘Ì‚·›ÓÂÈ ·Ó ¤Ó·ÛÙÂÚÂfi Â›Ó·È Û˘Ì·Á¤˜ ‹ ÎÔ‡ÊÈÔ;», «ÙÈ Û˘Ì‚·›ÓÂÈ ·Ó ¤Ó· ÔÙ‹ÚÈ Â›Ó·È ·ÓÔÈÎÙfi ‹ ¤¯ÂÈ Î·¿ÎÈ;», «Ò˜Û˘Ó‰¤ÂÙ·È Ë ¤ÓÓÔÈ· ÙÔ˘ fiÁÎÔ˘ Ì ÙÔ ÂÎÙÔÈ˙fiÌÂÓÔ ˘ÁÚfi fiÙ·Ó ‚˘ı›ÛÔ˘Ì ÙÔ ÛÙÂÚÂfi;» ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ı· ͯˆÚ›ÛÔ˘Ó ÙȘ ¤ÓÓÔȘ «¯ˆÚËÙÈÎfiÙËÙ·» Î·È «‚¿ÚÔ˜». ◊‰Ë ÁÓˆ-Ú›˙Ô˘Ó fiÙÈ ‰È·ÊÔÚÂÙÈο ˘ÁÚ¿, ·Ó Î·È Î·Ù·Ï·Ì‚¿ÓÔ˘Ó ÙÔÓ ›‰ÈÔ fiÁÎÔ, ¤¯Ô˘Ó ‰È·ÊÔÚÂÙÈÎfi ‚¿ÚÔ˜ (Ì¿˙·). ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ÌÂÏÂÙÔ‡Ó ÙË ÌÔÓ¿‰· ̤ÙÚËÛ˘ ÙÔ˘ fiÁÎÔ˘ Î·È ¯Ù›˙ÔÓÙ·˜ ¤Ó·Ó‡ÚÁÔ ·fi 3-4 ΢‚Èο ÂηÙÔÛÙ¿ ‰È·ÈÛÙÒÓÔ˘Ó ˆ˜ Ô ‡ÚÁÔ˜ ÙÔ˘˜ ηٷϷ̂¿ÓÂÈ Î¿ÔÈÔ ¯ÒÚÔ, ¤¯ÂȉËÏ·‰‹ fiÁÎÔ. ∞ÓÂÍ¿ÚÙËÙ· ·fi ÙÔ Û¯‹Ì· Ù˘ ηٷÛ΢‹˜ Ô fiÁÎÔ˜ ·Ú·Ì¤ÓÂÈ ÛÙ·ıÂÚfi˜. ∞Ó ÁÂÌ›˙·ÌÂÓÂÚfi ÙÔ Î˘‚ÈÎfi ÂηÙÔÛÙfi Ô˘ ηٷÛ΢¿Û·Ì ı· ›¯Â ¯ˆÚËÙÈÎfiÙËÙ· ›ÛË Ì 1 ΢‚ÈÎfi ÂηÙÔÛÙfi.∂‡ÎÔÏ· (Ì ‚¿ÛË ÙËÓ ÂÌÂÈÚ›· ÙÔ˘˜ Î·È ÙȘ ÚÔËÁÔ‡ÌÂÓ˜ ÁÓÒÛÂȘ) ı· ηٷϋÍÔ˘Ó fiÙÈ ÙÔ 1 Ï›ÙÚÔÓÂÚfi Â›Ó·È 1000 Î.ÂÎ.∫·ÓfiÓ·˜ Î·È ·Ú·‰Â›ÁÌ·Ù· ™ÙÔÓ Î·ÓfiÓ· ·Ó·Ê¤ÚÔÓÙ·È ÔÈ fiÚÔÈ «Î˘‚ÈÎfi ̤ÙÚÔ», «Î˘‚ÈÎfi ‰ÂηÙfiÌÂÙÚÔ» Î·È «Î˘‚ÈÎfi ÂηÙÔÛÙfi»(‹ ÂηÙÔÛÙfiÌÂÙÚÔ). ∞Ó Î·È ÔÈ ¤ÓÓÔȘ ·˘Ù¤˜ Â›Ó·È ÁÓˆÛÙ¤˜ ÛÙ· ·È‰È¿, Ë Û¯¤ÛË ÙÔ˘˜ ‰ÂÓ Â›Ó·È ÙfiÛÔÚÔÊ·Ó‹˜. √ÙÈÎÔÔ›ËÛË ÙˆÓ ÌÔÓ¿‰ˆÓ Ì ˘ÏÈÎfi Ô˘ ˘¿Ú¯ÂÈ ‹ ı· ÊÙÈ¿ÍÔ˘Ó Ù· ·È‰È¿ ı· ‚ÔËı‹ÛÂÈÙË ÛˆÛÙ‹ ‰È·¯Â›ÚÈÛË ÙˆÓ ˘Ô‰È·ÈÚ¤ÛÂˆÓ Î·ıÒ˜ οı ˘Ô‰È·›ÚÂÛË Î·Ù·Ï·Ì‚¿ÓÂÈ 3 ‰Âη‰ÈΤ˜ı¤ÛÂȘ ˘Ô¯ÚˆÙÈο (2.570.050 Î.ÂÎ. = 2,57005 Î.Ì. = 2 Î.Ì. 570 Î.‰ÂÎ. 50 Î.ÂÎ.). TETPA¢IO EP°A™IøN 159¶Úfi‚ÏËÌ· 2Ô 2 . 32 (64 ·‚ÔÈ Û 1 ÛÂÈÚ¿), 2 . 2 . 16 (2 ÛÂÈÚ¤˜ ÙˆÓ 32 ·‚ˆÓ) 2 . 4 . 8 (4 ÛÂÈÚ¤˜ ÙˆÓ 16 ·‚ˆÓ).
™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ KÂʿϷÈÔ 70Ô ŸÁÎÔ˜ ·‚Ô˘ Î·È ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘ Κύβοι και κιβώτια √È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ηٷÓÔ› ÙË ‰È·‰Èηۛ· ˘ÔÏÔÁÈÛÌÔ‡ ÙÔ˘ fiÁÎÔ˘ ·‚Ô˘ Î·È ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘. ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔÓ fiÁÎÔ Î‡‚Ô˘ Î·È ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘ Ì هÔ. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ Ì fiÁÎÔ˘˜ ·‚ˆÓ Î·È ÔÚıÔÁÒÓÈˆÓ ·Ú·ÏÏËÏÂȤ‰ˆÓ. √ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ÌÂÙÚ¿ fiÁÎÔ˘˜ ·‚Ô˘ Î·È ÔÚıÔÁÒÓÈÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘ Î·È Ó· χÓÂÈ Û¯ÂÙÈο ÚԂϋ̷ٷ. ¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ OÈ Ì·ıËÙ¤˜ ÈÛÙÂ‡Ô˘Ó ˆ˜ ‰ÈÏ·ÛÈ·ÛÌfi˜ ÙˆÓ ‰È·ÛÙ¿ÛÂˆÓ ÂÓfi˜ ÛÙÂÚÂÔ‡ (.¯. ÂÓfi˜ ÔÚıÔÁˆÓ›Ô˘ ·Ú·ÏÏËÏÂȤ‰Ô˘), ÛËÌ·›ÓÂÈ Î·È ‰ÈÏ·ÛÈ·ÛÌfi ÙÔ˘ fiÁÎÔ˘ ÙÔ˘. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ Ì ڷÎÙÈÎfi ÙÚfiÔ (.¯. ÁÂÌ›˙ÔÓÙ·˜ Ì ¿ÌÌÔ) ı· ·Ó·Î·Ï‡- „Ô˘Ó fiÙÈ, ÂÓÒ ¤¯Ô˘Ó ÚÔÛ‰ÈÔÚÈṲ̂ÓË ÌÔÓ¿‰· ̤ÙÚËÛ˘ ÙÔ˘ fiÁÎÔ˘, ÙÔ ÂÚÁ·ÏÂ›Ô ·˘Ùfi ‰ÂÓ Â›Ó·È Ú·- ÎÙÈο ÂÊ·ÚÌfiÛÈÌÔ, ηıÒ˜ ÔÈ ÌÂÙÚ‹ÛÂȘ ‰ÂÓ ÌÔÚÔ‡Ó Ó· Â›Ó·È ·ÎÚȂ›˜ ‹ ÔÈ ÌÈÎÚfiÙÂÚ˜ ÌÔÓ¿‰Â˜ Â›Ó·È ‰‡ÛÎÔϘ ÛÙÔ ¯ÂÈÚÈÛÌfi ·fi ÙÔ˘˜ Ì·ıËÙ¤˜ ÏfiÁˆ ÙÔ˘ Ôχ ÌÂÁ¿ÏÔ˘ ·ÚÈıÌÔ‡ ÙÔ˘˜. ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë OÈ Ì·ıËÙ¤˜ ÂÍÂÙ¿˙Ô˘Ó ¤Ó· ·‚Ô Ô˘ ηٷÛ΢¿˙Ô˘Ó Ì ·‚Ô˘˜ ÂÓfi˜ ÂηÙÔÛÙÔ‡. ¢È·ÈÛÙÒÓÔ˘Ó ˆ˜ ÌÔÚÔ‡Ó Ó· ‚ÚÔ˘Ó ÙÔÓ fiÁÎÔ ÙÔ˘ Ì ‰È·ÊÔÚÂÙÈÎÔ‡˜ ÙÚfiÔ˘˜ Î·È Û˘ÌÏËÚÒÓÔÓÙ·˜ ÙÔ˘˜ ›Ó·Î˜ Û˘ÛÙËÌ·ÙÔÔÈÔ‡Ó ÙȘ ·Ú·ÙËÚ‹ÛÂȘ ÙÔ˘˜ ÁÈ· ÙȘ Ú¿ÍÂȘ Ô˘ Ì·˜ ‰›ÓÔ˘Ó ÙÔÓ fiÁÎÔ ÙÔ˘ ·‚Ô˘. ¢ÔÎÈ- Ì¿˙Ô˘Ó ÛÙË Û˘Ó¤¯ÂÈ· ÙȘ ›‰È˜ Ú¿ÍÂȘ Û ¿ÏÏÔ˘˜ Û˘Ó‰˘·ÛÌÔ‡˜ Ì ÙÔ˘‚Ï¿ÎÈ· Î·È ‰È·ÈÛÙÒÓÔ˘Ó fiÙÈ ÌÔÚÔ‡Ó Ó· ηٷϋÍÔ˘Ó Û ηÓfiÓ· ÁÈ· ÙËÓ Â‡ÚÂÛË ÙÔ˘ fiÁÎÔ˘ ÔÚıÔÁÒÓÈˆÓ ·Ú·ÏÏËÏÂȤ‰ˆÓ. TETPA¢IO EP°A™IøN ÕÛÎËÛË 2Ë √È Û˘Ó‰˘·ÛÌÔ› ÌÔÚ› Ó· Â›Ó·È 3 . 5 . 22 ‹ 6 . 5 . 11 ‹ 3 . 10 . 11 ‹ ¿ÏÏÔ˜ Û˘Ó‰˘·ÛÌfi˜ Ô˘ ‰›ÓÂÈ ·˘Ùfi ÙÔ ÁÈÓfiÌÂÓÔ. ÕÛÎËÛË 3Ë ∏ ¯ˆÚËÙÈÎfiÙËÙ· ÙÔ˘ ÌÂÁ¿ÏÔ˘ ÎÔ˘ÙÈÔ‡ Â›Ó·È 70 . 50 . 30 = 105.000 Î.ÂÎ., ÂÓÒ Ô fiÁÎÔ˜ ÙÔ˘ ÌÈÎÚÔ‡ ÎÔ˘ÙÈÔ‡ 105 Î.ÂÎ. 105.000 : 105 = 1000 ÎÔ˘ÙÈ¿. ∂Ó·ÏÏ·ÎÙÈο ÛÙÔ ÌÂÁ¿ÏÔ ÎÔ˘Ù› ÌÔÚÒ Ó· ‚¿Ïˆ 10 x 10 ÎÔ˘ÙÈ¿ Û οı ÛÂÈÚ¿ Î·È Û˘ÓÔÏÈο 10 ÛÂÈÚ¤˜ 10 . 100 = 1000. ¶Úfi‚ÏËÌ· 1Ô £· ÓÔ›ÎÈ·˙˜ 4 ÎÔÓÙ¤ÈÓÂÚ (4 . 40 = 160 Î.Ì.) ÚÔ˜ 300 ú ÙÔ ¤Ó· Î·È ı· ϋڈÓ˜ ›Û˘ 20 . 11 = 220 ú ÁÈ· Ù· ˘fiÏÔÈ·. ™˘ÓÔÏÈο ı· ϋڈÓ˜ 1.420 ú. ¶Úfi‚ÏËÌ· 2Ô °È· Ù· ÌÈÎÚ¿ ÎÈ‚ÒÙÈ· ¯ÚÂÈ¿˙ÂÙ·È 812 Ù.ÂÎ. ˘ÏÈÎfi, ÂÓÒ ÁÈ· Ù· ÌÂÁ¿Ï· 3.248 Ù. ÂÎ., ‰ËÏ·‰‹ 4 ÊÔÚ¤˜ ÂÚÈÛÛfiÙÂÚÔ. ÕÚ· ı· Ô˘Ï‹ÛÂÈ Ù· ÌÂÁ¿Ï· ÎÈ‚ÒÙÈ· 1,5 . 4 = 6 ú ¶Úfi‚ÏËÌ· 3Ô √ fiÁÎÔ˜ ÙÔ˘ ·¤Ú· Â›Ó·È 42 ΢‚Èο Î·È Â·ÚΛ ÁÈ· 7 ÒÚ˜.160
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËKÂʿϷÈÔ 71Ô ŸÁÎÔ˜ Î˘Ï›Ó‰ÚÔ˘ Τύπος συντηρητικός!√È ÂÈ̤ÚÔ˘˜ ÛÙfi¯ÔÈ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ·˘ÙÔ‡ ÁÈ· ÙÔ Ì·ıËÙ‹ Â›Ó·È ÔÈ ÂÍ‹˜: ✒ ¡· ηٷÓÔ› ÙË ‰È·‰Èηۛ· ˘ÔÏÔÁÈÛÌÔ‡ ÙÔ˘ fiÁÎÔ˘ ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘. ✒ ¡· ˘ÔÏÔÁ›˙ÂÈ ÙÔÓ fiÁÎÔ ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘ Ì هÔ. ✒ ¡· χÓÂÈ ÚԂϋ̷ٷ Ì fiÁÎÔ˘˜ Î˘Ï›Ó‰ÚˆÓ.√ Ì·ıËÙ‹˜ ·Ó·Ì¤ÓÂÙ·È: ✒ ¡· ÌÂÙÚ¿ ÙÔÓ fiÁÎÔ ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘ Î·È Ó· χÓÂÈ Û¯ÂÙÈο ÚԂϋ̷ٷ.¶Èı·Ó¤˜ ‰˘ÛÎÔϛ˜ ÙÔ˘ ÎÂÊ·Ï·›Ô˘ ∏ ̤ÙÚËÛË ÙÔ˘ fiÁÎÔ˘ ÙˆÓ ÛÙÂÚÂÒÓ Ì ٷ ÔÔ›· ·Û¯ÔÏ‹ıËÎ·Ó Ì¤¯ÚÈ ÙÒÚ· Ù· ·È‰È¿ ‚·ÛÈ˙fiÙ·Ó ÛÙ˯ڋÛË ÙÔ˘ ΢‚ÈÎÔ‡ ÂηÙÔÛÙÔ‡, ÌÈ·˜ ΢‚È΋˜ ÌÔÓ¿‰·˜ Ì ÙËÓ ÔÔ›· ‡ÎÔÏ· ÌÔÚÔ‡Û·Ì ӷ Û¯ËÌ·Ù›-ÛÔ˘Ì ÌÂÁ·Ï‡ÙÂÚÔ˘˜ ·‚Ô˘˜ ‹ ·Ú·ÏÏËÏ›‰·. ™ÙËÓ ÂÚ›ÙˆÛË ÙÔ˘ Î˘Ï›Ó‰ÚÔ˘ fï˜ ÔÈ ‰˘ÛÎÔÏ›Â˜Ô˘ ·ÚÔ˘ÛÈ¿˙ÔÓÙ·È Û¯ÂÙ›˙ÔÓÙ·È Ì ÙÔ ÁÂÁÔÓfi˜ fiÙÈ Ù· ·È‰È¿ ‰ÂÓ ÌÔÚÔ‡Ó Ó· Ê·ÓÙ·ÛÙÔ‡Ó ÙË ÌÔÓ¿‰·Ì¤ÙÚËÛ˘ (Î.ÂÎ.) Ó· «ÁÂÌ›˙ÂÈ» ϋڈ˜ ¤Ó·Ó ·ÏÈÓ‰ÚÔ. ¢Ú·ÛÙËÚÈfiÙËÙ· 1Ë ™ÙË ‰Ú·ÛÙËÚÈfiÙËÙ· ·˘Ù‹ ÔÈ Ì·ıËÙ¤˜ ‰È·ÈÛÙÒÓÔ˘Ó fiÙÈ ¤Ó· ·Ú·ÏÏËÏÂ›Â‰Ô Î·È ¤Ó·˜ ·ÏÈÓ‰ÚÔ˜¤¯Ô˘Ó Ù· ÂÍ‹˜ ÎÔÈÓ¿ ¯·Ú·ÎÙËÚÈÛÙÈο: Â›Ó·È ÛÙÂÚ¿ ÛÒÌ·Ù·, ¤¯Ô˘Ó 3 ‰È·ÛÙ¿ÛÂȘ Î·È fiÁÎÔ. øÛÙfiÛԉȷʤÚÔ˘Ó ÛÙÔ fiÙÈ ÔÈ ‰È·ÛÙ¿ÛÂȘ ÙÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘ ‰È·ÎÚ›ÓÔÓÙ·È ÈÔ Â‡ÎÔÏ·, (.¯. ÙÔ ÂÌ‚·‰fiÙ˘ ‚¿Û˘ ÙÔ˘ ·Ú·ÏÏËÏÂȤ‰Ô˘ ‚Ú›ÛÎÂÙ·È ÈÔ Â‡ÎÔÏ·, ÂÓÒ ÛÙÔÓ Î‡ÏÈÓ‰ÚÔ Ú¤ÂÈ Ó· ÁÓˆÚ›˙Ô˘ÌÂÙËÓ ·ÎÙ›Ó·, ηıÒ˜ ‰ÂÓ Â›Ó·È Â‡ÎÔÏÔ Ó· ÙË ÌÂÙÚ‹ÛÔ˘ÌÂ). ¢Ú·ÛÙËÚÈfiÙËÙ· 2Ë ∞˘Ùfi Ô˘ ¤¯ÂÈ ÛËÌ·Û›· Â›Ó·È Ó· ηٷϿ‚Ô˘Ó ÔÈ Ì·ıËÙ¤˜ ÙËÓ ·Ó¿ÁÎË Ó· ˘ÔÏÔÁ›ÛÔ˘Ó ÙÔ ÂÌ‚·‰fiÙ˘ ‚¿Û˘ ÚÒÙ· Î·È ÛÙÔ Î˘ÏÈÓ‰ÚÈÎfi Û¯‹Ì·. ™ÙË Û˘Ó¤¯ÂÈ· Û˘ÌÂÚ·›ÓÔ˘Ó ˆ˜, ·Ó ¤Ú ӷ ‚ÚÔ˘ÓÙÔÓ fiÁÎÔ ÙˆÓ ·Ú·ÏÏËÏ›‰ˆÓ ·˘ÙÒÓ Û¯ËÌ¿ÙˆÓ ı· ¤‚ÚÈÛÎ·Ó ÚÒÙ· ÙÔ ÂÌ‚·‰fi Ù˘ ‚¿Û˘ ηÈÌÂÙ¿ ı· ÙÔ ÔÏÏ·Ï·Û›·˙·Ó Ì ÙÔ ‡„Ô˜. ∫·ÙfiÈÓ ÛÎÂÙfiÌÂÓÔÈ ÁÈ· ÙÔÓ ÙÚfiÔ Ì ÙÔÓ ÔÔ›Ô ·˘Ùfi ı·ÌÔÚÔ‡Û ӷ ÂÊ·ÚÌÔÛÙ› Î·È ÛÙÔÓ Î‡ÏÈÓ‰ÚÔ, ÂÎÙÈÌÔ‡Ó ˆ˜ ÌÔÚÔ‡Ó Ó· ÂÊ·ÚÌfiÛÔ˘Ó ÙËÓ ›‰È·Ì¤ıÔ‰Ô, ·ÚΛ Ó· ÁÓˆÚ›˙Ô˘Ó ÙËÓ ·ÎÙ›Ó· Ù˘ ‚¿Û˘ ÁÈ· Ó· ‚ÚÔ˘Ó ÙÔ ÂÌ‚·‰fi Ù˘. TETPA¢IO EP°A™IøNÕÛÎËÛË 1Ë √ fiÁÎÔ˜ ÛÙËÓ ÚÒÙË ÂÚ›ÙˆÛË Â›Ó·È 10.039,36 Î.ÂÎ. ÂÓÒ ÛÙË ‰Â‡ÙÂÚË 13.863,88 Î.ÂÎ..ÕÛÎËÛË 2Ë √ fiÁÎÔ˜ Â›Ó·È 2.653,3 ΢‚Èο ̤ÙÚ·.¶Úfi‚ÏËÌ· 1Ô ∆Ô ·Ú·ÏÏËÏÂ›Â‰Ô ‰Ô¯Â›Ô ¤¯ÂÈ fiÁÎÔ 15 . 10 . 20 = 3.000 Î.ÂÎ. ÂÓÒ ÙÔ Î˘ÏÈÓ‰ÚÈÎfi 5.024 Î.ÂÎ.¶Úfi‚ÏËÌ· 2Ô √ fiÁÎÔ˜ ÙÔ˘ ıÂÚÌÔβԢ Â›Ó·È ›ÛÔ˜ Ì ÙÔ ÌÈÛfi fiÁÎÔ Î˘Ï›Ó‰ÚÔ˘ Ì ÙȘ ›‰È˜ ‰È·ÛÙ¿ÛÂȘ, ‰ËÏ·‰‹8.478 ΢‚Èο ̤ÙÚ·¶Úfi‚ÏËÌ· 3Ô ∆Ô ¯ÒÌ· Ô˘ ÌÂÙ·ÎÈÓ‹ıËΠ‹Ù·Ó 452.160 ΢‚Èο ̤ÙÚ· Î·È Ù· ÊÔÚÙËÁ¿ ¤Î·Ó·Ó 22.608 ‰ÚÔÌÔÏfiÁÈ·. 161
∫ÚÈÙ‹ÚÈÔ ·ÍÈÔÏfiÁËÛ˘ ÁÈ· ÙË ıÂÌ·ÙÈ΋ ÂÓfiÙËÙ· 6 1. ¶ÔÈÔ ·fi Ù· ·Ú·Î¿Ùˆ Û¯‹Ì·Ù· ¤¯ÂÈ 2. ∞. ¶ÔÈÔ ·fi Ù· ·Ú·Î¿Ùˆ Û¯‹Ì·Ù· ‰ÂÓ Â›Ó·È ÂÌ‚·‰fi 24 Ù.ÂÎ. Î·È ÂÚ›ÌÂÙÚÔ 20 ÂÎ.; ‰˘Ó·Ùfi Ó· ˘¿Ú¯ÂÈ; ·. ÙÂÙÚ¿Ï¢ÚÔ Ì 4 ÔÚı¤˜ ÁˆÓ›Â˜ ‚. ÙÚ›ÁˆÓÔ Ì ›Û˜ Ï¢ڤ˜ Á. ÙÚ·¤˙ÈÔ Ì ‰‡Ô ÔÚı¤˜ ÁˆÓ›Â˜ ‰. ÙÚ›ÁˆÓÔ Ì ‰‡Ô ÔÚı¤˜ ÁˆÓ›Â˜ ∞¿ÓÙËÛË: .................................................. µ. ¶ÔÈÔ ·fi Ù· ·Ú·Î¿Ùˆ Û¯‹Ì·Ù· ¤¯ÂÈ ÌfiÓÔ ‰‡Ô Ï¢ڤ˜ ·Ú¿ÏÏËϘ; 3. ∏ ∞ÁÁÂÏÈ΋ ı¤ÏÂÈ Ó· ÊÙÈ¿ÍÂÈ ¤Ó·Ó ·ÏÈÓ‰ÚÔ 4. ª›· ·fi ÙȘ ÁˆÓ›Â˜ ÂÓfi˜ ÔÚıÔÁÒÓÈÔ˘ ÙÚÈÁÒ- ·fi ¯·ÚÙ›. ¶ÔÈÔ Û˘Ó‰˘·ÛÌfi Û¯ËÌ¿ÙˆÓ ·fi ÓÔ˘ Â›Ó·È 50Ô. ¶fiÛÔ Â›Ó·È Ë ¿ÏÏË; ÙÔ˘˜ ·Ú·Î¿Ùˆ ı· ¯ÚÂÈ·ÛÙ›; ·. 4 ÙÚ›ÁˆÓ· Î·È 1 ÙÂÙÚ¿ÁˆÓÔ ‚. 2 ÙÚ›ÁˆÓ· Î·È 1 ÔÚıÔÁÒÓÈÔ Á. 2 ·ÎÏÔ˘˜ Î·È 1 ÔÚıÔÁÒÓÈÔ ‰. 3 ·ÎÏÔ˘˜ Î·È 1 ÙÂÙÚ¿ÁˆÓÔ ∞¿ÓÙËÛË: ...................................................... 5. ∆Ô Ï¿ÙÔ˜ ÂÓfi˜ ÔÚıÔÁÒÓÈÔ˘ ¯·ÏÈÔ‡ Â›Ó·È 4 ̤ÙÚ·. ∞Ó Ë ÂÚ›ÌÂÙÚfi˜ ÙÔ˘ Â›Ó·È 20 ̤ÙÚ· ÔÈÔ Â›Ó·È ÙÔ ÂÌ‚·‰fi ÙÔ˘; ∞¿ÓÙËÛË: ..................................................................................................................................... 6. ∞˘Ù‹ Â›Ó·È Ë Î¿ÙÔ„Ë ÂÓfi˜ ÂÚÁÔÛÙ·Û›Ô˘. 7. ¶ÔÈ· Â›Ó·È Ë ÏËÛȤÛÙÂÚË ÂÎÙ›ÌËÛË ÁÈ· ÙË ¶fiÛ· ÙÂÙÚ·ÁˆÓÈο ̤ÙÚ· ϷοÎÈ· ¯ÚÂÈ¿- ÁˆÓ›· ÃY∑; ˙ÔÓÙ·È ÁÈ· ÙÔ ‰¿Â- ·. 225Æ ‰Ô; ¶fiÛ· ̤ÙÚ· Â›Ó·È Ë ÂÚ›ÌÂÙÚÔ˜ ‚. 135Æ ÁÈ· Ó· ÙÔÔıÂÙËı› Á. 90Æ ÌÈ· ͇ÏÈÓË Ì·ÚΛ˙·; ‰. 45Æ Â. 10Æ ∞¿ÓÙËÛË: .......................................................162
8. √ fiÁÎÔ˜ ÂÓfi˜ ·‚Ô˘ Â›Ó·È 125 Î.ÂÎ. ¶fiÛ· 9. ŒÓ· ÔÚıÔÁÒÓÈÔ ·Ú·ÏÏËÏÂ›Â‰Ô ‰Ô¯Â›Ô ÂηÙÔÛÙ¿ ÓÔÌ›˙ÂȘ fiÙÈ Â›Ó·È Ë Ì ‰È·ÛÙ¿ÛÂȘ 50 ÂÎ., 30 ÂÎ. Î·È 20 ÂÎ. ·ÎÌ‹ ÙÔ˘; ÁÂÌ›˙ÂÈ ·fi ÌÈ· ‚Ú‡ÛË Ô˘ ÛÙ¿˙ÂÈ. ¶fiÛ· Ï›ÙÚ· ÓÂÚfi ı· ¯ˆÚ¤ÛÂÈ; ·. 12 ÂÎ. ∞¿ÓÙËÛË: ..................................................... ‚. 25 ÂÎ. Á. 6 ÂÎ. ‰. 5 ÂÎ.10. ¶ÔÈÔ ·fi Ù· ·Ú·Î¿Ùˆ ‰ÂÓ Â›Ó·È ·Ó¿Ù˘ÁÌ· ·‚Ô˘;11. ∏ µ·ÁÁÂÏÈÒ ¤ÊÙÈ·Í ¤Ó· ÎÔ˘Ù› Î·È ı¤ÏÂÈ Ó· ÙÔ ÓÙ‡ÛÂÈ Ì ‚ÂÏÔ˘Ù¤ ¯·ÚÙ›. ¶fiÛ· Ù.ÂÎ. ¯·ÚÙ› ı· ¯ÚÂÈ·ÛÙ›;12. ™¯Â‰›·Û ¤Ó· ·ÏÈÓ‰ÚÔ, ‰ÒÛ ÙȘ ‰È·ÛÙ¿ÛÂȘ ÙÔ˘ Î·È ÁÚ¿„ ¤Ó· Úfi‚ÏËÌ· Ô˘ Ó· ˙ËÙ¿ ÙÔÓ fiÁÎÔ ÙÔ˘. ...................................................................................................... ...................................................................................................... ...................................................................................................... 163
™Ùã T¿ÍË BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ µπµ§π√°ƒ∞ºπ∞ Anghileri, J., & Beishuizen, M. (1998). Counting, ERIC. chunking and the division algorithm. Mathematics in English, L., & Warren, E.A. (1998). Introducing the School, 27 (1), pp. 2–4. Variable through Pattern Exploration. Mathematics Anghileri, J., Beishuizen, M., & Putten, K.V. (2002). Teacher, 91, pp. 166–170. From Informal Strategies To Structured Procedures: Ferrini-Mundy, J., Lappan, G., & Phillips, E. (1997). Mind The Gap! Educational Studies in Mathematics, Experiences with Patterning. Teaching Children 49 (2), pp. 149–170. Mathematics, 3, pp. 282–288. Fischbein, E., Deri, M., Nello, M., & Marino, M. (1985). Bartolini Bussi, M., & Bazzini, L. (2003). Research, The role of implicit models in solving verbal Practice and Theory In Didactics Of Mathematics: problems in multiplication and division. Journal for Towards Dialogue Between Different Fields. Research in Mathematics Education, 16, pp. 3–17. Educational Studies in Mathematics, 54 (1), pp. Freudenthal, H. (1991). Revisiting Mathematics 203–223. Education. Dordrecht: Kluwer. Garfield, J. (1995). How students learn statistics. Beishuizen, M. (2001). Different approaches to International Statistical Review, 63 (1), pp. 25–34. mastering mental calculation strategies. In J. Goldin, G. A. (2003). Developing Complex Anghileri (Ed.), Principles and Practices in Understandings: On The Relation of Mathematics Arithmetic Teaching (pp. 119–130). Buckingham: Education Research to Mathematics. Educational Open University Press. Studies in Mathematics, 54, pp. 171–202. Gravemeijer, K.P.E. (1997). Mediating between Ben-Zvi, D., & Arcavi, A. (2001). Junior High School concrete and abstract. In T. Nunes & P. Bryant Students’ Construction of Global Views of Data and (Eds.), Learning and Teaching Mathematics: An Data Representations. Educational Studies in International Perspective (pp. 315–343). Sussex: Mathematics, 45, pp. 35–65. Lawrence Erlbaum. Hart, K. (1988). Ratio and proportion. In M. Behr & J. Brenner, M.E., Mayer, R.E., Moseley, B., Brar, T., Hiebert (Eds.), Number Concepts and Operations in Curan, R., Reed, B.S., & Webb, D. (1997). Learning the Middle Grades (pp. 198–219). Reston, VA: by understanding: The role of multiple NCTM. representations in learning algebra. American Herscovics, N., & Linchevski, L. (1994). A cognitive Educational Research Journal, 34 (4), pp. 663–689. gap between arithmetic and algebra. Educational Studies in Mathematics, 27 (1), pp. 59–78. Brousseau, G. (1997). Theory of Didactical Situations Kaput, J.J. (1995). A research base supporting long in Mathematics. In N. Balacheff & M. Cooper & R. term algebra reform? Paper presented at the 16th Sutherland & V. Warfield (Eds.) (pp. 229–235): Meeting of the PME-NA Annual Meeting, Kluwer Academic Publishers. Columbus, OH. Kaput, J.J., & West, M. W. (1994). Missing – value Brown, J., & Van Lehn, K. (1980). Repair theory: a proportional reasoning problems: Factors affecting generative theory of bugs in procedural skills. informal reasoning patterns. In G. Harel & J. Cognitive Science, 4, pp. 379–426. Confrey (Eds.), The Development of Multiplicative Reasoning in the Learning of Mathematics (pp. Chazan, D., & Yerushalmy, M. (2003). On appreciating 237–287). New York: State University of New York the cognitive complexity of school algebra: Press. Research on algebra learning and directions of Kenney, P.A., & Kouba, V.L. (1997). What Do Students curricular change. In J. Kilpatrick & W.G. Martin & D. Know about Measurement? In P.A. Kenney & E.A. Schifter (Eds.), A research companion to principles Silver (Eds.), Results from the Sixth Mathematics and standards for school mathematics. Reston, VA: Assessment of the National Assessment of NCTM. Educational Progress (pp. 141–163). Reston: NCTM. Da Rocha Falcao, J. (1995). A case study of algebraic Kuchemann, D. (1981). Algebra. In K. Hart (Ed.), scaffolding: From balance scale to algebraic Children’s Understanding of Mathematics pp. notation. In L. Meira & D. Carraher (Eds.), 11–16: John Murrey. Proceedings of the 19th International Conference Lamon, S.J. (1993). Ratio and proportion: Connecting for the Psychology of Mathematics Education (Vol. content and children’s thinking. Journal for 2, pp. 66–73). Recife, Brazil: Universidade Federal Research in Mathematics Education, 24 (1), pp. de Pernambuco. 41–61. Lehrer, R. (2003). Developing understanding of DES. (1985). Mathematics from 5 to 16. London: measurement. In J. Kilpatrick & W.G. Martin & D. HMSO. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. Dorfler, W. (1991). Forms and means of generalization 179–192). Reston, VA: NCTM. in mathematics. In A.J. Bishop (Ed.), Mathematical Knowledge: Its Growth through Teaching (pp. 63–85). Dordrecht: Kluwer Academic Publishers. Duvall, R. (1999). Representation, vision, and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of the twenty-first annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 3–26). Columbus, OH:164
BÈ‚Ï›Ô ÂÎ·È‰Â˘ÙÈÎÔ‡ ™Ùã T¿ÍËLesh, R., Amit, M., & Schorr, R.Y. (1997). Using “real- Van Dyke, F., & White, A. (2004). Making Graphs life” problems to prompt students to construct Count. Mathematics Teaching, 188, pp. 42–50. conceptual models for statistical reasoning. In J. Garfield & I. Gal (Eds.), The assessment challenge Zazkis, R., & Liljedahl, P. (2002). Generalization of in statistics education (pp. 65–84). Burke, VA: IOS Patterns: The Tension Between Algebraic Thinking Press. And Algebraic Notation. Educational Studies in Mathematics, 49, pp. 379–402.Lumb, D. (1987). Mathematics 5 to 11. Beckenham: Croom Helm. ∫ÏÒıÔ˘, ∞., & ™·ÎÔÓ›‰Ë˜, X. (2001). ∞ÓÙÈÏ‹„ÂȘ ÙˆÓ ‰·ÛÎ¿ÏˆÓ ÁÈ· Ù· Ì·ıËÌ·ÙÈο Î·È ÙË Ì¿ıËÛ‹ ÙÔ˘˜McCoy, L. (1994). Multi-tasking algebra Î·È Ú·ÎÙÈΤ˜ ‰È‰·Ûηϛ·˜ Î·È ·ÍÈÔÏfiÁËÛ˘: ªÈ· representation. Paper presented at the Sixteenth ÚÒÙË ÚÔÛ¤ÁÁÈÛË. In ª. ∆˙ÂοÎË (Ed.), 5Ô Annual Meeting of the North American Chapter of ¶·ÓÂÏÏ‹ÓÈÔ ™˘Ó¤‰ÚÈÔ ¢È‰·ÎÙÈ΋˜ ÙˆÓ ª·ıËÌ·ÙÈ- the International Group for the Psychology of ÎÒÓ Î·È ¶ÏËÚÔÊÔÚÈ΋˜ ÛÙËÓ ∂η›‰Â˘ÛË. £ÂÛÛ·- Mathematics Education, Baton Rouge, LA. ÏÔÓ›ÎË.Noelting, G. (1980). The development of proportional √ÈÎÔÓfiÌÔ˘, ∞., ™·ÎÔÓ›‰Ë˜, X., & ∆˙ÂοÎË, ª. (2000). reasoning and the ratio concept: part II – Problem ∞ÍÈÔÏfiÁËÛË ÙˆÓ ª·ıËÌ·ÙÈÎÒÓ °ÓÒÛÂˆÓ ª·ıË- structure at successive stages; problems solving ÙÒÓ ™∆ã ¢ËÌÔÙÈÎÔ‡ Î·È °ã °˘ÌÓ·Û›Ô˘. In ª. strategies and the mechanism of adaptive ∆˙ÂοÎË & π. ¢ÂÏËÁȈÚÁ¿ÎÔ˜ (Eds.), ŒÚ¢ӷ ÁÈ· restructuring. Educational Studies in Mathematics, ÂÓ·ÏÏ·ÎÙÈΤ˜ ‰È‰·ÎÙÈΤ˜ ÚÔÛÂÁÁ›ÛÂȘ ÛÙË ‰È‰·- 11, pp. 331–363. Ûηϛ· ÙˆÓ Ì·ıËÌ·ÙÈÎÒÓ. ∞ı‹Ó·: À¶∂¶£-∫∂∂.Pesek, D.D., & Kirshner, D. (2000). Interference of ¶fiÙ·ÚË, ¢., ¢È·ÎÔÁÈÒÚÁË, ∫., °ÎÈÒÓË, ∂., & ∑¿ÓÓË, ∂. instrumental instruction in subsequent relational (2001). ∏ ¤ÓÓÔÈ· ÙÔ˘ °ÂˆÌÂÙÚÈÎÔ‡ ™¯‹Ì·ÙÔ˜ ÛÙ· learning. Journal for Research in Mathematics ·È‰È¿ Î·È Ô ƒfiÏÔ˜ Ù˘ °ÏÒÛÛ·˜. Paper presented Education, 31 (5), pp. 524–540. at the 5Ô ¶·ÓÂÏÏ‹ÓÈÔ ™˘Ó¤‰ÚÈÔ ¢È‰·ÎÙÈ΋˜ ÙˆÓ ª·ıËÌ·ÙÈÎÒÓ Î·È ¶ÏËÚÔÊÔÚÈ΋˜ ÛÙËÓ ∂η›-Pugalee, D.K. (2004). A Comparison of Verbal and ‰Â˘ÛË, £ÂÛÛ·ÏÔÓ›ÎË. Written Descriptions of Students’ Problem Solving Processes. Educational Studies in Mathematics, 55, ™‰ÚfiÏÈ·˜, ∫., & ∆ÚÈ·ÓÙ·Ê˘ÏÏ›‰Ë˜, ∆.∞. (2001). √È pp. 27–47. °ÂˆÌÂÙÚÈΤ˜ ŒÓÓÔȘ ·fi ÙÔ ¢ËÌÔÙÈÎfi ÛÙÔ °˘ÌÓ¿ÛÈÔ: ¶·Ú¿ÁÔÓÙ˜ Ô˘ Û¯ÂÙ›˙ÔÓÙ·È Ì ÙËÓSchurter, W.A. (2002). Comprehension monitoring: An ÔÚ›· ÔÈÎÔ‰fiÌËÛ‹˜ ÙÔ˘˜. Paper presented at the aid to mathematical problem solving. Journal of 5Ô ¶·ÓÂÏÏ‹ÓÈÔ ™˘Ó¤‰ÚÈÔ ¢È‰·ÎÙÈ΋˜ ÙˆÓ ª·ıËÌ·- Developmental Education, 26 (2), pp. 22–33. ÙÈÎÒÓ Î·È ¶ÏËÚÔÊÔÚÈ΋˜ ÛÙËÓ ∂η›‰Â˘ÛË, £ÂÛ- Û·ÏÔÓ›ÎË.Sfard, A. (1995). The development of algebra – Confronting historical and psychological ∆˙ÂοÎË, ª., & ¢ÂÏËÁȈÚÁ¿ÎÔ˜, π. (Eds.). (2000). perspectives. Journal of Mathematical Behavior, 14, ŒÚ¢ӷ ÁÈ· ÂÓ·ÏÏ·ÎÙÈΤ˜ ‰È‰·ÎÙÈΤ˜ ÚÔÛÂÁÁ›- pp. 15–39. ÛÂȘ ÛÙË ‰È‰·Ûηϛ· ÙˆÓ Ì·ıËÌ·ÙÈÎÒÓ. ∞ı‹Ó·: À¶∂¶£-∫∂∂.Shuard, H. (1986). Primary Mathematics Today and Tomorrow. York: Longman. ∆‡·˜, °. (2001). ∞Ó·Ï˘ÙÈο ¶ÚÔÁÚ¿ÌÌ·Ù· ™Ô˘‰ÒÓ ÙˆÓ ª·ıËÌ·ÙÈÎÒÓ Ù˘ ∞/ıÌÈ·˜ ∂η›‰Â˘Û˘.Singh, P. (2000). Understanding the Concepts of ∂ÈÛ‹ÁËÛË ÛÙËÓ ˘’ ·ÚÈıÌ. 9/11-7-2001 ™˘Ó‰ڛ· Proportion and Ratio Constructed by Two Grade Six ÙÔ˘ ∆̷̋ÙÔ˜ ∞/ıÌÈ·˜ ∂η›‰Â˘Û˘ ÙÔ˘ ¶·È‰·Áˆ- Students. Educational Studies in Mathematics, 43, ÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘ Ì ı¤Ì·: «ŒÁÎÚÈÛË ¡¤ˆÓ ¶ÚÔ- pp. 271–292. ÁÚ·ÌÌ¿ÙˆÓ ™Ô˘‰ÒÓ ¶ÚˆÙÔ‚¿ıÌÈ·˜ ∂η›‰Â˘Û˘ Î·È ¶ÚԉȷÁÚ·ÊÒÓ ÁÈ· ÙË ™‡ÓÙ·ÍË ¢È‰·ÎÙÈÎÔ‡Steele, D.F., & Johanning, D.I. (2004). A ÀÏÈÎÔ‡» Schematic–Theoretic View Of Problem Solving And Development Of Algebraic Thinking. Educational ∆‡·˜, °. (2005). ∆· Ó¤· ‰È‰·ÎÙÈο ÂÁ¯ÂÈÚ›‰È· ÙˆÓ Studies in Mathematics, 57, pp. 65–90. ª·ıËÌ·ÙÈÎÒÓ Ù˘ ¶ÚˆÙÔ‚¿ıÌÈ·˜ ∂η›‰Â˘Û˘: ÙÔ Ï·›ÛÈÔ ‰ËÌÈÔ˘ÚÁ›·˜ Î·È Ù· ÂȉÈο ¯·Ú·ÎÙËÚÈÛÙÈοStreefland, L. (1993). The design of a mathematics ÙÔ˘˜. ™Ù· ¶Ú·ÎÙÈο ™˘Ó‰ڛԢ ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ course. A theoretical reflection. 25, pp. 109–135. πÓÛÙÈÙÔ‡ÙÔ˘ ÛÂ Û˘ÓÂÚÁ·Û›· Ì ÙÔ ¶·ÓÂÈÛÙ‹ÌÈÔ £ÂÛÛ·ÏÔӛ΢ (17-19 ºÂ‚ÚÔ˘·Ú›Ô˘ 2005), ÌÂTriadafillidis, T., & Potari, D. (2004). Integrading ı¤Ì·: «¢È‰·ÎÙÈÎfi ‚È‚Ï›Ô Î·È ÂÎ·È‰Â˘ÙÈÎfi ˘ÏÈÎfi Different Representational Media in Geometry ÛÙÔ ™¯ÔÏ›Ô: ¶ÚÔ‚ÏËÌ·ÙÈÛÌÔ› - ¢˘Ó·ÙfiÙËÙ˜ - Classrooms. In A. Chronaki & I.M. Christiansen ¶ÚÔÔÙÈΤ˜». (Eds.), Challenging Perspectives on Mathematics Classroom Communication: Information Age Pub ºÈÏ›Ô˘, °. (1991). √È ª·ıËÌ·ÙÈΤ˜ °ÓÒÛÂȘ ÙˆÓ Inc. ·ÔÊÔ›ÙˆÓ ÙÔ˘ ¢ËÌÔÙÈÎÔ‡ ™¯ÔÏ›Ԣ Î·È ÔÈ ÂÎÙÈÌ‹- ÛÂȘ ÙˆÓ ‰·ÛοψÓ. ™‡Á¯ÚÔÓË ∂η›‰Â˘ÛË, 58,Van Amerom, B. (2003). Focusing on informal pp. 33–37. strategies when linking Arithmetic to early algebra. Educational Studies in Mathematics, 54, pp. 63–75. À.∞. 21072·/°2 (º∂∫ ∆‡¯Ô˜ µã ·Ú. ʇÏÏÔ˘ 303/13- 03-2003)Van den Heuvel-Panhuizen, M. (2001). Realistic mathematics education in the Netherlands. In J. À.∞. 21072‚/°2 (º∂∫ ∆‡¯Ô˜ µã ·Ú. ʇÏÏÔ˘ 304/13- Anghileri (Ed.), Principles and Practices in 03-2003) Arithmetic Teaching. Innovative Approaches for the Primary Classroom (pp. 49–63). Buckingham: Open University Press. 165
ªÂ ·fiÊ·ÛË Ù˘ ∂ÏÏËÓÈ΋˜ ∫˘‚¤ÚÓËÛ˘ Ù· ‰È‰·ÎÙÈο ‚Ȃϛ· ÙÔ˘ ¢ËÌÔÙÈÎÔ‡, ÙÔ˘ °˘ÌÓ·Û›Ô˘ Î·È ÙÔ˘ §˘Î›Ԣ Ù˘ÒÓÔÓÙ·È ·fi ÙÔÓ √ÚÁ·ÓÈÛÌfi ∂ΉfiÛˆ˜ ¢È‰·ÎÙÈÎÒÓ µÈ‚Ï›ˆÓ Î·È ‰È·Ó¤ÌÔÓÙ·È ‰ˆÚÂ¿Ó ÛÙ· ¢ËÌfiÛÈ· ™¯ÔÏ›·. ∆· ‚Ȃϛ· ÌÔÚ› Ó· ‰È·Ù›ıÂÓÙ·È ÚÔ˜ ÒÏËÛË, fiÙ·Ó Ê¤ÚÔ˘Ó ‚È‚ÏÈfiÛËÌÔ ÚÔ˜ ·fi‰ÂÈÍË Ù˘ ÁÓË- ÛÈfiÙËÙ¿˜ ÙÔ˘˜. ∫¿ı ·ÓÙ›Ù˘Ô Ô˘ ‰È·Ù›ıÂÙ·È ÚÔ˜ ÒÏËÛË Î·È ‰Â ʤÚÂÈ ‚È‚ÏÈfiÛËÌÔ, ıˆÚÂ›Ù·È ÎÏ„›Ù˘Ô Î·È Ô ·Ú·‚¿Ù˘ ‰ÈÒÎÂÙ·È Û‡Ìʈӷ Ì ÙȘ ‰È·Ù¿ÍÂȘ ÙÔ˘ ¿ÚıÚÔ˘ 7 ÙÔ˘ ¡fiÌÔ˘ 1129 Ù˘ 15/21 ª·ÚÙ›Ô˘ 1946 (ºEK 1946, 108, Aã). BIB§IO™HMO∞·ÁÔÚ‡ÂÙ·È Ë ·Ó··Ú·ÁˆÁ‹ ÔÔÈÔ˘‰‹ÔÙ Ù̷̋ÙÔ˜ ·˘ÙÔ‡ ÙÔ˘ ‚È‚Ï›Ô˘, Ô˘Î·Ï‡ÙÂÙ·È ·fi ‰ÈηÈÒÌ·Ù· (copyright), ‹ Ë ¯Ú‹ÛË ÙÔ˘ Û ÔÔÈ·‰‹ÔÙ ÌÔÚÊ‹, ¯ˆÚ›˜ÙË ÁÚ·Ù‹ ¿‰ÂÈ· ÙÔ˘ ¶·È‰·ÁˆÁÈÎÔ‡ πÓÛÙÈÙÔ‡ÙÔ˘.
7+1 5 24 6380 * 1+3 - 5 9*ΚωδικόςΒιβλίου:0-10-0174 ISBN 978-960-06-2640-79 426 1 3(01)00000001001747
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170