Nepali ug{ ;ª\\sfr] gdfGg] zLif{ g]tT[ jn] b]znfO{ bzsf}F k5fl8 ws]Ng] cj:yf l;h{gf ePsf] 5 . o'jfk':tfn] gofF cleofg yfn/] snªl\\ st /fhgLltnfO{ ;ªn\\ f] agfpg ;ª3\\ if{ ug'k{ g{] a]nf cfO;Sof] . cEof; v08 dflysf] cg'R5]baf6 cfwf ª, `, 0f, g / d -ª\\, ~, 0, G, D_ ko| fu] ePsf zAb 5fg/] sfkLdf n]v . cWoog v08 lbg M rfj} Gg ‘uG| ylrq’ kf7 /fd/| L k9. kf7 M nfdf] pQ/ nv] g cEof; v08 lrqsnfsf] ljsf;df uG| ylrqsf] s] s:tf] el\" dsf /x]sf] 5, :ki6 kf/ . lbg M krkGg cWoog v08 kf7 M kb;ª\\ult tnsf] tflnsf Wofg lbP/ k9 . k'?if jrg Ps jrg ax' jrg cgfb/ dWod cfb/ pRr cfb/ lgDg cfb/ pRr cfb/ xfdL ky| d k?' if d låtLo k'?if tF ltdL tkfO{+÷xh'/ ltdLx¿ – tt[ Lo k'?if pxfF tkfOx+{ ¿÷xh/' x¿ pm÷of÷] Tof] pgL÷logL÷ltgL÷oL÷tL pgLx¿÷logLx¿÷ltgLx¿ – – – pxfFx¿ – k|yd k?' ifn] jStf cfkmn}F fO{ ;dt] ;d6] g\\ ] xF'bf of] cfb/fyL{ zAb xf]Og . – k?' if kl/jtg{ ubf{ Psjrg eP Psjrgd} / ax'jrg eP axj' rgd} kl/jt{g ug'{k5{ . ;fy} k'?if jrg kl/jt{g ubf{ cfb/ klg hg' cfb/ 5 ToxL cfb/df g} kl/jtg{ ug'k{ g]{ xG' 5 . Psjrg ax'jrg 3/ 3/x¿ /fdf| ], sfnf,] kftnf] /fd|f, sfnf, kftnf eG5, vfof] eG5g\\, vfP lnª\\u k'lnª\\u :qLlnªu s]6f,] af7f] s]6L, af7L ;t] f,] u'?ª ;]tL, u'?ª;\\ g] L eG5, vfof] eG5,] vfO{ – cfb/fyL{ ljm| ofkb / dflg; afx]ssf cGo lrhljhnfO{ a'emfpg] ljm| ofkb k'lnªu\\ L lj|mofkb xG' 5 . h:t} M cUnf] ufO{n] 3fF; vfof] . --51--
cEof; v08 Class-8 tnsf jfSonfOk{ b ;ª\\ult ldnfO{ nv] M s_ d vfgf vfG5 . v_ cfdfn] uLt ufof] . u_ txF ¿ emu8f u5;{ \\ . 3_ alxgL ux[ sfo{ u5{ . ª_ pxfF sfd u5{ . r_ tkfO+{ ahf/ uof} . 5_ xfdLn] syf eGof] . lbg M 5kGg kf7 M kb;ªu\\ lt cWoog v08 cl3Nnf] lbgsf] tflnsf /fd|/L cWoog u/ . cEof; v08 != sf]i7sdf lbOPsf ;ªs\\ t] sf ;xfotfn] tnsf jfSo kl/jt{g u/ M s_ uf/] f s]6fx¿ cUnf klg 5g\\ . -Ps jrg_ v_ d]/f dfdfsf] 3/ ufpdF f 5 . -:qLlnªu\\ _ u_ d vN] b} lyPF . -tt[ Lo k?' if_ 3_ tF sfd u/\\ . -pRr cfb/_ ª_ r/fx¿ es\" Dk cfpbF f eml:sP/ p8]5g\\ . -Ps jrg_ r_ ;f9F ] 7'nf] / alnof] 5 . -:qLlnªu\\ _ 5_ n]lvsfn] /fdf| ] nv] n]lvg\\ . -k'lnª\\u_ h_ xfdL laxfg} p75\\ f}F . -Ps jrg_ em_ pgLx¿ es'G8f] v]N5g\\ . -Ps jr _ `_ ltdL lkª vN] 5f} . -:qLlnª_\\ @= sf]i7sdf lbOPsf ;ªs\\ t] sf cfwf/df tnsf jfSo kl/jt{g u/ M s_ ltdLx¿ kf]v/f k'us] f lyof} . -Ps jrg_ v_ pm gf6s vN] Yof] . -:qLlnªu\\ _ u_ xfdL ;dfh ;j] f ub}{ 5fF} . -låtLo k'?if_ 3_ cfdf vfgf ksfp5F . -kb ;ª\\ult_ ª_ 3f8] fx¿ af6fdf bub' {} 5g\\ . -Ps jrg_ r_ tF sf] xf];\\ < -k|yd k?' if_ 5_ 7n' L lbbL cfpg'eof] . -kl' nªu\\ _ h_ tkfO+{ d';'Ss xfF:gx' 'G5 . -cgfb/_ lbg M ;GtfpGg kf7 M afw] k|Zgsf] pQ/ cWoog v08 tnsf] cgR' 5]b Wofg lbP/ k9 . of] dn' 'sdf c;Lldt ;|ft] tyf ;fwgx¿ 5g\\ t/ klg ltgsf] pkof]u x'g g;s]/ b]z lg/Gt/ jb} l] zs C0fdf 8'Ab} uO/x]sf] 5 . oj' fju{ egs] f bz] kl/jt{gsf ;j+ fxs xg' \\ . /fi6« kl/jtg{ sf] d'Vo lhDdj] f/L ;l' Dkgk' g{] oj' fx¿sf xftdf kf;kf]6{ / le;f ydfP/ csf{sf] bz] df kl;gf aufpg afWo agfpg] ltg} /fhgLlts gt] fnfO{ kml] / klg bj] Tjs/0f u/]/ ltgs} k5fl8 nfUg' eg]sf] :jo+ cfkm\"kl| ts} ckdfg xf] . cfh klg ;/sf/ :jbz] d} /f]huf/sf cj;/ l;hg{ f ug]{ gLlt ;fjh{ lgs ub{} ljljw /fi6;« uF >d ;Demft} f --52--
Nepali u/L åw} rl/q k:| tt' ub{} oj' fx¿sf] laqmL ul//x]s} 5, Tof] klg sf}8Lsf] efpdf . ptf 3/ kl/jf/, Oi6ldq, ;fyL;ª\\uL / cfÇgf] z/L/ ;x' fpbF f] kof{j/0fLo cg's\"ntf;dt] Tofu]/ ljb]zdf cxf/] fq sl7g kl/>d ul//x]sf o'jfx¿nfO{ oxfFsf ;Qfwf/L / k|ltkIfdf /xs] f /fhgLlts bnsf gt] fx¿ ljleGg cj;/ / jfxgf kf/]/ lg/Gt/ nl' 6/xs] } 5g\\ . o'jfx¿sf] >d, ;do, ;DklQ, l;hg{ fTds Ifdtf / cfnf]rgfTds rt] gfdfly ;Lldt /fhgLlts bnsf gt] fx¿ ldnfO{ ldnfO{ lg/Gt/ n6' dRrfO/xs] } 5g\\ . cEof; v08 dflysf] cg'R5]b k9/] tnsf k\\Zgx¿sf] pQ/ b]pm M s_ b]z lg/Gt/ C0fdf 8'Ab} hfg'sf] sf/0f s] xf] < v_ oj' fx¿nfO{ s;n] kf;kf6] { / le;f ;dfpg afWo agfPsf] 5 < u_ oj' fx¿ sg' dN\" odf las|L eO/x]sf 5g\\ < 3_ sg' s'g s/' f n'6fpg o'jfx¿ afWo 5g\\ < ª_ /fh] uf/ / cxf]/fq zAbsf] cy{ n]v . lbg M cG7fpGg kf7 M Jofs/0f cWoog v08 tnsf] cg'R5]b cWoog u/ . xfd|f kv' f{n] xfd|f] ;+:s[lt lgdf0{ fdf 7\"nf] of]ubfg u/] . pgLx¿n] cfÇg} df}lns ;:+ s[lt lgdf{0fdf a9L hf]8 lbPsf 5g\\ . lrqsnf, d\"lts{ nf, jf:ts' nf Pjd\\ ;ª\\uLt / g[Todf klg gk] fnL df}lnstf emNsg] u/L ltgnfO{ lgdf{0f ul/Psf] 5 . pgLx¿ o; sfo{df /ftlbg v6y\\ ] . /fi6« / ;:+ sl[ tnfO{ dxfg\\ 7fGy] . cfh tL df}lnstf w]/} nf]k eO;s]5g\\ . ljleGg b/af/x¿, dlGb/x¿, dl\" t{x¿ tyf nfs] uLt / gT[ o o;sf kd| f0f xg' \\ . xfdLn] k'vf{af6 w]/} s'/f l;Sg ;S5fF} . kv' fx{ ¿ cfTdlge{/ lyP . xfdL lbglbg} k/lge{/ aGb} 5fF} . xfdLn] cfÇgf dxŒjk0\" f{ s/' f nTofP/ csfs{ f g/fd|f s/' fnfO{ cg;' /0f ul//x]sf 5f}F . of] s|d lg/Gt/ rln/xd] f xfdL k0\" f{tM k/lge{/ aGg]5f}F . xfd|f k/' ftflŒjs ;Dkbf / ;+:s[lt nf]k xb'F } hfg]5g\\ . xfdL kfgL l/lQPsf] ufuL| h:t} dfl} nstf x/fPsf] bz] sf gful/s ags] f x'g]5f}F . t;y{ xfdL cfh} ;rt] ag]/ kv' fs{ f bg] sf ¿kdf /x]sf ;+:s[lt / ;Dkbf hfu] fpglt/ nfuf}F . cEof; v08 dflysf] cgR' 5]bdf sfnsf ljleGg kIfsf ls|ofkbx¿ ko| fu] ePsf jfSox¿ 5g\\ . dflysf ;a} jfSonfO{ k0\" f{ et\" sfndf kl/jt{g u/L kg' n]v{ g u/. lbg M pgfG;f7L kf7 M JofVof cWoog v08 ;tF} L;fF} lbgsf] cWoog v08df xfdLn] nfdf] pQ/÷ljjr] gfTds pQ/af/] cWoog u/s] f lyof}F . To;nfO{ kg' M Psk6s x/] . cEof; v08 JofVof u/ M xs{ u'?ª g]kfnsf cdN\" o lglw xg' ,\\ s;/L < nfdf] pQ/ n]v . --53--
Class-8 lbg M ;f7L kf7 M j0fl{ jGof; cWoog v08 lk9F Ldf tf; v]Ngx] ¿ / cfuF gdf cg]s ukm xfFSg]x¿sf Ps Ps 8ˆkmf lyP . tL 8ˆkmfdf /xs] f tLg hgf a'hs|' x¿n] p;nfO{ b]v] . bfl} 8Fb} cfP/ ;DemfpFb} leq nu] . pm la:tf/} ;Dxflnof], p;nfO{ stfstf cK7]/f] dx;;' eof] . lk;fa km]g]{ afxgfdf zf}rfnolt/ uof] . kmsbF{ f p;sf] cg'xf/df ;ª\\sfr] / ;+zosf k|z:t /]vfx¿ bfl} 8/xs] f lyP . stf stf ef]s nfu]em}F eof] . Kof; 3fF6Lsf] ?b3| G6LeGbf klg dfly psfnf] nflu/xs] f] cfef; eof] . z/L/ o;/L yfs]emF} eof] ls dfgf}F pm lbge/ afn'jfsf af/] f afs] ]/ nDk6 k/s] f] 5 . t/ vf; p;nfO{ ePsf] rflxF s] lyof] < slt a]/ 3fl] /P/ ;fR] bf klg sx] L ep] kfpg ;sg] . cEof; v08 dflys]f cgR' 5]bdf rGblaGb' - F _ko| fu] ePsf zAb 5fg/] n]v . --54--
Subject : Mathematics Day - 1 (Angles) Activity Two angles are called adjacent angles if, a) They have a common vertex and common arm. b) Other arms of the angles lie on opposite sides of the common arm. Eg. P MO N ∡MOP&∡������������������������������������������������������������������������are adjacent angles in which ∡MOP + ∡PON = 180° Exercise b) D c) H Find the value of x&y. a) Z 3x x 45° A 2x x C +5 2x-25o XY B E oF G Day -2 WY Activity When two straight lines intersects each other at O a point, the angles so formed in opposite sides are called vertically apposite angles Eg. Here, ∡WOX&∡YOZ are V. O. A, they are equal to each other∡WOX&∡XOZare V. O. A, they are equal each other. Exercise XZ Find the value of a, b, c & d. cd a 90o a) ao b) 50o bo Day - 3 b 50o co Activity Look at the figure and find unknown angles. Here, ∡WXS = 4x°, ∡SXZ = 40°, ∡ZXY = 3x° ∡WXS + ∡SXZ + ∡ZXY = 180° Z S 40o 4xo 3xo W X Y --55--
Class-8 [Parts of angles on straight line is 180o] 4xo + 40o + 3xo = 180o or, 7xo + 40o = 180o or, 7x = 180 - 40 or, 7xo = 140o 140 or, x = 7 or, x = 20o 4x = 4 × 20 = 80o 3x = 3 × 20 = 60 Exercise D Find the angles of ao C A 90o 2a B 40o Day - 4 Activity a) Sum of complementary angles is 90o. b) Sum of supplementary angles is two right angles. (180o) Exercise a) If (x+10o) and (2x - 10o) are the complementary angles to each other find both angles. b) If (x +20)o and (3x - 40)o are supplementary to each other find both angles. Day - 5 C Activity From the figure, find the measure of ∡FBE. A 5x 3x B 3x 2x 2x F ED Here from given figure, ∡ABC + ∡CBD + ∡DBE + ∡EBF + ∡FBA = 360[Being angles by complete turn /circle) 5x+3x + 2x + 2x + 3x = 360o or, 15x = 360o or, x = 360 ° 15 x = 24o Now, ∡FBE = 2x = 2 × 24 = 48o Answer. --56--
Mathematics b) Exercise Find the value of a. 4a a) 3a 5a 4a 3a 3a 3a 5a Day - 6 Activity In the adjoining big lines MN & OP are parallel. ∡QSN & ∡������������������������������������������������������������������������, ∡������������������������������������������������������������������������ & ∡������������������������������������������������������������������������, ∡������������������������������������������������������������������������ ������������������������������������������������������������������������ & ∡������������������������������������������������������������������������, ∡������������������������������������������������������������������������ & ∡������������������������������������������������������������������������are corresponding angles, they are equal to each other. I Exercise 60o F H From the following figure find the value of a, b & c. E G ab C Day - 7 J E Activity G In the adjoin figure lines AB & CD are parallel M B to each other Now,∡AGH & ∡������������������������������������������������������������������������, ∡������������������������������������������������������������������������ & ∡������������������������������������������������������������������������ H D are alternate angle, they are equal to each other. C Also study page - 8 (2.4) from your tent back. F Exercise b) 2a Find the value of x & a. a) 3a-10 x 5x 60o Day - 8 Activity Study 2.5 & 2.6 (page - 9) from your text book. Also revise activities 6 & 7. --57--
Class-8 Exercise b) B E F Find the value of a & b. a) C 40 a 120o Q AC bD 3a a D R Day - 9 Activities - From the given figure, find p, q, y & 2 60o 60o Here, po From the given figure, 60o+po+60o = 180o [parts of straight angles] or, po + 120o = 180o or, po = 60o zo yo 60o zo Again, qo + 60o = 180o[ Being W- interior angles and lines are parallel] or, q = 180 - 60o q = 120o Now, q + y = 180o[ Sum of straight angles] 120o + y = 180 y = 60o Again, z = 120o 60 + z = 180 [ same as above] P = 60, q = 120, y = 60, & z = 120o Exercise A Find the value of x, y & z 50 E Bz y 60o D C Day - 10 Activity Kindly request you to study example - 3 (page - 10) from your text book. Exercise A 35o B Find the value of x. Ex C 65o D --58--
FMinadththeme vaatliuces of x Day - 11 Activity Types of triangles on the basis of sides. Equilateral triangle (All sides are equal) Isosceles triangle (two sides are equal) Scalene triangle (No sides are equal) Types of triangles on the basis of angles. Right angled triangle (having one angle is 90o) Acute - angled Triangle (having all three angles acute) Exercise Draw 4 triangles of different shapes and sizes measure the size of sides and angles using ruler& protector than identify the types of triangle. Day - 12 Activity Kindly request you to study & follow the ideas given in experimental test - 1 (page - 15) from your text book. Exercise Verify experimentally that the sum of measures of interior angles of a triangle is 180o. (Draw two figures) Day - 13 Activity Kindly request you to study & follow the ideas given in experimental test - 2 (page - 15) from your text book. Exercise Verify experimentally that, the base angles of an isosceles triangle are equal. (Draw two figures) Day -14 Activity Kindly request you to study & follow the ideas given in experimental test - 4) (Page -16) from your text book. Exercise Verify experimentally that each angle of an equilateral triangle is 60o. (Two figures are enough) Day - 15 A Activity Find the measures of AB. 2x cm (x+ 3)cm --59-- 57 57 C B
Here, ∡������������������������ = ∡������������������������ = 57° Class-8 So, that AB = AC. P (x+ or, 2x = x + 3 62 5)cm or, 2x - x = 3 or, x = 3. R Now, AB = 2x = 2 ×3cm. = 6cm Exercise Find the measures of PR Q 62 (2x- Find the measures of base angles. A 70o BC Day - 16 Activity Kindly request you to study & write example - 1 (page - 17) from your text book. Exercise E Find the values of x, y & z 30 30 from the following figures. AB C D 120o yz x G E FH Day - 17 Activity Study the steps & method provided in example - 1 (page - 23) from your text book. Exercise Construct the following regular pentagon. a) 5cm b) 6xm --60--
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170