= ) f (xﻭ I=ℜ e5x + 2x f (12ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭe5x + 5x2 + 2 : ﺍﻟﺘﻤﺭﻴﻥ : 08 -1ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ،ﻋﻠﻰ ،ℜﺒﺎﻟﺩﺴﺘﻭﺭ: f(x)=(x2-x+1).ex -2 -ﺍﺴﺘﻨﺘﺞ:ﺃ( ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ، xl(x2+x)exﻋﻠﻰ ،ℜﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 2ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ 0ﻟﻠﻤﺘﻐﻴﺭ. ln 2 ﺏ(ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻟﻠﺘﻜﺎﻤل Jﺤﻴﺙ ∫J = (t 2 + t + 1)et .dt : 0 ﺍﻟﺘﻤﺭﻴﻥ : 09 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ،ﻋﻠﻰ ،ℜﺒﺎﻟﺩﺴﺘﻭﺭ: f )(x = 3e x + 5ex +10 ex + 2 -1-ﺃﻭﺠﺩ ﺃﻋﺩﺍﺩﺍ ﺤﻘﻴﻘﻴﺔ c،b،aﺒﺤﻴﺙ ﻴﻜﻭﻥ :f (x) = aex +b+ ce x ﻗﻴﻤﺔ ﻟﻠﻤﺘﻐﻴﺭ ،xﻓﻲ :ℜ ﻤﻥ ﺃﺠل ﻜل ex + 2 -2-ﺃﻋﻁ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻟﻠﺘﻜﺎﻤل Kﺤﻴﺙ : ln 5 K = ∫ ( f (x) − 5x)dx ln 3 ﺍﻟﺘﻤﺭﻴﻥ : 10 ﻟﺘﻜﻥ fﻭ gﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ،ﻋﻠﻰ ،ℜﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ: f (x) = (3x2 − x + 7)exﻭ ) ، g(x) = (ax2 + bx + cﺤﻴﺙ c،b،aﺃﻋﺩﺍﺩ ﻤﻔﺭﻭﻀﺔ. -1-ﺃﻭﺠﺩ c،b،aﺤﺘﻰ ﺘﻜﻭﻥ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰℜ −1 -2-ﺃﻋﻁ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻟﻠﺘﻜﺎﻤل Iﺤﻴﺙ ∫I = f (x)dx : 0
ﻤﺠﻤﻭﻋﺎﺕ ﺍﻟﺘﻌﺭﻴﻑ ﻭ ﺍﻟﻨﻬﺎﻴﺎﺕ : ﺍﻟﺘﻤﺭﻴﻥ : 11ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Dﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ، fﻋﻠﻰ ﺸﻜل ﻤﺠﺎل ﺃﻭ ﺍﺘﺤﺎﺩﻤﺠﺎﻻﺕ ،ﺜﻡ ﺃﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺔ ،ﺃﻭ ﺍﻟﻨﻬﺎﻴﺔ ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ ﺃﻭ ﺍﻟﻨﻬﺎﻴﺔ ﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ ،ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ ﻜل ﺤﺩ ﻤﻥ ﺤﺩﻭﺩ ﻫﺫﻩ ﺍﻟﻤﺠﺎﻻﺕ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: f (1ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = 5ex + 3x2 + 2 : f )(x = xex + 1 f (2ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x2 = )f (x 2x +1 + xe x f 3ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x −1 f (4ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = 2x +1 − ex : f (5ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = (3x2 − 7)ex : f (6ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = 5x2 − 7x + 9 − ex : = )f (x 3ex + 2 f (7ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: ex −1 f ( )x = 3x4ex + 2 f (8ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x8 + 6 f )(x = 2e x − x3 f (9ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: ex − 2 f (10ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = 2x5 − e3x+2 + 1 : 3x3 + 5x2 +x− 2e x x2 + 4e 2 xf ( )x = f (11ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x f (12ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = (x −1)e x−1 : f (13ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = ex −1 : x
ﻗﺭﺍﺀﺍﺕ ﺒﻴﺎﻨﻴﺔ : ﺍﻟﺘﻤﺭﻴﻥ : 12ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻭﺍﻟﻲ (Cf) ،ﻫﻭ ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﺩﺍﻟﺔ ) fﻤﻌﺭﻓﺔ ﻋﻠﻰ (ℜﻭ ) (Cgﻫﻭ ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜلﻟﺩﺍﻟﺔ ) gﻤﻌﺭﻓﺔ ﻋﻠﻰ ،(ℜﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭ ﺍﻟﻤﺘﺠﺎﻨﺱ ) ، (O;i; jﻭ ) (dﻫﻭ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ ) (Cgﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﻤﻥ ﻨﻘﻁﻪ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ .0)(d y 6 5 4 3 ) 2 ( Cg 1 →j-8 -7 -6 -5 -4 -3 -2 -1 0 i→ 1 2 3 4 5 6 7 8 x -1 ) -2 ( Cf -3 -4 -5 -6 -1-ﺒﻘﺭﺍﺀﺓ ﺒﻴﺎﻨﻴﺔ ﺃﻋﻁ ﻋﺒﺎﺭﺓ ) g(xﺒﺩﻻﻟﺔ ) ، f(xﻤﻥ ﺃﺠل xﻓﻲ.ℜ -2-ﺍﺴﺘﻨﺘﺞ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻅﻠل. -3-ﻓﻲ ﺍﻟﻭﺍﻗﻊ f ،ﻤﻌﺭﻓﺔ ﺒﺩﺴﺘﻭﺭ ﻤﻥ ﺍﻟﺸﻜل )(x (ax 2 c)e − x 2f = + bx + -ﺃ-ﺃﺤﺴﺏ ) f′(xﺒﺩﻻﻟﺔ b،aﻭ . x-ﺏ-ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻤﻌﻠﻭﻤﺎﺕ ﻤﻭﺠﻭﺩﺓ ﻓﻲ ﺍﻟﺸﻜل ،ﻋﻴﻥ ﻜﻼ ﻤﻥ b،aﻭ cﺜﻡ ﺃﻜﺘﺏ ﻋﺒﺎﺭﺓ ) f(xﻭ ﻋﺒﺎﺭﺓ ) g(xﺒﺩﻻﻟﺔ .x ﺍﻟﺘﻤﺭﻴﻥ : 13ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻭﺍﻟﻲ) (Cfﻫﻭ ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﺩﺍﻟﺔ ) fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ (ℜﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭﺍﻟﻤﺘﺠﺎﻨﺱ ) (O;i; jﻭ ) (tﻫﻭ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻓﻲ ﺍﻟﻨﻘﻁﺔ ﻤﻥ ﻨﻘﻁﻪ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ 2ﻭﺍﻟﻨﻘﻁﺔ Aﻫﻲ ﺍﻟﻨﻘﻁﺔ ﺍﻟﻭﺤﻴﺩﺓ ﺍﻟﺘﻲ ﻴﻘﻁﻊ ﻓﻴﻬﺎ ) (Cfﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل. ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ gﻭ hﺍﻟﻤﻌﺭﻓﺘﺎﻥ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥg(x)=ln(f(x)) : ﻭ ).h(x)=ef(x
y 3 ) ( Cf 2 1 →j A-5 -4 -3 -2 -1 0 →i 1 2 3 4 5 6 7 8 9 10 11 12 x )(t -1 -2 -3 -4 -5 -6 -7 -8 -9 ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺸﻜل ﻭ ﻤﻊ ﺇﻋﻁﺎﺀ ﺍﻟﺘﻌﺎﻟﻴل ،ﺃﺠﺏ ﻋﻠﻰ ﺍﻷﺴﺌﻠﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ . -1-ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ،gﻭ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . h -2-ﻋﻴﻥ ).g(2) ،h(2) ،h(1 -3-ﻋﻴﻥ ) h′(2ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ hﻋﻨﺩ 2ﻭ ) g′(2ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ gﻋﻨﺩ .2 ﻤﺴﺎﺌل: ﺍﻟﺘﻤﺭﻴﻥ : 14ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ،ﻋﻠﻰ ،ℜﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=(x+2)e-xﻭ ﻟﻴﻜﻥ ) (Cfﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ). (O;i; j -1-ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ .f -2-ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻨﺤﻨﻲ ) (Cfﻤﻊ ﺤﺎﻤﻠﻲ ﻤﺤﻭﺭﻱ ﺍﻟﻤﻌﻠﻡ. -3-ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻲ ) (Cfﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ. -4-ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (dﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﻤﻥ ﻨﻘﻁﻪ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ.0 -5-ﺃﻨﺸﺊ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (dﺜﻡ ﺍﻟﻤﻨﺤﻨﻲ ).(Cf -6-ﺃ(ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ g(x)=(-x-3)e-xﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f ﻋﻠﻰ .ℜ ﺏ(ﺃﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻲ ) (Cfﻭ ﺤﺎﻤﻠﻲ ﻤﺤﻭﺭﻱ ﺍﻟﻤﻌﻠﻡ.
ﺍﻟﺘﻤﺭﻴﻥ : 15 = )f (x ex +1 /16ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: ex −1 ﻭ ﻟﻴﻜﻥ ) (Cfﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ). (O;i; jﺜﻡ ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ f )(x = 1 + 2e −x x -1-ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Dﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . f 1− e− -2-ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻓﺭﺩﻴﺔ. -3-ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -4-ﺃﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻟﻠﻤﻨﺤﻨﻲ. -5-ﺃﻨﺸﺊ ﺍﻟﻤﻨﺤﻨﻲ). (Cf -6-ﺃﺜﺒﺕ ﺃﻨﻪ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ،Dﻴﻜﻭﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞. ]0 ;+ -7-ﺃﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻲ ) (σfﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺫﺍﺕ ﺍﻟﻤﻌﺎﺩﻻﺕ ،x=ln2 .y=1،x=ln8 ﺍﻟﺘﻤﺭﻴﻥ : 16 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = (x + 2)2 e− x : ﻭ ﻟﻴﻜﻥ ) (Cfﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ). (O;i; j -1-ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ .f -2-ﺃﺜﺒﺕ ﺃﻥ ) (Cfﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ. -3-ﺃﻨﺸﺊ ﺍﻟﻤﻨﺤﻨﻲ).(Cf -4-ﻟﺘﻜﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ g (x) = (ax2 + bx + c)e−xﺃﻴﻥ c،b،aﺃﻋﺩﺍ ﺤﻘﻴﻘﻴﺔ ﻤﻔﺭﻭﻀﺔ. -ﺃ-ﺃﻭﺠﺩ c،b،aﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ .ℜ
-ﺏ -ﺃﺤﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻲ) (Cfﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺫﺍﺕ ﺍﻟﻤﻌﺎﺩﻻﺕ ،y=0 .x=-2،x=0 -5-ﻟﺘﻜﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ (1).....mex+x2+4x+4=0 : ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ،ﻓﻲ ، ℜﻭ mﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻠﻭﻡ. ﺃ(ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺘﻜﺎﻓﺊ ﺍﻟﻤﻌﺎﺩﻟﺔ . f(x)=m ﺏ( ﺍﺴﺘﻨﺘﺞ ﺘﻔﺴﻴﺭﺍ ﺒﻴﺎﻨﻴﺎ ﻟﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ).(1ﺠـ( ﻤﺎ ﻭ،ﺤﺴﺏ ﻗﻴﻤﺔ ،mﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ )(1؟ ﻭ ﻤﺎ ﻫﻲ ﺇﺸﺎﺭﺓ ﻫﺫﻩ ﺍﻟﺤﻠﻭل ) ﻓﻲ ﺤﺎﻟﺔ ﻭﺠﻭﺩﻫﺎ(؟ ﺍﻟﺘﻤﺭﻴﻥ 17 f )(x =1− 2x − ex ﺒﺎﻟﺩﺴﺘﻭﺭ: ﺍﻟﻤﻌﺭﻓﺔ ﺍﻟﺩﺍﻟﺔ f ﻟﺘﻜﻥ ex −1ﻭ ﻟﻴﻜﻥ ) (Cfﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ )(O;i; j ﺤﻴﺙ i = 2ﻭ ) j = 1ﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲ .(1cm -1-ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ .f •-2-ﺃﺜﺒﺕ ﺃﻥ ) (Cfﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ﻤﻭﺍﺯﻴﺎ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ.• ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ 2x+1 y=-ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻋﻨﺩ∞-• ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y=-2xﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻋﻨﺩ ∞.+ -3-ﺃﻨﺸﺊ ).(Cf-4-ﺃﻋﻁ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﺜﻡ ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﺇﻟﻰ 10-2ﺒﺎﻟﻨﻘﺼﺎﻥ ﻟﻠﻤﺴﺎﺤﺔ ،Aﺍﻟﻤﻘﺩﺭﺓ ﺒﺎﻟﺴﻨﺘﻴﻤﺘﺭ ﺍﻟﻤﺭﺒﻊ ﻟﻠﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ )(Dﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻲ )(Cf ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺫﺍﺕ ﺍﻟﻤﻌﺎﺩﻻﺕ . y=-2x+1 ، x=-ln16 ،x=-ln2).(Cf ﻟﻠﻤﻨﺤﻨﻲ ﺘﻨﺎﻅﺭ ﻤﺭﻜﺯ ﻫﻲ ;ω⎜⎛ 0 1 ﺤﻴﺙ ⎟⎞ ω ﺍﻟﻨﻘﻁﺔ ﺃﻥ ﺃﺜﺒﺕ -5- 2 ⎠ ⎝ ﺍﻟﺘﻤﺭﻴﻥ : 18ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] [0 ;1ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = 2x −1 : ﻭ ﻟﻴﻜﻥ ) (Cﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻬﺎ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ )(O;i; j
-1-ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻭ ﺃﻨﺸﺊ ).(C -2-ﺍﺜﺒﺕ ﺃﻥ ) (Cﻫﻭ ﻤﻨﺤﻨﻲ ﻟﻠﻭﺭﻨﺯ. -3-ﻨﻔﺭﺽ ﺃﻥ ) (Cﻫﻭ ﺍﻟﻤﻨﺤﻨﻲ ﻟﻠﻭﺭﻨﺯ ﺍﻟﻤﻤﺜل ﻟﺘﻭﺯﻴﻊ ﺜﺭﻭﺍﺕ ﺒﻼﺩ ﻋﻠﻰ ﻤﻭﺍﻁﻨﻲ ﻫﺫﺍ ﺍﻟﺒﻼﺩ. ﺃ( ﺃﺤﺴﺏ ﻤﺅﺸﺭ ﺠﻴﻨﻲ ﺍﻟﻤﺭﻓﻕ ﺒﻬﺫﺍ ﺍﻟﺘﻭﺯﻴﻊ. ﺏ(ﻤﺎ ﻫﻭ ﺘﻌﻠﻴﻘﻙ ﺤﻭل ﻫﺫﻩ ﺍﻟﻨﺘﻴﺠﺔ؟ ﺍﻟﺘﻤﺭﻴﻥ : 19ﻓﻲ ﻤﻴﺩﺍﻥ ﺍﻟﻘﺭﺽ ،ﺇﺫﺍ ﻜﺎﻨﺕ Tﻨﺴﺒﺔ ﺴﻨﻭﻴﺔ ﻓﺈﻥ tﺍﻟﻨﺴﺒﺔ ﺍﻟﺸﻬﺭﻴﺔ ﺍﻟﻤﻜﺎﻓﺌﺔ ﻟﻬﺎ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻤﺴﺎﻭﺍﺓ: .(1+t)12=1+T⎛⎜ 7,1% = 7,1 ⎞⎟ ﻗﺩﺭﻫﺎ 7,1% ﻟﻨﺴﺒﺔ ﺴﻨﻭﻴﺔ ﺍﻟﺸﻬﺭﻴﺔ ﺍﻟﻤﻜﺎﻓﺌﺔ ﻤﻘﺭﺒﺔ ﻟﻠﻨﺴﺒﺔ -1-ﺃﻋﻁ ﻗﻴﻤﺔ ﻋﺸﺭﻴﺔ⎝ 100 ⎠ -2-ﺍﻗﺘﺭﺽ ﺸﺨﺹ ﻤﻥ ﻤﺼﺭﻑ ،ﻤﺒﻠﻐﺎ ﻗﺩﺭﻩ 500000DAﻋﻠﻤﺎ ﺃﻥ ﺍﻟﻤﺼﺭﻑ ﻴﺘﻌﺎﻤل ﺒﻨﺴﺒﺔ ﺴﻨﻭﻴﺔ ﻗﺩﺭﻫﺎ 6%ﻭ ﺃﻥ ﻤﺩﺓ ﺍﻟﺘﺴﺩﻴﺩ ﻫﻲ ﺴﻨﺘﻴﻥ ﻭ ﺃﻥ ﺍﻟﺘﺴﺩﻴﺩ ﻴﺘﻡ ﺸﻬﺭﻴﺎ ﻓﻤﺎ ﻫﻭ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺜﺎﺒﺕ ،ﺍﻟﺫﻱ ﻴﺩﻓﻌﻪ ﺍﻟﺸﺨﺹ ﺸﻬﺭﻴﺎ ﺇﻟﻰ ﺍﻟﻤﺼﺭﻑ؟
ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻭ ﺍﻟﺩﻭﺍل ﺍﻟﻠﻭﻏﺎﺭﺘﻤﻴﺔ ﺍﻟﺘﻤﺭﻴﻥ :1 ﺍﻟﺤﻠﻭل ،ﻓﻲ ، ℜﻟﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﻌﻁﺎﺓ: (1)...... 2e3x−2 = 17 /1 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻓﻲ .ℜ e3x−2 = 17 ﺍﻟﺠﻤﻠﺔ ) (1ﺘﻜﺎﻓﺊ 2 17 3x − 2 = ln 2 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ =x 2 + 1 ln 17 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 3 3 2{ }2+1ln 17 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ) (1ﻫﻲ 3 2 3 (4)........ 9 log(x) = −3 /4 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻓﻲ *.ℜ+ )log(x = − 1 ﺘﻜﺎﻓﺊ )(4 ﺍﻟﺠﻤﻠﺔ 3 1 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ x = 10−3 { }10− 1 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ) (4ﻫﻲ 3 (5)... 5log8 (x =) = 2 log2 (x) /5 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻓﻲ *.ℜ+ 5 )ln(x = 2 )ln(x ﺍﻟﺠﻤﻠﺔ ) (5ﺘﻜﺎﻓﺊ )ln(8 )ln(2
5 )ln(x = 2 )ln(x ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ )3ln(2 )ln(2 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ln(x) = 0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ x = 1 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ) (5ﻫﻲ { }1* ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ) (6ﻴﻤﻜﻨﻨﺎ ﻭﻀﻊ ) y=log(xﻭ ﺍﺴﺘﻔﺩ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )(4 * ﺍﻟﺠﻤﻠﺔ ) (7ﺘﻜﺎﻓﺊe2 × 36x = 510x :ﺍﻟﺩﺍﻟﺔ lnﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ e × e = e2 6xln3 10 x ln 5 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ﻋﻠﻰ [∞]0 ;+ ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ( ) ( )ln e2 × e6xln3 = ln e10xln5 ﺍﻟﺘﻤﺭﻴﻥ :2 ﺍﻟﺤﻠﻭل ،ﻓﻲ ، ℜﻟﻜل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﻤﻌﻁﺎﺓ: (1)....2ex≥5/1 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜ ex ≥ 5 ﺘﻜﺎﻓﺊ )(1 ﺍﻟﺠﻤﻠﺔ 2 ) ﺍﻟﺩﺍﻟﺔ lnﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ( x ≥ ⎜⎛ln 5 ⎟⎞ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ⎝ 2 ⎠ ⎜⎛[ln 5 [∞⎟⎞;+ ﻫﻲ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ)(1 ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ ﻤﻨﻪ ﻭ ⎝ 2 ⎠ (3).... e-2x+1>103/3 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜﺍﻟﺠﻤﻠﺔ ) (3ﺘﻜﺎﻓﺊ ) − 2x + 1 > ln103ﺍﻟﺩﺍﻟﺔ lnﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ( ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ − 2x > −1+ 3ln10)ﺤﺴﺏ ﺨﻭﺍﺹ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ( x < 1 − 3 ln10 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 2 2 (4)..... (lnx)2<2 /4
ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ *.ℜ+ ﺍﻟﺠﻤﻠﺔ ) (4ﺘﻜﺎﻓﺊ ) ln(x) < 2ﻁﺭﻓﺎ ﺍﻟﻤﺘﺒﺎﻴﻨﺔ ﻤﻭﺠﺒﺎﻥ(ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ) − 2 < ln(x) < 2ﺨﻭﺍﺹ ﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ(ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ) e− 2 < x < e 2ﺍﻟﺩﺍﻟﺔ ﺍﻷﺴﻴﺔ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ (ℜ ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ) (4ﻫﻲ [ ]e− 2 ; e 2 * ﺍﻟﻤﻌﺎﺩﻟﺔ ) (5ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﺨﺎﺼﻴﺔ: ﻤﻥ ﺃﺠل xﻤﻥ ℜﻭ aﻤﻥ ℜ+ﻟﺩﻴﻨﺎ : x ≥ aﺘﻜﺎﻓﺊ ) (x ≤ −aﺃﻭ )(x ≥ a (6)......e2x-2ex+1≤0 /6 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ *ℜ+ ﺍﻟﺠﻤﻠﺔ ) (6ﺘﻜﺎﻓﺊ (ex − 1)2 ≤ 0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ex −1 ≤ 0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ex −1 = 0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ x = 0 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ) (6ﻫﻲ { }0 (7)...(0,5)x≤(0,5)3x+1 /7 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜ ﺍﻟﺠﻤﻠﺔ ) (7ﺘﻜﺎﻓﺊ ) 1 ≤ (0,5)2x+1ﻷﻥ ((0,5)x>0 )e ≤ e(2 x+1)ln(0,5 1 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊﺍﻟﺩﺍﻟﺘﺎﻥ ﺍﻷﺴﻴﺔ ﻭ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ (2x +1) ln(0,5) ≤ 1 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ﻤﺘﺯﺍﻴﺩﺘﺎﻥ ﺘﻤﺎﻤﺎ (2x + 1)(− ln 2) ≤ 1 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊﺍﻟﻤﺘﺒﺎﻴﻨﺎﺕ( ﺨﻭﺍﺹ ) (2x + )1 ≥ − 1 ln 2 x ≥ − 1 − 2 1 2 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 2 ln
[− 1 − 2 1 2 [∞;+ ﻫﻲ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ)(7 ﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ ﻤﻨﻪ ﻭ 2 ln * ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) ، (8ﺃﻨﻅﺭ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل ،ﺍﻟﻤﻌﺎﺩﻟﺔ).(7 ﺍﻟﺘﻤﺭﻴﻥ :3 ﺍﻟﺤﻠﻭل ،ﻓﻲ ، ℜﻟﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﻌﻁﺎﺓ: (1)....3e2x-28ex+9=0/1 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜ ﺍﻟﺠﻤﻠﺔ) (1ﺘﻜﺎﻓﺊ 3(ex )2 − 28ex + 9 = 0 : ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 3y 2 − 28 y + 9 = 0 y = ex y>0 ⎟⎞ ⎛⎜ y = 1 ) (y = 9ﺃﻭ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ⎠⎝ 3 y = ex y>0 ( )⎜⎛ex= 1 ⎟⎞ ﺃﻭ ex = 9 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 3 ⎠ ⎝ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ )) (x = ln(9ﺃﻭ ))(x = − ln(3ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ) (1ﻫﻲ ){ }− ln(3);ln(9 (2)...5ex+10e-x-51=0 /2 ﺍﻟﻤﻌﺎﺩﻟﺔ ) (2ﺘﻜﺎﻓﺊ ( )ex 5ex +10e−x − 51 = 0 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ 5e2x − 51ex + 10 = 0
ﺜﻡ ﺒﻜﻴﻔﻴﺔ ﻤﻤﺎﺜﻠﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ. x (3)....10ex − 31e2 +15 = 0 /3 x ﻴﻤﻜﻨﻨﺎ ﻭﻀﻊ e 2 = yﻋﻨﺩﺌﺫ ﻨﺠﺩy2=ex : ﺜﻡ ﺒﻜﻴﻔﻴﺔ ﻤﻤﺎﺜﻠﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ ).(1 ﺍﻟﺘﻤﺭﻴﻥ :4 /1ﻨﺸﺭ ﻭ ﺘﺒﺴﻴﻁ ): P(x ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜ ﻟﺩﻴﻨﺎP(x)=(x+1)(3x-2)(2x-3): )=(x+1)(6x2-13x+6 =6x3-7x2-7x+6 /2ﺃ( ﺍﻟﺤﻠﻭل ،ﻓﻲ ،ℜﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=0 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜ ﻟﺩﻴﻨﺎ ﺍﻟﺠﻤﻠﺔ f(x)=0ﺘﻜﺎﻓﺊ6(ex)3-7(ex)2-7ex+6= 0 6y3-7y2-7y+6=0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ y=ex y>0 ( y + 1)(3y − 2)(2 y − 3) = 0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ y = ex y>0(y = )−1 ⎜⎛ ﺃﻭ y = 2 ⎟⎞ ⎜⎛ ﺃﻭ y = 3 ⎟⎞ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ⎝ 3 ⎠ ⎝ 2 ⎠y = exy>0 ⎛⎜ ex = 2 ⎟⎞ ⎜⎛ exﺃﻭ = 3 ⎞⎟ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ⎝ 3 ⎠ ⎝ 2 ⎠⎞⎟⎞⎟ ⎜⎛ x = ln⎜⎛ 2 ⎜⎛ ﺃﻭ x = ⎜⎛ln 3 ⎟⎞ ⎟⎞ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ⎠⎠⎝ ⎝ 3 ⎝ ⎝ 2 ⎠⎠
⎨⎧ln 2 ; ln ⎫3 ﻫﻲ f(x)=0 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻤﺠﻭﻋﺔ ﻤﻨﻪ ﻭ ⎩ 3 ⎬ 2 ⎭ ﺏ( ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ) f(xﺘﺒﻌﺎ ﻟﻘﻡ : x ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜ ﻟﺩﻴﻨﺎ ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻟﺴﺅﺍل )f(x)=(ex+1)(3ex-2)(2ex-3) (1 ﻨﻠﺨﺹ ﺇﺸﺎﺭﺓ ) ، f(xﺘﺒﻌﺎ ﻟﻘﻴﻡ xﻓﻲ ،ℜﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ. x ∞ ln 2 ln 3 ∞+ﺇﺸﺎﺭﺓex+1 : 3 2ﺇﺸﺎﺭﺓ3ex-2 : + + +ﺇﺸﺎﺭﺓ 2ex-3 : - ++ ﺇﺸﺎﺭﺓ f(x): - -+ + -+ ﺍﻟﺘﻤﺭﻴﻥ :5 ﻨﺴﺘﻔﻴﺩ ﻤﻥ ﺍﻟﺘﻤﺭﻴﻥ) (3ﻭ ﺍﻟﺘﻤﺭﻴﻥ ).(4 *ﺍﻟﺠﻤﻠﺔ ) (2ﺘﻜﺎﻓﺊ 3.72x-28.7x+9<0 ﺜﻡ ﻨﻀﻊ 7x=y *ﺍﻟﺠﻤﻠﺔ ) (3ﺘﻜﺎﻓﺊ 6(0,5)2x-13(0,5)x+6>0 ﺜﻡ ﻨﻀﻊ (0,5)x=y * ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﺠﻤﻠﺔ) : (4ﻨﻀﻊ y=exﻭ ﻴﺤﻠل ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ) P(yﺇﻟﻰ )P(y)=(y-1)(y2-3y-4 ﺤﻴﺙ P(y)=y3-4y2-y+4 ﺍﻟﺘﻤﺭﻴﻥ:6ﺘﻌﻴﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Dﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻭ ﺍﻟﺩﺍﻟﺔ f ′ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: f (x) = 1 + 3x 2 .e x /2 x ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻫﻲ }ℜ-{0 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Dﻋﻨﺩﺌﺫ:
f ′(x) = − 1 + 6x − ex 2 −ex x2 + 3x =− 1 + 3x(2 + x)e x x2 f (x) = 3x + 5 /3 ex ℜ ﻫﻲf ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ : ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥ ′( x) = 3.e x − ex (3x + 5) = − 3x − 2 ( )f ex 2 ex f ( x) = 3e x +2 /5 ex +3 D={x,x∈ :ex+3≠0} : ﻟﺩﻴﻨﺎ : ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥ 3.e x (e x + 3) − e x (3e x + 2) ex (3e x + −3e x − 2) (e x + 3) 2 (e x + 3) 2f ′( x) = = 11e x = (e x + 3) 2 ﻭ ﻤﻨﻪ f (x) = 2x + 3 /7 2e x − 4 D={x,x∈ℜ :2ex-4≠0} : ﻟﺩﻴﻨﺎ ={x,x∈ℜ :x≠ln(2)} =ℜ-{ln(2)} : ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥ ( ( ) ) ( )( )f 2 2e x − 4 − 2e x 2x + 3 − 2e x − 4xe x − 8 2e x − 4 2 = 4 ex −2 2 ′( x) =
′( x) = (1 + 2x)e x −4 ﻭ ﻤﻨﻪ 2 ex −2 2( )f f (x) = ex + x2 + 5 /8 D={x,x∈ℜ :ex+5≥0} : ﻟﺩﻴﻨﺎ =ℜ : ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥ f ′(x) = ex + 2x 2 ex + x2 +5f (x) = (5e2x + 3ex + 1)10 /10 ℜ ﻫﻲf ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ : ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥ( ) ( )f ′(x) = 10 5e2x + 3ex +1 9. 10e2x + 3exf ′(x) = 10ex (10ex + 3)(5e2x + 3ex +1)9 f (x) = x2 + 2x /12 e2x − 4D={x,x∈ℜ :e2x-4≠0} : ﻟﺩﻴﻨﺎ={x,x∈ℜ :2x≠ln4}=ℜ -{ln(2)}: ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥ( ) ( )f ′(x) =(2x + 2) e2x − 4 − 2e2x x2 + 2x (e2x − 4)2f (x) = ln x + 3 x /13 D={x,x∈ℜ (x<0) (ﻭx≥0)}: ﻟﺩﻴﻨﺎ =]0 ;+∞[ : ﻋﻨﺩﺌﺫD ﻋﻨﺼﺭﺍ ﻤﻥx ﻟﻴﻜﻥf ′(x) = 1 + ln(3) e x.ln(3) x 2x
ﺍﻋﺘﻤﺩﻨﺎ ﻋﻠﻰ ﻜﻭﻥ = 1 + ln(3) 3 x x 2x)3 = ex x.ln(3 x+1 f (x) = x2 + e x−1 /14 }D={x,x∈ℜ :x-1≠0 ﻟﺩﻴﻨﺎ }=ℜ-{1 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Dﻋﻨﺩﺌﺫ: f )′( x = 2x − (x 2 x+1 − 1) 2 e x−1 ﺍﻟﺘﻤﺭﻴﻥ :7ﺘﻌﻴﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ:ﻨﺴﻤﻲ Fλﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻓﻲ ﻜل ﻤﺎ ﻴﻠﻲ ﺤﻴﺙ ﺜﺎﺒﺕ λﺜﺎﺒﺕ ﻤﻥ .ℜ [I=]-∞ ;0 ﻭ f (x) = ex + 1 + 5x +1/1 x2 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: Fλ )(x = ex − 1 + 5 x2 + x + λ x 2 ﻤﻊ ﺍﻟﻤﻼﺤﻅﺔ ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ .I f (x) = 2e0,5x + 7 x /2ﻭ I=ℜ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: f )(x = 2 .0,5.e 0 , 5 x + 7x 0,5 = 4.0,5.e0,5x + 7x Fλ (x) = 4.e0,5x + 7 x2 +λ ﻭ ﻤﻨﻪ 2
f (x) = 5xex2 + 3e5x /3ﻭ I=ℜ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: f )(x = 5 .2 xe x2 + 3 .e5 x 2 5= )Fλ (x 5 e x 2 + 3 e5x +λ 2 5 ﻭ ﻤﻨﻪ f (x) = (x2 + 2)ex3+3x /4ﻭ I=ℜ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: ( )f 1 e x3+3x )(x = 3 3x2 +3 Fλ )(x = 1 e x3 +3 x + λ ﻭ ﻤﻨﻪ 3 1 [∞I=]0 ;+ ﻭ f )(x = e−x + ex /5 x2 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ:( )f (x) = − − e−x − ⎜⎛ − 1 1 ⎞⎟ ⎝ x2 ⎠ exFλ )(x = −e−x − 1 1 +λ ﻭ ﻤﻨﻪ x2 ex f (x) = (e2x + 3)(e3x + e−x −1) /6ﻭ I=ℜ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ:f (x) = e5x + ex + e2x + 3e3x + 3e−x + 3
=) ( ) (1 5 5e5 x + ex + 3e3x − 3 − e−x +3Fλ )(x = 1 e5x + ex + e3x − 3e − x + 3x + λ ﻭ ﻤﻨﻪ 5 I=ℜ ﻭ f )(x = 3e x + 5e2x +1 e6x /7 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: ( )f (x) = e−6x 3ex + 5e2x +1 = 3e−5x + 5e−4x + e−6x =) ( ) ( ) (3 5 1 − 5 − 5e−5x − 4 − 4e−4x − 6 − 6e−6xFλ )(x = − 3 e −5 x − 5 e −4 x − 1 e −6 x + λ ﻭ ﻤﻨﻪ 5 4 6 I=ℜ ﻭ = )f (x ex 2ex +1 /8 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: f )(x = 1 . 2e x 2 2ex +1 ) Fλﻷﻥ (2ex+1>0 )(x = 1 ln(2e x )+ 1 + λ ﻭ ﻤﻨﻪ 2 [I=]-∞ ;0 ﻭ = )f (x x2 + e−x /9 x3 − 3e−x ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ:
f )(x = 1 . − x2 − 3e− x +3 − x3 + 3e−x ) Fλﻷﻥ( x3-3e-x<0 ( )x = 1 ln(− x3 + 3e−x ) + λ ﻭ ﻤﻨﻪ 3 f (x) = ex.(e2x + 2ex +1)10 /10ﻭ I=ℜ ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: ( )f (x) = ex ex +1 10 ( )Fλ 1 )(x = 11 ex +1 11 + λ ﻭ ﻤﻨﻪ /11ﻨﻔﺱ ﺍﻟﻔﻜﺭﺓ ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻔﺭﻉ)(10 = ) f (xﻭ I=ℜ e5x + 2x e5x + 5x2 + 2 /12 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ . I ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ Iﻋﻨﺩﺌﺫ: f )(x = 1 5e5x +10x 5 e5x + 5x2 + 2 = 2 . 2 5e5x +10x 5 e5x + 5x2 + 2Fλ = )(x 2 ﻭ ﻤﻨﻪ e5x + 5x2 + 2 + λ 5 ﺍﻟﺘﻤﺭﻴﻥ :8 /1ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ :f ′ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ،ℜﻷﻨﻬﺎ ﺠﺩﺍﺀ ﺩﺍﻟﺘﻴﻥ ﻜﻼﻫﻤﺎ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ .ℜ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜﻋﻨﺩﺌﺫ:f ′(x) = (2x −1)ex + (x2 − x +1)ex
= (x2 + x)ex/2ﺃ( ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ، xl(x2+x)exﻋﻠﻰ ،ℜﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 2ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ 0 ﻟﻠﻤﺘﻐﻴﺭ. ﺍﻟﺩﺍﻟﺔ xl(x2+x)exﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ .ℜ ﻨﺤﺴﺏ Gﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻭ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜﻋﻨﺩﺌﺫ: x G(x) = ∫ (t 2 + t)etdt + 2 0) = [(t 2 − t + 1)et ]0x + 2ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺤل ﺍﻟﺴﺅﺍل )((1 = (x2 − x +1)ex +1 ln 2ﺏ( ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻟﻠﺘﻜﺎﻤل Jﺤﻴﺙ ∫J = (t 2 + t + 1)et .dt : 0 ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل xﻓﻲ .ℜ x ∫G(x) = (t 2 + t)et dt + 2 0 ln 2 ﻭ ﻤﻨﻪ G(ln(2)) = ∫ (t 2 + t)etdt + 2 0 ( )= (ln(2))2 − ln(2) +1 eln2 +1 = 2(ln 2)2 − 2 ln 2 + 3 ﻭ ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ : ln 2 ln 2 J = ∫ (t 2 + t)et .dt + ∫ etdt 00 ln 2 = G(ln 2) − 2 + ∫ etdt 0= 2(ln 2)2 − 2 ln 2 + 3 − 2 + [et ]ln 2 0 = 2(ln 2)2 − 2 ln 2 + 2
ﺍﻟﺘﻤﺭﻴﻥ :9= )f (x 3e x + 5ex +10 fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ،ﻋﻠﻰ ،ℜﺒﺎﻟﺩﺴﺘﻭﺭ: ex + 2 /1ﺇﻴﺠﺎﺩ ﺤﻘﻴﻘﻴﺔ c،b،aﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻤﻥ ﺃﺠل ﻜل ﻗﻴﻤﺔ ﻟﻠﻤﺘﻐﻴﺭ xﻓﻲ:ℜ f )(x = ae x + b + ce x ex + 2 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ،ℜﻭ ﻟﺘﻜﻥ c،b،aﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻤﻔﺭﻭﻀﺔ.( )( )aex + b + ce x = aex + b ex + 2 + cex ﻟﺩﻴﻨﺎ : ex + 2 ex + 2 = ae x + (2a + b + c)ex + 2b ﻋﻨﺩﺌﺫ: ex + 2 f )(x = ae x +b+ ce x : ﻟﺤل ex + 2 a=3 2a+b+c=5 ﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ : 2b=10 ﻭ ﻤﻨﻪ ) (a=3ﻭ ) (b=5ﻭ ). (c=-6 ln 5 /2ﺇﻋﻁﺎﺀ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻟﻠﺘﻜﺎﻤل Kﺤﻴﺙ∫K = ( f (x) − 5)dx : ln 3 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜ ﻟﺩﻴﻨﺎ ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺤﻠﻭل ﺍﻟﺴﺅﺍل):(1 f (x) = 3e x + 5 − 6e x ex + 2 f (x) − 5 = 3e x − 6e x ﻭ ﻤﻨﻪ : ex +2K = ln 5 (3e x − 6e x )dx = [3e x − 6 ln(e x + 2)]llnn 5 ﻋﻨﺩﺌﺫ: ∫ ex + 3 ln 3 2
ﺃﻱ ﺃﻥ K = (3 × 5 − 6 ln(7)) − (3 × 3 − 6 ln(5)) :)= 6 − 6(ln 7 − ln 5⎟⎞ = 6⎛⎜1 − ln 7 ⎠⎝ 5 ⎟⎞ = 6⎜⎛ ln e − ln 7 ⎠⎝ 5 = 6 ln 5e 7 ﺍﻟﺘﻤﺭﻴﻥ :10 /1ﺇﻴﺠﺎﺩ c،b،aﺤﺘﻰ ﺘﻜﻭﻥ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰℜ ﺍﻟﺩﺍﻟﺔ gﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﻨﺼﺭ ﻤﻥ ℜﻷﻨﻬﺎ ﺠﺩﺍﺀ ﺩﺍﻟﺘﻴﻥ ﻜﻠﺘﺎﻫﻤﺎ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ .ℜ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ﻋﻨﺩﺌﺫ: g(x) = (2ax + b)ex + (ax + bx + c)ex = (ax 2 + (2a + b)x + b + c)e x gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ℜﻴﻌﻨﻲ ﺃﻥ g′(x)=f(x) : a=3 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ : 2a+b=-1 b+c=7 و هﺬا ﻳﻌﻨﻲ : a=3 b=-7 c=14 و ﻣﻨﻪ gداﻟﺔ أﺻﻠﻴﺔ ﻟﻠﺪاﻟﺔ fﻋﻠﻰ ℜإذا و ﻓﻘﻂ إذا آﺎن : )(a=3و) (b=-7و ).(c=14 −1 /2ﺇﻋﻁﺎﺀ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻀﺒﻭﻁﺔ ﻟﻠﺘﻜﺎﻤل Iﺤﻴﺙ ∫I = f (x)dx : 0 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜﻋﻨﺩﺌﺫ : −1∫I = f (x)dx = [g(x)]0−1 = [(3x2 − 7x +14)e x ]0−1 0
أي أن I = 24e −1 − (14 ×1) = 24e −1 − 14 : 24 − 14e و ﻣﻨﻪ =I e اﻟﺘﻤﺮﻳﻦ :11ﺗﻌﻴﻴﻦ اﻟﻤﺠﻤﻮﻋﺔ Dﻣﺠﻤﻮﻋﺔ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ،fﺛﻢ ﺣﺴﺎب اﻟﻨﻬﺎﻳﺎت ﻋﻨﺪ آﻠﺤﺪ ﻣﻦ ﺣﺪود ﻣﺠﺎﻻت اﻟﻤﺠﻤﻮﻋﺔ :D f (x) = 5e x + 3x 2 + 2 /15ex → 0 ﻟﺪﻳﻨﺎ D=ℜ =]-∞ ;+∞[:∞(3x2 + 2) → + و ﻟﺪﻳﻨﺎ lim f (x) = +∞ : ∞x→+ ﻷﻧﻪ ﻟﻤﺎ ﻳﻜﻮن x → −∞ :ﻳﻜﻮن :∞5ex → + و ﻟﺪﻳﻨﺎ lim f (x) = +∞ :∞(3x2 + 2) → + ∞x→+ ﻷﻧﻪ ﻟﻤﺎ ﻳﻜﻮن x → +∞ :ﻳﻜﻮن : f )(x = xe x + 1 /2 x2 ﻟﺪﻳﻨﺎ D={x ;x∈ℜ :x2≠0}: [∞=]-∞ ;0[∪]0 ;+ و ﻟﺪﻳﻨﺎ lim f (x) = 0 : ∞x→− lim 1 =0 lim xexﻭ =0 ﻷﻥ: x2 ∞x→− ∞x→− ﻭ ﻟﺩﻴﻨﺎ lim f (x) = +∞ : ∞x→+ lim 1 =0 lim xexﻭ = ∞+ ﻷﻥ: x2 ∞x→+ ∞x→+ lim f )(x = ∞+ : ﻟﺩﻴﻨﺎ ﻭ x→0 lim 1 = ∞+ ﻭ lim xe x =0 ﻷﻥ: x2 x→0 x→0 f )(x = 2x +1 + xe x /3 x −1
D={x ;x∈ℜ :x-1≠0}: ﻟﺩﻴﻨﺎ =]-∞ ;1[∪]1 ;+∞[ lim f (x) = +∞ : ﻭ ﻟﺩﻴﻨﺎ x→+∞ lim xex = +∞ ﻭ lim 2x +1 = 2 :ﻷﻥ x −1 x→+∞ x→+∞ lim f (x) = 2 : ﻭ ﻟﺩﻴﻨﺎ x→−∞ lim xex = 0 ﻭlim 2x +1 = 2 :ﻷﻥ x→−∞ x −1 x→−∞ lim f (x) = −∞ ﻭ lim f (x) = +∞ : ﻟﺩﻴﻨﺎ ﻭ x→1 x→1 x<1 x>1lim 2x +1 = −∞ ﻭ lim 2x +1 = +∞ ﻭ lim xe x =1 :ﻷﻥ x −1 x −1 x→1 x→1 x→1 x<1 x>1 f (x) = 2x +1− ex /4 D=]-∞ ;+∞[: ﻟﺩﻴﻨﺎ lim f (x) = −∞ : ﻭ ﻟﺩﻴﻨﺎ x→−∞ex → 0 : ﻴﻜﻭﻥx → −∞ : ﻷﻨﻪ ﻟﻤﺎ ﻴﻜﻭﻥ(2x +1) → −∞ 1 xl→im+∞⎛⎝⎜⎜ x ex ⎞⎟⎠ ⎟⎞⎟⎠lim f (x) = x⎛⎜ 2 + − x = −∞ : ﻟﺩﻴﻨﺎ ﻭ ⎝x→+∞ 1 →0 : ﻳﻜﻮنx → +∞ : ﻷﻧﻪ ﻟﻤﺎ ﻳﻜﻮن x f (x) = (3x2 − 7)ex /5 ex → +∞ x D=]-∞ ;+∞[: ﻟﺪﻳﻨﺎ (3x2 − 7) → +∞ lim f (x) = +∞ : و ﻟﺪﻳﻨﺎ ex → +∞ x→+∞ : ﻳﻜﻮنx → +∞ : ﻷﻧﻪ ﻟﻤﺎ ﻳﻜﻮن
lim f (x) = x→lim−∞⎜⎛⎝⎜ 3x2 − 7 .x 2e x ⎟⎠⎞⎟ : ﻟﺩﻴﻨﺎ ﻭ x→−∞ x2 = 3×1 =0 f (x) = 5x 2 − 7x + 9 − e x /6 D=]-∞ ;+∞[: ﻟﺩﻴﻨﺎ lim f (x) = +∞ : ﻟﺩﻴﻨﺎ ﻭ x→−∞(5x2 − 7x + 9) → +∞ : ﻴﻜﻭﻥx → −∞ : ﻷﻨﻪ ﻟﻤﺎ ﻴﻜﻭﻥex → 0 ⎡ ⎜⎛⎝⎜ 7 9 ex ⎠⎞⎟⎟⎥⎤⎦ x→lim−∞⎢⎣ x x2 x2 lim f (x) = x 2 5 − + − : ﻟﺩﻴﻨﺎ ﻭ x→−∞ = −∞ f (x) = 3e x +2 /7 ex −1 D={x ,x∈ℜ :ex-1≠0}: ﻟﺩﻴﻨﺎ =]- ∞;0[∪]0 ;+∞[ lim f (x) = −2 : ﻭ ﻟﺩﻴﻨﺎ x→−∞ ex → 0 : ﻴﻜﻭﻥx → −∞ : ﻷﻨﻪ ﻟﻤﺎ ﻴﻜﻭﻥ lim f (x) = −∞ ﻭ lim f (x) = +∞ : ﻟﺩﻴﻨﺎ ﻭ x→0 x→0 x<0 x>0 ( )lim ( )x→+∞ f (x) = lim e x 3 + 2e −x : ﻭ ﻟﺩﻴﻨﺎ x→+∞ ex 1− e−x = lim 3 + 2e −x x→+∞ 1− e−x =3
lim e−x = 0 ﻷن x→+∞ f (x) = 3x 4 e x + 2 /8 x8 + 6 D={x ,x∈ℜ :x8+6≠0}: ﻟﺪﻳﻨﺎ =]- ∞;+∞[ lim f (x) = 0 : و ﻟﺪﻳﻨﺎ x→−∞3x4ex → 0 : ﻳﻜﻮنx → −∞ : ﻷﻧﻪ ﻟﻤﺎ ﻳﻜﻮن(x8 + 6) → +∞ 3. ex 2 x4 + x8 lim f (x) = lim 6 : و ﻟﺪﻳﻨﺎ x→+∞ x→+∞ 1+ x8 = +∞ lim ex = +∞ ﻷﻥ x→+∞ x4 f (x) = 2e x − x3 /9 ex −2 D={x ,x∈ℜ :ex-2≠0} : ﻟﺩﻴﻨﺎ =]- ∞;ln2[∪]ln2 ;+∞[lim f (x) = −∞ ﻭ lim f (x) = +∞ : ﻭ ﻟﺩﻴﻨﺎ x→ln 2 x→ln 2x<ln 2 x>ln 2( lim ex = 0 )ﻷﻥlim f (x) = −∞ : ﻭ ﻟﺩﻴﻨﺎ x→−∞ x→−∞ ( )lim ( )x→+∞ f (x) = lim ex 2 − x3e−x : ﻭ ﻟﺩﻴﻨﺎ ex 1 − 2e−x x→+∞ = lim 2 + (−x)3e−x 1− 2e−x x→+∞ =2
f (x) = 2x5 − e3x+2 + 1 /10 D={x ,x∈ℜ :e3x+2+1≥0} : ﻟﺩﻴﻨﺎ =]- ∞;+∞[ ( lim e3x+2 = 0 )ﻷﻥlim f (x) = −∞ : ﻭ ﻟﺩﻴﻨﺎ x→−∞ x→−∞( ( ))lim f (x) = lim 2x5 − e e + e2x x+2 −2 x : ﻭ ﻟﺩﻴﻨﺎx→+∞ x→+∞ ( )= lim 2x5 − ex e + ex+2 −2x x→+∞ ( )= lim ex 2x5e−x − e + ex+2 −2x x→+∞ ( )= lim ex − 2(−x)5 e−x − ex+2 + e−x x→+∞ = −∞ f (x) = 3x3 + 5x2 +x− 2e x /11 x2 + 4e 2 x D={x ,x∈ℜ :x2+4e2x ≠0} : ﻟﺩﻴﻨﺎ =]- ∞;+∞[ x 3 ⎜⎝⎜⎛ 3 + 5 + 1 2e x ⎠⎟⎟⎞ x x2 − x3 lim f (x) = lim : ﻭ ﻟﺩﻴﻨﺎ x→−∞ x→−∞ x 2 ⎜⎛⎝⎜1 + e2x ⎟⎟⎠⎞ x2 4 x⎜⎝⎛⎜ 3 + 51 2 ex ⎠⎟⎞⎟ x + x2 − x3 = lim x→−∞ e2x x2 1 + 4. = −∞( )lim( )x→+∞f (x) = lim ex 3x 3e −x + 5x 2 e −x + xe −x −2 : و ﻟﺪﻳﻨﺎ x→+∞ e x x 2e −x + 4e x
= lim 3x 3e − x + 5x 2 e −x + xe −x − 2 x→+∞ x 2e −x + 4e x =0 x f (x) = (x −1)e x−1 /12 D={x ,x∈ℜ :x-1 ≠0} : ﻟﺩﻴﻨﺎ =]- ∞;1[∪]1 ;+∞[ lim f (x) = −∞ ﻭlim f (x) = +∞ : ﻭ ﻟﺩﻴﻨﺎ x→−∞ x→+∞ x lim f (x) = lim x. e x−1 : ﻭ ﻟﺩﻴﻨﺎ xx→1 x→1 x>1 x>1 x −1 = +∞ x ﻫﻭy ) ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔlim e y = +∞ ﻷﻥ ( x −1 yy→+∞ lim f (x) = 0 : ﻟﺩﻴﻨﺎ ﻭ x→1 x<1 ( x ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻫﻭy) lim e y =+ ﻷﻥ x −1 y→−∞ f (x) = ex −1 /13 x D={x ,x∈ℜ :x ≠0} : ﻟﺩﻴﻨﺎ =]- ∞;0[∪]0 ;+∞[ lim f (x) = lim⎜⎛ ex − 1 ⎟⎞ : ﻭ ﻟﺩﻴﻨﺎ x→+∞ ⎝ xx→+∞ x ⎠ = +∞ lim f (x) = 0 : ﻭ ﻟﺩﻴﻨﺎ x→−∞
lim f (x) = lim ex − e0 ﻭ ﻟﺩﻴﻨﺎ : x→0 xx→0 )= exp′(0 )(exp′(x)=ex =1 ﺍﻟﺘﻤﺭﻴﻥ :12 /1ﺇﻋﻁﺎﺀ ﻋﺒﺎﺭﺓ ) g(xﺒﺩﻻﻟﺔ ) ، f(xﻤﻥ ﺃﺠل xﻓﻲ ،ℜﺒﻘﺭﺍﺀﺓ ﺒﻴﺎﻨﻴﺔ ﻤﻥ ﺃﺠل xﻴﺒﺩﻭ ﻤﻥ ﺍﻟﻘﺭﺍﺀﺓ ﺍﻟﺒﻴﺎﻨﻴﺔ ﻭ ﻜﺄﻥ : g(x)=f(x)+3 ﺃﻱ ﺃﻥ ) (Cfﻫﻭ ﺼﻭﺭﺓ ) (Cgﺒﺎﻻﻨﺴﺤﺎﺏ ﺍﻟﺫﻱ ﺸﻌﺎﻋﻪ 3 j /2ﺍﺴﺘﻨﺘﺎﺝ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻅﻠل: ﻟﺘﻜﻥ Aﺍﻟﻤﺴﺎﺤﺔ ﺍﻟﻤﻌﺘﺒﺭﺓ ﻋﻨﺩﺌﺫ: 1 A = ∫ (g(x) − f (x))dx −1 1 ﺃﻱ ﺃﻥ A = ∫ 3xdx = [3x]1−1 : −1 ﻭﻤﻨﻪ A=6ﺤﻴﺙ b،aﻭ cﺜﻭﺍﺒﺕ f )(x = (ax2 + bx + c)e− x : ﺍﻟﺸﻜل ﻤﻥ ﺒﺎﻟﺩﺴﺘﻭﺭ ﻤﻌﺭﻓﺔ f/3 2 ﻤﻥ .ℜ ﺃ( ﺤﺴﺎﺏ ) f ′(xﺒﺩﻻﻟﺔ b،aﻭ x ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜﻋﻨﺩﺌﺫ:f )′( x = (2ax + b)e − x + (ax2 + bx + c)⎛⎜ − 1 e− x ⎟⎞ 2 ⎝ 2 2 ⎠ = ⎛⎜ − 1 ax 2 − 1 bx − 1 c + 2ax + b ⎟⎞e − x ⎝ 2 2 2 2 ⎠
⎡⎢⎣− 1 ax 2 (2a 1 b)x 1 ⎤ − x 2 2 2 c⎦⎥e 2 = + − + b − ﻭ ﻟﻜﻥ ﻤﻥ ﺍﻟﻘﺭﺍﺀﺓ ﺍﻟﺒﻴﺎﻨﻴﺔ ﻟﺩﻴﻨﺎ f (0) = 1 : ﻭ ﻋﻠﻴﻪ C=1 := )f ′(x ⎡⎣⎢− 1 2 (2a 1 )b 1 ⎤ − x 2 2 2 ⎥⎦e 2 ax + − x + b − : ﻭ ﻤﻨﻪﺏ( ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﻤﻌﻠﻭﻤﺎﺕ ﻤﻭﺠﻭﺩ ﻓﻲ ﺍﻟﺸﻜل ،ﻨﻌﻴﻥ ﻜﻼ ﻤﻥ aﻭ bﺜﻡ ﻜﺘﺎﺒﺔ ) f(xﻭ ) g(xﺒﺩﻻﻟﺔ .x ﻤﻥ ﺍﻟﺸﻜل ﺩﻴﻨﺎ f(1)=0 :ﻭ f(-1)=0 ⎧⎪(a + b + 1)e− 1 = 0 2 ⎨ 1 ﻭ ﻤﻨﻪ : ⎪⎩ (a − b +1)e2 = 0a = −1 ﺃﻱ ﺃﻥ : a +b+1= 0b=0 ﺃﻱ ﺃﻥa − b +1 = 0 : ﻭ ﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل xﻓﻲ ℜﻟﺩﻴﻨﺎ : f )(x = (−x2 + 1)e− x 2 )g(x = (−x2 + 1)e− x + 3 2 ﺍﻟﺘﻤﺭﻴﻥ :13 ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺍﻟﺸﻜل ﻭ ﻤﻊ ﺇﻋﻁﺎﺀ ﺍﻟﺘﻌﺎﻟﻴل،ﻨﺠﻴﺏ ﻋﻥ ﺍﻷﺴﺌﻠﺔ ﺍﻟﺘﺎﻟﻲ. /1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻭ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ : ﻟﺘﻜﻥ Dgﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻭ ﻟﺘﻜﻥ Dhﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ .h ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ℜﻷﻨﻬﺎ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ.ℜ ﺍﻟﻤﻨﺤﻨﻲ ) (Cfﻴﻘﻊ ﺘﺤﺕ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻤﻥ ﺃﺠل ﻜل xﻤﻥ ] ]-∞ ;1ﻭ . f(1)=0 ﻭ ﺍﻟﻤﻨﺤﻨﻲ ) (Cfﻴﻘﻊ ﻓﻭﻕ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻤﻥ ﺃﺠل xﻤﻥ [∞[1;+
ﻋﻨﺩﺌﺫ})(f(x)>0ﻭ )Dy={x,x∈ℜ (x∈Df [∞=]1 ;+} )Dy={x,x∈ℜ (x∈Df =ℜ /2ﺘﻌﻴﻴﻥ )g(2)،h(2)،h(1 ﻟﺩﻴﻨﺎ h(1)=ef (1)=e0=1 : ﻭ ﻟﺩﻴﻨﺎ h(2)=ef (2)=e3 : ﻭ ﻟﺩﻴﻨﺎ g(2)=ln(f(2))=ln(3) : /3ﺘﻌﻴﻴﻥ ) h′(2ﻭ )g′(2 ﻟﺩﻴﻨﺎ f′ :ﻫﻭ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﻤﺎﺱ) (tﻭ ﺍﻟﻤﻤﺎﺱ) (tﻴﺸﻤل ﺍﻟﻨﻘﻁﺘﻴﻥ ) A1(2 ;3ﻭ ) A2(-1 ;0ﻭ ﻋﻠﻴﻪ:f ′(2) = f (2) − f (−1) = 3 − 0 = 1)2 − (−1 2 +1 ﻭ ﻤﻨﻪ f ′(2)=1 ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜﺒﺤﻴﺙ hﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ xﻋﻨﺩﺌﺫ: )h′(x)=f ′(x).ef(x ﻭ ﻤﻨﻪ )h′(2)=f ′(2).ef(2 =1×e3 =e3 ﻭ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ [∞ ]1 ;+ﺒﺤﻴﺙ gﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ xﻋﻨﺩﺌﺫ:)g′(x) = f ′(x )f (x)g′(2) = f ′(2 ﻭ ﻤﻨﻪ )f (2 1= 3
ﺍﻟﺘﻤﺭﻴﻥ :16 f )(x = ex +1 ﺒﺎﻟﺩﺴﺘﻭﺭ: ﺍﻟﻤﻌﺭﻓﺔ ﺍﻟﺩﺍﻟﺔ f ex −1 /1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ : fﺒﻌﺩ ﺍﻟﻤﺭﻭﺭ ﺒﺎﻟﻤﺭﺍﺤل ﺍﻟﻤﺄﻟﻭﻓﺔ ﻟﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﻨﺠﺩ ﺃﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻴﺘﻤﺜل ﻓﻲ ﺍﻟﺘﺎﻟﻲ:x -∞ -2 ∞0+f ′(x) - + -∞f′(x) + 4 0 0 ﻤﻥ ﺃﺠل xﻤﻥ ℜﻟﺩﻴﻨﺎ f ′(x)=-x(x+2)e-x : /2ﺍﻹﺜﺒﺎﺕ ﺃﻥ ) (Cfﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ : ﻟﺩﻴﻨﺎ lim f (x) = 0 :ﻭ ﻤﻨﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ y=0ﻤﻌﺎﺩﻟﺔ ﻟﻪ ﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ∞x→+ )(Cf ﻭ ﻟﺩﻴﻨﺎ lim f (x) = lim (x + 2)2 e−x : ∞xx→− ∞x→− x ﻭ ﻤﻨﻪ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻑ ﺠﻭﺍﺭ) (∞-ﻓﺭﻉ ﻤﻜﺎﻓﺊ ﻤﻨﺤﺎﻩ ﻫﻭ ﻤﻨﺤﻰ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ. /3ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻲ )(Cf 10y 9 8)(Cf 7 6 5 4 3 2 1 →j-5 -4 -3 -2 -1 0 →i 1 2 3 4 5 6 7 8 9 10 11 12 x -1 -2
/4ﻟﺘﻜﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ g(x) = (ax2 + bx + c)e− xﺤﻴﺙ c،b،aﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻤﻔﺭﻭﻀﺔ. ﺃ(ﺇﻴﺠﺎﺩ c،b،aﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ .ℜ ﺍﻟﺩﺍﻟﺔ gﻗﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ℜﻷﻨﻬﺎ ﺠﺩﺍﺀ ﺩﺍﻟﺘﻴﻥ ﻜﻠﺘﺎﻫﻤﺎ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ℜ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ .ℜ ﻟﺩﻴﻨﺎ g′(x) = (2ax + b)e−x − (ax2 + bx + c)e−x : = [−ax2 + (2a − b)x + b − c]e−x ﻋﻨﺩﺌﺫ gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ℜﻤﻌﻨﺎﻩ g′(x)=f(x) : -a=1 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ : 2a-b=4 b-c=4 a=-1 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ : b=-6 c=-10 ﻭ ﻋﻠﻴﻪ gﺘﺤﻘﻕ ﻤﺴﺄﻟﺘﻨﺎ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ : g(x) = (−x2 − 6x −10)e−xﺏ(ﺤﺴﺏ ﻤﺴﺎﺤﺔ ﺍﻟﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻰ ) (Cfﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺫﺍﺕ ﺍﻟﻤﻌﺎﺩﻻﺕ :x=-2،x=0،y=0 ﻟﺘﻜﻥ Aﺍﻟﻤﺴﺎﺤﺔ ﺍﻟﻤﻁﻠﻭﺒﺔ ﻋﻨﺩﺌﺫ: 0A = ∫ f (x)dx =[(− x 2 − 6x − 10)e −x ]0 −2 −2 ﺃﻱ ﺃﻥ A=-10+2e2 :/5ﻟﺘﻜﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ، (1).....mex+x2+4x+4=0ﺤﻴﺙ xﻫﻭ ﺍﻟﻤﺠﻬﻭل ،ﻓﻲ ،ℜﻭ mﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻌﻠﻭﻡ . ﺃ(ﺍﻹﺜﺒﺎﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ )(1ﺘﻜﺎﻓﺊ ﺍﻟﻤﻌﺎﺩﻟﺔ : f(x)=m ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ℜ. ﻟﺩﻴﻨﺎ ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﺘﻜﺎﻓﺊ e-x(-mex+x2+4x+4)=0
ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ –m+(x2+x4+x) e-x=0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ m= (x2+x4+x) e-x ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ f(x)=m ﺏ(ﺍﺴﺘﻨﺘﺎﺝ ﺘﻔﺴﻴﺭ ﺒﻴﺎﻨﻲ ﻟﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ)(1 ﻟﻴﻜﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ )∆(ﺍﻟﺫﻱ y=mﻤﻌﺎﺩﻟﺔ ﻟﻪ ﻥ ﻋﻨﺩﺌﺫ : ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ) (1ﻫﻭ ﻓﻭﺍﺼل ﻨﻘﺎﻁ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻨﺤﻨﻲ ) (Cfﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ)∆(ﺠـ( ﺍﻟﺘﻌﻴﻴﻥ ،ﺤﺴﺏ ﻗﻴﻤﺔ ، mﻟﻌﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ) (1ﻭ ﻜﺫﺍ ﺇﺸﺎﺭﺓ ﻫﺫﻩ ﺍﻟﺤﻠﻭل ﻓﻲ ﺤﺎﻟﺔ ﻭﺠﻭﺩﻫﺎ : ﺒﺎﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﺍﻟﻔﺭﻋﻴﻥ ﺍﻟﺴﺎﺒﻘﻴﻥ ﻭ ﻜﺫﺍ ﻤﻥ ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻲ ) (Cfﻨﺠﺩ ﺃﻥ : * ﻟﻤﺎ ، m<0ﺍﻟﻤﻌﺎﺩﻟﺔ)(1ﻟﻴﺴﺕ ﻟﻬﺎ ﺤﻠﻭل ﻓﻲ .ℜ*ﻟﻤﺎ ، 0<m<4ﺍﻟﻤﻌﺎﺩﻟﺔ) (1ﻟﻬﺎ ﺜﻼﺜﺔ ﺤﻠﻭل ﻤﺨﺘﻠﻔﺔ ﻤﻤﻜﻥ ﺤﺘﻰ ﺇﺜﺒﺎﺕ ﻤﻨﻬﺎ ﺴﺎﻟﺒﺎﻥ ﺘﻤﺎﻤﺎ ﻭ ﺍﻟﺜﺎﻟﺙ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ. *ﻟﻤﺎ ،m=4ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻟﻬﺎ ﺤﻼﻥ ﻤﺘﻤﺎﻴﺯﺍﻥ ﺃﺤﺩﻫﻤﺎ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ ﻭ ﺍﻟﺜﺎﻨﻲ ﻤﻌﺩﻭﻡ. *ﻟﻤﺎ ، m>4ﺍﻟﻤﻌﺎﺩﻟﺔ) (1ﻟﻬﺎ ﺤل ﻭﺤﻴﺩ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ. * ﻟﻤﺎ ، m=0ﺍﻟﻤﻌﺎﺩﻟﺔ ) (1ﻟﻬﺎ ﺤل ﻭﺤﻴﺩ ﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ. ﺍﻟﺘﻤﺭﻴﻥ :17 f )(x =1− 2x − ex ﺒﺎﻟﺩﺴﺘﻭﺭ: ﺍﻟﻤﻌﺭﻓﺔ ﺍﻟﺩﺍﻟﺔ f ﻟﺘﻜﻥ ex −1 ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ :fﺒﺄﺘﺒﺎﻉ ﺍﻟﻤﺭﺍﺤل ﺍﻟﻤﺄﻟﻭﻓﺔ ﻟﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺩﺍﻟﺔ ﻨﺠﺩ ﺃﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻴﺘﻤﺜل ﻓﻲ ﺍﻟﺘﺎﻟﻲ:x )-∞ -ln(2 ∞0 ln(2) +)f ′ (x - + +-∞f (x) + )+∞ -1-2ln(2 )2+2ln(2 ∞-∞ - ﻤﻥ ﺃﺠل ﻜل xﻤﻥ }ℜ-{0 f )′( x = − 2e2x + 5ex − 2 : ﻟﺩﻴﻨﺎ (ex −1)2
•/2ﺍﻹﺜﺒﺎﺕ ﺃﻥ ) (Cfﻴﻘﺒل ﻤﺴﺘﻘﻴﻤﺎ ﻤﻘﺎﺭﺒﺎ ﻤﻭﺍﺯﻴﺎ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ. lim f )(x = ∞+ ﻭ lim f )(x = ∞− : ﻟﺩﻴﻨﺎ x→0 x→0 x<0 x>0ﻭﻤﻨﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ x=0ﻤﻌﺎﺩﻟﺔ ﻟﻪ ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ) ، (Cfﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ. •ﺍﻹﺜﺒﺎﺕ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y=-2x+1ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻋﻨﺩ .∞- (lim f )(x − (−2x = ))+1 lim⎜⎛ − e ex 1 ⎞⎟ = 0 ﻟﺩﻴﻨﺎ ∞⎝x→− x− ⎠ ∞x→− ﻭ ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺍﻟﺘﻌﺭﻴﻑ ﻨﺠﺩ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ y=-2x+1ﻤﻌﺎﺩﻟﺔ ﻟﻪ ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ (Cf). ﺍﻹﺜﺒﺎﺕ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ 1ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻋﻨﺩ ∞ .+ = ))lim ( f (x) − (−2x x→lim+∞⎜⎝⎛⎜1 − e e x 1 ⎠⎟⎞⎟ ﻟﺩﻴﻨﺎ ∞x → + x − = lim − 1 ∞x→+ x −1 e =0ﻭ ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺍﻟﺘﻌﺭﻴﻑ ﻨﺠﺩ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ y=-2xﻤﻌﺎﺩﻟﺔ ﻟﻪ ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ ) (Cfﻋﻨﺩ ∞+ /3ﺇﻨﺸﺎﺀ ):(Cf 8y )(Cf 7 6 5 4 3 2 1 →j-8 -7 -6 -5 -4 -3 -2 -1 0 i→ 1 23 4 5 6 7 8 x -1 -2 -3 -4
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188