ﺘﻌﺭﻴﻑ ،ﺘﺭﻤﻴﺯﺠﻤﻴﻊ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺘﺒﺭﺓ ﻓﻲ ﻫﺫﺍ ﺍﻟﺩﺭﺱ ﻫﻲ ﺩﻭﺍل ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ ،ﻭ ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﺤﺩﻴﺩ ،ﻜل ﻤﺠﺎل ﻤﻌﺘﺒﺭ ﻫﻭ ﻤﺠﺎل -ﻤﻥ -ﻴﺤﺘﻭﻱ ﻤﺠﺎﻻ ﻤﻔﺘﻭﺤﺎ ﻏﻴﺭ ﺨﺎلÂ.\"ﻤﻘﻠﻭﺏ\" ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﻴﺭﻱ ﻫﻲ ،ﺒﺎﻟﺘﻌﺭﻴﻑ ،ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ§ ] 0 ;+¥[ ﺍﻟﺘﻲ ﺘﺄﺨﺫ ﺍﻟﻘﻴﻤﺔ 0 ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻤﺔ 1 ﻟﻠﻤﺘﻐﻴﺭ. § ﺭﻤﺯ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﻴﺭﻱ ﻫﻭ. ln ﺒﻌﺒﺎﺭﺍﺕ ﺃﺨﺭﻯ : ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻨﻴﺒﻴﺭﻱ ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﺭﻤﺯ ln ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ: ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ln ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ. ﺍﻟﺩﺍﻟﺔ ln ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ﺍﻟﻤﻔﺘﻭﺡ ]0 ;+¥[ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ln¢ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل =ln ¢( x ) 1 ]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: x ﺼﻭﺭﺓ ﺍﻟﻌﺩﺩ 1 ﺒﺎﻟﺩﺍﻟﺔ ln ﻫﻲ) 0 ﺃﻱ( ln(1)=0 ﻟﺤﺎﺴﺒﺔ ﻋﻠﻤﻴﺔ ﺃﻭ ﺒﻴﺎﻨﻴﺔ ) ﻓﻲ ﺒﻌﺽ LN * ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻗﻴﻡ )ﻤﻘﺭﺒﺔ( ﻟﻠﺩﺍﻟﺔ ln ﺘﺴﺘﻌﻤل ﺍﻟﻠﻤﺴﺔ ﺍﻟﺤﺎﺴﺒﺎﺕ ﺍﻟﻠﻤﺴﺔ ﻫﻲ .( ln ln(2 + 3 ) ﻓﻤﺜﻼ ،ﻟﺤﺴﺎﺏ ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﻟﻠﻌﺩﺩ ﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﻋﻠﻤﻴﺔ ﺘﻜﻭﻥ ﺍﻟﺨﻁﻭﺍﺕ ،ﻤﺭﺘﺒﺔ ﻤﻥ 1 + ln( 7 ) ﺍﻟﻴﺴﺎﺭ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻥ ﻜﻤﺎ ﻴﻠﻲ:) ln ( 2 + Ö 3 = ¸ ( 1 + ln 7 ) ﻓﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ0,447046186 : *ﺘﻤﺭﻴﻥ:ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺩﺍﻟﺔ
ﻨﺹ ﺍﻟﺘﻤﺭﻴﻥ :f ( x ) = ln( x 2 - 5 x + 4 ) ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Dfﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: x + 2 ﺍﻟﺤل Df: ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ xﺍﻟﺘﻲ ﺘﺤﻘﻕ: (1 ) ﻫﻭ ﺍﻟﺸﺭﻁ ﺍﻟﻼﺯﻡ ﻭﺍﻟﻜﺎﻓﻲ ﺤﺘﻰ ﻴﻜﻭﻥÂ (1 )..... x2 5x+4>0 ﻤﻭﺠﻭﺩﺍ ﻓﻲ )ln(x2 5x+4 ﻭ (2) ...........x +2¹0 ﻟﻨﺤل ،ﻓﻲ ،Â ﺍﻟﻤﺘﺭﺍﺠﺤﺔ. x2 5x+4>0 ﻟﺘﻜﻥ T(x) ﺜﻼﺜﻲ ﺍﻟﺤﺩﻭﺩ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ x ﺤﻴ ﺙT(x)=x 2 5x+4 : Dﻤﻤﻴﺯ ) D=9 T(xﺤﻼ ﺍﻟﻤﻌﺎﺩﻟﺔ T(x)=0 ﻫﻤﺎ 1 ﻭ 4 ﻭ ﻤﻌﺎﻤل ﺍﻟﺤﺩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻟﻜﺜﻴﺭ ﺍﻟﺤﺩﻭ ﺩ) T(xﻫﻭ 1 ﻭ ﻫﻭ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭ ﻋﻠﻴﻪ ﺇﺸﺎﺭﺓ. T(x) ﺘﺒﻌﺎ ﻟﻘﻴﻡ x ﺘﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟ ﻲ: x ¥ 1 4 +¥ ﺇﺸﺎﺭ ﺓ)T(x + + ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ x ﺍﻟﺘﻲ ﺘﺤﻘﻕ( 1 ) ﻫﻲ]¥ ;1[È]4 ;+¥[ ﻭ ﺍﻟﺸﺭﻁ (2 ) ﻫﻭx¹2 ﻭ ﻋﻠﻴﻪ [D f=]¥ ;2[È] 2 ;1[ È] 4 ;+¥
ﺍﻟﺩﺍﻟﺔ ln ﻭ ﺍﻟﺘﺭﺘﻴﺏ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ln ﻟﺩﻴﻨﺎ :ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ln ﻫﻲ ﺍﻟﻤﺠﺎل ] 0 ;+¥[ ﻭ ﺍﻟﺩﺍﻟﺔ ln ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] 0 ;+¥[ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ln¢ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ ln ¢( x ) = 1 x 1 ﻭ ﻋﻠﻴﻪ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ﺍﻟﻤﺠﺎل> 0 ﻭ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ﺍﻟﻤﺠﺎل، ]0 ;+¥[ x ln¢(x)>0 ]0 ;+¥[ ﻭ ﻋﻠﻴﻪ : ﻤﺒﺭﻫﻨﺔ: ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل []0 ;+ ¥ ﺍﺴﺘﻨﺘﺎﺠﺎﺕ: ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﻓﺈﻥ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ \"ﺘﺤﺎﻓﻅ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭ ﻋﻠﻴﻪ: ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ ﺍﻟﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ a ﻭ: b a<b ﻴﻜﺎﻓﺊln(a)<ln(b) a=b ﻴﻜﺎﻓﺊln(a)=ln(b) a£b ﻴﻜﺎﻓﺊln(a)£ln(b) ﻭ ﺒﺎﻷﺨﺹ :ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ x ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤ ﺎ: 1<x ﻴﻜﺘﺎﻓﺊln(1)<ln(x) 1=x ﻴﻜﺎﻓﺊ ln(1)=ln(x) ﻭ ﺒﻤﺎ ﺃﻥln(1)=0 x<1 ﻴﻜﺎﻓ ﺊ)ln(x)<ln(1 ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ x ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ : ln(x)>0 ﻴﻜﺎﻓﺊx>1 ln(x)<0 ﻴﻜﺎﻓﺊx<1 ln(x)=0 ﻴﻜﺎﻓﺊ x=1
ﻤﺜﺎل: ﻟﻨﺤل ،ﻓﻲ ،Âﺍﻟﻤﺘﺭﺍﺠ ﺤﺔ (a).....ln(x+5)<ln(2) ﺤﻴﺙ x ﻫﻭ ﺍﻟﻤﺠﻬﻭل. D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) (aﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘ ﻴﻘﻴﺔ x ﺍﻟﺘﻲ ﺘﺤﻘﻕx>5 ﻭ ﻤﻥ ﺃﺠل x ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ:D ) (aﺘﻜﺎﻓﺊ ) (x+5)<2 ﻷﻥ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ( ]0 ;+¥[ ﺘﻜﺎﻓﺊx<3 5 3 ﻻ ﺘﻨﺘﻤﻲ ﺇﻟﻰ D ﺘﻨﺘﻤﻲ ﺇﻟﻰ D ﻭ ﻻ ﺘﺤﻘﻕ )(aﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) ( aﻫﻲ ﺍﻟﻤﺠﺎل ] 5 ; 3 [ iﻟﻜﻲ ﻨﺤل ﻤﻌﺎﺩﻟﺔ ) ﺃﻭ ﻤﺘﺭﺍﺠﺤﺔ( –ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل ﺍﻟﺤﻘﻴﻘﻲ -ﻤﺠﻤﻭﻋﺔ ﺘﻌ ﺭﻴﻔﻬﺎ D ﻟﻴﺴﺕ Â ﻜﺎﻤﻠﺔ: ﻨﻌﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ D ﺜﻡ ﻨﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ) ﺃﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ( ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ. D ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﺩﺍﻟﺔ ﻤﻥ ﺍﻟﺸﻜل xgln[u(x)] ﻤﺒﺭﻫﻨﺔ : ﻟﻴﻜﻥ I ﻤﺠﺎﻻ ﻭ ﻟﺘﻜﻥ u ﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ﺘﺤﺘﻭﻱ ﺍﻟﻤﺠﺎل.I ﺇﺫﺍ ﻜﺎﻥ (1 : ﺍﻟﺩﺍﻟﺔ u ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل. I (2 ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ﺍﻟﻤﺠﺎل.u(x)>0، I ﻓﺈﻥ :ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=ln[u(x)] ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل I ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔf ¢ .ﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲf ¢ (x) = u ¢(x) :I u(x)
ﺍﻟﺒﺭﻫﺎﻥ : ﻭ ﻤﻌﻁﻴﺎﺕ ﺍﻟﻨﺹ ﺍﻟﺴﺎﺒﻕ ﻭ ﻓﺭﻀﻴﺎﺘﻪ ﺴﺎﺌﺩﺓ : ﻟﺩﻴﻨﺎ :ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥf(x)=ln[u(x)] : I ﻤﻨﻪf(x)=(lno u)(x): ﻭ u ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ.I ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x0 ﻤﻥ u(x0)>0 ، I ﻤﻨﻪ ln ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ) u(x0) ﻷﻥ ﺍﻟﺩﺍﻟﺔ ln ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ( ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺤﻭل ﺍﺸﺘﻘﺎﻕ ﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ ،ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ (lnou) ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ I ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ (lnou)¢ﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔx ﻓﻲ(lnou)¢ (x) =ln¢(u(x))´u¢(x) : I ﻭ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲln ¢( x ) = 1 ،] 0 ;+¥[ x ﻤﻨﻪ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ: I (ln o u ) ¢(x) = 1 ´ u ¢(x) u(x) ﺇﺫﻥ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲf ¢ (x) = u ¢(x) : I u(x) ﻤﺜﺎل : ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: f(x)=ln(x 3+ x2 + 3x) ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ f(x)=ln[u(x)] :]0 ;+¥[ ﺤﻴﺙu(x)=x3 + x2 + 3x: ﻭ ﻟﺩﻴﻨﺎ u ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ]0 ;+¥[ ﻭ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ u(x)>0 ]0 ;+¥[ ﻤﻨﻪ ﻭ ﺤﺴﺏﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟ ﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ]0 ;+¥[ ﻭ ﻤﻬﻤﺎل ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ: ]0 ;+¥[ f ¢ (x) = u ¢(x) u(x) =f ¢(x) 3x 2 + 2 x + 3 ﺃﻱ: x 3 + x 2 + 3 x
ﺍﺴﺘﻨﺘﺎﺝ: ﻤﺒﺭﻫﻨﺔ : ﻟﻴﻜﻥ I ﻤﺠﺎﻻ ﻭ ﻟﺘﻜﻥ u ﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ﺘﺤﺘﻭﻱ ﺍﻟﻤﺠﺎل.I ﺇﺫﺍ ﻜﺎﻥ u( 1 : ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل. I (2 ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲu(x)>0 : I ﻓﺈﻥ: ﺍﻟﺩﺍﻟﺔ G ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل I ﺒﺎﻟﺩﺴﺘﻭﺭ G(x)=ln[u(x)] ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ،)g (x = u ¢(x) ﺍﻟﻤﻌﺭﻓﺔ ﻟﻠﺩﺍﻟﺔg ﺍﻟﻤﺠﺎل ، I ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: u(x) ﺍﻟﺒﺭﻫﺎﻥ: ﻭ ﻤﻌﻁﻴﺎﺕ ﺍﻟﻨﺹ ﺍﻟﺴﺎﺒﻕ ﻭ ﻓﺭﻀﻴﺎﺘﻪ ﺴﺎﺌﺩﺓ ،ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺍﻟﺩﺍﻟﺔ G ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ I ﻭ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ .G¢(x)=g(x) : I ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺘﻌﺭﻴﻑ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل ،ﺍﻟﺩﺍﻟﺔ G ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ g ﻋﻠﻰ ﺍﻟﻤﺠﺎل.I ﻤﺜﺎل:· ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ،ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]1 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭf (x) = 1 : x ln( x ) ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ﺍﻟﻤﺠﺎل ln(x)>0 : ]1 ;+¥[ ﻭ ln ¢(x) = 1 x ﻭ f (x) = 1 . 1 x ln( x ) æ 1 ö ÷ç ﻤﻨﻪ f (x) = è x øﻤﻨﻪ f (x) = ln ¢( x) ln( x ) ln( x ) ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ F ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]1 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ ln[ln(x)] ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل.]1 ;+¥[ · ﻟﺘﻜﻥ g ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل] ¥ ;2[ ﺒﺎﻟﺩﺴﺘﻭﺭ x2 - x - 4 g(x) = x 2 - 4
ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ﺍﻟﻤﺠﺎل ]¥ ;2[ ﻟﺩﻴﻨﺎ: g(x) = 1 - x ﻤﻨﻪ g(x) = ( x 2 - 4 ) - x x 2 - x 2 - 4 4 ﺒﻭﻀﻊ u(x)=x2 4 ﻟﺩﻴﻨﺎ u¢(x)=2x : ﻤﻨﻪx = 1 u¢( x ) : 2 ﻤﻨﻪ ÷÷g(x) = 1 - 12 èæçç uu ¢ (( x x ) ) öø ﻭ ﻟﺩﻴﻨﺎ ، u(x)>0 ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ ﺍ ﻟﻤﺠﺎل. ]¥ ;2[ · ﺍﻟﺩﺍﻟﺔ xgln[u(x)] ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻋﻠﻰ ، ]¥ ;2[ ﻟﻠﺩﺍﻟﺔ x ® u ¢( x ) u ( x ) · ﺍﻟﺩﺍﻟﺔ xgx ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ، xg1 ﻋﻠﻰ ]¥ ;2[ ﻤﻨﻪ ،ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ. ﺍﻟﺩﺍﻟﺔ ، G ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ، ]¥ ;2[ ﺒﺎﻟﺩﺴﺘ ﻭﺭ G(x) = x - 1 ln( x 2 - 4) 2 ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ g ﻋﻠﻰ ﺍﻟﻤﺠﺎل.]¥ ;2[ i ﻋﻨﺩ ﺘﻌﻴﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺤﺎﺼل ﻗﺴﻤﺔ ﺩﺍﻟﺔ ﻋﻠﺔ ﺩﺍﻟﺔ ،ﻋﻠﻰ ﻤﺠﺎل: I ﻨﺤﺎﻭل ﺇﺒﺭﺍﺯ ﺤﻭﺍﺼل ﻗﺴﻤﺔ ·:ﺤﻴﺙ ، u(x)>0 : ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ.I u¢( x ) - ﻤﻥ ﺍﻟﺸﻜل u ( x ) ﺤﻴﺙ ،u (x)>0 : ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ.I u¢( x ) - ﺃﻭ ﻤﻥ ﺍﻟﺸﻜل u ( x ) u ¢(x ) ﺤﻴﺙ n ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺃﻜﺒﺭ ﺘﻤﺎﻤﺎ ﻤﻥ 1 ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ( ) u ( x ) : I -ﺃﻭ ﻤﻥ ﺍﻟﺸﻜل n u(x)¹0 -ﺜﻡ ﻨﻁﺒﻕ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ .
ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﺠﺒﺭﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻠﺩﺍﻟﺔ ln ﻭ ﺍﺴﺘﻨﺘﺎﺠﺎﺕ ﻟﻬﺎ ﻤﺒﺭﻫﻨﺔ : ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﺠﺒﺭﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻠﺩﺍﻟﺔln ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻤﻭﺠﺒﻴﻥ ﺘﻤﺎﻤﺎ a ﻭ bﻴﻜﻭ ﻥ:ln(a.b)=ln(a)+ln(b) ﺍﻟﺒﺭﻫﺎﻥ: ﻟﻴﻜﻥ a ﻭ bﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻤﻭﺠﺒﻴﻥ ﺘﻤﺎﻤﺎ. ﻟﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ d ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: D(x)=ln(abx)ln(bx) ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﻋﻠﻰ ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭ ﺒﺎﻷﺨﺹ ﻤﺸﺘﻘﺔ ﺩﺍﻟﺔ ﻤﻥ ﺍﻟﺸﻜل xŠln[u(x)] ﺍﻟﺩﺍﻟﺔ d ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ d¢ﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ]0 ;+¥[ =d¢(x) ab - b : abx bx ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ]0 ;+¥[ ﻴﻜﻭﻥ ، d¢(x)=0 ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ d ﺜﺎﺒﺘﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﻤﻨﻪ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭﺍﻥ x1 ﻭ x2ﻤﻥ ﺍﻟﻤﺠﺎلd(x1)=d(x2) ]0 ;+¥[ ﻭ ﺒﺎﻷﺨﺹd (1 ) = d çæ 1 ÷ö : è b ø ﻤﻨﻪ ln( ab ) - ln( b ) = ln çæ ab. 1 ö÷ - ln æçb. 1 ÷ö è b ø è b ø ﺇﺫﻥ ln(ab)ln(b)=ln(a)ln(1) : ﻭ ﻟﺩﻴﻨﺎ ln(1)=0: ﻤﻨﻪ: Ln(ab)ln(b)=ln(a) ﻭ ﻋﻠﻴﻪln(ab)=ln(a)+ln(b) :
ﺍﺴﺘﻨﺘﺎﺠﺎﺕ ﻟﻠﺨﺎﺼﻴﺔ ﺍﻟﺠﺒﺭﻴﺔ ﺍﻷﺴﺎﺴﻴﺔ ﻟﻠﺩﺍﻟﺔ: ln ﻤﺒﺭﻫﻨﺔ : ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ ﺍﻟﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ a ﻭ b ﻴﻜﻭﻥ: ln æç a ö÷ = ln( a ) - ln( b ) è b ø ln çæ 1 ö÷ = - ln( a ) èaø ( ) ln a = 1 ln( a ) 2 ﻟﻘﺩ ﺘﻡ ﺍﻟﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻲ ﻤﺭﺤﻠﺔ ﻤﻥ ﻤﺭﺍﺤل ﺍﻟﻨﺸﺎ ﻁ1 ﻤﺒﺭﻫﻨﺔ : ﻤﻥ ﺍﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ a ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩ ﺩ ﺼﺤﻴﺢ n ﻴﻜﻭﻥln(an )=n.ln(a) : ﺍﻟﺒﺭﻫﺎﻥ: ﻟﻴﻜﻥ a ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻭﺠﺒﺎ ﺘﻤﺎﻤﺎ. § ﻟﺩﻴﻨﺎ ln(a0 ) =ln(1) : ﻤﻨﻪ ln(a0 ) =0 ﻤﻨﻪ(1 ).. ln(a0 ) =0.ln(a) : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲm ﺇﺫﺍ ﻜﺎﻥ ln(a m) =m.ln(a) ﻴﻜﻭﻥln(am +1 )=ln(a m´a) =ln(am ) +ln(a) =m.ln(a)+ln(a) =(m+1).ln(a) ﻤﻨﻪ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ m ﺇﺫﺍ ﻜﺎ ﻥ ln(am ) =m.ln(a) :ﻴﻜﻭﻥ (2 ).... ln(a m+1 )=(m+1).ln(a) ﻤﻥ (1 ) ﻭ (2 ) ﻭ ﺤﺴﺏ ﻤﺒﺩﺃ ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺍﻟﻤﺴﺎﻭﺍﺓ ln(an )=n.ln(a) ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ )ﺃﻱ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ﻤﻭﺠﺏ. (I) .....n ( § ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺼﺤﻴﺢ ﺍﻟﺴﺎﻟﺏ n ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ ﻤﻭﺠﺏ p ﺒﺤﻴﺙn=p : ﻭ )ln(an ) =ln(a p
= ln æç 1 ÷ö a p ø è ﻷﻥ p ﻋﺩﺩ ﺼﺤﻴﺢ ﻤﻭﺠﺏ ﻨﺴﺘﻁﻴﻊ = -ln(a p ) ﺘﻁﺒﻴﻕ (I) =p.ln(a) )=n.ln(a ﻤﻨﻪ :ﺍﻟﻤﺴﺎﻭﺍﺓ ln(an ) =n.ln(a) ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ ﺴﺎﻟﺏ . (II). .. n ﻭ ﻤﻥ (I) ﻭ (II) ﺍﻟﻤﺴﺎﻭﺍﺓ ln(an ) =n.ln(a) ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ n ﻭ ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ. a ﺃﻤﺜﻠﺔ : ln(6)=ln(2´3) ﻤﻨﻪ )ln(6)=ln(2)+ln(3ln(2,5)=ln(5)ln(2) ﻤﻨﻪ ln( 2, 5 ) = ln æç ÷52 öø è ln(243)=ln(7 3 ) ﻤﻨﻪln(243)=3.ln(7) ﻤﻥ ﺃﺠل n ﻋﺩﺩ ﻁﺒﻴﻌﻲ 2 n> 1000 : ﻴﻜﺎﻓﺊln(2n ) >ln(1000) ) ﻷﻥ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ.(]0 ;+¥[ ﻤﻨﻪ 2n > 1000: ﻴﻜﺎﻓ ﺊ)n.ln(2)>ln(1000 n > ﻤﻨ ﻪ( ln(2)>0 ln(1000) ﻴﻜﺎﻓﺊ 2>1 ) ln(2 ) . ln(1000 ) ﻭ ﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ :ﻨﺠﺩ = 9 , 96578. . ln(2 ) 7 8 9 10 ln(1000 ) ln( 2 ) ﻤﻨﻪ :ﻤﻥ ﺃﺠل n ﻋﺩﺩ ﻁﺒﻴﻌﻲ ،ﺤﺘﻰ ﻴﻜﻭﻥ 2 n> 1000 ﻴﻠﺯﻡ ﻭ ﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ. n³10
ﺍﻟﻌﺩﺩ e ﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ﻨﺠﺩ ln(2)=0,693…. ﻭln(3)=1,098… ﻤﻨﻪ ln(2)£1£ln(3) ﻭ ﺍﻟﺩﺍﻟﺔ ln ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ) [2 ;3] ﻷﻨﻬﺎ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ .(Â+* ﻭ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل) [2 ;3] ﻷﻨﻬﺎ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ . (Â+* ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺤﻭل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻭ ﺭﺘﻴﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻤﺠﺎل ﻤﻐﻠﻕ ،ﻤﻥ ﺒﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺘﻲ ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﺎل [2 ;3] ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ ﻴﺭﻤﺯ ﺇﻟﻴﻪ ﺒﺎﻟﺭﻤﺯ e ﺒﺤﻴﺙ ln(e)=1 : ﻭ ﻟﻨﺎ e¹3 ﻭ e¹2 ﻷﻥ ln(3)¹1 ﻭ. ln(2)¹1 ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻡ ﻋﻠﻰ ]0 ;+¥[ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x ﻤﻥ .Â+* ﺇﺫﺍ ﻜﺎﻥ x>e : ﻴﻜﻭﻥ ln(x)>ln(e) ﻤﻨﻪ ln(x)>1 ﻤﻨﻪln(x)¹1 : ﺇﺫﺍ ﻜﺎﻥ 0<x<e : ﻴﻜﻭﻥ ln(x)<ln(e) ﻤﻨﻪ ln(x)<1 ﻤﻨﻪln(x)¹1 ﻭ ﻋﻠﻴﻪ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x ﻤﻥ ، Â+* ﺇﺫﺍ ﻜﺎﻥ x¹e ﻴﻜﻭﻥln(x)¹1 ﻤﻨﻪ e ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﺍﻟﻭﺤﻴﺩ ﺍﻟﺫﻱ ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔ ln ﺘﺴﺎﻭﻱ.1 ﻤﺒﺭﻫﻨﺔ ﻭ ﺘﺭﻤﻴﺯ: ﻤﻥ ﺒﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻴﻭﺠﺩ ﻋﺩﺩ \"ﻭﺤﻴﺩ\" ﻴﺭﻤﺯ ﺇﻟﻴﻪ ﺒﺎﻟﺭﻤﺯ e ﺼﻭﺭﺘﻪ ﺒﺎﻟﺩﺍﻟﺔln ﺘﺴﺎﻭﻱ ) 1 ﺍﻟﻌﺩﺩ e ﻤﻌﺭﻑ ﺇﺫﻥ ﺒﺎﻟﻤﺴﺎﻭﺍﺓ( ln(e)=1 ﻤﻼﺤﻅﺎﺕ : ﻭ ﺃﻋﺩﺍﺩ ﺃﺨﺭﻯ ﻋﻠﻴﻨﺎ ﺃﻥ ﻨﺄﻟﻑ ﺍﻟﻌﺩﺩ ) e ﺍﻟﻤﻌﺭﻑ ﺒ ـ2 : § ﻤﺜل ﻤﺎ ﺁﻟﻔﻨﺎ ﺍﻟﻌﺩﺩ pﻭ ﺍﻟﻌﺩﺩ eÎÂ+* ﻭ (ln(1)=1 § ﻗﻴﻤﺔ ﻋﺸﺭﻴﺔ ﻤﻘﺭﺒﺔ ﺇﻟﻰ 10 5 ﺒﺎﻟﻨﻘﺼﺎﻥ ﻟﻠﻌﺩﺩ e ﻫﻲ 2,71828 § ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻗﻴﻤﺔ ﻋﺸﺭﻴﺔ ﻤﻘﺭﺒﺔ ﻟﻠﻌﺩﺩ e ﺒﺎﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ :2ndF ln 1 = ﻭ ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﻗﻴﻤﺔ ﻋﺸﺭﻴﺔ ﻤﻘﺭﺒﺔ ﻟﻘﻭﺓ ﻤﻥ ﺍﻟﺸﻜل : en = 2ndF ln n
ﺃﻤﺜﻠﺔ ﺤﻭل ﺍﺴﺘﻌﻤﺎل ﺍﻟﻌﺩﺩ: e § ﺒﺩﻭﻥ ﺍﺴﺘﻌﻤﺎل ﺤﺎﺴﺒﺔ ln(e2 )=2.ln(e) ﻤﻨﻪln(e2 ) =2,1 ﻤﻨﻪln(e2 ) =2: ﻭ ﺒﺼﻭﺭﺓ ﻋﺎﻤﺔ ،ﻤﻥ ﺃﺠلln(e2 ) =n.ln(e) ، nÎZ =n.1 ﻤﻨﻪln(en )=n : ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰln ﺍﻟﺩﺍﻟﺔ § ﻤﻥ ﺃﺠل x ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ: Â+++ ln x + 3 > 4 ﻴﻜﺎﻓﺊ( ) ( ) ln x + 3 > 4 . 1 ﻴﻜﺎﻓﺊ ( ) ln x + 3 > 4 . ln( e ) ﻴﻜﺎﻓﺊ ( ) ln x + 3 > ln( e 4 ) ﻴﻜﺎﻓﺊ ( x + 3) > e 4 ﻷﻥ x ﻭ(e4 3) ﻤﻭﺠﺒﺎﻥ ﻴﻜﺎﻓﺊ x > e 4 - 3 ﻴﻜﺎﻓﺊ ( ) x > e 4 - 3 2 ﻨﻬﺎﻴﺎﺕ ﻤﺭﺠﻌﻴﺔ ﻤﺒﺭﻫﻨﺎﺕ )ﻤﻘﺒﻭﻟﺔ(lim ln( x ) = +¥x ® +¥lim ln( x ) = -¥ lim ln = -¥ﺃﻱ: lim ln = +¥ 0 + x ®0 + ¥x >0 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎa lim ln = ln( a ) ﺃﻱ lim ln( x ) = ln( a ) x®a a ﻤﺜﺎل: ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل]2 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ : ÷f ( x ) = ln æç x -1 ö è 2 x - 4 ø
ﻟﺩﻴﻨﺎ ) x - 1 ÷ö = 1 : ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺤﻭل ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻋﻨﺩ limæç x ®¥( + + ¥ è 2 x - 4 ø 2 ﻭ ) lim ln = ln æç 1 ÷öﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﻤﺭﺠﻌﻴﺔ ﻟﻠﺩﺍﻟﺔ( ln 1 è 2 ø 2 ﻤﻨﻪ ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺤﻭل ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ lim f = ln æç 1 ö÷ : + ¥ è 2 ø ﺃﻱlim f = - ln( 2) : + ¥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ln ﻭ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ* ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻭ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ln ﻭ ﻨﻬﺎﻴﺎﺘﻬﺎ ﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭﻫﺎ ﻴﻜﻭﻥx ¥ 0 ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ln ﻜﻤﺎ ﻴﻠ ﻲ: +¥ ln(x) +¥ ¥ * ﻟﻴﻜﻥ (C) ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ ln ﻓﻲ ﺍ ﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ . (O ; i ; j ) ﻤﻨﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ) x=0 ﺃﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ( ﻫﻭ ﻤﺴﺘﻘﻴﻡlim ln = -¥ -ﻟﺩﻴﻨﺎ : 0 + ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻲ .(C) -ﺍﻟﻨﻘﻁﺔ A(1 ;0) ﺘﻨﺘﻤﻲ ﺇﻟﻰ (C) ﻭ ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﻤﺎﺱ (t) ﻟﻠﻤﻨﺤﻨﻲ (C) ﻋﻨﺩ A ﻫﻲy=ln¢(1).(x 1)+ln(1) ﻭ ﻟﻨﺎ ln(1)=0 ﻭ ln ¢(1 ) = 1 1 ﻤﻨﻪ(t) :y=x1 -ﺍﻟﻨﻘﻁﺔ B(e ;1) ﺘﻨﺘﻤﻲ ﺇﻟﻰ (C) ﻭ ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﻤﺎﺱ (t) ﻟﻠﻤﻨﺤﻨﻲ (C) ﻋﻨﺩ B ﻫﻲy=ln¢(e).(x : e)+ln(e) ﻭ ﻟﻨﺎ ln ¢( e ) = 1 : ﻭ.ln(e)=1 e
ﻭ ﺒﻌﺩ ﺍﻟﺘﻌﻭﻴﺽ ﻭ ﺍﻟﺤﺴﺎﺒﺎﺕ(T ) : y = 1 x : e ﻤﻨﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ (T) ﻴ ﺸﻤل ﺍﻟﻨﻘﻁﺔ O ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ﻤﻨﻪ ﺍﻟﺸﻜل: 3y 2 ( t ) B 1 j® ( C ) A 2 1 0 i® 1 2 3 4 5 6 x ( T ) 1 2 3 ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻤﻘﺎﺭﻥ ﻟﻠﺩﺍﻟﺔ ln ﻭ ﺍﻟﺩﻭﺍل \"ﻗﻭﻯ\" § ﺩﺭﺍﺴﺔ ﻤﺴﺄﻟﺔ :ﻓﺭﻉ ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ ﺍﻟﻤﺭﻓﻕ ﺒﺎﻟﻘﻴﻡ ﺍﻟﻜﺒﻴﺭﺓ ﻟﻠﻤﺘﻐﻴﺭ ﻴﻔﻜﺭﻨﺎ ﺒﻔﺭﻉ ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ \"ﺠﺫﺭln ﻤﻥ ﺃﺠل ﻗﻴﻡ x ﺍﻟﻜﺒﻴﺭﺓx - ln( x ) . ﺘﺭﺒﻴﻌﻲ\" ﺍﻟﻤﺭﻓﻕ ﺒﺎﻟﻘﻴﻡ ﺍﻟﻜﺒﻴﺭﺓ ﻟﻠﻤﺘﻐﻴﺭ ﻟﺫﺍ ﻨﻬﺘﻡ ﺒﺎﻟﻔﺭﻕ ﻟﺫﺍ ﻟﻨﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ dﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [e2 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: ) x - ln( x ) ﺍﺨﺘﻴﺎﺭ ﺍﻟﻤﺠﺎل ﺘﻡ ﻗﺼﺩ ﺘﺒﺴﻴﻁ ﺍﻟﺤﺴﺎﺒﺎﺕ(d ( x) =. dﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [e2 ;+¥[ ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ d¢ﻤﻌﺭﻓ ﺔ ﻋﻠﻰ [e2 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ : d ¢(x ) = 1 - 1 2 x x ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤ ﻥ[[e2 ;+¥ﻟﺩﻴﻨ ﺎd ¢(x ) = x - 2 : 2 x ﻭ ﻟﺩﻴﻨﺎ x ³ e : ﻤﻨﻪ x - 2 ³ e - 2 ﻭ e - 2 > 0
x - 2 > 0 ﻭ 2x > 0 ﻤﻨﻪ d¢(x)>0 ﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ dﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل .[e2 ;+¥[ ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ ، [e2 ;+¥[ ﻟﺩﻴﻨﺎ x ³ e 2 ﻤﻨﻪ d(x) ³ d (e2 ) ﻭﻟﻨﺎ d (e 2 ) = e 2 - ln( e 2 ) : ﻤﻨﻪ d (e 2 ) = e - 2 ﻭ e - 2 > 0 ﻤﻨﻪ d ( e2 ) > 0 ﻤﻨﻪ d (x) > 0 ﻭ ﻋﻠﻴﻪ : ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ ﺍﻟﻤﺠﺎل [e2 ;+¥[ ﻴﻜﻭﻥ ) x - ln( x ) > 0 : ﺃﻱ ﻴﻜﻭﻥ ( x > ln( x ) § ﺍﺴﺘﻨﺘﺎﺝ: ﻤﻥ ﺃﺠل ﻜل ﻗﻴﻡ x ﻓﻲ ﺍﻟﻤﺠﺎل: [e2 ;+¥[ ) ln( x) < x ﻤﻤﺎ ﺴﺒ ﻕ( x ³ e 2 ﻤﻨﻪ ln( x ) ³ 2 ﻤﻨﻪ ln( x ) > 0 ﻭ x > 0 ﻭ ﻋﻠﻴﻪ :ﻤ ﻥ ﺃﺠل ﻜل ﻗﻴﻡ x ﻓﻲ: [e2 ;+¥[ 0 < ln( x) < x 0 < ln( x) < x ﻭ ﻤﻨﻪ: x x 0 < ln( x ) < 1 ﻭ ﻟﺩﻴﻨ ﺎ limæç x ® 1 ö÷ = 0 :ﻭ ﻤﻨﻪ : + ¥ è x ø x x lim x ® 0 = 0 ﻤﻨﻪ ﻭ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺼﺭ( ) limæç x ® ln( x ) ÷ö = 0 : + ¥ è x ø + ¥§ ﻤﻥ ﺃﺠل ﻜل ﻗﻴﻤﺔ ﻟـ x ﻓﻲ ]0 ;+¥[ ﻟﺩﻴﻨﺎ ln çæ 1 ö÷ = - ln( x ) : ﻤﻨﻪ : èxø ln( x ) = - ln æç 1 ÷öﻤﻨﻪ x. ln( x ) = -x. ln çæ 1 ö÷ : è x ø è x ø =( ) x. ln( x ) ln 1 x - ﻤﻨﻪ : 1 x
limçæﻤﻨﻪ ﺯ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺤﻭل x ® ln( x ) ö = 0 ﻭ lim æç x ® 1 ö÷ = +¥ : ﻭ ﻟﺩﻴﻨﺎ ÷+ ¥ è x ø è0 + x ø( ) ( ) lim 0 + æ ln 1 ÷ö = 0 : ﻤﻨﻪl0im + ççç x ® x ÷÷x ® x. ln( x ) = 0 : ﺍﻟﻨﻬﺎﻴﺎﺕ 1 è x ø n³2 : ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺒﺤﻴﺙn ﺃﺠل § ﻤﻥln( x ) 1 - ln( x ) : ﻟﺩﻴﻨﺎ Â+* ﻓﻲx ﻗﻴﻤﺔ ﻤﻬﻤﺎ ﺘﻜﻭﻥ x n = x n -1 x ( )lim çæ x ®1 ö÷x n -1 ø+ ¥ è lim x ® x n -1 = +¥ ﻤﻨﻪn - 1 ³ 1 : ﻭ ﻟﺩﻴﻨﺎ + ¥limæç x ® lnx( n x ) ø÷ö = 0 ﻤﻨﻪ limçæ x ® ln( x ) ö÷ = 0 ﻭ + ¥ è + ¥ è x ø ﻟﺩﻴﻨﺎÂ+* ﻓﻲx ﻭ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x n. ln( x ) = x n -1 ´ ( x. ln( x )) ( ) ﻤﻨﻪ lim (x ® x. ln( x ) ) = 0 ﻭlim x ® x n -1 = 0 ( ﻤﻨﻪn - 1) ³ 1 ﻭ 0+ 0+ lim ( x ® x n . ln( x )) = 0 0+ ﻭ ﻫﻜﺫﺍ ﻟﻘﺩ ﺒﺭﻫﻨﺎ ﻋﻠﻰ : ﺍﻟﻤﺒﺭﻫﻨﺎﺕlim (x ® x. ln( x ) ) = 0 limçæ x ® ln( x ) ö÷ = 0 0+ + ¥ è x ø ( lim x. ln( x ) = 0 ln( x ) lim = 0 ﺃﻱ ) x ® 0 x ® +¥ x x >0 : n³2 ﺒﺤﻴﺙ n ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ lim ( x ® x n . ln( x )) = 0 limçæ x ® lnx( nx ) ÷øö = 0 0+ + ¥ è( lim x n . ln( x ) = 0 lim ln( x ) = 0 ﺃﻱ ) x ®0 x >0 x ® +¥ x n
ﺘﻔﺴﻴﺭ ﻟﻠﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ : ﻟﻴﻜﻥ n ﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻤﻌﺩﻭﻤﺎ.1 1 \"ﺘﺄﺜﺭﺕ\" ﺒﻨﻬﺎﻴﺔ ﺍﻟﻌﺎﻤل x n -ﻋﻨﺩﻤﺎ ﻴﺅﻭل x ﺇﻟﻰ ln(x) : +¥ ﻴﺅﻭل ﺇﻟﻰ +¥ﻭ x n ﻴﺅﻭل ﺇﻟﻰ0 1 1 ﻭ ﺍﻟﺠﺩﺍﺀ x n . ln( x ) ﻴﺅﻭل ﺇﻟﻰ 0 ﺇﺫﻥ ﻨﻬﺎﻴﺔ ﺍﻟﺠﺩﺍﺀ x n . ln( x ) ﺍﻟﻤﺘﻌﻠﻕ ﺒـ xn ﻭ \"ﻫﻤﺸﺕ\" ﻨﻬﺎﻴﺔ ﺍﻟﻌﺎﻤل. ln(x) -ﻜﺫﻟﻙ ﻋﻨﺩﻤﺎ ﻴﺅﻭل x ﺇﻟﻰ 0 ﺒﻘﻴﻡ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ln(x) ﻴﺅﻭل ﺇﻟﻰ -¥ ﻭ xn ﻴﺅﻭل ﺇﻟﻰ.0 ﻭ ﺍﻟﺠﺩﺍﺀ x n . ln( x ) ﻴﺅﻭل ﺇﻟﻰ ، 0 ﻫﻨﺎ ﻜﺫﻟﻙ ﻨﻬﺎﻴﺔ ﺍﻟﺠﺩﺍﺀ\" x n . ln( x ) ﺘﺄﺜﺭﺕ ﺒﻨﻬﺎﻴﺔ ﺍﻟﻌﺎﻤل ﺤﻴﺙ x n ﻭ \"ﻫﻤﺸﺕ\" ﻨﻬﺎﻴﺔ ﺍﻟﻌﺎﻤل. ln(x) ) n ﺤﻴﺙ x ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ(x . ln( x ) -ﻟﻠﺘﻌﺒﻴﺭ ﻋﻠﻰ ﻫﺫﻩ ﺍﻟﻨﺘﺎﺌﺞ ﻨﻘﻭل \":ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺠﺩﺍﺀ ﻋﻨﺩﻤﺎ ﻴﺅﻭل ﺍﻟﻤﺘﻐﻴﺭ x ﺇﻟﻰ xn : 0 ﻴﺘﻔﻭﻕ ﻋﻠﻰ.\" ln(x) ln( x) ) ﺤﻴﺙ n ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ(x \" ﻓﻲ ﻨﻬﺎﻴﺔ ﺤﺎﺼل ﺍﻟﻘﺴﻤﺔ n ﻋﻨﺩﻤﺎ ﻴﺅﻭل ﺍﻟﻤﺘﻐﻴﺭ x ﺇﻟﻰ x n :+¥ ﻴﺘﻔﻭﻕ ﻋﻠﻰ.\" ln(x) ﻤﺜﺎل :ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=x 2 ln(x) : ﻟﺩﻴﻨﺎ lim ( x ® x 2 ) = 0 : ﻭ lim ( x ® - ln( x )) = +¥ 0 + 0+ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ﻤﻨﻪ lim f = +¥ : 0 + ﻭ ﻟﺩﻴﻨﺎ lim ( x ® x 2 ) = +¥ : + ¥ ﻭ lim ( x ® - ln( x )) = -¥ + ¥ ﺇﺯﺍﻟﺔ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ : f ( x ) = x 2 çæ1 - ln( x ) ö ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ :Â *+ è ÷ x 2 ø
lim çæ ®x ÷lnx( 2x ) öø = 0 ﻭ ®lim ( x =x 2 ) +¥ ﻭ ﻟﺩﻴﻨﺎ :+ ¥ è + ¥ ﻤﻨﻪ lim f = +¥ : + ¥ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻌﺸﺭﻱ -ﺃ -ﺘﻌﺭﻴﻑ ،ﺘﺭﻤﻴﺯ: ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻌﺸﺭﻱ ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﺭﻤﺯ log ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﺒﺎﻟﺩﺴﺘﻭﺭ : log( x ) = ln( x ) ln( 10 ) -ﺏ-ﺨﻭﺍﺹ ﺠﺒﺭﻴﺔ ) ﺘﺴﺘﻨﺘﺞ ﻤﻥ ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ ln ﺒﺎﺴﺘﻌﻤﺎل ﺘ ﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ( log Log(1)=0 ﻭ log(10)=1 ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ ﺍﻟﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ a ﻭ b ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺼﺤﻴﺢ: n log çæè 1a ÷øö = - log( a ) ، log(a´b)=log(a)+log(b) log( a n) = n log( a ) ، log çæ a ÷ö = - log( a ) - log( b) è b ø log( a ) = 1 . log( a ) 2 ﻤﺜ ﻼlog(1000)=log(10 3 ) : =3.log(10) = 3´1 ﻤﻨﻪlog(1000)=3:
ﻤﻼﺤﻅﺘﺎﻥ :§ ﺍﻟﺩﺍﻟﺔ log ﺘﺴﺘﻌﻤل ﻜﺜﻴﺭﺍ ﻓﻲ ﻤﺨﺘﻠﻑ ﺍﻟﻌﻠﻭﻡ ﻭ ﻫﺫﺍ ﻨﻅﺭﺍ ﻷﻫﻤﻴﺔ ﺍﺴﺘﻌﻤﺎل ﻗﻭﻯ ﺍﻟﻌﺩﺩ 10 ﻭ ﻜﻭﻥ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺼﺤﻴﺢ. log(10 n) =n ، n § ﺍﻟﻠﻤﺴﺔ log ﻤﻥ ﺤﺎﺴﺒﺔ ﺘﻤﻜﻥ ﻤﻥ ﺇﻴﺠﺎﺩ ﻗﻴﻡ ) ﺘﻘﺭﻴﺒﻴﺔ( ﻟﻠﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻌﺸﺭﻱ. -ﺠـ-ﺍﻟﺩﺭﺍﺴﺔ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻭ ﺍﺴﺘﻨﺘﺎﺠﺎﺕ :ﻤﺒﺭﻫﻨﺎﺕ ) :ﺘﺒﺭﻫﻥ ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ log ﻭ ﺍﻟﻨﺘﺎﺌﺞ ﺤﻭل ﺍﻟﺩﺍﻟﺔ( ln Â. * ﻫﻲ ﺍﻟﺩﺍﻟﺔ log ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ + lim ( x ® log( x )) = -¥ lim ( x ® log( x )) = +¥ 0 + + ¥ ﺍﻟﺩﺍﻟﺔ log ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ) ﻤﻨﻪ ﻤﺴﺘﻤﺭﺓ( ﻋﻠﻰ Â+* =lo g ¢( x) 1 ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ log¢ﻤﻌﺭﻓﺔ ﻋﻠ ﻰ Â+* ﺒﺎﻟﺩﺴﺘﻭﺭ : x. ln(1 0 ) Â. * ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﺯﺍﻴﺩﺓ · ﺍﻟﺩﺍﻟﺔ log + · ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ ﺍﻟﻤﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ a ﻭ: b a<b ﻴﻜﺎﻓﺊ log(a)<log(b) a£b ﻴﻜﺎﻓﺊ log(a)£log(b) a=b ﻴﻜﺎﻓﺊ )log(a)=log(b ·ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌ ﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ x x=1 ﻴﻜﺎﻓﺊlog(x)=0 x<1 ﻴﻜﺎﻓﺊlog(x)<0 x>1 ﻴﻜﺎﻓﺊlog(x)>0 x ¥ -ﺩ -ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ log ﻭ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ: )log(x 0 +¥ +¥ ¥
log y 3 ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ 2 1 ( C ) ® j ® 2 1 0 i 1 2 3 4 5 6 x 1 2 3 ( C ) ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ Log ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ ( O ; i; j ) ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺫﺍﺕ ﺍﻷﺴﺎﺱ a ﺤﻴﺙ a ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻔﺭﻭﺽ ﺒﺤﻴﺙ a>0 ﻭa¹0 -ﺃ -ﺘﻌﺭﻴﻑ ،ﺘﺭﻤﻴﺯ : ﻟﻴﻜﻥ a ﻋﺩﺩ ﺤﻘﻴﻘﻴﺎ ﻤﻔﺭﻭﻀﺎ ،ﺒﺤﻴﺙ a>1 ﻭ. a¹0 ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺫﺍﺕ ﺍﻷﺴﺎﺱ a ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﺭﻤﺯ loga ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﺒﺎﻟﺩﺴﺘﻭﺭ : =log a ( x ) ln( x ) ln( a ) ﻤﻼﺤﻅﺘﺎﻥ : -ﺍﻟﺩﺍﻟﺔ ln ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺫﺍﺕ ﺍﻷﺴﺎﺱ e ﻭ ﺍﻟﺩﺍﻟﺔ log ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺫﺍﺕ ﺍﻷﺴﺎﺱ.10 -ﻤﻥ ﺃﺠل a ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺒﺤﻴﺙ a>0 ﻭ ، a¹1 ﻟﺤﺴﺎﺏ ﻗﻴﻡ )ﻤﻘﺭﺒﺔ( ﻟﻠﺩﺍﻟﺔ loga ﺒﻭﺍﺴﻁﺔ ﺤﺎﺴﺒﺔ ،ﻨﺴﺘ ﻌﻤل ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ loga ﻭ ﺍﻟﻠﻤﺴﺔ LN log3(5)=1,4649735…. ﻓﻨﺠﺩ : =log3 ( 5) ln( 5) ﻤﺜﻼln( 3) :
-ﺏ -ﺨﻭﺍﺹ ﺠﺒﺭﻴﺔ : ) ﺘﺴﺘﻨﺘﺞ ﻤﻥ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ loga ﻭ ﺨﻭﺍﺹ ﺍﻟﺩﺍﻟﺔ.(ln ﻟﻴﻜﻥ a ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻔﺭﻭﻀﺎ ﺒﺤﻴﺙ a>0 : ﻭ. a¹1 loga(1)=0 ﻭloga(a)=1 ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﺎﻥ ﺍﻟﻤ ﻭﺠﺒﺎﻥ ﺘﻤﺎﻤﺎ x ﻭ yﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﺼﺤﻴﺢ. n log a ( x. y ) = log a ( x ) + log a ( y ) log a çèæç 1x ÷÷øö = - log a ( x ) log a ÷çæ x ö = log a ( x ) - log a ( y ) ÷çè y ø log a ( x n) = n. log a ( x ) log a ( x n) = n. log a ( x ) log a ( x ) = 12 . log a ( x ) -ﺠـ-ﺍﻟﺩﺭﺍﺴﺔ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻭﺍﺴﺘﻨﺘﺎﺠﺎﺕ : ﻤﺒﺭﻫﻨﺎﺕ:)ﺘﺒﺭﻫﻥ ﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ loga ﻭﺍﻟﻨﺘﺎﺌﺞ ﺤﻭل ﺍﻟﺩﺍﻟﺔ(ln * ﻟﻴﻜﻥ a ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻔﺭﻭﻀﺎ ﺒﺤﻴﺙ a>0 : ﻭa¹1 ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ loga ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ.* ﺍﻟﺩﺍﻟﺔ loga ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ) Â+* ﻤﻨﻪ ﻫﻲ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ (Â+* ﻭ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ=log ¢a ( x ) 1 loga¢ﻤﻌﺭﻓﺔ ﻋﻠﻰ Â+* ﺒﺎﻟﺩﺴﺘﻭﺭ: x. ln( x ) ** ﻭ ﺍﻟﻭﻀﻊ ﻓﻲ ﺍﻟﻨﺹ ﺍﻟﺴﺎﺒﻕ ﺴﺎﺌﺩ ،ﺇﺸﺎﺭﺓ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ ، Âﺇﺸﺎﺭﺓ ﻫﻲlog ¢a ( x ) ﺇﺸﺎﺭﺓ ln(a) ﻭ ﻟﺩﻴﻨﺎ ln(a)>0 ﻭ ﻟﺩﻴﻨﺎa>1 : ﻭ ln(a)<0 ﻟﻤﺎ 1>a>0 ﺇﺫﻥ ﺇ ﺫﺍ ﻜﺎﻥ a>1 ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ loga ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Â+* ﻭ ﺇﺫﺍ ﻜﺎﻥ 0<a<1 ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ loga ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ .Â+*
** ﻤﻥ ﺃﺠل a ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻔﺭﻭﺽ ﺒﺤﻴﺙ a>0 ﻭ، a¹1 log a ( x ) = ln(1 x ) ´ ln( x ) ﻟﺩﻴﻨﺎ lim (x ® ln( x ) ) = +¥ :ﻭ lim (x ® ln( x ) ) = -¥0 + ( )lim + ¥®x log a ( x ) = +¥ ﻓﻲ ﺍﻟﺤﺎﻟﺔ a>0 ﻴﻜﻭﻥ ln(a)>0 ﻭ ﻴﻜﻭﻥ : ®lim (x )log a ( x ) = -¥ ﻭ 0+ ( )lim + ¥®x log a ( x ) = -¥ ﻓﻲ ﺍﻟﺤﺎﻟﺔ 0<a<1 ﻴﻜﻭﻥ ln(a)<0 ﻭ ﻴﻜﻭﻥ : ®lim (x )log a ( x ) = +¥ ﻭ 0 + ﻤﻨﻪ: ﺍﻟﻤﺒﺭﻫﻨﺎﺕ: ﻟﻴﻜﻥ a ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻔﺭﻭﻀﺎ ﺒﺤﻴﺙ a>0 ﻭ. a¹1
ﻓﻴﺎﻟﺤﺎﻟﺔ ﻓﻲ ﺍﻟﺤﺎﻟﺔ 0<a<1a>1 ®lim (x )log a ( x ) = -¥ ®lim (x )log a ( x ) = +¥ 0 + 0+ ®lim (x )log a ( x ) = +¥ ﻭ ®lim (x )log a ( x ) = -¥ ﻭ + ¥ + ¥ ﺍﻟﺩﺍﻟﺔ loga ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ .Â+* ﺍﻟﺩﺍ ﻟﺔ loga ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ .Â+* ﻤﻨﻪ :ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭﺍﻥx ﻤﻨﻪ :ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭﺍﻥx ﻭ y ﻤ ﻥ . Â+* ﻭ y ﻤ ﻥ . Â+* x=y ﻴﻜﺎﻓﺊloga(x)=loga(x) x=y ﻴﻜﺎﻓﺊloga(x)=loga(x) x<y ﻴﻜﺎﻓﺊloga(x)<loga (y) x<y ﻴﻜﺎﻓﺊloga(x)>loga (y) x£y ﻴﻜﺎﻓﺊloga(x)£loga(y) x£y ﻴﻜﺎﻓﺊloga(x)³loga(y) ﻭ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x ﻤﻥ Â+* ﻭ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x ﻤﻥ Â+* loga(x)=0 ﻴﻜﺎﻓﺊx=1 loga(x)=0 ﻴﻜﺎﻓﺊx=1 loga(x)>0 ﻴﻜﺎﻓﺊx>1 loga(x)>0 ﻴﻜﺎﻓﺊx<1 loga(x)<0 ﻴﻜﺎﻓﺊx<1 loga(x)<0 ﻴﻜﺎﻓﺊx>1 -ﺩ - ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ loga ﻭ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ: a ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻔﺭﻭﺽ ﺒﺤﻴﺙ a>0: ﻭa¹1 ﻓﻲ ﺍﻟﺤﺎﻟﺔ0<a<1 x ¥ 0 +¥ Loga(x) +¥ ¥ log y 3 ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ a ﻓﻲ ﺍﻟﺤﺎﻟﺔ2 0<a<1 1 ®j 2 1 0 i® 1 2 3 4 5 6 x ( Ca ) 1 2 3
ﺸﻜل ﺍﻟﻤﻨﺤﻨﻲ (Ca) ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ ، loga ﻓﻲ ﺍﻟﺤﺎﻟﺔ ، 0<a<1 ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ ( o , i , j ) :ﻓﻲ ﺍﻟﺤﺎﻟﺔa>1 x ¥ 0 +¥ Loga(x) +¥ ¥ ¥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ loga ﻓﻲ ﺍﻟﺤﺎﻟ ﺔa>1 3y 2 2 1 1 i® 1 ( Ca ) 3 4 5 6 x ®j 2 0 1 2 3 ﺸﻜل ﺍﻟﻤﻨﺤﻨﻲ (Ca) ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ ، loga ﻓﻲ ﺍﻟﺤﺎﻟﺔ ، a>1 ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ ( o , i , j ) ﻤﻼﺤﻅﺔ ﻫﺎﻤﺔ :ﺍﻟﻤﻌﺭﻓﺔ ﺍﻟﺩﻗﻴﻘﻴﺔ ﻟﻤﻌﻨﻰ ﻜل ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﺭﻤﺯﻭ loga ، log ، ln : ﻀﺭﻭﺭﻴﺔ .ﻤﻼﺤﻅﺔ ﺃﺨﺭﻯ :ﻤﺜل ﻤﺎ ﻫﻭ ﺍﻟﺤﺎل ﻓﻲ ﺩﻭﺍل ﻤﺭﺠﻌﻴﺔ ﻤﺜل ﺍﻟﺩﺍﻟﺔ ، ﺍﻟﺩﺍﻟﺔ ، sin ﺍﻟﺩﺍﻟﺔ ، cos ﺒﺩﻻ ﻤﻥ loga(x) ، ln(x) ﻴﻜﺘﺏ ﻜﺫﻟﻙ loga(x) ،l n x ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭ ﻫﺫﺍ ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﻭﺠﻭﺩ ﺨﻁﺭ ﺍﻻﻟﺘﺒﺎﺱ. ﻤﺜﻼ :ﺼﻭﺭ 2 ﺒﺎﻟﺩﺍﻟﺔ ln ﺘﻜﺘﺏ ln(2) ﻭ ﺘﻜﺘﺏ ﻜﺫﻟﻙ: ln2 ﺼﻭﺭﺓ (5 + 3 ) ﺒﺎﻟﺩﺍﻟﺔ log ﺘﻜﺘﺏ log 5 + 3 ﻷﻥ log 5 + 3 ﻫﻲ ) ﺼﻭﺭﺓ 5 ﺒﺎﻟﺩﺍﻟﺔ. 3 + (l og
ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻟﻠﻭﻏﺎﺭﺘﻤﻴﺔ ﺘﺤﻭﻴل ﻋﺒﺎﺭﺍﺕ ﻤﻘﺎﺭﻨﺔ : ﺍﻟﺘﻤﺭﻴﻥ: 01 - 1- ﺃﻋﻁ ﺍﻟﻌﺒﺎﺭﺓ ﺒﺩﻻﻟﺔ ln(3) ﻟﻜل ﻭﺍﺤﺩ ﻤﻥ ﺍﻷﻋﺩﺍﺩ E ،D ، C، B، A : ﺍﻟﺘﺎﻟﻴﺔ: ، D = ln(9 3 ) ، C = 14 ln( 9 ) ، B = ln èççæ 217 ÷÷öø ، A = ln(81) . E = ln çæçè ÷3 ö ÷243 ø -2- ﺃﻜﺘﺏ ﻋﻠﻰ ﺃﺒﺴﻁ ﺸﻜل ﻤﻤﻜﻥ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻌﺒﺎﺭﺍﺕ ،H ، G ، F : ﺍﻟﺘﺎﻟﻴﺔ: K = ln çæèç e e - e ÷ö ، H = e e ، G = ln æçç 1 ÷÷øö ، F = ln( e 7 ) ÷e - e ø e1 0 è ﺍﻟﺘﻤﺭﻴﻥ: 02 - 1- ﻗﺎﺭﻥ ﺍﻟﻌﺩﺩﻴﻥ X ﻭ Yﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: Y = 7 ln( 2 ) (1 ﻭ . X = 3ln( 5) Y = ln(0, 3 5) ( 2 ﻭ . X = ln(35) - ln(1 00) . X = 12 ln( 5) Y ﻭ = 1 ln( 9) ( 3 4 -2- ﺃﺜﺒﺕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ x ﻴﻜﻭﻥ: ln( x 4 + 12) - ln( x 2 + 5) < 1 + ln( x 2 +1) ﻤﺠﻤﻭﻋﺎﺕ ﺘﻌﺭﻴﻑ ﻭ ﻤﺸﺘﻘﺎﺕ : ﺍﻟﺘﻤﺭﻴﻥ: 03 ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻭ ﺍﻟﺩﺍﻟﺔ ' f¢ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: f (1 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = 3 x 2 + x + ln( x ) : f (2 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = x + ( x 2 + 2 x ) ln( x ) :
f (3 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = ln 2 ´ ln( x ) : x . ln 3 f (4 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = 2 x + 1 + ln( 3 x 3 - 4 x - 8) : f (5 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = ln( x - x 2 ) - ln( -2 x + 1) : f (6 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f ( x ) = ln çæ 3 - 2 x ö÷ : è 5 x + 10 ø ( ( )) x (f x ) = x 2 + + f (7 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ ln - 5 x + 1 2 : 1 f (8 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = 5 - 2 ln( x ) : 1 + ln( x ) f (9 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x ) = ( x - 1) .(ln( x 2 -1) ) 2 : f (10 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ [( ) ] f (x ) = ( x - 3) . ln x 2 - 4 x + 3 2 : f (11 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ [ ( )] f (x ) = ln ln 2 x + 3 : f (12 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = ln( - x ) : ln( x 2 - 3 ) ﻤﻌﺎﺩﻻﺕ ،ﻤﺘﺭﺍﺠﺤﺎﺕ ،ﺠﻤل: ﺍﻟﺘﻤﺭﻴﻥ: 04 ﺤل ،ﻓﻲ ،Âﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ * - ﺤﻴﺙ x ﻫﻭﺍﻟﻤﺠﻬﻭل -ﺍﻟﺘﺎﻟﻴﺔ : (1) .............. ln( 4 x - 1) = ln( x 2 + x + 1) § (2) ..... ln( x + 2) + ln( 3 x - 5) = ln( x 2 + 5) § lnæç(3 )......................... x - 4 ÷ö = 0 § è 2 x + 3 ø =ln((4 ).................... - 2 x + 7 ) ln( 2 ) § 2 ln((5) ......................... 5 x + 3 ) = 3 § (6 )........ ln( 4 x 2 - x 3 ) = ln( 4 - x ) + 2 ln 3 § § ( ) (7) .................. 2 ln( x ) 2 + 5 ln( x ) = 3
ﺍﻟﺘﻤﺭﻴﻥ: 05 ﺤل ،ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ،ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ ،ﺤﻴﺙ (x ;y) ﻫﻭI…. ﺍﻟﻤﺠﻬﻭ ل: x - y = 24 5 ln( x ) + ln( y ) = 0 3ln( x ) + 2 ln( y ) = 3 II… 5 ln( x ) + 4 ln( y ) = 7 ln( xy ) = 2 III... ln( x ) ´ ln( y ) = -15 ln( x ) + ln( y ) = 2 + ln 2 IV.. x + y = 3e ﺍﻟﻤﺭﻴﻥ: 06 ﺤل ،ﻓﻲ ،Âﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ - ﺤﻴﺙ x ﻫﻭ ﺍﻟﻤﺠﻬﻭل -ﺍﻟﺘﺎﻟﻴﺔ: (1) .................. ln(3 x + 1) < 2 § (2) .................. (3 x + 5 ) ³ ln( 9 x + 2 ) § ln((3 )............... x + 2) - ln( x - 3) ³ 1 § § ( ) (4 )................... ln x 2 - 4 ln( x ) < 5 ﺍﻟﺘﻤﺭﻴﻥ: 07 ﺇﺫﺍ ﺃﻭﺩﻋﻨﺎ ﻤﺒﻠﻐ ﺎ ﻗﺩﺭﻩ 80000DA ﻓﻲ ﻤﺸﺭﻭﻉ ﻴﻀﻤﻥ ﻟﻪ ﺃﻥ ﺭﺃﺱ ﺍﻟﻤﺎل ﻴﺯﺩﺍﺩ ﺴﻨﻭﻴﺎ ﺒﻨﺴﺒﺔ ﻗﺩﺭﻫﺎ ) %5 ﺍﻟﻔﻭﺍﺌﺩ ﻤﺭﻜﺒﺔ( ﺒﻌﺩﻜﻡ ﺴﻨﺔ ،ﻋﻠﻰ ﺍﻷﻗل ،ﻴﺼﺒﺢ ﺭﺃﺱ ﺍﻟﻤﺎل ﺃﻜﺜﺭ ﻤﻥ 15000DA ؟
ﺍﻟﺘﻤﺭﻴﻥ: 08 ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ f ﺜﻡ ﺃﺩﺭﺱ ﺇﺸﺎﺭﺓ ، f(x) ﺤﺴﺏ ﻗﻴﻡ x ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ ) D ﺘﻠﺨﺹ ﻨﺘﺎﺌﺞ ﺍﻟﺩﺭﺍﺴﺔ ﻓﻲ ﺠﺩﻭل ﺇﺸﺎﺭﺓ ( ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : f (1 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = -4 x 2 ln( x + 3) : f (2 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = ln( x ) ´ (1 - ln( x )) : ln( 5 - x ) f (3 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = x 2 - 1 : f (4 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = 1 - (ln( x )) 2 : ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻭ ﺘﻜﺎﻤﻼﺕ : ﺍﻟﺘﻤﺭﻴﻥ: 09 ﻋﻴﻥ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f ﻋﻠﻰ ﺍﻟﻤﺠﺎل I ﻓﻴﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: f (1 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f ( x ) = 5 x 3 + 3 x + 1 + 1 : ﻭI=]0 ;+¥[ x f ( x ) = ﻭI=]1 ;+¥[ x 2 + x + 3 f (2 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x + 1 f (x ) = 1 -ﻭI=]¥ ;0[ 5 + 3 f (3 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x x 3 x f (4 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f ( x ) = 2 x 2 + 1 : ﻭI=Â x 2 + 2 x + 2 f (5 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f ( x ) = x 3 + 3 x 2 + 6 x + 2 : ﻭI=[0 ;+¥[ = f ( x ) ﻭI=]¥ ;0[ 1 2 3 + x 2 + f (6 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x x 3 f ( x ) = 5 x 2 5 x + 1 - 5 x + 2 x + 20 f (7 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ: x 2 + 3 ﻭI=Â ln x 3 f (8 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ : = f (x ) ﻭ [( ) I=]0 ;+¥ x
f (9 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f ( x ) = 1 : ﻭI=]1 ;+¥[ x. ln( x ) f (10 ﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f ( x ) = 1 : ﻭI=]1 ;+¥[ x. ln( x ) ﺍﻟﺘﻤﺭﻴﻥ: 10 6 x 2 + 5 x f f ( x ) = ﺒﺎﻟﺩﺴﺘﻭﺭ: ﺍﻟﻤﻌﺭﻓﺔ ﺍﻟﺩﺍﻟﺔ ﻟﺘﻜﻥ 2 x + 1 -1- ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . f -2- ﺃﻭﺠﺩ ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ c، b، a ﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ x ﻤﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ D ﻴﻜﻭﻥ: f (x ) = ax + b + c 2 x + 1 - ]¥ ; [ 1 -3- ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل 2 ﺍﻟﺘﻤﺭﻴﻥ: 11 /11 ﺃﺤﺴﺏ ﺍﻟﺘﻜﺎﻤﻼﺕ ﺍﻟﺘﺎﻟﻴﺔ: 1 x e 2 x 2 + x + 1 e 1 ò òI3 = 0 x 2 + 1d x ، I 2 = e dx ، I 1 = dx òx 3 x 1 ﺍﻟﺘﻤﺭﻴﻥ: 12 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ: f ( x ) = x ln( x ) - x -1- ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ . f -2- ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ln ﻋﻠﻰ ﺍﻟﻤﺠﺎل. ]0 ;+¥[ ﺍﻟﺘﻤﺭﻴﻥ: 13 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﺔ ﺍﻟﻤﺠﺎل ]1 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭ: f (x ) = ( x + 1) . ln( x + 1) - ( x + 2 ). ln( x + 2 ) -1- ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ . f
: ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭg ﻟﻠﺩﺍﻟﺔ، ]1 ;+¥[ ﻋﻠﻰ ﺍﻟﻤﺠﺎل، ﻋﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ -2- g ( x ) = x 3 + lnæ ç x + 2 ÷ö è x + 1 ø : ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ : 14 ﺍﻟﺘﻤﺭﻴﻥ : ﺃﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ lim çæ x ® ln æç x + 3 ö÷ ÷ö (2 lim æç x ® ln çæ 2 x + 1 ÷ö ÷ö (1 è(- 3 )- è x + 1 ø ø - ¥ è è x - 2 ø ø ( ) lim x ® ln( 3 x 3 + x 2 + 1) (4 lim æç x ® lnæç x + 3 ö÷ ÷ö (3 è(-1 ) + è x + 1 ø ø + ¥ ( ) lim x ® x 3 + x ln (- x ) (5 lim (x ® x + ln (x - 5) ) (6 - ¥ 5+ æ ( ) li+m ¥ èçç x ® (l5 n x( x + +83) )5 ö÷ø÷ (8 lim x ® x 2 + ( 4 x + 2) 3 . ln( 2 x + 1) (7 + 1 - 2 æ ln( 3 x 2 + 2 x + 1) ÷ø÷ö (10 æ ln( x 2 +1 1) ÷öø÷ (9 li+m ¥ ççè x ® ln( 2 x 2 + x + 4 ) li-m¥ çèç x ® x + lim çæ x ® ln( x + 1) ÷ö (12 lim æç x ® ln( x + 2 ) - ln 2 ÷ö (11 0 è x ø 0 è x ø æ x ® ln( x 2 + 1) - ln 2 ö÷÷ø (14 lim æç x ® ln( x - 2 ) ÷ö (13 lim1 èçç x - 1 3 è x - 3 ø lim çæ x ® 1 + ln( x + 1 ) ÷ö (15 è- 1 + x + 1 ø ( ) . lim x ® ( x 2 + 7 ) - ln( x 2 + x + 3) (16 + ¥
ﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺘﻤﺭﻴﻥ: 15 n nÎ N ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﺠﻤﻴﻊ ﺤﺩﻭﺩﻫﺎ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻭ ﻫﻲ ﺒﺤﻴﺙ U0=3 ﻭ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ n ﻓﻲ(U ) .ln(Un+1)=2+ln(Un) ، N -1- ﺃﻋﻁ ﻋﺒﺎﺭﺓ Un+1 ﺒﺩﻻﻟﺔ ، Un ﻤﻥ ﺃﺠل n ﻜﻴﻔﻲ ﻓﻲ، N ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ (Un) ؟ - 2- ﺃﻋﻁ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ (Un) ﺜﻡ ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭﻫﺎ ﻭ ﺘﻘﺎﺭﺒﻬﺎ . -3- ﻟﺘﻜﻥ (Vn) ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ. Vn=ln(Un) ، n ﺃ( ﻤﺎ ﻫﻲ ﻁﺒﻴﻌﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ(Vn) ؟ ﺏ(ﺃﺤﺴﺏ ،ﺒﺩﻻﻟﺔ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌ ﻲ، n ﻤﺠﻤﻭﻉ Sn ﺤﻴﺙ Sn=V0+…+Vn ﺝ( ﺍﺴﺘﻨﺘﺞ ﻋﺒﺎﺭﺓ ﺍﻟﺠﺩﺍﺀ Pn ﺤﻴﺙ Pn=u0´…´un ﺩﺭﺍﺴﺎﺕ ﺩﻭﺍل ﺍﻟﺘﻤﺭﻴﻥ: 16 ﻭ ﻟﻴﻜﻥ (Cf ) ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻓﻲ =f ( x ) 9 ln( x ) ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ : x ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ) (O ; i; j ) ﻭﺤ ﺩ ﺍﻟﻁﻭل(1cm -1- ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -2- ﺃﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻟﻠﻤﻨﺤﻨﻲ.(Cf ) -3- ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ (d) ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ (Cf ) ﻓﻲ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻌﻪ ﻤﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل. -4- ﺃﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ(d) ﺜﻡ ﺍﻟﻤﻨﺤﻨﻲ.(Cf ) -5- ﺃﺤﺴﺏ ﺍﻟﻤﺴﺎﺤﺔ ﺍﻟﻤﻘﺩﺭﺓ ﺒﺎﻟﺴﻨﺘﻴﻤﺘﺭ ﺍﻟﻤﺭﺒﻊ ﻟﻠﺤﻴﺯ ﺍﻟ ﻤﺴﺘﻭﻱ (D) ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻲ (Cf ) ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺫﺍﺕ ﺍﻟﻤﻌﺎﺩﻻﺕx=e2 ، x=e ،y =0
ﺍﻟﺘﻤﺭﻴﻥ: 17 ﻭ ﻟﻴﻜﻥ ) (Cfﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻓﻲ f ( x ) = ln æç x ö ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ÷ f: è x + 1 øﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ) ﻭﺤﺩﺓ ﺍﻟﻁﻭل.(2cm -1- ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -2- ﻋﻴﻥ ﻤﻤﺎﺴﺎﺕ ) (Cfﺍﻟﻤﻭﺍﺯﻴﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ) (Dﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ 1 . y = x + 3 2 w 1 ﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻲ(- ;0) (Cf) -3- ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻨﻘﻁﺔ wﺤﻴﺙ 2 -4- ﺃﺩﺭﺱ ﺍﻟﻔﺭﻭﻉ ﺍﻟﻼﻨﻬﺎﺌﻴﺔ ﻟﻠﻤﻨﺤﻨﻲ (Cf) ﺜﻡ ﺃﺭﺴﻡ ﺍﻟﻤﻨﺤﻨﻲ.(Cf) -5- ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﺩﺍﻟﺔ F ﺍﻟﻤﻌﺭﻓﺔ ﻋ ﻠﻰ ﺍﻟﻤﺠﺎل ]0 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭ ﺭ: F (x ) = x + ln( x ) - ( x + 1) ln( x + 1) ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل. ]0 ;+¥[ -6- ﻟﺘﻜﻥ g ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ g ( x ) = ln æç x + 1 ö÷ : è x ø-ﺃ - ﺒﺩﻭﻥ ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ، g ﺃﻨﺸﺊ (Cg) ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ g ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ ﺍﻟﺴﺎﺒﻕ. ( O ; i; j ) -ﺏ-ﺃﺤﺴﺏ ﺍﻟﻤﺴﺎﺤﺔ ،ﺍﻟﻤﻘﺩﺭﺓ ﺒﺎﻟﺴﻨﺘﻴﻤﺘﺭ ﺍﻟﻤﺭﺒﻊ ،ﻟﻠﺤﻴﺯ ﺍﻟﻤﺴﺘﻭﻱ Dﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﻨﺤﻨﻴﻴﻥ (Cf) ﻭ(Cg) ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﺫﺍ ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ x=1 ﻭ. x=2 ﺍﻟﺘﻤﺭﻴﻥ: 18 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ]2 ;+¥[ ﺒﺎﻟﺩﺴﺘﻭﺭf ( x ) = x +1 - ln çæ x + 3 ÷ö : è x + 2 øﻭ ﻟﻴﻜﻥ (Cf) ﺍﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ (O ; i ; j ) . -1- ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f -2- ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ، f(x)=0 ﺤﻴﺙ x ﻫﻭ ﺍﻟﻤﺠﻬﻭل ﻓﻲ ﺍﻟﻤﺠﺎل ، ]2 ;+¥[ ﻟﻬﺎ ﺤل ﻭﺤﻴﺩ aﻭ ﺃﻥ ﻫﺫﺍ ﺍﻟﺤل aﻴﺤﻘﻕ : . 0,5<a<0,25
-3- ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻲ (Cf) ﻟﻪ ﻤﺴﺘﻘﻴﻤﺎﻥ ﻤﻘﺎﺭﺒﺎﻥ ﺃﺤﺩﻫﻤﺎ ﻤﺎﺌل ﻨﺭﻤﺯ ﺇﻟﻴﻪ ﺒﺎﻟﺭﻤﺯ ). (D -4- ﺃﺩﺭﺱ ﺍﻟﻭﻀﻌﻴﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻤﻨﺤﻨﻲ (Cf ) ﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ).(D -5- ﺃﺭﺴﻡ (Cf) ﻭ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ ﺍﻟﻤﻘﺎﺭﺒﻴﻥ ﻟﻪ.- 6- ﻓﻲ ﺩﺭﺍﺴﺔ ﺴﻭﻕ x ،ﻴﺭﻤﺯ ﺇﻟﻰ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﺘﺠﺔ ،ﻓﻲ ﻭﺤﺩﺓ ﻤﻌﻁﺎﺓ V(x) ،ﻴﺭﻤﺯ ﺇﻟﻰ ﺴﻌﺭ ﺍﻟﻭﺤﺩﺓﺍﻟﻤﻘﺘﺭﺡ ﻤﻥ ﻁﺭﻑ ﺍﻟﻤﻨﺘﺠﻴﻥ ) ﺤﺴﺏ ﺍﻟﻜﻴﺔ ﺍﻟﻤﻨﺘﺠﺔ( ﻭ D(x) ﺴﻌﺭ ﺍﻟﻭﺤﺩﺓ ﺍﻟﻤﻭﺍﻓﻕ ﻋﻠﻴﻪ ﻤﻥ ﻁﺭﻑ ﺍﻟﻤﺴﺘﻬﻠﻜﻴﻥ ) ﺤﺴﺏ ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﻨﺘﺠﺔ(. ﺃﻋﻁ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻘﺭﺒﺔ ﻟﺴﻌﺭ ﺍﻟﻭﺯﻥ ﻭ ﻟﻜﻤﻴﺔ ﺍﻟﺘﻭﺍﺯﻥ ﻋﻠﻤﺎ ﺃﻥ 0<x<3 ﻭ) V(x)=f(xﻭD(x)=x+1 .ln(x)
ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺤﻭل ﺍﻟﺩﻭﺍل ﺍﻟﻠﻭﻏﺎﺭﺘﻤﻴﺔ ﺍﻟﺘﻤﺭﻴ ﻥ1: /1 ﺇﻋﻁﺎ ﺀ ﺍﻟﻌﺒﺎﺭﺓ ﺒﺩﻻﻟﺔ:ln(3) ﻟﺩﻴﻨﺎA=ln(81)=ln(3 4 )=4ln(3) : =B ln çæ ÷1 ö = ln æç 1 ö = ﻟﺩﻴﻨﺎ -ln(3 3 ) : è 27 ø è ÷ ﻭ 3 3 ø ﻭ ﻤﻨﻪ.B=3ln(3) ﻭ ﻟﺩﻴﻨﺎ ( ) C = 1 ln(9) = 1 ln 3 2 = 1 ln(3) : 4 4 2 1ﻭ ﻟﺩﻴﻨﺎD = ln(9 3 )) ln( 9) + ln( 3 ) = ln( 9 ) + ln( 3 2 ) : ﺤﺴﺏ ﺍﻟﺨﺎﺼﻴﺔ ﺍﻟﺠﺒﺭﻴﺔ ﺃﻱ ﺃﻥD = ln(3 2 ) + 1 ln( 3) : ﺍﻷﺴﺎﺴﻴﺔ ﻭ ﻨﺘﺎﺌﺠﻬﺎ 2 = 5 ln( 3) 2 ﻭ ﻟﺩﻴﻨﺎ ( ) E = ln æçèç 2433 ÷ø÷ö = ln 3 - ln( 3 5 ) : = 1 ln 3 - 5 ln( 3) 2 = - 9 ln( 3) 2 /ﻜﺘﺎﺒﺔ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﻤﻌﻁﺎﺓ ﻋﻠﻰ ﺃﺒﺴﻁ ﺸﻜل2 : ﻟﺩﻴﻨﺎF = ln(e 7 ) = 7 ln( e ) = 7 ´1 = 7 : G = ln çæ 1 ÷ö = - ln e1 0 = =-10 ln e -10 ﻟﺩﻴﻨﺎ : ﻭ è e1 0 ø
ﻭ ﻟﺩﻴﻨﺎ ( ) H = ln e e = ln( e ) + ln( e ) = 1 - 1 ln e : 2 ﻭ ﻤﻨﻪH = 1 : 2 ( ) K = ln e e - e = ln e e - e ﻭ ﻟﺩﻴﻨﺎ :e - e e - e ﻭ ﻤﻨﻪ ( ) K = ln e = 1 : 2 ﺍﻟﺘﻤﺭﻴﻥ 2: /1 ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ X ; Y ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﻤﻌﻁﺎ ﺓ: X=3ln(5)( 1 ﻭ.Y=7ln(2) ﻟﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻔﺭﻕ. ﻟﺩﻴﻨﺎXY=3ln(5)7ln(2))ln(5 3 )ln(27 ) : ﺃﻱ ﺃﻥX - Y = ln 125 : 128 ﻭ ﻟﻜﻥ0 < 125 < 1 : 128 ﻭ ﻋﻠﻴﻪlnæç125 ö÷ < 0 : è 128 ø ﻭ ﻤﻨﻪ X - Y < 0 ﻭ ﻋﻠﻴﻪ . X < Y -ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﻤﻥ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﻤﺘﺒﻘﻴﺘﻴﻥ . /2 ﺍﻹﺜﺒﺎﺕ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ x ﻴﻜﻭﻥ : ln(x 4+ 12)ln(x2 + 5)w1+ln(x2 + 1)…………(I) ﻟﻴﻜﻥ x ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻜﻴﻔﻴﺎ.<ln x4 + 12 ln e + ln( x 2 + 1) ﺃﻥ : ﺘﻌﻨﻲ ﺍﻟﺠﻤﻠﺔ(I) x 2 + 5
<ln x 4 + 12 ln( e ( x 2 + 1) ) ﺃﻥ : ﻴﻌﻨﻲ ﻫﺫﺍ ﻭ x 2 + 5 ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ <x 4 + 12 e ( x 2 + ﺃﻥ1) \" ﻴﻌﻨﻲ ﻫﺫﺍ ﻭ []0,+¥ x 2 + 5 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ) x 4 + 12 < e ( x 2 + 1) ( x 2 + 5) : ﻷ ﻥ(x2 + 5>0 : ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ( e - 1) x 4 + 6e x 2 + (5 e -12 ) > 0 : ﻭ ﺒﻤﺎ ﺃﻥ ( e - 1) x 4 > 0 : ﻭ 6 ex 2 > 0 ﻭ 5e - 12 > 0 ﻓﺈﻥ( e - 1) x 4 + 6 ex 2 + ( 5e -12 ) > 0 : ﻭ ﻤﻨﻪ ﺍﻟﻤﺠﻤﻠﺔ (I) ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ. x ﺍﻟﺘﻤﺭﻴﻥ :3 ﺘﻌﻴﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻭ ﺍﻟﺩﺍﻟﺔ f ¢ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ f ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠ ﻲ: f(x)=3x2 + x+ln(x)/ 1 ﻟﺩﻴﻨﺎD=]0 ;+¥[ : ﻭ ﻤﻥ ﺃﺠل ﻜل x ﻤ ﻥ Dﻟﺩﻴﻨ ﺎ: f ¢ (x ) = 6 x +1 + 1 x = 6 x 2 + x +1 x f ( x ) = x + ( x 2 + 2 x ) ln( x ) /2 ﻟﺩﻴﻨﺎ (x>0)} ﻭD={x,xÎÂ : (x³0) =]0 ;+¥[ ﻭ ﻤﻥ ﺃﺠل ﻜل x ﻤﻥ D ﻟﺩﻴﻨﺎ : f ¢( x ) = 1 + ( 2 x + 2 ) ln( x ) + ( x 2 + 2 x ) 1 2 x x = 1 + ( 2 x + 2 ) ln( x ) + x + 2 2 x
f ( x ) = ln(2 ). ln( x ) / 3 x. ln(3 ) D={x,xÎÂ : (x¹0) ﻭ (x>0)} ﻟﺩﻴﻨﺎ =]0 ;+¥[ : ﻟﺩﻴﻨﺎD ﻤﻥ x ﻭ ﻤﻥ ﺃﺠل ﻜل 1 .x -1 . ln( x ) f ¢( x ) = ln(2 ) x . x 2 ln(3 ) = ln( 2) . 1- ln( x) ln(3 ) x 2 = log 3 ( 2 ). 1 . lxn (2 x) f ( x ) = 2 x + 1 + ln(3 x 2 - 4 x - 8 ) / 4 D={x,xÎÂ : 3x2 4x8>0 } ﻟﺩﻴﻨﺎ ] - ¥; 4 - 2 7 [ È] 4 + 2 7 ; +¥[ 3 3 : ﻟﺩﻴﻨﺎD ﻤﻥ x ﻭ ﻤﻥ ﺃﺠل ﻜل f ¢ ( x ) = 2 + 6 x - 4 3 x 2 - 4 x - 8 = 6 x 2 - 2 x - 20 3 x 2 - 4 x - 8 f ( x ) = ln( x - x 2 ) - ln( -2 x +1) /5 D={x,xÎÂ : (xx2 > 0) ﻭ (2x+1>0)} ﻟﺩﻴﻨﺎ =]0; 1 [ 2 : ﻟﺩﻴﻨﺎD ﻤﻥ x ﻭ ﻤﻥ ﺃﺠل ﻜل f ¢( x ) = 1 - 2 x - - 2 x - x 2 1 - 2 x
f ¢( x ) = (1 - 2 x )2 + 2( x - )x 2 :ﺃﻥ ﺃﻱ (x - x 2 )(1 - 2 x ) = 2 x 2 + 2 x +1 (x - x 2 )(1 - 2 x ) f ( x ) = ln æç 3 - 2 x ö÷ /6 è 5 x +10 øD = {x , x Î R : ( 5 x +10 ¹ 0 ) çæ 3 - 2 x > 0 ö÷ } : ﻭ ﻟﺩﻴﻨﺎ è 5 x +10 ø=] - 2; 3 [ 2 : ﻟﺩﻴﻨﺎD ﻤﻥ x ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ f (x ) = - ln(5 ) + ln çæ 3 - 2 x ÷ö = - ln(5 ) + ln( 3 - 2 x ) - ln( x + 2 ) è x + 2 øf ¢( x ) = - 2 - 1 : ﻭ ﻋﻠﻴﻪ 3 - 2 x x + 2 = (3 - -7 2 ) 2 x )(x +f ( x ) = x + (ln( -5 x + 1) ) 2 /7 x 2 + 1 {D = x , x Î R : ( x 2 +1 ¹ 0) (- 5 x +1 > 0 ) } : ﻭ ﻟﺩﻴﻨﺎ=] - ¥; 1 [ 5 : ﻟﺩﻴﻨﺎD ﻤﻥ x ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ
f ¢( x ) = x 2 +1 - 2 x 2 + 2. - 5 . ln( -5 x +1) - 5 x +1 ( ) x 2 +1 2 = 1 - x 2 - 10 ln( -5 x + 1) - 5 x +1 ( ) x 2 +1 2 f ( x ) = 5 - 2 ln( x ) /8 1 + ln( x ) D = {x , x Î R : ( x > 0 ) (1 + ln( x ) ¹ 0 ) } : ﻭ ﻟﺩﻴﻨﺎ = ]0; 1[ È] 1 ;+ ¥[ e e : ﻟﺩﻴﻨﺎD ﻤﻥx ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ 2 (1 + ln( x ) )- 1 (5 - 2 ln( x ) ) f ¢( x ) = x x (1 + ln( x ) )2 = 1 + ln( x) - 5 + 2 ln( x ) x (1 + ln( x ) )2 = - 4 + 3 ln( x) x (1 + ln( x ) )2 f ( x ) = (x - 1) .( ln (x 2 - )) 1 2 /9 {D = x , x Î R : ( x 2 -1 > 0 ) } : ﻭ ﻟﺩﻴﻨﺎ =] - ¥;- 1[ È]1 ; + ¥[ : ﻟﺩﻴﻨﺎD ﻤﻥx ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ f ¢( x ) = 1 .( ln (x 2 -1) )2 + (x -1) .2 . 2 x (. ln x 2 -1) x 2 -1 = ln (x2 -1) + 4 x (x -1) ln (x 2 -1) x 2 -1
= ln (x 2 -1) + (4 x ln x 2 -1) X + 1 [ ] ( )f (x ) = (x - 3 ). ln x 2 - 4 x + 3 2 /10 {D = x , x Î R : x 2 - 4 x + 3 ¹ 0 ) } : ﻭ ﻟﺩﻴﻨﺎ = R - { 1;3 } : ﻟﺩﻴﻨﺎD ﻤﻥx ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ f ¢ ( x ) = 1 . ln( x 2 - 4 x + 3) + ( x - (2 x 2 - 4 x + 3 )(2 x - 4 ) 3) . ( ) x 2 - 4 x + 3 2 = ln( x2 - 4 x + 3) + 4( x - 3) (x - 2 ) x 2 - 4 x + 3 = ln( x 2 - 4 x + 3) + 4( x - 2 ) x -1 f (x ) = ln[ln( 2 x + 3) ] /1 1 D = {x , x Î R : ( 2 x + 3 > 0 ) (ln( 2 x + 3) > 0 ) } : ﻭ ﻟﺩﻴﻨﺎ D = íìx , x Î R : ( x > - 3 ) ( 2 x + 3 > 1) } î 2 =] -1; + ¥[ : D ﻤﻥx ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻋﺩﺩ 2 f ¢( x ) = 2 x + 3 ln( 2 x + 3) = (2 x + 2 3) 3) ) ln( 2 x +
f ( x ) = ln( -x ) /12 ln( x 2 - 3 ) ﻭ ﻟﺩﻴﻨﺎ :D = { x , x Î R : ( -x > 0) ( x 2 - 3 > 0 ) (ln( x 2 - 3 ) ¹ 0 } ﺃﻱ ﺃﻥ D = { x , x Î R : ( x < 0) ( x 2 > 3) ( x 2 - 3 ¹ 1) } :=] - ¥; -2[ È] - 2; - 3[ ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ x ﻤﻥ D ﻟﺩﻴﻨﺎ: f ( x ) = 2. ln( -x ) ln( x 2 - 3) 1 ln( x 2 - 3) - 2 x ln( -x ) f ¢( x ) = x x 2 - 3 (ln( x 2 - 3) ) 2 ﻭ ﻋﻠﻴﻪ: ( ) ( )= x 2 - 3 ln x 2 - 3 - 2 x 2 ln( -x ) ( ) x x 2 - 3 (ln( x 2 - 3) ) 2 ﺍﻟﺘﻤﺭﻴﻥ:4 ﺍﻟﺤﻠﻭل ،ﻓﻲ ،ﻟﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﻌﻁﺎﺓ Â: ﻓﻲ ﻜل ﻤﺎ ﻴﻠﻲ ﻨﺴﻤﻲ D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻌﻁﺎﺓ: ln( 4 x - 1) = ln( x 2 + x + 1) ..............( 1 ) /1 ﺃ ( ﻟﺩﻴﻨﺎ D = { x / x Î R : ( 4 x -1 > 0) ( x 2 + x +1 > 0) } : =] 1 ;+¥[ ﺏ ( ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ x ﻤﻥ D ﻟﺩﻴﻨﺎ : 4 ﺘﻜﺎﻓﺊ 4x1=x 2+ x+1 (1) ﻷﻥ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ []0 ;+¥ ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ x 2 3x+2=0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ (x=1) ﺃﻭ(x=2)
ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ (1 ) ﻫﻲ. {1 ;2} * ﺒﻨﻔﺱ ﺍﻟﻤﻨﻬﺠﻴﺔ ﻴﺘﻡ ﺤل ﺍﻟﻤﻌﺩﻻﺕ ﺍﻷﺨﺭﻯ ﻤﻊ ﺍﻟﻤﻼﺤﻅﺔ ﺃﻥ : -ﻤﻥ ﺃﺠل x ﻤﻥ D ﻟﺩﻴﻨﺎ : (2) ﺘﻜﺎﻓﺊ ln[(x+2)(3x5)]=ln(x2 + 5) -ﻤﻥ ﺃﺠل x ﻤﻥ D ﻟﺩﻴﻨﺎ : (4) ﺘﻜﺎﻓﺊ ln(-2 x + 7 ) = ln 2 -ﻤﻥ ﺃﺠل x ﻤﻥ D ﻟﺩﻴﻨﺎ : (5) ﺘﻜﺎﻓﺊ ( ) ln(5 x + 3 ) = ln e 3 -ﻤﻥ ﺃﺠل x ﻤﻥ D ﻟﺩﻴﻨﺎ : (6 ) ﺘﻜﺎﻓﺊ ln( 4 x2 - x 3 ) = ln 4 - x 3 2 -ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ (7) ﻴﻤﻜﻨﻨﺎ ﻭﻀﻊ ln(x)=y ﺤﻴﺙ. x>0 ﺍﻟﺘﻤﺭﻴﻥ :5 ﺍﻟﺤﻠﻭل ،ﻓﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ،ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺠﻤل ﺍﻟﻤﻌﻁﺎﺓ . x - y = 24 I…. 5 ln( x ) + ln( y ) = 0 ﻟﻴﻜﻥ x ﻭ y ﻋﻨﺼﺭﻴﻥ ﻤﻥ . ﺍﻟﺠﻤﻠﺔ (I) ﺘﻜﺎﻓﺊ x - y = 24 5 ln( xy ) = 0 ( x > 0 ) ( y > 0 )
ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ x = y + 24 5 y = 1 x ( x > 0 ) ( y > 0) ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ x = 1 + 24 x 5 y = 1 x ( x > 0) ( y > 0) ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 5 x 2 - 24 x - 5 = 0 y = 1 x ( x > 0) ( y > 0 ) ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ(x = 5) ( y = 1 ) 5 * ﺒﻨﻔﺱ ﺍﻟﻤﻨﻬﺠﻴﺔ ﻴﺘﻡ ﺤل ﻜل ﺠﻤﻠﺔ ﻤﻥ ﺍﻟﺠﻤل ﺍﻟﻤﺘﺒﻘﻴﺔ ﻤﻊ ﺍﻟﻤﻼﺤﻅﺔ ﺃﻨﻪ : -ﻤﻥ ﺃﺠل x>0 ﻭ y>0 ﻴﻜﻭﻥ : (II) ﺘﻜﺎﻓﺊﺍﻻﺴﺘﻔﺎﺩﺓ ﻤﻥ ﻤﺠﻬﻭل ﻤﺴﺎﻋﺩ 3 x¢ + 2 y ¢ = 3 5 x ¢ + 4 y ¢ = 7 x ¢ = ln( x ) y ¢ = ln( y ) -ﻤﻥ ﺃﺠل x>0 ﻭ y>0 ﻴﻜﻭﻥ :
(III) ﺘﻜﺎﻓﺊ ln(x ) + ln( y ) = 2 ln( x ) ´ ln( y ) = -15 2+ln2=lne2 +ln e ﻭ ﻨﺴﺘﻔﻴﺩ ﻤﻥ ﻜﻴﻔﻴﺔ ﺤل ﺍﻟﺠﻤﻠﺔ ﺍﻟﺴﺎﺒﻘﺔ. =ln(2e2 ) -ﻤﻥ ﺃﺠل x>0 ﻭ y>0 ﻴﻜﻭﻥ : (IV) ﺘﻜﺎﻓﺊ x. y = 2. e x x + y = 3e ﺍﻟﺘﻤﺭﻴﻥ 6 ﺍﻟﺤﻠﻭل ،ﻓﻲ ،Âﻟﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﻤﻌﻁﺎ ﺓ: ln(3 x + 1) < 2 ..................(1 ) /1 ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ . ﺍﻟﺠﻤﻠﺔ (1) ﺘﻜﺎﻓﺊ ln( 3 x + 1) < ln( e 2 ) 3 x +1 > 0 ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ 3 x + 1 < e 2 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ ﻋﻠﻰ []0 ;+¥ x > - 1 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 3 x < e 2 -1 3 x > - 1 3
- 1 < <x e x -1 ﻴﻜﺎﻓ ﺊ: ﻫﺫﺍ ﻭ 3 3 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ (1 ) ﻫ ﻲ: ] - 1 ; e x -1 [ 3 3 (3 x + 5) ³ ln( 9 x + 2 ) ..................( 2) / 2 ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ . ﺍﻟﺠﻤﻠﺔ (2 ) ﺘﻜﺎﻓﺊ ﺍﻟﺩﺍﻟﺔ ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ 3x + 5 ³ 9 x + 2 ﻋﻠﻰ []0 ;+¥ 3 x + 5 > 0 9 x + 2 > 0 ﺃﻱ ﺃﻥ ﺍﻟﺠﻤﻠﺔ (2) ﺘﻜﺎﻓﺊ x £ 1 2 x > - 5 3 x > - 2 9 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤ ﺔ) (2 ﻩ- 2 < x £ 1 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ 9 2 ﻱ] - 2 ; 1 ] : 9 2 ( ( )) ln x 2 - 4 ln( x ) < 5 ...................(4) / 4 ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ Â+* ﺍﻟﺠﻤﻠﺔ (4 ) ﺘﻜﺎﻓﺊ ( ( )) ln x 2 - 4 ln( x ) - 5 < 0 ﻭ ﻫﺫﺍ ﻴﻜﺎﻓﺊ(ln( x ) + 1) (ln( x ) - 5) < 0 ﻨﻠﺨﺹ ﺇﺸﺎﺭﺓ ﺍﻟﺠﺩﺍﺀ (ln( x ) + 1) (ln( x ) - 5) ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟ ﺘﺎﻟﻲ ﻭ ﻫﺫﺍ ﺘﺒﻌﺎ ﻟﻘﻴﻡ x ﻤﻥ Â+*
x ¥ 0 1 e5 +¥ ﺇﺸﺎﺭﺓln(x)+1 e ﺇﺸﺎﺭﺓln(x)5 + ﺇﺸﺎﺭﺓ(ln(x)+1)(ln(x)5) -+ -- + +- + ] 1 ; e [ 5 ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺍﻟﻤﻌﻁﺎﺓ ﻫﻲ : e ﺍﻟﺘﻤﺭﻴﻥ :7 ﻟﻴﻜﻥ n ﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ. ﻨﺴﻤﻲ Un ﺭﺃﺱ ﺍﻟﻤﺎل ﺒﻌﺩ n ﺴﻨﺔ ﻤﻥ ﺍﻹﻴﺩﺍﻉ ﻋﻨﺩﺌﺫ: Un +1 = U n + 1050 U n 105 = 100 U n 105 ﻭ ﻋﻠﻴﻪ (Un) ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ 100 æç 110005 ö÷ø n è U n = U 0 ´ ﻭ ﻤﻨﻪ = 80000 ´ æç105 ö÷n è 100 ø n ﺤل ﻟﻤﺴﺄﻟﺘﻨﺎ ﻴﻌﻨﻲ ﺃﻥ: U n ³ 150000 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ: 80000 ´ çæ105 ÷ön ³ 150000 è 100 ø
æç 105 n ³ 15 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ö ÷ è 100 ø 8 ln æç 105 n ³ ÷ln æç 15 ö ﺃﻱ ﺃﻥ n ﺤل ﻟﻤﺴﺄﻟﺘﻨﺎ ﻴﻌﻨﻲ ﺃﻥ : ö ÷è 100 ø è 8 ø 105 n ³ ln æç ÷185 øö ﺃﻱ ﺃﻥ : ln ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ln > 0 è 100 ln çæ 105 ÷ö è 100 ø ln æç 15 ÷ö ﻭ ﻟﻜﻥè 8 ø » 12 , 88 : ln æç 105 ÷ö è 100 ø ﻭ ﻤﻨﻪ ﺒﻌﺩ 12 ﺴﻨﺔ ،ﻋﻠﻰ ﺍﻷﻗل ،ﻴﺼﺒﺢ ﺭﺃﺱ ﺍﻟﻤﺎل ﺃﻜﺜﺭ ﻤﻥ. 150000DA ﺍﻟﺘﻤﺭﻴﻥ :8 ﺘﻌﻴﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ، D ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ، f(x) ﺤﺴﺏ ﻗﻴﻡ x ﻓﻲ ﺍﻟﻤﺠﻤﻭﻋﺔ D . .f(x)=4x 2l n(x+3) /1 ﻟﺩﻴﻨﺎD={x,xΠ:x+3>0} : =]3 ;+¥[ x ¥ 3 ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ D ﻋﻨﺩﺌﺫ: 2 0 +¥ ﺇﺸﺎﺭﺓ 4x 2 - ﺇﺸﺎﺭﺓln(x+3) - + + ﺇﺸﺎﺭﺓ f(x) + -- f(x)=ln(x).(1ln(x)) /2 ﻟﺩﻴﻨﺎD={x,xΠ:(x>0)} : =]0 ;+¥[
ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ D ﻋﻨﺩﺌ ﺫ:x ¥ 0 1 e +¥ ﺇﺸﺎﺭﺓln(x) - + + ﺇﺸﺎﺭﺓ1ln(x) + + ﺇﺸﺎﺭﺓ f(x) + x ¥ 1 f ( x ) = ln( 5 - x ) /3 x 2 - 1 ﻟﺩﻴﻨﺎ (x 2 1¹0)}: ﻭD={x,xÎÂ :(5x>0) ﺃﻱ ﺃﻥ D=]¥ ;1[ È]1 ;1[È]1 ;5[: ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ D ﻋﻨﺩﺌﺫ: 1 4 5 +¥ ﺇﺸﺎﺭﺓln(5x) + + + ﺇﺸﺎﺭﺓx2 1 + + + ﺇﺸﺎﺭﺓ f(x) + + f ( x ) = 1 - (ln( x )) 2 / 4 ﻟﺩﻴﻨﺎD={x,xÎÂ :x>0} : =]0 ;+¥[ ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ D ﻋﻨﺩﺌﺫ: ﻟﺩﻴﻨﺎ f(x)=(1ln(x))(1+ln(x)) :
x ¥ 0 1 e ﻋﻨﺩﺌﺫ: ﺇﺸ ﺎﺭﺓ1ln(x) e +¥ ﺇﺸﺎﺭﺓ1+ln(x) + + e ﺇﺸﺎﺭﺓ f(x) + + + ﺍﻟﺘﻤﺭﻴﻥ :9 ﺘﻌﻴﻴﻥ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل I ﻓﻴﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: ﻓﻲ ﻜل ﻤﺎ ﻴﻠﻲ ﻨﺴﻤﻲ F ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﺍﻟﻤﻌﺘﺒﺭﺓ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ:I f ( x ) = 5 x 3 + 3 x + 1 + 1 /1 ﻭI=]0 ;+¥[ x ﺍﻟﺩﺍﻟﺔ fﻤ ﺴﺘﻤﺭﺓ ﻋﻠﻰ. I ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ I ﻋﻨﺩﺌﺫ: ) F ( x ) = 5 x 4 + 3 x 2 + x + ln( x ) ﻷﻥ( x>0 4 2 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ. I f ( x ) = ﻭI=]1 ;+¥[ x 2 + x + 3 / 2 x + 1 ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ I ﻋﻨﺩﺌﺫ: f (x ) = x ( x +1) + 3 = x + 3 ´ 1 x + 1 x + 1 ﻭ ﻤﻨﻪ ) F ( x ) = 1 x 2 + 3 ln( x + 1) ﻷﻥ(x +1>0 2 5 3 f (x ) = 1 - + / 3 ﻭI=]¥ ;0[ x x ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ. I ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ I ﻋﻨﺩﺌﺫ: f ( x ) = 1 + 10 . -1 - 3. - 1 2 - x - x
ﻭ ﻤﻨﻪ ) F ( x ) = x +10 - x - 3 ln( - x ) ﻷﻥ( x>0 3 x I=Â ﻭ f ( x ) = / 4 2 x 2 + 1 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ. I ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ I ﻋﻨﺩﺌﺫ: f ( x ) = 3 - 4 x 4 2 x 2 +1 ﻭ ﻤﻨﻪ ) F ( x ) = 3 ln( 2 x 2 + 1) ﻷﻥ(2 x2 + 1>0 4 /5 ﺍﻟﻜﻴﻔﻴﺔ ﻤﻤﺎﺜﻠﺔ ﻟﻠﺤﺎﻟﺔ ﺍﻟﺭﺍﺒﻌ ﺔ. /6 ﺍﻟﻜﻴﻔﻴﺔ ﻤﻤﺎﺜﻠﺔ ﻟﻠﺤﺎﻟﺔ ﺍﻟﺜﺎﻟﺜ ﺔ. f ( x ) = ﻭ I=Â 5 x + 1 5 x - /7 5 x 2 + 2 x + 20 x 2 + 3 ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ. I ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ I ﻋﻨﺩﺌﺫ: 1 10 x + 2 2 x f ( x ) = . - 5 . 2 5 x 2 + 2 x + 20 2 x 2 + 3 ﻭ ﻤﻨﻪ F ( x ) = 1 ln( 5 x 2 + 2 x + 20 ) - 5 x 2 + 3 2 ) ﻷﻥ.( 5x2 + +2x+20>0 = f (x ) ﻭ( ) I=]0 ;+¥[ ln x 3 /8 x ﺍﻟﺩﺍﻟﺔ fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ. I ﺍﻟﺪﺍﻟﺔ f ﻣﻦ ﺍﻟﺸ ﻜﻞ ﻟﻴﻜﻥ x ﻋﻨﺼﺭﺍ ﻤﻥ I ﻋﻨﺩﺌﺫ: *g 1. gn :nÎN f ( x ) = 1 (ln( x ) )3 x
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188