ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻨﻲ ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ:• ﺍﻟﻤﺘﺘـﺎﻟﻴـﺎﺕ ﺍﻟﻌـﺩﺩﻴـﺔ • ﻤـﺭﺠــﺢ ﺍﻟـﻨـﻘـﻁ• ﺍﻟﺠــﺩﺍﺀ ﺍﻟﺴـﻠـﻤـﻲ
ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻌﺩﺩﻴــﺔ ﺍﻟﻜﻔﺎﺀﺓ ﺍﻟﻤﺭﺤﻠﻴﺔ : ﺍﻟﺘﺭﻤﻴﺯ ﺒﺎﻟﺩﻟﻴل -ﺍﻟﺘﺭﻤﻴﺯ ﺍﻟﺩﺍﻟﻲ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ – ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ. -ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ.ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻤﺘﺘﺎﻟﻴﺔ -ﺘﻭﻟﻴﺩ ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ. ﺤﺴﺎﺏ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﺒﻭﺍﺴﻁﺔ ﺤﺎﺴﺒﺔ ﺃﻭ ﻤﺠﺩﻭل . ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ • ﺍﻟﺘﻤﻴﻴﺯ ﺒﻴﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (unﻭ ﺍﻟﺤﺩ un ﺤﺴﺎﺏ ﻤﺠﻤﻭﻉ pﻭ ﺤﺩﺍ ﻤﺘﻌﺎﻗﺒﺎ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ. ﺤﺴﺎﺏ ﻨﻬﺎﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﺘﻘﺎﺭﺒﺔﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺘﻌﺎﺭﻴﻑ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﺤﺴﺎﺑﻴﺔ اﻟﻤﺘﺘﺎﻟﻴﺎت اﻟﻤﺘﻘﺎرﺑﺔ -اﻟﻤﺘﺒﺎﻋﺪة
ﺘﻌﺎﺭﻴﻑ ﻤﺜﺎل : 1 (1ﺍﻗﺘﺭﺡ ﺍﻟﺨﻤﺱ ﻋﻨﺎﺼﺭ ﺍﻟﻤﻤﺘﺎﺒﻌﺔ ﻟﻜل ﻗﺎﺌﻤﺔ ﻤﻥ ﺍﻟﻘﻭﺍﺌﻡ ﺍﻟﺘﺎﻟﻴﺔ: ﺃ( 0 ; 2 ; 4 ; 6 ; 8 ; . . . ;1 1 ; 1 ; 1 ; 1 ;... ﺏ( 2 3 4 5 ﺟـ( 1 ; 4 ; 9 ; 16 ; 25 ; . . . (2ﻨﺭﻤﺯ ﺒـ ) U1ﻨﻘﺭﺃ Uﺩﻟﻴل (1ﺃﻭ Uﻟـ 1ﺇﻟﻰ ﺍﻟﺤﺩ ﺍﻷﻭل. U 2ﺍﻟﺤﺩ ﺍﻟﺜﺎﻨﻲ. U 3ﺍﻟﺤﺩ ﺍﻟﺜﺎﻟﺙ ........ﺍﻟﺦ....... ﻤﻥ ﻗﺎﺌﻤﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻔﺭﺩﻴﺔ : ......... U 3 = 5 ; U 2 = 3 ; U1 = 1ﺍﻟﺦ....... -ﻋﻴﻥ U10 ;.....U5 ; U4 : (3ﻨﻌﺭﻑ ﻗﺎﺌﻤﺔ ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺒﺎﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ : ﺍﻟﺤﺩ ﺍﻷﻭل ﻤﻥ ﺍﻟﻘﺎﺌﻤﺔ ﻫﻭ 3ﻨﺭﻤﺯ ﻟﻪ ﺒـ . V1 : ﻜل ﺤﺩ ﻫﻭ ﻀﻌﻑ ﺍﻟﺤﺩ ﺍﻟﺫﻱ ﻗﺒﻠﻪ. = V2 ﺍﺘﻤﻡ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ : = V3 V2ﻫﻭ ﻀﻌﻑ .......؛ V4 , V5 V3ﻫﻭ ﻀﻌﻑ .......؛ ﺍﺤﺴﺏ , . . . , V10 : ﺤـل : -(1ﺃ( 0 ; 2 ; 4 ; 6 ; 8 ; 10 ; 12 ; 14 ; 16 ; 18;1 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ﺏ( 2 3 4 5 6 7 8 9 10ﺟـ( 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 ; 64 ; 81 ; 100 u4 = 7 ; u5 =9 ; u6 =11 ; u7 =13 (2 u8 =15 ; u9 =17 ; u10 =19
v2 = 6 v2 (3ﻫﻭ ﻀﻌﻑ v1؛ v3 = 12 v3ﻫﻭ ﻀﻌﻑ v2؛v4 = 24 ; v5 =48 ; v6 =96 ; v7 =192v8 = 384 ; v9 =768 ; v10 =1536 ﻤﺜﺎل : 2 ﺇﺩﺨﺎل ﻤﻔﻬﻭﻡ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ؛ ﺍﻟﻬﻨﺩﺴﻴﺔ. -1ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻤﻁﻠﻕ ﺍﻟﺜﺎﺒﺕ : ﺃ( ﻨﻌﺘﺒﺭ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺸﻜل : ﺍﻟﺤﺩ ﺍﻷﻭل ﻫﻭ U0ﺤﻴﺙ U0 = - 12 : ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻤﻁﻠﻕ ﺒﻴﻥ ﺤﺩﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥ ﻫﻭ 3,5 :ﺃﻱ ﻓﻤﺜﻼ U7 - U6 = 3,5 :ﺃﻭ U 24 - U23 = 3,5 ﺃﻭ . U540 - U539 = 3,5ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ U1 - U0 :؟ -ﺍﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻟﻌﺸﺭﺓ ﺍﻷﻭﻟﻰ ﻟﻬﺫﻩ ﺍﻟﻘﺎﺌﻤﺔ . ﺏ( ﻨﻌﺘﺒﺭ ﻗﺎﺌﻤﺔ ﻤﻀﺎﻋﻔﺎﺕ ﺍﻟﻌﺩﺩ .5 ﺍﻜﺘﺏ ﺍﻟﻌﺸﺭﺓ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﺍﺒﺘﺩﺍﺀ ﻤﻥ . U1 = 5 : ﺍﺤﺴﺏ ﻜل ﺍﻟﺘﺯﺍﻴﺩﺍﺕ ﺍﻟﻤﻁﻠﻘﺔ ﺒﻴﻥ ﺤﺩﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥU2 - U1 = .... ; U3 - U2 = ... ; U10 - U9 = ... ﻫل ﻫﺫﺍ ﺍﻟﺘﺯﺍﻴﺩ ﺜﺎﺒﺕ ؟ - 2ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻨﺴﺒﻲ ﺍﻟﺜﺎﺒﺕ : ﺃ( ﻨﻌﺘﺒﺭ ﺍﻟﻘﺎﺌﻤﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ : ﺍﻟﺤﺩ ﺍﻷﻭل U0ﺤﻴﺙ U0 = 1 : ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻨﺴﺒﻲ ﺒﻴﻥ ﺤﺩﻴﻥ ﻤﺘﺘﺎﺒﻌﻴﻥ ﻫﻭ 0,5 :ﺃﻱ ﺒﺘﻌﺒﻴﺭ ﺁﺨﺭ :U6 - U5 = 0,5 ; U16 - U15 = 0,5 ﻓﻤﺜﻼ : U5 U15؟ ﺍﺴﺘﻨﺘﺞ . U1 U1 - U0 .ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ U - U127 126 = 0,5 U0 U 126 ﺍﺤﺴﺏ ﺍﻟﻌﺸﺭﺓ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻬﺫﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ . ﺏ( ﻨﻌﺘﺒﺭ ﻗﺎﺌﻤﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ :
ﺍﻟﺤﺩ ﺍﻷﻭل U0ﺤﻴﺙ U0 = 2 : ﻜل ﺤﺩ ﻴﺴﺎﻭﻱ ﺠﺩﺍﺀ ﺍﻟﺤﺩ ﺍﻟﺫﻱ ﻗﺒﻠﻪ ﻓﻲ . 3U1 = 3 × U0 = 6 ; U2 = 3 × U1 = 18 -ﺍﻜﺘﺏ ﺍﻟﻌﺸﺭﺓ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻬﺫﻩ ﺍﻟﻘﺎﺌﻤﺔ . -ﺍﺤﺴﺏ ﺍﻟﺘﺯﺍﻴﺩﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ :U1 - U0 ; = ... U2 - U1 ; = ... U9 - U8 = ... U0 U1 U8 ﻫل ﻫﺫﺍ ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻨﺴﺒﻲ ﺜﺎﺒﺕ ؟ ﺤـل : -1ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻤﻁﻠﻕ ﺍﻟﺜﺎﺒﺕ : ﺃ( ﻟﺩﻴﻨﺎ u1 − u0 = 3,5 :ﻭ ﻤﻨﻪ :u1 = −8,5 ; u2 = -5 ; u3 = -1,5 ; u4 = 2u5 = 5,5 ; u6 = 9 ; u7 = 12,5 ; u8 = 16 ; u9 = 19,5 ﺏ( u1 = 5 ; u2 = 10 ; u3 = 15 ; u4 = 20 ; u5 = 25 u6 = 30 ; u7 = 35 ; u8 = 40 ; u9 = 45 ; u10 = 50 ﻟﺩﻴﻨﺎ u2 − u1 = u3 − u2 = u4 − u3 = u5 − u4 = u6 − u5 : u7 − u6 = u8 − u7 = u9 − u8 = u10 − u9 = 5 ﻫﺫﺍ ﺍﻟﺘﺯﺍﻴﺩ ﺜﺎﺒﺕ . -2ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻨﺴﺒﻲ ﺍﻟﺜﺎﺒﺕ : u1 − u0 = 0,5 : ﻟﺩﻴﻨﺎ ﺃ( u0 ﻭ ﻤﻨﻪ u1 = 0,5u0 + u0 = 1,5u0 = 1,5 : ﺍﻟﻌﺸﺭﺓ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻫﻲ :u2 = 2,25 ; u3 = 3,375 ; u4 = 5,0625 ; u5 = 7,59375u6 = 11,390625 ; u7 = 17,0859375u8 = 25,62890625 ; u9 = 38,443359385
ﺏ( ﺍﻟﻌﺸﺭﺓ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻫﻲ :u0 = 2 ; u1 = 6 ; u2 = 18 ; u3 = 54 ; u4 = 162 ; u5 = 486 u6 = 1458 ; u7 = 4374 ; u8 = 13122 ; u9 = 39366 ﺍﻟﺘﺯﺍﻴﺩﺍﺕ ﺍﻟﻨﺴﺒﻴﺔ :u1 − u0 = u2 − u1 = = ... u9 − u8 = 2 u0 u1 u8 ﻫﺫﺍ ﺍﻟﺘﺯﺍﻴﺩ ﺍﻟﻨﺴﺒﻲ ﺜﺎﺒﺕ . -Iﺘﻌﺭﻴﻑ ﻭﺘﺭﻤﻴﺯ : ﺘﻌﺭﻴﻑ :ﺘﺴﻤﻰ ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻜل ﺩﺍﻟﺔ ﻤﻥ ¥ﻨﺤﻭ ¡ ¡ →U : ¥ ﻨﺭﻤﺯ ﻟﻬﺫﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Uﻭ ﻟﺩﻴﻨﺎ : n a Un ﺍﻟﻌﺩﺩ Unﻴﺴﻤﻰ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ. ﻤﻼﺤﻅﺔ : ﻓﻲ ﺤﺎﻟﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻨﻔﻀل ﺍﻟﺘﺭﻤﻴﺯ ﺒﺎﻟﺩﻟﻴل Unﺍﻟﺫﻱ ﻴﻘﺭﺃ : \" Uﺩﻟﻴل \"nﻋﻠﻰ ﺍﻟﺘﺭﻤﻴﺯ ﺍﻟﺩﺍﻟﻲ ) U (nﺍﻟﺫﻱ ﻴﻘﺭﺃ \" Uﻟـ \" n ﺍﻟﻤﺘﺘﺎﻟﻴﺔ . Uﻨﺭﻤﺯ ﻟﻬﺎ ﻜﺫﻟﻙ (Un )n∈¥ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺤﺩ ﺍﻷﻭل ﻫﻭ U0؛ ﻭ ﻨﺭﻤﺯ ﻟﻬﺎ ﺒـ * (Un )n∈¥ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﺤﺩ ﺍﻷﻭل ﻫﻭ . U1 -IIﻜﻴﻑ ﹸﻨﻌﺭﻑ ﻤﺘﺘﺎﻟﻴﺔ ) :ﺘﻭﻟﻴﺩ ﻤﺘﺘﺎﻟﻴﺔ ( -1ﺒﺈﻋﻁﺎﺀ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ : U10 = 1 ﻭ ﻋﻠﻴﻪ ﻤﺜﻼ : Un = (-1)n ﻤﺜﺎل: 1 100 n2 U3 = 81 27 ﻭ ﻋﻠﻴﻪ ﻤﺜﻼ : Un = 3n + 1 ﻤﺜﺎل: 2 =3 n -ﺤﺎﻟﺔ ﺨﺎﺼﺔ Un = f (n) :ﺤﻴﺙ fﺩﺍﻟﺔ ﻤﺄﻟﻭﻓﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔﺍﻟﻤﻭﺠﺒﺔ )ﺃﻭ ﻋﻠﻰ ﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل a ; + ∞ :ﻤﻊ ( a > 0ﻤﺠﻤﻭﻋﺔ ﺍﻟﻘﻴﻡ ) f (nﺍﻟﺘﻲ[ [ﺘﺄﺨﺫﻫﺎ ﺍﻟﺩﺍﻟﺔ ﻤﻥ ﺃﺠل ﺍﻟﻘﻴﻡ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ ،ﺘﻌﺭﻑ ﻤﺘﺘﺎﻟﻴﺔ ) (Unﺤﻴﺙ Un = f (n) : ﻤﺜﺎل :
ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Un = f (n) : n f : x → 2 x2 - 1 ﺤﻴﺙ : ﻓﻤﺜﻼ U17 = 2 × 172 - 1 = 577 : Un+1 = 2 (n + 1)2 - 1 = 2n2 + 4n + 1 -2ﺒﺈﻋﻁﺎﺀ ﻋﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ :ﺇﻋﻁﺎﺀ ﺍﻟﺤﺩ ﺍﻷﻭل U 0ﻭﻋﻼﻗﺔ )ﺘﺴﻤﻰ ﻋﻼﻗﺔ ﺘﺭﺍﺠﻌﻴﺔ ( ﺘﺴﻤﺢ ﺒﺤﺴﺎﺏ ﺃﻱ ﺤﺩ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻨﻁﻼﻗﺎ ﻤﻥ ﺍﻟﺤﺩ ﺍﻟﺫﻱ ﻗﺒﻠﻪ ،ﻨﻌﻴﻥ ﻋﻤﻭﻤﺎ ﻤﺘﺘﺎﻟﻴﺔ.Un+1 = 3 Un - 2 ﻤﺜﺎل : U 0 = 5ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n ﻫﺫﻩ ﺍﻟﻤﻌﻁﻴﺎﺕ ﺘﺴﻤﺢ ﺒﺤﺴﺎﺏ ﺸﻴﺌﺎ ﻓﺸﻴﺌﺎ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ :U1 = 3U0 - 2 = 13 ; U2 = 3U1 - 2 = 37 U3 = 3U2 - 2 = 109 ,..... ﻫﻨﺎ ﻨﻌﺒﺭﻋﻥ Un+1ﺒﺩﻻﻟﺔ Unﺃﻱ Un+1 = f (Un ) : ﺤﻴﺙ fﻫﻲ ﺍﻟﺩﺍﻟﺔ x a 3 x − 2 : ﻤﻼﺤﻅﺔ : ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل .I ﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ ، Iﻓﺈﻥ ) f(xﻤﻥ Iﻜﺫﻟﻙ .ﻴﻤﻜﻥ ﺃﻥ ﻨﻌﺭﻑ ﻤﺘﺘﺎﻟﻴﺔ ) ( Unﺒﺈﻋﻁﺎﺀ U 0 ﺤﻴﺙ U 0ﻤﻥ Iﻭ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺭﺍﺠﻌﻴﺔ ،) Un+1 = f (Un -IIIﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻤﺘﺘﺎﻟﻴﺔ :ﺇﺫ ﻜﺎﻥ Un = f (n) :ﻓﺈﻥ ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﻫﻲ ﺘﺭﺍﻜﻴﺏ ﺍﻟﻨﻘﻁ ﺍﻟﺘﻲ ﺇﺤﺩﺍﺜﻴﺎﺘﻬﺎ ﺃﻋﺩﺍﺩﺍ ﻁﺒﻴﻌﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) (C fﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ . fUn = n 4 1 ﻤﺜﺎل : + ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ ﺍﻟﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ﺘﻘﺭﺃ ﻋﻠﻰ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺘﻴﺏ.
y 6 U0 5 4 3 U1 2 U2 U3 1 U4 0 1 2 3 4 5 6 7 8x - IVﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ : -1ﺘﻌﺭﻴﻑ : ﻨﻘﻭل ﻋﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﺃﻨﻬﺎ ﻤﺘﺯﺍﻴﺩﺓ ﺍﺒﺘﺩﺀﺍ ﻤﻥ ﺍﻟﺭﺘﺒﺔ n 0ﺇﺫﺍ ﻜﺎﻥ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n ≥ n0ﻓﺈﻥ Un+1 ≥ Un ﻭﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﻤﺘﻨﺎﻗﺼﺔ ﺇﺫﺍ ﻜﺎﻥ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n ≥ n0ﻓﺈﻥ Un+1 ≤ Un ﻭﺘﻜﻭﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﺜﺎﺒﺘﺔ ﺇﺫﺍ ﻜﺎﻥ. ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻓﺈﻥ Un+1 = Un ﻤﻼﺤﻅﺔ : ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﺇﻤﺎ ﻤﺘﺯﺍﻴﺩﺓ ﻭ ﺇﻤﺎ ﻤﺘﻨﺎﻗﺼﺔ ﻭ ﺇﻤﺎ ﺜﺎﺒﺘﺔ ﻨﻘﻭل ﻋﻨﻬﺎ ﺃﻨﻬﺎ ﺭﺘﻴﺒﺔ . -2ﺘﻌﻴﻴﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ : ﻋﻤﻭﻤﺎ ﻟﺘﻌﻴﻴﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﻨﺒﺤﺙ ﻋﻥ ﺇﺸﺎﺭﺓ ﺍﻟﻔﺭﻕ Un+1 − Un ﻤﺜﺎل : ) ( Unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ Un = n 2 - n - 2 :Un+1 − Un = (n + 1)2 - (n + 1) - 2 - (n2 - n - 2) = 2n ﻭﻤﻨﻪ ) Un+1 − Un > 0 :ﻓﻲ ﺤﺎﻟﺔ .( n ≥ 1 ﻭﻤﻨﻪ ( Un ) :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺍﻟﺭﺘﺒﺔ . U1
ﻭ ﺍﻟﻌﺩﺩ . 1 Un+1 ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺤﺩﻭﺩ Unﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ،ﻴﻤﻜﻥ ﻤﻘﺎﺭﻨﺔ * Un ﻤﺜﺎل : Un = 2n ) ( Unﻤﺘﺘﺎﻟﻴﺔ ﺤﻴﺙ 3n2n ≠ 0 ﻷﻥ 2n ≠0 ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n 3n U = 2n + 1 n +1 3n 2 2n 3 U 3n + 1 × = n ﺃﻱ Un + 1 < Un : Un + 1 < 1 ﻭﻤﻨﻪ : Un ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) ( Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ . * ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﺘﺘﺎﻟﻴﺔ ) ( Unﻤﻌﺭﻓﺔ ﺒـ Un = f (n) :ﻟﺘﻜﻥ ) ( Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ Un = f (n) :ﺤﻴﺙ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞ [ [. 0 ; + -1ﺇﺫﺍ ﻜﺎﻨﺕ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻓﺈﻥ ) ( Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. -2ﺇﺫﺍ ﻜﺎﻨﺕ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻓﺈﻥ ) ( Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. ﻤﺜﺎل : Un = 3n - 1 ) ( Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﺤﻴﺙ : n+2 3x - 1 xa ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ x + 2 : fﻤﻌﺭﻓﺔ ﻋﻠﻰ ¡ - -2ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ∞ 0 ; +ﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ} { [ [ ∞ 0 ; +ﻤﻥ ﺃﺠل ﻜل [ [x ≥ 0 : xﻭ ﻤﻨﻪ f ′( x) > 0 : )f ′( x = 3 (x + 2) - (3x )- = 7 ( x + 2)2 + 2)2 (x
ﺇﺫﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ 0 ; +؛ ﻟﻜﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ [ [: n ) Un = f (nﻭﻤﻨﻪ ( Un ) :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ.
ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 ﻤﻥ ﺃﺠل ﻜل ﻗﺎﺌﻤﺔ ،ﻋﻴﻥ ﺍﻟﺨﻤﺱ ﺃﻋﺩﺍﺩ ﺍﻟﻨﺎﻗﺼﺔ . … ; … ; … ; … ; -3 ; -7 ; … ; -15 ; -19 (1 1 ; 4 ; 9 ; ...; 25 ; ... ; 49 ; ...; ... ; 100 ; ... (2 -3 ; 3 ; -3 ; 3 ; ... ; 3 ; ...; ... ; -3 ; ...; ... (3 1 ; 1,05 ; 1,1 ; 1,15 ; … ; … ; … ; … ; 1,4 (4 2187 ; 729 ; … ; 81 ; ... ; 9 ; 3 ; 1 ; ... ; ... (5 (6 33 3 2 ; 4 ; 8 ; ...; ...; ...; ...; ... ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺍﺤﺴﺏ ﺍﻟﺨﻤﺱ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻜل ﻤﺘﺘﺎﻟﻴﺔ ﺫﺍﺕ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ Unﻭ ﺍﻟﺤﺩ ﺍﻷﻭل . U0Un = 1 n (3 ؛ Un = 1 (2 Un = n2 + 1 (1؛ 2 n+2 Un = n + 3 (4؛ Un = n3 + n (5 ﺍﻟﺘﻤﺭﻴﻥ. 3 ﻋﺒﺭ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻋﻥ Un+1ﻭ Un+2ﺒﺩﻻﻟﺔ n Un = n2 - n (2 Un = 3n - 1 (1؛ Un = n-3 (4 ؛ Un = n 1 (3 n+1 +3 ﺍﻟﺘﻤﺭﻴﻥ. 4 Un = 4n2 ﻟﺘﻜﻥ Un n∈¥ﻤﺘﺘﺎﻟﻴﺔ ﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ ( ): 2n + 3 (1ﺍﺤﺴﺏ ﺍﻟﺴﺕ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻬﺫﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ. (2ﻋﺒﺭ ﺒﺩﻻﻟﺔ nﻋﻥ ﺍﻷﻋﺩﺍﺩ.Un−1 ; U2n ; U2n−3 ; U2n - 3 ; Un+1 ; Un + 1
ﺍﻟﺘﻤﺭﻴﻥ. 5 Un n∈¥ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﺤﻴﺙ ( ): U0 = 2ﻭ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Un+1 = 3Un - 5 : n -ﺍﺤﺴﺏ U1 ; U2 ; . . . ; U8 : ﺍﻟﺘﻤﺭﻴﻥ. 6 ﻤﺜل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Unﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ( ): ؛ Un = n2 (3 = Un Un = n3 (1؛ n (2. = Un -3n + 1 ؛ (5 Un = 1 , n ≥ 1 (4 2 n ﺍﻟﺘﻤﺭﻴﻥ. 7 ﻋﺒﺭ ﻋﻥ Un+1 - Unﺒﺩﻻﻟﺔ nﻭ ﺍﺴﺘﻨﺘﺞ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( )Un Un = n 1 2 (2 ؛ Un = n2 + n (1 + Un = 4n + 5 (4 ؛ Un = n2 + 3 (3 2n + 1 ؛ Un = (n + 4)2 (6 Un = n3 (5 (7 Un = 2n2 + 5n - 1
ﺍﻟﺤـﻠــــــﻭل . 1ﺍﻟﺘﻤﺭﻴﻥ -3 ; -7 ; -11 ; -15 ; -19 ; -23 ; -27 ; -31 ; -35 (1 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 ; 64 ; 81 ; 100 ; 121 (2 -3 ; 3 ; -3 ; 3 ; -3 ; 3 ; -3 ; 3 ;-3 ; 3 ; -3 (3 1 ; 1,05 ; 1,1 ; 1,15 ; 1,2 ; 1,25 ; 1,30 ; 1,35 ; 1,4 (4 (5 11 2187 ; 729 ; 243 ; 81 ; 27 ; 9 ; 3 ; 1 ; 3 ; 9 (633 3 3 3 3 3 32 ; 4 ; 8 ; 16 ; 32 ; 64 ; 128 ; 256 . 2ﺍﻟﺘﻤﺭﻴﻥ U0 = 1 ؛U1 = 2 ؛U2 = 5 ؛U3 = 10 ؛U4 = 17 (1U0 1 ؛ U1 = 1 ؛ U2 = 1 ؛ U3 = 1 ؛U4 = 1 (2 =2 3 4 5 6U0 = 1؛ U1 = 1 ؛ U 2 = 1 ؛ U3 1 ؛ U4 = 1 (3 2 4 =8 16U0 = 3 ؛U1 = 2 ؛U2 = 5 ؛U3 = 6 ؛U4 = 7 (4 U0 = 0 ؛U1 = 2 ؛U2 = 10 ؛U3 = 30 ؛U4 = 68 (5 . 3ﺍﻟﺘﻤﺭﻴﻥ Un+1 = 3(n+1) -1 = 3n + 2 (1 Un+2 = 3(n+2) -1 = 3n + 5 Un+1 = (n + 1)2 - (n+1) = n2 + n (2 Un+2 = (n + 2)2 − (n + 2) = n2 + 3n + 2 Un+1 = 1 ; Un+2 = 1 (3 n+4 n+5 n-2 n-1 Un+1 = n+2 ; Un+2 = n+3 (4
. 4ﺍﻟﺘﻤﺭﻴﻥU0 = 0 ; U1 = 4 ; U2 = 16 ; U3 = 4 (1 5 7 64 100 U4 = 11 ; U5 = 13Un−1 = 4(n - 1)2 = 4n2 − 8n + 4 (2 2(n − 1) + 2n + 1 3 U2n = 4(2n)2 3 = 16n2 2(2n) + 4n + 3U2n−3 = 4(2n − 3)2 3 = 16n2 − 48n + 36 2(2n − 3) + 4n − 3U2n -3= 16n2 -3= 16n2 - 12n - 9 4n + 3 4n + 3Un+1 = 4(n + 1)2 3 = 4n2 + 8n+4 2(n + 1) + 2n+5Un +1= 4n2 + 1 = 4n2 + 2n + 3 2n+3 2n +3 . 5ﺍﻟﺘﻤﺭﻴﻥU1 = 3 × 2 − 5 = 1 ; U2 = 3 × 1 − 5 = − 2U3 =3 × ( − 2) − 5 = −11 ; U4 = 3 × (−11) − 5 = −38U5 = 3(-38) -5 = -119 ; U6 = 3 × (-119) -5 = -362U7 = 3 (-362) -5 = - 1091 ; U8 = 3 (-1051) -5 = -3278
. 6ﺍﻟﺘﻤﺭﻴﻥ y y (2 (13 Un = n 5 Un = n32 41 3 0 1 2 3 4 5 6 x 2 (4 1y Un = 1 n43 0 12 x (3 Un = n22y1 (54 U4n = −3n + 1 3 52 x0 1 2 3 2 1 0 1 2 3x 0 1 2 3x
ﺍﻟﺘﻤﺭﻴﻥ. 7Un+1 = (n +1 )2 +n + 1 = n2 +3n +2 (1ﻟﺩﻴﻨﺎ :ﻭﻤﻨﻪ Un+1 - Un = 2n +2 :ﻭ ﻋﻠﻴﻪ Un+1 - Un > 0 : ﺇﺫﻥ Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ).= Un+1 - Un )(n+2)-(n+3 = (n + -1 + )2 (2ﻟﺩﻴﻨﺎ: )(n+3)(n+2 3)(n ﻭ ﻤﻨﻪ Un+1 - Un < 0 :ﺇﺫﻥ Un :ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ( ).)Un+1 - Un = (n +1 )2 +3 - (n2 +3 (3ﻟﺩﻴﻨﺎ :ﻭﻤﻨﻪ Un+1 - Un = 2n +1 :ﻭ ﻋﻠﻴﻪ Un+1 - Un > 0 : ﺇﺫﻥ Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ).Un+1 - Un = )(4n+9 (2n + 1) - (2n+3) (4n + )5 (4 ( 2n + )3 ) ( 2n + 1 = -6 )1 (2n + 3) (2n + ﻭ ﻤﻨﻪ Un+1 - Un < 0 :ﺇﺫﻥ Un :ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ( ). Un+1 − Un = (n + 1)3 - n3 = 3n2 + 3n + 1 (5 ﺇﺫﻥ Un :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ). ﻭ ﻤﻨﻪ Un+1 - Un > 0 :Un+1 − Un = (n + 5)2 − (n + 4)2 = 2n +9 (6ﻟﺩﻴﻨﺎ : ﺇﺫﻥ Un :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ). ﻭ ﻤﻨﻪ Un+1 - Un > 0 :Un+1 − Un = 2(n +1)2 + 5(n + 1) − 1 − (2n2 + 5n − 1) (7 ﻭ ﻤﻨﻪ Un+1 - Un = 4n + 7 : ﺇﺫﻥ Un :ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ( ). ﻭ ﻤﻨﻪ Un+1 - Un > 0 :
اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﺤﺴﺎﺑﻴﺔ -1ﺘﻌﺭﻴﻑ :) (Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻭ rﻋﺩﺩ ﺤﻘﻴﻘﻲ .ﻨﻘﻭل ﻋﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺃﻨﻬﺎ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ rﺇﺫﺍ ﺘﺤﻘﻕ ﻤﺎ ﻴﻠﻲ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Un+1 = Un + r : n ﻤﺜﺎل:1 ﻤﺘﺘﺎﻟﻴﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ 0 , 1 , 2 , 3 , 4 , , ….. , : ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 0ﻭﺃﺴﺎﺴﻬﺎ .1 0 , 2 , 4 , 6 , 8 , ......, ﻤﺘﺘﺎﻟﻴﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺯﻭﺠﻴﺔ : ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 0ﻭ ﺃﺴﺎﺴﻬﺎ . 21 , 3 , 5 , 7 , 9 , ….., ﻤﺘﺘﺎﻟﻴﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻔﺭﺩﻴﺔ : ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 1ﻭ ﺃﺴﺎﺴﻬﺎ . 2 ﻤﺜﺎل:2 * ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺍﻟﻤﻌﺭﻓﺔ ﺒـ Un = 5n - 2 : ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ 5ﻷﻥ :Un+1 = 5 (4 + 1) - 2 = 5n + 5 - 2 = 5n - 2 + 5 ﻭ ﻤﻨﻪ . Un+1 = Un + 5 :* ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺤﻴﺙ Un = -3n + 4 :ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ ). (-3 ﻤﻼﺤﻅﺔ :ﻟﻤﻌﺭﻓﺔ ﺇﺫﺍ ﻜﺎﻨﺕ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻨﺒﺭﻫﻥ ﻋﺎﺩﺓ ﺃﻥ ﺍﻟﻔﺭﻕ ) (Un+1 - Unﺜﺎﺒﺕ ﺃﻱ ﻤﺴﺘﻘل ﻋﻥ . n -2ﺍﺘﺠﺎﻩ ﺘﻐﻴﻴﺭ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ : ﻤﺒﺭﻫﻨﺔ : ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ . r
ﺇﺫﺍ ﻜﺎﻥ r > 0ﻓﺈﻥ ) (Unﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. ﺇﺫﺍ ﻜﺎﻥ r < 0ﻓﺈﻥ ) (Unﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. ﺇﺫﺍ ﻜﺎﻥ 0=rﻓﺈﻥ ) (Unﺜﺎﺒﺘﺔ. ﻤﺜﺎل : ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﻴﺙ Un = -3n + 4 ]Un+1 - Un = [-3 (n + 1) + 4] - [-3n + 4 = -3n – 3 + 4 + 3n – 4ﻭ ﻤﻨﻪ Un+1 - Un = -3 :ﺇﺫﻥ (Un ) :ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ. -3ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ :ﻟﺘﻜﻥ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ . rﻭ U0ﺤﺩﻫﺎ ﺍﻷﻭلU0 = U0 + 0r ﻟﺩﻴﻨﺎ :U1 = U0 + r = U0 + 1rU2 = U1 + r = U0 + 1 . r +r = U0 + 2rU3 = U2 + r = U0 + 2r + r = U0 + 3rﺍﻟﺦ ﻤﺒﺭﻫﻨﺔ :ﺇﺫﺍ ﻜﺎﻨﺕ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0ﻭﺃﺴﺎﺴﻬﺎ rﻓﺈﻥ : Un = U0 + nr ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻌﺎﻤﺔ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ mﺤﻴﺙ n ≥ mﻓﺈﻥ :Un = Um + (n - m) r ﻤﺜﺎل :−1 ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 4ﻭ ﺃﺴﺎﺴﻬﺎ ) (Un2U4 = U0 + 4r = 4 - 2 = 2 ؛ r = -1 ; U0 = 4 2 ﻤﻼﺤﻅﺔ :
ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺤﻴﺙ Un = an + b :ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0 = b : ﻭﺃﺴﺎﺴﻬﺎ . r = a ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (Unﻫﻲ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ : y = ax + bﺍﻟﺘﻲ ﻓﻭﺍﺼﻠﻬﺎ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ . 0 1 2 3 4 5x ﻜﻴﻑ ﻴﺘﻡ ﺇﻴﺠﺎﺩ ﺍﻟﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺒﺎﺴﺘﻌﻤﺎل ﻤﺠﺩﻭل Excel ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺒﻌﺩﺓ ﻁﺭﻕ .ﺇﺤﺩﻯ ﺍﻟﻁﺭﻕ ﺍﻟﺒﺴﻴﻁﺔ ﻫﻲ : -ﻓﻤﺜﻼ ﺇﺫﺍ ﺃﺭﺩﻨﺎ ﺍﻟﺨﻤﺱ ﺤﺩﻭﺩ ﺍﻷﻭﻟﻰ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺤﺴﺎﺒﻴﺔ ﺫﺍﺕ ﺍﻟﺤﺩ ﺍﻷﻭل 5ﻭ ﺍﻷﺴﺎﺱ . 3 ﻨﻨﻘﺭ ﻋﻠﻰ 5ﻓﻲ ﺍﻟﺨﻠﻴﺔ A1ﺜﻡ ) 8 (= 5 + 3ﺍﻟﺤﺩ ﺍﻟﺜﺎﻨﻲ ﻓﻲ ﺍﻟﺨﻠﻴﺔ
A2ﻨﺤﺠﺯ ﺍﻟﺨﺎﻨﺘﻴﻥ ،ﺜﻡ ﻨﻀﻊ ﺍﻟﻤﺅﺸﺭ ﺃﺴﻔل ﺍﻟﺨﻠﻴﺔ A2ﻓﻲ ﺍﻟﺠﻬﺔ ﺍﻟﻴﻤﻨﻰ ،ﻭﻨﺒﻘﻰ ﻀﺎﻏﻁﻴﻥ ﻋﻠﻰ ﺍﻟﻔﺄﺭﺓ )ﺒﺎﻟﺯﺭ ﺍﻷﻴﺴﺭ( ﻭﻨﺠﺭﻱ ﻋﻤﻠﻴﺔ ﺍﻟﺯﻟﻕ ﺇﻟﻰ ﺃﺴﻔل ﺍﻟﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﺒﻌﺔ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ. -4ﻤﺠﻤﻭﻉ Pﺤﺩﺍ ﻤﺘﻌﺎﻗﺒﺎ : ﻋﺎﺩﺓ ﻤﺎ ﻴﺭﺍﺩ ﺤﺴﺎﺏ ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﻌﺎﻗﺒﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﻨﻀﻊ : S = Um + Um + 1 + .... + Up P–m+1 ﻋﺩﺩ ﺤﺩﻭﺩ ﻫﺫﺍ ﺍﻟﻤﺠﻤﻭﻉ ﻫﻭ : ﺤﺎﻟﺔ ﺨﺎﺼﺔ : ﻟﻨﺤﺴﺏ ﻤﺠﻤﻭﻉ nﺤﺩﺍ ﺍﻷﻭﻟﻰ ﻟﻸﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﺔ : S = 1 + 2 + 3 + …+ n ﻟﺩﻴﻨﺎ ) S = 1 + 2 + 3 + …+ (n-1) + n :ﺍﻟﺘﺭﺘﻴﺏ ﺘﺼﺎﻋﺩﻱ( ) S = n + (n – 1) + …+ 2 + 1ﺍﻟﺘﺭﺘﻴﺏ ﺘﻨﺎﺯﻟﻲ( S = n )(n + 1 ) 2S = n (n + 1ﻭ ﻤﻨﻪ : ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ : 2 ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻌﺎﻤﺔ : ﻤﺒﺭﻫﻨﺔ :ﻤﺠﻤﻭﻉ Pﺤﺩﺍ ﻤﺘﻌﺎﻗﺒﺎ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ) (Unﻫﻭ ﺠﺩﺍﺀ ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻓﻲ ﻨﺼﻑ ﻤﺠﻤﻭﻉ ﺍﻟﺤﺩ ﺍﻷﻭلﺇﺫﺍ ﻜﺎﻥ * S = U0 + U1 + U2 + .... + Un−1 ﻭ ﺍﻷﺨﻴﺭ. ﺒﺘﻌﺒﻴﺭ ﺃﺨﺭ:S = n (U0 ) + Un-1 2 ﺇﺫﺍ ﻜﺎﻥ :* S = U1 + U2 + .... + UnS = n (U1 ) + Un 2 S = Um + Um + 1 + .... + Up)ﻋ ﺪد اﻟﺤ ﺪود( = S × ﻴﺮ ﺪ اﻷﺧ ﺪ اﻷول +اﻟﺤ اﻟﺤ 2
S = p - m + 1 (Um ) + Up ﺃﻱ : 2 ﺘﻁﺒﻴﻕ : ) (Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0 = 2ﻭﺃﺴﺎﺴﻬﺎ r = 5 ﻨﻀﻊ Sn = U3 +.....+ Un :و . Sn = 6456ﺠﺩ . n ﺤـل : ﺍﻟﻤﺠﻤﻭﻉ Snﻤﻥ ﺍﻟﺸﻜل Um +....+Up : ﺤﻴﺙ P = n :ﻭ m = 3 ﻭﻤﻨﻪ ﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻫﻭ n – 3 + 1 = n – 2 : × )Sn = (n - 2 U3 + Un ﺇﺫﻥ : 2 ﻟﻜﻥ U3 = U0 + 3r :ﻭ Un = U0 + nr ﺇﺫﻥ U3 = 17 :ﻭ Un = 2 + 5n Sn = (n - )2 5n + 19 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : 2 (n - )2 5n + 19 = 6456 ﻭﻤﻨﻪ : ﻟﻜﻥ Sn = 6456 : 2 ﺃﻱ (n - 2) (5n + 19) = 2 × 6456 : ﻭﻋﻠﻴﻪ Sn2 + 9n − 12950 = 0 :ﺇﺫﻥ ∆ = (509)2 : ﻭﻤﻨﻪ n = 50 : )ﺍﻟﺤل ﺍﻟﺜﺎﻨﻲ ﺴﺎﻟﺏ ﻤﺭﻓﻭﺽ( ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ -1ﺘﻌﺭﻴﻑ :) (Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ؛ qﻋﺩﺩ ﺤﻘﻴﻘﻲ .ﻨﻘﻭل ﻋﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺃﻨﻬﺎ ﻫﻨﺩﺴﻴﺔ ﺇﺫﺍ ﺘﺤﻘﻕ ﻤﺎﻴﻠﻲ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ .n Un+1 = q . Un ﻤﺜﺎل : • ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ... :؛ 64؛ 32؛ 16؛ 8؛ 4؛ 2؛ 1ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ
ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 1ﻭ ﺃﺴﺎﺴﻬﺎ q = 2 • ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺤﻴﺙ Un = (-1)nﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 1 ﻭ ﺃﺴﺎﺴﻬﺎ ) (-1ﺤﺩﻭﺩﻫﺎ ﻫﻲ ... :؛ 1؛ -1؛ 1؛ -1؛ 1 • ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Unﺤﻴﺙ Un = 2 × 3nﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ q = 3ﻷﻥ Un+1 = 2 × 3n+1 = 2 × 3n × 3 = 3 × Un : -2ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ : ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ (q ≠ 0) q ﻟﺩﻴﻨﺎ : U0 = U0 = U0 . q0 U0 = q . U0 = q1 . U0 U2 = qU1 = q . U0 . q1 = U0q2 U3 = qU2 = q . U0 . q2 = U0q3 ﺍﻟﺦ ﻤﺒﺭﻫﻨﺔ :ﺇﺫﺍ ﻜﻨﺕ ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0ﻭﺃﺴﺎﺴﻬﺎ . q. Un = U0 . qn ﻓﺈﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n ﻤﺜﺎل :. 1 ﺍﻷﻭل 3ﻭﺃﺴﺎﺴﻬﺎ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ) (Un 4 U5 = 1 5 × 3 = 3 ﺇﺫﻥ : 4 1024 ﻓﻲ ﺍﻟﺤﺎﻟﺔ ﺍﻟﻌﺎﻤﺔ :ﻤﻥ ﺃﺤل ﻜل ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ َ mﻭ . Un = Um . qn - m : n ﻤﺜﺎل :1 (Un )n∈¥ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﻴﺙ ﺤﺩﻫﺎ ﺍﻷﻭل 8ﻭ ﺃﺴﺎﺴﻬﺎ . 1,5 )(q = 1,5 ; U1 = 8
ﻓﻤﺜﻼ U6 = U1 . q5 = 8(1,5)5 = 60,75 : ﻤﺜﺎل :2ﻓﺈﻥ ﺃﺴﺎﺴﻬﺎ q ﻜﺎﻥ ﺇﺫﺍ U10 = - 128 (Un )n≥3ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﻴﺙ ; U7 = 16 : 27 U10 q3 = U7 ﻭﻤﻨﻪ : U × = q3 U7 : 10 q = -2 ﻭﻤﻨﻪ : = q3 -8 3 27 U7 = U3 q4 = 81 ﻴﻨﺘﺞ : ﻤﻥ U7 = q4 × U3 Un = 81 × -2 n−3 ﺍﻟﺤﺩ ﺍﻟﺫﻱ ﺭﺘﺒﺘﻪ nﻫﻭ 3 : -ﻤﺠﻤﻭﻉ pﺤﺩﺍ ﻤﺘﻌﺎﻗﺒﺎ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : ﺤﺎﻟﺔ ﺨﺎﺼﺔ : ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل 1ﻭ ﺃﺴﺎﺴﻬﺎ . 9 S = 1 + q + q3 + ... + qn−1 ﻟﻨﺤﺴﺏ ﺍﻟﻤﺠﻤﻭﻉ : q . S = q + q2 + ... + qn−1 + qn ﻟﺩﻴﻨﺎ : q . S = S - 1 + qn (1 - q) S = 1 - qn ﺃﻱ : ﻭﻤﻨﻪ : S = 1 - qn 1-q ﻨﺘﻴﺠﺔ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ qﻴﺨﺘﻠﻑ ﻋﻥ . 1 1 + q + q2 + .... + qn−1 = 1 - qn 1-q ﺍﻟﺤﺎﻟﺔ ﺍﻟﻌﺎﻤﺔ : ﻟﻨﺤﺴﺏ ﻤﺠﻤﻭﻉ Pﻋﺩﺩﺍ ﻤﺘﻌﺎﻗﺒﺎ ﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل aﻭ ﺃﺴﺎﺴﻬﺎ .qﺤﻴﺙ q ≠ 1 :
ﻟﺩﻴﻨﺎ S = a + aq + aq2 + ... + aqn−1 :) S = a (1 + q + q2 + .... + qn−1 . × S=a 1 - qn ﻭ ﻤﻨﻪ : 1-q ﻤﺒﺭﻫﻨﺔ :ﻤﺠﻤﻭﻉ Pﺤﺩﺍ ﻤﺘﻌﺎﻗﺒﺎ ﻤﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل aﻭﺃﺴﺎﺴﻬﺎ ) (q ≠ 1ﻴﺴﺎﻭﻱ : a × 1 - qn 1-q ﺘﻁﺒﻴﻕ :1ﻟﺘﻜﻥ ) (tnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل t0 = 12ﻭﺃﺴﺎﺴﻬﺎ . 10 (aﺍﻜﺘﺏ tnﺒﺩﻻﻟﺔ nﻭﺃﺤﺴﺏ ﺍﻟﺤﺩ ﺍﻟﺜﺎﻤﻥ. (bﺃﺤﺴﺏ ﻤﺠﻤﻭﻉ ﺍﻟﻌﺸﺭﻴﻥ ﺤﺩﺍ ﺍﻷﻭﻟﻰ ﺤـل : ﺃ( ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ tn = 12 × 10n : nﺍﻟﺤﺩ ﺍﻟﺜﺎﻤﻥ ﻫﻭ t7 = 12 × 107 = 120 000 000 :S = 12 1 - 1020 = 12 (1020 )- 1 ﺏ( 1 - 10 9 ﺘﻁﺒﻴﻕ : 2 ﺍﻟﻌﺩﺩ bﻟﺴﻜﺎﻥ ﻤﺩﻴﻨﺔ ﻴﺯﺩﺍﺩ ﺒـ 4%ﻓﻲ ﻜل ﺴﻨﺔ. ﺍﻟﻌﺩﺩ cﻟﺴﻜﺎﻥ ﻤﺩﻴﻨﺔ ﺜﺎﻨﻴﺔ ﻴﻨﻘﺹ ﺒـ 5%ﻓﻲ ﻜل ﺴﻨﺔ.ﻓﻲ ﺸﻬﺭ ﺠﺎﻨﻔﻲ 2000ﻜﺎﻥ ﻋﺩﺩ ﺴﻜﺎﻥ ﺍﻟﻤﺩﻴﻨﺘﻴﻥ ﻫﻭ 50000 :ﻨﺴﻤﺔ. (1ﺍﺤﺴﺏ ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ C1 ; b1ﺒﻌﺩ ﺴﻨﺔ. (2ﺍﺤﺴﺏ C2 ; b2ﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﺒﻌﺩ ﺴﻨﺘﻴﻥ. (3ﺍﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ Cn ; bnﻋﺩﺩ ﺍﻟﺴﻜﺎﻥ ﺒﻌﺩ nﺴﻨﺔ .
b1 = 50000 + 50000 × 0,04 ﺤـل : )= 50000 × (1,04 (1C1 = 50000 - 50000 × 0,05 = 50000 × 0,95b2 = b1 × 1,04 = 52000 × (1,04) = 54080 (2 C2 = C1 × 0,95 * (3ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﺩﻴﻨﺔ ﺍﻷﻭﻟﻰ : ﻟﺩﻴﻨﺎ bn+1 = 1,04 × bn :ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ bnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ) ( ﺤﺩﻫﺎ ﺍﻷﻭل 50000ﻭ ﺃﺴﺎﺴﻬﺎ . 1,04 : ﻭ ﻤﻨﻪ . bn = 50000 × (1,04)n : * ﺒﺎﻟﻨﺴﺒﺔ ﻟﻠﻤﺩﻴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ :ﻟﺩﻴﻨﺎ Cn + 1 = 0,95 . Cn :ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Cnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ) ( ﺤﺩﻫﺎ ﺍﻷﻭل 50000ﻭﺃﺴﺎﺴﻬﺎ . 0,95 ﻭ ﻤﻨﻪ . Cn = 50000 × (0,95)n : ﺘﻁﺒﻴﻘﺎﺕ Un 1ﻤﺘﺘﺎﻟﻲ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ ( ): Un = -5n + 4 (1ﺒﺭﻫﻥ ﺃﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ( ). (2ﻋﻴﻥ ﺃﺴﺎﺴﻬﺎ . ﺤـل :ﻟﻠﺒﺭﻫﺎﻥ ﻋﻠﻰ ﺃﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ ( )Un+1 − Un :ﻟﺩﻴﻨﺎ Un+1 − Un = - 5 (n + 1) + 4 - (-5n + 4) : = -5n – 5 + 4 + 5n – 4 ﺇﺫﻥ Un+1 − Un = -5 :ﻭ ﻫﺫﺍ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n ﻭ ﺒﺎﻟﺘﺎﻟﻲ Un :ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ( ). -5
2ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺤﺩﻴﻥ ﻤﻥ ﺤﺩﻭﺩﻫﺎ Un n∈¥ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﻴﺙ U15 = 49 :ﻭ ( )U8 = 7 ﺍﺤﺴﺏ ﺃﺴﺎﺴﻬﺎ rﻭﺤﺩﻫﺎ ﺍﻷﻭل U0 ﺤـل : ﻟﺤﺴﺎﺏ rﻴﻤﻜﻥ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ U15ﻭ U8ﺒﺩﻻﻟﺔ U0ﻭ r ﺘﻡ ﺤﺴﺎﺏ ﺍﻟﻔﺭﻕ . ﻟﺩﻴﻨﺎ U8 = U0 + 8r = 7 :ﻭ U15 = U0 + 15r = 49 ﺃﻱ 7r = 42 :ﻭ ﻋﻠﻴﻪ . r = 6 :ﻭ ﻤﻨﻪ U0 + 8r = 7 :ﻭ ﻋﻠﻴﻪ U0 + 48 = 7 :ﺃﻱU0 = − 41 : ﺇﺫﻥ Un n∈¥ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ 6ﻭﺤﺩﻫﺎ ﺍﻷﻭل ( ). -41 3ﻟﺘﻜﻥ Un 1∈¥ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺍﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒـ ( )Un = 3 × 5n : ﺒﺭﻫﻥ ﺃﻥ Un n∈nxﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻋﻴﻥ ﺃﺴﺎﺴﻬﺎ) ( ﺤـل :Un+1( ).Un ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻤﻜﻥ ﺤﺴﺎﺏ : ﻟﻠﺒﺭﻫﺎﻥ ﺍﻥ Un n∈nvﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ :n Un+1 = 3 × 5n+1 = 5 ﻟﺩﻴﻨﺎ : Un 3 × 5n . Un+1 = 5Unﻭ ﻋﻠﻴﻪ Un n∈nx :ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ( ). 5 Un 4ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻭﺩﻫﺎ ﻤﻭﺠﺒﺔ ﺤﻴﺙ ( ): U6 = 12ﻭ . U4 = 3ﺍﺤﺴﺏ ﺃﺴﺎﺴﻬﺎ qﻭﺤﺩﻫﺎ ﺍﻷﻭل . U0 ﺤـل :ﻟﺤﺴﺎﺏ qﻴﻤﻜﻥ ﺍﻟﺘﻌﺒﻴﺭ ﻋﻥ U6ﻭ U4ﺒﺩﻻﻟﺔ U0ﻭ qﺜﻡ ﺤﺴﺎﺏ ﺤﺎﺼل ﺍﻟﻘﺴﻤﺔ . ﻟﺩﻴﻨﺎ U6 = U0q6 = 12 :؛ U4 = U0q4 = 3
ﻭﻤﻨﻪ q2 = 4 : U6 = U0q6 = 12 ﻭﻤﻨﻪ : U4 U0q4 3ﺃﻱ q = 2ﺃﻭ q = −2ﻭﺒﻤﺎ ﺃﻥ ﺍﻟﺤﺩﻭﺩ ﻤﻭﺠﺒﺔ ﻓﺈﻥ . q = 2 :ﺇﺫﻥ U4 = U0q4 = 3 :ﺃﻱ U0 × 16 = 3 :ﻭ ﺒﺎﻟﺘﺎﻟﻲ . U0 = 0, 1875 : U0 = 3 ﻭ ﻋﻠﻴﻪ : 16ﺇﺫﻥ Un :ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ 2ﻭﺤﺩﻫﺎ ﺍﻷﻭل ( ). 0,1875ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ rﻭﺤﺩﻫﺎ ﺍﻷﻭل ( )U0 U0 = -7 (1ﻭ . r = 3ﺍﺤﺴﺏ U10ﻭ U15U8 ﺍﺤﺴﺏ U5ﻭ . =r - 1 ﻭ U0 = 0 (2 2 .ﺍﺤﺴﺏ U12ﻭ U17 =r - 1 ﻭ = U0 12 5 5 (3 ﺍﻟﺘﻤﺭﻴﻥ. 2 * Un n∈¥ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ rﻭﺤﺩﻫﺎ ﺍﻷﻭل ( )U1 U1 = -3 (1ﻭ . r = 2ﺍﺤﺴﺏ U10ﻭ U15 U1 = 0 (2ﻭ . r = −0, 3ﺍﺤﺴﺏ U5ﻭ U8 U1 = 3, 2 (3ﻭ . r = 0, 5ﺍﺤﺴﺏ U11ﻭ U20 ﺍﻟﺘﻤﺭﻴﻥ. 3 Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﺤﻴﺙ ( ) ( )Un = n - 2 2 + 4 − n2 : ﺒﺭﻫﻥ ﺃﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﻌﻴﻨﺎ ﺃﺴﺎﺴﻬﺎ ( ).
ﺍﻟﺘﻤﺭﻴﻥ. 4 4n2 − 16 n+2 =( )Un Un ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﺤﻴﺙ : ﺒﺭﻫﻥ ﺃﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ .ﻋﻴﻥ ﺃﺴﺎﺴﻬﺎ ( ). ﺍﻟﺘﻤﺭﻴﻥ. 5 Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ( )r ﺃﺤﺴﺏ rﻭ U0ﻓﻲ ﻜل ﺤﺎﻟﺔ : U15 = 1 ؛ U14 = 1 (1 4 3 U3 = 3 2 + 1 (2؛ U5 = 1 + 2 U10 = − 43 (3؛ U20 = − 112 ﺍﻟﺘﻤﺭﻴﻥ. 6 Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ( )r U0 = 1؛ r = 3 ﺃﺤﺴﺏ S5 = U0 + U1 + ....... + U4 ﺃﺤﺴﺏ S20 = U0 + U1 + ....... + U19 ﺍﻟﺘﻤﺭﻴﻥ. 7 Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ rﺤﻴﺙ U0 = −120 :؛ ( )r = 8 -ﺍﺤﺴﺏ S16 = U0 + U1 + ....... + U15 -ﺍﺤﺴﺏ S31 = U0 + U1 + ....... + U30 ﺍﻟﺘﻤﺭﻴﻥ. 8( )r1 Un= 4 ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ rﺤﻴﺙ U6 = 5 :؛ -ﺍﺤﺴﺏ S = U6 + U7 + ... + U10 -ﺍﺤﺴﺏ T = U11 + U12 + U13 + U14
ﺍﻟﺘﻤﺭﻴﻥ. 9 ﺍﺤﺴﺏ ﺍﻟﻤﺠﺎﻤﻴﻊ : S1 = 1 + 2 + 3 + ...... + 25 (1 S2 = 2 + 4 + 6 + ...... + 50 (2 S3 = 3 + 6 + 9 + ...... + 75 (3 ﺍﻟﺘﻤﺭﻴﻥ. 10 ﺍﺤﺴﺏ : 101 + 102 + .... + 125 (1 402 + 404 + .... + 450 (2 1013 + 1016 + .... + 1085 (3 ﺍﻟﺘﻤﺭﻴﻥ. 11 Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ qﻭﺤﺩﻫﺎ ﺍﻷﻭل ( )U0 U0 = -1ﻭ . q = 3ﺍﺤﺴﺏ U5ﻭ U7 (1 (2= . qﺍﺤﺴﺏ U6ﻭ U8 1 U0 = -80 ﻭ2 1 . q = 5ﺍﺤﺴﺏ U3ﻭ U6 = U0ﻭ 125 (3 ﺍﻟﺘﻤﺭﻴﻥ. 12ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ .ﻋﻴﻥ ﺃﺴﺎﺴﻬﺎ qﻭ ﺤﺩﻫﺎ ﺍﻷﻭل U0ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ) ( ﻴﻠﻲ :Un = -5n (2 Un = 3n+1 (1 Un = 3 × 4n (3 ﺍﻟﺘﻤﺭﻴﻥ. 13ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Unﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﺘﻴﻥ ( ):Un+1 − Un = Un (1ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ :Un+1 − Un = 0,5 (2ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ : Un
ﺍﻟﺘﻤﺭﻴﻥ. 14 Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ qﺤﻴﺙ U0 = 1 :ﻭ ( )q = 3 ﺍﺤﺴﺏ S6 = U0 + U1 + ...... + U5 ﺍﺤﺴﺏ S10 = U0 + U1 + ...... + U9 ﺍﻟﺘﻤﺭﻴﻥ. 15 Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ( ). q q = 1 ﻭ U3 = 5 5 -ﺍﺤﺴﺏ S = U3 + U4 + .......+ U7 : -ﺍﺤﺴﺏ Y = U3 + U4 + .......+ U11 : -ﺍﺤﺴﺏ T = U8 + U9 + U10 + U11 : ﺍﻟﺘﻤﺭﻴﻥ. 16 (1ﺍﺤﺴﺏ S1 = 5 + 10 + 20 + 40 + 80 + 160 + 320 : (2ﺍﺤﺴﺏ S2 = 3 + 6 + 12 + 24 + 48 + 96 + 192 + 384 : ﺍﻟﺘﻤﺭﻴﻥ. 17 Unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ ( ):Un+1 = 2Un + 6 U0 = 7ﻭ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n 5 (1ﺍﺤﺴﺏ . U3 ، U2 ، U1 (2ﺘﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Vnﺍﻟﻤﻌﺭﻓﺔ ﺒـ ( ): ﻤﻥ ﺍﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Vn = Un − 2 : n (1ﺒﺭﻫﻥ ﺃﻥ Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل( ).
Un = 5 2 n +2 ﺒﺩﻻﻟﺔ nﻭﺍﺴﺘﻨﺘﺞ ﺃﻥ Vn (2ﻋﺒﺭ ﻋﻥ 3 ﺍﻟﺘﻤﺭﻴﻥ. 18ﻭﻀﻊ ﺸﺨﺹ ﻓﻲ ﺼﻨﺩﻭﻕ ﺍﻟﺘﻭﻓﻴﺭ ﻤﺒﻠﻐﺎ ﻗﺩﺭﻩ 200000 DAﺒﻔﺎﺌﺩﺓ ﻗﺩﺭﻫﺎ 7,25%ﻓﻲ 2006/12/01 . (1ﻤﺎ ﻫﻭ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﻴﺘﺤﺼل ﻋﻠﻴﻪ ﻓﻲ 2007/12/01؟ (2ﻨﻀﻊ U0 = 200000ﻭﻨﺭﻤﺯ ﺒـ Unﻟﻠﻤﺒﻠﻎ ﺍﻟﺫﻱ ﻴﻜﺴﺒﻪ ﻓﻲ /01/01ﻤﻥ ﺍﻟﺴﻨﺔ ) (2006+ n ﻭ ﻨﺭﻤﺯ ﺒـ Un+1ﻟﻠﻤﺒﻠﻎ ﺍﻟﺫﻱ ﺴﻴﻜﺴﺒﻪ ﻓﻲ ﺍﻟﺴﻨﺔ ﺍﻟﻤﻭﺍﻟﻴﺔ . ﺃ( ﺠﺩ ﻋﻼﻗﺔ ﺒﻴﻥ Un+1ﻭ . Un ﺍﺴﺘﻨﺘﺞ ﺃﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ( ). ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل . ﺏ( ﻋﺒﺭ ﻋﻥ unﺒﺩﻻﻟﺔ . n ﺝ( ﺍﺤﺴﺏ . U12 ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ. 1 ﻭ U15 = 38 U10 = U0 + 10 r = 23 (1 ﻭ U8 = -4 U5 = U0 + 5 r =- 2,5 (2 ﻭ U17 = -1 U12 = U0 + 12 r = 0 (3 ﺍﻟﺘﻤﺭﻴﻥ. 2 ﻭ U15 = 25 U10 = U1 + 9r = 15 (1 ﻭ U8 = -2,1 U5 = U1 + 4r = −1, 2 (2 ﻭ U20 = 12,7 U11 = U1 + 10r = 8, 2 (3 ﺍﻟﺘﻤﺭﻴﻥ. 3 Un+1 − Un = −4
ﺇﺫﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻴﺔ ( )- 4 ﺍﻟﺘﻤﺭﻴﻥ. 4 Un+1 − Un = 4 ﺇﺫﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ ( )4 ﺍﻟﺘﻤﺭﻴﻥ. 5 r = U15 − U14 = 1 − 1 = −1 (1 4 3 12 U0 = 1 − 15 × − 1 = 3 4 12 2 2r = U5 − U3 = −2 2 (2ﻭﻤﻨﻪ r = − 2 : U0 = U3 − 3r = 6 2 + 1 10r = U20 − U10 = -69 (3 ﻭﻤﻨﻪ r = -6,9 :و U0 = U10 − 10r = 26 ﺍﻟﺘﻤﺭﻴﻥ. 6× S5 = 5 U0 + U4 =5 × 1+13 = 35 2 2 U0 + U19 1+58× S20 = 20 2 × = 20 2 = 590 ﺍﻟﺘﻤﺭﻴﻥ. 7 ﻟﺩﻴﻨﺎ U15 = U0 + 15r = −120 + 15 × 8 = 0 : = S16 × 16 U0 + U15 = × 16 -120 +0 ﻭ ﻤﻨﻪ : 2 2 ﺇﺫﻥ S16 = −960 :× S31 = 31 U0 + U30 × = 31 -120 + 120 = 0 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 8
=S ×5 U6 + U10 = ×5 5+6 = 27,5 2 2× T=4 U11 + U14 = ×4 6,25+7 = 26,5 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 9 = S1 25 × 26 = 325 (1 2 S2 = 2S1 = 650 (2 S3 = 3S1 = 975 (3 ﺍﻟﺘﻤﺭﻴﻥ. 10 25 × 110 +125 = 2825 (1 2 × 25 402 +450 = 10650 (2 2 1013 + 1085 25 × 2 = 26225 (3 ﺍﻟﺘﻤﺭﻴﻥ. 11 U5 = U0 × q5 = -243 (1 U7 = U0 × q7 = -2187 (2 U6 = U0 × q6 = 1,25 (3 U8 = U0 × q8 = 0,3125 U3 = U0 × q3 = 1 U6 = U0 × q6 = 125 ﺍﻟﺘﻤﺭﻴﻥ. 12 (1ﻟﺩﻴﻨﺎ Un+1 = 3n+2 = 3Un : ﺇﺫﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ 3ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ( ). U0 = 3 : Un+1 = -5n+1 = 5Un (2ﻟﺩﻴﻨﺎ :
ﺇﺫﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ 5ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ( ). U0 = −1 : Un+1 = 3 × 4n+1 = 4Un (3ﻟﺩﻴﻨﺎ :ﺇﺫﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ 4ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ( ). U0 = 3 : ﺍﻟﺘﻤﺭﻴﻥ. 13 (1ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Un+1 = 2Un : n ﺇﺫﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ( ). 2 (2ﻟﺩﻴﻨﺎ Un+1 = 1,5 Un : ﺇﺫﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ . 1, 5 ﺍﻟﺘﻤﺭﻴﻥ. 14 = S6 1 × 1 - 36 = 364 1 - 3= S10 1 × 1 - 310 = 29524 1-3 ﺍﻟﺘﻤﺭﻴﻥ. 15=S 5 × 1- 1 5 = 6,248 (1ﻟﺩﻴﻨﺎ : 1 - 5 1 5 1 9 1− 5 1 =Y ×5 = 6,2499968 5 1− T = Y - S = 0,0019968 ﺍﻟﺘﻤﺭﻴﻥ. 16 S1 = 5 × 1 - 27 635 (1 = 1−2
S2 = 3 × 1 - 28 765 (2 = 1-2 ﺍﻟﺘﻤﺭﻴﻥ. 17 U1 = 4 ; U2 = 2,8 ; U3 = 2,32 (1 = Vn+1 = Un+1 − 2 2Un − 4 5 2 2 = 5 ( U n − )2 = 5 Vn ( )2 Vn ﺇﺫﻥV0 = U0 − 2 = 5 ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ 5ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل ﻋﺩﺩ ﻁﺒﻴﻌﻲ = Vn 5. 2 n ﻤﻥ ﺃﺠل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ : 5 Un = 5 . 2 n + 2 ﻭﻤﻨﻪ 5 ﺍﻟﺘﻤﺭﻴﻥ. 18 -1ﻟﺩﻴﻨﺎ 2000 000 × 1,0725 = 214500 :; U12 ﻓﻲ 1996/01/01ﺴﻴﻜﺴﺏ ﻤﺒﻠﻐﺎ ﻗﺩﺭﻩ 214500 DA -2ﺃ( ﻟﺩﻴﻨﺎ Un+1 = 1,0725 × Un : ﺇﺫﻥ Unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ ( )1,0725 ﻭ ﺤﺩﻫﺎ ﺍﻷﻭل U0 = 200 000 ﺏ( ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﻟﺩﻴﻨﺎ: Un = 200 000 × 1,0725n ﺝ( U12 = 200 000 × 1,072512ﻭﻤﻨﻪ463231 :
اﻟﻤﺘﺘﺎﻟﻴﺎت اﻟﻤﺘﻘﺎرﺑﺔ -اﻟﻤﺘﺒﺎﻋﺪة -1ﻨﻬﺎﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ :ﺘﻌﺭﻴﻑ :ﻨﻘﻭل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﺃﻨﻬﺎ ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ lﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻜل ﻤﺠﺎل ﻤﻔﺘﻭﺡ ﻴﺸﻤل lﻴﺸﻤل ﺃﻴﻀﺎ ﻜل ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ . ﻨﻘﻭل ﺃﻴﻀﺎ ﺃﻥ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ lﻭﻨﻜﺘﺏ : lim ) (un =l ∞n→ + ﻤﺒﺭﻫﻨﺎﺕ : (1ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﻘﺎﺭﺒﺔ ﻓﺈﻥ ﻨﻬﺎﻴﺘﻬﺎ ﻭﺤﻴﺩﺓ ( ).vn = 1 ; un = 1 = ; tn 1 (2ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : n2 n n ﻫﻲ ﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ . 0 (3ﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺫﺍﺕ ﺍﻷﺴﺎﺱ qﺤﻴﺙ q < 1ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ . 0 (4ﻜل ﻤﺘﺘﺎﻟﻴﺔ ﺜﺎﺒﺘﺔ ﻤﺘﻘﺎﺭﺒﺔ . ﻋﻤﻠﻴﺎﺕ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻴﺎﺕ : unﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ l؛ vnﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ ( ) ( ). l ′ -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ wnﺤﻴﺙ wn = un + vn :ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ ( )l + l ′ -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Snﺍﻟﻤﻌﺭﻓﺔ ﺒـ Sn = un × vn :ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ ( )l × l ′ -ﺍﻟﻤﺘﺘﺎﻟﻴﺔ k × unﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ k × lﺤﻴﺙ ( ). k ∈ ¡ : = ( )tnun tn -ﺒﺎﻹﻀﺎﻓﺔ ﺇﺫﺍ ﻜﺎﻥ l ′ ≠ 0ﻓﺈﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ vn ﺤﻴﺙ : l ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ . l ′ ﻤﺜﺎل: 1 = unﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ 0 n+1 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ : n2
lim 1 =0 ; lim 1 =0 ﻭ = un 1 + 1 ﻷﻥ : n2 n n n2 ∞→n ∞→n ﻤﺜﺎل: 2 = unﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ 2 2- 3 + 4 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ : n n ; lim 4 = 0 lim -3 = 0 ﻷﻥ : n→∞ n n ∞→n -2ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ un = f (n) : ﻤﺒﺭﻫﻨﺔ : fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞[ [a ; + unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ ( )un = f (n) ; n ≥ a : ﺇﺫﺍ ﻜﺎﻨﺕ ﻟﻠﺩﺍﻟﺔ fﻨﻬﺎﻴﺔ lﻋﻨﺩ ∞ +ﻓﺈﻥ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ unﻨﻬﺎﻴﺔ ( )l ﻋﻨﺩ . ∞ + = . un 2n + 3 ﻤﺜﺎل : n+5 ﻟﺘﻜﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﺍﻟﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻟﻌﺎﻡ ( ): ﻴﻤﻜﻥ ﺘﻌﺭﻴﻑ unﺒـ un = f (n) :ﺤﻴﺙ f :ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻨﺎﻁﻘﺔ) ( xa 2x + 3 ﺍﻟﻤﻌﺭﻓﺔ ﺒـ x + 5 : lim un 2 ﻭ ﺒﻤﺎ ﺃﻥ lim f (x) = 2 : = ﻓﺈﻥ : ∞n→+ ∞x→+ -3ﺍﻟﻨﻬﺎﻴﺔ ﻏﻴﺭ ﺍﻟﻤﻨﺘﻬﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ : ﺘﻌﺭﻴﻑ : -ﺍﻟﻘﻭل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ ﺃﻥ ﻨﻬﺎﻴﺘﻬﺎ ﻏﻴﺭ ﻤﻨﺘﻬﻴﺔ ∞ +ﻴﻌﻨﻲ ﺃﻥ ﻜل ﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل ∞[ [ ( )a ; +. lim = un ∞+ ﻴﺸﻤل ﻜل ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ﻟـ nﻭﻨﻜﺘﺏ : ∞→n
-ﺍﻟﻘﻭل ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ ﺃﻥ ﻨﻬﺎﻴﺘﻬﺎ ﻏﻴﺭ ﻤﻨﺘﻬﻴﺔ ∞ −ﻴﻌﻨﻲ ﺃﻥ ﻜل ﻤﺠﺎل ﻤﻥ ﺍﻟﺸﻜل ] ] ( )−∞ ; a. lim = un ∞- ﻴﺸﻤل ﻜل ﺤﺩﻭﺩ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﺒﺘﺩﺍﺀ ﻤﻥ ﺭﺘﺒﺔ ﻤﻌﻴﻨﺔ ﻟـ nﻭﻨﻜﺘﺏ : ∞→n ﻤﺜﺎل : ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒـ un = n2 :ﻟﻬﺎ ﻨﻬﺎﻴﺔ ﻏﻴﺭ ﻤﻨﺘﻬﻴﺔ . )*( -4ﺤﺼﺭ ﻤﺘﺘﺎﻟﻴﺔ ) :ﺍﻟﺤﺩ ﺍﻷﻋﻠﻰ – ﺍﻟﺤﺩ ﺍﻷﺩﻨﻰ ( ﻨﻌﺘﺒﺭ un ; vn ; wnﻤﺘﺘﺎﻟﻴﺎﺕ ﻋﺩﺩﻴﺔ ( ) ( ) ( ).ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺃﻜﺒﺭ ﻤﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ vn ≤ un ≤ wn : n0ﻭﻜﺎﻨﺕ ﺍﻟﻤﺘﺘﺎﻟﻴﺘﺎﻥ ) َ (vnﻭ ) (wnﻤﺘﻘﺎﺭﺒﺘﺎﻥ ﻨﺤﻭ ﻓﺈﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ l ( ) l. ﻤﺜﺎل : = un n + (-1)n ﻨﻌﺘﺒﺭ : 2n ﻟﺩﻴﻨﺎ ) −1 ≤ (-1)n ≤ 1 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ( n ﻭﻤﻨﻪ n − 1 ≤ n + (-1)n ≤ n + 1 : n - 1 n + (-1)n n + 1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ 2n ≤ 2n ≤ 2n : n-1 n+1 2n ≤ un ≤ 2n ﺃﻱ : lim n+1 = 1 ﻭ lim n-1 = 1 ﻭﻟﺩﻴﻨﺎ : 2n 2 2n 2 ∞n→+ ∞n→+ . lim = un 1 ﺇﺫﻥ : 2 ∞n→+ ﻤﺒﺭﻫﻨﺔ : un ; vnﻤﺘﺘﺎﻟﻴﺘﺎﻥ ﻋﺩﺩﻴﺘﺎﻥ .ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺃﻜﺒﺭ ﻤﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ) ( ) ( vn ≤ un : n0
lim = un ∞+ ﻓﺈﻥ : lim = vn ∞+ ﻭﻜﺎﻨﺕ :∞n→+ ∞n→+lim = vn ∞- ﻓﺈﻥ : lim un = ∞- ﻭ ﺇﺫﺍ ﻜﺎﻨﺕ :∞n→+ ∞n→+ -5ﻨﻬﺎﻴﺔ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ : unﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﻴﺙ ( )un = u0 . qn : lim = un 0 -ﺇﺫﺍ ﻜﺎﻥ −1 < q < 1 :ﻓﺈﻥ : ∞n→+ lim = un u0 ﻓﺈﻥ : -ﺇﺫﺍ ﻜﺎﻥ q = 1 : ∞n→+ lim = un ∞+ ﻓﺈﻥ : -ﺇﺫﺍ ﻜﺎﻥ q > 1 : ∞n→+ -ﺇﺫﺍ ﻜﺎﻥ q ≤ -1 :ﻓﺈﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﻟﻴﺴﺕ ﻟﻬﺎ ﻨﻬﺎﻴﺔ . ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 -1 n 2 = ( )un 3+ unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ : (1ﺒﺭﻫﻥ ﺃﻥ unﻤﺘﻘﺎﺭﺒﺔ .ﻤﺎ ﻫﻲ ﻨﻬﺎﻴﺘﻬﺎ ؟) ( dn (2ﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻑ ﺒـ ( )dn = un − un-1 : -ﺍﺤﺴﺏ d1 ; d2ﺜﻡ ﺒﺭﻫﻥ ﺃﻥ dnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺤﺩﻫﺎ ﺍﻷﻭل ﻭ) ( ﺃﺴﺎﺴﻬﺎ . -ﺒﺭﻫﻥ ﺃﻨﻬﺎ ﻤﺘﻘﺎﺭﺒﺔ .ﻤﺎﻫﻲ ﻨﻬﺎﻴﺘﻬﺎ ؟ ﺍﻟﺘﻤﺭﻴﻥ. 2 unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ ( ). un = f (n) : f )(x = x +1 ﺤﻴﺙ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻨﻀﻊ : 5x - 1 (1ﺍﺩﺭﺱ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞. +
(2ﺍﺴﺘﻨﺘﺞ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( ). un ﺍﻟﺘﻤﺭﻴﻥ. 3 ﻨﻌﺘﺒﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ( ) ( ) ( )un n≥1 ; vn n≥1 ; wn n≥1= un 1 ; = vn 1 ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﺒـ : n n+1 ; wn = un × vn (1ﺍﺤﺴﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻷﺭﺒﻌﺔ ﺍﻷﻭﻟﻰ ﻟﻜل ﻤﺘﺘﺎﻟﻴﺔ . (2ﺒﺭﻫﻥ ﺃﻥ ﻫﺫﻩ ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﻤﺘﻘﺎﺭﺒﺔ ﻭ ﺤﺩﺩ ﻨﻬﺎﻴﺘﻬﺎ. )*( ﺍﻟﺘﻤﺭﻴﻥ. 4 3n - 2 2n + 1 = ( )un unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒـ : -1ﻋﺒﺭ ﻋﻥ un+1 − unﺒﺩﻻﻟﺔ nﺜﻡ ﻋﻴﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( )un ﺒﺩﻻﻟﺔ .n un − 3 -2ﻋﺒﺭ ﻋﻥ 2 3 ≤ −2 ≤ un 2 -3ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n un = 3 - 7 ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n -4ﺃ( 2 )2(2n+1 ﺏ( ﺒﺭﻫﻥ ﺃﻥ unﻤﺘﺘﺎﻟﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ ( ). -5ﻤﺜل ﺒﻴﺎﻨﻴﺎ unﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). )*( ﺍﻟﺘﻤﺭﻴﻥ. 5 1 ( )2 ﻭﺃﺴﺎﺴﻬﺎ = u0 1 ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل u0ﺤﻴﺙ un ﻟﺘﻜﻥ snﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒـ ( ): sn = u0 + u1 + ...... + un -1ﺍﺤﺴﺏ u1 ; u2 ; u3 ; u4 ; u5 : ﺜﻡ s1 ; s2 ; s3 ; s4 ; s5 :
1 ≤ sn ≤ 2 -2ﺃ( ﻋﺒﺭ ﻋﻥ sn+1 − snﺒﺩﻻﻟﺔ . n ﺏ( ﻋﻴﻥ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( ). sn -3ﺃ( ﻋﺒﺭ ﻋﻥ snﺜﻡ sn − 2ﺒﺩﻻﻟﺔ n ﺏ( ﺒﺭﻫﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n -4ﻋﻴﻥ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ( ). sn ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺃﻋﻁ ﺍﻷﺠﻭﺒﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻭ ﺍﻟﺨﺎﻁﺌﺔ ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ : unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒـ ( ):= un 4 + 3n 1+n un (2ﻤﺘﻘﺎﺭﺒﺔ) ( ؛ lim = un 4 (1 ∞→n un (4ﻤﺘﻨﺎﻗﺼﺔ) ( ) ( un (3ﻤﺘﺯﺍﻴﺩﺓ ؛ ﺍﻟﺘﻤﺭﻴﻥ. 7 ﺃﻋﻁ ﺍﻷﺠﻭﺒﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻭ ﺍﻟﺨﺎﻁﺌﺔ ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ : unﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒـ ( ):un = 2n + 1 - 4 3n + 5 un (2ﻤﺘﻘﺎﺭﺒﺔ ( ). ؛ lim un = ∞+ (1 ∞→n ؛ un (4ﻤﺘﺒﺎﻋﺩﺓ) ( un (3ﻤﺘﺯﺍﻴﺩﺓ) ( ﺍﻟﺘﻤﺭﻴﻥ. 8 ﺃﻋﻁ ﺍﻷﺠﻭﺒﺔ ﺍﻟﺼﺤﻴﺤﺔ ﻭ ﺍﻟﺨﺎﻁﺌﺔ ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ : )f (x = x+ 3x - 1 ¡ ﺒـ : - 1 fﺩﺍﻟﺔ 2x - 1 ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ 2 ﻭ unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ ( ). un = f (n) :
؛ un (2ﻤﺘﻨﺎﻗﺼﺔ ( ). ; 0 1 fﻤﺘﻨﺎﻗﺼﺔ ﻋﻠﻰ (1 ؛ un (4ﻤﺘﺯﺍﻴﺩﺓ ( ). 2 unﻤﺘﻘﺎﺭﺒﺔ) ( (3 ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ. 1 ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ 0 vn = −1 n ﺍﻟﻤﺘﺘﺎﻟﻴﺔ (1 2 ﻷﻥ ﺃﺴﺎﺴﻬﺎ . q < 1 ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ unﻤﺘﻘﺎﺭﺒﺔ .ﻭﻨﻬﺎﻴﺘﻬﺎ ﻫﻲ ( )3 = u2 13 , = u1 5 , u0 = 4 (2 4 2 5 -3 = d1 = u1 − u0 2 -4 = 2 = d2 = u2 − u1 13 - 5 = 3 4 2 4dn = -1 n − -1 n−1 = -3 × -1 n−1 2 2 2 2 ( ).−1 d1 = −3 dn ﺇﺫﻥ : 2 ﻭﺃﺴﺎﺴﻬﺎ 2 ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل ﻓﻬﻲ ﻤﺘﻘﺎﺭﺒﺔ ﻭﻨﻬﺎﻴﺘﻬﺎ . 0 ﺍﻟﺘﻤﺭﻴﻥ. 2
1+ 1 x . = )f (x 1 (1ﺇﺫﺍ ﻜﺎﻥ x ≠ 0 :ﻓﺈﻥ : 5x 5 1 - lim 1 = lim 1 =0 ﻟﺩﻴﻨﺎ : ∞x x→+ 5x ∞x→+ = )lim f (x 1 ﻭﻤﻨﻪ : 5 ∞x→+ lim un = lim = )f (x 1 (2 5 ∞n→+ ∞x→+ ﺍﻟﺘﻤﺭﻴﻥ. 3 (1ﺤﺴﺎﺏ ﺍﻟﺤﺩﻭﺩ ﺍﻷﺭﺒﻌﺔ ﺍﻷﻭﻟﻰ :u1 = 1 ; = u2 1 ; = u3 1 ; = u4 1 2 3 4 1 1 1 1= v1 2 ; = v2 3 ; = v3 4 ; = v4 5= w1 1 ; = w2 1 ; = w3 1 ; = w4 1 2 6 12 20 lim un = lim vn = lim wn =0 ﻟﺩﻴﻨﺎ : (2 ∞n→+ ∞n→+ ∞n→+ ﺇﺫﻥ :ﺍﻟﻤﺘﺘﺎﻟﻴﺎﺕ ﺍﻟﺜﻼﺜﺔ ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ . 0 = un+1 − un 3n + 1 − 3n − 2 ﺍﻟﺘﻤﺭﻴﻥ. 4 2n + 3 2n + 1 (1ﻟﺩﻴﻨﺎ : 7 )= (2n +3)(2n +1 ﻭ ﻤﻨﻪ un+1 − un > 0 :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ n ﻭ ﺒﺎﻟﺘﺎﻟﻲ un :ﻤﺘﺯﺍﻴﺩﺓ ( ).
y (2ﻟﺩﻴﻨﺎ :4 -73 un - 3 = 3n − 2 - 3 =2 2 2n + 1 2 ( 2n + 1 ) × 21-4 -3 -2 -1 0 (3ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n -1 ) un ≥ u0ﻤﻥ ﺍﻟﺘﺯﺍﻴﺩ ( 1 2 3 4 x ﻭ ﻋﻠﻴﻪ . un ≥ - 2 :ﻭ ﻤﻤﺎ ﺴﺒﻕ -2-3 un − 3 0 ≤2ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ -4 n ≤ −2 ≤ un 3 : 2 3 -7 un - 2 = ( 2n + 1 ) × 2 – (4ﺃ( ﻟﺩﻴﻨﺎ : 3 - 7 2 2n + 1=( )un 2 ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ : n 7 2n + 1 ( )lim 2 =0 ﺏ( ﻟﺩﻴﻨﺎ : ∞n→+ ( )3 un ﻭﻤﻨﻪ: ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ . 2 (5ﺭﺴﻡ ﺍﻟﻤﻨﺤﻨﻰ :
ﺍﻟﺘﻤﺭﻴﻥ. 5 (1ﺍﻟﺤﺴﺎﺏ :u1 = 1 ; u2 = 1 ; u3 = 1 ; u4 = 1 ; u5 = 1 2 4 8 16 32 3 7 15 31 63s1 = 2 ; s2 = 4 ; s3 = 8 ; s4 = 16 ; s5 = 32 sn+1 - sn = un+1 = 1 n+1 – (2ﺃ( 2 snﻤﺘـﺯﺍﻴﺩﺓ) ( ﺏ( Sn -2 = - 1 n ﻭ ﻤﻨﻪ : Sn = 2 - 1 n – (3ﺃ( ﻟﺩﻴﻨﺎ : 2 2 ﺏ( snﻤﺘـﺯﺍﻴﺩﺓ ﻭ ( )S0 = 1 ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Sn ≥ 1 : n ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Sn - 2 ≤ 0 : n ﻭﻤﻨﻪ :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ 1 ≤ Sn ≤ 2 : n . lim Sn = 2 (4 ∞n→+ ﺍﻟﺘﻤﺭﻴﻥ (1 . 6ﺨﺎﻁﺊ ؛ ( 2ﺼﺤﻴﺢ ؛ (3ﺨﺎﻁﺊ ؛ (4ﺼﺤﻴﺢ ﺍﻟﺘﻤﺭﻴﻥ (1 . 7ﺼﺤﻴﺢ ؛ ( 2ﺨﺎﻁﺊ ؛ (3ﺼﺤﻴﺢ ؛ (4ﺼﺤﻴﺢ ﺍﻟﺘﻤﺭﻴﻥ (1 . 8ﺼﺤﻴﺢ ؛ ( 2ﺨﺎﻁﺊ ؛ (3ﺨﺎﻁﺊ ؛ (4ﺼﺤﻴﺢ
ﺍﻟﻤﺭﺠﺢ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ اﻟﻜﻔﺎءات اﻟﻤﺴﺘﻬﺪﻓﺔ -1إﻧﺸﺎء ﻡﺮﺟﻊ ﻧﻘﻄﺘﻴﻦ . -2إﻧﺸﺎء ﻡﺮﺟﻊ ﺛﻼث ﻧﻘﻂ )ﺧﺎﺻﻴﺔ اﻟﺘﺠﻤﻴﻊ( . -3ﺣﺴﺎب إﺣﺪاﺛﻴﺎت اﻟﻤﺮﺟﻊ . -4ﺕﻮﻇﻴﻒ اﻟﻤﺮﺟﻊ ﻹﺛﺒﺎت إﺱﺘﻘﺎﻡﻴﺔ ﻧﻘﻂ أو ﺕﻼﻗﻲ ﻡﺴﺘﻘﻴﻤﺎت -5ﺕﻮﻇﻴﻒ اﻟﻤﺮﺟﻊ ﻟﺪراﺱﺔ ﻡﺠﻤﻮﻋﺔ ﻧﻘﻂ و ﺕﻌﻴﻴﻨﻬﺎ و إﻧﺸﺎﺋﻬﺎ . ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ اﻟﺪرس ﺕﻤـﺎریـﻦ و ﻡﺸﻜﻼت اﻟﺤﻠﻮل
اﻟﺪرس ﻤﺜﺎل ) : 1ﺘﻌﻠﻴﻡ ﻨﻘﻁﺔ ﺨﺎﺼﺔ ( ( )r r ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ، O ; i , jﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ A , B , C , Dﻫﻲ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ : 4 ; - 1 ; ); (1 ; 1 ; )(0 ; -2 )(3 ; 0 2 ﻨﺭﻓﻕrﺒuﻜuل uﻨuﻘﻁﺔ Mﻤurﻥuﺍﻟuﻤuﺴﺘﻭﻱ ﺍurﻟﻨuﻘuﻁﺔ M′uuﺍﻟﻤﻌﺭﻓﺔ ﺒـ : MM′ = MO + 2 MAﻭﻨﺭﻤﺯ M′ = f (M) : (1ﺃﻨﺸﺊ ﺍﻟﻨﻘﻁ B′,C′, D′ﺍﻟﻤﻌﺭﻓﺔ ﺒـ :)B′ = f (B) ; C′ = f (C) ; D′ = f (D (2ﺍﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ). (BB′) ; (CC′) ; (DD′ (3ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ) (BB′) ; (CC′) ; (DD′ﺘﻅﻬﺭ ﺃﻨﻬﺎ ﺘﺘﻘﺎﻁﻊ ﻓﻲ ﺍﻟﻨﻘﻁﺔ . I ﺃ( ﺍﻗﺭﺃ ﻋﻠﻰ ﺍﻟﺭﺴﻡ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁﺔ . I ﺏ( ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ I′ﺍﻟﻤﻌﺭﻓﺔ ﺒـ uuu.uuIr′ = rf (I) : ﺝ( ﻋﻴﻥ ﻜل ﺍﻟﻨﻘﻁ Mﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺒﺤﻴﺙ ﻴﻜﻭﻥ . MM′ = 0 :uuur uuur uuur ﺤل uuur uuur uuur :BB′ = BO + 2BA ; uCuCuur′ = CuuOur + 2CuuAur (1 DD′ = DO + 2DA (2ﺃﻨﻅﺭ ﺍﻟﺸﻜل ﺃﺩﻨﺎﻩ . - 3ﺃ( )uur uur I (2uu;r0 ﺏ( II′ = IO + 2IA uur uur1 ﻫﻤﺎ IA ﻭ ﻤﺭﻜﻴﺒﺘﺎ −2 IOﻫﻤﺎ ﻤﺭﻜﺒﺘﺎ ﺍﻟﺸﻌﺎﻉ 0 0 uur = r 0 ﺃﻱ -2 + 2 uurII′ 0 ﻭﻤﻨﻪ ﻤﺭﻜﻴﺒﺘﺎ II′ﻫﻤﺎ: 0 0 +0
uuuur . (2 ;uu0u)ur ﻫﻤﺎIr′ ﻤﺘﻁﺎﺒﻘﺘﺎﻥ ﻭ ﺇﺤﺩﺍﺜﻴﺎuIu′uuﻭurI ﻁﺘﺎﻥrﺍﻟﻨﻘuMuuOur + 2uMuuAur = 0uuu:rﻘﻁ ﺇﺫﺍr ﺇﺫﺍ ﻭﻓMM′ = 0 (ﺝMO + 2MA + 2OA = 0 uuuur : ﻭﻫﺫﺍ ﻴﻜﺎﻓﺊ OM uuur = 2 OA : ﺃﻱ 3 . I ﻫﻲ ﺍﻟﻨﻘﻁﺔf (M) = M : ﺘﺤﻘﻕM ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻭ ﺤﻴﺩﺓ: ﺇﺫﻥy4 B'3 2 C A 6x 3 4D 5D' 1 I-2 -1 0 12 -1-2 B C' : 2ﻤﺜﺎلuuuuur u:uuـurﻟﻤﻌﺭﻓﺔ ﺒu ﺍuguuﺔrﺃﺠﺏ ﻋﻠﻰ ﻨﻔﺱ ﺍﻷﺴﺌﻠﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺩﺍﻟMM′′ = MO - 2MA : ﺤﻴﺙM′′ = g (M). (BB′′) ; (CC′′) ; (DD′′) ﻨﻘﻁﺔ ﺜﻼﻗﻲ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕJ ﺘﺴﻤﻰuuur uuur uuur uuuur uuur uuur : ﺤلBB′ = BO - 2uBuuAur ; uuCurC′′ =uuCurO - 2CA (1 DD′′ = DO - 2DA : ( ﺍﻨﻅﺭ ﺍﻟﺸﻜل ﺃﺩﻨﺎﻩ2 J (6 ; 0) ( ﺃ-3
−6 uur ﻤﺭﻜﺒﺘﺎ uuur uur uur ﺏ( ﻫﻤﺎ JO JJ′′ = JO - 2JA 0 −3 ﻫﻤﺎ uur ﻭﻤﻨﻪ ﻤﺭﻜﺒﺘﺎ −3 ﻫﻤﺎ uur JA ﻭﻤﺭﻜﺒﺘﺎ JA 0 0 0 −6 - 2 (-3) uuur u0ur- 2ﺃﻱ : ﻭﻤﻨﻪ ﻤﺭﻜﺒﺘﺎ JJ′′ﻫﻤﺎ 0 × 0 uuur ur ﺇﺫﻥ JJ′′ = O :ﺃﻱ ﺍﻟﻨﻘﻁﺘﺎﻥ Jﻭ J′′ﻤﻨﻁﺒﻘﺘﺎﻥ ﻭ )J′′ (6 ; 0 uuuur uuuur r uuuuur ur ﺝ( MM′′ = Oﺇﺫrﺍ ﻭﻓﻘﻁrﺇuﺫﺍMuOuuu-r 2MuAuuu=r 0 u: u ﻭﻫﺫﺍ ﻴﻜﺎﻓrﺊ MO - 2MO - 2OAu=uu0ur uuur : ﺃﻱ -MO - 2OA = 0 :ﺇﺫﻥ ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ Mﺘﺤﻘﻕ : . g (M) = Mﻫﻲ ﺍﻟﻨﻘﻁﺔ . J y 4 3 'C 2 C 1 AJ-6 -5 -4 -3 -2 -1 0 1 D'2 3 D4 5 6 x -1 -2 B - Iﺍﻷﺸﻌﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ -3 :'B -1ﺘﻌﺭﻴﻑ -4 uuur uuur : ﺘﺴﺎﻭﻱ ﺸﻌﺎﻋurﻴuﻥ ABuu=urCOuﻤﻌﻨﺎﻩ ABCDﻤﺘﻭﺍﺯﻱ ﺃﻀﻼﻉ. ﺃﻭ ﻜﺫﻟﻙ AB :ﻭ CDﻟﻬﺎ ﻨﻔﺱ ﺍﻻﺘﺠﺎﻩ ﻨﻔﺱ ﺍﻟﻤﻨﺤﻨﻰ ﻭ
D C uuur uuur uur . AB = CD F ﺇﺫﺍ ﻜﺎﻥ AB = CDur= EF =.... EAB ﻨﺭﻤﺯrﻟuﻬﺫﺍ ﺍﻟﺸrﻌuﺎuﻉuﺒـ U : • AB = Oﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ A = B : ﺨﺎﺼﻴﺔu:rﻟﻴﻜﻥ Uﺸrﻌuﺎﻉ .ﻤurﻥuﺃuﺠل ﻨﻘﻁﺔ Aﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺘﻭﺠﺩ ﻨﻘﻁﺔ ﻭﺤﻴﺩﺓ B ﺒﺤﻴﺙ uAuuBr = O : • ﻁﻭﻴﻠﺔ ﺍﻟﺸﻌﺎﻉ AuBuurﻫﻲ ﺍﻟﻤﺴﺎﻓﺔ .AB ﻨﺭﻤﺯ ﻟﻬﺎ ﺒـ AB = AB : -2ﻋﻤﻠﻴﺎﺕ ﻋﻠﻰ ﺍﻷﺸﻌﺔ : (1ﺠﻤrﻊuﺸﻌﺎﻋﻴurﻥuuur ur u:u ﺇﺫﺍ ﻜﺎﻥ ur urABu=uurV ;uuAur B =uuUur ﻓﺈﻥ ) U + V = AB + BC = AC :ﻋﻼﻗﺔ ﺸﺎل(ur ur (2ﺠﺩﺍﺀ ﺸﻌﺎﻉ ﺒﻌﺩﺩ ﺤﻘﻴﻘﻲ :ﻤﻥ ﺃﺠrل ﻜل ﻋrﺩuﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ k′ ; kﻭrﻤﻥ ﺃﺠلurﻜل ﺸﻌﺎﻋﻴﻥ Vو U ﺃ( ukrU = u0rﺘﻜﺎﻓﺊ k =ur0 :ﺃrﻭ( )U = 0 u k U+V = kU + kV ﺏ( ur ur ur ( )(k +k′u)r =U kU + k′U ur ﺝ( ﺩ( k k′U = (k × k′) U ﺘﻁﺒﻴﻕ ) : 1ﺍﺴﺘﻌﻤﺎل ﺍﻟﺤﺴﺎﺏ ﺍﻟﺸﻌﺎﻋﻲ ( urﻟﻴﻜﻥ AuBuuCrDﻤﺘﻭﺍﺯrﻱuﺃuﻀuﻼﻉ .ﺒurﺴuﻁuﺍﻟﺸﻌﺎﻉ uUuurﺤﻴﺙu:rU = CA + BD - 2DA + 4ABur uuur uuur uuur uuur uuur uuur ﺤل :( ) ( )U = CB + BA + BA + AD - 2DA + 4AB
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146