اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ، nﻟﻨﺤﺴﺏ ) p(nﺍﻟﻘﻀﻴﺔ . (σ 1)n t nσ 1 : ﻤﺭﺤﻠﺔ ﺍﻻﺒﺘﺩﺍﺀ : ) p(0ﻫﻲ ﺍﻟﻘﻀﻴﺔ (σ 1)0 t 0 u σ 1 : ﻭﻫﻲ ﺍﻟﻘﻀﻴﺔ 1 t 1 : ﻭﻫﻲ ﺼﺤﻴﺤﺔ ﻭﻤﻨﻪ ) p(0ﺼﺤﻴﺤﺔ .(1) ... ﺍﻟﺒﺭﻫﺎﻥ ﺃﻥ ﺍﻟﺨﺎﺼﻴﺔ pﻭﺭﺍﺜﻴﺔ : ﻟﻨﺄﺨﺫ mﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻜﻴﻔﻴﺎ ﻭﻟﻨﻔﺭﺽ ) p(mﺼﺤﻴﺤﺔ ﺃﻱ ﻟﻨﻔﺭﺽ ﺃﻥ : (σ 1)m t mσ 1 (σ 1)m t mσ 1 ﻟﺩﻴﻨﺎ ﻓﺭﻀﺎ : (σ 1) (σ 1)m t (σ 1) mσ 1 ﻭﻋﻠﻴﻪ : (σ 1)m1 t σ 2m σ mσ 1 ﺃﻱ ﺃﻥ : (σ 1)m1 t (m 1)σ 1 σ 2m ﺃﻱ ﺃﻥ :) (m 1)σ 1 σ 2m t (m 1)σ 1ﻷﻥ (σ 2m t 0 : ﻭﻟﻜﻥ : (σ 1)m1 t (m 1)σ 1 ﻭﻤﻨﻪ : ) p(m 1ﺼﺤﻴﺤﺔ. ﻭﻋﻠﻴﻪ : ﻭﻤﻨﻪ ﺼﻭﺍﺏ ) p(mﻴﺅﺩﻱ ﺇﻟﻰ ﺼﻭﺍﺏ ). p(m 1 ﻭﻋﻠﻴﻪ ﺍﻟﺨﺎﺼﻴﺔ pﻭﺭﺍﺜﻴﺔ.(2).... .ﺍﻟﺨﺎﺘﻤﺔ :ﻤﻥ ) (1ﻭ ) (2ﻭﺤﺴﺏ ﻤﺒﺩﺃ ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻨﺠﺩ :ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ nﻓﻲ ، N ) p(nﻗﻀﻴﺔ ﺼﺤﻴﺤﺔ. ﺍﻟﺘﻤﺭﻴﻥ : 7 /1ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺤﻴﺙ n t 2ﻓﺈﻥ 5n t 3n 4 n :ﺍﺘﺒﻊ ﻨﻔﺱ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﻭﺍﺭﺩﺓ ﻓﻲ ﺤل ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺴﺎﺒﻕ ﻤﻊ ﺍﻟﻤﻼﺤﻅﺔ ﻤﻥ ﺃﺠل nﻓﻲ Nﻭ n t 2 ﻟﺩﻴﻨﺎ : 5 u 3n 5 u 4n (2 3) u 3n (1 4) u 4n 3n1 4 n1 2 u 3n 4 n 41
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي /2ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺍﻨﻪ : ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺤﻴﺙ n t 3ﻓﺈﻥ 4n t (n 3) 2ﺍﺘﺒﻊ ﻨﻔﺱ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﻭﺍﺭﺩﺓ ﻓﻲ ﺤل ) ﺍﻟﺘﻤﺭﻴﻥ ( 6ﻤﻊ ﺍﻟﻤﻼﺤﻅﺔ ﻤﻥ ﺃﺠل nﻓﻲ Nﻭ n t 2 ﻟﺩﻴﻨﺎ : 4(n 3) 2 4n 2 24n 36 n 2 8n 16 3n 2 16n 20 (n 4) 2 3n 2 16n 20. ﺍﻟﺘﻤﺭﻴﻥ : 8 ﺍﺴﺘﻔﺩ ﻤﻥ )ﺍﻟﺘﻤﺭﻴﻥ (1ﻭﻤﻥ )ﺍﻟﺘﻤﺭﻴﻥ .(6 ﺍﻟﺘﻤﺭﻴﻥ : 9 ﺩﺭﺍﺴﺔ ﺭﺘﺎﺒﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﺒﺎﻻﻋﺘﻤﺎﺩ ﻋﻠﻰ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﻜل ﻤﺎ ﻴﻠﻲ : Un 5 3 /1 n 1 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. Un 2 5 /2 n ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. U n 2n 1 /3 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. U n 2n 2 4 /4 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. Un 3n 5 /5 n2 (U n 3 5 )ﻻﺤﻅ ﺃﻥ : ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. n n2 Un 2n 1 3 /6 2n 1 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. U n n 2 3n 9000 /7 42
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ. ) ﺍﻹﺠﺎﺒﺔ ﺍﻟﺘﻔﺼﻴﻠﻴﺔ ﻓﻲ ﻫﺫﺍ ﺍﻟﺘﻤﺭﻴﻥ ﺘﻌﺘﻤﺩ ﻋﻠﻰ ﺩﺭﺱ ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ(. ﺍﻟﺘﻤﺭﻴﻥ : 10: ﻴﻠﻲ ﻤﺎ ﻜل ﻓﻲ 1 ﻭﺍﻟﻌﺩﺩ U n1 ﺩﺭﺍﺴﺔ ﺭﺘﺎﺒﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﺒﻤﻘﺎﺭﻨﺔ ﺤﺎﺼل ﺍﻟﻘﺴﻤﺔ Un * . D N ﻭ Un 3n /1 n 1 ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ * N U n1 3 n 1 ﻟﺩﻴﻨﺎ n 2 : U n1 3 n 1 n 1 ﻭﻋﻠﻴﻪ : Un u 33 n2 3 n 1 n2U n1 1 3. n 1 1 ﻋﻨﺩﺌﺫ :Un n2 ©¨¨§ 3. n 1 1¸¹¸·.¨¨§©3. n 1 ¸ 1·¸¹ n2 n2 3 n 1 1 n2 9 n 1 1 n 2 3 n 1 1 n2 8n 1 n 2§©¨¨3 n 1 ¸ 1¸·¹ n2 43
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي U n1 ! 1 0 ﻭﻤﻨﻪ : Un )ﻷﻥ (U n ! 0 U n1 ! U n ﺃﻱ ﺃﻥ : ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ. D U nﻭ * N !n /3 2n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ * N U n1 !)(n 1 ﻟﺩﻴﻨﺎ : 2 n1 U n1 !n 1 u 2n ﻭﻋﻠﻴﻪ : Un !n 2 n1 n 1n ! u 2n !n 2n u2 n 1 2 U n1 t1 ﻭﻋﻠﻴﻪ : Un ) U n1 t U nﻷﻥ (U n ! 0 ﺃﻱ ﺃﻥ : ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺯﺍﻴﺩﺓ. ﺍﻟﺘﻤﺭﻴﻥ : 13 ) (U nﻤﺘﺘﺎﻟﻴﺔ ﻋﺩﺩﻴﺔ. /1ﺍﻟﺒﺭﻫﺎﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺴﻔل ﻭﻫﺫﺍ ﺒﺈﺘﺒﺎﻉ ﻁﺭﻴﻘﺔ ﻤﻨﺎﺴﺒﺔ : ½U n n2 n 1 ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ N ﻟﺩﻴﻨﺎ n t 0ﺃﻱ ﺃﻥ n 2 t 0 : ﻭﻋﻠﻴﻪ n 2 n t 0 : ﻭﻤﻨﻪ n 2 n 1 t 1 : ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ U n t 1 : 44
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺴﻔل ﺒﺎﻟﻌﺩﺩ .1 U 0 6 ½ ®¯U n1 Un n2 ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ N ﻟﺩﻴﻨﺎ U n1 U n n 2 ﻭﻋﻠﻴﻪ U n1 U n t 0 : ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺯﺍﻴﺩﺓ. ﻭﻋﻠﻴﻪ U n1 t U 0 : ﺃﻱ ﺃﻥ U n t 6 : ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺴﻔل ﺒﺎﻟﻌﺩﺩ ). (6 Un 4.n 1 1 ½ n2 ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ N ﻭ 4.n 1 ! 0 1 2 ! 0 ﻋﻨﺩﺌﺫ : n ﻭﻋﻠﻴﻪ : 1 4.n 1 n 2 !1 ﺃﻱ ﺃﻥ U n ! 1 : ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺴﻔل ﺒﺎﻟﻌﺩﺩ .1 /2ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﻴﻜﻭﻥ ﺍﻟﺘﻌﺎﻤل ﻟﻺﺜﺒﺎﺕ ﺃﻥ ) (U nﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﻋﻠﻰ ﺇﺫ ﻴﻜﻔﻲ ﺇﻴﺠﺎﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ αﺤﻴﺙ : ﻤﻬﻤﺎ ﻴﻜﻭﻥ nﻤﻥ Nﻓﺈﻥ .U n d α : ﺍﻟﺘﻤﺭﻴﻥ : 14 /1ﺍﻹﺜﺒﺎﺕ ﺃﻥ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ . ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ . Vn1 Vn U n2 U n1 ﻟﺩﻴﻨﺎ : (U n1 2n 2 3) U n1 )U n1 2n 2 3 (U n 2n 3 45
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي U n1 U n 2 Vn 2 ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ rﺤﻴﺙ . r 2 /2ﺍﻟﺘﺄﻜﺩ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ nﻴﻜﻭﻥ : U n U 0 V0 V1 ... Vn1 Vnﻨﺠﺩ : ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ،ﻋﻨﺩﺌﺫ ﻤﻥ ﺍﻟﻤﺴﺎﻭﺍﺓ U n1 U n : V0 U 1 U 0 °°®°VV12 U2 U1 U3 U2 ° # ° °¯Vn1 U n U n1 ﺒﺎﻟﺠﻤﻊ ﻁﺭﻑ ﻟﻁﺭﻑ ﻭﺒﻌﺩ ﺍﻻﺨﺘﺯﺍل ﻨﺠﺩ : V0 V1 ... Vn1 U n U 0 U n U 0 V0 V1 ... Vn1 ﻭﻋﻠﻴﻪ : ½ ﺇﻋﻁﺎﺀ ﻋﺒﺎﺭﺓ U nﺒﺩﻻﻟﺔ : n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ N • ﻨﻔﺭﺽ ﺃﻥ : n z 0U n U 0 V0 V1 ... Vn1 ﻟﺩﻴﻨﺎ : )ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﺘﺎﺒﻌﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ(U0 n (V0 ) Vn1 21 n (U 1 U0 V0 (n ) 1)r 2 1 n (2U 1 2U 0 (n ) 1)r 2 1 n (2(U 0 )3 2.U 0 (n ) 1)r 2 1 n (6 (n ) 1 )u 2 2 46
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي 1 n (2n )8 2 n.(n 4) 1 U 0 1 0.(0 4) 1 • ﻭﻟﻜﻥ : ﻭﻤﻨﻪ ﻤﻥ ﺃﺠل nﻤﻥ Nﻟﺩﻴﻨﺎ .U n n.(n 4) 1 : ﺍﻟﺘﻤﺭﻴﻥ : 15 ﺇﻋﻁﺎﺀ ﻋﺒﺎﺭﺓ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ ﻟﻠﻤﺘﺘﺎﻟﻴﺔ ) (U nﺜﻡ ﺤﺴﺎﺏ S nﺤﻴﺙ : S n U 0 U1 ... U n U 0 2 (U n ) /1ﻤﻌﺭﻓﺔ ﺒـ : ¯®U n1 3.U n 52ﺍﻨﻅﺭ ﺍﻟﺩﺭﺱ (b َ σﻭ 5 3) Vn Un b ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﺒـ: 1σ . Un 5 2 ﻟﻨﺒﻴﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻫﻨﺩﺴﻴﺔ – ﻭﻤﻥ ﺍﻟﺩﺭﺱ – ﺍﻷﺴﺎﺱ ﻫﻭ σﺃﻱ . 3 Vn V0 σ n ﻭﻋﻠﻴﻪ : (U 0 5 ) u 3n 2 9 3n 2 Un Vn 5 ﻋﻨﺩﺌﺫ : 2 9 u 3n 5 2 2 /3/2ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﻴﻤﻜﻥ ﺍﻟﺘﻌﺎﻤل ﻓﻲ ﺍﻟﺤﺎﻟﺘﻴﻥ ﺍﻟﻤﺘﺒﻘﻴﺘﻴﻥ. ﺍﻟﺘﻤﺭﻴﻥ : 16 ﺩﺭﺍﺴﺔ ﺘﻘﺎﺭﺏ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻌﺩﺩﻴﺔ ) (U nﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : 47
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي Un 2 5 /1 3n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ Nﻋﻨﺩﺌﺫ : ¨§ 1 ·¸ n © 3 ¹ Un 2 5 u . 1 1 1 ﺜﺎﺒﺕ َﻭ 1 3 ﻭﻟﻜﻥ 3 §¨ lim 1 ¸· n ©nof 3 ¹ 0 ﻭﻤﻨﻪ lim U n 2 ﻭﻋﻠﻴﻪ : nof ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ .2 Un 3.n 2 5.n 1 /3 n 1 ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ : N lim U n lim 3.n2 ﻟﺩﻴﻨﺎ : nnof nof lim 3.n nof f ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺒﺎﻋﺩﺓ . U n 6n 7 n /5 ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ Nﻋﻨﺩﺌﺫ : Un 7 ©¨§¨n. 6 n ·¸ 1¸¹ 7 n 7 ¨©§¨n. ¨§ 6 ¸· n 1¸·¸¹ © 7 ¹ lim U n f ﻭﻤﻨﻪ : nof 48
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ° 1 6 ٍ1 §¨ lim 6 ·¸ n ® 7 ©nof 7 ¹( )ﻷﻥ : 0 َ lim 7nﻭ ﻷﻥ f : nof ¯°7 ! 1 ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﺒﺎﻋﺩﺓ. Un 2.3n 5.2n /7 7.4n 3.8n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ Nﻋﻨﺩﺌﺫ : ¨¨©§3n. ¨§5. 2 ¸· n ¸·¸¹ © 3 ¹ 2 Un §¨©¨ ¨§7. 4 ¸· n ¸ 3¸·¹ © 8 ¹ 8 n §¨5. 2 ·¸ n © 3 ¹ ¨§ 3 ·¸ n 2 © 8 ¹ u 1 n 2 §¨7. ·¸ 3 © ¹ 1 3 1 َﻭ 1 1 1 َﻭ 1 2 1 : ﺃﻥ ﻭﺒﻤﺎ 8 2 3 ¨§ lim 3 ·¸ n ¨§ lim 1 ·¸ n ¨§ lim 2 ¸· n ©nof 8 ¹ ©nof 2 ¹ ©nof 3 ¹ 0 َﻭ 0 َﻭ ﻓﺈﻥ 0 : lim U n 0 ﻭﻤﻨﻪ : nof ﻭﻋﻠﻴﻪ (U n ) :ﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ ﺍﻟﺼﻔﺭ . ﺍﻟﺘﻤﺭﻴﻥ : 17ﺜﻡ ﻨﺩﺭﺱ ﺘﻘﺎﺭﺒﻬﺎ . 0 dUn d 2.n 1 : ، U nﻟﻨﺘﺄﻜﺩ ﺃﻥ 2.n 1n /1 3.n 2 2 3.n 2 2 ½ ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ Nﻋﻨﺩﺌﺫ : Un 2n 1 2.n 1n 2.n 1 • ﻟﺩﻴﻨﺎ : 3n 2 2 3.n 2 2 49
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي 1n 1 3.n 2 2 ﻋﻨﺩﺌﺫ :ﻓﻲ ﺤﺎﻟﺔ nﺯﻭﺠﻲ ﻨﺠﺩ (1) n 1 0 : ﻓﻲ ﺤﺎﻟﺔ nﻓﺭﺩﻱ ﻨﺠﺩ (1)n 1 2 :.(1)... Un d 2.n 1 ﺃﻱ ﺃﻥ : Un 2.n 1 d0 ﻭﻋﻠﻴﻪ : 3.n 2 2 3.n 2 2 • ﻤﻥ ﺃﺠل n 0ﻴﻜﻭﻥ . U n 0 ﻤﻥ ﺃﺠل n z 0ﻴﻜﻭﻥ َ 2n t 2ﻭ `(1)n ^1;1 ﻭﻋﻠﻴﻪ .(2) ... U n t 0 : .0 dUn d 2.n 1 ﻤﻥ ) (1ﻭ ) (2ﻨﺠﺩ ﺃﻥ : 3.n 2 2 lim 2n 1 lim 2n ﻭﻟﺩﻴﻨﺎ : 3n 2 2 3n 2 nof nof lim 2 nof 3n 0 lim U n ﻭﻤﻨﻪ ﻭﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺼﺭ ﻨﺠﺩ ﺃﻥ 0 : ﻭﻤﻨﻪ ) (U nﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ ﺍﻟﺼﻔﺭ . nof /2ﺍﺴﺘﻔﺩ ﻤﻥ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﺴﻔل ﻟﺩﺭﺍﺴﺔ ﺍﻟﺘﻘﺎﺭﺏ . /3ﺍﺴﺘﻔﺩ ﻤﻥ ﻤﺒﺭﻫﻨﺔ ﺍﻟﺤﺩ ﻤﻥ ﺍﻷﻋﻠﻰ ﻟﺩﺭﺍﺴﺔ ﺍﻟﺘﻘﺎﺭﺏ . ﺍﻟﺘﻤﺭﻴﻥ : 18 /1ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺃﻨﻪ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻡ nﻓﺈﻥ U n ! 1 ﺍﺴﺘﻔﺩ ﻤﻥ ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ . ﻤﻥ ﺃﺠل nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ. U n1 1 ﺍﻟﻌﺩﺩﻴﻥ َ 1ﻭ ﺍﻟﻤﻘﺎﺭﻨﺔ ﺒﻴﻥ /2 Un 1 ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻙ U n1 1 1 (U )n 1 11 Un 1 n Un 1 1 1 : ﻟﺩﻴﻨﺎ 50
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي 1 1 n 1 1 d 0 ﻴﻜﻭﻥ ﻭﺒﻤﺎ ﺃﻥ n t 1 : n U n1 1 d 1 ﻭﻋﻠﻴﻪ : Un 1 /3ﺩﺭﺍﺴﺔ ﺭﺘﺎﺒﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) . (U n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ * N (2 ﺍﻟﺴﺅﺍل )ﺤﺴﺏ U n1 1 d1 : ﻟﺩﻴﻨﺎ Un 1 ﺃﻱ ﺃﻥ ) U n1 1 d U n 1 :ﻷﻥ U n1 ! 1ﺤﺴﺏ ﺍﻟﺴﺅﺍل .(1 ﺃﻱ ﺃﻥ U n1 d U n : ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻨﺎﻗﺼﺔ. /4ﺍﻹﺜﺒﺎﺕ ﺃﻥ ) (U nﻤﺘﻘﺎﺭﺒﺔ. ﻟﺩﻴﻨﺎ (U n ) :ﻤﺘﻨﺎﻗﺼﺔ )ﺤﺴﺏ ﺍﻟﺴﺅﺍل (3 ﻭ ) (U nﻤﺤﺩﻭﺩﺓ ﻤﻥ ﺍﻷﺴﻔل ﺒـ ) 1ﺤﺴﺏ ﺍﻟﺴﺅﺍل (1 ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻘﺎﺭﺒﺔ. ¨§ 1 ¸· n © 2 ¹Un 1 d : ﻓﺈﻥ nt 2 ﺤﻴﺙ n ﺍﻟﻁﺒﻴﻌﻲ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﻤﻬﻤﺎ ﺃﻨﻪ /5ﺍﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﺍﺴﺘﻔﺩ ﻤﻥ ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﺍﻟﻤﺘﻌﻠﻘﺔ ﺒﺎﻟﺒﺭﻫﺎﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ. /6ﺍﺴﺘﻨﺘﺎﺝ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) . (U n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ * N ¨§ 1 ·¸ n © 2 ¹ )ﺤﺴﺏ ﺍﻟﺴﺅﺍﻟﻴﻥ َ 1ﻭ ( 5 0 Un 1 d ﻟﺩﻴﻨﺎ : ¨§ 1 ¸· n © 2 ¹ 1Un d 1 : ﺃﻥ ﺃﻱ ¨§ 1 ·¸ n © 2 ¹ 1dUn d 1 ﻭﻋﻠﻴﻪ : 51
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي 1 1 §¨ lim 1 ¸· n 2 2 ©nof 2 ¹ ( 1 1 ﺜﺎﺒﺕ َﻭ )ﻷﻥ : ﻭﺒﻤﺎ ﺃﻥ 0 : ﻓﺈﻨﻪ ﻭﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺍﻟﺤﺼﺭ : lim U n 1 nof ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (U nﻤﺘﻘﺎﺭﺒﺔ ﻨﺤﻭ .1 ﺍﻟﺘﻤﺭﻴﻥ ) :19ﺍﻟﻔﻜﺭﺓ( • ﻟﻨﺜﺒﺕ ﺃﻥ ) (Vnﻫﻨﺩﺴﻴﺔ . ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ Nﻋﻨﺩﺌﺫ : Vn1 1 2 24.U n 5 2 U n1 7.U n Vn1 10.U n 5 10 5 1 7.U n 7 7 ﺃﻱ U n : Vn1 5 ¨¨©§. 1 ¸¸ 2·¹ 5 .V n ﺃﻱ : 7 Un 7 §¨ 5 ¸· ﺃﺴﺎﺴﻬﺎ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ) (Vn ﻭﻤﻨﻪ © 7 ¹ • V1ﺜﻡ U nﺒﺩﻻﻟﺔ n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ N ¨§. 5 ¸· n © 7 ¹ Vn V0 : ﻟﺩﻴﻨﺎ ½ ¨§©¨ 1 §©¨ 2·¸¸¹. 5 ·¸ n U0 7 ¹ ¨§ 5 ·¸ n © 7 ¹ Vn 1 2 : ½ ﻭﻟﺩﻴﻨﺎ Un 52
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي Un 1 ﺃﻱ ﺃﻥ Vn 2 : 1 §¨ 5 ¸· n 2 © 7 ¹ lim U n • ﺤﺴﺎﺏ nof 1 ¨§ lim 5 ·¸ n 2 ©nof 7 ¹ ( 1 1 : )ﻷﻥ ﻟﺩﻴﻨﺎ 0 : 1 lim U n ﻭﻤﻨﻪ 2 : nof ﺍﻟﺘﻤﺭﻴﻥ ) :20ﺍﻟﻔﻜﺭﺓ( • ﺍﻟﺒﺭﻫﺎﻥ ﺃﻥ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﺤﺴﺎﺒﻴﺔ. ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ Nﻋﻨﺩﺌﺫ : Vn1 Vn 11 ﻟﺩﻴﻨﺎ : 1 U n1 1 U n 1 1 Un 2 1Un 1 2.U n 3 2.U n 3 U 1 1 Un 1 n 2.U n 2 Un 1 2 ﻭﻤﻨﻪ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﺤﺴﺎﺒﻴﺔ ﺃﺴﺎﺴﻬﺎ .2 • ) (Vnﻡ ) (U nﺒﺩﻻﻟﺔ : n ﻟﻴﻜﻥ nﻋﻨﺼﺭﺍ ﻤﻥ N 53
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ½ ﻟﺩﻴﻨﺎ Vn V0 n u 2 : 1 2.n 1U0 2.n 1 Vn 1 ½ ﻟﺩﻴﻨﺎ : 1Un ﺃﻱ ﺃﻥ Vn Vn .U n 1 : Un Vn 1 ﺃﻱ ﺃﻥ : Vn 2.n 2.n 1 ﺍﻟﺘﻤﺭﻴﻥ : 21 /1ﺇﻴﺠﺎﺩ َ U1ﻭ :U 2 U1 800 25 u 800 300 ﻟﺩﻴﻨﺎ : 100 75 u 800 300 100 900 U2 U1 25 u U1 300 ﻭﻟﺩﻴﻨﺎ : 100 75 uU1 300 100 975 U n1 /2ﺍﻹﺜﺒﺎﺕ ﺃﻨﻪ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﻓﺈﻥ (0,75) u U n 300 ﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ U n1 Un 75 uUn 300 ﻟﺩﻴﻨﺎ : 100 54
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي §¨1 25 ·¸.U n 300 © 100 ¹ 75 .U n 300 100 (0,75).U n 300 /3ﺤﺴﺎﺏ ﺍﻟﺤﺩ ﺍﻟﻌﺎﻡ U nﺒﺩﻻﻟﺔ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ : n ﻨﻌﺭﻑ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ Vnﻜﻤﺎ ﻴﻠﻲ :َ σﻭ ( b 300 0,75 ) Vn Un b Un 300 U n 1200 1σ 0,25 ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ) (Vnﻫﻨﺩﺴﻴﺔ ﺃﺴﺎﺴﻬﺎ . 0,75 Vn V0 u 0,75n ﻋﻨﺩﺌﺫ : U 0 1200u 0,75n 800 1200u 0,75n 400u 0,75n U n Vn 1200 ﻭﻤﻨﻪ : 400u 0,75n 1200 /4ﻋﺩﺩ ﺍﻟﻤﻨﺨﺭﻁﻴﻥ ﻓﻲ ﺍﻟﻤﻜﺘﺒﺔ ﻋﺎﻡ .2016 : ﺍﻟﻌﺩﺩ ﺍﻟﻤﻁﻠﻭﺏ ﻫﻭ U16ﻋﻨﺩﺌﺫ : U16 400.(0,75)16 1200 1196ﻫﻲ ﻗﻴﻤﺔ ﻤﻘﺭﺒﺔ ﻟـ .U16 55
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ -ﺘﻌﺭﻴﻑ ﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ -ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺩﺍﻟﺔ ﻜﻤﺭﻜﺏ ﺩﺍﻟﺘﻴﻥ ﺒﺴﻴﻁﺘﻴﻥ -ﺤﺴﺎﺏ ) (g ofﻓﻲ ﺤﺎﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ، Iﻭ gﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ ﻴﻨﺘﻤﻲ ﺍﻟﻰ ﺍﻟﻤﺠﺎل f (I -ﺘﻌﺭﻴﻑ ﺩﺍﻟﺔ ﺍﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل - -ﺘﻌﻴﻴﻥ ﺩﺍﻟﺔ ﺍﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ﺘﺤﻘﻕ ﺸﺭﻁﺎ ﻤﻌﻴﻨﺎ ﻭﺘﻔﺴﻴﺭ ﺫﻟﻙ ﺒﻴﺎﻨﻴﺎ ﻓﻬﺭﺱ ﺍﻟﺩﺭﺱ xﺃﻨﺸﻁﺔ ﺘﻤﻬﻴﺩﻴﺔ xﺍﻟﻤﺸﺘﻘﺎﺕ xﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ xﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ xﺤﻠﻭل ﺍﻟﺘﻤﺭﻴﻥ ﻭ ﺍﻟﻤﺸﻜﻼﺕ 1
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺃﻨﺸﻁﺔ ﺘﻤﻬﻴﺩﻴﺔ ﺍﻟﻨﺸﺎﻁ ﺍﻻﻭل :ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻻﺴﺌﻠﺔ: ﻟﺘﻜﻥ uﻭ vﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ: )v(x 3x 8 u(x) =5x +2ﻭ 2x 1 /1ﻋﻴﻥ ’uﻭ ’ vﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﺸﺘﻘﺘﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ uﻭ vﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ /2ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ vouﻭﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ v’ou /3ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ vou ﺍﻻﺠﻭﺒﺔ:/1ﺍﻟﺩﺍﻟﺔ uﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Rﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ’ uﺒﺤﻴﺙ :ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ u’ ( x) =5 : Rf @- f :ﻭ > > 1 ﺍﻟﺩﺍﻟﺔ vﺩﺍﻟﺔ ﺘﻨﺎﻅﺭﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻜل ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ 2 ¾¿½ ¯®12 1 2ﻭﺩﺍﻟﺘﻬﺎ @: x ’v ﻓﻲ ﻗﻴﻤﺔ ﺘﻜﻭﻥ ﻤﻬﻤﺎ ﺒﺤﻴﺙ ﺍﻟﻤﺸﺘﻘﺔ +ﻭ )v ' (x 3.(2x 1) (3x 8)2 (2x 1)2 )v ' (x 13 ®¯ 1 ¾½¿ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ ﻤﻨﻪ (2x 1)2 : 2 ¾¿½ ¯®12ﻭﻫﻲ ﻜﺫﻟﻙ Du/2ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ uﻫﻲ Rﻭ Dvﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ vﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ’v ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ v o uﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻻﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ xﻤﻥ Duﺒﺤﻴﺙ ﻴﻜﻭﻥ )(u ) ( 5X+2ﺃﻱ ® 1 ½¾ Dvﻭﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻻﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ xﺍﻟﺘﻲ ﺘﺤﻘﻕ )u(xﻴﻨﺘﻤﻲ ﺍﻟﻰ ¯ 2 ¿ 2
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي X ≠ 3 ﺃﻱ ≠5X+2 1 10 2 ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ v o uﻫﻲ ¿½¾ ¯®103 ﻭﺒﺼﻔﺔ ﻤﻤﺎﺜﻠﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ v’ouﻫﻲ ¯® 3 ½¾¿ 10 3 ½ ﻓﻲ x ﺍﺠل ﻭﻤﻥ ¯® 10 ¾¿ ]) (v’ ou) (x) = v’( u(x) ) (vou)(x) = v[u(x 13 3u(x) 8 = (2u(x) 1)2 2u(x) 1 13 = >25x 21@2 3(5x 2) 8 2(5x 2) 1 ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ: ﻭﻋﻠﻴﻪ v o uﻭ v’ouﻫﻤﺎ ﺍﻟﺩﺍﻟﺘﺎﻥ ﺍﻟﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ ½¾¿ ®¯103 )(v'ou)(x 13 ) (vou)(xﻭ 15x 2 (10x 3)2 10x 3 ﺍﻟﺩﺍﻟﺔ ) (vouﺩﺍﻟﺔ ﺘﻨﺎﻅﺭﻴﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻜل ﻭﺍﺤﺩ ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ 3 3 +ﻭ 10 10 ﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ’)( vouﺒﺤﻴﺙ> >@: ∞ @- ∞ :ﻭ )(vou )' ( x 15x3 (2)x10 (10x 3)2 3
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي : 3 ½ xﻓﻲ ﻗﻴﻤﺔ ﺘﻜﻭﻥ ﻤﻬﻤﺎ ﺃﻱ ®¯10 ¾¿ )(vou )' ( x 65 (10x 3)2 ﺍﻟﻤﻼﺤﻅﺔ: ﻨﻼﺤﻅ ﺃﻨﻪ :ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ ¾½¿ ®¯103 (vou’) (x) =5x(v’ou) (x) : ﺃﻱ(vou)'(x) >v'ou(x)@x>u'(x)@: )>v' ou (u ' )@( x )ﺤﺴﺏ ﺘﻌﺭﻴﻑ ﺠﺩﺍﺀ ﺩﺍﻟﺘﻴﻥ( ﻭﺍﻟﺩﺍﻟﺘﺎﻥ )’ (vou’) x(uﻭ )’ (vouﻟﻬﻤﺎ ﻨﻔﺱ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ)’(vouﻭ )(v’ou ﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ )’ (vouﻫﻲ ﺍﻟﺩﺍﻟﺔ )’ (v’ou) x(uﻭﻟﻠﺘﻌﺒﻴﺭ ﻋﻠﻰ ﻫﺫﺍ ﻨﻘﻭل ﺃﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ )’(vou)’ =[ (v’ou)] x (u )’ x(uﻤﺘﺴﺎﻭﻴﺘﺎﻥ ﻭﻨﻜﺘﺏ:ﺒﺼﻭﺭﺓ ﻋﺎﻤﺔ :ﻨﻘﻭل ﻋﻥ ﺩﺍﻟﺘﻴﻥ fﻭ gﺍﻨﻬﻤﺎ ﻤﺘﺴﺎﻭﻴﺘﺎﻥ ﻭﻨﺭﻤﺯ ﺍﻟﻰ ﺫﻟﻙ ﺒﺎﻟﻜﺘﺎﺒﺔ f=gﺍﺫﺍ ﻭﻓﻘﻁ ﺍﺫﺍ ﻜﺎﻥ : f/1ﻭ gﻟﻬﻤﺎ ﻨﻔﺱ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ D / 2ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ Xﻓﻲ f(x)=g(x) :D 4
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﻨﺸﺎﻁ :2ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ).(1 ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻟﺴﺅﺍل: y B 7 A 6 5 4 3 2 )(d 1 →j-8 -7 -6 -5 -4 -3 -2 -1 0 i→ 1 A' B2' 3 4 5 6 7 8 9 x -1 -2 -3 -4ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ ( d ) ،ﻫﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻟﻠﺩﺍﻟﺔ ﺍﻟﺘﺂﻟﻔﻴﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Rﺒﺎﻟﺩﺴﺘﻭﺭf(x) = 2x+3: ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﺍﻟﺘﺠﺎﻨﺱ ) (O, i , jﻭﺤﺩﺓ ﺍﻟﻁﻭل ﻫﻲ .(1cm x2² x1² - 3 ﺒﺤﻴﺙ ﺤﻘﻴﻘﻴﻥ ﻟﺘﻜﻥ x1ﻭ x2 2ﻭﻟﺘﻜﻥ Aﻭ Bﺍﻟﻨﻘﻁﺘﻴﻥ ﻤﻥ ) ( dﺍﻟﻠﺘﺎﻥ ﻓﺎﺼﻠﺘﺎﻫﻤﺎ x1ﻭ x2ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻭﻟﺘﻜﻥ 'Aﻭ 'Bﺍﻟﻤﺴﻘﻁﻴﻥ ﺍﻟﻌﻤﻭﺩﻴﻥ ﻟﻠﻨﻘﻁﺘﻴﻥ Aﻭ Bﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻋﻠﻰ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻟﻠﻤﻌﻠﻡ ) (O, i , j' AB B'Aﻫﻲ ﺒﺤﻴﺙ ﺃﺜﺒﺕ ﺃﻥ Gﻤﺴﺎﺤﺔ ﺸﺒﻪ ﺍﻟﻤﻨﺤﺭﻑ ﻤﻘﺩﺭﺓ ﺒﺎﻟﺴﻨﺘﻴﻤﺘﺭ ﺍﻟﻤﺭﺒﻊ > @ > @δ x2 2 3x2 x12 3x1 ﺍﻟﺠﻭﺍﺏ: ﺤﺴﺏ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﻘﺎﻋﺩﻴﺔ ﺤﻭل ﺍﻟﻤﺴﺎﺤﺎﺕ :ﻤﺴﺎﺤﺔ ﺸﺒﻪ ﻤﻨﺤﺭﻑ ﺘﺴﺎﻭﻱ δ '( AA'BB') A' B ) xﺍﻻﺭﺘﻔﺎﻉ( ﻤﻨﻪ )ﻤﺠﻤﻭﻉ ﻁﻭﻟﻲ ﺍﻟﻔﺎﻋﺩﺘﻴﻥ( 2 2 5
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﻋﻠﻴﻨﺎ ﺃﻥ ﻨﺤﺴﺏ ﺍﻷﻁﻭﺍل 'A'B' , BB', AA) A (dﻭﻓﺎﺼﻠﺔ Aﻫﻲ B (d ) : x 1ﻭﻓﺎﺼﻠﺔ Bﻫﻲ x2ﻤﻨﻪ ﺘﺭﺘﻴﺏ Aﻫﻭ )f(x1 ﻭﺘﺭﺘﻴﺏ Bﻫﻭ ). f (x2 ﻤﻨﻪ ) A( x1, 2x1+3ﻭ ) B(x2; 2x2+3ﻭﻟﺩﻴﻨﺎ )B’(x2;0), A'(x1;0ﻭﺤﺴﻴﺏ ﺍﻟﻨﺘﻴﺠﺔ ﺤﻭل ﺍﻟﻤﺴﺎﺤﺔ ﺒﻴﻥ ﻨﻘﻁﺘﻴﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ. A A' x1 x1 2 >0 2x1 3@2 B B' x2 x2 2 >0 2x2 3@2 A ' B' x2 x1 2 0 02 2x1 3 ﻤﻨﻪ 2x1 3 x1 ² 3 ﻷﻥ ﻤﻨﻪ A A' 2x1 3 2x2 3 ﻤﻨﻪ 2x2 3 2 x 2 ² 3 ﻷﻥ B B' 2x2 3 2 A ' B' x2 x1ﻷﻥ x2 ² x1ﻤﻨﻪ x2 x1 x2 x1 δ >2x1 3 2x2 3@xx2 x1 ﻋﻠﻴﻪ ﻭ 2 δﻭﻋﻠﻴﻪ ﺒﻌﺩ ﺍﻟﻨﺸﺭ ﻭ ﺍﻟﺘﻭﺯﻴﻊ ﻨﺠﺩ 1 2 x1 2 x2 6 x 2 x1 ﻤﻨﻪ 2 > @ > @δ x2 2 3x2 x12 3x1 ﺍﻟﻤﻼﺤﻅﺔ: ﺇﺫﺍ ﺴﻤﻴﻨﺎ Fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Rﺒﺎﻟﺩﺴﺘﻭﺭ F(x)=x2+3x ﻟﻘﺩ ﻭﺠﺩﻨﺎ )G= F(x2) –F(x1 ﻻﺤﻅ ﺃﻥ \" Fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Rﻭﺃﻥ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ \" F ﻭﻟﻠﺘﻌﺒﻴﺭ ﻋﻠﻰ \" fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ \"Fﻨﻘﻭل \" Fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ل. \"f 6
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﻨﺸﺎﻁ :ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ ).(2 ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭﺍﻷﺴﺌﻠﺔ: y ) 7 (H) ( P 6 5 4 3 2 1 ) j→ ( C-8 -7 -6 -5 -4 -3 -2 -1 0 →i 1 2 3 4 5 6 7 8 9 x -1 -2 -3 -4 ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ (P) ،ﻫﻭ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﺩﺍﻟﺔ ﻤﺭﺠﻌﻴﺔ (G): fﻫﻭ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﺩﺍﻟﺔ g ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﺩﺍﻟﺔ hﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ) (O, i , jﺃﻜﺘﺏ ﺍﻟﺩﺴﺘﻭﺭ ﺍﻟﺫﻱ ﻴﻌﺭﻑ ﺍﻟﺩﺍﻟﺔ fﺇﺴﺘﻨﺘﺞ ﺍﻟﺩﺴﺘﻭﺭ ﺍﻟﺫﻱ ﻴﻌﺭﻑ ﺍﻟﺩﺍﻟﺔ gﻭﺍﻟﺩﺴﺘﻭﺭ ﺍﻟﺫﻱ ﻴﻌﺭﻑ ﺍﻟﺩﺍﻟﺔ h ﺘﺄﻜﺩ ﺃﻥ g ، fﻭ hﻫﻲ ﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺘﻔﺴﺭ ﺍﻟﺩﺍﻟﺔ . u ﺍﻷﺠﻭﺒﺔ: ) (Pﻫﻭ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ \" ﻤﺭﺒﻊ\" ﻤﻨﻪ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=x2 ) (Cﻫﻭ ﺼﻭﺭﺓ ) (Pﺒﺎﻹﻨﺴﺤﺎﺏ ﺍﻟﺫﻱ ﺸﻌﺎﻋﻪ 4 jﻤﻨﻪ gﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ g(x) = x 2 – 4 ) ( Hﻫﻭ ﺼﻭﺭﺓ ) (Pﺒﺎﻹﻨﺴﺠﺎﺏ ﺍﻟﺫﻱ ﺸﻌﺎﻋﻪ 2 jﻤﻨﻪ hﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ g(x)=x2+2 ﺤﺴﺏ ﺍﻟﻤﻼﺤﻅﺔ ﻓﻲ ﺍﻟﻨﺸﺎﻁ ﺍﻟﺴﺎﺒﻕ \" ﻜل ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ...ﻫﻲﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ\" ﻭ ' h' ،'g: fﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﻭﺍل h ،g: fﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻤﻌﺭﻓﺔ ﺒﻨﻔﺱ ﺍﻟﺩﺴﺘﻭﺭ f'(x) =2x, g'(x) = 2u, h(x)=2x 7
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮيﻤﻨﻪ ﻜل ﻭﺍﺤﺩﺓ ﻫﻲ ﺍﻟﺩﻭﺍل h ،g، fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ uﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ U(x)=2x : ﺍﻟﻤﻼﺤﻅﺔ: ﺇﺫﺍ ﻗﺒﻠﺕ ﺩﺍﻟﺔ \" ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ\" ﻓﺈﻥ ﻫﺫﻩ ﺍﻷﺨﻴﺭﺓ ﻟﻴﺴﺕ ﻭﺤﻴﺩﺓ. ﺠﻤﻴﻊ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺘﺒﺭﺓ ﻓﻲ ﻫﺫﺍ ﺍﻟﺩﺭﺱ ﻫﻲ ﺩﻭﺍل ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ.ﻜل ﻤﺠﺎل ﻤﻌﺘﺒﺭ ﻓﻲ ﻫﺫﺍ ﺍﻟﺩﺭﺱ ﻫﻭ ﻤﺠﺎل ﻤﻥ ﻤﺠﺎﻻﺕ ﻤﺤﺘﻭﻯ ﻤﺠﺎﻻ ﻤﻔﺘﻭﺤﺎ ﻏﻴﺭ ﺨﺎل. Iﺍﻟﻤﺸﺘﻘﺎﺕ (1ﺘﺫﻜﻴﺭ : ﺃ( ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﺍﻟﻤﻤﺎﺱ ﺘﻌﺭﻴﻑ ﺘﺭﻤﻴﺯ ﺇﺴﺘﻨﺘﺎﺝ ﻟﻴﻜﻥ x0ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻭﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Df ﺍﻟﻘﻭل fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﻴﻌﻨﻲ: ﻤﻭﺠﻭﺩﺓ ﻓﻲ lim f ( x0 ) h f ) (x0 Dfﺘﺤﺘﻭﻱ ﻤﺠﺎﻻ ﻴﺸﻤل x0ﻭ h ho0 ﻴﺴﻤﻰ lim )f (x0 h ) f (x0 ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ ، x0ﺍﻟﻌﺩﺩ f ﺇﺫﺍ ﻜﺎﻨﺕ h ho0 ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻌﺩﺩ x0ﻭ ﻴﺭﻤﺯ ﺇﻟﻴﻪ ﺒﺎﻟﺭﻤﺯ ) f ‘ (x0ﺇﺫﺍ ﻜﺎﻨﺕ fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ : x0ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ) (O, i , jﻴﻘﺒل ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ )) M0(x0 ;f(x0ﻤﻤﺎﺴﺎ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻬﻪ ) f ‘(x 0ﻭﻤﻌﺎﺩﻟﺔ ﻟﻬﺫﺍ ﺍﻟﻤﻤﺎﺱ ﻫﻲ: )Y = f ‘(x0) (x-x0 ) + f(x0 ﺏ -ﻗﺎﺒﻠﺔ ﺩﺍﻟﺔ ﻟﻺﺸﺘﻨﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺏ -ﻗﺎﺒﻠﺔ ﺩﺍﻟﺔ ﻟﻺﺸﺘﻨﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ 8
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺘﻌﺭﻴﻔﺎﺕ ﺍﻟﺭﻤﺯ ﻟﺘﻜﻥ ' fﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Dfﻭﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ ' Dﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ ﺍﻟﺘﻲ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩﻫﺎ. ﺍﻟﻘﻭل \" fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ \" Iﻴﻌﻨﻲ\" fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ ﻤﺎ ﻴﻨﺘﻤﻲ ﺇﻟﻰ \" I.ﺇﺫﺍ ﻜﺎﻨﺕ ' Dﻏﻴﺭ ﺨﺎﻟﻴﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺭﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﺭﻤﺯ ‘ ' fﻭﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ: ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ‘ ' fﻫﻲ 'D ﺼﻭﺭﺓ ﻜل ﻋﺩﺩ x0ﻤﺎ ﻴﻨﺘﻤﻲ ﺇﻟﻰ ' Dﺒﺎﻟﺩﺍﻟﺔ ‘ ' fﻫﻲ) f ’(x0ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ . x0 ﺍﻟﺩﻭﺍل ﺍﻟﻤﺸﺘﻘﺔ ﻟﺩﻭﺍل ﻤﺄﻟﻭﻓﺔ :ﻤﺒﺭﻫﻨﺎﺕﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ’ fﻤﻌﺭﻓﺔ ﻗﺎﺒﻠﻰ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ ﺒﺎﻟﺩﺴﺘﻭﺭ f' ‘ (x) =0 f(x) =k ﺤﻴﺙ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ f' (x) =1 f' (x) =a f(x) =x f(x) =ax+bf' (u) =2x ﺤﻴﺙ aﻭ bﻋﺩﺩﺍﻥ ﺨﻘﻴﻘﻴﺎﻥf' (u) =3x2 ﺜﺎﺒﺘﺎﻥ)f '(x 1 f(x)=x2 x2 > @∞ ،0ﻭﻋﻠﻰ f(x)=x3 > @∞ ،0f '(x) 1 > @∞ ،0 f (x) 1 2x x f (x) xf (x) nxn1 F(x)= x n)f '(x n > @ f;0ﻭﻋﻠﻰ >@0;f )f (x 1 x n 1 xn ﺤﻴﺙ nﻋﺩﺩ ﻁﺒﻴﻌﻲ 9
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻰ ﺍﻟﺩﻭﺍل :ﻤﺒﺭﻫﻨﺎﺕﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﻴﻜﻥ kﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﺜﻼﺒﺘﺎ ﻭﻟﺘﻜﻥ uﻭ vﺩﺍﻟﺘﻴﻥ ﻗﺎﺒﻠﺘﻴﻥ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﺍﻟﺩﻭﺍل ) (k u); (u+v); (u+vﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ xﻤﻥ I )(ku)' (x) =(ku') (x )(uv)' (x) =(uv'+vu') (x )(u+v)'(x)=(u'+v')(x U1ﺇﺫﺍ ﻜﺎﻥ v(x) ≠0ﻤﻥ ﺃﺠل ﻜل ﻋﻨﺼﺭ xﻤﻥ Iﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺘﺎﻥ Vﻭ Vﻗﺎﺒﻠﺘﻴﻥ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ xﻤﻥ . I ¨§ u '·¸ ( )x §¨ v.u ''u.v ·¸x ¨§ 1 ('·¸ )x ¨§ 'v ¸·x © v ¹ © v2 © v ¹ © v ¹ 2 ¹ ﺇﺴﺘﻨﺘﺎﺝ ﻜل ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻜل ﺩﺍﻟﺔ ﻨﺎﻁﻔﺔ )ﺤﺎﺼل ﻗﻴﻤﺔ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻋﻠﻰ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﺔ( ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ. ﺍﻟﻤﺸﺘﻘﺎﺕ ﻭﺇﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ: ﻤﺒﺭﻫﻨﺔ: ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل I ﺤﺘﻰ ﺘﻜﻭﻥ fﺜﺎﺒﺘﺔ ﻋﻠﻰ Iﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲf'(x)=0 I ﺤﺘﻰ ﺘﻜﻭﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ:ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ﻓﻲ f'(x) t0ﻭﻻ ﻴﻭﺠﺩ ﺃﻱ ﻤﺠﺎل Jﻤﺤﺘﻭﻯ ﻓﻲ Iﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ﻓﻲ )f'(x . =0.J ﺤﺘﻰ ﺘﻜﻭﻥ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻴﻜﻭﻥ: ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ﻓﻲ f'(x) d0 Iﻭﻻ ﻴﻭﺠﺩ ﺃﻱ ﻤﺠﺎل Jﻤﺤﺘﻭﻯ ﻓﻲ ﺒﺤﻴﺙ Iﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x ﻓﻲ . f'(x) =0.J ﺇﺫﺍ ﻜﺎﻥ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ﻓﻲ f'(x) >0.Iﺘﻜﻭﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﺇﺫﺍ ﻜﺎﻥ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ﻓﻲ f'(x) <0.Iﺘﻜﻭﻥ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﺇﺫﺍ ﻜﺎﻥ x0ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﻤﺠﺎل ﻤﻔﺘﻭﺡ ﻤﺤﺘﻭﻯ ﻓﻲ Iﻭﻜﺎﻥ ) f'(xﻴﻨﻌﺩﻡ ﻋﻨﺩ x0ﻟﺘﺘﻐﻴﺭ ﺇﺸﺎﺭﺘﻪ ﻓﺈﻥ ) f(x0ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻤﺤﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ . I 10
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﺘﻘﺭﻴﺏ ﺍﻟﺘﺂﻟﻔﻲ: ﻤﺒﺭﻫﻨﺔ: ﺇﺫﺍ ﻜﺎﻥ aﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻭﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ aﻓﺈﻥ )f(a)+h.f'(aﻫﻭ ﺃﺤﺴﻥ ﺘﻘﺭﻴﺏ ﺘﺂﻟﻔﻲ ل ) f(a+hﻋﻨﺩﻩ.ﺇﺫﻥ ﻤﻥ ﺍﺠل ﻗﻴﻡ hﺍﻟﻘﺭﻴﺒﺔ ﻤﻥ 0ﺘﻜﻭﻥ ﻗﻴﻡ ) f(a+hﻗﺭﻴﺒﺔ ﻤﻥ ) f(a)+h.f'(aﺃﻭ h# 0ﻴﻜﻭﻥ ). f(a+h) # f(a)+h.f'(a ﺍﻟﻘﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻭﺍﻹﺴﺘﻤﺭﺍﺭﻴﺔ: ﻤﺒﺭﻫﻨﺔ )ﻤﻘﺒﻭﻟﺔ( ﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻭ ﻟﻴﻜﻥ x0ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ. ﺇﺫﺍ ﻜﺎﻨﺕ fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﻓﺈﻥ fﻤﺴﺘﻤﺭﺓ ﻋﻨﺩ ) x0ﻭﺍﻟﻌﻜﺱ ﻟﻴﺱ ﺩﺍﺌﻤﺎ ﺼﺤﻴﺤﺎ(. ﻤﺸﺘﻘﺔ ﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ: ﺘﺫﻜﻴﺭ ﻟﺘﻌﺭﻴﻑ ﻭﺘﺭﻤﻴﺯ ﻟﺘﻜﻥ uﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Duﻭﻟﺘﻜﻥ vﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Dvﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ uﻭ vﺒﻬﺫﺍ ﺍﻟﺘﺭﺘﻴﺏ )ﺃﻭ ﻤﺭﻜﺒﺔ ﺍﻟﺩﺍﻟﺔ uﺒﺎﻟﺩﺍﻟﺔ ( vﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭ ﻤﺯ ﺇﻟﻴﻬﺎ ﺒﺎﻟﺭﻤﺯ vouﻭﺍﻟﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ: ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ vouﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻌﻨﺎﺼﺭ xﻤﻥ Duﺒﺤﻴﺙ u(x) Du ﺍﻟﺩﺍﻟﺔ ) (v ouﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ ] )(vou)(x) =v[ u(x ﻤﺜﻼ :ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f (x) 2x -1 ﺘﻜﻭﻥ ﻭﻤﻬﻤﺎ ª1 ¬«;fª ﻫﻲ ﺍﻟﻤﺠﺎل ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ f Df ¬« 2) f(x) = v(2x-1ﺤﻴﺙ vﺍﻟﺩﺍﻟﺔ ﺠﺫﺭ ﺘﺭﺒﻴﻌﻲ ﻭﺇﺫﺍ ﺴﻤﻴﻨﺎ uﺍﻟﺩﺍﻟﺔ ª 1 «;f¬ª ﻓﻲ ﻗﻴﻤﺔ x ¬« 2 ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭu(x)=2x-1 ﺘﻜﻭﻥ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ))f(x)=v(u(x ﺃﻱ ﺒﺎﻟﺩﺴﺘﻭﺭ)f(x)= (vou) (x ﻤﻨﻪ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ vouﺤﻴﺙ: uﺍﻟﺩﺍﻟﺔ x o 2x 1ﻭ vﺍﻟﺩﺍﻟﺔ x o x 11
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺏ -ﻤﺸﺘﻘﺔ ﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ ﻤﺒﺭﻫﻨﺔ )ﻤﻘﺒﻭﻟﺔ( ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ uﻭ vﺩﺍﻟﺘﻴﻥ ﺇﺫﺍ ﻜﺎﻥ uﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ I ﻭﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x0ﻤﻥ Iﻓﺈﻥ vﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ ﺍﻟﻌﺩﺩ )u(x0ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺭﻜﺒﺔ ) (vouﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ') (vouﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ(vou)'(x) =v'[ u(x)] .u'(x) :I ﺍﺴﺘﻨﺘﺎﺝ :ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ uﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﺒﺤﻴﺙ ﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x0ﻤﻥ u(x0)>0:Iﻭﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ )f (x) u(x ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ Iﻟﺩﻴﻨﺎ f(x)= v(u(x)) :ﺤﻴﺙ vﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ v(x) xﺇﺫﻥ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ ) f(x)=(vou)(xﻭﻟﺩﻴﻨﺎ vﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ . a ) v'(aﻭﺒﻤﺎ ﺃﻥ ﻤﻬﻤﺎ ﻴﻜﻭﻥ x0ﻓﻲ u(x0)>o Iﻓﺈﻨﻪ 1 ﻭ 2aﻤﻬﻤﺎ ﻴﻜﻭﻥ ﺍﻟﻌﻨﺼﺭ x0ﻤﻥ v، Iﻗﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﺍﻟﻌﺩﺩ ) u (x0ﻭ uﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ I .(2)...ﻤﻥ )(1ﻭ) (2ﻭﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺤﻭل ﻤﺸﺘﻘﺔ ﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ ) (vouﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ I (vou)(x)= v'(u(x))x u'(u): I ﻭﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ ﺇﺫﻥ ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ Iﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f )f '(x 2 )1 .u'(x ﻓﻲ : I ﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ x )u(x 12
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮيﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ 'f ﻭﻋﻠﻴﻪ ﻗﺩ ﺒﺭﻫﻨﻨﺎ ﻋﻠﻰ ﺍﻟﻤﺒﺭﻫﻨﺔ: ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ uﺩﺍﻟﺔ. ﺇﺫﺍ ﻜﺎﻥ uﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ u(x)>0 I ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ ) f (x) u(xﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰI )u' ( x ﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ f'(x) = 2 u(x) : I )f (x ﻤﺜﺎل :ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ x2 x 1 ﻟﺘﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ uﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭu(u)= x2+x+1ﻟﺩﻴﻨﺎ uﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ ﻷﻥ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ( ﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ uﺒﺤﻴﺙ u'(x)=2x+1ﻭ' ﻤﻤﻴﺯ ) u(uﻫﻭ -3ﻤﻨﻪ '> 0ﻭﻤﻌﺎﻤل ﺤﺩ ) u(xﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻫﻭ 1ﻭﻫﻭ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎﻤﻨﻪ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ u(x) > o:ﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ 'f )f '(x 2x 1 ﺃﻱ =)f'(x ﺒﺤﻴﺙ: 2 x2 x 1 )u' ( x )2 u(x ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﺜﺎﺒﺘﺎ ﺒﺤﻴﺙ nt 2ﻭﻟﺘﻜﻥ uﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ Iﻭﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf (x)= (u(x)) n ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ f(x)=v(u(x)):Iﺤﻴﺙ vﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ v(x) =xn :ﺇﺫﻥ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ)f(x)=(vou)(x ﻭﻟﻨﺎ vﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ vﺒﺤﻴﺙv'(u)= nx n-1 ﻤﻨﻪ ﻤﻬﻤﺎ ﻴﻜﻭﻥ x0ﻓﻲ v Iﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻨﺩ )u(x0 ﻭﻋﻠﻴﻪ ﻭﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺤﻭل ﻤﺸﺘﻘﺔ ﺩﺍﻟﺔ ﻤﺭﻜﺒﺔ :ﺍﻟﺩﺍﻟﺔ )(vou ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ Iﻭﺩﺍﻟﺘﻬﺎ ') (vouﺒﺤﻴﺙ: ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ (vou)'(u) =v'(u(x))x u'(u) : I ﺇﺫﻥ fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ Iﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ 'fﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ f'(x) = n(u(x))n. u'(x):I 13
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﻤﺒﺭﻫﻨﺔ:ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ uﺩﺍﻟﺔ ﻭﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﺜﺎﺒﺘﺎ ﺒﺤﻴﺙ nt 2ﺇﺫﺍ ﻜﺎﻨﺕ uﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=(u(x))nﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ fﺒﺤﻴﺙ: ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ . f ‘(u) =n (u(x))n-1 u' (x): I ﻤﺜﺎل: ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭﺭf(x)=(7x3+8 x2+x+1)10 ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻗﺎ ﻋﻠﻰ ﻷﻨﻬﺎ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ. ﻭ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f(x)= (u(x))10ﺤﻴﺙ uﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ u(x)= 7x3+8x2+x+1'f '(x) =10.(u(x))9 .u ﻤﻨﻪ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ. )(x ﺃﻱ )f ‘(x)= 10 (7x3+8x2+x+1).(21x2+16x+1 ﺒﻁﺭﻴﻘﺔ ﻤﻤﺎﺜﻠﺔ ﻟﻠﻁﺭﻴﻘﺔ ﺍﻟﻤﺘﺒﻌﺔ ﻟﻠﺒﺭﻫﻨﺔ ﻋﻠﻰ ﺍﻟﻤﺒﺭﻫﻨﺘﻴﻥ ﺍﻟﺴﺎﺒﻘﺘﻴﻥ: ﺘﺒﺭﻫﻥ. ﺍﻟﻤﺒﺭﻫﻨﺔ: ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ uﺩﺍﻟﺔ ﻭﻟﻴﻜﻥ nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﺜﺎﺒﺘﺎ. ﺇﺫﺍ ﻜﺎﻨﺕ uﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل xﻓﻲ u (u)z 0 :I 1 ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ u(x) n) f ' (xﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ’ )f ' (x )- n u ' (x fﺒﺤﻴﺙ :ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ : I u(x)n1 ﻤﺜﺎل: )f (x 1 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ 3x 1 19 ∞@- 1 > @ 1 + ∞ Dfﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ fﻫﻲ > 3 3 fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻠﻰ Dfﻋﻨﺩﺌﺫ ﻭ ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻟﻨﺎ 14
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )f '(x 57 3x 1 120 (4ﺩﻭﺍل ﺍﻟﻜﻠﻔﺔ ﻹﻨﺘﺎﺝ ﺘﺭﻤﻴﺯ -ﺇﺼﻁﻼﺡﻴﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ ) C(xﺃﻭ ﺒﺎﻟﺭﻤﺯ ) CT (xﺇﻟﻰ ﺍﻟﻜﻠﻔﺔ ﺍﻹﺠﻤﺎﻟﻴﺔ ﻹﻨﺘﺎﺝ ﻜﻤﻴﺔ ﻗﺩﺭﻫﺎ xﻭﺤﺩﺓ ﻭﺍﻟﺩﺍﻟﺔ : ) x C(xﺘﺴﻤﻰ \" ﺍﻟﺩﺍﻟﺔ ﻜﻠﻔﺔ ﺇﺠﻤﺎﻟﻴﺔ\".ﻴﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ ) CM (xﺇﻟﻰ ﺍﻟﻜﻠﻔﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻹﻨﺘﺎﺝ ﻭﺤﺩﺓ ﻭﺍﺤﺩﺓ ﺇﺫﺍ ﺃﻨﺘﺠﺕ xﻭﺤﺩﺓ ﻫﻜﺫﺍ )CM (x )C(x x ﻭﺍﻟﺩﺍﻟﺔ ) x CM (xﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﻜﻠﻔﺔ ﻤﺘﻭﺴﻁﺔ.ﻴﺭﻤﺯ ﺒﺎﻟﺭﻤﺯ ) Cm(xﺇﻟﻰ ﺍﻟﻜﻠﻔﺔ ﺍﻟﻬﺎﻤﺸﻴﺔ ﻹﻨﺘﺎﺝ ﺍﻟﻭﺤﺩﺓ ﺫﺍﺕ ﺍﻟﻤﺭﺘﺒﺔ ) (x+1ﻭ ) Cm(xﻫﻲ ﺇﺫﻥ ﺍﻟﻜﻠﻔﺔ ﻹﻨﺘﺎﺝ ﻭﺤﺩﺓ ﺇﻀﺎﻓﻴﺔ ﺒﻌﺩ ﺇﻨﺘﺎﺝ x ﻨﻅﺭﻴﺎ Cm(x) = C(x+1) – C(x) : ﻭ ﺍﻟﺩﺍﻟﺔ \" x Cm (x) :ﺍﻟﺩﺍﻟﺔ ﻜﻠﻔﺔ ﻫﺎﻤﺸﻴﺔ \"ﺍﺼﻁﻼﺤﺎ :ﺒﻤﺄﻥ ﻋﻠﻡ ﺍﻹﻗﺘﺼﺎﺩ ﻴﻬﺘﻡ ﺒﺎﻟﺤﺎﻻﺕ ﺍﻟﺘﻲ ﻴﻜﻭﻥ ﻓﻴﻬﺎ ﻋﺩﺩ ﺍﻟﻭﺤﺩﺍﺕ ﺍﻟﻤﻨﺘﺠﺔ ﻜﺒﻴﺭﺍ ﺘﺄﺨﺫ \" ﺍﻟﺩﺍﻟﺔ ﻜﻠﻔﺔ ﻫﺎﻤﺸﻴﺔ \" ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ \" ﻜﻠﻔﺔ ﺇﺠﻤﺎﻟﻴﺔ \" ﺃﻱ )Cm(x) = C’(x ﻤﻼﺤﻅﺔ: ﺍﻟﻜﻠﻔﺔ ﺍﻟﺜﺎﺒﺘﺔ ﻫﻲ ﺍﻟﻜﻠﻔﺔ ﺍﻟﻤﺴﺘﻘﻠﺔ ﻋﻥ ﺍﻹﻨﺘﺎﺝ. ﺇﺫﻥ ﺍﻟﻜﻠﻔﺔ ﺍﻟﺜﺎﺒﺘﺔ ﻫﻲ )c(o ﺨﺎﺼﻴﺔ:ﺇﺫﺍ ﻜﺎﻥ x0ﻋﺩﺩﺍ ﺒﺤﻴﺙ ) cM(x0ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ \" ﻜﻠﻔﺔ ﻤﺘﻭﺴﻁﺔ\" ﻓﺈﻥCm (x0) =CM (x0): ﺍﻟﺒﺭﻫﺎﻥ: ﻤﻨﻪ ﺇﺫﺍ ﻜﺎﻥ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﻜﻠﻔﺔ ﺍﻟﻤﺘﻭﺴﻁﺔ ﺃﺼﻐﺭﻴﺔ ﺘﺄﺨﺫ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﺍﻟﻘﻴﻤﺔ 0 ) CM (x0ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ CMﻴﻜﻭﻥ CM'(x0) =0 )CM '(x )x.C'(x) C(x ﻭﻟﻨﺎ x2 ﻭﻴﻜﻭﻥ CM '(x0) =0ﺴﺘﻠﺯﻡ x0 C' (x0)- C(x0) =0 15
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ) C(x0 ) C ' (x0 ﻤﻨﻪ x0 ﺇﺫﻥ )CM(x0) = Cm(x0 IIﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ: ﺘﻌﺭﻴﻑ ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ﺘﺤﺘﻭﻱ ﺍﻟﻤﺠﺎل . Iﻨﺴﻤﻲ ﺩﺍﻟﺔ ﺃﺼﻴﻠﺔ ﻟﻠﺩﺍﻟﺔ fﻜل ﺩﺍﻟﺔ Fﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Iﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲF'( x)=f(x) :I ﻤﺜﻼ: ﺍﻟﺩﺍﻟﺔ Fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭﺭ F(x)=x3ﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=3x2ﻷﻨﻬﺎ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻭﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ F’( x)=f(x) : ﻜﺎﻥ ﺒﺈﻤﻜﺎﻨﻨﺎ ﺃﺨﺫ Fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ F(x)=x3+2ﺃﻭ ﺒﺎﻟﺩﺴﺘﻭﺭF(x)=x3-7 ﺃﻭ ﺒﺼﻭﺭﺓ ﻋﺎﻤﺔ ﺒﺩﺴﺘﻭﺭ ﻤﻥ ﺍﻟﺸﻜل F(x)=x3 + kﺃﻴﻥ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ. ﻨﻜﺭﺭ ﺇﺫﻥ :ﺇﺫﺍ ﻗﺒﻠﺕ ﺩﺍﻟﺔ \" fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ\" ﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ ﻫﺫﻩ ﺍﻷﺨﻴﺭﺓ ﻟﻴﺴﺕ ﻭﺤﻴﺩﺓ. ﻤﺒﺭﻫﻨﺔ: ﺇﺫﺍ ﻜﺎﻨﺕ Fﺩﺍﻟﺔ ﺃﺼﻴﻠﺔ ﻟﺩﺍﻟﺔ fﻋﻠﻰ ﻤﺠﺎل Iﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل Gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ Iﺒﺩﺴﺘﻭﺭ ﻤﻥ ﺍﻟﺸﻜل G (x) = F(x)+kﺃﻴﻥ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ.xﻓﻲ F'(x)=f(x) : I ﺍﻟﺒﺭﻫﺎﻥ: ﺇﺫﺍ ﻜﺎﻨﺕ Fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ fﻋﻠﻰ ﻤﺠﺎل Iﻟﺩﻴﻨﺎ: ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ Fﻫﻲ Iﻭ Fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ Iﻭﻤﻬﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ ﻭﺇﺫﺍ ﻜﺎﻨﺕ Gﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Iﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ : I Gﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ Iﻴﻌﻨﻲ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻤﻥ I 16
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ) G’(x) = f(xﻭ ) G’(x) = F ‘(xﻤﻨﻪ ( G’ – F ‘) (x) = 0 ﺃﻱ (G-F)’(x) = 0 ﺃﻱ G-Fﺩﺍﻟﺔ ﺜﺎﺒﺘﺔ ﻋﻠﻰ I ﻴﻌﻨﻲ ﻴﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ kﺒﺤﻴﺙ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ I G(x) –F(x) =k ﺘﻤﺭﻴﻥ ﺘﻁﺒﻴﻘﻲ: ﻟﺘﻜﻥ fﻭ Fﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ ) f (xﻭ F (x) x. x2 3 2x2 3 X2 3 -1ﺃﺜﺒﺕ ﺃﻥ fﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ -2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ -3ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ Hﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﺘﻲ ﺘﺤﻘﻕH (1) =-2 ﺍﻟﺤل: ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻜل ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ Fﻭ fﻫﻲ -1ﻹﺜﺒﺎﺕ ﺃﻥ Fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﻴﻠﺯﻡ ﻭﻴﻜﻔﻲ ﺃﻥ ﻨﺜﺒﺕ ﺃﻨﻪ ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ )F ' (x xﻓﻲF'(x) =f(x): 1. x2 3 x. 2x 2 x2 3 )F ' (x . x2 3 x2 3 x2 ﺃﻱ x2 3 ﺒﺎﻟﻔﻌل ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ )F'(x) =f(x ﻭﻋﻠﻴﻪ Fﺩﺍﻟﺔ ﺍﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ (2ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﻤﻥ ﺍﻟﺸﻜل x x x2 3 kﺃﻴﻥ k ﻋﺩﺩ ﺤﻘﻴﻕ ﺜﺎﺒﺕ. Hﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺩﺴﺘﻭﺭ ﻤﻥ ﺍﻟﺸﻜل H (x) x x2 3 kH (1) 1 12 3 k ﺃﻴﻥ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ﻭ H (1) = -2ﻤﻨﻪ. 17
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﻤﻨﻪ 2+k=-2 ﻤﻨﻪ K=-4 ﻭﻋﻠﻴﻪ H :ﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ℜﺍﻟﺘﻲ ﺘﺤﻘﻕ H (1) = -2 ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ℜﺒﺎﻟﺩﺴﺘﻭﺭ H (x) x x2 3 4 ﻤﻼﺤﻅﺔ :ﺍﻟﺸﺭﻁ H (1) = -2ﻤﻜﻨﻨﺎ ﻤﻥ ﺇﻴﺠﺎﺩ ﻗﻴﻤﺔ kﺍﻟﻤﺭﻓﻘﺔ ﺒﺎﻟﺩﺍﻟﺔ H ﻭﺒﺼﻭﺭﺓ ﻋﺎﻤﺔ ﻟﻨﺎ: ﺍﻟﻤﺒﺭﻫﻨﺔ:ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ fﺩﺍﻟﺔ ﺘﻘﺒل ﺩﻭﺍﻻ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻭﻟﻴﻜﻥ x0ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻔﺭﻭﻀﺎ ﻴﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﺎل Iﻭﻟﻴﻜﻥ y0ﻋﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﻤﻔﺭﻭﻀﺎ. ﻤﻥ ﺒﻴﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﺘﻭﺠﺩ ﻭﺍﺤﺩﺓ ﻭﻭﺍﺤﺩﺓ ﻓﻘﻁ ﻭﻟﺘﻜﻥ HﺘﺤﻘﻕH(x0)=y0 ﻤﺒﺭﻫﻨﺔ )ﻤﻘﺒﻭﻟﺔ( ﻜل ﺩﺍﻟﺔ ﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻤﺠﺎل ﺘﻘﺒل ﺩﻭﺍﻻ ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻫﺫﺍ ﺍﻟﻤﺠﺎل. ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﻭﺍل ﻤﺄﻟﻭﻓﺔ :ﻤﺒﺭﻫﻨﺎﺕ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﻤﻭﺍﻟﻲ fﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺩﻭﺍﻟﻬﺎ ﺍﻷﺼﻠﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل Fﺍﻟﺘﻲ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ Iﻭﺍﻟﻤﺤﺼل ﻋﻠﻰ ﻜل ﻭﺍﺤﺩﺓ ﻤﻨﻬﺎ ﺒﺈﻋﻁﺎﺀ ﻗﻴﻤﺔ ﺇﻟﻰ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ﺍﻟﺜﺎﺒﺕ k.ﺍﻟﻤﺠﺎلI ﻓﺎﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻻﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ f ﺍﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل F ﺒﺎﻟﺩﺴﺘﻭﺭ ﺍﻟﻤﻌﺭﻗﺔ ﺒﺩﺴﺘﻭﺭ ﻤﻥ ﺍﻟﺸﻜل f (x) =0 F(x) =k f(x) =1 f(x) =a F(x) =x +k ﺍﻱ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ F(x) = ax +k f(x)= x )F(u = 1 x2+K f(x)= x2 2 F(x) = 1 x3+K 3 18
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )F ( x 1 1.x n 1 k f(x) = xn ﺍﻴﻥ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺜﺎﺒﺕ > @-v.0ﺍﻭ n > @0.+v ﺒﺤﻴﺙ n t1 )F(x = 1 k > @-v.0ﺍﻭ x 1 > @0.+v f(x) = x2 )F ( x (n 1 k > @0.+v 1)xn1 1 f(x) = xn F(x) 2 x k ﺍﻴﻥ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺜﺎﺒﺕ ﺒﺤﻴﺙ n t2 f (x) 1 xﻤﻼﺤﻅﺔ :ﺍﻟﻨﺘﺎﺌﺞ ﻓﻲ ﺍﻟﺠﺩﻭل ﺃﻋﻼﻩ ﻤﺴﺘﻨﺘﺠﺔ ﻤﻥ ﻨﺘﺎﺌﺞ ﺤﻭل ﺍﻟﻤﺸﺘﻘﺎﺕ ﺒﺎﻟﻔﻌل ﻴﻤﻜﻥ ﻟﻨﺎ ﺍﻟﺘﺄﻜﺩ ﺒﺴﻬﻭﻟﺔ ﺃﻥ f ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ . F ﺃﻤﺜﻠﺔ: h,g,fﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺎﺘﻴﺭ ﻟﺘﻜﻥ = )H(x 1 ,g(x)= x10 ,f(x) =3 x9 ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﻥ ﺍﻟﺸﻜل x 3x kﺃﻴﻥ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ.ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﻥ ﺍﻟﺸﻜل xﺃﻴﻥ kﻋﺩﺩ x11 k ﺃﻱ ﻤﻥ ﺍﻟﺸﻜل x 1 1 x10 1 k 11 10 ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ. ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ hﻋﻠﻰ @ >-v.0ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل 1 x 1)x91 @ >(9 k -v.0 ﻤﻥ ﺍﻟﺸﻜل. 19
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي xﺃﻴﻥ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ. 1 k ﺃﻱ ﻤﻥ ﺍﻟﺸﻜل: 8x8 ﻤﺒﺭﻫﻨﺎﺕ )ﻤﺴﺘﻨﺘﺠﺔ ﻤﻥ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺤﻭل ﺍﻟﻤﺸﺘﻘﺎﺕ( ﻤﺒﺭﻫﻨﺔ: ﻟﻴﻜﻥ Iﻤﺠﺎﻻ. ﺇﺫﺍ ﻜﺎﻨﺕ Fﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ fﻋﻠﻰ . I ﻭﻜﺎﻨﺕ Gﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ gﻋﻠﻰ I ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ) (F+Gﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ) (f+gﻋﻠﻰ I ﺇﺫﺍ ﻜﺎﻨﺕ Fﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﺩﺍﻟﺔ fﻋﻠﻰI ﻭﻜﺎﻥ aﻋﺩﺩﺩﺍ ﺤﻘﻴﻘﻴﺎ ﺜﺎﺒﺘﺎ. ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ a Fﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ a fﻋﻠﻰ I ﻤﺜﻼ: ﻟﺘﻜﻥ h,g,fﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺎﺘﻴﺭ)h(x 21 ), g(x 2x2 3 5 , f(x)=4x5 3 x 2x3 x2 x7+2x3+5x-1 fﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭﻤﻨﻪ fﺘﻘﺒل ﺩﻭﺍﻻ ﺃﺼﻠﻴﺔ ﻋﻠﻰ . ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﻭ ﺠﺩﻭل ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ،ﺍﻟﺩﺍﻟﺔ Fﺍﻟﻤﻌﺭﻓﺔ ﻓﻲ ﺒﺎﻟﺩﺴﺘﻭﺭ : )F ( x 2 x6 1 x4 5 x2 x 3 2 2 ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ gﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ * ﻭﻤﻨﻪ gﺘﻘﺒل ﺩﻭﺍﻻ ﺃﺼﻠﻴﺔ ﻋﻠﻰ* .ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﻭ ﺠﺩﻭل ﺍﻟﺩﻭﺍل )G(x 2 x3 3 5 : ﺒﺎﻟﺩﺴﺘﻭﺭ ﺍﻷﺼﻠﻴﺔ ،ﺍﻟﺩﺍﻟﺔ Gﺍﻟﻤﻌﺭﻓﺔ ﻓﻲ 3 x 6x6 ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ * 20
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮيﻓﺈﻥ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ﻤﺒﺭﻫﻨﺎﺕ: fﻋﻠﻰ Iﻫﻲ ﺍﻟﺩﺍﻟﺔ Fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻟﻴﻜﻥ Iﻤﺠﺎﻻ ﻭﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ﺘﺤﺘﻭﻱ ﺍﻟﻤﺠﺎلI Iﺒﺎﻟﺩﺴﺘﻭﺭ ﺇﺫﺍ ﻜﺎﻥ ﻤﻬﻤﺎﺘﻜﻥ ﻗﻴﻤﺔ xﻓﻲ Iﺤﻴﺙ )F(x) 2 u(x uﺩﺍﻟﺔ ﻭ’ uﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ )f (x) u'(x )u(x)F ( x 1 1.u ( x)n 1 uﺩﺍﻟﺔ ﻭ’ uﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ n ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺜﺎﺒﺕ )f (x) u(x)n.u'(x n uﺩﺍﻟﺔ ﻭ’ uﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ n)F ( x 1 ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺜﺎﺒﺕ ﺒﺤﻴﺙ )f (x )u'(x n>1 n 1.u(x)n1 u(x)n ﺃﻤﺜﻠﺔ ﻟﺘﻜﻥ f,g hﺍﻟﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺎﺘﻴﺭ : , ) f (x) x2 x 1 . 2x3 3x2 6x 1 20 g(x 2x 3 , x2 3x 10 x 1 5x2 10x 13 ) h(x *( ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻫﻲ ﻨﻀﻊ u(x)= 2x3+3x2+6x+1ﻟﺩﻴﻨﺎ u’(x)=6x2+6x+6 )f (x 1 (u x)20 '.u ( )x ﻤﻨﻪ )u’(x) = 6 (x2+x+1 ﻤﻨﻪ 6 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺠﺩﻭل ﺍﻟﺴﺎﺒﻕ ﻟﻠﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻨﺎ 1 126 )F ( x 2x3 3x 6x 1 21 ﺍﻟﺩﺍﻟﺔ Fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭﺭ: ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ . 21
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي *( ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ )ﻷﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻟﻨﺎ (('=-31 )x2+3x+10>0 : )g(x )u'(x ﻟﻨﻀﻊ u(x) = x2+3x+10ﻟﺩﻴﻨﺎ u’(x)=2x+3ﻤﻨﻪ )u(x ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺠﺩﻭل ﺍﻟﺴﺎﺒﻕ ﻟﻠﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻨﺎ )G(x ﺍﻟﺩﺍﻟﺔ Gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺒﺎﻟﺩﺴﺘﻭﺭ2 x2 3x 10 :ﻤﻨﻪ )u’(x)=10(x-1 ﻫﻲ ﻭﺍﺤﺩﺓ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ . *( ﻟﺩﻴﻨﺎ 5x2-10x=0 :ﻴﻜﺎﻓﺊ 5x (x-2)=0 ﻴﻜﺎﻓﺊ x=0ﺃﻭ x=2 ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ hﻫﻲ }R – {0 ;2 ﻟﻨﻀﻊ u(x) = 5x2-10x :ﻟﺩﻴﻨﺎu’(x) = 10x-10 : )h(x )1 u'(x ﻤﻨﻪ 10 u(x)13 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺠﺩﻭل ﺍﻟﺴﺎﺒﻕ ﻟﻠﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻨﺎ )H (x 1 ﺍﻟﺩﺍﻟﺔ Hﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ } R-{0 ;2ﺒﺎﻟﺩﺴﺘﻭﺭ: 120. 5x2 10x 12 IIIﺘﺘﻤﺎﺕ ﺤﻭل ﺇﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل ﻭ ﺍﻟﻌﻤﻠﻴﺎﺕ ﻋﻠﻰ ﺍﻟﺩﻭﺍل *(ﻤﺒﺭﻫﻨﺎﺕ ﻓﻲ ﻤﺎﻴﻠﻲ fﻭ gﺩﺍﻟﺘﺎﻥ ﻭ Iﻤﺠﺎل ﻭ kﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕ ﻏﻴﺭ ﻤﻌﺩﻭﻡ xﻤﺠﻤﻭﻉ ﺩﺍﻟﺘﻴﻥ ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ f+g ﺇﺫﺍ ﻜﺎﻥ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﻭ Gﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I I ﻭ gﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I xﺠﺩﺍﻉ ﺩﺍﻟﺔ ﺒﻌﺩﺩ ﺤﻘﻴﻘﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ 22
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮيﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ k.f ﻭ ﻜﺎﻥ ﺇﺫﺍ ﻜﺎﻥ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I k>0 ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I k>0 ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ gof ﻭ ﻭﺠﺩ ﻤﺠﺎل Jﻴﺤﺘﻭﻱ)f(I xﻤﺭﻜﺏ ﺩﺍﻟﺔ ﺒﺩﺍﻟﺔ ﺇﺫﺍ ﻜﺎﻥ ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﺒﺤﻴﺙﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I gﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ J fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I gﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ J ﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I gﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ J fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I gﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ J ﺘﻤﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ 01 ﻟﺘﻜﻥ uﻭ vﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ )v(x 2 , u(x) x2 12 x3 1 )1 ()(uov 2 ) و (vou)(- 2 ﺃﺤﺴﺏ (1 (2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ) (vouﺜﻡ ﺃﺤﺴﺏ ) (vou)(xﺒﺩﻻﻟﺔ x (3ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ) (uovﺜﻡ ﺃﺤﺴﺏ ) (uov)(xﺒﺩﻻﻟﺔ x ﺍﻟﺘﻤﺭﻴﻥ 02 ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ gﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ : f (x) 2x 8 ; g(x) - 3x 2 2x 1 (1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ) (gofﺜﻡ ﺃﺤﺴﺏ ) (gof)(xﺒﺩﻻﻟﺔ x 23
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي (2ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ) (fogﺜﻡ ﺃﺤﺴﺏ ) (fog)(xﺒﺩﻻﻟﺔ x ﺍﻟﺘﻤﺭﻴﻥ 03 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﻋﻴﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : )f (x 1 x4 x3 3 x2 (2 ; f(x)= -3x2-5x+7 (1 2 5 )f (x 3x 7 (4 ); f (x 5x4 2x2 8 (3 2x 1 7 ) f (x 2x 4 7x2 x 3 5 (6 )f (x 3x2 5x 2 (5 x2 5x 6 (8 )f (x 1 x4 x2 1 12 (7 ) f (x )f (x x4 )f (x 3x2 2 (9 2x 1 x 13 (10 f (x) 3x2 2x 2x3 8x (11 ﺍﻟﺘﻤﺭﻴﻥ: 04 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f (x) 3x2 7x 3 ﻭ ﻟﻴﻜﻥ ) ( Cﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﻤﻌﻠﻡ ) (O , i , j (1ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Tﺍﻟﻤﻤﺎﺱ ل ) ( Cﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﻤﻥ ﻨﻘﻁﻪ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ . 2ﻋﻴﻥ ﺍﻟﻨﻘﻁﺔ ﻤﻥ ) ( Cﺒﺤﻴﺙ ﺍﻟﻤﻤﺎﺱ ﻟﻪ ﻋﻨﺩ ﻫﺫﻩ ﺍﻟﻨﻘﻁﺔ ﻴﻭﺍﺯﻱ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y = -3x+2 (3ﻫل ﺘﻭﺠﺩ ﻤﻤﺎﺴﺎﺕ ل) ( Cﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ oﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ. ﺍﻟﺘﻤﺭﻴﻥ : 05ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﺩﺍﻟﺔ Fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : I = IR )F ( x x 1 )f (x x2 2x 1 (1 x2 1 x4 2x2 1 I >@0;f )F(x 2x x f(x) x (2 3 24
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي >@ f;0 )F(x 2x - x )f(x 3x 3 6x 3x 2 2 3x2 2 2. x I (3 اﻟﺘﻤﺮﻳﻦ : 06 ﻟﺘﻜﻥ a , b , cﺃﻋﺩﺍﺩﺍ ﺤﻘﻴﻘﻴﺔ ﻭ ﻟﺘﻜﻥ fﻭ Fﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﺒﺎﻟﺩﻭﺴﺘﻭﺭﻴﻥ : F(x) ax 2 bx c . x2 1و f (x) x3 x2 1 ﻋﻴﻥ ﻗﻴﻤﺔ ﻜل ﻤﻥ a , b , cﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ Fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ IR ﺍﻟﺘﻤﺭﻴﻥ : 07 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ I R, f (x) 3x 7(2; I R, f (x) 2(1I )R, f (x 1 x2 5x ;2(3 I )R, f (x x4 5 x3 1 x 3 (4 2 2 2 2I )@ f;0>, f (x 5 2 4x 1(6; I )@0;f>, f (x 2 x(5 2x4 x5 x9I )@0;f>, f (x 5x5 3x4 1 5 ;(8 I )R, f (x 18x 5 10 (7 2x3 2x I»¼º 2 ¬ª«, 1 ;f 5 f )(x 5x 26 (10; I )R, f (x 4x 2. x2 x 2 4 (9 3 (12; I x 1 )I @1;f>, f (x )R, f (x x 1 4 5 (11 3x2 6x )I R, f (x )x 2 (13; I R, f (x 2x3 x (14 3x2 4 5 x4 x2 1 )I @ f;0>, f (x 3 (15 9 x2. 2 2x ﺍﻟﺘﻤﺭﻴﻥ : 08 25
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي x 2 10x 1 x2 1 ) f (x 2: ﺒﺎﻟﺩﺴﺘﻭﺭ f ﺍﻟﺩﺍﻟﺔ ﻟﺘﻜﻥ (1ﻋﻴﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ Dﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻟﻠﺩﺍﻟﺔ f (2ﺃﻭﺠﺩ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﺤﻘﻴﻘﻴﻥ a,bﺒﺤﻴﺙ ﻴﻜﻭﻥ :ﻤﻬﻤﺎ ﺘﻜﻭﻥ ﻗﻴﻤﺔ xﻓﻲ D )f (x x a x b 12 12 (3ﻋﻴﻥ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل @ >1;f ﺍﻟﺘﻤﺭﻴﻥ : 09 ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ Fﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﺍﻟﺘﻲ ﺘﺤﻘﻕ F (α ) β : β 2 2;α 3; I )@ f;0>; f (x 3x 2 5 (1 x2 )β 0;α 1; IR, f (x x (2 x2 3 x2 3 1 x3 2x2 x 5 β 5,α )2; f (x x 12 ﺍﻟﺘﻤﺭﻴﻥ : 10 ﻟﺘﻜﻥ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ : )f (x x2 x2 3x 2) ( Cﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ ) (O,i , j (1ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f (2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ) ( Dﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ) ( Cﻓﻲ ﺍﻟﻨﻘﻁﺔ ﻤﻥ ﻨﻘﻁﻪ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ . 4 (3ﻋﻴﻥ ﺇﺤﺩﺍﺜﻴﺘﻲ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻨﺤﻨﻰ ) ( Cﻤﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y=1 (4ﻋﻴﻥ ﺍﻟﻤﻤﺎﺴﺎﺕ ﻟﻠﻤﻨﺤﻰ ) ( Cﺍﻟﺘﻲ ﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ Oﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ. ﺍﻟﺘﻤﺭﻴﻥ : 11 26
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮيﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﺭﻓﻕ ﻤﻥ ﺒﻴﻥ ﺍﻟﻤﻨﺤﻨﻴﺎﺕ ) ( C1) , ( C2) ,( C3؛ ﻭﺍﺤﺩ ﻫﻭ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﺩﺍﻟﺔ f ﻭ ﺍﻟﺜﺎﻨﻲ ﻫﻭ ﺍﻟﻤﻤﺜل ل ‘ fﻭ ﺍﻟﺜﺎﻟﺙ ﺍﻟﻤﺜل ﻟﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ Fﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ، Rﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﻤﻌﻠﻡ ) (O,i , jﺤﺩﺩ ﻤﻌﻠﻼ ﻋﻠﻰ ﺇﺠﺎﺒﺘﻙ ،ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻭ ﺍﻟﻤﻨﺤﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ ‘ fﻭ ﺍﻟﻤﻨﺤﻨﻲ (1 ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ F (2ﺇﺸﺭﺡ ﻜﻴﻑ ﻜﻴﻑ ﻴﻨﺸﺄ ﺍﻟﻤﻨﺤﻨﻲ ) ( Eﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ Gﺍﻟﺩﺍﻟﺔ ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ ، fﻋﻠﻰ ، R ﺍﻟﺘﻲ ﺘﺤﻘﻕ G(0)=-4ﺜﻡ ﺃﺭﺴﻡ ﺍﻟﻤﻨﺤﻨﻰ ) . ( E ﺍﻟﺸﻜل ﺍﻟﻤﺭﻓﻕ y 6 )( C1) ( C3 5 4 3 2 1 →j -8 -7 -6 -5 -4 -3 -2 -1 0 i→ 1 2 3 4 5 6 7 8 x -1 -2) ( C2 -3 -4 -5 -6 27
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺤﻠﻭل ﺍﻟﺘﻤﺭﻴﻥ ﻭ ﺍﻟﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ:1 u /1ﻭ Qﺩﺍﻟﺘﺎﻥ ﻤﻌﺭﻓﺘﺎﻥ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ: ).ν (x 2 ﻭ )u(x x2 12 x3 )1 ν ( u 1 ) ﻭ ν ( u 2 ﺤﺴﺎﺏ ﻜل ﻤﻥ 2 ν ( u 1 ) =ν (u ( )) 1 ﻟﺩﻴﻨﺎ : 2 2 =ν ( 25 ) 2 4 = 19 u ν ( 1 ) = u(ν ( 1 )) ﻭ ﻟﺩﻴﻨﺎ : 2 2 = (u 49 ) 4 νﺒﺩﻻﻟﺔ . x 8 = 37 /2ﺘﻌﻴﻴﻥ ﻤﺠﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ν µﺜﻡ ﺤﺴﺎﺏ )µ (x ¾ ﻟﺘﻜﻥ D1ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ν µﻋﻨﺩﺌﺫ : }D={x,x :P(x) DQ }={x,x : x2+12z3 } ={x,x : x2z9 = ¾ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ﻋﻨﺩﺌﺫ: ))ν u(x) ν (u(x 28
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي 2 u(x) 3 2 x2 9 /3ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ µ νﺜﻡ ﺤﺴﺎﺏ ) µ ν (xﺒﺩﻻﻟﺔ .x ¾ ﻟﺘﻜﻥ D2ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ µ νﻋﻨﺩﺌﺫ : })) Q(xﻭ)D2={x,x (xDv ¾ })={x,x : (x-3z0 }= -{3 ﻟﻴﻜﻥ xﻋﻨﺼﺭ } -{3ﻋﻨﺩﺌﺫ: ))µ ν (x) µ(ν (x (ν (x))2 12 (x 2 )2 12 3 4 12 (x 3)2 12x 2 72x 112 (x 3)2 ﺍﻟﺘﻤﺭﻴﻥ :2 (gﺒﺩﻻﻟﺔ . x gﻭ gﺩﺍﻟﺘﺎﻥ ﻤﻌﺭﻓﺘﺎﻥ ﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ: g(x) 2x 8ﻭ . g(x) 3x2 2x 1 /1ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ) (g gﺜﻡ ﺤﺴﺎﺏ )g)(x ¾ ﻟﺘﻜﻥ D1ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ g gﻋﻨﺩﺌﺫ: }) (g (x)Dgﻭ)D1={x,x (xDg }))(g (xﻭ)={x,x : (xt-4 [= [-4 ;+f ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ [ [-4 ;+fﻋﻨﺩﺌﺫ: ))(g g)(x) g(g(x 3(g(x))2 2(g(x)) 1 29
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي 3(2x 8) 2 2x 8 1 (gﺒﺩﻻﻟﺔ . x 2 2x 8 6x 23 /2ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ ) (g gﺜﻡ ﺤﺴﺎﺏ )g)(x ¾ ﻟﺘﻜﻥ D2ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ g gﻋﻨﺩﺌﺫ: }) (g (x)Dgﻭ)D2={x,x (xDg}={x,x : g(x)t-4 })={x,x : -3x2+2x+1t-4 })={x,x : -3x2+2x+5t0 5 ] =[-1 ; 3 ; [-1ﻋﻨﺩﺌﺫ: 5 ] ﻤﻥ ﻋﻨﺼﺭﺍ x ﻟﻴﻜﻥ 3 ))(g g)(x) g(g(x 2g(x) 8 6x 2 4x 10 ﺍﻟﺘﻤﺭﻴﻥ :3ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﺜﻡ ﺘﻌﻴﻴﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ gcﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : g(x) 3x2 5x 7 /1 ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ : gc(x) 6x 5 )g(x 3x 7 /4 2x 1 ﻤﻥ x ﻜل ﺃﺠل ﻤﻥ ﻟﺩﻴﻨﺎ ﻭ {- 1 ﻫﻲ} g ﺍﻟﺩﺍﻟﺔ ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ 2 : {- 1 } 2 )g c( x )3(2x 1) 2(3x 7 17 (2x 1)2 (2x 1)2 30
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )g(x 2x 4 2 /5 3x2 5x : ﺍﻟﻤﺠﻤﻭﻋﺔ ﻫﺫﻩ ﻤﻥ x ﻜل ﺃﺠل ﻤﻥ ﻟﺩﻴﻨﺎ ﻭ -{2 ; 1 ﻫﻲ} g ﺍﻟﺩﺍﻟﺔ ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ 3 )g c( x ) 2(3x2 5x 2) (6x 5)(x 4 (3x2 5x 2)2 6x2 10x 4 12x2 34x 20 (3x2 5x 2) 2 6x2 24x 24 (3x2 5x 2) 2 g(x) (7x2 x 3)5 /7 ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ ﻫﺫﻩ : gc(x) 5(14x 1)(7x2 x 3)4 (70x 5)(7x2 x 3)4 )g(x (x4 1 1)12 /8 x2 ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ ﻫﺫﻩ : )g c( x 12(4x3 2x)(x4 x2 1)11 (x4 x2 1)24 ) 24(2x2 x (x4 x2 1)13 ) 24x(2x 1 (x4 x2 1)13 g(x) x2 5x 6 /10ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ [ ]-f ;-6[[1 ;+fﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ ﻫﺫﻩ ]-f ;- [ 6[[1 ;+fﻟﺩﻴﻨﺎ: 31
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي gc(x) 2x 5 2 x2 5x 6 )g(x 3x2 2 /11 2x 1 ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل x {- 1 ﻫﻲ} g ﺍﻟﺩﺍﻟﺔ ﺘﻌﺭﻴﻑ ﻤﺠﻤﻭﻋﺔ 2 ﻟﺩﻴﻨﺎ: {- 1 } 2 )g c( x 3x (2x 1) 2 x2 2 3x2 2 (2x 1)2 )3x(2x 1) 2(3x2 2 (2x 1)2 3x2 2 3x 4 (2x 1)2 3x2 2 )g(x x4 (x 1)3 /12 ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ} -{1ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل x } -{1ﻟﺩﻴﻨﺎ: )g c( x 4x3 (x 1)3 3(x 1)2 x4 (x 1)6 )x3 (x 1)2 (4(x 1) 3x (x 1)6 )x3 (x 4 (x 1)4 g(x) (2x 1)7 5x2 3 /14 ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ gﻫﻲ ﻭ ﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل xﻟﺩﻴﻨﺎ: 32
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )g c( x 7(2x 1)6 2 5x2 3 (2x 1)7 5 5x2 3 14(2x 1)6 (5x2 3) 5(5x 1)7 5x2 3 )> @(2x 1)6 14(5x2 3) 5(2x 1 5x2 3 )(2x 1)6 (70x2 10x 47 ﺍﻟﺘﻤﺭﻴﻥ :4 5x2 3 ﻟﺘﻜﻥ gﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ 3x2 7x 3 ). g(x /1ﺒﺤﺙ ﻋﻥ ﻋﺎﺩﻟﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (Tﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ ) (Vﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ .2 ﻟﺘﻜﻥ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺇﺤﺩﺍﺜﻴﺘﺎﻫﺎ ).(x,y ﺍﻟﻨﻘﻁﺔ Mﺘﻨﺘﻤﻲ ﺇﻟﻰ ) (Tﻴﻌﻨﻲ ﺃﻥ : )y gc(2)(x 2) g(2 5(x 2) 1 5x 9 ﻭ ﻤﻨﻪ y 5x 9ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﻤﺎﺱ ). (T/2ﺘﻌﻴﻴﻥ ﺍﻟﻨﻘﻁﺔ ﻤﻥ) (Vﺒﺤﻴﺙ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ )(Vﻋﻨﺩ ﻫﺫﻩ ﺍﻟﻨﻘﻁﺔ ﻴﻭﺍﺯﻱ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﺍﻟﺫﻱ y 3x 2ﻤﻌﺎﺩﻟﺔ ﻟﻪ. ﻟﺘﻜﻥ Aﺍﻟﻨﻘﻁﺔ ﺍﻟﻤﻌﺘﺒﺭﺓ ﺤﻴﺙ ﺇﺤﺩﺍﺜﻴﺘﺎﻫﺎ ) (x0,y0ﻋﻨﺩﺌﺫ: gc(x0 ) 3 6x0 7 3 ﺃﻱ ﺃﻥ : 6x0 4 ﺃﻱ ﺃﻥ : x0 4 ﺃﻱ ﺃﻥ : 6 y0 (g 2 ) : ﻴﻜﻭﻥ ﻭ 3 33
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي y0 3( 2)2 (7 2 ) 3 : ﺃﻥ ﺃﻱ 3 3 4 14 9 3 3 3 (A 2 ; )1 ﻤﻨﻪ ﻭ 3 3 /3ﻫل ﺘﻭﺠﺩ ﻤﻤﺎﺴﺎﺕ ﻟﻠﻤﻨﺤﻨﻲ) (Vﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ 0ﻤﺒﺩﺃ ﺍﻟﻤﻌﻠﻡ ؟ ﻟﺘﻜﻥ M0ﻨﻘﻁﺔ ﺜﺎﺒﺘﺔ ﻤﻥ ﺍﻟﻤﻨﺤﻨﻲ ) ،(Vﻭ ﻟﺘﻜﻥ ) (tﺍﻟﻤﻤﺎﺱ ﻟـ ) (Vﻋﻨﺩ ، M0ﻋﻨﺩﺌﺫ: ) y gc(x0 )(x x0 ) g(x0ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﺎﺱ). (t ﺤﻴﻨﺌﺫ: ﺍﻟﻤﻤﺎﺱ ) (tﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ 0ﻴﻌﻨﻲ ﺃﻥ : ) 0 gc(x0 )(0 x0 ) g(x0 ﺃﻱ ﺃﻥ (6x0 7)(x0 ) 3x02 7x0 3 0 : ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ 3x02 3 0 : ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ (x0 1) :ﺃﻭ )(x0 1ﻭ ﻤﻨﻪ ﺘﻭﺠﺩ ﻨﻘﻁﺘﺎﻥ Aﻭ Bﺤﻴﺙ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻲ) (Vﻋﻨﺩ ﻜﻠﻤﻨﻬﻤﺎ ﻴﺸﻤل ﺍﻟﻤﺒﺩﺃ ، 0ﻨﺴﻤﻴﻬﻤﺎ ) (tAﻭ ). (tB ﺤﻴﺙ(tA ) : y gc(1)(x 1) g(1) : )(tB ) : y gc(1)(x 1) g(1 (tA ) : y (1)(x 1) 1 (tB ) : y (13)(x 1) 13 (tA ) : y x ﺃﻱ ﺃﻥ : (tB ) : y 13x ﺍﻟﺘﻤﺭﻴﻥ :5ﺍﻹﺜﺒﺎﺕ ﺃﻥ ﺍﻟﺩﺍﻟﺔ Fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : ) F (xﻭ =.I x 1 ) g(xﻭ x 2 2x 1 (1 x2 1 x 2 x2 1 4 ¾ ﺍﻟﺩﺍﻟﺔ Fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ) ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ( ﻷﻨﻬﺎ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ. 34
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )F c(x ¾ ﻭ ﻤﻥ ﺃﺠل xﻤﻥ ﻟﺩﻴﻨﺎ : )1(x2 1) 2x(x 1 (x2 1)2 x2 2x 1 x4 2x2 1 )g(x ﻭ ﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ Fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﺍﻟﻤﺠﺎل . ) F (xﻭ [I=]-f ;0 2x x ) g(xﻭ 3x3 6x (2 3x2 2 (3x2 2)2 x ¾ ﺍﻟﺩﺍﻟﺔ Fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ[ ) ]-f ;0ﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ (. ¾ ﻭ ﻤﻥ ﺃﺠل xﻤﻥ[ ]-f ;0ﻟﺩﻴﻨﺎ : (2 x )2( x u 2 1 )(3x 2 )2 6x u 2x x x)F c(x (3x2 2)2 )(2x x 1 2 x x (3x2 2) 12x (3x2 2)2 3x(3x2 2) 12x3 (3x2 2)2 x 3x3 6x (3x2 2) x )g(x ﻭ ﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ Fﻫﻲ ﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﺍﻟﻤﺠﺎل[. ]-f ;0 ﺍﻟﺘﻤﺭﻴﻥ :6 ﺘﻌﻴﻴﻥ ﻗﻴﻤﺔ ﻜل ﻤﻥ c، b، aﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﺩﺍﻟﺔ Fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ . ¾ ﺍﻟﺩﺍﻟﺔ Fﻗﺎﻟﺒﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ) ﺤﺴﺏ ﺍﻟﻌﻤﻠﻴﺎﺕ ﻭ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ(. ¾ ﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ . 35
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158