اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )F c(x (2ax b) x2 1 x (ax2 ) bx c ﻟﺩﻴﻨﺎ: x2 1 )F c(x )(2ax b)(x2 1) x(ax2 bx c ﺇﺫﻥ: x2 1 (3a)x3 (2b)x2 (2a c)x b x2 1 ﻋﻨﺩﺌﺫ: Fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﻴﻌﻨﻲ ﺃﻥ : 3a=1 2b=0 2a+c=0 b=0 =a 1 ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ 3b=0 =c 2 3 ﻭ ﻤﻨﻪ Fﺩﺍﻟﺔ ﺃﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ: . =c 2 ، b=0، 1 3 a= 3 ﺍﻟﺘﻤﺭﻴﻥ :7 ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺩﻭﺍل ﺍﻷﺼﻠﻴﺔ ﻟﻠﺩﺍﻟﺔ gﻋﻠﻰ ﺍﻟﻤﺠﺎل Iﻓﻴﻜﻠﻤﻥ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : g(x) 2 /1ﻭ =I ﺍﻟﺩﺍﻟﺔ gﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭ ﻤﻨﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻭ ﺩﻭﺍﻟﻬﺎ ﺍﻷﺼﻠﻴﺔ ﻋﻠﻰ ﻫﻲ : x o 2x kﺤﻴﺙ kﺜﺎﺒﺕ. =. I ) g(xﻭ x4 5 x3 1 x2 1 x 3 /4 2 3 2 2 36
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي ﺍﻟﺩﺍﻟﺔ gﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ ﻭ ﻤﻨﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ ﻭ ﺩﻭﺍﻟﻬﺎ ﺍﻷﺼﻠﻴﺔ ﻋﻠﻰ ﻫﻲ : . ﻤﻥ ﺜﺎﺒﺕ k ﺤﻴﺙ x o 1 x5 5 x4 1 x3 1 x2 3 x k 5 8 9 4 2 [. I=]-f ;0 ) g(xﻭ 5 2 4x x /6 2x4 x5ﺍﻟﺩﺍﻟﺔ gﻤﺴﺘﻤﺭﺓ ﻋﻠﻰ Iﻭ ﻤﻨﻪ ﺘﻘﺒل ﺩﻭﺍل ﺃﺼﻠﻴﺔ ﻋﻠﻰ Iﻭ ﺩﻭﺍﻟﻬﺎ ﺍﻷﺼﻠﻴﺔ ﻋﻠﻰ Iﻤﻌﺭﻓﺔ ﺒـ : . ﻤﻥ ﺜﺎﺒﺕ k xﺤﻴﺙ o 5 u 1 2u 1 4u x2 x k 2 3x3 4x4 2 . ﻤﻥ ﺜﺎﺒﺕ k xﺤﻴﺙ o 5 1 2x2 x k 6x3 2x4 )f (x x2 ﺍﻟﺘﻤﺭﻴﻥ : 08 x2 3x2 (1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f *ﻤﺠﻤﻭ ﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ : ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻫﻲ >D f @f,1> ∪@1,2> ∪@2,f * ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ :lim limlim limxo1 x o1 g ( )x f g ( )x )f g(x )1 g(x 1x 1 x !1 xof xof *ﺍﻹﺸﺘﻘﺎﻗﻴﺔ : xﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻺﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﻨﺼﺭ ﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻷﻨﻬﺎ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ xﻟﻴﻜﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ` R^1,2ﻋﻨﺩﺌﺫ : )f c(x 2 x( x23x2)(2 x3) x2 ( x23x2)2 3x2 4 x ( x2 3x2)2 37
اﻹرﺳﺎل 1 رﻳﺎﺿﻴﺎت ﺗﺴﻴﻴﺮ و اﻗﺘﺼﺎد 3ﺛﺎﻧﻮي )x(3x4 ( x23x2)2ﺇﺸﺎﺭﺓ ) f c( xﻫﻲ ﻤﻥ ﺇﺸﺎﺭﺓ ) x(3x 4ﻷﻥ ( x 2 3x 2) 2 ² 0 ﺤﻴﻨﺌﺫ ﻨﻠﺤﻕ ﺇﺸﺎﺭﺓ ) f c( xﺘﺒﻌﺎ ﻟﻘﻴﻡ xﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : x f 0 1 4 2 f 3ﺇﺸﺎﺭﺓ )f c( x - + + -- ﻭ >@ @> 0,1 1, 4 ﻭﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ 3 ﻭ >> >@2,f4, 2 ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻻﺕ@ @f ,0ﻭ 3 *ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ x f 0 1 4 2 f 3ﺇﺸﺎﺭﺓ )f c( x 1 - + + -- )f (x f 8- f 0 f f 1 /2ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﺴﺘﻘﻴﻡ )(Dﻟﻠﻤﻨﺤﻨﻰ ) (Cﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ 4 ﻟﺘﻜﻥ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ ) (x,yﻋﻨﺩﺌﺫ : ﻴﻌﻨﻲ ﺃﻥ )y f c( x)( x4) f ( x )M( D y 98( x4)83 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ : y 8 x 596 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ 9 ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ )(D y 8 x 596 ﻭﻤﻨﻪ 9 38
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158