(1ﺤل ﺒﻴﺎﻨﻴﺎ ﻓﻲ -5 ; 7ﺍﻟﻤﻌﺎﺩﻟﺔ f (x)= 0ﺜﻡ ﺍﻟﻤﻌﺎﺩﻟﺔ [ ]. f ′(x) = 0 (2ﺤل ﺒﻴﺎﻨﻴﺎ ﻓﻲ -5 ; 7ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f ( x) ≥ 0ﺜﻡ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ] [ . f '( x) ≥ 0 (3ﻋﻴﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ُ fﻤﺒ ِﺭﺯﺍ ﺇﺸﺎﺭﺓ ). f '(x )*( ﺍﻟﺘﻤﺭﻴﻥ. 12 f (x) = (x - 2 ) x - 2 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : (1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ . f (2ﻋﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ∞ ] [. 2 ; + lim (x - 2) x - 2 - 8 (3ﺍﺤﺴﺏ ) f (6ﺜﻡ ٍﺍﺴﺘﻨﺘﺞ : x -6 x →6 (4ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f ﺍﻟﺘﻤﺭﻴﻥ. 13ﻤﻌﻴﻨﺎ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ = )f (x -x2- 2x + 7 ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : x2 - 2x + 1 ﻟﻠﺩﺍﻟﺔ . f ﺍﻟﺘﻤﺭﻴﻥ. 14
.ﻤﻌﻴﻨﺎ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ = )f (x x2+ x - 6 ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : x2 - 3x ﻟﻠﺩﺍﻟﺔ . f ﺍﻟﺘﻤﺭﻴﻥ. 15 = )f (x )6 (x - 1 ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : x2 - 2x + 4 ﻤﻌﻴﻨﺎ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ . f ﺍﻟﺘﻤﺭﻴﻥ. 16 = )f (x x2 - 2x + 4 ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : x ﻤﻌﻴﻨﺎ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ . f ﺍﻟﺘﻤﺭﻴﻥ. 17 -ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﻜل ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻵﺘﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [ ]. -π ; π f : x a Sin x (1؛ g : x a Cos x (2 h : x a tan x (3 -ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﺒٍﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ . ﺍﻟﺘﻤﺭﻴﻥ. 18 . f )(x = Sin 2x - π -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ 2 :
-ﺃﻨﺸﺊ ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻋﻠﻰ . 0 ; 2πﻋﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ [ ]. f ﺍﻟﺘﻤﺭﻴﻥ. 19. f (x) = Cos - x - π -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : 2 -ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺘﻬﺎ ﻋﻠﻰ [ ]. −2π , 2π )*( ﺍﻟﺘﻤﺭﻴﻥ. 20 -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f (x) = x - 1 + x : )*( ﺍﻟﺘﻤﺭﻴﻥ. 21 f (x) = x + 3 -ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : x-2 ﺍﻟﺘﻤﺭﻴﻥ. 22 (1ﺃﺜﺒﺕ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﺯﻭﺠﻴﺔ ﻭﻗﺎﺒﻠﺔ ﻟ ٍﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻓﺈﻥℜ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′ﻓﺭﺩﻴﺔ . (2ﺇﺫﺍ ﻜﺎﻨﺕ fﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻭﻗﺎﺒﻠﺔ ﻟ ٍﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻓﻤﺎﺫﺍ ﻴﻤﻜﻥ ﺍﻟﻘﻭلℜ ﻋﻥ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′؟ ﺍﻟﺘﻤﺭﻴﻥ. 23 ﻀﻊ ﺍﻟﻌﻼﻤﺔ 9ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ. lim f (x0 + h) - f (x) = 0 (1ﺇﺫﺍ ﻜﺎﻨﺕ : h →0 h ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﺍﻟﻌﺩﺩ . . x0 (2ﺇﺫﺍ ﻜﺎﻥ Pﻫﻭ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻌﺩﺩ x0 ﻓﺈﻥ ) (C fﻴﻘﺒل ﻤﻤﺎﺴﺎ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻬﻪ . . P
ﻓﺈﻥ ) (C f lim f (x) - f (x0 ) = 0 (3ﺇﺫﺍ ﻜﺎﻨﺕ : x - x0 . x → x0 . ﻴﻘﺒل ﻤﻤﺎﺴﺎ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . . (4ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ﻤﻔﺘﻭﺡ I ﻓﺈﻨﻬﺎ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ x0ﻤﻥ . I (5ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﻓﺈﻨﻬﺎ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻜل ﻤﺠﺎل ﻴﺸﻤل . x0 (6ﻜل ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل Iﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ . . I (7ﻤﺸﺘﻕ ﻤﺠﻤﻭﻉ ﺜﻼﺜﺔ ﺩﻭﺍل ﻫﻭ ﻤﺠﻤﻭﻉ ﻤﺸﺘﻘﺎﺕ ﻫﺫﻩ ﺍﻟﺩﻭﺍل. . (8ﺇﺫﺍ ِﺍﻨﻌﺩﻤﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ f ′ﻋﻨﺩ x0ﻓﺈﻥ) f (x0ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ . . f ﺍﻟﺘﻤﺭﻴﻥ. 24 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل 1 ; 2ﺒﺎﻟﻌﺒﺎﺭﺓ [ ]: ﺤﻴﺙ a , b , c :ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ . f (x) = a x + b + c x+2 x 1 ﻴﻌﻁﻰ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ ﻜﻤﺎ ﻴﻠﻲ : )f '( x - 02 + )f (x 4 2 3 1 -ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ . a , b , c ﺍﻟﺤـﻠــﻭل ﺍﻟﺘﻤﺭﻴﻥ. 1 ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ : 3ﻟﺩﻴﻨﺎ f (3) = 34ﻭ ﻤﻨﻪ :lim f (x) - f (3) = lim 4x2 + x - 5 - 34x →3 x -3 x →3 x -3
= lim 4x2 + x - 39 x -3 x →3 )= lim (x - 3) (4x + 13 x →3 x -3 = lim (4x + 13) = 25 x →3 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 3ﺤﻴﺙ . f ′(3) = 25 : ﺍﻟﺘﻤﺭﻴﻥ. 2 ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ : (1ﻟﺩﻴﻨﺎ f (x) = x4 ; x0 = 1 :lim f (x) - f (1) = lim x4 - 1x →1 x -1 x→1 x-1 = lim (x 2 - 1) (x2 )+ 1 x-1 x →1 )= lim (x - 1) (x +1) (x2+ 1 x →1 x -1 = lim (x + 1) (x2 + 1) = 4 x →1 ٍﺇﺫﻥ fﺘﻘـﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 1ﺤﻴﺙ f ′(1) = 4 : f (x) = x3 + 1 ; x0 = -1 (2ﻟﺩﻴﻨﺎ :lim )f (x) - f (-1 = lim x3 + 1 - 0 x +1 x+1x → -1 x → -1 = lim )(x + 1) (x2 - x + 1 x+1 x → -1 = lim (x2 - x + 1) = 3 x → -1 ﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ -1ﺤﻴﺙ . f ′(-1) = 3 : = )f (x 2 ; x0 = 3 (3ﻟﺩﻴﻨﺎ : x
f )(x) - f (3 2 - 2 6 - 2x x -3 x 3lim = lim = lim 3x x-3 x -3x →3 x →3 x →3 = lim )-2 (x - 3 × 1 = lim -2 = -2 x →3 3x x-3 3x 9 x →3 . = )f ′(3 -2 ٍﺇﺫﻥ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 3ﺤﻴﺙ : 9 ﺍﻟﺘﻤﺭﻴﻥ. 3 -ﺤﺴﺎﺏ ): f ′(2 ﺒﻴﺎﻨﻴﺎ ) f ′(2ﻫﻭ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (ABﺃﻱ ∆ ( ): )3 - (-5 =4 ﺃﻱ : )f (2) - f (0 ﻭﻫﻭ : 2 2-0 ٍﺇﺫﻥ f ′( 2 ) = 4 : -ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻋﻨﺩ ( )y – 3 = 4 (x – 2) : A ﺃﻱ . y = 4 x – 5 : ﺍﻟﺘﻤﺭﻴﻥ. 4 (1ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ f ( - 4 ) = 8 : -4lim f ) (x) - f ( - 4 = lim -x + 4 - 8 x+4 x+4x → -4 x → -4 = lim -x + 4 - 8 -x + 4 + 8 x → -4 ( x + 4) -x + 4 + 8 = lim (-x +4 ) − 8 x → -4 (x + 4 ) -x + 4 + 8
= lim - (x +4 ) x → -4 (x + 4 ) -x + 4 + 8 = lim -1 = lim -1 x → -4 -x + 4 + 8 2x → -4 8 = -1 ( 8 ) = -2 2 2 8× 8 16 f ′(-4) = −2 : ﺤﻴﺙ-4 ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩf ﺇﺫﻥ 8 y - y0 = f ′(4) × (x + 4) : ( ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ2 y- 8 = −2 (x + 4) : ﻭ ﻤﻨﻪ 8 y= -2 x- 2 +2 2 : ﺃﻱ 8 2 y= -2 x+ 32 : ٍﺇﺫﻥ 8 2 . 5ﺍﻟﺘﻤﺭﻴﻥ f (1) = 4 : 1 ( ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ1lim f (x) - f (1) = lim -x2 + 5 - 4 : ﻟﺩﻴﻨﺎx →1 x -1 x →1 x -1 = lim -x2 + 1 = lim - (x2 - 1) x →1 x-1 x -1 x →1 = lim - (x - 1) (x + 1) x -1 x →1 = lim - ( x + 1) = - 2 x→1 . f ′(1) = -2 : ٍﺇﺫﻥ
)y - f (1) = f ′(1)× (x - 1 -ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ : ﻭ ﻤﻨﻪ y - 4 = -2 (x - 1) :ﺇﺫﻥ . y = -2x + 6 : (2ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ -5ﻟﻠﺩﺍﻟﺔ g (-5) = 1 : g )g (x )- g (-5 -5 -1 -5 - x x +5 xlim = lim = lim x x +5 x → -5 x +5x → -5 x →-5 = lim - (x + )5 × 1 x x+5 x → -5 = lim -1 = 1 x 5 x → -5 -ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ y - g(-5) = g′(-5) × (x + 5) : y =-1 1 )( x + 5 ﻭ ﻤﻨﻪ : 5 ﺇﺫﻥ : 1 . y = 5 x+2 (3ﺘﻌﻴﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻤﺎﺴﻴﻥ : 1 =y -2x + 6 5 =y 2 −2 x + 6 = x + 2 ﻭﻤﻨﻪ : 1 x + : ﻨﺤل ﺍﻟﺠﻤﻠﺔ 5 −11 x = -4 ﻭﻤﻨﻪ : −2 x - 1 x = 2 - 6 ٍﺇﺫﻥ : 5 5 20 -4 × 5 . =x 11 ﺃﻱ : x = -11 ﻭﺒﺎﻟﺘﺎﻟﻲ : y = -40 + 66 ﺃﻱ : y = -2 20 + 6 ﻭﻋﻠﻴﻪ : 11 11 . y = 26 ﺇﺫﻥ : 11 M 20 ; 26 ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻤﺎﺴﻴﻥ ﻫﻲ : 11 11
ﺍﻟﺘﻤﺭﻴﻥ. 6 ﻟﺩﻴﻨﺎ f (1) = 1 :ﻭ ﻤﻨﻪ :lim )f ( x) - f (1 = lim 1 − 1 = lim 1 - x × 1 1 x -1 - 1 x→1 x x-x→1 x→1 x x - (x - )1 1 = lim x × x -1 = -1 x→1 ﺇﺫﻥ f ′(1) = 1 :ﻭﻫﻭ ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ . ﻭﻜﺫﻟﻙ ﻤﻥ ﺃﺠل x = 1 :ﻓﺈﻥ y = 1 : ﺇﺫﻥ y = -x + 2 :ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ). A (1 ; 1 ﺍﻟﺘﻤﺭﻴﻥ . . 7 (1ﺤﺴﺎﺏ ): p (1 ﻟﺩﻴﻨﺎ p (1) = -4 (1)3 + 6 (1)2 - 2 = 0 : ﻭﻤﻨﻪ p (x) = (x - 1) (a x2 + bx + c) : ﺃﻱ p (x) = ax3 + bx2 + cx - ax2 - bx - c : p (x) = ax3 + ( b- a )x2 + ( c - b ) x - c a = -4 a = -4 ﻭﻋﻠﻴﻪ : ﻭﺒﺎﻟﺘﺎﻟﻲ b = 2 : b - a = 6 ﻭﻤﻨﻪ : c = 2 c - b = 0 c = 2 ) (p ( -1 2
ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ – 1ﺤﺴﺎﺏ ﻨﻬﺎﻴﺎﺕ ﺩﺍﻟﺔ. – 2ﺩﺭﺍﺴﺔ ﺍﻟﺴﻠﻭﻙ ﺍﻟﺘﻘﺎﺭﺒﻲ ﻟﺩﺍﻟﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻨﻬﺎﻴﺎﺕ . – 3ﺘﻤﺜﻴل ﺍﻟﺩﻭﺍل ﺍﻟﻤﺭﺠﻌﻴﺔ . – 4ﺘﻤﺜﻴل ﺩﻭﺍل ﻤﺠﻤﻭﻉ ﻭ ﺠﺩﺍﺀ ﻭ ﻗﺴﻤﺔ ﺩﻭﺍل ﻤﺭﺠﻌﻴﺔ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺘﻌﺎﺭﻴﻑ ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤﻠﻭل
ﺘﻌﺎﺭﻴﻑ -ﻤﻔﻬﻭﻡ ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ : x0 fﺩﻭﺍل ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ﻴﺸﻤل x0ﻟﻜﻨﻬﺎ ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ . x0ﻨﻘﻭل ﺍﻥ ﺍﻟﺩﺍﻟﺔ fﺘﺘﻨﺎﻫﻰ ﺍﻟﻰ ﻋﺩﺩ lﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ x0ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻡ ) f (xﺘﻘﺘﺭﺏ ﻤﻥ l ﺒﺎﻟﻘﺩﺭ ﺍﻟﺫﻱ ﻨﺭﻴﺩ ﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ xﻤﻥ ﺍﻟﻌﺩﺩ . x0 ﺃﻭ ﺒﻌﺒﺎﺭﺓ ﺃﺨﺭﻯ ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ ) f (xﻭ lﺃﺼﻐﺭ ﻤﻥ ﺃﻱ ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻤﻭﺠﺏ εﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ xﻭ x0ﺃﺼﻐﺭ ﻤﻥ ﺃﻱ ﻋﺩﺩ ﺤﻘﻴﻕ ﻤﻭﺠﺏ αﺃﻱ : ﻜﻠﻤﺎ ﻜﺎﻥ x - x0 < α :ﻜﺎﻨﺕ f (x) - l < ε : ﻭﻨﻜﺘﺏ lim f (x) = l : x → x0 -ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ ∞ +ﺃﻭ ﻋﻨﺩ ∞ : - ﻤﺜﺎل : 1 [ [. 4 ∞0;+ ﻭ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ f = )(x x ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : (1ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ : X 10 102 104 105 )f (x (2ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ ﺍﻟﺤل : (1ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل :x 10 102 104 105)f (x 0,4 0,04 0,0004 0,00004 (2ﺍﻻﺴﺘﻨﺘﺎﺝ:ﻨﻼﺤﻅ ﺍﻨﻪ ﻜﻠﻤﺎ ﻜﺎﻨﺕ xﻜﺒﻴﺭﺓ ﺒﻘﺩﺭ ﻜﺎﻑ ﻓﺎﻥ ) f (xﺘﺄﺨﺫ ﻗﻴﻤﺎ ﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﺼﻔﺭ ﺃﻜﺜﺭ ﻓﺄﻜﺜﺭ ﻭﻨﻘﻭل ﺃﻥ :
ﻟﻤﺎ x → + ∞ :ﻓﺈﻥ f (x) → 0 : ﻤﺜﺎل : 2 ﻨﻌﺭﻑ ﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻌﺩﺩﻴﺘﻴﻥ fﻭ gﻋﻠﻰ ∞ 0 ; +ﻜﻤﺎ ﻴﻠﻲ [ [: g (x) = x ; f ( x ) = x2 – 1ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ : x 102 104 106 108)f (x)g (x ﺍﻟﺤل : (1ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل : x 102 104 106 108 f (x) 104 108 1012 1016 g (x) 10 102 103 104 (2ﺍﻻﺴﺘﻨﺘﺎﺝ :ﻜﻠﻤﺎ ﻜﺎﻨﺕ ﻗﻴﻡ xﻜﺒﻴﺭﺓ ﺒﻘﺩﺭ ﻜﺎﻑ ﻓﺈﻥ ) f (xﻭ ) g (xﺘﺄﺨﺫﺍﻥ ﺒﺎﻟﻤﻘﺎﺒل ﻗﻴﻤﺎ ﻜﺒﻴﺭﺓ .∞ f (x) → +ﻭﻜﺫﻟﻙ ﻭﻨﻘﻭل : ∞ . g (x) → + ﻟﻤﺎ x → + ∞ :ﻓﺈﻥ : ﻟﻤﺎ x → + ∞ :ﻓﺈﻥ : -ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ ∞ +او ∞: − ﺘﻌﺭﻴﻑ : 1 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ∞[ [a ; + -ﻨﻘﻭل ﺃﻥ ) f (xﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ +ﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ ∞ +ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻡ ) f (xﻜﺒﻴﺭﺓ ﺠﺩﺍ ﻋﻨﺩﻤﺎ ﻴﻜﻭﻥ xﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭ ﻜﺒﻴﺭﺍ ﺠﺩﺍ ﺒﻘﺩﺭ ﻜﺎﻑ ﻭﻨﻜﺘﺏ lim f (x) = +∞ : ∞x → +
ﻤﺜﺎل lim x2 = +∞ :1 ∞x → + lim ∞x = + ﻤﺜﺎل :2 ∞x → + -ﻨﻘﻭل ﺃﻥ ) f (xﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ −ﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ ∞ −ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻡ ) f (xﺼﻐﻴﺭﺓﺠﺩﺍ ﻋﻨﺩﻤﺎ ﻜﻭﻡ xﻤﻭﺠﺒﺎ ﺘﻤﺎﻤﺎ ﻭﻜﺒﻴﺭﺍ ﺠﺩﺍ ﺒﻘﺩﺭ ﻜﺎﻑ ﻭﻨﻜﺘﺏ lim f (x) = − ∞ :∞x → + ∞lim (- x2 ) = - ﻤﺜﺎل: 1 ∞x → + ∞lim (- x ) = - ∞x → + ﺘﻌﺭﻴﻑ : 2 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل ] ]−∞ ; b -ﻨﻘﻭل ﺃﻥ ) f (xﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ +ﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ ∞ −ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻡ ) f (xﻜﺒﻴﺭﺓ ﺠﺩﺍ ﻋﻨﺩﻤﺎ ﻜﻭﻡ xﺴﺎﻟﺒﺔ ﺘﻤﺎﻤﺎ ﻭﺼﻐﻴﺭﺍ ﺠﺩﺍ ﺒﻘﺩﺭ ﻜﺎﻑ ﻭﻨﻜﺘﺏ lim f (x) = + ∞ : ∞x → - ﻤﺜﺎل lim x2 = + ∞ : ∞x → - -ﻨﻘﻭل ﺃﻥ ) f (xﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ∞ −ﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ ∞ −ﺇﺫﺍ ﻭﺍﻓﻕ ﺇﺫﺍ ﻜﺎﻨﺕ ﻗﻴﻡ ) f (xﻜﺒﻴﺭﺓﺠﺩﺍ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ xﺴﺎﻟﺒﺔ ﺘﻤﺎﻤﺎ ﻭﺼﻐﻴﺭﺍ ﺠﺩﺍ ﺒﻘﺩﺭ ﻜﺎﻑ ﻭﻨﻜﺘﺏ : ∞ lim f (x) = − ∞x → - ﻤﺜﺎل lim x3 = − ∞ : ∞x → - -2ﺍﻟﻨﻬﺎﻴﺔ ﺍﻟﻤﻨﺘﻬﻴﺔ : lﻋﺩﺩ ﺤﻘﻴﻕ ﺜﺎﺒﺕ .ﻨﻘﻭل ﺃﻥ fﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ lﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ ∞) +ﺃﻭ ﻨﺤﻭ ∞ ( −ﺇﺫﺍﻜﺎﻨﺕ ﻗﻴﻡ ) f (xﻗﺭﻴﺒﺔ ﺠﺩﺍ ﻤﻥ lﺒﺎﻟﻘﺩﺭ ﺍﻟﻜﺎﻓﻲ ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ xﻜﺒﻴﺭﺓ ﺠﺩﺍ )ﺃﻭ ﺼﻐﻴﺭﺓ ﺠﺩﺍ( ﻭﻨﻜﺘﺏ : lim f (x) = lأو lim f (x) = l∞x → - ∞x → + lim 1 =0 ﻤﺜﺎل: 1 x ∞x → + lim 1 =0 ﻤﺜﺎل: 2 x ∞x → -
ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ x0ﻴﻘﻴﻡ ﺃﻜﺒﺭ )ﺒﻘﻴﻡ ﺃﺼﻐﺭ( f = )(x 1 ﺤﻴﺙ : f ﻤﺜﺎل :ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ x (1ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ : x 0,01 0,001 0,0001 0,00001 )f (x (2ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ (3ﺃﻜﻤل ﺍﻟﺠﺩﻭل ﺍﻵﺘﻲ :x -0,01 -0,001 -0,0001 -0,00001)f (x (4ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ ﺍﻟﺤل : (1ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل : x 0,01 0,001 0,0001 0,00001 )f (x 100 1000 10000 100000 x )f (x (2ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﻜﻠﻤﺎ ﻜﺎﻨﺕ ﻗﻴﻡ xﺼﻐﻴﺭﺓ ﺠﺩﺍ ﻭ ﻤﻭﺠﺒﺔ ﻜﺎﻨﺕ ﻗﻴﻡ )f (x lim 1 ∞= + ﺠﺩﺍ ﻭﻨﻜﺘﺏ : ﻜﺒﻴﺭﺓ > x x→0 -0,01 -0,001 -0,0001 (3ﺇﻜﻤﺎل ﺍﻟﺠﺩﻭل : -0,00001 -100 -1000 -10000 -100000 (4ﻨﺴﺘﻨﺘﺞ ﺃﻨﻪ ﻜﻠﻤﺎ ﻜﺎﻨﺕ ﻗﻴﻡ xﻗﺭﻴﺒﺔ ﻤﻥ ﺍﻟﺼﻔﺭ ﻭ ﺴﺎﻟﺒﺔ ﻓﺈﻥ )f (x lim ∞ f (x) = - ﺼﻐﻴﺭﺓ ﺠﺩﺍ ﻭ ﺴﺎﻟﺒﺔ ﻭﻨﻜﺘﺏ : < x→0 -ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻷﻓﻘﻲ : ﺇﺫﺍ ﻜﺎﻨﺕ lim f (x) = l :أو lim f (x) = l ∞x → - ∞x → +ﻓﺈﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = l :ﻫﻭ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻰ ) (C fﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = f : ) (xﻋﻨﺩ ∞ +ﺃﻭ ﻋﻨﺩ ∞. −
-ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻌﻤﻭﺩﻱ : ∞lim f (x) = - ﺃﻭ lim )f (x ∞= + ﺇﺫﺍ ﻜﺎﻨﺕ x →a x →aﻨﻘﻭل ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ x = a :ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻠﻤﻨﺤﻨﻰ ) (C fﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = f (x) : . )*( -ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻤﺎﺌل :ﻨﻘﻭل ﻋﻥ ﻤﺴﺘﻘﻴﻡ ∆ ﺍﻨﻪ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻟﻠﻤﻨﺤﻨﻰ ) (C fﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = f (x) :ﻋﻨﺩ) ( ∞ +ﺃﻭ ﻋﻨﺩ ∞ −ﻋﻨﺩﻤﺎ ﺘﻜﻭﻥ : lim [ f (x) - (ax + b)]= 0ﺃﻭ lim [ f (x)- (ax +b)]= 0∞x → + ∞x → - ﺘﻁﺒﻴﻕ: 1 f = )(x 1 ﺤﻴﺙ : f ﻋﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﺒﻴﺎﻥ ﺍﻟﺩﺍﻟﺔ x ﺍﻟﺤل : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ D f = -∞ ; 0 ∪ 0 ; +∞ :ﻭ ﻤﻨﻪ ] [ ] [:lim )f(x = lim 1 =0 ؛ lim f(x)= lim 1 = 0 x ∞x → + x∞x → - ∞x → - ∞x → +lim )f(x = lim 1 ∞= - ؛ lim f(x) = lim 1 ∞= + < < x > > x x→0 x →0x →0 x →0 ﺘﻌﻴﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ : lim f (x) = 0 َﻭ lim f (x) = 0 ﺒﻤﺎ ﺃﻥ : ∞x → − ∞x → + ﻓﺈﻥ y = 0 :ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞ +ﻭ ﻋﻨﺩ ∞. − lim ∞f (x) = + َﻭ ∞lim f (x) = - ﻭ ﺒﻤﺎ ﺃﻥ : > < x→0 x →0 ﻓﺈﻥ x = 0 :ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞ +ﻭ ﻋﻨﺩ ∞. − )*( ﺘﻁﺒﻴﻕ : 2
ﻨﻌﺘﺒﺭ fﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ ﺫﺍﺕ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﺤﻴﺙ : f (x) = x + 2 + 1 x - 1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ . f - 2ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺃﻁﺭﺍﻑ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ . -3ﻋﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻤﻨﺤﻨﻰ ) (C fﺒﻭﺍﺴﻁﺔ ﻤﻌﺎﺩﻻﺘﻬﺎ . ﺍﻟﺤل : Df = ]-∞ ; 0[ ∪ ]0 ; +∞[ (1 (2ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻑ : D f lim = )f (x lim x + 2 + 1 ∞=- x ∞x → - ∞x → -lim = )f (x lim x + 2 + 1 ∞=+ x ∞x → + ∞x → +lim = )f (x lim x + 2 + 1 ∞=- < < x x →0 x →0lim = )f (x lim x + 2 + 1 ∞=+ > > x x →0 x →0 (3ﺘﻌﻴﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ :∞lim f (x) = + َﻭ lim x + 2 + 1 = - ∞ -ﺒﻤﺎ ﺃﻥ : > < x x →0 x →0 ﻓﺈﻥ x = 0ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻋﻨﺩ ∞ +ﻭﻋﻨﺩ ∞− ( )lim lim 1 ∞xx → + ∞x → + f (x) - x+2 = =0 ﻭ ﺒﻤﺎ ﺃﻥ : lim f (x) - ( x + 2) = lim 1 =0 ﻭ ∞xx → - ∞x → - ﻓﺈﻥ y = x + 2 :ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻤﺎﺌل.
ﻤﺒﺭﻫﻨﺎﺕ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻴﺎﺕ : -ﻨﻬﺎﻴﺔ ﺍﻟﻤﺠﻤﻭﻉ : )lim f ( x l ∞ −ﺃﻭ +∞ lﺃﻭ l ∞+ l′ ∞+∞ − x→ x0 l′+l ∞+∞ − ∞− )lim f ( x ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ x→ x0)lim ( f + g)( xx→ x0)lim f ( x l l >0 l <0 l >0 -ﻨﻬﺎﻴﺔ ﺍﻟﺠﺩﺍﺀ :x→ x0 ﺃﻭ ﺃﻭ ﺃﻭ l <0)lim f ( x l′ ∞+ ∞− ∞+ 0ﺃﻭ ∞+ ∞−x→ x0 ∞+ ∞− ∞+ ∞− ∞+)lim( f + g)(x l′×l ∞− ﺃﻭ ∞−x→x0 ∞− ﺤﺎﻟﺔ ﻋﺩﻡ ∞+ ﺍﻟﺘﻌﻴﻴﻥ -ﻨﻬﺎﻴﺔ ﺍﻟﻤﻘﻠﻭﺏ :) lim g( x l ;l ≠0 l =0 ∞ +ﺃﻭ l = 0 g(x) > 0 ∞g( x) < 0 −x→ x0 1 l ∞+ −∞ 0 1 lim g ( )x x→ x0 ﻤﻼﺤﻅﺔ : ﺘﺒﻘﻰ ﺍﻟﻤﺒﺭﻫﻨﺎﺕ ﺍﻟﺴﺎﺒﻘﺔ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل :
x → -∞ ﺃﻭx → +∞ : ﻨﻬﺎﻴﺔ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺜﻠﺜﻴﺔ-lim sin x = 1 ؛ lim cos x = cos x0 ؛ lim sin x = x0 xx →0 x → x0 x → x0 : ﺤﺎﻻﺕ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ-: ﻓﺈﻥlim g (x) = -∞ َﻭlim f (x) = +∞ : ( ﺇﺫﺍ ﻜﺎﻨﺕ1 x → x0 x → x0 . ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥlim (f + g) (x) x → x0 : ﻤﺜﺎل : ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ﻭﺘﺤﺴﺏ ﻫﻜﺫﺍ lim (x2 - x + 3) x → +∞lim (x 2 - x + 3) = lim x x - 1 + 3 = +∞ x x → +∞ x → +∞ lim g( x) = 0 : ﻭ ﻜﺎﻨﺕlim f ( x) = 0 : ( ﺇﺫﺍ ﻜﺎﻨﺕ2 x→ x0 x→ x0 . ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ lim f (x) : ﻓﺈﻥ g x→ x0 : ﻤﺜﺎل . ﺍﻟﺘﻌﻴﻴﻥ ﻋﺩﻡ ﺤﺎﻟﺔ ﻓﻲ lim x2 - 4x + 3 x2 - 1 x→1lim x2 - 4x + 3 = lim (x - 1) (x - 3) : ﺘﺤﺴﺏ ﻫﻜﺫﺍ x2 -1 ( x-1) (x + 1)x →1 x →1 = lim x - 3 = -1 x→1 x +1 lim f(x) = -∞ ﺃﻭlim f(x) = +∞ : ( ﺇﺫﺍ ﻜﺎﻨﺕ3 x → x0 x → x0 lim g (x) = -∞ ﺃﻭlim g (x) = +∞ َﻭ x → x0 x → x0
ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ . lim f )(x ﻓﺈﻥ : g x → x0 ﻤﺜﺎل : ﻫﻲ ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ﻭ ﺘﺤﺴﺏ ﻫﻜﺫﺍ : lim x2 2x + 3 x → x0lim x2 = lim x2 = lim x ∞= + x → +∞ 2 +x → +∞ 2 x + 3 x ∞→ + x 2 + 3 3 x x (4ﺇﺫﺍ ﻜﺎﻨﺕ : ∞ lim f(x) = +ﺃﻭ ∞lim f(x) = - x → x0 x → x0 َﻭ lim g (x) = 0 x → x0 ﻓﺈﻥ lim (f × g) (x) :ﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ x → x0 ﻤﺜﺎل : limﻓﻲ ﺤﺎﻟﺔ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ﻭﺘﺤﺴﺏ ﻫﻜﺫﺍ : x × 1 ∞x → + xlim x. 1 = lim x = lim x. x x x ∞x → + x. x∞x → + ∞x → + = lim x = lim 1 = 0 xx → +∞ x ∞xx → + ﻤﻼﺤﻅﺎﺕ : ﺘﺒﻘﻰ ﺤﺎﻻﺕ ﻋﺩﻡ ﺍﻟﺘﻌﻴﻴﻥ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل : ∞ x → +ﺃﻭ ∞x → - ﻨﻬﺎﻴﺎﺕ ﺒﻌﺽ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺄﻟﻭﻓﺔ :
ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ ∞) +ﺃﻭ ﺇﻟﻰ ∞ ( −ﻓﺈﻥ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻫﻲ ﻨﻬﺎﻴﺔ ﺤﺩﻩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ . (2ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ ∞) +ﺃﻭ ﺇﻟﻰ ∞ ( −ﻓﺈﻥ ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻨﺎﻁﻘﺔ ﻨﻬﺎﻴﺔ ﺤﺎﺼل ﻗﺴﻤﺔ ﺍﻟﺤﺩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻓﻲ ﺍﻟﺒﺴﻁ ﻋﻠﻰ ﺍﻟﺤﺩ ﺍﻷﻋﻠﻰ ﺩﺭﺠﺔ ﻓﻲ ﺍﻟﻤﻘﺎﻡ.
ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ : f = )(x x3 - 5x + 4 x -1 (1ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ a , b , cﺒﺤﻴﺙ :)x3 - 5x + 4 = (x - 1) (a x2 + b x + c )lim f (x (2ﺍﺤﺴﺏ : x →1 ﺍﻟﺘﻤﺭﻴﻥ. 2 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ :f = )(x x3 - 3x - 2 x -2 (1ﺍﺤﺴﺏ lim f (x) : x →2 (2ﺍﺤﺴﺏ f (2 + h) :ﻤﻥ ﺃﺠل h ≠ 0ﺍﺤﺴﺏ ) . lim f (2 + hﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ h →0 )*( ﺍﻟﺘﻤﺭﻴﻥ. 3 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ] I = [-1 ; 1ﺤﻴﺙ f (x) = x 2 + 1 : 1ﺍﺴﺘﻨﺘﺞ ﻤﺠﺎل Jﻤﻥ Iﺒﺤﻴﺙ f (x) - 1 < 10 - 8 :ﺤﻴﺙ nﻋﺩﺩ ﻁﺒﻴﻌﻲ. (2ﺍﺴﺘﻨﺘﺞ ﻨﻬﺎﻴﺔ ) f (xﻋﻨﺩﻤﺎ ﻴﺘﻨﺎﻫﻰ xﻨﺤﻭ . 0
ﺍﻟﺘﻤﺭﻴﻥ. 4 = )f (x (1ﻋﻴﻥ Iﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ x : (2ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ) . (C f = )g (x (x - 1)2 . x (3ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ : x -1 • ﺒﻴﻥ ﺃﻥ gﻤﻌﺭﻓﺔ ﻋﻠﻰ { }I - 1• ﺒﻴﻥ ﻜﻴﻑ ﻴﻤﻜﻥ ﺇﻨﺸﺎﺀ ) (C gﺇﻨﻁﻼﻗﺎ ﻤﻥ ﻤﻥ ) . (C f • ﻫل ﺘﻘﺒل ﺍﻟﺩﺍﻟﺔ gﻨﻬﺎﻴﺔ ﻋﻨﺩ . 1 ﺍﻟﺘﻤﺭﻴﻥ. 5= ){ }g (xx o x ℜ -ﺒﺎﻟﻌﺒﺎﺭﺓ : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ -1ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ gﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺜﻡ ﻋﻠل ﺫﻟﻙ -2ﻫل ﺘﻘﺒل ﺍﻟﺩﺍﻟﺔ gﻨﻬﺎﻴﺔ ﻋﻨﺩ . 0 ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ :lim x2 - 3x - 1 ؛ lim x2 - x (1 x + 2 (2 xx→0 x→0lim x3 - 2x - 4 (4 ؛ lim x3 + 1 (3 x2 + x - 6 x+1x→2 x→0 . lim x -1 x - 2 (5 x→0 ﺍﻟﺘﻤﺭﻴﻥ. 7 ﻨﻌﺘﺒﺭ fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﺒﺤﻴﺙ :
x2 - xf (x) = x ; x ≠ 0 -1ﺍﻜﺘﺏ ) f (xﺩﻭﻥ ﺭﻤﺯ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ -2ﻫل ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﻨﻬﺎﻴﺔ ﻋﻨﺩ . 0 y ﺍﻟﺘﻤﺭﻴﻥ. 8 5 4 ﺇﻟﻴﻙ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ f 3 -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ 2 ﺍﻟﺩﺍﻟﺔ . f 1 -2ﺍﺴﺘﻨﺘﺞ ﻤﻥ ﺍﻟﺒﻴﺎﻥ ﺍﻟﻨﻬﺎﻴﺎﺕ-4 -3 -2 -1 0 1 2 3 4x ﻋﻨﺩ ﺃﻁﺭﺍﻑ ﻤﺠﻤﻭﻋﺔ -1 ﺍﻟﺘﻌﺭﻴﻑ . -2 -3 -3ﻋﻴﻥ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ -4 -5 ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﻠﻤﻨﺤﻨﻰ ( ). C f ﺍﻟﺘﻤﺭﻴﻥ. 9 ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﺍﻵﺘﻴﺔ : lim (-2x2 - x + 2) (1؛ lim x3 - x (2∞x → + ∞x → -lim 2x (4 ؛ lim 2x - 3 (3 x2 - 5x + 4 -x + 4∞x → + ∞x → -lim 5x + 4 (6 ؛ lim x - 5 + 1 (5 4 - x2 x-1x →2 x →1 ﺍﻟﺘﻤﺭﻴﻥ. 10 ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻡ ﺨﻁﺄ ﻤﺎ ﻴﻠﻲ :∞lim g (x) = - َﻭ lim ∞f (x) = + (1ﺇﺫﺍ ﻜﺎﻨﺕ :∞x → + ∞x → +
lim ( f + g)(x) = 0 : ﻓﺈﻥ x → +∞ lim g (x) = +∞ وlim f (x) = - ∞ : ( ﺇﺫﺍ ﻜﺎﻨﺕ2 x →2 x →2 lim f (x) = -1 : ﻓﺈﻥ x →2 g lim g (x) = 0 و lim f (x) = 0 : ( ﺇﺫﺍ ﻜﺎﻨﺕ3 x →3 x →3 lim (f + g) (x) = 0 : ﻓﺈﻥ x →3lim [ f (x)]2 = +∞ ﻓ ﺈنlim f (x) = -∞ : ( ﺇﺫﺍ ﻜﺎﻨﺕ4x → +∞ x → +∞lim 1 (x) = 0 : ﻓﺈﻥlim f (x) = +∞ : ( ﺇﺫﺍ ﻜﺎﻨﺕ5 f x → x0x → x0 lim 1 (x) = 1 : ﻓﺈﻥlim f (x) = l : ( ﺇﺫﺍ ﻜﺎﻨﺕ6 f l x → x0 x → x0 . ﻋﺩﺩ ﺤﻘﻴﻘﻲl ﺤﻴﺙ : ﻓﺈﻥ lim g (x) =5 َﻭ lim f (x) = 3 : ﺇﺫﺍ ﻜﺎﻨﺕ (7 x→ 2 x →1 lim f (x) = 3 g 5 x →1 . 11ﺍﻟﺘﻤﺭﻴﻥ : −∞ ﺜﻡ ﻋﻨﺩ+∞ ﺍﺤﺴﺏ ﻨﻬﺎﻴﺔ ﺍﻟﺩﻭﺍل ﺍﻵﺘﻴﺔ ﻋﻨﺩ f (x) = 5 - 2 (2 ؛ f (x) = -5x2 + 4x - 3 (1 xf (x) = (5x - 2) (x2 - 3) (4 ؛ f (x) = (3x - 1)3 (3
= )f (x 5x ؛ (6 = )f (x 5 - 1 1 (5 x-2 x 1 - x = )f (x x3 - 3x (8 ؛ = )f (x x2 + 1 (7 x2 + 1 x2 - 1= )f (x x4 (10 ؛ f )(x = (x - x2 + )3 (9 x3 - 1 2) (x ﺍﻟﺘﻤﺭﻴﻥ. 12 ﺍﺤﺴﺏ ﻨﻬﺎﻴﺎﺕ ﺍﻟﺩﻭﺍل ﺍﻵﺘﻴﺔ ﻋﻨﺩ : x0 x0 = 0 ﺤﻴﺙ : f (x) = 1 - x - 2 (1 ﺤﻴﺙ : x ﺤﻴﺙ : x+2 x0 = 5 ﺤﻴﺙ : = )f (x x-5 (2 ﺤﻴﺙ : x0 = 5 ﺤﻴﺙ : f (x) = x2 + 3x - 10 (3 − x+5 (4 1 5x x0 = - 2 = )f (x 2x+1 x0 = 1 f (x) = x (5 x-1 x0 = 6 = )f (x x2 (6 ( x - 6)2 )*( ﺍﻟﺘﻤﺭﻴﻥ. 13ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎﻴﻠﻲ ﻭﺃﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻓﻬﺎ ﺜﻡ ﺃﺫﻜﺭ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ .
)f (x = x (2 = )f (x 3x - 1 (1 (2x - 1)2 x-2= )f (x 6x2 - 3 (4 f (x) = 2x - 3 + 5 (3 x - 3x2 x+1 5 f (x) = 5f (x) = x - x-2 (6 x-1 (5f (x) = x2 + x x (8 = )f (x x+7 -3 (7 x +2 ﺍﻟﺘﻤﺭﻴﻥ. 14 f (x) = 1 + 2 ﺤﻴﺙ : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ f r x-1 r ) ( C fﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ )(o ; i ; j (1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﺜﻡ ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻓﻬﺎ . ﺍﺴﺘﻨﺘﺞ ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ (2ﺍﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ f (3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻟﻠﻤﻨﺤﻨﻰ ) ( C fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ) ( ﺍﻟﻔﺎﺼﻠﺔ . 2ﺃﻨﺸﺊ ∆ ﻭ ) ( )( C f (4ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ g (x) = a x2 + bx - 1 : aﻭ bﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ. -ﻋﻴﻥ aﻭ bﺒﺤﻴﺙ ﻴﻜﻭﻥ ﻟـ ) ( C fﻭ ) ( C gﻤﻤﺎﺴﺎ ﻤﺸﺘﺭﻜﺎ ﻋﻨﺩ A -ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ gﺜﻡ ﺍﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ. -ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ gﺜﻡ ﺃﻨﺸﺊ ) ( C gﻓﻲ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ ﺍﻟﺴﺎﺒﻕ ﺒﻌﺩ ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) ( C fﻭ ) . (Cg (5ﺤل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) < g (x) : )*( ﺍﻟﺘﻤﺭﻴﻥ. 15
ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ℜ - 1ﺒﺎﻟﻌﺒﺎﺭﺓ { }: f = )(x x2 + x - 1 x -1 rr) ( C fﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ )(o ; i ; j (1ﺍﺤﺴﺏ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﺃﻁﺭﺍﻑ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ - (2ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ a ,b ,cﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥf (x) = a x + b + c } ℜ - {1ﻓﺈﻥ : x-1 c c . lim x-1 ﺜﻡ lim x-1 -ﺍﺤﺴﺏ : ∞x → - ∞x → + -ﺍﺴﺘﻨﺘﺞ ﺃﻥ y = ax + bﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﺎﺌل. -ﻋﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻵﺨﺭ . ∆ (3ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ ( )y = x + 2 : Mﻨﻘﻁﺔ ﻤﻥ Cfﻓﺎﺼﻠﺘﻬﺎ xﻭ Nﻨﻘﻁﺔ ﻤﻥ ∆ ﻓﺎﺼﻠﺘﻬﺎ ( ) ( )x ﻨﺼﻊ d (x) = f (x) – (x + 2) : • ﻤﺎ ﻫﻭ ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻬﻨﺩﺴﻲ ﻟـ ). d (x lim d )(x َﻭ lim )d (x ﺍﺤﺴﺏ • ∞x → - ∞x → + • ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ) ( C fﻭ ∆) (• ﺃﺩﺭﺱ ﺇﺸﺎﺭﺓ ) d (xﻤﻥ ﺃﺠل x ∈ ℜ - 1 :ﺍﺴﺘﻨﺘﺞ ﺍﻟﻭﻀﻌﻴﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟـ Cfﻭ} { ) ( )∆( • ﻋﻴﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ nﺒﺤﻴﺙ :ﺇﺫﺍ ﻜﺎﻥ x > nﻓ ﺈن MN < 0,01 :ﻤﺎ ﻫﻭ ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻬﻨﺩﺴﻲ . ﺍﻟﺘﻤﺭﻴﻥ. 16
f (x) = 1 - 1 ﺇﻟﻴﻙ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ : x -1ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ∞] [. 0 ; + -2ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ∞ 0 ; +ﻓﺈﻥ ] [f (x) < 1 : -3ﻟﺘﻜﻥ Mﻨﻘﻁﺔ ﻤﻥ C fﺤﻴﺙ M x ; f (x) :ﻭ Nﻨﻘﻁﺔ) ( ) ( ﺤﻴﺙ )N (x ; 1 -ﺃﻜﺘﺏ ﺍﻟﻤﺴﺎﻓﺔ MNﺒﺩﻻﻟﺔ . x -ﻋﻴﻥ ﻋﺩﺩ ﺤﻘﻴﻘﻲ aﺒﺤﻴﺙ ﺇﺫﺍ ﻜﺎﻥ x > aﻓﺈﻥ MN < 0,01 : -ﻋﻴﻥ ﻋﺩﺩ ﺤﻘﻴﻘﻲ bﺒﺤﻴﺙ ﺇﺫﺍ ﻜﺎﻥ x > b ﻓﺈﻥ MN < 10-n :ﺤﻴﺙ nﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺃﻜﺒﺭ ﻤﻥ . 1ﻭﻋﻠﻴﻪ ﻤﻥ ﺃﺠل nﻜﺒﻴﺭﺓ ﺠﺩﺍ ﻴﻤﻜﻥ ﺠﻌل ) 1 –f (xﻗﺭﻴﺒﺔ ﻤﻥ oﻭﺫﻟﻙ ﺇﺫﺍ ﻜﺎﻥ xﻜﺒﻴﺭ ﺠﺩﺍ ﺍﺴﺘﻨﺘﺞ ﺃﻥ lim 1 - 1 =1 x ∞x → + ﻴﻌﻨﻲ ﺃﻥ y = 1 :ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟـ ( )C f ﺍﻟﺘﻤﺭﻴﻥ. 17 x2- 3x2 + 2x= )] [f (x ﺒﺎﻟﻌﺒﺎﺭﺓ : ∞0 ; + fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل -1ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ a , b , cﺒﺤﻴﺙ ﻤﻥ ﺃﺠل ﻋﺩﺩ xﻤﻥf (x) = a + b + c ﻓﺈﻥ : [∞]0 ; + x x+2 -2ﺃﺤﺴﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ﺃﻁﺭﺍﻑ ﺍﻟﻤﺠﺎل ∞ 0 ; +ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻤﻌﺎﺩﻻﺕ[ ] ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ. -3ﺃﺩﺭﺱ ﻭﻀﻌﻴﺔ C fﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ ﻭﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻷﻓﻘﻲ( ). ﺍﻟﺘﻤﺭﻴﻥ. 18
fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻟﻤﺘﻐﻴﺭ ﺤﻘﻴﻘﻲ xﻤﻌﺭﻓﺔ ﻜﻤﺎﻴﻠﻲ f (x) = x2 - x : (1ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺘrﻬﺎ ﺜﻡ rﺃﻨﺸﺊ C fﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ) ( ﻤﺘﺠﺎﻨﺱ ) . (o ; i , jﻭﺤﺩﺓ ﺍﻟﻁﻭل . 2cm (2ﻨﻌﺘﺒﺭ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ) p (xﺤﻴﺙ p (x) = 2x 3 + 3x2 - 5 :ﺍﺤﺴﺏ ) p (1ﺜﻡ ﺍﻜﺘﺏ ) p (xﻋﻠﻰ ﺸﻜل ﺠﺩﺍﺀ ﻋﺎﻤﻠﻴﻥ ﺜﻡ ﺍﺩﺭﺱ ﺇﺸﺎﺭﺘﻪ. = )g (x x3 - x + 4 (3ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ : x +1ﺃ -ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ¡ - -1ﻓﺈﻥ { }:= )g′ (x )p (x (x + 1)2 ﺏ -ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . g (4ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋـﺩﺩ xﻤﻥ { }: ¡ - -1ﺤﻴﺙ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻪ. f (x) = g (x) + a x+1و )lim (f - g) (x )lim (f - g) (x -ﺍﺤﺴﺏ∞x → - ∞x → + ﺍﺴﺘﻨﺘﺞ ﻭﻀﻌﻴﺔ Cfو ( ) ( )Cg ﺃﻨﺸﺊ Cgﻓﻲ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ ﺍﻟﺴﺎﺒﻕ( ).
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131