Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore دروس مادة الرياضيات للفصل الاول شعب علمية سنة ثانية ثانوي

دروس مادة الرياضيات للفصل الاول شعب علمية سنة ثانية ثانوي

Published by DZteacher, 2015-08-17 05:30:36

Description: دروس مادة الرياضيات للفصل الاول شعب علمية سنة ثانية ثانوي

Search

Read the Text Version

‫‪. α = -177π (6‬‬ ‫؛‬ ‫=‪α‬‬ ‫‪1962π‬‬ ‫؛ ‪(5‬‬ ‫‪α = 410π (4‬‬ ‫‪4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫‪ -‬ﻋﻴﻥ ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻨﻘﻁﺔ ‪ M‬ﻤﺭﻓﻘﺔ ﺒﺎﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ ‪x‬‬ ‫‪.‬‬ ‫‪x‬‬ ‫∈‬ ‫‪‬‬ ‫‪0‬‬ ‫;‬ ‫‪π‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪‬‬ ‫‪6 ‬‬ ‫‪ -‬ﻋﻴﻥ ﺍﻟﻨﻘﻁ ‪ F , I , L , T , S‬ﺍﻟﻤﻌﻴﻨﺔ ﺒﺎﻷﻋﺩﺍﺩ ‪:‬‬ ‫; ‪π+x ; π-x‬‬ ‫‪π‬‬ ‫‪+x‬‬ ‫;‬ ‫‪π‬‬ ‫‪-x‬‬ ‫;‬ ‫‪-x‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪ -‬ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﻨﻘﻁ ﺒﺩﻻﻟﺔ ‪ x‬ﻭ ﺍﺫﻜﺭ ﺇﺸﺎﺭﺓ ﺇﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﻨﻘﻁ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬ ‫ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪:‬‬‫‪cos‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪11π‬‬ ‫‪‬‬ ‫;‬ ‫‪sin‬‬ ‫)‪( x + 4π‬‬ ‫;‬ ‫)‪cos ( x + 25π‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫)‪cos ( x + 2007π‬‬ ‫;‬ ‫‪sin‬‬ ‫‪ 15π‬‬ ‫‪-‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪ 2‬‬ ‫‪‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬ ‫ﺃﻜﺘﺏ ﺒﺩﻻﻟﺔ ‪ tan x‬ﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ ‪:‬‬‫)‪tan( x + 20π‬‬ ‫;‬ ‫‪tan‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪-‬‬ ‫‪13π‬‬ ‫‪‬‬ ‫;‬ ‫)‪tan( x + 13π‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪tan‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪-‬‬ ‫‪x‬‬ ‫‪‬‬ ‫;‬ ‫‪tan‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬‫ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺤﺎﺴﺒﺔ ‪ :‬ﺍﺤﺴﺏ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺩﻭﺭﺓ ﺇﻟﻰ ‪ 10- 5‬ﻟﻸﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ ‪:‬‬ ‫‪cos‬‬ ‫‪π‬‬ ‫;‬ ‫‪sin‬‬ ‫‪π‬‬ ‫;‬ ‫‪cos‬‬ ‫‪π‬‬ ‫;‬ ‫‪sin‬‬ ‫‪π‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪7‬‬ ‫‪15‬‬ ‫‪2π‬‬ ‫‪13π‬‬‫‪cos‬‬ ‫‪9‬‬ ‫;‬ ‫‪sin‬‬ ‫‪π‬‬ ‫;‬ ‫‪cos‬‬ ‫‪5‬‬ ‫‪10‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 12‬‬‫‪cos x = 0,3‬‬ ‫َﻭ‬ ‫‪-π‬‬ ‫‪<x‬‬ ‫‪<0‬‬ ‫ﺍﺤﺴﺏ ‪ sin x‬ﻭ ‪ tan x‬ﻋﻠﻤﺎ ﺃﻥ ‪:‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 13‬‬‫‪x ∈ 0‬‬ ‫;‬ ‫‪π‬‬ ‫َﻭ‬ ‫‪sin‬‬ ‫‪x‬‬ ‫=‬ ‫‪3‬‬ ‫ﺍﺤﺴﺏ ‪ cos x‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ‪:‬‬ ‫‪2 ‬‬ ‫‪5‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 14‬‬ ‫ﺍﺤﺴﺏ ‪ cos x‬ﻭ ‪ tan x‬ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ‪:‬‬ ‫‪sin x = -0,6‬‬ ‫َﻭ‬ ‫‪3π‬‬ ‫‪<x‬‬ ‫‪< 2π‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 15‬‬

‫‪x‬‬ ‫∈‬ ‫‪π‬‬ ‫‪; π‬‬ ‫َﻭ‬ ‫= ‪cos x‬‬ ‫‪6- 2‬‬ ‫‪ 2‬‬ ‫ﻨﻀﻊ ‪4 :‬‬ ‫‪ -‬ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟـ ‪ sin x‬؟‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬ ‫ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 ; 2π‬ﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ‪[ ]:‬‬‫)‪1‬‬ ‫‪cos‬‬ ‫‪x‬‬ ‫=‬ ‫‪1‬‬ ‫;‬ ‫= ‪2) cos x‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪3) sin x‬‬ ‫=‬ ‫‪-2‬‬ ‫;‬ ‫= ‪4) sin x‬‬ ‫‪-1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫ﺤل ﻓﻲ ‪ -π , π‬ﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺜﻡ ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ‪] ].‬‬‫)‪1‬‬ ‫) ‪sin (2 x‬‬ ‫=‬ ‫‪-‬‬ ‫‪3‬‬ ‫;‬ ‫)‪2‬‬ ‫)‪cos(2 x‬‬ ‫=‬ ‫‪1‬‬ ‫‪2‬‬ ‫‪2‬‬‫‪3) cos x‬‬ ‫=‬ ‫‪-3‬‬ ‫;‬ ‫‪4) sin x‬‬ ‫=‬ ‫‪-1‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬ ‫ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , π‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪[ ]:‬‬ ‫‪4cos2 x - 2 (1 + 2 ) cos x + 2 = 0‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 19‬‬ ‫ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , 2π‬ﻜل ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺜﻡ ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ‪[ ]:‬‬

‫‪1 ) cos x ≤ 0‬‬ ‫;‬ ‫≤ ‪2) cos x‬‬ ‫‪2‬‬ ‫;‬ ‫≥ ‪3) sin x‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 20‬‬ ‫ﺍﻜﺘﺏ ﻜل ﻤﻥ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﺘﻴﻥ ﺒﺩﻻﻟﺔ ‪َ cos x‬ﻭ ‪: sin x‬‬ ‫)‪sin (3x) ; cos (4x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 21‬‬ ‫ﺒﺭﻫﻥ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ ﺍﻵﺘﻴﺔ ‪:‬‬‫‪1) cos4 x - sin4 x = cos2 x‬‬‫‪2) 2cos4 x + 2 sin4 x + sin2 (2x) = 2‬‬‫‪3) cos 2 x‬‬ ‫×‬ ‫‪sin 2 x‬‬ ‫=‬ ‫‪1-‬‬ ‫‪cos 4x‬‬ ‫‪8‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 22‬‬‫= ‪. cos x + sin x‬‬ ‫‪2‬‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫‪ (1‬ﺒﺭﻫﻥ ﺃﻥ ‪:‬‬ ‫‪‬‬ ‫‪4 ‬‬ ‫= ‪. cos x + sin x‬‬ ‫‪2‬‬ ‫‪ (2‬ﺤل ﻓﻲ ‪ ℜ‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪:‬‬ ‫‪2‬‬ ‫‪ (3‬ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ‪.‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 23‬‬ ‫‪ -1‬ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺓ ‪p (x) = sin 2x + sin x + sin 3 x :‬‬ ‫‪ -2‬ﺤل ﻓﻲ ‪ ℜ‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪. p (x) = 0 :‬‬

‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 24‬‬ ‫‪ (1‬ﺍﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺓ ‪p( x ) = cos x - 3 sin x :‬‬ ‫ﻋﻠﻰ ﺍﻟﺸﻜل ‪p( x ) = a cos ( x - θ ) :‬‬ ‫‪ (2‬ﺤل ﻓﻲ ‪ ℜ‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪. p (x) = 0 :‬‬ ‫‪ (3‬ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , π‬ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪[ ]p ( x ) ≥ 0 :‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 25‬‬‫‪sin x -‬‬ ‫> ‪3 cos x‬‬ ‫ﺤل ﻓﻲ ‪ ℜ‬ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪2 :‬‬ ‫‪3‬‬ ‫=‬ ‫‪tan‬‬ ‫‪π‬‬ ‫ﻴﻤﻜﻥ ﻭﻀﻊ ‪:‬‬ ‫‪3‬‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 26‬‬ ‫ﺤل ﻓﻲ ‪ ℜ‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪cos x + 3 sin x = 1 :‬‬ ‫ﻴﻤﻜﻥ ﺇﺩﺨﺎل ﻋﺩﺩ ‪ α‬ﺤﻴﺙ ‪. tan α = 3 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 27‬‬ ‫ﺤل ﻓﻲ ‪ ℜ‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪:‬‬‫‪cos2‬‬ ‫‪‬‬ ‫‪2x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫‪‬‬ ‫=‬ ‫‪sin2‬‬ ‫‪‬‬ ‫‪-x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪‬‬ ‫ﺜﻡ ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ‪.‬‬

‫ﺍﻟﺤﻠـــــــﻭل‬ . 1‫ﺍﻟﺘﻤﺭﻴﻥ‬uur uuur uur uuur uuur uuur : ‫ ﺤﺴﺎﺏ ﺃﻗﻴﺎﺱ ﺍﻟﺯﻭﺍﻴﺎ‬-( ) ( ) ( )1) AI , AC = AI , AB + AB , AC + 2kπ ; k ∈Z ( )uur uuur = α + π + 2kπ ; k∈Z : ‫ﻭ ﻤﻨﻪ‬ AI , AC 2uuur uuur uuur uuur( ) ( )2) AB , BC = π + BA , BC + 2kπ ; k ∈ Z ( )uuur uuur = π - π + 2kπ , k∈Z : ‫ﻭ ﻤﻨﻪ‬ AB , BC 4 ( )uuur uuur = 3π + 2kπ ; k∈Z : ‫ﺃﻱ‬ 4 AB , BC uur uuur uur uuur uuur uuur( ) ( ) ( )3) AI , BC = AI , AB + AB , BC + 2kπ ; k ∈Z( )uur uuur =α + 3π + 2kπ ; k∈Z : ‫ﻭ ﻤﻨﻪ‬ AI , BC 4 . 2‫ﺍﻟﺘﻤﺭﻴﻥ‬uuur uuur ( k ∈ Z : ‫ ) ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﻨﺄﺨﺫ‬: ‫ﺤﺴﺎﺏ ﺃﻗﻴﺎﺱ ﺍﻟﺯﻭﺍﻴﺎ‬AB , AC( )1) • = π + 2kπ A 3 uuur uuur -π DC , DA 2( )• = + 2Ekπ D BC

uuur uuur uuur uuur uuur uuur( ) ( ) ( )• CB , CD = CB , CA + CA , CD uuur uuur =uuuπ4r + 2kπ uuur uuur( )• AE , AB uuur uuur uuur( ) ( ) ( )• BC , BE = BC , BA + BA , BE= π + π + 2kπ = 7π + 2kπ 3 4 12 uuur uuur uuur uuur uuur uuur( ) ( ) ( )2) • ED , EA + DA , DE + AE , AD = π +2kπ( ) ( )uuur uuur: ‫ﺴﺎﻗﻴﻥ ﻓﺈﻥ‬u‫ﺍﻟ‬u‫ﻱ‬ur‫ﻤﺘﺴﺎﻭ‬uuAurED ‫ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺜﻠﺙ‬ ED , EA = DA , DE uuur uuur uuur uuur uuur uuur :u‫ﺩ‬u‫ﺠ‬u‫ﻨ‬r‫ﺸﻜل‬u‫ﺍﻟ‬u‫ﻥ‬u‫ﻤ‬r‫ﻭ‬( ) ( ) ( ) ( )AE , AD = AE , AB + AB , AC + AC , AD= π + π + π = 10π = 5π 4 3 4 12 6 ( )uuur uuur 5π + 6 =π : ‫ﻭ ﻤﻨﻪ‬ 2 × ED , EA uuur uuur 5π EA , ED 6 ( )- 2× + = π : ‫ﻭﻋﻠﻴﻪ‬ ( )uuur uuur =π - 5π = π : ‫ﺃﻱ‬ 6 6 - 2 × EA , ED uuur uuur -π EA , ED 12( ). = + 2kπ : ‫ﺇﺫﻥ‬ ( ) ( ) ( )uuur uuur uuur uuur uuur uuur• EA , CB = EA , EB + EB , CB + 2kπ uuur uuur -π BE , BC( )= 2 + + 2kπ

= -π + - 7π + 2kπ 2 12 - 13π = 1uu2ur + 2kπuuur uuur uuur uuur uuur( ) ( ) ( )• EC , BA = EC , EB + EB , BA + 2kπ uuur uuur -π BE , BA ( )=4 + π + + 2kπ = -π +π + -π + 2kπ 4 4 = uπ2uur+ 2kπ uuuruuur uuur uuur uuur( ) ( ) ( )• EC , BA = EC , EB + EB , BA + 2kπ uuur uuur -π BE , BA ( )=4 +π + + 2kπ = -π +π + -π + 2kπ 4 4uuur uuur uuur =uπu2ur+ 2kπ uuur uuur( ) ( ) ( )• EC , DB = EC , BA + BA , DB + 2kπ uuur uuur π BA , BD ( )= 2 +π + + 2kπ = 3π + -π + 2kπ = 4π + 2kπ 2 6 3 . 3‫ﺍﻟﺘﻤﺭﻴﻥ‬ ( k ∈ Z ‫ ) ﻨﻌﺘﺒﺭ ﻓﻴﻤﺎ ﻴﻠﻲ‬: ‫( ﺍﻟﺤﺴﺎﺏ‬1 : ‫ ﻟﺩﻴﻨﺎ‬ABC ‫ﻓﻲ ﺍﻟﻤﺜﻠﺙ‬

uuur uuur uuur uuur uuur uuur( ) ( ) ( )• AB , AC + BC , BA + CA , CB = π uuur uuur ( )56πuu+ur2× BC , BA =π : ‫ﻤﻨﻪ‬ ‫ﻭ‬ uuur uuur uuur ( ) ( )BC , BA = CA , CB : ‫ﻷﻥ‬ uuur uuur CA , CB ( ) ( )uuur uuur = = π + 2kπ : ‫ﻭﻤﻨﻪ‬ 12 BC , BA uuur uuur ( ) ( )uuur uuur• AC , CB = π + CA , CB + 2kπ =π + π + 2kπ 12 13π = 12 + 2kπ : ‫( ﺍﻟﺤﺴﺎﺏ‬2 : ‫ ﻟﺩﻴﻨﺎ‬DAC ‫ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ‬ uuur uuur DC AC , AD π ( )sin AC = 6 + 2kπ DAC = ‫َﻭ‬ *. DC = 1 :‫ﺃﻱ‬ DC = 2 × 1 sin π = DC :‫ﻭﻤﻨﻪ‬ 2 :‫ﺇﺫﻥ‬ 6 2 DA DA cos π = 2 : ‫ﻭﻤﻨﻪ‬ cos DAC = AC * 6. DA = 3 : ‫ﺃﻱ‬ DA = 2cos π = 2× 3 : ‫ﻭﻋﻠﻴﻪ‬ 6 2 . DB = 3 + 2 : ‫ ﻭﻋﻠﻴﻪ‬DB = DA + AB * BC2 = DB2 + DC2 : ‫ ﻟﺩﻴﻨﺎ‬DCB ‫ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ‬( )BC2 = 8 + 4 3 ‫ ﺃﻱ‬BC2 = 3 + 2 2 + (1)2 : ‫ﻭﻤﻨﻪ‬ . BC = 2 2 + 3 : ‫ ﺃﻱ‬BC = 8 + 4 3 : ‫ﺇﺫﻥ‬

: cos π ; sin π ‫ ﺍﺴﺘﻨﺘﺎﺝ‬- 12 12 DC sin DBC = BC : ‫ ﻟﺩﻴﻨﺎ‬DBC ‫ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ‬ sin π = 1= 1 : ‫ﺇﺫﻥ‬ 12 8 + 4 3 8 + 2 12 =1 ( ) ( )2 2 + 2 2 . 6 + 6 2 = 1 =1 ( 2 + )6 2 2+ 6 =( 2+ 2- 6 6) 6) ( 2 - = 2- 6 = 2- 6 = 6- 2 2-6 −4 4cos π = cos DBC = DB = 3 +2 12 BC 8+4 3 = 3 +2 = ( 3 + 2) ( 2- 6) 2+ 6 ( 2 + 6) ( 2- 6) cos π = 6 - 18 + 2 2 - 2 6 : ‫ﻭ ﻤﻨﻪ‬ 12 2-6 = 6 -3 2 +2 2 -2 6 -4 =- 6- 2= 6+ 2 -4 4

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫‪( )uuuur uuuur‬‬ ‫ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ‪: M‬‬ ‫‪MB , MC = 0 + k (2π) ; k ∈ Z ( 1‬‬ ‫ﺘﻌﻨﻲ ﺃﻥ ‪ M‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪ (BC‬ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻘﻁﻌﺔ ‪[ ]BC‬‬ ‫‪( )uuuur uuuur‬‬ ‫ﻭﻟﺘﻜﻥ ‪( ). γ1‬‬ ‫‪MC , MB‬‬ ‫=‬ ‫‪π‬‬ ‫)‪+ k (2π‬‬ ‫;‬ ‫‪k∈Z‬‬ ‫‪(2‬‬ ‫‪2‬‬ ‫ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ‪ M‬ﻨﻘﻁﺔ ﻤﻥ ﻗﻭﺱ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ ‪ BC‬ﺒﺎﺴﺘﺜﻨﺎﺀ] [‬‫‪( ) ( )uuur uuuur uuuur uuur‬‬ ‫‪َ B‬ﻭ ‪ C‬ﻭﻟﺘﻜﻥ ‪( ). γ 2‬‬‫‪AB , AM = AM , AC + k (2π) ; k ∈ Z ( 3‬‬‫‪( ) ( )uuur uuur‬‬‫ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ‪ M‬ﻨﻘﻁﺔ ﻤﻥ ﻤﻨﺘﺼﻑ ﺍﻟﺯﺍﻭﻴﺔ ‪ AB , AC‬ﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ ‪ A‬ﻭﻟﺘﻜﻥ ‪. γ 3‬‬‫) ‪(γ1‬‬ ‫) ‪(γ 3‬‬ ‫) ‪C (γ 2‬‬ ‫) ‪A B (γ1‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬‫‪• -5π = -π - 4π .‬‬ ‫‪M‬‬ ‫‪5‬‬ ‫(‬ ‫‪25π‬‬ ‫)‬ ‫‪6‬‬‫•‬ ‫‪-13π‬‬ ‫=‬ ‫‪-π‬‬ ‫)‪- 4π .M1(-5π‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪3π‬‬ ‫‪3π‬‬‫•‬ ‫‪2‬‬ ‫=‬ ‫‪2‬‬ ‫‪+‬‬ ‫‪0‬‬ ‫×‬ ‫‪π‬‬ ‫‪.‬‬ ‫‪M6‬‬ ‫(‬ ‫‪21π‬‬ ‫)‬ ‫‪M‬‬ ‫(‬ ‫‪-13π‬‬ ‫)‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪15π‬‬ ‫‪3π‬‬ ‫‪3π‬‬‫•‬ ‫‪2‬‬ ‫=‬ ‫‪π‬‬ ‫= ‪+ 7π‬‬ ‫‪2‬‬ ‫‪+ 6π .‬‬ ‫‪M‬‬ ‫‪3‬‬ ‫(‬ ‫‪2‬‬ ‫)‬ ‫‪2‬‬ ‫‪25π‬‬ ‫‪M‬‬ ‫‪4‬‬ ‫(‬ ‫‪15π‬‬ ‫)‬ ‫‪6‬‬ ‫‪2‬‬ ‫‪π‬‬‫•‬ ‫=‬ ‫‪6‬‬ ‫‪+ 4π‬‬ ‫‪.‬‬‫•‬ ‫‪21π‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 5π‬‬ ‫=‬ ‫‪5π‬‬ ‫‪+ 4π .‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬ ‫ﺘﻌﻴﻴﻥ ﺍﻷﻗﻴﺎﺱ ﺍﻟﺭﺌﻴﺴﻴﺔ ‪:‬‬ ‫‪1830π‬‬ ‫=‬ ‫‪(3 × 610) π‬‬ ‫‪= 0 + 610π‬‬ ‫‪ ( 1‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. 0 :‬‬ ‫‪177π‬‬ ‫=‬ ‫‪(4 × 44 + 1) π‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 44π‬‬ ‫‪ ( 2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪π‬‬ ‫ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. 4 :‬‬

‫‪2007π‬‬ ‫=‬ ‫‪(5 × 401+2) π‬‬ ‫=‬ ‫‪2π‬‬ ‫‪+ 401π‬‬ ‫‪ ( 3‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪5‬‬ ‫‪2π‬‬ ‫‪-3π‬‬ ‫=‬ ‫‪5‬‬ ‫‪-π‬‬ ‫‪+ 402π‬‬ ‫=‬ ‫‪5‬‬ ‫‪+ 402π‬‬ ‫‪- 3π‬‬ ‫ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. 5 :‬‬ ‫‪ ( 4‬ﻟﺩﻴﻨﺎ ‪ -13π = π - 14π :‬ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. π :‬‬ ‫‪ ( 5‬ﻟﺩﻴﻨﺎ ‪ 120π = 0 + 120π :‬ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. 0 :‬‬ ‫‪ ( 6‬ﻟﺩﻴﻨﺎ ‪99π = π + 98π :‬‬ ‫ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. π :‬‬‫‪344π‬‬ ‫=‬ ‫‪(7 × 49 + 1) π‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 49π‬‬ ‫‪ ( 7‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪7‬‬ ‫‪-‬‬ ‫‪6π‬‬ ‫=‬ ‫‪π‬‬ ‫‪-‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪50π‬‬ ‫=‬ ‫‪7‬‬ ‫‪+ 50π‬‬ ‫‪7‬‬ ‫‪- 6π‬‬ ‫ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ ‪. 7 :‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬ ‫‪α‬‬ ‫=‬ ‫‪2007π‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 334π‬‬ ‫‪ ( 1‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪6‬‬ ‫‪2‬‬‫= ‪sinα‬‬ ‫‪sin‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪‬‬ ‫=‬ ‫‪1‬‬ ‫ﻭ‬ ‫‪cos‬‬ ‫‪α‬‬ ‫=‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪π‬‬ ‫‪‬‬ ‫=‬ ‫‪0‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬‫‪α‬‬ ‫=‬ ‫‪1427π‬‬ ‫=‬ ‫‪2π‬‬ ‫‪+‬‬ ‫‪475π‬‬ ‫‪ ( 2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2π‬‬ ‫‪-π‬‬‫=‬ ‫‪3‬‬ ‫‪-π‬‬ ‫‪+ 476π‬‬ ‫=‬ ‫‪3‬‬ ‫‪+ 476π‬‬ ‫‪cos‬‬ ‫‪α‬‬ ‫=‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪-π‬‬ ‫‪‬‬ ‫=‬ ‫‪cos ‬‬ ‫‪π‬‬ ‫‪‬‬ ‫=‬ ‫‪1‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪2‬‬

sin α = sin  -π  = - sin  π = - 3 3   3  2 -50π = -2π - 16π : ‫ ( ﻟﺩﻴﻨﺎ‬3 3 3 : ‫ﻭ ﻤﻨﻪ‬cos α = cos  -50π  = cos  -2π  = cos 2π  3   3  3 = cos  π - π = - cos π = -1  3  3 2sin α = sin  -2π  =- sin 2π =- sin  π - π  3  3  3  =- sin π = -3 3 2 α = 410 π = 0 + 410 π : ‫ ( ﻟﺩﻴﻨﺎ‬4 cos α = cos 0 = 1 ; sin α = sin 0 = 0 : ‫ﻭ ﻤﻨﻪ‬ 1962 π = 981 π = π + 490 π : ‫ ( ﻟﺩﻴﻨﺎ‬5 2 2 2cos α = cos π =0 ; sin α = sin π =1 : ‫ﻭ ﻤﻨﻪ‬ 2 2 α = -177 π = π - 188 π : ‫ ( ﻟﺩﻴﻨﺎ‬6cos α = cos π = - 1 ; sin α = sin π = 0 : ‫ﻭ ﻤﻨﻪ‬ L( π +x) T( π -x ) . 8‫ﺍﻟﺘﻤﺭﻴﻥ‬ 2 2 ‫ ( ﺘﻌﻴﻴﻥ ﺍﻟﻨﻘﻁ‬1I(π- x) M(x)F(π + x) S(-x) : ‫ ( ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ‬2

M( cos x , sin x) ; S(cos (-x) , sin (-x)) : ‫ﻟﺩﻴﻨﺎ‬ T cos ( π -x) , sin( π -x)  ; L cos ( π + x) , sin( π + x) 2 2  2 2I (cos(π- x) , sin(π- x)) ; F(cos(π + x) , sin(π + x)) : ‫ﻭﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﻤﺫﻜﻭﺭﺓ ﻓﻲ ﺍﻟﺩﺭﺱ ﻨﺠﺩ‬ M( cos x , sin x) ; S ( cos x , - sin x) T ( sin x , cos x) ; L (- sin x , cos x) I (-cos x , sin x) ; F (-cos x , - sin x) . ‫ ﻤﻭﺠﺒﺔ ﻭﺘﺭﺘﻴﺒﻬﺎ ﺴﺎﻟﺒﺔ‬S ‫* ﻓﺎﺼﻠﺔ‬ : ‫ﺇﺸﺎﺭﺓ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ‬ . ‫ ﺴﺎﻟﺒﺔ ﻭﺘﺭﺘﻴﺒﻬﺎ ﻤﻭﺠﺒﺔ‬L ‫* ﻓﺎﺼﻠﺔ‬ . ‫ ﻤﻭﺠﺒﻴﻥ‬M ‫* ﺇﺤﺩﺍﺜﻴﻲ‬ . ‫ ﺴﺎﻟﺒﺔ ﻭﺘﺭﺘﻴﺒﻬﺎ ﻤﻭﺠﺒﺔ‬I ‫* ﻓﺎﺼﻠﺔ‬ . ‫ ﻤﻭﺠﺒﻴﻥ‬T ‫* ﺇﺤﺩﺍﺜﻴﻲ‬ . ‫ ﺴﺎﻟﺒﻴﻥ‬F ‫* ﺇﺤﺩﺍﺜﻴﻲ‬ . 9‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ﺘﺒﺴﻴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ‬1) cos (x +25π) = cos (x+ π +24π) = cos(x + π)= -cos x2) sin (x + 4π) = sin x3) cos  x+ 11π  = cos  x + (2 × 5 + 1) π  2   2  = cos  x + π + 5π   2  = cos  x + π +π + 4π   2  cos  x+ 11π  = cos  x + π + π + 4π  : ‫ﻭ ﻤﻨﻪ‬  2   2 

= cos  x + π + π  = - cos  x + π  = sin x  2   2  4) sin  15π - x  = sin  (2 × 7 + 1) π - x   2   2  = sin  π +7π - x  = sin  π - x +π + 6π  2   2  = sin  π +( π - x)  = - sin  π - x  = - cos x  2   2 5) cos (x + 2007π) = cos (x + π + 2006π) = cos (x + π ) = - cos x . 10‫ﺍﻟﺘﻤﺭﻴﻥ‬• tan (x + 13π) = tan x• tan  x - 13π  = tan  x - (2×6 + 1)π  2  2  = tan x - π - 6π  = tan  x - π 2   2  = tan - π - x   =- tan  π - x  2   2 • tan ( x + 20 π) = tan x = - cot x tan  π  sin π + x  cos x 2  cos  2  - sin x• + x = π = =- cot x  2  + x 

 π  sin π - x  cos x  2  cos  2  sin x• tan - x = π = = cot x  2  - x  . 11‫ﺍﻟﺘﻤﺭﻴﻥ‬ : 10-5 ‫ﺍﻟﻘﻴﻡ ﺍﻟﻤﺩﻭﺭﺓ ﺇﻟﻰ‬ cos π ≈ 0,99995 ; sin π ≈ 0,00987 5 5 cos π ≈ 0,99998 ; sin π ≈ 0,00329 7 15 cos 2π ≈ 0,99994 ; sin π ≈ 0,00493 9 10 cos 13π ≈ 0,99178 . 5 . 12‫ﺍﻟﺘﻤﺭﻴﻥ‬ : sin x ‫* ﺤﺴﺎﺏ‬ sin2 x = 1 - cos2 x : ‫ ﻭ ﻤﻨﻪ‬sin2 x + cos2 x = 1 : ‫ﻟﺩﻴﻨﺎ‬ sin2 x = 0,91 : ‫ ﺃﻱ‬sin2 x = 1- (0,3)2 : ‫ﺇﺫﻥ‬ sin x = - 0,91 ‫ ﺃﻭ‬sin x = 0,91 : ‫ﺇﺫﻥ‬ sin x = - 0,91 : ‫ﻭﻋﻠﻴﻪ‬ -π <x <0 : ‫ﻟﻜﻥ‬ 2 sin x ≈ - 0,95 : ‫ ﺇﺫﻥ‬sin x < 0 : ‫ﻷﻥ‬ : tan x ‫* ﺤﺴﺎﺏ‬ tan x ≈- 0, 95 ≈- 3,18 : ‫ﻭﻋﻠﻴﻪ‬ tan x = sin x : ‫ﻟﺩﻴﻨﺎ‬ 0, 3 cis x . 13‫ﺍﻟﺘﻤﺭﻴﻥ‬

cos2 x = 1 -  3 2 : ‫ ﻭ ﻋﻠﻴﻪ‬cos2 x = 1 - sin2 x : ‫ﻟﺩﻴﻨﺎ‬  5  cos x = -4 ‫ﺃﻭ‬ cos x = 4 : ‫ﻭﻋﻠﻴﻪ‬ cos2 x = 16 : ‫ﺇﺫﻥ‬ 5 5 25 . cos x = 4 : ‫ﻭﻤﻨﻪ‬ cos x ≥0 : ‫ﺃﻱ‬ x ∈ 0 , π : ‫ﻟﻜﻥ‬ 5 2  . 14‫ﺍﻟﺘﻤﺭﻴﻥ‬ cos2 x = 1 - (-0,6)2 : ‫ ﻭﻋﻠﻴﻪ‬cos2 x = 1 - sin2 x : ‫ ﻟﺩﻴﻨﺎ‬- cos x = - 0,8 ‫ ﺃﻭ‬cos x = 0,8 : ‫ ﻭﻋﻠﻴﻪ‬cos2 x = 0,64 : ‫ﺇﺫﻥ‬ cos x = 0,8 : ‫ ﺇﺫﻥ‬cos x ≥0 : ‫ﻭﻋﻠﻴﻪ‬ x ∈  3π , 2π ‫ﻟﻜﻥ‬  2 tan x = -3 : ‫ﺇﺫﻥ‬ tan x = sin x = - 0,6 = -6 : ‫ ﻟﺩﻴﻨﺎ‬- 4 cos x 0,8 8 . 15‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ ﻭﻋﻠﻴﻪ‬sin2 x = 1 - cos2 x : ‫ﻟﺩﻴﻨﺎ‬sin2 x = 1 -  6- 2 2 = 1 - 6-2 6 . 2 +2  4  16   = 16 - 8 +2 6. 2= 8+2 6 . 2 16 4 2 6+ 2 ( ) ( ) ( )2 2 6 +2 6 . 2 + 2sin2 x = 4 = 4

‫‪sin x = -‬‬ ‫‪6+‬‬ ‫‪2‬‬ ‫أو‬ ‫= ‪sin x‬‬ ‫‪6+‬‬ ‫‪2‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪sin x > 0‬‬ ‫ﻓﺈﻥ ‪:‬‬ ‫‪x‬‬ ‫∈‬ ‫‪‬‬ ‫‪π‬‬ ‫‪,‬‬ ‫‪π‬‬ ‫‪‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪:‬‬ ‫‪‬‬ ‫‪2‬‬ ‫‪‬‬ ‫= ‪sin x‬‬ ‫‪6+‬‬ ‫‪2‬‬ ‫‪4‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 16‬‬ ‫ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻓﻲ ‪[ ]: 0 , 2π‬‬‫‪cos‬‬ ‫‪x‬‬ ‫=‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪π‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪cos‬‬ ‫‪x‬‬ ‫=‬ ‫‪1‬‬ ‫‪ (1‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪‬‬ ‫‪3 ‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫=‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫‪‬‬ ‫=‬ ‫‪3‬‬ ‫‪x‬‬ ‫;‬ ‫‪k∈Z‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪-π‬‬ ‫‪3‬‬ ‫‪+‬‬ ‫‪2kπ‬‬‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫أو‬ ‫‪x‬‬ ‫=‬ ‫‪π‬‬ ‫ﻴﻭﻀﻊ ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪7π‬‬ ‫‪5π‬‬‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪3‬‬ ‫أو‬ ‫‪x‬‬ ‫=‬ ‫‪3‬‬ ‫ﻴﻭﻀﻊ ‪ k = 1 :‬ﻨﺠﺩ ‪:‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , 2π‬ﻫﻲ ‪[ ]:‬‬ ‫‪S‬‬ ‫=‬ ‫‪π‬‬ ‫‪,‬‬ ‫‪5π ‬‬ ‫‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪‬‬‫‪cos x‬‬ ‫‪= cos‬‬ ‫‪π‬‬ ‫ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫= ‪cos x‬‬ ‫‪3‬‬ ‫‪ (2‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪6‬‬ ‫‪2‬‬

‫‪x‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ 2kπ‬‬ ‫‪‬‬ ‫=‬ ‫‪6‬‬ ‫‪x‬‬ ‫;‬ ‫‪k∈Z‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪-π‬‬ ‫‪6‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫ﺃﻭ‬ ‫‪x‬‬ ‫=‬ ‫‪π‬‬ ‫ﻤﻥ ﺃﺠل ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪11π‬‬ ‫‪x‬‬ ‫=‬ ‫‪6‬‬ ‫ﺃﻭ‬ ‫‪) x‬ﻤﺭﻓﻭﺽ(‬ ‫=‬ ‫‪π‬‬ ‫‪+2π‬‬ ‫ﻤﻥ ﺃﺠل ‪ k = 1 :‬ﻨﺠﺩ ‪:‬‬ ‫‪6‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , 2π‬ﻫﻲ ‪[ ]:‬‬ ‫‪S‬‬ ‫=‬ ‫‪π‬‬ ‫‪,‬‬ ‫‪11π ‬‬ ‫‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪‬‬ ‫‪sin x = sin‬‬ ‫‪ -π ‬‬ ‫‪sin‬‬ ‫‪x‬‬ ‫=‬ ‫‪-2‬‬ ‫‪ (3‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪ 4  :‬‬ ‫‪2‬‬‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫‪+ 2kπ‬‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫‪+ 2kπ‬‬‫‪‬‬ ‫‪4‬‬ ‫‪ ‬ﺃﻱ ‪:‬‬ ‫‪4‬‬‫‪‬‬ ‫‪; k∈Z‬‬ ‫ﻭ ﻋﻠﻴﻪ‪:‬‬ ‫‪5π‬‬ ‫‪x‬‬ ‫‪π‬‬‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪4‬‬ ‫‪+ 2kπ‬‬ ‫‪=π‬‬ ‫‪+‬‬ ‫‪4‬‬ ‫‪+ 2kπ‬‬‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪5π‬‬ ‫ﺃﻭ‬ ‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫ﻟﻤﺎ ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪5π‬‬ ‫‪7π‬‬ ‫‪) x‬ﻤﺭﻓﻭﺽ(‬ ‫=‬ ‫‪4‬‬ ‫‪+ 2π‬‬ ‫ﺃﻭ‬ ‫‪x‬‬ ‫=‬ ‫‪4‬‬ ‫ﻟﻤﺎ ‪ k = 1 :‬ﻨﺠﺩ ‪:‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , 2π‬ﻫﻲ ‪[ ]:‬‬ ‫‪S‬‬ ‫=‬ ‫‪ 5π‬‬ ‫‪,‬‬ ‫‪7π ‬‬ ‫‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪‬‬ ‫‪sin x = sin‬‬ ‫‪ −π ‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪sin‬‬ ‫‪x‬‬ ‫=‬ ‫‪-‬‬ ‫‪1‬‬ ‫‪ (4‬ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪ 6 ‬‬ ‫‪2‬‬

‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫‪+ 2kπ‬‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬‫‪‬‬ ‫‪6‬‬ ‫‪ ‬ﺃﻱ ‪:‬‬ ‫‪6‬‬‫‪‬‬ ‫‪; k∈Z‬‬ ‫ﻭ ﻋﻠﻴﻪ‪:‬‬ ‫‪7π‬‬ ‫‪x‬‬ ‫‪π‬‬‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪6‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫=‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪6‬‬ ‫‪+‬‬ ‫‪2kπ‬‬‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪7π‬‬ ‫ﺃﻭ‬ ‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫ﻟﻤﺎ ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪7π‬‬ ‫‪11π‬‬ ‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪6‬‬ ‫‪+ 2π‬‬ ‫ﺃﻭ‬ ‫‪x‬‬ ‫=‬ ‫‪6‬‬ ‫ﻟﻤﺎ ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , 2π‬ﻫﻲ ‪[ ]:‬‬ ‫‪S‬‬ ‫=‬ ‫‪ 7π‬‬ ‫‪,‬‬ ‫‪11π ‬‬ ‫‪.‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 17‬‬ ‫ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻓﻲ ﺍﻟﻤﺠﺎل ‪] ]: -π , π‬‬‫ﻭﻋﻠﻴﻪ‪:‬‬ ‫‪sin 2x = sin‬‬ ‫‪ -π ‬‬ ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪sin‬‬ ‫‪2x‬‬ ‫=‬ ‫‪-3‬‬ ‫‪(1‬‬ ‫‪ 3 ‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪−π‬‬ ‫‪+ kπ‬‬ ‫‪2x‬‬ ‫=‬ ‫‪−π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪‬‬ ‫‪; k∈Z‬‬ ‫‪2π‬‬ ‫‪2x‬‬ ‫‪π‬‬ ‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪3‬‬ ‫‪+ kπ‬‬ ‫‪=π‬‬ ‫‪+‬‬ ‫‪3‬‬ ‫‪+ 2kπ‬‬ ‫‪‬‬ ‫‪x‬‬ ‫=‬ ‫‪2π‬‬ ‫ﺃﻭ‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫ﻟﻤﺎ ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫‪3‬‬ ‫‪6‬‬ ‫‪2π‬‬ ‫‪5π‬‬ ‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪3‬‬ ‫‪+π‬‬ ‫ﺃﻭ‬ ‫‪x‬‬ ‫=‬ ‫‪6‬‬ ‫ﻟﻤﺎ ‪ k = 1 :‬ﻨﺠﺩ ‪:‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ -π , π‬ﻫﻲ ‪] ]:‬‬

S =  -π , 2π , 5π  .  3   6 6  cos 2x = cos π : ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ‬ cos(2x) = 1 : ‫( ﻟﺩﻴﻨﺎ‬2 3 2 x = π + kπ 2x = π + 2kπ 6  = 3 : ‫ﻭﻋﻠﻴﻪ‬ 2x ; k∈Z : ‫ﺇﺫﻥ‬ π π x = - 6 + kπ - 3 + 2kπ x = -π ‫ﺃﻭ‬ x = π : ‫ ﻨﺠﺩ‬k = 0 : ‫ﻟﻤﺎ‬ 6 6 5π x = 6 ‫)ﻤﺭﻓﻭﺽ( ﺃﻭ‬ x = π +π : ‫ ﻨﺠﺩ‬k = 1 : ‫ﻟﻤﺎ‬ 6 ] ]: ‫ ﻫﻲ‬-π , π ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل‬ S =  -π , π , 5π  .  6   6 6 : ‫ﻭﻋﻠﻴﻪ‬ cos x = cos 5π : ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ‬ cos x = -3 : ‫( ﻟﺩﻴﻨﺎ‬3 6 2 x = 5π + 2kπ  6 : ‫ﻭ ﻤﻨﻪ‬ x ; k∈Z  = - 5π 6 + 2kπ x = - 5π ‫ﺃﻭ‬ x = 5π : ‫ ﻨﺠﺩ‬k = 0 : ‫ﻟﻤﺎ‬ 6 6 . S =  -5π , 5π   6 6  sin x = sin  -π  : ‫ﻭﻫﻲ ﺘﻜﺎﻓﺊ‬ sin x = -1 : ‫( ﻟﺩﻴﻨﺎ‬4  6  2

‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫‪‬‬ ‫=‬ ‫‪6‬‬ ‫‪x‬‬ ‫;‬ ‫‪k∈Z‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫‪π‬‬ ‫‪π‬‬ ‫‪+‬‬ ‫‪6‬‬ ‫‪+‬‬ ‫‪2kπ‬‬ ‫)ﻤﺭﻓﻭﺽ(‬ ‫‪x‬‬ ‫=‬ ‫‪7π‬‬ ‫ﺃﻭ‬ ‫‪x‬‬ ‫=‬ ‫‪-π‬‬ ‫ﻟﻤﺎ ‪ k = 0 :‬ﻨﺠﺩ ‪:‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪-‬‬ ‫‪5π‬‬ ‫‪-π‬‬‫‪x‬‬ ‫=‬ ‫‪6‬‬ ‫ﺃﻭ‬ ‫‪) x‬ﻤﺭﻓﻭﺽ(‬ ‫=‬ ‫‪6‬‬ ‫‪+ 2π‬‬ ‫ﻟﻤﺎ ‪ k = 1 :‬ﻨﺠﺩ ‪:‬‬ ‫‪S‬‬ ‫=‬ ‫‪‬‬ ‫‪π‬‬ ‫‪,‬‬ ‫‪-5π ‬‬ ‫‪.‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 18‬‬ ‫ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل ‪ 0 , π‬ﺍﻟﻤﻌﺎﺩﻟﺔ ‪[ ]:‬‬ ‫‪4cos2 x - 2 (1 + 2 ) cos x + 2 = 0‬‬ ‫ﺒﻭﻀﻊ ‪ cos x = y‬ﻨﺠﺩ ‪4 y2 - 2 ( 1 + 2 ) y + 2 = 0 :‬‬ ‫‪( ) ( )2‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬ ‫‪∆′ = 1 + 2 - 4 2‬‬ ‫‪( ) ( )2 2‬‬ ‫‪=1-2 2 + 2 = 1- 2‬‬ ‫ﻭﻋﻠﻴﻪ ‪∆′ = 1 - 2 :‬‬ ‫ﺇﺫﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻫﻤﺎ ‪:‬‬‫‪y1 = 1 +‬‬ ‫‪2-‬‬ ‫‪2 +1‬‬ ‫;‬ ‫‪y2 = 1 +‬‬ ‫‪2+‬‬ ‫‪2 -1‬‬ ‫‪4‬‬ ‫‪4‬‬ ‫‪y1‬‬ ‫=‬ ‫‪1‬‬ ‫;‬ ‫= ‪y2‬‬ ‫‪2‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪2‬‬ ‫‪2‬‬

cos x = 1 ‫ﺃﻭ‬ cos x = 2 : ‫ﻭﻋﻠﻴﻪ‬ 2 2 1 cos x = cos π : ‫ﺘﻜﺎﻓﺊ‬ cos x = 2 * 3 x = π + 2kπ  = 3 x ; k∈Z : ‫ﻭ ﻤﻨﻪ‬ -π 3 + 2kπ cos x = cos π : ‫ﺘﻜﺎﻓﺊ‬ cos x = 2 * 4 2 x = π + 2kπ  = 4 x ; k∈Z : ‫ﻭﻤﻨﻪ‬ -π 4 + 2kπ x = π ‫ﺃﻭ‬ x = π : ‫ ﻨﺠﺩ‬k = 0 ‫ﻤﻥ ﺃﺠل‬ 4 3 [ ]Sπ π =  3 , 4  : 0 , π ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل‬π . 19‫ﺍﻟﺘﻤﺭﻴﻥ‬2 [ ]: ‫ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ‬0 , 2π ‫ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل‬ π ≤ x ≤ 3π : ‫ﻤﻌﻨﺎﻩ‬ cos x ≤ 0 (1 2 2 3π S = π , 3π  : ‫ﻭﻋﻠﻴﻪ‬ 2  2 2 

π : cos x ≤ 2 4 2 (2 cos π = cos 7π = 2 : ‫ﻟﺩﻴﻨﺎ‬ 4 4 2 7π x ∈  π , 7π  : ‫ﻭﻋﻠﻴﻪ‬ 4  4 4  S = π , 7π   4 4  sin π = sin 2π = 3 : ‫ ﻟﺩﻴﻨﺎ‬، sin x ≥ 3 3 3 2 2 (32π π x∈ π , 2π  : ‫ﻭﻋﻠﻴﻪ‬3 3  3 3  S= π , 2π   3 3  . 20‫ﺍﻟﺘﻤﺭﻴﻥ‬1) sin( 3x ) = sin( 2x + x ) : cos x ‫ َﻭ‬sin x ‫ﺍﻟﻜﺘﺎﺒﺔ ﺒﺩﻻﻟﺔ‬ = sin( 2x ).cos x + cos( 2x ).sin x = ( 2 sin x.cos x) .cos x + (1 − 2 sin2 x) .sin x = 2 sin x .cos2 x + sin x − 2 sin3 x2) cos( 4x ) = cos( 2 × 2x ) = 1 − 2.sin2( 2x ) = 1 − 2 × ( 2.sin x.cos x)2 = 1 − 8.sin2 x .cos2 x

. 21‫ﺍﻟﺘﻤﺭﻴﻥ‬1) cos4 x - sin4 x = ( cos2 x)2 - ( sin2 x)2 = ( cos2 x - sin2 x) ( cos2 x + sin2 x) = ( cos 2x) . (1) = cos 2x2) P(x) = 2cos4 x + 2 sin4 x + sin2 2 x = 2 cos4 x + 2 sin4 x + ( 2 sin x .cos x)2 = 2 ( cos2 x)2 + 2 sin2 x . cos2 x + ( sin2 x)2  = 2 ( cos2 x + sin2 x)2  = 2 × 1 = 23) ( cos 2 x) × ( sin2 x) = 1 + cos 2x × 1 - cos 2x 2 2 = 1 - ( cos 2x)2 4 1 - 1 + cos 4x  2 - 1- cos 4x  2  8 = = 4 1 - cos 4x = 8 . 22‫ﺍﻟﺘﻤﺭﻴﻥ‬ : ‫ ( ﺍﻹﺜﺒﺎﺕ‬1 2 cos  x+ π  = 2× cos x .cos π + sin x . sin π   4  4 4 

= 2  2 cos x + 2 sin x   2 2    = cos x + sin x = p(x) p(x) = 2 : ‫( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬2 2 2 cos  x+ π  = 2 : ‫ ﺘﻜﺎﻓﺊ‬p(x) = 2  4  2 2 cos  x + π  = cos π : ‫ﺃﻱ‬ cos  x + π = 1 : ‫ﻭﻋﻠﻴﻪ‬  4  3  4  2 x + π = π + 2kπ  4 3 x + ; k∈Z : ‫ﻭﻤﻨﻪ‬ π −π 4 = 3 + 2kπ  x = π + 2kπ  12 : ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ‬  : ‫ﻭﻋﻠﻴﻪ‬ -7π  x = 12 + 2kπ  S= π + 2kπ , -7π + 2kπ ; k ∈ Z 12 12  π 12 : ‫ﺘﻤﺜﻴل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ‬ x = -7π ‫أو‬ x = π :k=0 • 12 12-7π12 . 23‫)*( ﺍﻟﺘﻤﺭﻴﻥ‬ : p (x) ‫( ﺘﺒﺴﻴﻁ‬1 p(x) = sin 2x + sin x + sin 3x

= sin 2x + 2 sin  x + 3x  cos  x - 3x   2   2  = sin 2x + 2 sin 2x . cos(-x) p(x) = sin 2x (1 + 2cos x ) : ‫ﻭﻤﻨﻪ‬ : p (x) = 0 : ‫( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬2 1 + 2cos x = 0 ‫ ﺃﻭ‬sin 2x = 0 : ‫ ﺘﻜﺎﻓﺊ‬p (x) = 0 cos x = -1 ‫ﺃﻭ‬ sin 2x = 0 : ‫ﺃﻱ‬ 2 kπ x = 2 : ‫ ﺃﻱ‬2x = kπ ; k ∈ Z : ‫ ﺘﻜﺎﻓﺊ‬sin 2x = 0 * cos x = cos 2π : ‫ﺘﻜﺎﻓﺊ‬ cos x = -1 3 2* x = 2π + 2kπ  = 3 x ; k∈Z : ‫ﻭﻋﻠﻴﻪ‬ −2π 3 + 2kπ : ‫ﻭﻤﻨﻪ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ‬S=  kπ , 2π + 2kπ , −2π + 2kπ ; k ∈ Z  3 3   2 . 24‫)*( ﺍﻟﺘﻤﺭﻴﻥ‬cos x - a cos (x - θ) : ‫ ﻋﻠﻰ ﺍﻟﺸﻜل‬p (x) ‫ﻜﺘﺎﺒﺔ‬ ( )3 sin x = (1)2 + - 3 2 cos (x - θ) = 2 cos (x - θ)

‫‪-π‬‬ ‫‪cos‬‬ ‫‪θ‬‬ ‫=‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪θ‬‬ ‫=‬ ‫ﺃﻱ‪:‬‬ ‫‪‬‬ ‫ﺤﻴﺙ ‪:‬‬ ‫‪-3‬‬ ‫‪‬‬ ‫‪sin‬‬ ‫‪θ‬‬ ‫=‬ ‫‪2‬‬ ‫‪‬‬‫‪cos x -‬‬ ‫‪3‬‬ ‫‪sin‬‬ ‫‪x‬‬ ‫‪=2‬‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫‪‬‬ ‫ﻭﻤﻨﻪ ‪:‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬ ‫‪ (2‬ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ‪p (x) = 0 :‬‬‫‪x+‬‬ ‫‪π‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ kπ‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫‪=0‬‬ ‫ﻭ ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪3 ‬‬ ‫‪x‬‬ ‫=‬ ‫‪π‬‬ ‫‪+ kπ‬‬ ‫ﻭ ﻤﻨﻪ ‪; k ∈ Z :‬‬ ‫‪6‬‬‫‪.‬‬ ‫‪S‬‬ ‫=‬ ‫‪‬‬ ‫‪π‬‬ ‫‪+ kπ‬‬ ‫‪; k ∈ Z‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ ‪:‬‬ ‫‪‬‬ ‫‪6‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ (3‬ﺤل ﻓﻲ ‪ 0 , π‬ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪[ ]p (x) ≥ 0 :‬‬ ‫‪cos‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫‪‬‬ ‫≥‬ ‫‪0‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪‬‬ ‫‪3‬‬ ‫‪‬‬‫‪π‬‬ ‫≤‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫≤‬ ‫‪4π‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪0 ≤ x ≤ π :‬‬‫‪3‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪4π‬‬ ‫‪π‬‬ ‫≤‬ ‫‪y‬‬ ‫≤‬ ‫‪3‬‬ ‫ﻭﺘﺼﺒﺢ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ‪ cos y ≥ 0 :‬ﻤﻊ‬ ‫‪3‬‬ ‫‪π‬‬ ‫‪≤y‬‬ ‫≤‬ ‫‪π‬‬ ‫ﻭﻤﻨﻪ ‪ cos y ≥ 0 :‬ﺘﻜﺎﻓﺊ ‪:‬‬ ‫‪3‬‬ ‫‪2‬‬‫‪0‬‬ ‫‪≤x‬‬ ‫≤‬ ‫‪π‬‬ ‫ﺇﺫﻥ ‪:‬‬ ‫‪π‬‬ ‫≤‬ ‫‪x‬‬ ‫‪+‬‬ ‫‪π‬‬ ‫≤‬ ‫‪π‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪:‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪[ ]S‬‬‫‪=0 ,‬‬ ‫‪π‬‬ ‫‪6 ‬‬ ‫‪ 0 , π‬ﻫﻲ‪:‬‬ ‫ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻓﻲ ﺍﻟﻤﺠﺎل‬ ‫)*( ﺍﻟﺘﻤﺭﻴﻥ‪. 25‬‬

sin x - 3 cos x > 2 : ‫ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ‬sin x - tan π cos x > 2 : ‫ﻨﺠﺩ‬ 3 = tan π : ‫ﺒﻭﻀﻊ‬ 3 3 sin x - sin π . cos x > 2 : ‫ﺇﺫﻥ‬ cos 3 π 3 cos π .sin x - sin π . cos x 3 3 > 2 : ‫ﻭﻋﻠﻴﻪ‬ π cos 3 sin x .cos π - cos x .sin π > 2 .cos π : ‫ﻭﻋﻠﻴﻪ‬ 3 3 3 sin x - π > 2 3  2 : ‫ﻭﻋﻠﻴﻪ‬ sin y > 2 x - π =y : ‫ﻨﻀﻊ‬ 2 : ‫ﻭﻋﻠﻴﻪ‬ 3 sin π = sin 3π = 2 : ‫ﻭﻟﺩﻴﻨﺎ‬ 4 4 2π + 2kπ <y < 3π + 2kπ : ‫ ﻤﻌﻨﺎﻩ‬sin y > 24 4 2 : ‫ﺇﺫﻥ‬ 3π π + 2kπ <x - π < 4 + 2kπ : ‫ ﻭﻋﻠﻴﻪ‬k ∈ Z : ‫ﺤﻴﺙ‬ 4 3 3π π + π + 2kπ <x < π + 4 + 2kπ : ‫ﺇﺫﻥ‬ 3 4 3 7π 13π 12 + 2kπ < x < 12 + 2kπ : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬

: ‫ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ ﺍﺘﺤﺎﺩ ﻜل ﺍﻟﻤﺠﺎﻻﺕ ﻤﻥ ﺍﻟﺸﻜل‬Z‫ ﻴﻤﺴﺢ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ‬k ‫ﻟﻤﺎ‬  7π + 2kπ ; 13π + 2kπ  12 12 . 26‫)*( ﺍﻟﺘﻤﺭﻴﻥ‬ cos x + 3sin x = 1 ‫ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬cos x + tan α .sin x = 1 : ‫ ﻨﺠﺩ‬tan α = 3 ‫ﺒﻭﻀﻊ‬ cos x + sin α . sin x = 1 : ‫ﺇﺫﻥ‬ cos α cos α .cos x + sinα . sin x cos α =1 : ‫ﻭﻋﻠﻴﻪ‬cos (x - α) = cos α : ‫ﻭﺒﺎﻟﺘﺎﻟﻲ‬ cos (x - α) = 1 : ‫ﺇﺫﻥ‬ cos α x -α = α + 2kπ ; k∈Z : ‫ﻭﻋﻠﻴﻪ‬ x -α = -α + 2kπ x = 2α + 2kπ ; k∈Z : ‫ﻭﻤﻨﻪ‬ x = 2kπ S = {2α + 2kπ , 2kπ ; k ∈ Z} α = 1,25 rd : ‫ﺤﻴﺙ‬ . 27‫ﺍﻟﺘﻤﺭﻴﻥ‬ cos2  2x + π = sin2  -x + π  : ‫ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ‬  2   4 : ‫ﻭﻋﻠﻴﻪ‬ cos2  2x + π  - sin2  - x + π  = 0 : ‫ﻭﺘﻜﺎﻓﺊ‬  2   4 

cos 2x+ π  - sin -x+ π  cos 2x+ π  + sin - x+ π  = 0 2 4  2 4  cos  2x+ π  - sin -x+ π  = 0 . . . (1) : ‫ﻭﻋﻠﻴﻪ ﺇﻤﺎ‬  2  4  cos  2x+ π  + sin -x+ π  = 0 . . . (2) : ‫ﻭ ﺇﻤﺎ‬ 2  4  cos  2x+ π  = sin - x+ π  : ‫( ﺘﻜﺎﻓﺊ‬1)  2  4  cos  2x + π  = cos  π +x - π : ‫ﻭﻋﻠﻴﻪ‬  2   2 4  : ‫ﻭﻤﻨﻪ‬ cos  2x + π = cos  π + x  : ‫ﺃﻱ‬  2   4  x = -π + 2kπ 2x + π = π +x + 2kπ 4  2 4 + 2kπ : ‫ﺃﻱ‬ 2x ; k∈Z -π 2kπ π π x = 4 + 3 + 2 = - 4 -x cos  2x+ π  = - sin -x+ π  ‫( ﺘﻜﺎﻓﺊ‬2) 2  4  cos  2x+ π  = sin x - π  : ‫ﻭﻋﻠﻴﻪ‬  2  4  cos  2x + π = cos  π - x + π : ‫ﺇﺫﻥ‬  2  2 4  : ‫ﻭﻤﻨﻪ‬ cos  2x + π = cos  3π - x  : ‫ﺃﻱ‬  2   4 

 3x = π + 2kπ 2x + π = 3π - x + 2kπ  4 : ‫ ﺃﻱ‬ 2 = 4 + 2kπ  ; k∈Z -5π 2x π 3π  x = 4 + 2kπ + 2 - 4 +x   x = π + 2kπ  12 3: ‫ﻫﻲ‬ ‫ﺍﻟﺤﻠﻭل‬ ‫ﻤﺠﻤﻭﻋﺔ‬ ‫ﺇﺫﻥ‬  : ‫ﻭ ﺒﺎﻟﺘﺎﻟﻲ‬ -5π  x = 4 + 2kπ  S =  -π + 2kπ ; -π + 2kπ ; π + 2kπ ; -5π + 2kπ ; k ∈ Z  4 3 12 3 4   4 : ‫ﺘﻤﺜﻴل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ‬ x = -5π , x = π , x = -π :k=0 4 12 4 x = 7π , x = 3π , x = 5π : k = 1 3π 5π 4 4 1213π -5π 4 12 x = 17π , x = 13π : k = 2 44 12 12 π 1213π -π12 12 -π 17π 4 12

‫ﺍﻻﺸﺘﻘـﺎﻗﻴﺔ‬ ‫ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ‬ ‫ﺍﻟﺘﻌ ُﺭﻑ ﻋﻠﻰ ﺍﺸﺘﻘﺎﻗﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ﻗﻴﻤﺔ‬ ‫ﺤﺴﺎﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ‬ ‫ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ‬ ‫ﺤل ﻤﺴﺎﺌل ﺍ ٍﻻﺴﺘﻤﺜﺎل ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﺸﺘﻘﺎﺕ‬‫ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ‬ ‫ﺘﻌﺎﺭﻴﻑ‬ ‫ﻤﺸﺎﻜل ﻭ ﺘﻤﺎﺭﻴﻥ‬ ‫ﺍﻟﺤﻠﻭل‬

‫ﺗﻌﺎرﻳﻒ‬ ‫‪ -I‬ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ‪:‬‬ ‫‪ -1‬ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ ﻋﺩﺩ ‪: a‬‬‫= )‪f (x‬‬ ‫‪x2 - 1‬‬ ‫ﻤﺜﺎل ‪ : 1‬ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ‪:‬‬ ‫‪x-1‬‬ ‫ﻭﺍﻟﺩﺍﻟﺔ ‪ g‬ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ ‪. g (x) = x + 1 :‬‬‫• ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ‪ C f‬ﻟﻠﺩﺍﻟﺔ ‪( ). f‬‬ ‫ﻫل ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﻌﺭﻓﺔ ﻋﻨﺩ ‪. 1‬‬ ‫ﻤﺎﺫﺍ ﺘﻼﺤﻅ ﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ ‪ x‬ﻤﻥ ‪. 1‬‬‫• ﺃﻨﺸﺊ ﺘﻤﺜﻴﻼ ﺒﻴﺎﻨﻴﺎ ‪ Cg‬ﻟﻠﺩﺍﻟﺔ ‪ g‬ﻓﻲ ﻤﻌﻠﻡ ﺁﺨﺭ‪ .‬ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ )‪( )g(1‬‬‫• ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﻤﻥ ‪ ℜ − 1‬ﻓﺈﻥ ‪{ }:‬‬ ‫)‪ f (x) = g (x‬ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟‬ ‫ﺍﻟﺤل‪:‬‬ ‫• ﺇﻨﺸﺎﺀ ‪ : C f‬ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﻭ ﺒﻌﺩ) (‬ ‫ﻨﻜﺘﺏ ‪:‬‬ ‫ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭ‬‫ﻨﺭﺴﻡ ﺍﻟﻤﻨﺤﻨﻰ ﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺸﺎﺸﺔ ﺍﻵﻟﺔ ‪.‬‬ ‫ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺭ‬ ‫‪. lim f ( x) = 2‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ‪.1‬‬ ‫‪x→1‬‬ ‫ﻨﻼﺤﻅ ﺃﻨﻪ ﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ‬ ‫‪ x‬ﻤﻥ ‪ 1‬ﻓﺈﻥ )‪f (x‬‬ ‫ﺘﻘﺘﺭﺏ ﻤﻥ ‪. 2‬‬ ‫ﺃﻱ ﺃﻨﻪ ﻟﻤﺎ ﻴﺘﻨﺎﻫﻰ ‪x‬‬ ‫ﻨﺤﻭ‪ 1‬ﻓﺈﻥ )‪f (x‬‬ ‫ﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ ‪ 2‬ﻭﻨﻜﺘﺏ ‪:‬‬

‫‪ -‬ﺇﻨﺸﺎﺀ ‪( ): Cg‬‬ ‫ﺒﺎﺴﺘﻌﻤﺎل ﻨﻔﺱ ﺍﻵﻟﺔ ﻨﺠﺩ ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪. g (1) = 2 :‬‬ ‫= )‪f (x‬‬ ‫‪x2 − 1‬‬ ‫ﻟﺩﻴﻨﺎ‬ ‫•‬ ‫‪x−1‬‬ ‫= )‪f (x‬‬ ‫)‪( x − 1) ( x+1‬‬ ‫ﻭﻋﻠﻴﻪ ‪:‬‬ ‫•‬ ‫‪x−1‬‬ ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ‪ f (x) = x + 1 :‬ﻤﻥ ﺃﺠل ‪x ≠ 1‬‬ ‫ﺍﻟﻨﺘﻴﺠﺔ ‪:‬‬ ‫= )‪lim f (x‬‬ ‫‪lim‬‬ ‫‪x2 − 1‬‬ ‫=‬ ‫‪lim‬‬ ‫)‪(x + 1) = 2 = g (1‬‬ ‫‪x−1‬‬ ‫‪x→1‬‬ ‫‪x→1‬‬ ‫‪x→1‬‬ ‫ﻤﺜﺎل ‪: 2‬‬‫‪lim‬‬ ‫‪x2 − 4x‬‬ ‫=‬ ‫‪lim‬‬ ‫)‪x( x − 4‬‬ ‫=‬ ‫)‪lim ( x − 4‬‬ ‫‪=-4‬‬ ‫‪x‬‬ ‫‪x‬‬‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪x→0‬‬ ‫‪ -2‬ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ‪:‬‬ ‫‪ h‬ﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺤﻴﺙ ‪ x0 + h‬ﻋﻨﺼﺭ ﻤﻥ ﻤﺠﺎل ‪. I‬‬ ‫ﻫﻲ ﻨﺴﺒﺔ ﺘﺯﺍﻴﺩ‬ ‫‪f ( x0‬‬ ‫) ‪+ h) - f (x0‬‬ ‫ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ‪:‬‬ ‫‪h≠o‬‬ ‫ﺇﺫﺍ ﻜﺎﻥ‬ ‫‪h‬‬ ‫ﺍﻟﺩﺍﻟﺔ ﺒﻴﻥ ‪ x0‬ﻭ ‪. x0 + h‬‬ ‫) ‪f ( x ) - f (x0‬‬ ‫ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺘﻜﺘﺏ ‪:‬‬ ‫‪x‬‬ ‫‪= x0‬‬ ‫‪+h‬‬ ‫ﺒﻭﻀﻊ‬ ‫‪x - x0‬‬ ‫ﻨﻘﻭل ﺃﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ x0‬ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺍﻗﺘﺭﺒﺕ ﺍﻟﻨﺴﺒﺔ‬

‫‪ l‬ﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ ‪ h‬ﻤﻥ ﺍﻟﻌﺩﺩ ‪0‬‬ ‫ﻤﻥ ﻋﺩﺩ ﺜﺎﺒﺕ‬ ‫) ‪f ( x0 + h) - f (x0‬‬ ‫‪h‬‬ ‫‪lim‬‬ ‫‪f ( x0‬‬ ‫‪+‬‬ ‫)‪h‬‬ ‫‪-‬‬ ‫‪f‬‬ ‫) ‪(x0‬‬ ‫=‬ ‫‪l‬‬ ‫ﺃﻱ ‪:‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪lim‬‬ ‫) ‪f ( x ) - f (x0‬‬ ‫‪=l‬‬ ‫ﻭﺒﻌﺒﺎﺭﺓ ﺃﺨﺭﻯ ‪:‬‬ ‫‪x - x0‬‬ ‫‪x→ x0‬‬ ‫ﻨﺭﻤﺯ ﻟﻠﻌﺩﺩ ‪ l‬ﺒﺎﻟﺭﻤﺯ ) ‪ f ′( x0‬ﻭﻴﺴﻤﻰ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ‬ ‫ﺍﻟﻌﺩﺩ ‪. x0‬‬ ‫ﻤﺜﺎل ‪: 1‬‬ ‫ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪ f ( x) = x2 :‬ﻋﻨﺩ ﺍﻟﻌﺩﺩ ‪4‬‬ ‫ﺤـل ‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪f (4) = 16 ; Df = ℜ :‬‬‫)‪lim f ( x) - f (4) = lim x2 -16 = lim ( x - 4) ( x + 4‬‬‫‪x→4 x - 4‬‬ ‫‪x→4 x - 4 x→4‬‬ ‫‪x-4‬‬ ‫‪= lim ( x + 4) = 8‬‬ ‫‪x→4‬‬ ‫ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 4‬ﺤﻴﺙ ‪. f ′(4) = 8 :‬‬ ‫ﻤﺜﺎل ‪: 2‬‬ ‫ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪f(x) = - 4x + 5 :‬‬ ‫ﻋﻨﺩ ﺍﻟﻌﺩﺩ ‪. -3‬‬ ‫ﺤـل‪:‬‬ ‫ﻟﺩﻴﻨﺎ ‪f (−3) = 17 ; Df = ℜ :‬‬‫‪lim f ( x) - f (-3) = lim -4x + 5 - 17‬‬ ‫ﻟﺩﻴﻨﺎ ‪:‬‬‫‪x→−3‬‬ ‫‪x+3‬‬ ‫‪x→−3‬‬ ‫‪x+3‬‬ ‫=‬ ‫‪lim‬‬ ‫‪−4x -‬‬ ‫‪12‬‬ ‫=‬ ‫‪lim‬‬ ‫)‪-4( x + 3‬‬ ‫=‬ ‫‪-4‬‬ ‫‪x+‬‬ ‫‪3‬‬ ‫‪x+3‬‬ ‫‪x→−3‬‬ ‫‪x→−3‬‬ ‫ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ -3‬ﺤﻴﺙ ‪. f ′(−3) = -4‬‬

‫‪ -‬ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻬﻨﺩﺴﻲ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ‪:‬‬ ‫‪rr‬‬ ‫‪ C f‬ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ‪ f‬ﻓﻲ ﻤﻌﻠﻡ )‪( ). (O , i , j‬‬ ‫‪ A‬ﻭ‪ M‬ﻨﻘﻁﺘﺎﻥ ﻤﻥ ‪ C f‬ﺤﻴﺙ ‪( ) ( )A x0 , f ( x0 ) :‬‬ ‫ﻭ ))‪. M ( x0 + h , f(x0 + h‬‬ ‫‪M‬‬ ‫ﻤﻥ ﺃﺠل ‪ : h ≠ 0‬ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ‬ ‫‪A‬‬ ‫) ‪f ( x0 + h) - f ( x0‬‬ ‫)‪ (AM‬ﻫﻭ ‪:‬‬‫‪O‬‬ ‫‪h‬‬ ‫ﺇﺫﺍ ﻜﺎﻨﺕ ‪ f‬ﻗﺎﺒﻠﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ x0‬ﻓﺈﻥ ‪:‬‬ ‫‪lim‬‬ ‫‪f ( x0‬‬ ‫‪+‬‬ ‫) ‪h) - f (x0‬‬ ‫) ‪= f (′x0‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫ﺒﻴﺎﻨﻴﺎ ﻋﻨﺩﻤﺎ ﻴﺅﻭل ‪ h‬ﺇﻟﻰ ‪ 0‬ﻓﺈﻥ ‪ M‬ﺘﻘﺘﺭﺏ ﻤﻥ ‪ A‬ﻭﻋﻠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ‬ ‫)‪ (AM‬ﻴﺼﺒﺢ ﻤﻤﺎﺴﺎ ﻟﻠﻤﻨﺤﻨﻰ ‪ C f‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪( ). A‬‬ ‫‪ -‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ‪y = f ′(x0 ) × x + b : A‬‬ ‫ﻭﺒﻤﺎ ﺃﻥ ‪ A‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﻤﺎﺱ ﻓﺈﻥ ‪ y0 = f (x0 ) :‬ﻭ ﻤﻨﻪ ‪:‬‬ ‫‪ y0 = f ′(x0 ) × x0 + b‬ﻭﻋﻠﻴﻪ ‪b = y0 - f ′(x0 ) × x0 :‬‬ ‫ﺇﺫﻥ ‪y = f ′(x0 ) . x + y0 - f ′(x0 ) . x0 :‬‬ ‫ﻭﻋﻠﻴﻪ ‪ y - y0 = f ′(x0 ) .(x - x0 ) :‬ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ‬ ‫‪ C f‬ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ) ‪ A (x0 ; y0‬ﺤﻴﺙ ‪( )y0 = f (x0 ) :‬‬ ‫ﻤﺜﺎل ‪ f :‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ‪f ( x) = x2 - 2 x :‬‬ ‫ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ‪. 4‬‬ ‫‪-‬‬ ‫‪-‬‬‫ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻟﻠﻤﻨﺤﻨﻰ ‪ C f‬ﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ) ( ) (‬ ‫ﺍﻟﻔﺎﺼﻠﺔ ‪. 4‬‬ ‫ﺍﻟﺤل ‪:‬‬‫‪ -‬ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪f (4) = (4)2 - 2(4) = 8 ; Df = ℜ : 4‬‬

‫‪lim‬‬ ‫) ‪f(x) - f( 4‬‬ ‫=‬ ‫‪lim‬‬ ‫‪x2- 2x -‬‬ ‫‪8‬‬ ‫=‬ ‫‪lim‬‬ ‫(‬ ‫‪x‬‬ ‫()‪- 4‬‬ ‫‪x+‬‬ ‫)‪2‬‬ ‫‪x-4‬‬ ‫‪x-4‬‬ ‫‪x-‬‬ ‫‪4‬‬‫‪x→4‬‬ ‫‪x→4‬‬ ‫‪x→4‬‬ ‫‪= lim (x + 2) = 6‬‬ ‫‪x→4‬‬ ‫ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ 4‬ﺤﻴﺙ ‪f ′(4) = 6 :‬‬ ‫‪ -‬ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ) ‪ (C f‬ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ‪4‬‬ ‫ﻟﺩﻴﻨﺎ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻫﻲ ‪( )y - y0 = f ′(x0 ) .(x - x0 ) :‬‬ ‫ﻭ ﻤﻨﻪ ‪y - 8 = 6( x - 4) :‬‬ ‫ٍﺇﺫﻥ ‪. (∆ ) : y = 6 x - 16 :‬‬ ‫‪ - 3‬ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ‪:‬‬ ‫ﺘﻌﺭﻴﻑ ‪ f :‬ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ ‪ x‬ﻤﻥ ﻤﺠﺎل ‪ I‬ﻤﻥ‬ ‫ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ ‪. D f‬‬ ‫ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ ‪ x‬ﻤﻥ ‪ I‬ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ‬ ‫‪ x‬ﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ ‪ f ′‬ﺤﻴﺙ ‪f ′: x a f ′(x) :‬‬ ‫ﻤﺜﺎل ‪:‬‬ ‫ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ ‪ f : x a x 2‬ﻋﻨﺩ ﻋﺩﺩ ‪ x0‬ﻤﻥ ‪. ℜ‬‬ ‫ﺍﺴﺘﻨﺘﺞ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ‪.‬‬ ‫ﺤـل ‪:‬‬‫‪lim‬‬ ‫‪f ( x0 + h) - f ( x0 ) = lim‬‬ ‫‪( x0‬‬ ‫‪+ h)2‬‬ ‫‪-‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪0‬‬‫‪h→0 h‬‬ ‫‪h→0 h‬‬ ‫‪= lim‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪+ 2x0h‬‬ ‫‪+ h2‬‬ ‫‪-‬‬ ‫‪x‬‬ ‫‪2‬‬ ‫‪= lim‬‬ ‫‪2x0h + h2‬‬ ‫‪0‬‬ ‫‪0‬‬ ‫‪h→0 h‬‬ ‫‪h→0 h‬‬ ‫‪h(2x0 +‬‬ ‫‪h) = lim‬‬ ‫‪h‬‬ ‫‪h→0‬‬ ‫‪( )= lim‬‬ ‫‪h→ 0‬‬ ‫‪2x0 + h = 2x0‬‬ ‫ﻭﻋﻠﻴﻪ ‪ f‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ x0‬ﺤﻴﺙ ‪f ′( x0 ) = 2x0 :‬‬ ‫ﻭﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻫﻲ ﺍﻟﺩﺍﻟﺔ ' ‪ f‬ﺤﻴﺙ ‪:‬‬ ‫‪f ′: x a f ′(x) = 2 x‬‬

: ‫ ﻤﺸﺘﻘﺎﺕ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺄﻟﻭﻓﺔ‬- 4 f : x a a : ‫ ﺤﻴﺙ‬f ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬1 lim f (x) - f (x0 ) = lim a-a = 0 x - x0 x - x0 x→ x0 x→ x0 . f′ :x a 0 : ‫ﻭﻋﻠﻴﻪ‬ : ‫ ﺤﻴﺙ‬f ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬2 Df = ℜ* ; f : x a 1 x 1- 1 x0 - xlim f (x) - f (x0 ) = lim x x0 = lim x x0 x - x0 x - x0 x→ x0 x - x0x→ x0 x→ x0 = lim - (x - x0 ) × 1 = lim - 1 = −1 x→ x0 x x0 - x0 x x0 x02 x x→ x0 . f′ :x a -1 x2 : ‫ﻭ ﻋﻠﻴﻪ‬ Df = ℜ ‫ ؛‬n ∈ ℜ ‫ ﻤﻊ‬f : x a xn : ‫ ﺤﻴﺙ‬f ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬3 lim f (x) - f (x0 ) = lim xn - x0n x→ x0 x - x0 x→ x0 x - x0= lim (x - x0 ) (xn - 1 + x0 xn - 2 + x02 xn -3 + ... + x n−1 ) 0x→ x0 x - x0 = lim (xn - 1 + x0 xn - 2 + x02 xn -3 + ... + x n−1 ) x→ x0 0 = x0n - 1 + x0n - 1 + ... + xn - 1 ( ‫ ﻤﺭﺓ‬n) 0 = n . x0n - 1 . f ′ : x a n.xn - 1 : ‫ﻭﻋﻠﻴﻪ‬

f :x a x : ‫ ﺤﻴﺙ‬f ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬4 ] [ [ [0 ; + ∞ ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬f ‫ ﺍﻟﺩﺍﻟﺔ‬، D f = 0 ; + ∞lim f (x) - f (x0 ) = lim x - x0 : ‫ﻟﺩﻴﻨﺎ‬x→ x0 x - x0 x→ x0 x - x0lim f (x) - f (x0 ) = lim ( x - x0 ) ( x + x0 )x→ x0 x - x0 x→x0 ( x - x0 ) ( x + x0 )lim f (x) - f (x0 ) = lim x - x0 : ‫ﻭ ﻤﻨﻪ‬x→ x0 x - x0 x→x0 ( x - x0 )( x + x0 ) = lim 1 =1 x→ x0 x + x0 2 x0 . f′ :x a 1 : ‫ﻭﻋﻠﻴﻪ‬ 2x f : x a Sin x : ‫ ﺤﻴﺙ‬f ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬5lim f (x) - f (x0 ) = lim Sin x - Sin x0x→ x0 x - x0 x→ x0 x - x0 2Sin  x - x0  Cos  x + x0   2   2  = lim x→ x0 x - x0 2Sin  x - x0   2  = lim × Cos  x + x0  x→ x0  2  x -x0 = cos x0 . f ' : x a Cos x : ‫ﻭ ﻋﻠﻴﻪ‬

f : x a Cos x : ‫ ﺤﻴﺙ‬f ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬6 lim f (x) - f (x0 ) = lim Cos x - Cos x0 x→ x0 x - x0 x→ x0 x - x0 -2Sin  x - x0  Sin  x + x0   2   2 lim f (x) - f (x0 ) = lim x - x0 x→ x0x→ x0 x - x0 Sin  x - x0   2  = lim - Sin  x + x0  . = - Sin x0 x→ x0  2  x - x0 2 . f ′ : x a - Sin x : ‫ﻭ ﻋﻠﻴﻪ‬ : ‫ ﺤﺴﺎﺏ ﻤﺸﺘﻘﺎﺕ ﺍﻟﺩﻭﺍل‬- 5 . I ‫ ﺩﺍﻟﺘﺎﻥ ﺘﻘﺒﻼﻥ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل‬g ‫ ﻭ‬f : f + g ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬1lim (f+g)(x) - (f+g)(x0 ) = lim f(x)+g(x) - f(x0 )- g(x0 ) x - x0 x→ x0 x - x0x→ x0 = lim f(x) - f(x0 ) + lim g (x) - g (x0 ) x→ x0 x - x0 x→ x0 x - x0 = f ′(x0 ) + g′ (x0 ) : ‫ ﺤﻴﺙ‬I ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬f + g ‫ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ‬ . ( f + g)′ = f ′+ g′ : f . g ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬2

lim (f.g) (x) - (f.g) (x0 ) = lim f(x).g (x) - f (x0 ).g (x0 ) x - x0 x - x0x→ x0 x→ x0= lim f (x).g (x) - f (x) . g (x0 ) + f (x) . g (x0 ) - f (x0 ).g (x0 ) x→x0 x - x0= lim f(x)  g(x) - g(x0 ) + g (x0 )  f(x)- f(x0 ) x - x0 x - x0 x→ x0 = f (x0 ) . g′ (x0 ) + g (x0 ) . f ′(x0 ) : ‫ ﺤﻴﺙ‬I ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬f . g ‫ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ‬ . ( f . g)′ = f ′. g + f . g′ 1 I ‫ ﻻ ﺘﻨﻌﺩﻡ ﻋﻠﻰ‬g ‫ ﺤﻴﺙ‬: g ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬3  1 (x) -  1 (x0 ) 1 - 1     g (x) g (x0 )lim  g   g  = limx→ x0 x - x0 x→ x0 x - x0 = lim -( g (x) - g (x0 )) × 1 x → x0 x - x0 g (x) . g (x0 ) = lim -1 . ( g (x) - g (x0 )) x → x0 g (x) . g (x0 ) x - x0 = -1 × g′ (x0 ) = - g′ (x0 )  g (x0 ) 2  g (x0 ) 2 1 : ‫ ﺤﻴﺙ‬I ‫ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ‬g ‫ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﺩﺍﻟﺔ‬ .  1 ′ = -g′   g2  g 

f : g ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬4  f ′ =  f × 1 ′ =f ′. 1 + f .  1 ′ : ‫ﻟﺩﻴﻨﺎ‬  g   g  g  g   f ′ = f′ +f  - g′  : ‫ﺃﻱ‬  g  g      g2  .  f ′ = f ′.g - f .g′ : ‫ﻭ ﻋﻠﻴﻪ‬  g  g2 g : x a f (a x + b ) : ‫( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬5lim g (x) - g (x0 ) = lim f (a x + b) - f (a x0 + b) x - x0 x → x0 x - x0x → x0 ‫ ﻨﺠﺩ‬u0 = a x0 + b ، u = a x + b : ‫ﺒﻭﻀﻊ‬lim f (u) - f (u0 ) = lim f (u) - f (u0 ) × u - u0 x - x0 u - u0 x - x0x → x0 x → x0 = lim f (u) - f (u0 ) × a x + b - a x0 - b x → x0 u - u0 x - x0 = lim f (u) - f (u0 ) × a (x - x0 ) x → x0 u - u0 x - x0 = lim a × f (u) - f (u0 ) u - u0 x → x0 = a . f ′(u) = a . f ′(a x + b) g : x a f ( a x + b) : ‫ﺇﺫﻥ ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ‬ . g ' : x a a . f ′( a x + b) : ‫ﻫﻲ ﺍﻟﺩﺍﻟﺔ‬

‫ﻤﺜﺎل ‪ :‬ﻋﻴﻥ ﻤﺸﺘﻕ ﻜل ﻤﻥ ﺍﻟﺩﻭﺍل ‪:‬‬‫‪f :x a‬‬ ‫‪1‬‬ ‫;‬ ‫‪g : x a ( x + 2)3‬‬ ‫‪x+1‬‬‫‪h:x a x-2‬‬ ‫ﺤـل ‪:‬‬ ‫‪Df‬‬ ‫}‪= ℜ - {- 1‬‬ ‫‪.‬‬ ‫= )‪f (x‬‬ ‫‪x‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫•‬ ‫‪+‬‬ ‫‪-1‬‬ ‫‪f′‬‬ ‫= )‪(x‬‬ ‫‪(x‬‬ ‫‪+ 1)2‬‬ ‫ﻭ ﻤﻨﻪ ‪:‬‬ ‫• ‪ g (x ) = ( x + 2)3‬؛ ‪Dg = ℜ‬‬‫ﻭ ﻤﻨﻪ ‪g′ (x) = 3 × 1 (x + 2)2 = 3 (x + 2)2 :‬‬ ‫• ‪Dh = [2 ; +∞[ , h (x) = x - 2‬‬ ‫ﺍﻟﺩﺍﻟﺔ ‪ h‬ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ∞ ‪ 2 ; +‬ﺤﻴﺙ ‪] ]:‬‬ ‫‪h′ (x) = 1‬‬ ‫‪2 x-2‬‬ ‫‪ - 6‬ﺍﻟﺭﺒﻁ ﺒﻴﻥ ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ ﻭ ﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ ‪:‬‬ ‫ﻟﺘﻜﻥ ‪ f‬ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ‪. I‬‬ ‫‪ -‬ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻌﺩﻭﻤﺔ ﻋﻠﻰ ‪ I‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺜﺎﺒﺘﺔ ﻋﻠﻰ ‪. I‬‬ ‫‪ -‬ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪ I‬ﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺘﺯﺍﻴﺩﺓ‬ ‫ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪. I‬‬ ‫‪ -‬ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺴﺎﻟﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪ I‬ﻓﺎﻥ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻤﺘﻨﺎﻗﺼﺔ‬ ‫ﺘﻤﺎﻤﺎ ﻋﻠﻰ ‪. I‬‬ ‫‪ - 7‬ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺩﻴﺔ ﻟﺩﺍﻟﺔ ‪:‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل ‪ x0 . I‬ﻋﻨﺼﺭ ﻤﻥ ‪. I‬‬ ‫ﺇﺫﺍ ﺍﻨﻌﺩﻤﺕ ﺍﻟﺩﺍﻟﺔ ‪ f ′‬ﻋﻨﺩ ‪ x0‬ﻤﻐﻴﺭﺓ ﺇﺸﺎﺭﺘﻬﺎ ﻓﺈﻥ ) ‪ f (x0‬ﻗﻴﻤﺔ‬

‫ﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻠﻰ ‪. I‬‬ ‫‪x‬‬ ‫‪x0‬‬ ‫‪0‬‬ ‫‪-‬‬‫)‪f '(x‬‬ ‫‪+‬‬‫)‪f (x‬‬ ‫)‪f (x0‬‬ ‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ) ‪ f (x0‬ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻋﻅﻤﻰ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬ ‫‪x‬‬ ‫‪x0‬‬ ‫‪0‬‬ ‫‪+‬‬‫)‪f '(x‬‬ ‫‪-‬‬‫)‪f (x‬‬ ‫)‪f (x0‬‬ ‫ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ) ‪ f (x0‬ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ ‪. f‬‬

‫ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 1‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ‪. f (x) = 4 x2 + x - 5 :‬‬ ‫‪ -‬ﺃﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﺸﺘﻘﺎﻕ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ‪. 3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 2‬‬ ‫‪ -‬ﺃﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍ ٍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ ‪ x0‬ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ ‪:‬‬ ‫‪f (x) = x4 ; x0 = 1 (1‬‬ ‫‪f (x) = x3 + 1 ; x0 = - 1 (2‬‬ ‫= )‪f (x‬‬ ‫‪2‬‬ ‫‪; x0 = 3 (3‬‬ ‫‪x‬‬‫)‪(Cf‬‬ ‫‪y‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 3‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪A‬‬ ‫ﻨﻌﺘﺒﺭ ‪ C f‬ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ‪( )f‬‬ ‫‪4‬‬ ‫‪3‬‬ ‫‪2x‬‬ ‫ﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ ℜ‬ﻭﻟﻴﻜﻥ ∆ ﻤﻤﺎﺴﺎ) (‬ ‫‪2‬‬ ‫‪1‬‬ ‫ﻟﻠﻤﻨﺤﻨﻰ ‪ C f‬ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ) (‬‫‪-2 -1 0‬‬ ‫‪1‬‬ ‫ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل ‪:‬‬ ‫‪-1‬‬ ‫‪ -‬ﺍﺤﺴﺏ ﻤﻥ ﺨﻼل ﺍﻟﺸﻜل )‪. f ′(2‬‬ ‫‪ -‬ﺜﻡ ٍﺍﺴﺘﻨﺘﺞ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆) (‬ ‫‪-2‬‬ ‫‪-3‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 4‬‬ ‫)∆( ‪-4‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ f‬ﺤﻴﺙ ‪f (x) = - x + 4 :‬‬ ‫‪B-5‬‬ ‫‪ (1‬ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍ ٍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ ‪ f‬ﻋﻨﺩ ﺍﻟﻌﺩﺩ ‪. -4‬‬ ‫‪-6‬‬

‫‪ (2‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ‪ C f‬ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ‪( ). -4‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 5‬‬‫‪ (1‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ‪ C f‬ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪( ):‬‬‫‪ y = - x2 + 5‬ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ‪.1‬‬‫‪ (2‬ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ‪ C g‬ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪( ):‬‬ ‫ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ‪. -5‬‬ ‫‪y‬‬ ‫=‬ ‫‪-‬‬ ‫‪5‬‬ ‫‪x‬‬ ‫‪ (3‬ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻤﺎﺴﻴﻥ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 6‬‬‫ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪ y = -x + 2 :‬ﻫﻭ ﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ‪ Cf‬ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ‪( ):‬‬ ‫ﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ ‪. 1‬‬ ‫=‪y‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 7‬‬‫ﻨﻌﺘﺒﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺠﺒﺭﻴﺔ ‪p (x) = -4 x3 + 6 x2 - 2 :‬‬ ‫‪ (1‬ﺍﺤﺴﺏ )‪ p (1‬ﺜﻡ ٍﺍﺴﺘﻨﺘﺞ ﺘﺤﻠﻴﻼ ﻟـ )‪. p (x‬‬ ‫‪ (2‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ ‪ f‬ﻭ ‪ g‬ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﻜﻤﺎ ﻴﻠﻲ ‪:‬‬‫= )‪g (x‬‬ ‫‪2‬‬ ‫َﻭ‬ ‫‪f ( x) = −4x2 + 6x‬‬ ‫‪x‬‬‫‪-‬ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ‪َ Cf‬ﻭ ‪ Cg‬ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ﺍﻟﻤﻤﺜﻠﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ ‪َ f‬ﻭ‪( ) ( ).g‬‬‫‪ (3‬ﺒﻴﻥ ﺃﻥ ‪َ Cf‬ﻭ ‪ Cg‬ﻴﻘﺒﻼﻥ ﻤﻤﺎﺴﺎ ﻤﺸﺘﺭﻜﺎ ﻓﻲ ﺍﻟﻨﻘﻁﺔ ‪ B‬ﺫﺍﺕ) ( ) (‬ ‫ﺍﻟﻔﺎﺼﻠﺔ ‪. 1‬‬

‫ﺍﻟﺘﻤﺭﻴﻥ‪. 8‬‬ ‫‪[ [f (x) = x3‬‬ ‫‪rr‬‬ ‫ﺒﺎﻟﻌﺒﺎﺭﺓ ‪:‬‬ ‫∞‪0 ; +‬‬ ‫‪ f‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ‬ ‫‪ Cf‬ﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ‪( ) ( ). O ; i , j‬‬ ‫‪ A‬ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﻨﺤﻨﻰ ‪ Cf‬ﻓﺎﺼﻠﺘﻬﺎ ‪( ). x0‬‬ ‫‪ (1‬ﺃﻨﺸﺊ ‪ Cf‬ﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ ‪ uHr.‬ﺍ‪u‬ﻟﻤ‪u‬ﺴﻘﻁ ﺍﻟﻌﻤﻭ‪r‬ﺩ‪u‬ﻱ‪ u‬ﻟﻠﻨﻘﻁﺔ ‪ A‬ﻋﻠﻰ ﻤﺤﻭﺭ) (‬ ‫ﺍﻟﺘﺭﺍﺘﻴﺏ ‪ I .‬ﻨﻘﻁﺔ ﺤﻴﺙ ‪. HI = 3 HO :‬‬ ‫‪ (2‬ﺃﻨﺸﺊ ﺍﻟﻤﺴﺘﻘﻴﻡ )‪. (AI‬‬ ‫‪ (3‬ﻋﻴﻥ ﺒﺩﻻﻟﺔ ‪ٍ x0‬ﺍﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁ ‪. I , H , A‬‬ ‫‪ (4‬ﺒﻴﻥ ﺃﻥ )‪ (AI‬ﻫﻭ ﻤﻤﺎﺱ ‪ Cf‬ﻓﻲ ‪( ). A‬‬ ‫‪ (5‬ﺍﺴﺘﻌﻤل ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻹﻨﺸﺎﺀ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ‪ Cf‬ﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ) (‬ ‫ﺍﻟﻔﺎﺼﻠﺔ ‪. 1‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 9‬‬ ‫ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻭ ﻤﺠﻤﻭﻋﺔ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ‬ ‫ﻜﻤﺎ ﻴﻠﻲ ﻭﺍﺤﺴﺏ ﺩﻭﺍﻟﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ ‪.‬‬‫‪ f : x a -x2+ 5x - 3 (1‬؛ ‪f : x a ( x - 2) ( x + 5) (2‬‬ ‫‪f:x a‬‬ ‫‪1‬‬ ‫‪(4‬‬ ‫؛‬ ‫‪f : x a 4 ( x - 5)2 (3‬‬ ‫‪5+x‬‬‫‪f :x a‬‬ ‫‪x+3-‬‬ ‫‪2‬‬ ‫‪ f : x a‬؛ ‪(6‬‬ ‫‪-x2 - x + 4‬‬ ‫‪(5‬‬ ‫‪x+3‬‬ ‫‪− 4x2 + 5x -1‬‬‫‪f:x a‬‬ ‫‪2x - 3‬‬ ‫‪(8‬‬ ‫‪ f:x a‬؛‬ ‫‪2x - 5 (7‬‬ ‫‪x-4‬‬‫‪ f : x a Sin x - Cos x (9‬؛ ‪f : x a Sin x .Cos x (10‬‬‫‪f:xa‬‬ ‫‪Cos x - 1‬‬ ‫‪(12‬‬ ‫؛‬ ‫‪f:xa‬‬ ‫‪3‬‬ ‫‪Cos‬‬ ‫‪‬‬ ‫‪2x‬‬ ‫‪-‬‬ ‫‪π‬‬ ‫‪(11‬‬ ‫‪Cos x - 2‬‬ ‫‪‬‬ ‫‪2 ‬‬

‫‪f:xa‬‬ ‫‪Sin x‬‬ ‫‪(13‬‬ ‫‪1 + 2 Sin x‬‬ ‫‪f : x a Sin x + 3 Cos x (14‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 10‬‬‫‪ f‬ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ‪ Cf‬ﻋﻠﻰ ﺍﻟﻤﺠﺎل ‪ -3 ; 3‬ﻭﻫﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ) ( ] [‬ ‫]‪. [-3 ; 3‬‬ ‫‪y‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬‫‪-4 -3 -2 -1 0 1 2 3 4 x‬‬‫‪-1‬‬ ‫‪ (1‬ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪. f (3-)2; f (-3) ; f (-1) ; f (0) ; f (2) :‬‬ ‫‪ (2‬ﺍﺤﺴﺏ ‪. f ′(-1 ) ; f ′( 2 ) :‬‬‫‪ (3‬ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ ‪ g‬ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ ‪ −3 ; 0 ∪ 0 ; 3‬ﺒﺎﻟﻌﺒﺎﺭﺓ ‪[ [ ] ]:‬‬ ‫‪.‬‬ ‫)‪g(x‬‬ ‫=‬ ‫‪‬‬ ‫‪1‬‬ ‫‪‬‬ ‫)‪(x‬‬ ‫‪‬‬ ‫‪f‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬‫‪ -‬ﺍﺤﺴﺏ ﻜل ﻤﻥ ‪g (-3) ، g (-1) ، g (2) ، g (3) :‬‬ ‫‪ -‬ﺍﺤﺴﺏ )‪. g′ (2‬‬‫‪ -‬ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ ‪ . g‬ﻭﺍﻜﺘﺏ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ‪.‬‬ ‫ﺍﻟﺘﻤﺭﻴﻥ‪. 11‬‬‫‪ f‬ﺩﺍﻟﺔ ﺘﻘﺒل ﺍ ٍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ‪ -5 ; 7‬ﻭﻤﻌﺭﻓﺔ ﺒﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻵﺘﻲ ‪[ ]:‬‬ ‫‪y‬‬ ‫‪4‬‬ ‫‪3‬‬


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook