. α = -177π (6 ؛ =α 1962π ؛ (5 α = 410π (4 4 ﺍﻟﺘﻤﺭﻴﻥ. 8 -ﻋﻴﻥ ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ﻨﻘﻁﺔ Mﻤﺭﻓﻘﺔ ﺒﺎﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ x . x ∈ 0 ; π ﺤﻴﺙ : 6 -ﻋﻴﻥ ﺍﻟﻨﻘﻁ F , I , L , T , Sﺍﻟﻤﻌﻴﻨﺔ ﺒﺎﻷﻋﺩﺍﺩ : ; π+x ; π-x π +x ; π -x ; -x 2 2 -ﺍﺤﺴﺏ ﺇﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﻨﻘﻁ ﺒﺩﻻﻟﺔ xﻭ ﺍﺫﻜﺭ ﺇﺸﺎﺭﺓ ﺇﺤﺩﺍﺜﻴﻲ ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﻨﻘﻁ . ﺍﻟﺘﻤﺭﻴﻥ. 9 ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ :cos x + 11π ; sin )( x + 4π ; )cos ( x + 25π 2 )cos ( x + 2007π ; sin 15π - x 2 ﺍﻟﺘﻤﺭﻴﻥ. 10 ﺃﻜﺘﺏ ﺒﺩﻻﻟﺔ tan xﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ :)tan( x + 20π ; tan x - 13π ; )tan( x + 13π 2 tan π - x ; tan π + x 2 2
ﺍﻟﺘﻤﺭﻴﻥ. 11ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺤﺎﺴﺒﺔ :ﺍﺤﺴﺏ ﺍﻟﻘﻴﻡ ﺍﻟﻤﺩﻭﺭﺓ ﺇﻟﻰ 10- 5ﻟﻸﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ : cos π ; sin π ; cos π ; sin π 5 5 7 15 2π 13πcos 9 ; sin π ; cos 5 10 ﺍﻟﺘﻤﺭﻴﻥ. 12cos x = 0,3 َﻭ -π <x <0 ﺍﺤﺴﺏ sin xﻭ tan xﻋﻠﻤﺎ ﺃﻥ : 2 ﺍﻟﺘﻤﺭﻴﻥ. 13x ∈ 0 ; π َﻭ sin x = 3 ﺍﺤﺴﺏ cos xﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ : 2 5 ﺍﻟﺘﻤﺭﻴﻥ. 14 ﺍﺤﺴﺏ cos xﻭ tan xﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ : sin x = -0,6 َﻭ 3π <x < 2π 2 ﺍﻟﺘﻤﺭﻴﻥ. 15
x ∈ π ; π َﻭ = cos x 6- 2 2 ﻨﻀﻊ 4 : -ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﻘﻴﻘﻴﺔ ﻟـ sin x؟ ﺍﻟﺘﻤﺭﻴﻥ. 16 ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل 0 ; 2πﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ [ ]:)1 cos x = 1 ; = 2) cos x 3 2 23) sin x = -2 ; = 4) sin x -1 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 17 ﺤل ﻓﻲ -π , πﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺜﻡ ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ ] ].)1 ) sin (2 x = - 3 ; )2 )cos(2 x = 1 2 23) cos x = -3 ; 4) sin x = -1 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 18 ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , πﺍﻟﻤﻌﺎﺩﻟﺔ [ ]: 4cos2 x - 2 (1 + 2 ) cos x + 2 = 0 ﺍﻟﺘﻤﺭﻴﻥ. 19 ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , 2πﻜل ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺜﻡ ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ [ ]:
1 ) cos x ≤ 0 ; ≤ 2) cos x 2 ; ≥ 3) sin x 3 2 2 ﺍﻟﺘﻤﺭﻴﻥ. 20 ﺍﻜﺘﺏ ﻜل ﻤﻥ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ ﺍﻟﺘﺎﻟﻴﺘﻴﻥ ﺒﺩﻻﻟﺔ َ cos xﻭ : sin x )sin (3x) ; cos (4x ﺍﻟﺘﻤﺭﻴﻥ. 21 ﺒﺭﻫﻥ ﻋﻠﻰ ﺼﺤﺔ ﺍﻟﻤﺴﺎﻭﻴﺎﺕ ﺍﻵﺘﻴﺔ :1) cos4 x - sin4 x = cos2 x2) 2cos4 x + 2 sin4 x + sin2 (2x) = 23) cos 2 x × sin 2 x = 1- cos 4x 8 ﺍﻟﺘﻤﺭﻴﻥ. 22= . cos x + sin x 2 cos x + π (1ﺒﺭﻫﻥ ﺃﻥ : 4 = . cos x + sin x 2 (2ﺤل ﻓﻲ ℜﺍﻟﻤﻌﺎﺩﻟﺔ : 2 (3ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ . )*( ﺍﻟﺘﻤﺭﻴﻥ. 23 -1ﺒﺴﻁ ﺍﻟﻌﺒﺎﺭﺓ p (x) = sin 2x + sin x + sin 3 x : -2ﺤل ﻓﻲ ℜﺍﻟﻤﻌﺎﺩﻟﺔ . p (x) = 0 :
)*( ﺍﻟﺘﻤﺭﻴﻥ. 24 (1ﺍﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺓ p( x ) = cos x - 3 sin x : ﻋﻠﻰ ﺍﻟﺸﻜل p( x ) = a cos ( x - θ ) : (2ﺤل ﻓﻲ ℜﺍﻟﻤﻌﺎﺩﻟﺔ . p (x) = 0 : (3ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , πﺍﻟﻤﺘﺭﺍﺠﺤﺔ [ ]p ( x ) ≥ 0 : )*( ﺍﻟﺘﻤﺭﻴﻥ. 25sin x - > 3 cos x ﺤل ﻓﻲ ℜﺍﻟﻤﺘﺭﺍﺠﺤﺔ 2 : 3 = tan π ﻴﻤﻜﻥ ﻭﻀﻊ : 3 )*( ﺍﻟﺘﻤﺭﻴﻥ. 26 ﺤل ﻓﻲ ℜﺍﻟﻤﻌﺎﺩﻟﺔ cos x + 3 sin x = 1 : ﻴﻤﻜﻥ ﺇﺩﺨﺎل ﻋﺩﺩ αﺤﻴﺙ . tan α = 3 : ﺍﻟﺘﻤﺭﻴﻥ. 27 ﺤل ﻓﻲ ℜﺍﻟﻤﻌﺎﺩﻟﺔ :cos2 2x + π = sin2 -x + π 2 4 ﺜﻡ ﻤﺜل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ.
ﺍﻟﺤﻠـــــــﻭل . 1ﺍﻟﺘﻤﺭﻴﻥuur uuur uur uuur uuur uuur : ﺤﺴﺎﺏ ﺃﻗﻴﺎﺱ ﺍﻟﺯﻭﺍﻴﺎ-( ) ( ) ( )1) AI , AC = AI , AB + AB , AC + 2kπ ; k ∈Z ( )uur uuur = α + π + 2kπ ; k∈Z : ﻭ ﻤﻨﻪ AI , AC 2uuur uuur uuur uuur( ) ( )2) AB , BC = π + BA , BC + 2kπ ; k ∈ Z ( )uuur uuur = π - π + 2kπ , k∈Z : ﻭ ﻤﻨﻪ AB , BC 4 ( )uuur uuur = 3π + 2kπ ; k∈Z : ﺃﻱ 4 AB , BC uur uuur uur uuur uuur uuur( ) ( ) ( )3) AI , BC = AI , AB + AB , BC + 2kπ ; k ∈Z( )uur uuur =α + 3π + 2kπ ; k∈Z : ﻭ ﻤﻨﻪ AI , BC 4 . 2ﺍﻟﺘﻤﺭﻴﻥuuur uuur ( k ∈ Z : ) ﻓﻲ ﻜل ﻤﻤﺎ ﻴﻠﻲ ﻨﺄﺨﺫ: ﺤﺴﺎﺏ ﺃﻗﻴﺎﺱ ﺍﻟﺯﻭﺍﻴﺎAB , AC( )1) • = π + 2kπ A 3 uuur uuur -π DC , DA 2( )• = + 2Ekπ D BC
uuur uuur uuur uuur uuur uuur( ) ( ) ( )• CB , CD = CB , CA + CA , CD uuur uuur =uuuπ4r + 2kπ uuur uuur( )• AE , AB uuur uuur uuur( ) ( ) ( )• BC , BE = BC , BA + BA , BE= π + π + 2kπ = 7π + 2kπ 3 4 12 uuur uuur uuur uuur uuur uuur( ) ( ) ( )2) • ED , EA + DA , DE + AE , AD = π +2kπ( ) ( )uuur uuur: ﺴﺎﻗﻴﻥ ﻓﺈﻥuﺍﻟuﻱurﻤﺘﺴﺎﻭuuAurED ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﺜﻠﺙ ED , EA = DA , DE uuur uuur uuur uuur uuur uuur :uﺩuﺠuﻨrﺸﻜلuﺍﻟuﻥuﻤrﻭ( ) ( ) ( ) ( )AE , AD = AE , AB + AB , AC + AC , AD= π + π + π = 10π = 5π 4 3 4 12 6 ( )uuur uuur 5π + 6 =π : ﻭ ﻤﻨﻪ 2 × ED , EA uuur uuur 5π EA , ED 6 ( )- 2× + = π : ﻭﻋﻠﻴﻪ ( )uuur uuur =π - 5π = π : ﺃﻱ 6 6 - 2 × EA , ED uuur uuur -π EA , ED 12( ). = + 2kπ : ﺇﺫﻥ ( ) ( ) ( )uuur uuur uuur uuur uuur uuur• EA , CB = EA , EB + EB , CB + 2kπ uuur uuur -π BE , BC( )= 2 + + 2kπ
= -π + - 7π + 2kπ 2 12 - 13π = 1uu2ur + 2kπuuur uuur uuur uuur uuur( ) ( ) ( )• EC , BA = EC , EB + EB , BA + 2kπ uuur uuur -π BE , BA ( )=4 + π + + 2kπ = -π +π + -π + 2kπ 4 4 = uπ2uur+ 2kπ uuuruuur uuur uuur uuur( ) ( ) ( )• EC , BA = EC , EB + EB , BA + 2kπ uuur uuur -π BE , BA ( )=4 +π + + 2kπ = -π +π + -π + 2kπ 4 4uuur uuur uuur =uπu2ur+ 2kπ uuur uuur( ) ( ) ( )• EC , DB = EC , BA + BA , DB + 2kπ uuur uuur π BA , BD ( )= 2 +π + + 2kπ = 3π + -π + 2kπ = 4π + 2kπ 2 6 3 . 3ﺍﻟﺘﻤﺭﻴﻥ ( k ∈ Z ) ﻨﻌﺘﺒﺭ ﻓﻴﻤﺎ ﻴﻠﻲ: ( ﺍﻟﺤﺴﺎﺏ1 : ﻟﺩﻴﻨﺎABC ﻓﻲ ﺍﻟﻤﺜﻠﺙ
uuur uuur uuur uuur uuur uuur( ) ( ) ( )• AB , AC + BC , BA + CA , CB = π uuur uuur ( )56πuu+ur2× BC , BA =π : ﻤﻨﻪ ﻭ uuur uuur uuur ( ) ( )BC , BA = CA , CB : ﻷﻥ uuur uuur CA , CB ( ) ( )uuur uuur = = π + 2kπ : ﻭﻤﻨﻪ 12 BC , BA uuur uuur ( ) ( )uuur uuur• AC , CB = π + CA , CB + 2kπ =π + π + 2kπ 12 13π = 12 + 2kπ : ( ﺍﻟﺤﺴﺎﺏ2 : ﻟﺩﻴﻨﺎDAC ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ uuur uuur DC AC , AD π ( )sin AC = 6 + 2kπ DAC = َﻭ *. DC = 1 :ﺃﻱ DC = 2 × 1 sin π = DC :ﻭﻤﻨﻪ 2 :ﺇﺫﻥ 6 2 DA DA cos π = 2 : ﻭﻤﻨﻪ cos DAC = AC * 6. DA = 3 : ﺃﻱ DA = 2cos π = 2× 3 : ﻭﻋﻠﻴﻪ 6 2 . DB = 3 + 2 : ﻭﻋﻠﻴﻪDB = DA + AB * BC2 = DB2 + DC2 : ﻟﺩﻴﻨﺎDCB ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ( )BC2 = 8 + 4 3 ﺃﻱBC2 = 3 + 2 2 + (1)2 : ﻭﻤﻨﻪ . BC = 2 2 + 3 : ﺃﻱBC = 8 + 4 3 : ﺇﺫﻥ
: cos π ; sin π ﺍﺴﺘﻨﺘﺎﺝ- 12 12 DC sin DBC = BC : ﻟﺩﻴﻨﺎDBC ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ sin π = 1= 1 : ﺇﺫﻥ 12 8 + 4 3 8 + 2 12 =1 ( ) ( )2 2 + 2 2 . 6 + 6 2 = 1 =1 ( 2 + )6 2 2+ 6 =( 2+ 2- 6 6) 6) ( 2 - = 2- 6 = 2- 6 = 6- 2 2-6 −4 4cos π = cos DBC = DB = 3 +2 12 BC 8+4 3 = 3 +2 = ( 3 + 2) ( 2- 6) 2+ 6 ( 2 + 6) ( 2- 6) cos π = 6 - 18 + 2 2 - 2 6 : ﻭ ﻤﻨﻪ 12 2-6 = 6 -3 2 +2 2 -2 6 -4 =- 6- 2= 6+ 2 -4 4
ﺍﻟﺘﻤﺭﻴﻥ. 4 ( )uuuur uuuur ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ : M MB , MC = 0 + k (2π) ; k ∈ Z ( 1 ﺘﻌﻨﻲ ﺃﻥ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (BCﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻘﻁﻌﺔ [ ]BC ( )uuuur uuuur ﻭﻟﺘﻜﻥ ( ). γ1 MC , MB = π )+ k (2π ; k∈Z (2 2 ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ Mﻨﻘﻁﺔ ﻤﻥ ﻗﻭﺱ ﺍﻟﺩﺍﺌﺭﺓ ﺫﺍﺕ ﺍﻟﻘﻁﺭ BCﺒﺎﺴﺘﺜﻨﺎﺀ] [( ) ( )uuur uuuur uuuur uuur َ Bﻭ Cﻭﻟﺘﻜﻥ ( ). γ 2AB , AM = AM , AC + k (2π) ; k ∈ Z ( 3( ) ( )uuur uuurﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ Mﻨﻘﻁﺔ ﻤﻥ ﻤﻨﺘﺼﻑ ﺍﻟﺯﺍﻭﻴﺔ AB , ACﺒﺎﺴﺘﺜﻨﺎﺀ ﺍﻟﻨﻘﻁﺔ Aﻭﻟﺘﻜﻥ . γ 3) (γ1 ) (γ 3 ) C (γ 2 ) A B (γ1
ﺍﻟﺘﻤﺭﻴﻥ. 5• -5π = -π - 4π . M 5 ( 25π ) 6• -13π = -π )- 4π .M1(-5π 3 3 3π 3π• 2 = 2 + 0 × π . M6 ( 21π ) M ( -13π ) 4 3 2 15π 3π 3π• 2 = π = + 7π 2 + 6π . M 3 ( 2 ) 2 25π M 4 ( 15π ) 6 2 π• = 6 + 4π .• 21π = π + 5π = 5π + 4π . 4 4 4 ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺘﻌﻴﻴﻥ ﺍﻷﻗﻴﺎﺱ ﺍﻟﺭﺌﻴﺴﻴﺔ : 1830π = (3 × 610) π = 0 + 610π ( 1ﻟﺩﻴﻨﺎ : 3 3 ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . 0 : 177π = (4 × 44 + 1) π = π + 44π ( 2ﻟﺩﻴﻨﺎ : 4 4 4 π ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . 4 :
2007π = (5 × 401+2) π = 2π + 401π ( 3ﻟﺩﻴﻨﺎ : 5 5 5 2π -3π = 5 -π + 402π = 5 + 402π - 3π ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . 5 : ( 4ﻟﺩﻴﻨﺎ -13π = π - 14π :ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . π : ( 5ﻟﺩﻴﻨﺎ 120π = 0 + 120π :ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . 0 : ( 6ﻟﺩﻴﻨﺎ 99π = π + 98π : ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . π :344π = (7 × 49 + 1) π = π + 49π ( 7ﻟﺩﻴﻨﺎ : 7 7 7 - 6π = π - π + 50π = 7 + 50π 7 - 6π ﺇﺫﻥ ﺍﻟﻘﻴﺱ ﺍﻟﺭﺌﻴﺴﻲ ﻫﻭ . 7 : ﺍﻟﺘﻤﺭﻴﻥ. 7 α = 2007π = π + 334π ( 1ﻟﺩﻴﻨﺎ : 6 2= sinα sin π = 1 ﻭ cos α = cos π = 0 ﻭﻤﻨﻪ : 2 2 α = 1427π = 2π + 475π ( 2ﻟﺩﻴﻨﺎ : 3 3 2π -π= 3 -π + 476π = 3 + 476π cos α = cos -π = cos π = 1 ﻭﻤﻨﻪ : 3 3 2
sin α = sin -π = - sin π = - 3 3 3 2 -50π = -2π - 16π : ( ﻟﺩﻴﻨﺎ3 3 3 : ﻭ ﻤﻨﻪcos α = cos -50π = cos -2π = cos 2π 3 3 3 = cos π - π = - cos π = -1 3 3 2sin α = sin -2π =- sin 2π =- sin π - π 3 3 3 =- sin π = -3 3 2 α = 410 π = 0 + 410 π : ( ﻟﺩﻴﻨﺎ4 cos α = cos 0 = 1 ; sin α = sin 0 = 0 : ﻭ ﻤﻨﻪ 1962 π = 981 π = π + 490 π : ( ﻟﺩﻴﻨﺎ5 2 2 2cos α = cos π =0 ; sin α = sin π =1 : ﻭ ﻤﻨﻪ 2 2 α = -177 π = π - 188 π : ( ﻟﺩﻴﻨﺎ6cos α = cos π = - 1 ; sin α = sin π = 0 : ﻭ ﻤﻨﻪ L( π +x) T( π -x ) . 8ﺍﻟﺘﻤﺭﻴﻥ 2 2 ( ﺘﻌﻴﻴﻥ ﺍﻟﻨﻘﻁ1I(π- x) M(x)F(π + x) S(-x) : ( ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺍﻟﻨﻘﻁ2
M( cos x , sin x) ; S(cos (-x) , sin (-x)) : ﻟﺩﻴﻨﺎ T cos ( π -x) , sin( π -x) ; L cos ( π + x) , sin( π + x) 2 2 2 2I (cos(π- x) , sin(π- x)) ; F(cos(π + x) , sin(π + x)) : ﻭﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﻤﺫﻜﻭﺭﺓ ﻓﻲ ﺍﻟﺩﺭﺱ ﻨﺠﺩ M( cos x , sin x) ; S ( cos x , - sin x) T ( sin x , cos x) ; L (- sin x , cos x) I (-cos x , sin x) ; F (-cos x , - sin x) . ﻤﻭﺠﺒﺔ ﻭﺘﺭﺘﻴﺒﻬﺎ ﺴﺎﻟﺒﺔS * ﻓﺎﺼﻠﺔ : ﺇﺸﺎﺭﺓ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ . ﺴﺎﻟﺒﺔ ﻭﺘﺭﺘﻴﺒﻬﺎ ﻤﻭﺠﺒﺔL * ﻓﺎﺼﻠﺔ . ﻤﻭﺠﺒﻴﻥM * ﺇﺤﺩﺍﺜﻴﻲ . ﺴﺎﻟﺒﺔ ﻭﺘﺭﺘﻴﺒﻬﺎ ﻤﻭﺠﺒﺔI * ﻓﺎﺼﻠﺔ . ﻤﻭﺠﺒﻴﻥT * ﺇﺤﺩﺍﺜﻴﻲ . ﺴﺎﻟﺒﻴﻥF * ﺇﺤﺩﺍﺜﻴﻲ . 9ﺍﻟﺘﻤﺭﻴﻥ : ﺘﺒﺴﻴﻁ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ1) cos (x +25π) = cos (x+ π +24π) = cos(x + π)= -cos x2) sin (x + 4π) = sin x3) cos x+ 11π = cos x + (2 × 5 + 1) π 2 2 = cos x + π + 5π 2 = cos x + π +π + 4π 2 cos x+ 11π = cos x + π + π + 4π : ﻭ ﻤﻨﻪ 2 2
= cos x + π + π = - cos x + π = sin x 2 2 4) sin 15π - x = sin (2 × 7 + 1) π - x 2 2 = sin π +7π - x = sin π - x +π + 6π 2 2 = sin π +( π - x) = - sin π - x = - cos x 2 2 5) cos (x + 2007π) = cos (x + π + 2006π) = cos (x + π ) = - cos x . 10ﺍﻟﺘﻤﺭﻴﻥ• tan (x + 13π) = tan x• tan x - 13π = tan x - (2×6 + 1)π 2 2 = tan x - π - 6π = tan x - π 2 2 = tan - π - x =- tan π - x 2 2 • tan ( x + 20 π) = tan x = - cot x tan π sin π + x cos x 2 cos 2 - sin x• + x = π = =- cot x 2 + x
π sin π - x cos x 2 cos 2 sin x• tan - x = π = = cot x 2 - x . 11ﺍﻟﺘﻤﺭﻴﻥ : 10-5 ﺍﻟﻘﻴﻡ ﺍﻟﻤﺩﻭﺭﺓ ﺇﻟﻰ cos π ≈ 0,99995 ; sin π ≈ 0,00987 5 5 cos π ≈ 0,99998 ; sin π ≈ 0,00329 7 15 cos 2π ≈ 0,99994 ; sin π ≈ 0,00493 9 10 cos 13π ≈ 0,99178 . 5 . 12ﺍﻟﺘﻤﺭﻴﻥ : sin x * ﺤﺴﺎﺏ sin2 x = 1 - cos2 x : ﻭ ﻤﻨﻪsin2 x + cos2 x = 1 : ﻟﺩﻴﻨﺎ sin2 x = 0,91 : ﺃﻱsin2 x = 1- (0,3)2 : ﺇﺫﻥ sin x = - 0,91 ﺃﻭsin x = 0,91 : ﺇﺫﻥ sin x = - 0,91 : ﻭﻋﻠﻴﻪ -π <x <0 : ﻟﻜﻥ 2 sin x ≈ - 0,95 : ﺇﺫﻥsin x < 0 : ﻷﻥ : tan x * ﺤﺴﺎﺏ tan x ≈- 0, 95 ≈- 3,18 : ﻭﻋﻠﻴﻪ tan x = sin x : ﻟﺩﻴﻨﺎ 0, 3 cis x . 13ﺍﻟﺘﻤﺭﻴﻥ
cos2 x = 1 - 3 2 : ﻭ ﻋﻠﻴﻪcos2 x = 1 - sin2 x : ﻟﺩﻴﻨﺎ 5 cos x = -4 ﺃﻭ cos x = 4 : ﻭﻋﻠﻴﻪ cos2 x = 16 : ﺇﺫﻥ 5 5 25 . cos x = 4 : ﻭﻤﻨﻪ cos x ≥0 : ﺃﻱ x ∈ 0 , π : ﻟﻜﻥ 5 2 . 14ﺍﻟﺘﻤﺭﻴﻥ cos2 x = 1 - (-0,6)2 : ﻭﻋﻠﻴﻪcos2 x = 1 - sin2 x : ﻟﺩﻴﻨﺎ- cos x = - 0,8 ﺃﻭcos x = 0,8 : ﻭﻋﻠﻴﻪcos2 x = 0,64 : ﺇﺫﻥ cos x = 0,8 : ﺇﺫﻥcos x ≥0 : ﻭﻋﻠﻴﻪ x ∈ 3π , 2π ﻟﻜﻥ 2 tan x = -3 : ﺇﺫﻥ tan x = sin x = - 0,6 = -6 : ﻟﺩﻴﻨﺎ- 4 cos x 0,8 8 . 15ﺍﻟﺘﻤﺭﻴﻥ : ﻭﻋﻠﻴﻪsin2 x = 1 - cos2 x : ﻟﺩﻴﻨﺎsin2 x = 1 - 6- 2 2 = 1 - 6-2 6 . 2 +2 4 16 = 16 - 8 +2 6. 2= 8+2 6 . 2 16 4 2 6+ 2 ( ) ( ) ( )2 2 6 +2 6 . 2 + 2sin2 x = 4 = 4
sin x = - 6+ 2 أو = sin x 6+ 2 ﺇﺫﻥ : 4 4 sin x > 0 ﻓﺈﻥ : x ∈ π , π ﻭﺒﻤﺎ ﺃﻥ : 2 = sin x 6+ 2 4 ﻭﻋﻠﻴﻪ : ﺍﻟﺘﻤﺭﻴﻥ. 16 ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻓﻲ [ ]: 0 , 2πcos x = cos π ﻭﻫﻲ ﺘﻜﺎﻓﺊ : cos x = 1 (1ﻟﺩﻴﻨﺎ : 3 2 x = π + 2kπ = 3 x ; k∈Z ﻭﻋﻠﻴﻪ : -π 3 + 2kπ)ﻤﺭﻓﻭﺽ( x = -π أو x = π ﻴﻭﻀﻊ k = 0 :ﻨﺠﺩ : 3 3 7π 5π)ﻤﺭﻓﻭﺽ( x = 3 أو x = 3 ﻴﻭﻀﻊ k = 1 :ﻨﺠﺩ : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , 2πﻫﻲ [ ]: S = π , 5π . 3 3 cos x = cos π ﻭ ﻫﻲ ﺘﻜﺎﻓﺊ : = cos x 3 (2ﻟﺩﻴﻨﺎ : 6 2
x = π + 2kπ = 6 x ; k∈Z ﻭﻋﻠﻴﻪ : -π 6 + 2kπ )ﻤﺭﻓﻭﺽ( x = -π ﺃﻭ x = π ﻤﻥ ﺃﺠل k = 0 :ﻨﺠﺩ : 6 6 11π x = 6 ﺃﻭ ) xﻤﺭﻓﻭﺽ( = π +2π ﻤﻥ ﺃﺠل k = 1 :ﻨﺠﺩ : 6 ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , 2πﻫﻲ [ ]: S = π , 11π . 6 6 sin x = sin -π sin x = -2 (3ﻟﺩﻴﻨﺎ : ﻭﻫﻲ ﺘﻜﺎﻓﺊ 4 : 2 x = -π + 2kπ x = -π + 2kπ 4 ﺃﻱ : 4 ; k∈Z ﻭ ﻋﻠﻴﻪ: 5π x π x = 4 + 2kπ =π + 4 + 2kπ x = 5π ﺃﻭ )ﻤﺭﻓﻭﺽ( x = -π ﻟﻤﺎ k = 0 :ﻨﺠﺩ : 4 4 5π 7π ) xﻤﺭﻓﻭﺽ( = 4 + 2π ﺃﻭ x = 4 ﻟﻤﺎ k = 1 :ﻨﺠﺩ : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , 2πﻫﻲ [ ]: S = 5π , 7π . 4 4 sin x = sin −π ﻭﻫﻲ ﺘﻜﺎﻓﺊ : sin x = - 1 (4ﻟﺩﻴﻨﺎ : 6 2
x = -π + 2kπ x = -π + 2kπ 6 ﺃﻱ : 6 ; k∈Z ﻭ ﻋﻠﻴﻪ: 7π x π x = 6 + 2kπ = π + 6 + 2kπ x = 7π ﺃﻭ )ﻤﺭﻓﻭﺽ( x = -π ﻟﻤﺎ k = 0 :ﻨﺠﺩ : 6 6 7π 11π )ﻤﺭﻓﻭﺽ( x = 6 + 2π ﺃﻭ x = 6 ﻟﻤﺎ k = 0 :ﻨﺠﺩ : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , 2πﻫﻲ [ ]: S = 7π , 11π . 6 6 ﺍﻟﺘﻤﺭﻴﻥ. 17 ﺤل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻓﻲ ﺍﻟﻤﺠﺎل ] ]: -π , πﻭﻋﻠﻴﻪ: sin 2x = sin -π ﻭﻫﻲ ﺘﻜﺎﻓﺊ : sin 2x = -3 (1 3 2 x = −π + kπ 2x = −π + 2kπ 6 3 ﻭﻋﻠﻴﻪ : ; k∈Z 2π 2x π x = 3 + kπ =π + 3 + 2kπ x = 2π ﺃﻭ x = -π ﻟﻤﺎ k = 0 :ﻨﺠﺩ : 3 6 2π 5π )ﻤﺭﻓﻭﺽ( x = 3 +π ﺃﻭ x = 6 ﻟﻤﺎ k = 1 :ﻨﺠﺩ : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل -π , πﻫﻲ ] ]:
S = -π , 2π , 5π . 3 6 6 cos 2x = cos π : ﻭﻫﻲ ﺘﻜﺎﻓﺊ cos(2x) = 1 : ( ﻟﺩﻴﻨﺎ2 3 2 x = π + kπ 2x = π + 2kπ 6 = 3 : ﻭﻋﻠﻴﻪ 2x ; k∈Z : ﺇﺫﻥ π π x = - 6 + kπ - 3 + 2kπ x = -π ﺃﻭ x = π : ﻨﺠﺩk = 0 : ﻟﻤﺎ 6 6 5π x = 6 )ﻤﺭﻓﻭﺽ( ﺃﻭ x = π +π : ﻨﺠﺩk = 1 : ﻟﻤﺎ 6 ] ]: ﻫﻲ-π , π ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎل S = -π , π , 5π . 6 6 6 : ﻭﻋﻠﻴﻪ cos x = cos 5π : ﻭﻫﻲ ﺘﻜﺎﻓﺊ cos x = -3 : ( ﻟﺩﻴﻨﺎ3 6 2 x = 5π + 2kπ 6 : ﻭ ﻤﻨﻪ x ; k∈Z = - 5π 6 + 2kπ x = - 5π ﺃﻭ x = 5π : ﻨﺠﺩk = 0 : ﻟﻤﺎ 6 6 . S = -5π , 5π 6 6 sin x = sin -π : ﻭﻫﻲ ﺘﻜﺎﻓﺊ sin x = -1 : ( ﻟﺩﻴﻨﺎ4 6 2
x = -π + 2kπ = 6 x ; k∈Z ﻭﻋﻠﻴﻪ : π π + 6 + 2kπ )ﻤﺭﻓﻭﺽ( x = 7π ﺃﻭ x = -π ﻟﻤﺎ k = 0 :ﻨﺠﺩ : 6 6 - 5π -πx = 6 ﺃﻭ ) xﻤﺭﻓﻭﺽ( = 6 + 2π ﻟﻤﺎ k = 1 :ﻨﺠﺩ : S = π , -5π . 6 6 ﺍﻟﺘﻤﺭﻴﻥ. 18 ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل 0 , πﺍﻟﻤﻌﺎﺩﻟﺔ [ ]: 4cos2 x - 2 (1 + 2 ) cos x + 2 = 0 ﺒﻭﻀﻊ cos x = yﻨﺠﺩ 4 y2 - 2 ( 1 + 2 ) y + 2 = 0 : ( ) ( )2 ﻟﺩﻴﻨﺎ : ∆′ = 1 + 2 - 4 2 ( ) ( )2 2 =1-2 2 + 2 = 1- 2 ﻭﻋﻠﻴﻪ ∆′ = 1 - 2 : ﺇﺫﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻫﻤﺎ :y1 = 1 + 2- 2 +1 ; y2 = 1 + 2+ 2 -1 4 4 y1 = 1 ; = y2 2 ﺃﻱ : 2 2
cos x = 1 ﺃﻭ cos x = 2 : ﻭﻋﻠﻴﻪ 2 2 1 cos x = cos π : ﺘﻜﺎﻓﺊ cos x = 2 * 3 x = π + 2kπ = 3 x ; k∈Z : ﻭ ﻤﻨﻪ -π 3 + 2kπ cos x = cos π : ﺘﻜﺎﻓﺊ cos x = 2 * 4 2 x = π + 2kπ = 4 x ; k∈Z : ﻭﻤﻨﻪ -π 4 + 2kπ x = π ﺃﻭ x = π : ﻨﺠﺩk = 0 ﻤﻥ ﺃﺠل 4 3 [ ]Sπ π = 3 , 4 : 0 , π ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻓﻲ ﺍﻟﻤﺠﺎلπ . 19ﺍﻟﺘﻤﺭﻴﻥ2 [ ]: ﺍﻟﻤﺘﺭﺍﺠﺤﺔ0 , 2π ﺤل ﻓﻲ ﺍﻟﻤﺠﺎل π ≤ x ≤ 3π : ﻤﻌﻨﺎﻩ cos x ≤ 0 (1 2 2 3π S = π , 3π : ﻭﻋﻠﻴﻪ 2 2 2
π : cos x ≤ 2 4 2 (2 cos π = cos 7π = 2 : ﻟﺩﻴﻨﺎ 4 4 2 7π x ∈ π , 7π : ﻭﻋﻠﻴﻪ 4 4 4 S = π , 7π 4 4 sin π = sin 2π = 3 : ﻟﺩﻴﻨﺎ، sin x ≥ 3 3 3 2 2 (32π π x∈ π , 2π : ﻭﻋﻠﻴﻪ3 3 3 3 S= π , 2π 3 3 . 20ﺍﻟﺘﻤﺭﻴﻥ1) sin( 3x ) = sin( 2x + x ) : cos x َﻭsin x ﺍﻟﻜﺘﺎﺒﺔ ﺒﺩﻻﻟﺔ = sin( 2x ).cos x + cos( 2x ).sin x = ( 2 sin x.cos x) .cos x + (1 − 2 sin2 x) .sin x = 2 sin x .cos2 x + sin x − 2 sin3 x2) cos( 4x ) = cos( 2 × 2x ) = 1 − 2.sin2( 2x ) = 1 − 2 × ( 2.sin x.cos x)2 = 1 − 8.sin2 x .cos2 x
. 21ﺍﻟﺘﻤﺭﻴﻥ1) cos4 x - sin4 x = ( cos2 x)2 - ( sin2 x)2 = ( cos2 x - sin2 x) ( cos2 x + sin2 x) = ( cos 2x) . (1) = cos 2x2) P(x) = 2cos4 x + 2 sin4 x + sin2 2 x = 2 cos4 x + 2 sin4 x + ( 2 sin x .cos x)2 = 2 ( cos2 x)2 + 2 sin2 x . cos2 x + ( sin2 x)2 = 2 ( cos2 x + sin2 x)2 = 2 × 1 = 23) ( cos 2 x) × ( sin2 x) = 1 + cos 2x × 1 - cos 2x 2 2 = 1 - ( cos 2x)2 4 1 - 1 + cos 4x 2 - 1- cos 4x 2 8 = = 4 1 - cos 4x = 8 . 22ﺍﻟﺘﻤﺭﻴﻥ : ( ﺍﻹﺜﺒﺎﺕ1 2 cos x+ π = 2× cos x .cos π + sin x . sin π 4 4 4
= 2 2 cos x + 2 sin x 2 2 = cos x + sin x = p(x) p(x) = 2 : ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ2 2 2 cos x+ π = 2 : ﺘﻜﺎﻓﺊp(x) = 2 4 2 2 cos x + π = cos π : ﺃﻱ cos x + π = 1 : ﻭﻋﻠﻴﻪ 4 3 4 2 x + π = π + 2kπ 4 3 x + ; k∈Z : ﻭﻤﻨﻪ π −π 4 = 3 + 2kπ x = π + 2kπ 12 : ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ : ﻭﻋﻠﻴﻪ -7π x = 12 + 2kπ S= π + 2kπ , -7π + 2kπ ; k ∈ Z 12 12 π 12 : ﺘﻤﺜﻴل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ x = -7π أو x = π :k=0 • 12 12-7π12 . 23)*( ﺍﻟﺘﻤﺭﻴﻥ : p (x) ( ﺘﺒﺴﻴﻁ1 p(x) = sin 2x + sin x + sin 3x
= sin 2x + 2 sin x + 3x cos x - 3x 2 2 = sin 2x + 2 sin 2x . cos(-x) p(x) = sin 2x (1 + 2cos x ) : ﻭﻤﻨﻪ : p (x) = 0 : ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ2 1 + 2cos x = 0 ﺃﻭsin 2x = 0 : ﺘﻜﺎﻓﺊp (x) = 0 cos x = -1 ﺃﻭ sin 2x = 0 : ﺃﻱ 2 kπ x = 2 : ﺃﻱ2x = kπ ; k ∈ Z : ﺘﻜﺎﻓﺊsin 2x = 0 * cos x = cos 2π : ﺘﻜﺎﻓﺊ cos x = -1 3 2* x = 2π + 2kπ = 3 x ; k∈Z : ﻭﻋﻠﻴﻪ −2π 3 + 2kπ : ﻭﻤﻨﻪ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲS= kπ , 2π + 2kπ , −2π + 2kπ ; k ∈ Z 3 3 2 . 24)*( ﺍﻟﺘﻤﺭﻴﻥcos x - a cos (x - θ) : ﻋﻠﻰ ﺍﻟﺸﻜلp (x) ﻜﺘﺎﺒﺔ ( )3 sin x = (1)2 + - 3 2 cos (x - θ) = 2 cos (x - θ)
-π cos θ = 1 3 2 θ = ﺃﻱ: ﺤﻴﺙ : -3 sin θ = 2 cos x - 3 sin x =2 cos x + π ﻭﻤﻨﻪ : 3 (2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ p (x) = 0 :x+ π = π + kπ ﺃﻱ : cos x + π =0 ﻭ ﺘﻜﺎﻓﺊ : 3 2 3 x = π + kπ ﻭ ﻤﻨﻪ ; k ∈ Z : 6. S = π + kπ ; k ∈ Z ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ : 6 (3ﺤل ﻓﻲ 0 , πﺍﻟﻤﺘﺭﺍﺠﺤﺔ [ ]p (x) ≥ 0 : cos x + π ≥ 0 ﺃﻱ : 3 π ≤ x + π ≤ 4π ﻭﻋﻠﻴﻪ : ﻟﺩﻴﻨﺎ 0 ≤ x ≤ π :3 3 3 4π π ≤ y ≤ 3 ﻭﺘﺼﺒﺢ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ cos y ≥ 0 :ﻤﻊ 3 π ≤y ≤ π ﻭﻤﻨﻪ cos y ≥ 0 :ﺘﻜﺎﻓﺊ : 3 20 ≤x ≤ π ﺇﺫﻥ : π ≤ x + π ≤ π ﻭﺒﺎﻟﺘﺎﻟﻲ : 6 3 3 2 [ ]S=0 , π 6 0 , πﻫﻲ: ﺇﺫﻥ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻓﻲ ﺍﻟﻤﺠﺎل )*( ﺍﻟﺘﻤﺭﻴﻥ. 25
sin x - 3 cos x > 2 : ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔsin x - tan π cos x > 2 : ﻨﺠﺩ 3 = tan π : ﺒﻭﻀﻊ 3 3 sin x - sin π . cos x > 2 : ﺇﺫﻥ cos 3 π 3 cos π .sin x - sin π . cos x 3 3 > 2 : ﻭﻋﻠﻴﻪ π cos 3 sin x .cos π - cos x .sin π > 2 .cos π : ﻭﻋﻠﻴﻪ 3 3 3 sin x - π > 2 3 2 : ﻭﻋﻠﻴﻪ sin y > 2 x - π =y : ﻨﻀﻊ 2 : ﻭﻋﻠﻴﻪ 3 sin π = sin 3π = 2 : ﻭﻟﺩﻴﻨﺎ 4 4 2π + 2kπ <y < 3π + 2kπ : ﻤﻌﻨﺎﻩsin y > 24 4 2 : ﺇﺫﻥ 3π π + 2kπ <x - π < 4 + 2kπ : ﻭﻋﻠﻴﻪk ∈ Z : ﺤﻴﺙ 4 3 3π π + π + 2kπ <x < π + 4 + 2kπ : ﺇﺫﻥ 3 4 3 7π 13π 12 + 2kπ < x < 12 + 2kπ : ﻭﺒﺎﻟﺘﺎﻟﻲ
: ﻭ ﻤﻨﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ ﺍﺘﺤﺎﺩ ﻜل ﺍﻟﻤﺠﺎﻻﺕ ﻤﻥ ﺍﻟﺸﻜلZ ﻴﻤﺴﺢ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔk ﻟﻤﺎ 7π + 2kπ ; 13π + 2kπ 12 12 . 26)*( ﺍﻟﺘﻤﺭﻴﻥ cos x + 3sin x = 1 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔcos x + tan α .sin x = 1 : ﻨﺠﺩtan α = 3 ﺒﻭﻀﻊ cos x + sin α . sin x = 1 : ﺇﺫﻥ cos α cos α .cos x + sinα . sin x cos α =1 : ﻭﻋﻠﻴﻪcos (x - α) = cos α : ﻭﺒﺎﻟﺘﺎﻟﻲ cos (x - α) = 1 : ﺇﺫﻥ cos α x -α = α + 2kπ ; k∈Z : ﻭﻋﻠﻴﻪ x -α = -α + 2kπ x = 2α + 2kπ ; k∈Z : ﻭﻤﻨﻪ x = 2kπ S = {2α + 2kπ , 2kπ ; k ∈ Z} α = 1,25 rd : ﺤﻴﺙ . 27ﺍﻟﺘﻤﺭﻴﻥ cos2 2x + π = sin2 -x + π : ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 2 4 : ﻭﻋﻠﻴﻪ cos2 2x + π - sin2 - x + π = 0 : ﻭﺘﻜﺎﻓﺊ 2 4
cos 2x+ π - sin -x+ π cos 2x+ π + sin - x+ π = 0 2 4 2 4 cos 2x+ π - sin -x+ π = 0 . . . (1) : ﻭﻋﻠﻴﻪ ﺇﻤﺎ 2 4 cos 2x+ π + sin -x+ π = 0 . . . (2) : ﻭ ﺇﻤﺎ 2 4 cos 2x+ π = sin - x+ π : ( ﺘﻜﺎﻓﺊ1) 2 4 cos 2x + π = cos π +x - π : ﻭﻋﻠﻴﻪ 2 2 4 : ﻭﻤﻨﻪ cos 2x + π = cos π + x : ﺃﻱ 2 4 x = -π + 2kπ 2x + π = π +x + 2kπ 4 2 4 + 2kπ : ﺃﻱ 2x ; k∈Z -π 2kπ π π x = 4 + 3 + 2 = - 4 -x cos 2x+ π = - sin -x+ π ( ﺘﻜﺎﻓﺊ2) 2 4 cos 2x+ π = sin x - π : ﻭﻋﻠﻴﻪ 2 4 cos 2x + π = cos π - x + π : ﺇﺫﻥ 2 2 4 : ﻭﻤﻨﻪ cos 2x + π = cos 3π - x : ﺃﻱ 2 4
3x = π + 2kπ 2x + π = 3π - x + 2kπ 4 : ﺃﻱ 2 = 4 + 2kπ ; k∈Z -5π 2x π 3π x = 4 + 2kπ + 2 - 4 +x x = π + 2kπ 12 3: ﻫﻲ ﺍﻟﺤﻠﻭل ﻤﺠﻤﻭﻋﺔ ﺇﺫﻥ : ﻭ ﺒﺎﻟﺘﺎﻟﻲ -5π x = 4 + 2kπ S = -π + 2kπ ; -π + 2kπ ; π + 2kπ ; -5π + 2kπ ; k ∈ Z 4 3 12 3 4 4 : ﺘﻤﺜﻴل ﺍﻟﺤﻠﻭل ﻋﻠﻰ ﺍﻟﺩﺍﺌﺭﺓ ﺍﻟﻤﺜﻠﺜﻴﺔ x = -5π , x = π , x = -π :k=0 4 12 4 x = 7π , x = 3π , x = 5π : k = 1 3π 5π 4 4 1213π -5π 4 12 x = 17π , x = 13π : k = 2 44 12 12 π 1213π -π12 12 -π 17π 4 12
ﺍﻻﺸﺘﻘـﺎﻗﻴﺔ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ ﺍﻟﺘﻌ ُﺭﻑ ﻋﻠﻰ ﺍﺸﺘﻘﺎﻗﻴﺔ ﺩﺍﻟﺔ ﻋﻨﺩ ﻗﻴﻤﺔ ﺤﺴﺎﺏ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺤل ﻤﺴﺎﺌل ﺍ ٍﻻﺴﺘﻤﺜﺎل ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻤﺸﺘﻘﺎﺕﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺘﻌﺎﺭﻴﻑ ﻤﺸﺎﻜل ﻭ ﺘﻤﺎﺭﻴﻥ ﺍﻟﺤﻠﻭل
ﺗﻌﺎرﻳﻒ -Iﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ : -1ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ ﻋﺩﺩ : a= )f (x x2 - 1 ﻤﺜﺎل : 1ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ: x-1 ﻭﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ . g (x) = x + 1 :• ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ C fﻟﻠﺩﺍﻟﺔ ( ). f ﻫل ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻨﺩ . 1 ﻤﺎﺫﺍ ﺘﻼﺤﻅ ﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ xﻤﻥ . 1• ﺃﻨﺸﺊ ﺘﻤﺜﻴﻼ ﺒﻴﺎﻨﻴﺎ Cgﻟﻠﺩﺍﻟﺔ gﻓﻲ ﻤﻌﻠﻡ ﺁﺨﺭ .ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ )( )g(1• ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ ℜ − 1ﻓﺈﻥ { }: ) f (x) = g (xﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ ﺍﻟﺤل: • ﺇﻨﺸﺎﺀ : C fﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﻭ ﺒﻌﺩ) ( ﻨﻜﺘﺏ : ﺍﻟﻀﻐﻁ ﻋﻠﻰ ﺍﻟﺯﺭﻨﺭﺴﻡ ﺍﻟﻤﻨﺤﻨﻰ ﻜﻤﺎ ﻴﻅﻬﺭ ﻋﻠﻰ ﺸﺎﺸﺔ ﺍﻵﻟﺔ . ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺯﺭ . lim f ( x) = 2 ﺍﻟﺩﺍﻟﺔ fﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ.1 x→1 ﻨﻼﺤﻅ ﺃﻨﻪ ﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ xﻤﻥ 1ﻓﺈﻥ )f (x ﺘﻘﺘﺭﺏ ﻤﻥ . 2 ﺃﻱ ﺃﻨﻪ ﻟﻤﺎ ﻴﺘﻨﺎﻫﻰ x ﻨﺤﻭ 1ﻓﺈﻥ )f (x ﺘﺘﻨﺎﻫﻰ ﻨﺤﻭ 2ﻭﻨﻜﺘﺏ :
-ﺇﻨﺸﺎﺀ ( ): Cg ﺒﺎﺴﺘﻌﻤﺎل ﻨﻔﺱ ﺍﻵﻟﺔ ﻨﺠﺩ : ﻟﺩﻴﻨﺎ . g (1) = 2 : = )f (x x2 − 1 ﻟﺩﻴﻨﺎ • x−1 = )f (x )( x − 1) ( x+1 ﻭﻋﻠﻴﻪ : • x−1 ﻭﺒﺎﻟﺘﺎﻟﻲ f (x) = x + 1 :ﻤﻥ ﺃﺠل x ≠ 1 ﺍﻟﻨﺘﻴﺠﺔ : = )lim f (x lim x2 − 1 = lim )(x + 1) = 2 = g (1 x−1 x→1 x→1 x→1 ﻤﺜﺎل : 2lim x2 − 4x = lim )x( x − 4 = )lim ( x − 4 =-4 x xx→0 x→0 x→0 -2ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ : hﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺤﻴﺙ x0 + hﻋﻨﺼﺭ ﻤﻥ ﻤﺠﺎل . I ﻫﻲ ﻨﺴﺒﺔ ﺘﺯﺍﻴﺩ f ( x0 ) + h) - f (x0 ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ : h≠o ﺇﺫﺍ ﻜﺎﻥ h ﺍﻟﺩﺍﻟﺔ ﺒﻴﻥ x0ﻭ . x0 + h ) f ( x ) - f (x0 ﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺘﻜﺘﺏ : x = x0 +h ﺒﻭﻀﻊ x - x0 ﻨﻘﻭل ﺃﻥ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺍﻗﺘﺭﺒﺕ ﺍﻟﻨﺴﺒﺔ
lﻋﻨﺩﻤﺎ ﻴﻘﺘﺭﺏ hﻤﻥ ﺍﻟﻌﺩﺩ 0 ﻤﻥ ﻋﺩﺩ ﺜﺎﺒﺕ ) f ( x0 + h) - f (x0 h lim f ( x0 + )h - f ) (x0 = l ﺃﻱ : h h→0 lim ) f ( x ) - f (x0 =l ﻭﺒﻌﺒﺎﺭﺓ ﺃﺨﺭﻯ : x - x0 x→ x0 ﻨﺭﻤﺯ ﻟﻠﻌﺩﺩ lﺒﺎﻟﺭﻤﺯ ) f ′( x0ﻭﻴﺴﻤﻰ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻌﺩﺩ . x0 ﻤﺜﺎل : 1 ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ fﺤﻴﺙ f ( x) = x2 :ﻋﻨﺩ ﺍﻟﻌﺩﺩ 4 ﺤـل : ﻟﺩﻴﻨﺎ f (4) = 16 ; Df = ℜ :)lim f ( x) - f (4) = lim x2 -16 = lim ( x - 4) ( x + 4x→4 x - 4 x→4 x - 4 x→4 x-4 = lim ( x + 4) = 8 x→4 ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 4ﺤﻴﺙ . f ′(4) = 8 : ﻤﺜﺎل : 2 ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ fﺤﻴﺙ f(x) = - 4x + 5 : ﻋﻨﺩ ﺍﻟﻌﺩﺩ . -3 ﺤـل: ﻟﺩﻴﻨﺎ f (−3) = 17 ; Df = ℜ :lim f ( x) - f (-3) = lim -4x + 5 - 17 ﻟﺩﻴﻨﺎ :x→−3 x+3 x→−3 x+3 = lim −4x - 12 = lim )-4( x + 3 = -4 x+ 3 x+3 x→−3 x→−3 ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ -3ﺤﻴﺙ . f ′(−3) = -4
-ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﻬﻨﺩﺴﻲ ﻟﻠﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ : rr C fﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ )( ). (O , i , j Aﻭ Mﻨﻘﻁﺘﺎﻥ ﻤﻥ C fﺤﻴﺙ ( ) ( )A x0 , f ( x0 ) : ﻭ )). M ( x0 + h , f(x0 + h M ﻤﻥ ﺃﺠل : h ≠ 0ﻤﻌﺎﻤل ﺘﻭﺠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ A ) f ( x0 + h) - f ( x0 ) (AMﻫﻭ :O h ﺇﺫﺍ ﻜﺎﻨﺕ fﻗﺎﺒﻠﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﻓﺈﻥ : lim f ( x0 + ) h) - f (x0 ) = f (′x0 h h→0 ﺒﻴﺎﻨﻴﺎ ﻋﻨﺩﻤﺎ ﻴﺅﻭل hﺇﻟﻰ 0ﻓﺈﻥ Mﺘﻘﺘﺭﺏ ﻤﻥ Aﻭﻋﻠﻴﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (AMﻴﺼﺒﺢ ﻤﻤﺎﺴﺎ ﻟﻠﻤﻨﺤﻨﻰ C fﻓﻲ ﺍﻟﻨﻘﻁﺔ ( ). A -ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ y = f ′(x0 ) × x + b : A ﻭﺒﻤﺎ ﺃﻥ Aﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﻤﺎﺱ ﻓﺈﻥ y0 = f (x0 ) :ﻭ ﻤﻨﻪ : y0 = f ′(x0 ) × x0 + bﻭﻋﻠﻴﻪ b = y0 - f ′(x0 ) × x0 : ﺇﺫﻥ y = f ′(x0 ) . x + y0 - f ′(x0 ) . x0 : ﻭﻋﻠﻴﻪ y - y0 = f ′(x0 ) .(x - x0 ) :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ C fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ) A (x0 ; y0ﺤﻴﺙ ( )y0 = f (x0 ) : ﻤﺜﺎل f :ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓf ( x) = x2 - 2 x : ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ . 4 - -ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻟﻠﻤﻨﺤﻨﻰ C fﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ) ( ) ( ﺍﻟﻔﺎﺼﻠﺔ . 4 ﺍﻟﺤل : -ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ f (4) = (4)2 - 2(4) = 8 ; Df = ℜ : 4
lim ) f(x) - f( 4 = lim x2- 2x - 8 = lim ( x ()- 4 x+ )2 x-4 x-4 x- 4x→4 x→4 x→4 = lim (x + 2) = 6 x→4 ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ 4ﺤﻴﺙ f ′(4) = 6 : -ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ) (C fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ 4 ﻟﺩﻴﻨﺎ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆ ﻫﻲ ( )y - y0 = f ′(x0 ) .(x - x0 ) : ﻭ ﻤﻨﻪ y - 8 = 6( x - 4) : ٍﺇﺫﻥ . (∆ ) : y = 6 x - 16 : - 3ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ : ﺘﻌﺭﻴﻑ f :ﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻨﺩ ﻜل ﻋﺩﺩ xﻤﻥ ﻤﺠﺎل Iﻤﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻔﻬﺎ . D f ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻲ ﺘﺭﻓﻕ ﺒﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ xﻤﻥ Iﺍﻟﻌﺩﺩ ﺍﻟﻤﺸﺘﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ xﺘﺴﻤﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻭﻴﺭﻤﺯ ﻟﻬﺎ ﺒﺎﻟﺭﻤﺯ f ′ﺤﻴﺙ f ′: x a f ′(x) : ﻤﺜﺎل : ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ f : x a x 2ﻋﻨﺩ ﻋﺩﺩ x0ﻤﻥ . ℜ ﺍﺴﺘﻨﺘﺞ ﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ. ﺤـل :lim f ( x0 + h) - f ( x0 ) = lim ( x0 + h)2 - x 2 0h→0 h h→0 h = lim x 2 + 2x0h + h2 - x 2 = lim 2x0h + h2 0 0 h→0 h h→0 h h(2x0 + h) = lim h h→0 ( )= lim h→ 0 2x0 + h = 2x0 ﻭﻋﻠﻴﻪ fﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﺤﻴﺙ f ′( x0 ) = 2x0 : ﻭﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻟﻠﺩﺍﻟﺔ fﻫﻲ ﺍﻟﺩﺍﻟﺔ ' fﺤﻴﺙ : f ′: x a f ′(x) = 2 x
: ﻤﺸﺘﻘﺎﺕ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺄﻟﻭﻓﺔ- 4 f : x a a : ﺤﻴﺙf ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ1 lim f (x) - f (x0 ) = lim a-a = 0 x - x0 x - x0 x→ x0 x→ x0 . f′ :x a 0 : ﻭﻋﻠﻴﻪ : ﺤﻴﺙf ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ2 Df = ℜ* ; f : x a 1 x 1- 1 x0 - xlim f (x) - f (x0 ) = lim x x0 = lim x x0 x - x0 x - x0 x→ x0 x - x0x→ x0 x→ x0 = lim - (x - x0 ) × 1 = lim - 1 = −1 x→ x0 x x0 - x0 x x0 x02 x x→ x0 . f′ :x a -1 x2 : ﻭ ﻋﻠﻴﻪ Df = ℜ ؛n ∈ ℜ ﻤﻊf : x a xn : ﺤﻴﺙf ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ3 lim f (x) - f (x0 ) = lim xn - x0n x→ x0 x - x0 x→ x0 x - x0= lim (x - x0 ) (xn - 1 + x0 xn - 2 + x02 xn -3 + ... + x n−1 ) 0x→ x0 x - x0 = lim (xn - 1 + x0 xn - 2 + x02 xn -3 + ... + x n−1 ) x→ x0 0 = x0n - 1 + x0n - 1 + ... + xn - 1 ( ﻤﺭﺓn) 0 = n . x0n - 1 . f ′ : x a n.xn - 1 : ﻭﻋﻠﻴﻪ
f :x a x : ﺤﻴﺙf ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ4 ] [ [ [0 ; + ∞ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰf ﺍﻟﺩﺍﻟﺔ، D f = 0 ; + ∞lim f (x) - f (x0 ) = lim x - x0 : ﻟﺩﻴﻨﺎx→ x0 x - x0 x→ x0 x - x0lim f (x) - f (x0 ) = lim ( x - x0 ) ( x + x0 )x→ x0 x - x0 x→x0 ( x - x0 ) ( x + x0 )lim f (x) - f (x0 ) = lim x - x0 : ﻭ ﻤﻨﻪx→ x0 x - x0 x→x0 ( x - x0 )( x + x0 ) = lim 1 =1 x→ x0 x + x0 2 x0 . f′ :x a 1 : ﻭﻋﻠﻴﻪ 2x f : x a Sin x : ﺤﻴﺙf ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ5lim f (x) - f (x0 ) = lim Sin x - Sin x0x→ x0 x - x0 x→ x0 x - x0 2Sin x - x0 Cos x + x0 2 2 = lim x→ x0 x - x0 2Sin x - x0 2 = lim × Cos x + x0 x→ x0 2 x -x0 = cos x0 . f ' : x a Cos x : ﻭ ﻋﻠﻴﻪ
f : x a Cos x : ﺤﻴﺙf ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ6 lim f (x) - f (x0 ) = lim Cos x - Cos x0 x→ x0 x - x0 x→ x0 x - x0 -2Sin x - x0 Sin x + x0 2 2 lim f (x) - f (x0 ) = lim x - x0 x→ x0x→ x0 x - x0 Sin x - x0 2 = lim - Sin x + x0 . = - Sin x0 x→ x0 2 x - x0 2 . f ′ : x a - Sin x : ﻭ ﻋﻠﻴﻪ : ﺤﺴﺎﺏ ﻤﺸﺘﻘﺎﺕ ﺍﻟﺩﻭﺍل- 5 . I ﺩﺍﻟﺘﺎﻥ ﺘﻘﺒﻼﻥ ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎلg ﻭf : f + g ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ1lim (f+g)(x) - (f+g)(x0 ) = lim f(x)+g(x) - f(x0 )- g(x0 ) x - x0 x→ x0 x - x0x→ x0 = lim f(x) - f(x0 ) + lim g (x) - g (x0 ) x→ x0 x - x0 x→ x0 x - x0 = f ′(x0 ) + g′ (x0 ) : ﺤﻴﺙI ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰf + g ﻭﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ . ( f + g)′ = f ′+ g′ : f . g ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ2
lim (f.g) (x) - (f.g) (x0 ) = lim f(x).g (x) - f (x0 ).g (x0 ) x - x0 x - x0x→ x0 x→ x0= lim f (x).g (x) - f (x) . g (x0 ) + f (x) . g (x0 ) - f (x0 ).g (x0 ) x→x0 x - x0= lim f(x) g(x) - g(x0 ) + g (x0 ) f(x)- f(x0 ) x - x0 x - x0 x→ x0 = f (x0 ) . g′ (x0 ) + g (x0 ) . f ′(x0 ) : ﺤﻴﺙI ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰf . g ﻭ ﻋﻠﻴﻪ ﺍﻟﺩﺍﻟﺔ . ( f . g)′ = f ′. g + f . g′ 1 I ﻻ ﺘﻨﻌﺩﻡ ﻋﻠﻰg ﺤﻴﺙ: g ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ3 1 (x) - 1 (x0 ) 1 - 1 g (x) g (x0 )lim g g = limx→ x0 x - x0 x→ x0 x - x0 = lim -( g (x) - g (x0 )) × 1 x → x0 x - x0 g (x) . g (x0 ) = lim -1 . ( g (x) - g (x0 )) x → x0 g (x) . g (x0 ) x - x0 = -1 × g′ (x0 ) = - g′ (x0 ) g (x0 ) 2 g (x0 ) 2 1 : ﺤﻴﺙI ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰg ﻭﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﺩﺍﻟﺔ . 1 ′ = -g′ g2 g
f : g ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ4 f ′ = f × 1 ′ =f ′. 1 + f . 1 ′ : ﻟﺩﻴﻨﺎ g g g g f ′ = f′ +f - g′ : ﺃﻱ g g g2 . f ′ = f ′.g - f .g′ : ﻭ ﻋﻠﻴﻪ g g2 g : x a f (a x + b ) : ( ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ5lim g (x) - g (x0 ) = lim f (a x + b) - f (a x0 + b) x - x0 x → x0 x - x0x → x0 ﻨﺠﺩu0 = a x0 + b ، u = a x + b : ﺒﻭﻀﻊlim f (u) - f (u0 ) = lim f (u) - f (u0 ) × u - u0 x - x0 u - u0 x - x0x → x0 x → x0 = lim f (u) - f (u0 ) × a x + b - a x0 - b x → x0 u - u0 x - x0 = lim f (u) - f (u0 ) × a (x - x0 ) x → x0 u - u0 x - x0 = lim a × f (u) - f (u0 ) u - u0 x → x0 = a . f ′(u) = a . f ′(a x + b) g : x a f ( a x + b) : ﺇﺫﻥ ﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ . g ' : x a a . f ′( a x + b) : ﻫﻲ ﺍﻟﺩﺍﻟﺔ
ﻤﺜﺎل :ﻋﻴﻥ ﻤﺸﺘﻕ ﻜل ﻤﻥ ﺍﻟﺩﻭﺍل :f :x a 1 ; g : x a ( x + 2)3 x+1h:x a x-2 ﺤـل : Df }= ℜ - {- 1 . = )f (x x 1 1 • + -1 f′ = )(x (x + 1)2 ﻭ ﻤﻨﻪ : • g (x ) = ( x + 2)3؛ Dg = ℜﻭ ﻤﻨﻪ g′ (x) = 3 × 1 (x + 2)2 = 3 (x + 2)2 : • Dh = [2 ; +∞[ , h (x) = x - 2 ﺍﻟﺩﺍﻟﺔ hﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ∞ 2 ; +ﺤﻴﺙ ] ]: h′ (x) = 1 2 x-2 - 6ﺍﻟﺭﺒﻁ ﺒﻴﻥ ﺇﺸﺎﺭﺓ ﺍﻟﻤﺸﺘﻕ ﻭ ﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ : ﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل . I -ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻌﺩﻭﻤﺔ ﻋﻠﻰ Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﺜﺎﺒﺘﺔ ﻋﻠﻰ . I -ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻭﺠﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ . I -ﺇﺫﺍ ﻜﺎﻨﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺴﺎﻟﺒﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ Iﻓﺎﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ . I - 7ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺩﻴﺔ ﻟﺩﺍﻟﺔ : fﺩﺍﻟﺔ ﺘﻘﺒل ﺍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل x0 . Iﻋﻨﺼﺭ ﻤﻥ . I ﺇﺫﺍ ﺍﻨﻌﺩﻤﺕ ﺍﻟﺩﺍﻟﺔ f ′ﻋﻨﺩ x0ﻤﻐﻴﺭﺓ ﺇﺸﺎﺭﺘﻬﺎ ﻓﺈﻥ ) f (x0ﻗﻴﻤﺔ
ﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ . I x x0 0 -)f '(x +)f (x )f (x0 ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ) f (x0ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻋﻅﻤﻰ ﻟﻠﺩﺍﻟﺔ . f x x0 0 +)f '(x -)f (x )f (x0 ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ) f (x0ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻟﻠﺩﺍﻟﺔ . f
ﺘﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ . f (x) = 4 x2 + x - 5 : -ﺃﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﺸﺘﻘﺎﻕ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ . 3 ﺍﻟﺘﻤﺭﻴﻥ. 2 -ﺃﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍ ٍﻻﺸﺘﻘﺎﻕ ﻋﻨﺩ x0ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ : f (x) = x4 ; x0 = 1 (1 f (x) = x3 + 1 ; x0 = - 1 (2 = )f (x 2 ; x0 = 3 (3 x)(Cf y ﺍﻟﺘﻤﺭﻴﻥ. 3 6 5 A ﻨﻌﺘﺒﺭ C fﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ( )f 4 3 2x ﻤﻌﺭﻓﺔ ﻋﻠﻰ ℜﻭﻟﻴﻜﻥ ∆ ﻤﻤﺎﺴﺎ) ( 2 1 ﻟﻠﻤﻨﺤﻨﻰ C fﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ) (-2 -1 0 1 ﻓﻲ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل : -1 -ﺍﺤﺴﺏ ﻤﻥ ﺨﻼل ﺍﻟﺸﻜل ). f ′(2 -ﺜﻡ ٍﺍﺴﺘﻨﺘﺞ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ∆) ( -2 -3 ﺍﻟﺘﻤﺭﻴﻥ. 4 )∆( -4 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f (x) = - x + 4 : B-5 (1ﺍﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍ ٍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻌﺩﺩ . -4 -6
(2ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ C fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ( ). -4 ﺍﻟﺘﻤﺭﻴﻥ. 5 (1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ C fﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( ): y = - x2 + 5ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ .1 (2ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ C gﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( ): ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ . -5 y = - 5 x (3ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻤﺎﺴﻴﻥ. ﺍﻟﺘﻤﺭﻴﻥ. 6ﺃﺜﺒﺕ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = -x + 2 :ﻫﻭ ﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ Cfﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( ): ﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺘﻲ ﻓﺎﺼﻠﺘﻬﺎ . 1 =y 1 x ﺍﻟﺘﻤﺭﻴﻥ. 7ﻨﻌﺘﺒﺭ ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺠﺒﺭﻴﺔ p (x) = -4 x3 + 6 x2 - 2 : (1ﺍﺤﺴﺏ ) p (1ﺜﻡ ٍﺍﺴﺘﻨﺘﺞ ﺘﺤﻠﻴﻼ ﻟـ ). p (x (2ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ gﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﻜﻤﺎ ﻴﻠﻲ := )g (x 2 َﻭ f ( x) = −4x2 + 6x x-ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ َ Cfﻭ Cgﺍﻟﻤﻨﺤﻨﻴﻴﻥ ﺍﻟﻤﻤﺜﻠﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ َ fﻭ( ) ( ).g (3ﺒﻴﻥ ﺃﻥ َ Cfﻭ Cgﻴﻘﺒﻼﻥ ﻤﻤﺎﺴﺎ ﻤﺸﺘﺭﻜﺎ ﻓﻲ ﺍﻟﻨﻘﻁﺔ Bﺫﺍﺕ) ( ) ( ﺍﻟﻔﺎﺼﻠﺔ . 1
ﺍﻟﺘﻤﺭﻴﻥ. 8 [ [f (x) = x3 rr ﺒﺎﻟﻌﺒﺎﺭﺓ : ∞0 ; + fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Cfﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ) ( ). O ; i , j Aﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﻨﺤﻨﻰ Cfﻓﺎﺼﻠﺘﻬﺎ ( ). x0 (1ﺃﻨﺸﺊ Cfﺒﺂﻟﺔ ﺒﻴﺎﻨﻴﺔ uHr.ﺍuﻟﻤuﺴﻘﻁ ﺍﻟﻌﻤﻭrﺩuﻱ uﻟﻠﻨﻘﻁﺔ Aﻋﻠﻰ ﻤﺤﻭﺭ) ( ﺍﻟﺘﺭﺍﺘﻴﺏ I .ﻨﻘﻁﺔ ﺤﻴﺙ . HI = 3 HO : (2ﺃﻨﺸﺊ ﺍﻟﻤﺴﺘﻘﻴﻡ ). (AI (3ﻋﻴﻥ ﺒﺩﻻﻟﺔ ٍ x0ﺍﺤﺩﺍﺜﻴﻲ ﺍﻟﻨﻘﻁ . I , H , A (4ﺒﻴﻥ ﺃﻥ ) (AIﻫﻭ ﻤﻤﺎﺱ Cfﻓﻲ ( ). A (5ﺍﺴﺘﻌﻤل ﻫﺫﻩ ﺍﻟﻁﺭﻴﻘﺔ ﻹﻨﺸﺎﺀ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ Cfﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ) ( ﺍﻟﻔﺎﺼﻠﺔ . 1 ﺍﻟﺘﻤﺭﻴﻥ. 9 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﻭ ﻤﺠﻤﻭﻋﺔ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﻭﺍل ﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻲ ﻭﺍﺤﺴﺏ ﺩﻭﺍﻟﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ . f : x a -x2+ 5x - 3 (1؛ f : x a ( x - 2) ( x + 5) (2 f:x a 1 (4 ؛ f : x a 4 ( x - 5)2 (3 5+xf :x a x+3- 2 f : x a؛ (6 -x2 - x + 4 (5 x+3 − 4x2 + 5x -1f:x a 2x - 3 (8 f:x a؛ 2x - 5 (7 x-4 f : x a Sin x - Cos x (9؛ f : x a Sin x .Cos x (10f:xa Cos x - 1 (12 ؛ f:xa 3 Cos 2x - π (11 Cos x - 2 2
f:xa Sin x (13 1 + 2 Sin x f : x a Sin x + 3 Cos x (14 ﺍﻟﺘﻤﺭﻴﻥ. 10 fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ Cfﻋﻠﻰ ﺍﻟﻤﺠﺎل -3 ; 3ﻭﻫﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ) ( ] [ ]. [-3 ; 3 y 3 2 1-4 -3 -2 -1 0 1 2 3 4 x-1 (1ﺍﺤﺴﺏ ﻜل ﻤﻥ . f (3-)2; f (-3) ; f (-1) ; f (0) ; f (2) : (2ﺍﺤﺴﺏ . f ′(-1 ) ; f ′( 2 ) : (3ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ gﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ −3 ; 0 ∪ 0 ; 3ﺒﺎﻟﻌﺒﺎﺭﺓ [ [ ] ]: . )g(x = 1 )(x f -ﺍﺤﺴﺏ ﻜل ﻤﻥ g (-3) ، g (-1) ، g (2) ، g (3) : -ﺍﺤﺴﺏ ). g′ (2 -ﺍﺩﺭﺱ ٍﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ . gﻭﺍﻜﺘﺏ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ . ﺍﻟﺘﻤﺭﻴﻥ. 11 fﺩﺍﻟﺔ ﺘﻘﺒل ﺍ ٍﻻﺸﺘﻘﺎﻕ ﻋﻠﻰ -5 ; 7ﻭﻤﻌﺭﻓﺔ ﺒﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻵﺘﻲ [ ]: y 4 3
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131