ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻨﻲ ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ: • ﻤـﻘـﺩﻤـﺔ • ﺍﻟﻌﺒـﺎﺭﺍﺕ ﺍﻟﺠﺒـﺭﻴـﺔ • ﺍﻟﻤﻌﺎﺩﻻﺕ ﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ • ﺍﻷﺸﻌﺔ – ﺍﻟﻤﻌﺎﻟﻡ – ﺍﻟﻤﺴﺘﻘﻴﻡ • ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ • ﺍﻟـــﺩﻭﺍل
ﺍﻟﻤـﻘـﺩﻤـﺔﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﻤﺎﺩﺓ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ • ﺍﻟﺒﺭﻨﺎﻤﺞ ﺍﻟﺠﺩﻴﺩ • ﺤل ﺍﻟﻤﺸﻜﻼﺕ • ﺍﻟﺘﺭﻤﻴﺯ ) ﺃﻤﺜﻠﺔ ﺘﻭﻀﻴﺤﻴﺔ (
• ﻤﺎﺩﺓ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ:ﺍﻟﺒﻨﻴﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ﺘﺄﺜﻴﺭ ﻋﻠﻰ ﺍﻟﺒﻨﻴﺔ ﺍﻟﻔﻜﺭﻴﺔ ﻷﻥ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻭﺴﻴﻠﺔ ﻟﺘﻜﻭﻴﻥ ﺍﻟﻔﻜﺭ ﻭﺃﺩﺍﺓ ﻻﻜﺘﺴﺎﺏ ﺍﻟﻤﻌﺎﺭﻑ .ﺘﺴﺎﻫﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻤﻊ ﺍﻟﻤﻭﺍﺩ ﺍﻷﺨﺭﻯ ﻓﻲ ﺤﺼﺭ ﻤﻠﻤﺢ ﺍﻟﺘﻠﻤﻴﺫ ﻋﻨﺩ ﻨﻬﺎﻴﺔ ﻤﺭﺤﻠﺔ ﺩﺭﺍﺴﻴﺔ . • ﺍﻟﺒﺭﻨﺎﻤﺞ ﺍﻟﺠﺩﻴﺩﻜﻤﺎ ﺠﺎﺀ ﺍﻟﺒﺭﻨﺎﻤﺞ ﺍﻟﺭﺴﻤﻲ ،ﺘﻡ ﺒﻨﺎﺀ ﺒﺭﻨﺎﻤﺞ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻟﻠﺴﻨﺔ ﺍﻷﻭﻟﻰ ﻤﻥ ﺍﻟﺘﻌﻠﻴﻡ ﺍﻟﺜﺎﻨﻭﻱ ) ﺠﺫﻉ ﻤﺸﺘﺭﻙﻋﻠﻭﻡ ﻭ ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ( ﻜﻤﺎ ﻫﻭ ﺍﻟﺸﺄﻥ ﺒﺒﺎﻗﻲ ﺍﻟﻤﻭﺍﺩ ﻭﻓﻕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﺒﺎﻟﻜﻔﺎﺀﺍﺕ ﻭ ﻤﻥ ﺃﺒﻌﺎﺩﻫﺎ ﺍﻷﺴﺎﺴﻴﺔ ﺍﻟﺘﻜﻴﻴﻑ ﻤﻊ ﺍﻟﺠﺩﻴﺩ ﻭﺍﻟﻭﺍﻗﻊ ﺍﻟﻤﻌﺎﺼﺭ ،ﺍﻟﻤﺘﻐﻴﺭ ﺒﺎﺴﺘﻤﺭﺍﺭ . • ﺤل ﺍﻟﻤﺸﻜﻼﺕ: ﺇﻥ ﻤﻜﺎﻨﺔ ﺤل ﺍﻟﻤﺸﻜﻼﺕ ﻓﻲ ﺘﻌﹼﻠﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﺃﻤﺭ ﺠﻭﻫﺭﻱ ﻓﻲ ﺒﻨﺎﺀ ﺍﻟﻤﻌﺭﻓﺔ . ﻭ ﻤﻥ ﻫﺫﺍ ﺍﻟﻤﻨﻅﻭﺭ ،ﻴﻜﻭﻥ ﺭﺒﻁ ﺍﻟﻤﻌﺎﺭﻑ ﺒﺎﻟﻭﻀﻌﻴﺎﺕ ﻴﺴﻤﺢ ﻟﻠﻤﺘﻌﻠﻡ ﺒﺎﻟﺘﺄﺜﻴﺭ ﺩﺍﺨل ﻭ ﺨﺎﺭﺝ ﺍﻟﻤﺩﺭﺴﺔ .
• ﺍﻟﺘﺭﻤﻴﺯ ) :ﺃﻤﺜﻠﺔ ﺘﻭﻀﻴﺤﻴﺔ ( * ﺍﺭﺴﻡ ﻤﺭﺒﻌﺎ ABCDﺤﻴﺙ . AB = 4 Cm : * ﺍﻟﻜﺘﺎﺒﺔ ) ( x-yﺘﻌﻨﻲ ) xﻨﺎﻗﺹ . ( y* ﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻟﺔ ﺫﺍﺕ ﺍﻟﻤﺠﻬﻭل xﺍﻟﺘﺎﻟﻴﺔ 2 x – 1 = 0 : * ( a + b )2 = a2 + 2 a b + b2 ﻤﻼﺤﻅﺔ : ﺍﻟﻘﺭﺍﺀﺓ ﺍﻟﻨﺴﺒﻴﺔ . ﺍ ِﻻﺘﺠﺎﻩ ﺍﻟﻌﺎﻡ .
ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺠـﺒـﺭﻴـﺔ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺘﻌﺭﻴﻑ • ﻨﺸﺭ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ • ﺘﺤﻠﻴل ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ • ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ• ﺘﺤﻠﻴل ﺍﻟﻌﺒﺎﺭﺓ ax2 + bx + c ; a ≠ o • ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ • ﺍﻟـﺤـﻠــــﻭل
• ﺘﻌﺭﻴﻑ : - -ﻨﺴﻤﻲ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ ﺫﺍﺕ ﻤﺘﻐﻴﺭ ﻭﺍﺤﺩ ﻜل ﻋﺒﺎﺭﺓ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﻤﺘﻐﻴﺭ ﻭﺍﺤﺩxﻤﺜﺎل p(x) = −4x2 + 5x + 3 :ﻫﻲ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ ﺫﺍﺕ ﻤﺘﻐﻴﺭ . x -ﻨﺴﻤﻲ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ ﺫﺍﺕ ﻤﺘﻐﻴﺭﻴﻥ ﻜل ﻋﺒﺎﺭﺓ ﺘﺤﺘﻭﻱ ﻋﻠﻰ ﻤﺘﻐﻴﺭﻴﻥ y,xﻤﺜﺎل 4x2y − x + 4xy − 5 :ﻫﻲ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ ﺫﺍﺕ ﻤﺘﻐﻴﺭﻴﻥ y,x • ﻨﺸﺭ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ :ﻴﻌﺘﻤﺩ ﻨﺸﺭ ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ ﻋﻠﻰ ﺍﻟﻘﻭﺍﻋﺩ ﺍﻟﺘﺎﻟﻴﺔ :* c(a+b)=ca+cb* ( a + b ) ( c + d ) = a c + a d + b c + bd* ( a + b )2 = a2 + 2 a b + b2* ( a - b )2 = a2 - 2 a b + b2 ﺍﻟﺠﺩﺍﺀﺍﺕ ﺍﻟﺸﻬﻴﺭﺓ* ( a + b ) ( a - b ) = a2 - b2ﻤﺜﺎل :ﺍﻨﺸﺭﺍ ﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ p(x) = 4x(x − 4) − (x + 3)2 : ﺍﻟﺤل p(x ) = 4x 2 − 16x − x 2 − 6x − 9 : ﻭﻤﻨﻪ . p(x) = 3x2 − 22x − 9 : ﻭﻫﻭ ﺍﻟﺸﻜل ﺍﻟﻤﺒﺴﻁ ﻭﺍﻟﻤﺭﺘﺏ ﺤﺴﺏ ﺍﻟﻘﻭﻯ ﺍﻟﻤﺘﻨﺎﻗﺼﺔ ﻟﻠﻌﺩﺩ x
• ﺘﺤﻠﻴل ﻋﺒﺎﺭﺓ ﺠﺒﺭﻴﺔ : ﻭﻫﻭ ﻜﺘﺎﺒﺘﻬﺎ ﻋﻠﻰ ﺸﻜل ﺠﺩﺍﺀ ،ﻭ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﺍﻟﻘﻭﺍﻋﺩ ﺍﻵﺘﻴﺔ : )* ca+cb=c(a+b ) * a c + a d + b c + bd = ( a + b ) ( c + d * a2 + 2 a b + b2 = ( a + b )2 * a2 - 2 a b + b2 = ( a - b )2) * a2 - b2 = ( a + b ) ( a - bﻣﺜﺎل :ﺤﻠل ﺍﻟﻌﺒﺎﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ p(x) = 5(x2 − 4) − (2x − 4)(x + 3) : ﺍﻟﺤل :ﻟﺩﻴﻨﺎ p(x) = (x − 2)[5x + 10 − 2x − 6] : ﻭﻤﻨﻪ p(x) = (x − 2)(3x + 4) :ﻭﻫﻭ ﺍﻟﺸﻜل ﺍﻟﻤﺤﻠل ﻟﻠﻌﺒﺎﺭﺓ )p(x • ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ: ﻜﺘﺎﺒﺔ ﺍﻟﻌﺒﺎﺭﺓ ax2 + bx + c ; a ≠ oﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ ﻭ ﻫﻭ ﻜﻤﺎ ﻴﻠﻲ : b 2 b2 - 4a c 2a 4a2 a x2 + b x + c = a x + - ﻨﻀﻊ ∆ = b 2 - 4 a c :ﻭ ﻴﺴﻤﻰ ﻤﻤﻴﺯ ﺍﻟﻌﺒﺎﺭﺓ . a x2 + b x + c ﻤﺜﺎل :ﺍﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ ﺍﻟﻌﺒﺎﺭﺓ p(x) = −4 x2 + 5x + 3 :)p(x = −4 x + 5 2 − (5)2 )− 4(−4)(3 ﺍﻟﺤل : )× (−4 4(−4)2 2 وهﻮ اﻟﺸﻜﻞ اﻟﻨﻤﻮذﺟﻲ ﻟﻠﻌﺒﺎرة )p(x )p(x = − 4 x − 5 2 − 73 8 ﻭﻤﻨﻪ : 64
• ﺘﺤﻠﻴل ﺍﻟﻌﺒﺎﺭﺓ ax2 + bx + c ; a ≠ o : a x2 + b x + c = a x + b 2 - ∆ 2 ﻟﺩﻴﻨﺎ : 2a 4a * ﺇﺫﺍ ﻜﺎﻥ ∆ < 0 :ﻓﺈﻥ ﺍﻟﻌﺒﺎﺭﺓ a x2 + b x + cﻻ ﺘﺤﻠل a b 2 2a a x2 +bx+c = x+ * ﺇﺫﺍ ﻜﺎﻥ ∆ = 0 :ﻓﺈﻥ : * ﺇﺫﺍ ﻜﺎﻥ ∆ > 0 :ﻓﺈﻥ :a x2 + b x + c = a x − - b- ∆ x − - b + ∆ 2a 2a x2 = −b+ ∆ َو x1 = − b− ∆ ﺒﻭﻀﻊ : 2a 2a) a x 2 + b x + c = a ( x − x1 )( x − x 2 ﻨﺠﺩ : ﻤﺜﺎل :ﺤﻠل ﻜل ﻤﻥ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺇﻥ ﺃﻤﻜﻥ .p(x) = 5x2 −14x − 3 (2 p(x) = 3x 2 + 2x + 1 (1 p(x) = 4x2 + 4x + 1 (3 ﺍﻟﺤل : p(x) = 3x2 + 2x + 1 (1ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ∆ = b2 − 4ac :ﻭﻤﻨﻪ ∆ = (2)2 − 4(3) (1) :ﻭﻋﻠﻴﻪ ∆ = −8 :ﻭﻋﻠﻴﻪ ∆ < 0 : ﻭﻤﻨﻪ ﻻ ﻴﻤﻜﻥ ﺘﺤﻠﻴل ). p(x p(x) = 5x2 −14x − 3 (2ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ∆ = b2 − 4ab : ﻭﻤﻨﻪ ∆ = (−14)2 − 4(5) (-3) :أي ∆ = 256 :
x2 = −b + ∆ ، x1 = −b − ∆ : ﻭﻋﻠﻴﻪ 2a 2a x2 = 14 + 16 =3 ، x1 = 14 - 16 = -1 : ﺃﻱ 2(5) 2 (5) 5 . p(x) = 5 x + 1 ( x-3) : ﻭﻋﻠﻴﻪ 5 ∆ = b2 − 4ac : ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯp(x) = 4x2 − 4x + 1 (3 ∆ = 0 : ( = ∆ ﺃﻱ−4)2 − 4 (4) (1) : ﻭﻤﻨﻪ. p(x ) = 5 x − 7 2 : ﺃﻱ p(x) = 5 x − 14 2 : ﻭﻋﻠﻴﻪ 5 10
:• ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ : 1 ﺘﻤﺭﻴﻥ : ﺒﺴﻁ ﻭﺍﻨﺸﺭ ﻤﺎ ﻴﻠﻲA = 5 ax 2 × abx 4 × b2 x2 3 (1 2 3 5 (2B=( 2 x - 6) × 1 x5 - 3 x3 +4 x 2 − 1 x 4 + 3 x5 − 3x 4 + 5 2 2 2 (3 ( )( )C = x2 − 4x + 8 - 4x3 + 5x2 − 2x3 + 5x − 3 + 4x2 : 2 ﺘﻤﺭﻴﻥ : ﺤﻴﺙp(x) , Q(x) ﻨﻌﺘﺒﺭ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ Q (x) = - x 2 +5 x-1 , p(x) = 3x 4 − 1 x2 + 5 2p(x) × Q(x) , 2 p (x) - 5 Q(x) , p(x) + Q(x) : ﺍﺤﺴﺏ ﻤﺎ ﻴﻠﻲ : 3 ﺘﻤﺭﻴﻥ1 ) a ( x + y )2 = ( ax + ay )2 : ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻭ ﺨﻁﺄ ﻤﺎ ﻴﻠﻲ .( )2 ) a ( x - y )2 = a 2x - a 2 y 2 .3 ) ( 2x - 3 )2 = 4x 2 + 9 .4) x2 + 4=( x + 2 )( x + 2 ) .5 ) ( 2a - b )2 = 4a 2 - 4ab + b2 .6 ) ( a + b )2 = ( a + b )( a + b ) .
ﺘﻤﺭﻴﻥ : 4( a - b)3 = )(a - b ( )a -b 2 (1ﻨﻌﻠﻡ ﺃﻥ : ﺍﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺓ a − b 3ﺜﻡ ﺒﺴﻁﻬﺎ ﻭ ﺍﺨﺘﺼﺭﻫﺎ ( ). (2ﺍﻨﺸﺭ ﺍﻟﻌﺒﺎﺭﺘﻴﻥ ( ) ( )(a + b) a2 − ab + b2 , (a − b) a2 +ab +b2 ﻤﺎﺫﺍ ﺘﺴﺘﻨﺘﺞ ؟ (3ﺍﻨﺸﺭ ﻭ ﺍﺨﺘﺼﺭ ﺍﻟﻌﺒﺎﺭﺓ a + b + c 2ﺛﻢ اﺳﺘﻨﺘﺞ ( ) ( )4x2 − x + 1 2 : ﺘﻤﺭﻴﻥ : 5ﺤﻠل ﺇﻟﻰ ﺠﺩﺍﺀ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ :* f (x) = (x - 3)2 -( 2 x - 6) (5 x + 4) -( )9 - x2* g (x) =16 (5 x - 3)2 - 25 ( 3 x - 1)2* h (x) = 16 x2 + 2 x + 1 16* ϕ ( x) = 18 x2 ( x - 4)2 - 8 x4)* M ( x , y) = y2 -( x - 1)2 - 2 ( x - 1)( x - y -1* Q ( x , y) = a2x y + ab y2 + b2 x y + ab x2* T ( x , y ) = x2 + y2 +2x y - 9 a2 + 6ab - b2 f ( x ) = 6 x2 - x -1 ﺘﻤﺭﻴﻥ : 6؛ Q ( x ) = 3 x2 + x +12 ﺃﻜﺘﺏ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻋﻠﻰ ﺸﻜﻠﻬﺎ ﺍﻟﻨﻤﻭﺫﺠﻲ : p ( x ) = x2 + 2 x + 1 39 * ﺤﻠل ﺇﻟﻰ ﺠﺩﺍﺀ ﻜل ﻤﻥ ﻫﺫﻩ ﺍﻟﻌﺒﺎﺭﺍﺕ ﺇﻥ ﺃﻤﻜﻥ .* ﺍﺴﺘﻨﺘﺞ ﺤﻠﻭل ﻜل ﻤﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ َ f ( x ) = 0 :ﻭ َ p(x) = 0ﻭ Q(x) = 0
:• ﺍﻟـﺤـﻠــــﻭل 5 a x2 a4 b4 x4 b6 x6 : 1 ﺘﻤﺭﻴﻥA= 2 81 125 (1 A= 5 a × a4 b4 × b6 × x2 × x4 × x6 2 × 81 × 125 5 a5 b10 x12 . A = 20250 B = x6 - 6x4 + 8x3 - x5 + 3x6 - 6x5 + 10x – 3x5 (2 + 18x3 – 24x2 + 3x4 – 9x5 + 18x4 – 30 . B = 4x 6 – 19x 5 + 15x 4 + 26x 3 – 24x 2 + 10x – 30 C = - 4x 5 + 5x 4 – 2x 5 + 5x 3 – 3x 2 + 4x 4 + 16x 4 – 20x 3 ( 3 + 8x 4 – 20x 2 + 12x – 16x 3 – 32x 3 + 40x2 – 16x3 + 40x – 24 + 32x 2 . C = - 6x 5 + 33x 4 – 79x 3 + 49x 2 + 52x – 24 : 2 ﺘﻤﺭﻴﻥ : p ( x ) + Q ( x ) ( ﺤﺴﺎﺏ1 p ( x ) + Q ( x ) = 3x3 - 1 x2 + 5 - x2 + 5x - 1 2 . p ( x) + Q (x ) = 3x4 - 3 x2 + 5x + 4 2 : 2 P ( x ) – 5 Q ( x ) ( ﺤﺴﺎﺏ2
( )2 P ( x ) - 5 Q ( x ) = 2 3x 4 1 x2 - 2 +5 -5 - x3 + 5x - 1 = 6x 4 – x 2 + 10 + 5x 3 – 25x + 5 . 2 P ( x ) – 5 Q ( x ) = 6x 4 + 5x 3 – x 2 – 25x + 15 : P ( x ) × Q ( x ) ( ﺤﺴﺎﺏ3 ( )P(x) 4 1 × Q(x)= 3x - 2 x 2 +5 -x2 + 5x - 1 = −3x6 + 15x5 − 3x 4 + 1 x4 − 5 x3 + 1 x2 − 5x2 + 25x − 5 2 2 2. p(x) × Q(x) = −3x6 + 15x5 − 5 x4 − 5 x3 − 9 x2 + 25x − 5 2 2 2 : 3 ﺘﻤﺭﻴﻥ . 8 (4 . 8 (3 . 9 (2 . 8 (1 . 9 (7 . 9 (6 . 9 (5 : 4 ﺘﻤﺭﻴﻥ ( a – b ) 3 : ( ﻨﺸﺭ ﻭﺘﺒﺴﻴﻁ ﻭﺍﺨﺘﺼﺎﺭ ﺍﻟﻌﺒﺎﺭﺓ1( )* ( a - b )3 = ( a - b ) ( a - b )2 = ( a - b ) a2 - 2ab + b2 = a3 - 2a2b + ab2 - a2b + 2ab2 - b3 . ( a - b )3 = a3 - 3a2b + 3ab2 - b3 : ( ﺍﻟﻨﺸﺭ2( )* ( a - b ) a2 + ab + b2 = a3 + a2b + ab2 - a2b - ab2 - b3 ( ). ( a - b ) a2 + ab + b2 = a3 - b3
( )* ( a + b ) a2 - ab + b2 = a3 - a2b + ab2 + a2b - ab2 + b3( ). ( a + b ) a2 - ab + b2 = a3 + b3 : ﺍﻻﺴﺘﻨﺘﺎﺝ( )* a3 - b3 = ( a - b ) a2 + ab + b2( )* a3 + b3 = ( a + b ) a2 - ab + b2 : ( ﺍﻟﻨﺸﺭ ﻭﺍﻻﺨﺘﺼﺎﺭ3( a + b + c )2 = [ a + ( b + c ) ]2 = a2 + 2a ( b + c ) + ( b + c )2= a2 + 2ab + 2ac + b2 + c2 + 2bc= a2 + b2 + c2 + 2ab + 2ac + 2bc( ): 24x2 - x + 1 ﺍﺴﺘﻨﺘﺎﺝ( )4x2 - x + 1 2 = 4x2 + ( - x ) + 1 2 ( ) ( ) ( )= 4x2 2 +(-x)2 +(1)2 +2 4x2 (-x) +2 4x2 (1) +2(-x)(1) = 16x4 + x2 + 1 - 8x3 + 8x2 - 2x( ). 4x2 - x + 1 2 = 16x4 - 8x3 + 9x2 - 2x + 1 : 5 ﺘﻤﺭﻴﻥ ﺍﻟﺘﺤﻠﻴل* f ( x ) = ( x - 3 )2 - 2( x - 3 ) ( 5x + 4 ) - ( 3 - x ) ( 3 + x ) = ( x – 3 ) 2 – 2( x – 3 ) ( 5x + 4 ) + ( x – 3 ) ( x + 3 ) = ( x - 3 ) [ x - 3 - 2( 5x + 4 ) - ( x + 3 ) ] = ( x – 3 ) ( x – 3 – 10x – 8 – x – 3 ) = ( x – 3 ) ( - 10x – 14 ) . f ( x ) = - 2( x – 3 ) ( 5x + 7 )
* g ( x ) = [ 4 ( 5x - 3 ) ]2 - [ 5 ( 3x - 1 ) ]2 = [ 20x - 12 ]2 - ( 15x - 5 )2= [( 20x - 12 ) - ( 15x - 5 )][( 20x - 12 ) + ( 15x - 5 )] . g ( x ) = ( 5x - 7 ) ( 35x - 17 )* h ( x ) = ( 4x )2 + 2( 4x ) × 1 + 1 2 = 4x + 1 2 4 4 4 * ϕ (x) = 2x2 9 ( x - 4 )2 - 4x2 = 2x2 ( 3x - 12 )2 - ( 2x )2 = 2x2 [ ( 3x - 12 ) - ( 2x ) ] [ ( 3x - 12 ) + ( 2x ) ] . ϕ ( x ) = 2x2 ( x - 12 ) ( 5x - 12 )* M ( x , y ) = [ y - (x -1)][ y + (x -1)] - 2 ( x - 1 ) ( x - y - 1 ) = (- x + y +1)( x + y -1) - 2 ( x - 1 ) ( x + y - 1 ) = - (x - y -1)( x + y -1) - 2 ( x - 1 ) ( x + y - 1 ) =(x-y-1) [ -x-y+1-2(x-1)] . M(x,y)=(x-y-1)(-3x+y+3) * Q ( x , y ) = a2xy + aby2 + b2xy + abx2 = ay ( ax + by ) + bx ( by + ax ) . Q ( x , y ) = ( ax + by ) ( ay + bx ) * T ( x , y ) = x2 + y2 + 2xy - ( 9a2 - 6ab + b2 ) = ( x + y )2 - ( 3a - b )2
= [ ( x + y ) - ( 3a - b ) ] [ ( x + y ) + ( 3a - b ) ]. T ( x , y ) = ( x + y - 3a + b ) ( x + y + 3a - b ) : 6 ﺘﻤﺭﻴﻥ : ﺍﻟﺸﻜل ﺍﻟﻨﻤﻭﺫﺠﻲ (1f(x)=6 x + - 1 2 - ( - 1 )2 - 4 ( 6 ) ( - 1 ) 2 × 6 4 ( 6 )2 . f ( x ) = 6 x - 1 2 - 25 12 144 (2 2 2 2 2 -4 ( 1 ) 1 3 9 p(x)=1 x + 3 - 2 ) 4 ( 1 )2 (1 . P(x)= x+ 1 2 3 (3Q(x)=3 x + 1 2 - ( 1 )2 - 4 × 3 × 12 2(3) 4 ( 3 )2 = 3 x + 1 2 + 144 6 36 = 3 x + 1 2 + 4 6
f (x) = 6 x - 1 - 5 x - 1 + 5 ﺍﻟﺘﺤﻠﻴل * : 12 12 12 12 f (x) = 6 x - 1 x + 1 ﻭﻤﻨﻪ : 2 3 = )p ( x x + 1 x + 1 * 3 3 * ) Q ( xﻻ ﺘﺤﻠل . * ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ : f ( x ) = 0 : = )f ( x x - 1 x + 1 = 0 2 3 x + 1 = 0 أو x− 1 = 0 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ ﺇﻤﺎ : 3 2 =x -1 ﺃﻭ =x 1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 3 2 x + 1 x + 1 = 0 p ( x) = 0ﺃﻱ : * ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ : 3 3 x + 1 = 0 ﺃﻭ x+ 1 = 0 ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻨﻪ ﺇﻤﺎ : 3 3 =x -1 ﺃﻭ =x -1 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : 3 3 * ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ Q x = 0 :ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ( ).
ﺍﻟﻤﻌﺎﺩﻻﺕ ﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ • ﺤـل ﺍﻟﻤﻌﺎﺩﻟﺔ • ﺤـل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ • ﺘــﺭﻴﻴــﺽ ﺍﻟﻤﺸﻜـﻼﺕ• ﺍﻟﺤـل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻤﻌﺎﺩﻻﺕ ﺃﻭ ﻤﺘﺭﺍﺠﺤﺎﺕ • ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ • ﺍﻟـﺤـﻠــــﻭل
• ﺤـل ﺍﻟﻤﻌﺎﺩﻟﺔ : ax2 + bx + c = 0 ; a ≠ o .1 * ﺇﺫﺍ ﻜﺎﻥ ∆ < 0 :ﻓﺈﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭﻻ ﻓﻲ . R x0 = −b ﻓﺈﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻼ ﻤﻀﺎﻋﻔﺎ ﻫﻭ : * ﺇﺫﺍ ﻜﺎﻥ ∆ = 0 : 2a * ﺇﺫﺍ ﻜﺎﻥ ∆ > 0 :ﻓﺈﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ﻫﻤﺎ : x2 = − b+ ∆ َﻭ x1 = − b− ∆ 2a 2a ﻤﺜﺎل :ﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ :1 ) x2 - 6x + 9 = 02 ) 3 x2 + 4x + 10 = 03 ) x2 + 4x − 5 = 0 ﺍﻟﺤل : (1ﻟﺩﻴﻨﺎ x2 − 6x + 9 = 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 − 4 a c :ﻭﻤﻨﻪ ∆ = (−6) − 4(9)(1) :ﺃﻱ ∆ = 0 :ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ = x0 6 =3 أي : x0 = -b 2 2a (2ﻟﺩﻴﻨﺎ 3x2 + 4x + 10 = 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 − 4 a c : ﻭﻤﻨﻪ ∆ = (4)2 − 4(3)(10) = −104 :ﺃﻱ ∆ < 0 : ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻓﻲ . R (3ﻟﺩﻴﻨﺎ x2 + 4x − 5 = 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 − 4ac :ﻭﻤﻨﻪ ∆ = (4)2 − 4(1) (-5) = 36 :أي ∆ > 0 :ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ= x1 -b- ∆ , = x2 -b+ ∆ ﻤﺘﻤﺎﻴﺯﻴﻥ x1 , x2ﺤﻴﺙ : 2a 2a = x1 - 4- 6 = - 5 , = x2 - 4 +6 =1 ﺇﺫﻥ : 2 2
• ﺤـل ﻤﺘﺭﺍﺠﺤﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ: ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ﻭ ﻨﺴﺘﻔﻴﺩ ﻤﻥ ﺇﺸﺎﺭﺓ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻭ ﻫﻲ ﻜﻤﺎ ﻴﻠﻲ : * ﺇﺫﺍ ﻜﺎﻥ ∆ ≤ 0 :ﻓﺈﻥ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺇﺸﺎﺭﺓ . a * ﺇﺫﺍ ﻜﺎﻥ ∆ > 0 :ﻓﺈﻥ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﺒﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﻋﻜﺱ ﺇﺸﺎﺭﺓ aﻭ ﺨﺎﺭﺝ ﺍﻟﺠﺫﺭﻴﻥ ﻤﻥ ﺇﺸﺎﺭﺓ . a ﻤﺜﺎل :ﺤل ﻓﻲ Rﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ :1 ) x2 - 6x + 9 > 02 ) 3 x2 + 4x + 10 ≤ 03 ) x2 + 4x − 5 < 0 ﺍﻟﺤل : (1ﻟﺩﻴﻨﺎ x2 - 6x + 9 > 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 − 4 a c : ﻭﻤﻨﻪ ∆ = (−6)2 − 4(9)(1) :ﺃﻱ ∆ = 0 : ﻭﻤﻨﻪ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ R : ﻤﻼﺤﻅﺔ : ﻓﻲ ﺤﺎﻟﺔ x2 - 6x + 9 < 0ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﺨﺎﻟﻴﺔ . ﻓﻲ ﺤﺎﻟﺔ x2 - 6x + 9 ≤ 0ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ { }. 3 : (2ﻟﺩﻴﻨﺎ 3 x2 + 4x + 10 ≤ 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 − 4 a c : ﻭﻤﻨﻪ ∆ = (4)2 − 4(3)(10) = −104 :ﺃﻱ ∆ < 0 : ﻭﻤﻨﻪ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻟﻴﺱ ﻟﻬﺎ ﺤل . (3ﻟﺩﻴﻨﺎ x2 + 4x − 5 < 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 − 4ac :ﻭﻤﻨﻪ ∆ = (4)2 − 4(1) (-5) = 36 :ﺃﻱ ∆ > 0 :ﻭﻤﻨﻪ ﻟﺩﻴﻨﺎ ﺠﺫﺭﻴﻥ= x1 -b- ∆ , = x2 -b+ ∆ ﻤﺘﻤﺎﻴﺯﻴﻥ x1 , x2ﺤﻴﺙ : 2a 2a = x1 - 4- 6 = -5 , = x2 - 4 +6 =1 ﺃﻱ : 2 2 ﻭﻤﻨﻪ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﺒﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺴﺎﻟﺏ ﻭ ﺨﺎﺭﺝ ﺍﻟﺠﺫﺭﻴﻥ ﻤﻭﺠﺏ ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ ] [. -5 , 1 :
• ﺘــﺭﻴﻴــﺽ ﺍﻟﻤﺸﻜـﻼﺕ : ﻭﻫﻭ ﺘﻭﻅﻴﻑ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺃﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺎ ﺕ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻷﻭﻟﻰ ﺃﻭ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻟﺤل ﻤﺸﻜﻼﺕ . ﻤﺜﺎل :ﺤﻘل ﻋﻠﻰ ﺸﻜل ﻤﺜـﻠﺙ ﻁﻭﻟﻲ ﻗﺎﻋﺩﺘﻪ ﻭﺍﺭﺘﻔﺎﻋﻪ ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻤﺘﺘﺎﺒﻌﺎﻥ ﺤﻴﺙ ﻁﻭل ﺍﻟﻘﺎﻋﺩﺓ ﺃﻜﺒﺭ ﻤﻥ ﻁﻭل ﺍﻻﺭﺘﻔﺎﻉ ﻭﻤﺴﺎﺤﺔ ﻫﺫﺍ ﺍﻟﻤﺜـﻠﺙ ﻫﻲ . 780 m2 -ﺍﺤﺴﺏ ﻁﻭﻟﻲ ﻜل ﻤﻥ ﺍﻟﻘﺎﻋﺩﺓ ﻭﺍﻻﺭﺘﻔﺎﻉ ﻟﻬﺫﺍ ﺍﻟﻤﺜـﻠﺙ. ﺍﻟﺤل :ﻨﻔﺭﺽ xﻁﻭل ﺍﻻﺭﺘﻔﺎﻉ .ﻓﻴﻜﻭﻥ ﻁﻭل ﺍﻟﻘﺎﻋﺩﺓ x + 1)x (x +1 =S )x (x +1 : ﻭﻋﻠﻴﻪ ﻭﻤﻨﻪ 2 = 780 : 2ﻭﻤﻨﻪ x x + 1 = 1560 :ﻭﺒﺎﻟﺘﺎﻟﻲ ( )x2 + x – 1560 = 0 : ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ . ∆ = b2 − 4 a cﻭﻋﻠﻴﻪ ∆ = ( 1 )2 - 4(1)(-1560) : ﺇﺫﻥ ∆ = 6241 :ﻭﺒﺎﻟﺘﺎﻟﻲ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ :ﻭ =x1 -b- ∆ = −1 − 6241 2a )2(1 x2 = −b + ∆ = −1+ 6241 24 )2(1ﻭﺒﺎﻟﺘﺎﻟﻲ ) x1 = − 40 :ﻤﺭﻓﻭﺽ ( َﻭ x2 = 39ﻭﻤﻨﻪ x = 39 :ﻭﻋﻠﻴﻪ ﻁﻭل ﺍﻻﺭﺘﻔﺎﻉ ﻫﻭ 39 mﻭﻁﻭل ﺍﻟﻘﺎﻋﺩﺓ ﻫﻭ . 40 m
• ﺍﻟﺤـل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻤﻌﺎﺩﻻﺕ ﺃﻭ ﻤﺘﺭﺍﺠﺤﺎﺕ:ﻫﻨﺎﻙ ﻤﻌﺎﺩﻻﺕ ﺃﻭ ﻤﺘﺭﺍﺠﺤﺎﺕ ﺘﺤل ﺠﺒﺭﻴﺎ ﻭﻫﻨﺎﻙ ﻤﻌﺎﺩﻻﺕ ﺃﻭ ﻤﺘﺭﺍﺠﺤﺎﺕ ﻻ ﻴﻤﻜﻥ ﺤﻠﻬﺎ ﺠﺒﺭﻴﺎ ﻭﻋﻠﻴﻪ ﻨﺤﻠﻬﺎ ﺒﻴﺎﻨﻴﺎ . -ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ f (x) = k :ﻫﻭ ﺇﻴﺠﺎﺩ ﻓﻭﺍﺼل ﻨﻘﻁ ﺘﻘﺎﻁﻊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ . y = k : -ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ f(x) = g(x) :ﻫﻭ ﺇﻴﺠﺎﺩ ﻓﻭﺍﺼل ﻨﻘﻁ ﺘﻘﺎﻁﻊ ﺍﻟﺘﻤﺜﻴﻠﻴﻥ ﺍﻟﺒﻴﺎﻨﻴﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ fﻭ . g -ﺤل ﺍﻟﻤﺘﺭﺍﺠﻌﺔ f (x) < k :ﻫﻭ ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ ) (γﺍﻟﻤﻤﺜلﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fﻭﺍﻟﻤﺴﺘﻘﻴﻡ ) ∆ ( ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = kﺜﻡ ﺍﺴﺘﻨﺘﺎﺝ ﻗﻴﻡ xﺒﺤﻴﺙ ﻴﻜﻭﻥ )(γ ﺘﺤﺕ ) ∆ ( . -ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) < g(x) :ﻫﻭ ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﺍﻟﻨﺴﺒﻴﺔ ﻟﻠﻤﻨﺤﻨﻴﻴﻥ ) (γﻭ )' (γﺍﻟﻤﻤﺜﻠﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ َ fﻭ gﺜﻡ ﺇﻴﺠﺎﺩ ﻗﻴﻡ xﺒﺤﻴﺙ ﻴﻜﻭﻥ ) (γﺘﺤﺕ )' . (γ ﻤﺜﺎل : ﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻟﺔ ) x3 = x + 1 :ﺘﻌﻁﻲ ﻗﻴﻡ ﺘﻘﺭﻴﺒﻴﺔ ﻟﻠﺤﻠﻭل ( ﺍﻟﺤل : ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭ gﺤﻴﺙ َ f (x) = x3 :ﻭ g(x) = x + 1 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﻭﺏ ﻨﻘﻭﻡ ﺒﺈﻨﺸﺎﺀ ﺍﻟﺒﻴﺎﻨﻴﻥ ) (γﻭ )' (γﻟﻠﺩﺍﻟﺘﻴﻥ fﻭ gﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ )' (γ )(γ
ﻨﻼﺤﻅ ﻋﻠﻰ ﺍﻟﺸﺎﺸﺔ ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﺍﻟﻤﺸﺎﺭ ﺇﻟﻴﻬﺎ ﺒﺎﻟﺴﻬﻡ ﻭ ﻋﻠﻰ ﺠﺎﻨﺏ ﺍﻟﺼﻭﺭﺓ ﺘﻅﻬﺭ ﺇﺤﺩﺍﺜﻴﺎﺕ ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻭ ﻤﻥ ﺍﻟﺤل ﺒﺎﻟﺘﻘﺭﻴﺏ ﻫﻭ . x = 1,3397 : • ﺘـﻤـﺎﺭﻴـﻥ ﻭ ﻤﺸـﻜـﻼﺕ: ﺘﻤﺭﻴﻥ : 1 ﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻭ ﺨﻁﺄ ﻤﺎ ﻴﻠﻲ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺭﻤﺯ 9ﻟﻠﺼﺤﺔ ﻭﺍﻟﺭﻤﺯ 8ﻟﻠﺨﻁﺄ : 16 (1ﻫﻭ ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ . x2 = 4 : 10 (2ﻫﻭ ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ . - 10 x = 0 : 5 (3ﻟﻴﺱ ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ . x2 - 10 x = - 25 :. ( x + )2 x + 1 = 0 : ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ 1 2 2 ، 2- (4 (5ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - 4 = 0 :ﺘﻌﻨﻲ . ( x - 2)( x + 2) = 0 : (6ﺍﻟﻤﻌﺎﺩﻟﺘﻴﻥ x( x – 4 ) ، x2 - 4 x = 0 :ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺤﻠﻭل . (7ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺘﻴﻥ 2 x2 - 6 x - 2 = 0 , x2 - 3 x - 1 = 0ﻨﻔﺱ ﻤﺠﻭﻋﺔ ﺍﻟﺤﻠﻭل . . ﺘﻤﺭﻴﻥ : 2 ﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ :1 ) 4 ( - 3 x + 5 )2 - 2 ( 6 x - 10 ) ( 5 x - 1 ) = 02 ) 25 ( x + 4 )2 = 9 ( - 3 x + 5 )2) 3 ) x2 - 16 = ( x2 - 8 x + 16 ) - ( 3 x -12 ) ( x + 34 ) 4 ( 4 - x2) - ( x - 2 ) 2 = 0) 5 ) 12 x3 - 16 x2 = ( 3 x - 46 ) 2 x2 - 18 - ( x + 3 )2 + 8 x + 24 = 0
ﺘﻤﺭﻴﻥ : 3 ﺤل ﻓﻲ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ ﺤﻴﺙ xﻤﺠﻬﻭل َﻭ mﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ :1 ) - 6 x2 + 5 x + 25 = 02 ) 25 x2 + 10 x + 1 = 03 ) - 5 x2 + 3 x - 4 = 04 ) m x2 + 2 (m + 1 ) x + m - 4 = 05 ) m x3 +2 m x2 + m x - 2 x2 - 2 x = 06 ) x2 + 2 ( m - 4 ) x + m2 + 4 = 0) 1 ) 8x 2 – 50 = ( 2x – 5 ) ( m x – 1 ﺘﻤﺭﻴﻥ : 4)2) (x–3)2=m(x2–93 ) ( x – 5 ) ( x 2 – 6x + 9 ) ( + x 2 + m x – m 2 ) = 0 ﺤل ﻓﻲ Rﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ : ﺘﻤﺭﻴﻥ : 5 ﻗﻁﻌﺔ ﺃﺜﺭﻴﺔ ﻋﻠﻰ ﺸﻜل ﺸﺒﻪ ﻤﻨﺤﺭﻑ ﻁﻭل ﻗﺎﻋﺩﺘﻪ ﺍﻟﻜﺒﺭﻯ ﻴﺴﺎﻭﻱ ﻁﻭل ﺍﺭﺘﻔﺎﻋﻪ ﻭﻁﻭل ﻗﺎﻋﺩﺘﻪ ﺍﻟﺼﻐﺭﻯ ﻨﺼﻑ ﻁﻭل ﺍﺭﺘﻔﺎﻋﻪ ﻭ ﻤﺴﺎﺤﺘﻪ ﻫﻲ 48 Cm2 E -ﺍﺤﺴﺏ ﺃﻁﻭﺍل ﻜل ﻤﻥ ﻗﺎﻋﺩﺘﻴﻪ ﻭ ﺍﺭﺘﻔﺎﻋﻪ .x ﺘﻤﺭﻴﻥ : 6 A ﺍﺤﺴﺏ xﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ﻤﺴﺎﺤﺔ ﺍﻟﻤﻨﺯل A B C D Eﺘﺴﺎﻭﻱ D 180 m2x B 2x-1 C ﺘﻤﺭﻴﻥ : 7 ﺍﺸﺘﺭﻯ ﻤﺤﻤﺩ 10ﻜﺭﺍﺭﻴﺱ ﻭ 5ﻜﺘﺏ ﺒـ . 2200 DAﺍﺤﺴﺏ ﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ﺍﻟﻭﺍﺤﺩ ﺜﻡ ﺴﻌﺭ ﺍﻟﻜﺘﺎﺏ ﺍﻟﻭﺍﺤﺩ ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ ﻤﺭﺒﻊ ﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ﺍﻟﻭﺍﺤﺩ ﻴﺴﺎﻭﻱ ﺴﻌﺭ ﺍﻟﻜﺘﺎﺏ ﺍﻟﻭﺍﺤﺩ . ﺘﻤﺭﻴﻥ : 8 ABCﻤﺜﻠﺙ ﺤﻴﺙ AB = AC :ﻭ Hﺍﻟﻤﺴﻘﻁ ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Aﻋﻠﻰ ) .( BC ﻁﻭل BCﻴﺯﻴﺩ ﺒـ 1 Cmﻋﻥ ﻁﻭل [ ] [ ]. AB -ﻋﻴﻥ ﻁﻭل ﻜل ﻤﻥ َ ABﻭ BCﻋﻠﻤﺎ ﺃﻥ [ ] [ ]. AH = 4 Cm :
ﺘﻤﺭﻴﻥ : 9 ﻤﺜﻠﺙ ﻗﺎﺌﻡ ﺃﻁﻭﺍل ﺃﻀﻼﻋﻪ ﺍﻟﺜﻼﺜﺔ ﻫﻲ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ ﻤﺘﺘﺎﺒﻌﺔ ﺍﺤﺴﺏ ﻜل ﻤﻨﻬﺎ . ﺘﻤﺭﻴﻥ : 10 15 ﻋﻨﺩ ﻁﺭﺡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻤﻥ ﻜل ﻤﻥ ﺒﺴﻁ ﻭﻤﻘﺎﻡ ﺍﻟﻜﺴﺭ 8ﻨﺠﺩ ﻋﺩﺩﺍ ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ.8 -ﻤﺎ ﻫﻭ ﻫﺫﺍ ﺍﻟﻌﺩﺩ ؟ ﺘﻤﺭﻴﻥ : 11 ﺃﺭﺍﺩ ﻁﻔل ﺘﺭﺘﻴﺏ ﻤﺠﻤﻭﻋﺔ ﻤﻥ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ ﻋﻠﻰ ﺸﻜل ﻤﺭﺒﻊ ﻓﺒﻘﻲ ﻟﻪ 11ﻨﺭﺩ ،ﻓﻘﺭﺭ ﺇﻀﺎﻓﺔ ﻨﺭﺩ ﻓﻲ ﻜل ﺼﻑ ﻭ ﻫﺫﺍ ﺃﺩﻯ ﺇﻟﻰ ﻨﻘﺹ 16ﻨﺭﺩ ﻹﺘﻤﺎﻡ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺠﺩﻴﺩ .ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ ﺍﻟﺘﻲ ﺍﺴﺘﻌﻤﻠﻬﺎ ﺍﻟﻁﻔـل . زهﺮة اﻟﻨﺮد ﺘﻤﺭﻴﻥ : 12 ﻋﻴﻥ ﺜﻼﺜﺔ ﺃﻋﺩﺍﺩ ﻤﺘﺘﺎﺒﻌﺔ .ﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﺠﺩﺍﺀ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻷﻜﺒﺭ ﻭ ﻤﺭﺒﻊ ﺍﻟﻌﺩﺩ ﺍﻷﺼﻐﺭ ﻴﺴﺎﻭﻱ D . 41A ﺘﻤﺭﻴﻥ : 13 إﻟﻴﻙ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل : ﻋﻴﻥ ﻭﻀﻊ ﺍﻟﻨﻘﻁﺔ Mﺒﺤﻴﺙ 8 cm M 4 cm ﺘﻜﻭﻥ . AM = DM :B 5 cm C ﺘﻤﺭﻴﻥ : 14 ﺃﺭﺍﺩ ﺭﻀﺎ ﺸﺭﺍﺀ 8ﺃﻗﻼﻡ ﻭ 20ﻜﺭﺍﺱ ﺤﻴﺙ ﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ﻻ ﻴﻘل ﻋﻥ 20 DAﻭﻫﻭ ﻀﻌﻑ ﺴﻌﺭ ﺍﻟﻘﻠﻡ ﻤﺎ ﻫﻭ ﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ﻭ ﺍﻟﻘﻠﻡ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﺩﻓﻌﻪ ﺭﻀﺎ ﺃﻗـل ﻤﻥ . 1000 DA
ﺘﻤﺭﻴﻥ : 15 ﺤل ﻓﻲ Rﻜل ﻤﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ :)1 −x+3 ≤ 0 2x+52 ) (−5x + 2) (4x + 5) ≥ 0)3 2x - 2x + 4 ≥ 0 x+ 4 x-54 ) 4 x2 − 25 - ( 2 x - 5 ) (x + 3) ≥ 05 ) 20 x2 + 6x - 2 < 06 ) 49 x2 - 14 x + 1 ≤ 0 ﻭﻤﺤﻴﻁﻪ . 10 Cm2 ﺘﻤﺭﻴﻥ : 16 ﻫل ﻴﻭﺠﺩ ﻤﺴﺘﻁﻴل ﻤﺴﺎﺤﺘﻪ 6 Cm2 ﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺍﻟﺤل ﺠﺒﺭﻴﺎ ﺜﻡ ﺒﻴﺎﻨﻴﺎ . ﺘﻤﺭﻴﻥ : 17 ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ −3 ; 4ﺒﺒﻴﺎﻨﻬﺎ γﻓﻲ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ ( ) [ ]. y -ﺤل ﺒﻴﺎﻨﻴﺎ ﻤﺎ ﻴﻠﻲ : y = -x+1 f (x) ≤ 0 (1 f (x) = -1 (2 ) (∆2 f (x) = - x +1 (3 x' -3 )(γ x 4 y = -1 )y' (∆1
ﺘﻤﺭﻴﻥ : 18 ( 1ﺤل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﻌﺎﺩﻟﺔ 4 - x2 = −5 :ﺜﻡ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 4 - x2 ≥ 0 : ( 2ﺠﺩ ﻫﺫﻩ ﺍﻟﻨﺘﺎﺌﺞ ﺤﺴﺎﺒﻴﺎ . ﺘﻤﺭﻴﻥ : 19ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ( ) ( ) ( )U1 ; U2 ; U3 ﻟﻠﺩﻭﺍل h , g , fﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺤﻴﺙ :f ( x ) = x2 - x ; g ( x ) = 4 ; h(x)=x+3 x * ﺤل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﻌﺎﺩﻟﺔ f ( x ) = - 2 : * ﺤل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f ( x ) > - 2 : 4 ≤ x + 3 : ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺒﻴﺎﻨﻴﺎ ﺜﻡ ﺤﺴﺎﺒﻴﺎ ﺤل * x * ﺤل ﺤﺴﺎﺒﻴﺎ ﺜﻡ ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ x + 3 ≥ x 2 - x : ﺘﻤﺭﻴﻥ : 20ﻟﺘﻜﻥ :ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ − 5 ; 5ﺒﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ γﺍﻟﻤﻌﺭﻓﺔ ﻜﻤﺎ ﻴﻠﻰ ( ) [ ]: y(γ) 3 2'x 1 3,5 5 x 12 -4 -3 -3 'yﺃﺫﻜﺭ ﺼﺤﺔ ﺃﻭ ﺨﻁﺄ ﻤﺎ ﻴﻠﻲ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺭﻤﺯ 9ﻟﻠﺼﺤﺔ ﻭﺍﻟﺭﻤﺯ 8ﻟﻠﺨﻁﺄ : (1ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = 1ﺤﻠﻴﻥ . (2ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = 0ﺤﻠﻴﻥ .
(3ﻟﻠﻤﻌﺎﺩﻟﺔ f(x) = - 1ﺤﻠﻴﻥ . (4ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) ≤ 0 :هﻲ [ ]. E1 = -5 , -4 : (5ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) > 0 :هﻲ ] [. E2 = - 4 ; 2 : (6ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = xﺤل ﻭﺤﻴﺩ . . (7ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) < - 3 :هﻲ [ ]E3 = -4 ; 2 : . (8ﻟﻴﺱ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ f (x) f 3ﺃﻱ ﺤل . . ﺘﻤﺭﻴﻥ : 21 ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺃﻨﺸﺊ ﺘﻤﺜﻴﻼ ﺒﻴﺎﻨﻴﺎ γﻟﻠﺩﺍﻟﺔ fﺤﻴﺙ f ( x)= Sin x:ﻋﻠﻰ ﺍﻟﻤﺠﺎل) ( ]. [−π , π -ﺍﺴﺘﻨﺘﺞ ﺒﻴﺎﻨﻴﺎ ﻋﻠﻰ −π , πﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ] [1 ) f (x) = - 1 ; 2 ) f (x) = 1 ; 3 ) f (x) = 0 -ﺍﺴﺘﻨﺘﺞ ﺒﻴﺎﻨﻴﺎ ﻋﻠﻰ −π , πﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ [ ]:1 ) f (x) ≤ - 1 ; 2 ) f (x) > 1 ; 3 ) f (x) ≥ 0 ﻋﻴﻨﻬﺎ ﺒﺘﻘﺭﻴﺏ . 0,001 f = )(x 1 ﻤﺎ ﻫﻭ ﻋﺩﺩ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ : 2
• ﺍﻟـﺤـﻠــــﻭل: ﺘﻤﺭﻴﻥ : 1 . × (3 . × (2 . × (1 . 9 (4. × (7 . 9 (6. 9 (5 ﺘﻤﺭﻴﻥ : 2 ( 1ﻟﺩﻴﻨﺎ 4 ( - 3 x + 5 )2 - 2 ( 6 x - 10 ) ( 5 x - 1 ) = 0 : 4 ( 3 x - 5 )2 - 4 ( 3 x -5 ) ( 5 x - 1) = 0 ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ : ﻭﻤﻨﻪ :4 (3 x - 5 ) 3 x − 5 − (5 x −1) = 0 4(3x–5)( -2x–4)=0 ﺃﻱ : -2x–4=0 3 x – 5 = 0أو ﺇﺫﻥ : ﻭﻤﻨﻪ : x=-2 أو =x 5 3 ( 2ﻟﺩﻴﻨﺎ 25 ( x + 4 )2 = 9 ( - 3 x + 5 )2 :ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ 5 ( x + 4)2 − 3 (- 3 x + 5)2 = 0 : ﺃﻱ :5 (x + 4) − 3(- 3 x + 5) 5(x + 4) + 3(- 3 x + 5) = 0 ﻭﻤﻨﻪ ( 5 x + 20 + 9 x – 15 ) ( 5 x + 20 – 9 x + 15 ) = 0 : ( 14 x + 5 ) ( - 4 x + 35 ) = 0 ﻭﻤﻨﻪ : ﺇﺫﻥ 14 x + 5 = 0 :أو - 4 x + 35 = 0 x = 35 أو x = -5 ﻭ ﻋﻠﻴﻪ : 4 14 ( 3ﻟﺩﻴﻨﺎ x2 - 16 = ( x2 - 8 x + 16 ) - ( 3 x -12 ) ( x + 3 ) :ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ x2 - 16 - ( x - 4 )2 + 3( x - 4)( x + 3 ) = 0 :
(x-4) [ x+4-(x-4)+3(x+3) ] =0 ﻭﻤﻨﻪ : ( x - 4 ) ( 3x + 17 ) = 0 ﻭ ﺒﺎﻟﺘﺎﻟﻲ : ﺇﺫﻥ x – 4 = 0 :أو 3x + 17 = 0 . x = - 17 أو ﻭ ﺒﺎﻟﺘﺎﻟﻲ x = 4 : 3 ( 4ﻟﺩﻴﻨﺎ 4 ( 4 - x2 ) - ( x - 2 ) 2 = 0 : ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ 4 ( 2 - x ) ( 2 + x ) - ( x - 2 )2 = 0 :(x-2)[-4(x+2)-(x-2)] =0 ﻭﻤﻨﻪ : ( x - 2 ) ( - 5x - 6 ) = 0 ﻭ ﻋﻠﻴﻪ :x= -6 ﺃﻭ ﺃﻱ x = 2 : x - 2 = 0ﺃﻭ - 5x - 6 = 0 ﺇﺫﻥ : 5 ( 5ﻟﺩﻴﻨﺎ 12 x3 - 16 x2 = ( 3 x - 4 ) : ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ 4x2 ( 3x - 4 ) - ( 3x - 4 ) = 0 : ( 3x - 4 ) ( 4x2 - 1 ) = 0 ﻭﻤﻨﻪ : ( 3x - 4 ) ( 2x - 1 ) ( 2x + 1 ) = 0 ﺃﻱ :ﻭﻋﻠﻴﻪ 3x - 4 = 0 :ﺃﻭ 2x - 1 = 0ﺃﻭ 2x + 1 = 0 . =x -1 ﺃﻭ =x 1 ﺃﻭ =x 4 ﺇﺫﻥ : 2 2 3 ( 6ﻟﺩﻴﻨﺎ 2 x2 - 18 - ( x + 3 )2 + 8 x + 24 = 0 :ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ ( )2 x2 - 9 - ( x + 3 )2 + 8 ( x + 3 ) = 0 : ﻭﻤﻨﻪ : 2 ( x - 3 ) ( x + 3 ) - ( x + 3 )2 + 8 ( x + 3 ) = 0 ﻭﺒﺎﻟﺘﺎﻟﻲ ( x + 3 ) [ 2 ( x - 3 ) - ( x + 3 ) + 8 ] = 0 :ﺃﻱ ( x + 3 ) ( x - 1 ) = 0 :ﺇﺫﻥ x + 3 = 0 :ﺃﻭ x - 1 = 0 ﻭﺒﺎﻟﺘﺎﻟﻲ x = - 3 :ﺃﻭ . x = 1
ﺘﻤﺭﻴﻥ : 3 - 6x2 + 5x + 25 = 0 ( 1 ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = ( 5 )2 - 4 ( - 6 ) ( 25 ) = 625 :x2 = -b+ ∆ ﻭ x1 = -b- ∆ > 0ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ∆ 2a 2ax2 = - 5 + 625 = −5 ﻭ x1 = - 5 - 625 = 5 ﻭﻤﻨﻪ : ) 2( - 6 3 ) 2( - 6 2 25x2 + 10 x + 1 = 0 ( 2 ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = ( 10 )2 - 4 ( 1 ) ( 25 ) : ﻭﻤﻨﻪ ∆= 100 - 100 = 0 : x0 = -b = - 10 = -1 ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ : 2a 50 5 - 5x2 + 3x - 4 = 0 ( 3 ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = ( 3 )2 - 4 ( - 5 ) ( - 4 ) = - 71 : ∆ < 0ﻭﻋﻠﻴﻪ :ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻓﻲ . R m x2 + 2 ( m + 1 ) x + m - 4 = 0 ( 4 * ﻤﻥ ﺃﺠل : m = 0ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ 2x - 4 = 0 :ﻭﻋﻠﻴﻪ . x = 2 : * ﻤﻥ ﺃﺠل : m ≠ 0ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac ) ∆ = 4 ( m + 1 )2 - 4 ( m ) ( m - 4 ﻭﻤﻨﻪ : ( )= 4 m2 + 2m + 1 - 4m2 + 16m ﻭﻋﻠﻴﻪ ∆ = 24m + 4 : ∞- -1 ∞+ ﺇﺸﺎﺭﺓ ∆ : 6 m ـــ ∆ + * ﻟﻤﺎ :
ﻓﺈﻥ ∆ < 0 :ﻭﻋﻠﻴﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻓﻲ . R m ∈ -∞ , -1 6 ﻭﻤﻨﻪ : x0 = -b ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ : ﻓﺈﻥ ∆ = 0 : =m -1 2a * ﻟﻤﺎ 6 : ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : x0 = -2(m+ 1 ) 2m -1 + 1 5 6 =. x0 -1 = 6 =− 5 -1 66 ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ∆>0 ﻓﺈﻥ ∈m -1 , + ∞ ﻟﻤﺎ * 6 x1 = -b- ∆ = -2(m+1) - 24m+4 2a 2m x2 = -b+ =∆ -2(m+1) + 24m+4 ﻭ 2a 2m m x3 + 2 m x2 + m x - 2 x2 - 2 x = 0 ( 5ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ (1) . . . x m x2 + 2 m x + m - 2 x - 2 = 0 : ﺃﻱ x = 0 :ﺃﻭ x2 + ( 2m - 2 ) x + m - 2 = 0 :(2) . . . m x2 + ( 2m - 2 ) x + m - 2 = 0 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ : ∆ = b2 - 4acﻭﻋﻠﻴﻪ ∆ = ( 2m - 2 )2 - 4 × m ( m - 2 ) :∆=4 ﻭﻋﻠﻴﻪ : ﺇﺫﻥ ∆ = 4m2 - 8m + 4 - 4m2 + 8m : ﺇﺫﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ) (2ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ﻷﻥ ∆ > 0 : x1 = −b − ∆ = −(2m − 2) − 2 = -m 2a )2(1 x2 = −b + ∆ = −(2m − 2) + 2 = - m + 2 ﻭ 2a )2(1
x2 + 2 ( m – 4 ) x + m2 + 4 = 0 (6 ∆ = b2 − 4acﻭ ﻋﻠﻴﻪ ∆ = 4(m − 4)2 − 4(1)(m2 + 4) : ﺃﻱ ∆ = 4m2 − 32 + 64 − 4m2 − 16 :وﻋﻠﻴﻪ : ∆ = −32m + 48 m ∞- 3 ﺇﺸﺎﺭﺓ ∆ : 2 ∞+ ∆+ ـــ * ﻟﻤﺎ ∆ > 0ﻭ ﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ : ﻓﺈﻥ m ∈ ∞− , 3 2 = x1 -b- ∆ = -2(m - 4) - - 32 m + 48 2a 2x2 = -b+ =∆ -2(m - 4) + - 32 m + 48 ﻭ 2a 2 ∆ = 0ﻭ ﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ ﻫﻭ : : ﻓﺈﻥ =m 3 ﻟﻤﺎ * 2 -b ) −2( m - 4 ﻭ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : x0 = 2a = 2×1 =4−m x0 = 4 − 3 = 5 2 2∈ mﻓﺈﻥ ∆ < 0 :ﻭﻋﻠﻴﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ﻓﻲ .R 3 ∞,+ 2 * ﻟﻤﺎ : ﺘﻤﺭﻴﻥ : 4 ( 1ﻟﺩﻴﻨﺎ 8x 2 – 50 = ( 2x – 5 ) ( m x – 1 ) :ﺃﻱ 2 ( 2 x - 5 ) ( 2 x + 5 ) - (2 x - 5 ) ( m x - 1 ) = 0 : ﻭﻋﻠﻴﻪ ( 2 x - 5 ) [ ( 4 - m ) x + 11] = 0 :ﻭ ﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ 2 x - 5 = 0 :ﺃﻭ (4 - m ) x + 11 = 0 ﺃﻭ ( 4 - m ) x + 11 = 0 =x 5 ﺃﻱ : 2
(4 - m ) x + 11 = 0 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ : * ﻤﻥ ﺃﺠل m = 4ﻟﺩﻴﻨﺎ O × x + 11 = 0 :ﻭﻫﺫﺍ ﻤﺴﺘﺤﻴل . =x - 11 * ﻤﻥ ﺃﺠل m ≠ 4ﻟﺩﻴﻨﺎ : 4-m ﻭﻋﻠﻴﻪ : =x 5 * ﻤﻥ ﺃﺠل m = 4ﻟﺩﻴﻨﺎ : 2 5 - 11 =x 2 ﺃﻭ =x 4-m * ﻤﻥ ﺃﺠل m ≠ 4ﻟﺩﻴﻨﺎ : ( 2ﻟﺩﻴﻨﺎ ( x – 3 ) 2 = m ( x 2 – 9 ) : ﺃﻱ ( x - 3 ) [ x - 3 - m ( x + 3 ) ] = 0 : ﺃﻱ ( x - 3 ) [ ( 1 - m ) x - 3 - 3 m]= 0 : ﻭﻤﻨﻪ x - 3 = 0 :ﺃﻱ x = 3 :ﺃﻭ : (1-m)x-3-3m=0 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ ( 1 - m ) x = 3 ( 1 + m ) :* ﻤﻥ ﺃﺠل 1 - m = 0ﺃﻱ m = 1ﻟﺩﻴﻨﺎ 0 × x = 6 :ﻭﻫﺫﺍ ﻤﺴﺘﺤﻴل .x = )3(1+ m * ﻤﻥ ﺃﺠل 1 - m ≠ 0ﺃﻱ m ≠ 1ﻟﺩﻴﻨﺎ : 1-m ﻭﻋﻠﻴﻪ : * ﻤﻥ ﺃﺠل m = 1ﻟﺩﻴﻨﺎ x = 3 : . x=3 ﺃﻭ =x )3(1+ m * ﻤﻥ ﺃﺠل m ≠ 1ﻟﺩﻴﻨﺎ : 1-m (3) . . . ( x – 5 ) ( x 2 – 6x + 9 ) ( x 2 + m x – m 2 ) = 0 ( 3 ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺘﻜﺎﻓﺊ : x - 5 = 0ﺃﻭ x2 - 6x + 9 = 0ﺃﻭ x2 + m x - m2 = 0 * ﺍﻟﻤﻌﺎﺩﻟﺔ x - 5 = 0 :ﺘﻌﻨﻲ x = 5 : * ﺍﻟﻤﻌﺎﺩﻟﺔ x2 - 6x + 9 = 0 :ﻭﻤﻨﻪ ∆ = b2 - 4ac :
ﻭﻋﻠﻴﻪ ∆ = 36 - 36 = 0 :ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ ﻫﻭ :x0 = -b = 6 =3 2a 2 * ﺍﻟﻤﻌﺎﺩﻟﺔ x2 + m x - m2 = 0 :ﻨﺤﺴﺏ ﺍﻟﻤﻤﻴﺯ ∆ = b2 - 4ac ﻭﻋﻠﻴﻪ ∆ = m2 - 4 ( 1 ) - m2 :ﺃﻱ ( )∆ = 5m2 : * ﻤﻥ ﺃﺠل m = 0ﻓﺈﻥ ∆ = 0 :ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋـﻑ :x0 = -m =0 2 * ﻤﻥ ﺃﺠل m ≠ 0ﻓﺈﻥ ∆ > 0 : ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ : = x1 -b- ∆ = = - m - 5m2 -m- m 5 2a 2 2 x2 = -b+ =∆ = - m + 5m2 -m+ m 5 ﻭ 2a 2 2 ﻭ ﻤﻨﻪ ﻨﺨﻠﺹ ﺇﻟﻰ : * ﻟﻤﺎ : m = 0ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ) ( 3ﻫﻲ { }E = 5 , 3 , 0 : ﺤﻴﺙ 3 , 0 :ﻫﻤﺎ ﺤﻠﻴﻥ ﻤﻀﺎﻋﻔﻴﻥ . * ﻟﻤﺎ : m ∈ - 0ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ) ( 3ﻫﻲ { }:E = 5,3, -m+ a 5 , -m- a 5 2 2 ﺤﻴﺙ 3ﺤل ﻤﻀﺎﻋﻑ . ﺘﻤﺭﻴﻥ : 5ﻨﻔﺭﺽ xﻁﻭل ﺍﻟﻘﺎﻋﺩﺓ ﺍﻟﺼﻐﺭﻯ ﻓﻴﻜﻭﻥ 2 xﻁﻭل ﻜل ﻤﻥ ﺍﻟﻘﺎﻋﺩﺓ ﺍﻟﻜﺒﺭﻯ ﻭ ﺍﻻﺭﺘﻔﺎﻉ ﻤﺴﺎﺤﺔ ﺍﻟﻘﻁﻌﺔ S = )(2x + x ﺍﻷﺜﺭﻴﺔ ﻫﻲ × 2 x : 2 x2 = 48 3 ﺇﺫﻥ : ﻭﻤﻨﻪ 3 x2 = 48 : S = 3x2 ﻭﻋﻠﻴﻪ :
ﺃﻱ x2 = 16 :ﻭﻋﻠﻴﻪ . x = 4 : ﻭﻋﻠﻴﻪ ﻁﻭل ﻗﺎﻋﺩﺘﻪ ﺍﻟﺼﻐﺭﻯ 4 Cmﻭﻁﻭل ﻗﺎﻋﺩﺘﻪ ﺍﻟﻜﺒﺭﻯ 8 Cm ﻭﻁﻭل ﺍﺭﺘﻔﺎﻋﻪ . 8 Cm ﺘﻤﺭﻴﻥ : 6 ﻤﺴﺎﺤﺔ ABCDﻫﻲ S1 = ( 2x - 1) x = 2x2 - x : S2 = (2x - 1) x = 2 x2 - x ﻤﺴﺎﺤﺔ ADEﻫﻲ : 2 2 S = s1 + s2 ﻤﺴﺎﺤﺔ ﺍﻟﻤﻨﺯل ﻫﻲ:S = 2 x2 -x+ 2 x2 - x = 4 x2 - 2 x + 2 x2 -x 2 2 S = 6 x2 - 3x ﻭﻤﻨﻪ : 2 6 x2 - 3 x = 180 ﻭﻟﺩﻴﻨﺎ S = 180 m2 :ﻭﻋﻠﻴﻪ : 2ﺇﺫﻥ 6 x2 - 3 x = 360 :ﺃﻱ 6 x2 - 3 x - 360 = 0 : ﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ 3ﻨﺠﺩ 2 x2 - x - 120 = 0 :ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac :ﺃﻱ ∆ = (-1)2 - 4(2)(-120) = 961 : ∆ > 0ﻭ ﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ :x1 = -b- ∆ = 1 - 961 = −15 ) ﻤﺭﻓﻭﺽ ( 2a 2×2 2x2 = -b+ ∆ = 1 + 961 = 8 ﻭ 2a 2×2 ﻭﻋﻠﻴﻪ . x = 8 :
ﺘﻤﺭﻴﻥ : 7 ﻨﻔﺭﺽ xﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ؛ ﻓﻴﻜﻭﻥ ﺴﻌﺭ ﺍﻟﻜﺘﺎﺏ . x2 ﻭﻋﻠﻴﻪ 10 x + 5 x2 = 2200 :ﺃﻱ 5 x2 + 10 x - 2200 = 0 : ﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ 5ﻨﺠﺩ x2 + 2 x - 440 = 0 :ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ .ﻟﺩﻴﻨﺎ : ∆ = b2 - 4acﺇﺫﻥ ∆ = 22 - 4 (1) (-440) = 1764 : ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ x1 , x2ﺤﻴﺙ : ) ﻤﺭﻓﻭﺽ ( = x1 -b- ∆ = - 2 - 1764 = - 2 - 42 = - 22 2a )2(1 2 َو x2 = -b + ∆ = - 2 + 1764 = - 2 + 42 = 20 2a )2(1 2 ﺇﺫﻥ x = 20 :ﻭﻋﻠﻴﻪ x2 = 400 : ﺇﺫﻥ ﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ﺍﻟﻭﺍﺤﺩ ﻫﻭ 20 DA :ﻭﺴﻌﺭ ﺍﻟﻜﺘﺎﺏ ﺍﻟﻭﺍﺤﺩ ﻫﻭ . 400 DA : ﺘﻤﺭﻴﻥ A : 8 ﻨﻔﺭﺽ xﻁﻭل ACﻓﻴﻜﻭﻥ [ ]: x x + 1ﻁﻭل [ ]. BC 4 Cm HC = 1 BC ﻟﺩﻴﻨﺎ : 2 1 HC = 2 )(x+1 ﻭﻤﻨﻪ :B x +1 H C ﻓﻲ ﺍﻟﻤﺜـﻠﺙ ﺍﻟﻘﺎﺌﻡ AHCﻟﺩﻴﻨﺎ : 2x2 = x+12 + 42 ﻭﻤﻨﻪ : AC2 = AH2 + HC2 2
ﺃﻱ 3 x2 - 2x - 65 = 0 : x2 = x2 + 2x +1 + 16 ﻭﺒﺎﻟﺘﺎﻟﻲ : 4ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac :ﺃﻱ ∆ = (-2)2 - 4(3)(-65) = 784 : ﺇﺫﻥ ∆ > 0 :ﻭﻋﻠﻴﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ := x1 -b - ∆ = 2 - 784 = 2 - 28 = - 13 ) ﻤﺭﻓﻭﺽ ( 2a )2(3 6 2x2 = -b + ∆ = 2 + 784 = 2 + 28 =5 َﻭ 2a )2(3 6 ﺇﺫﻥ . x = 5 :ﻭﻋﻠﻴﻪ ﻁﻭل ﻜل ﻤﻥ ABو ACﻫﻭ َ 5 Cm :ﻭ ﻁﻭل BCﻫﻭ[ ] [ ] [ ]6 Cm : ﺘﻤﺭﻴﻥ : 9ﺒﻤﺎ ﺃﻥ ﺍﻟﻭﺘﺭ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ ﻫﻭ ﺃﻁﻭل ﻀﻠﻊ ﻓﺈﻨﻨﺎ ﻨﻔﺭﺽ ﺃﻥ ﻁﻭل ﺍﻟﻭﺘﺭ ﻫﻭ x + 2ﻭ ﻤﻨﻪ ﻁﻭﻟﻲ ﺍﻟﻀﻠﻌﻴﻥ ﺍﻟﻘﺎﺌﻤﻴﻥ ﻫﻤﺎ x ; x + 1 : ﻭﺤﺴﺏ ﻨﻅﺭﻴﺔ ﻓﻴﺘﺎﻏﻭﺭﺙ ﻴﻨﺘﺞ ( x + 2 )2 = ( x + 1 )2 + x2 : ﻭﻤﻨﻪ x2 + 4 x + 4 = x2 + 2 x + 1 + x2 : ﺃﻱ x2 - 2 x - 3 = 0 :ﻭ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻴﻬﺎ a + c = b : ﺇﺫﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻫﻤﺎَ - 1 :ﻭ 3ﻟﻜﻥ ﺍﻟﺤل - 1ﻤﺭﻓﻭﺽ ﺇﺫﻥ . x = 3 : ﻭﻋﻠﻴﻪ ﻁﻭل ﺍﻟﻭﺘﺭﻫﻭ 5 Cmﻭﻁﻭﻟﻲ ﺍﻟﻀﻠﻌﻴﻥ ﺍﻟﻘﺎﺌﻤﻴﻥ ﻫﻤﺎ 4 Cm , 3 Cm : ﺘﻤﺭﻴﻥ : 10)15 - x = 8 (8 - x ﻭﻋﻠﻴﻪ : 15 - x = 8 ﻨﺴﻤﻲ xﻫﺫﺍ ﺍﻟﻌﺩﺩ ﻓﻨﺠﺩ : 8-x ﺃﻱ 15 - x = 64 - 8x :ﻭﻤﻨﻪ −x + 8x = 64 - 15 : =x 49 =7 ﺃﻱ : ﻭﻋﻠﻴﻪ 7x = 49 : 7 ﺇﺫﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻤﻁﻠﻭﺏ ﻫﻭ . x = 7 :
ﺘﻤﺭﻴﻥ : 11ﻟﻴﻜﻥ xﻋﺩﺩ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ ﻓﻲ ﻜل ﺼﻑ ﻤﻥ ﺃﻀﻼﻉ ﺍﻟﻤﺭﺒﻊ ﺍﻷﻭل ﻓﻴﻜﻭﻥ ﻋﺩﺩ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ x 2 + : 11ﻭﻋﻠﻴﻪ ﻴﻜﻭﻥ ﻋﺩﺩ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ ﺍﻟﺘﻲ ﺍﺴﺘﻌﻤﻠﻬﺎ ﻋﻠﻰ ﻁﻭل ﻀﻠﻊ ﺍﻟﻤﺭﺒﻊ ﺍﻟﺜﺎﻨﻲ ﻫﻭ x + 1 ﻭﻤﻨﻪ ﻋﺩﺩ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ ﻫﻭ . ( x + 1 ) 2 – 16 : ﻭﺒﺎﻟﺘﺎﻟﻲ x 2 + 11 = ( x + 1 ) 2 - 16 :ﻭﻤﻨﻪ x 2 + 11 – x 2 – 2x – 1 + 16 = 0 :ﺃﻱ - 2x + 26 = 0 : ﻭﻤﻨﻪ . x = 13 :ﻋﺩﺩ ﺯﻫﺭﺍﺕ ﺍﻟﻨﺭﺩ ( 13 ) 2 + 11 :ﺇﺫﻥ ﻋﺩﺩﻫﺎ ﻫﻭ 180 :ﺯﻫﺭﺓ ﻨﺭﺩ . ﺘﻤﺭﻴﻥ : 12 ﻨﻔﺭﺽ ﻫﺫﻩ ﺍﻷﻋﺩﺍﺩ ﻫﻲ x ; x + 1 ; x + 2 : ﻟﺩﻴﻨﺎ ( x + 1 ) ( x + 2 ) – x 2 = 41 :ﺃﻱ x 2 + 3x + 2 – x 2 = 41 :ﻭﻋﻠﻴﻪ 3x = 39 :ﻭﻋﻠﻴﻪ ﺍﻷﻋﺩﺍﺩ ﻫﻲ 13 , 14 , 15 : ﺇﺫﻥ . x = 13 : ﺘﻤﺭﻴﻥ : 13 ﺘﻌﻴﻴﻥ ﻭﻀﻌﻴﺔ : M* ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ ABMﻟﺩﻴﻨﺎ AM 2 = AB 2 + BM 2 : ﻭﻤﻨﻪ AM 2 = 9 + ( BC – MC ) 2 : ﺇﺫﻥ AM 2 = 9 + ( 5 – MC ) 2 :* ﻭ ﻓﻲ ﺍﻟﻤﺜﻠﺙ ﺍﻟﻘﺎﺌﻡ DCMﻟﺩﻴﻨﺎ DM 2 = DC 2 + MC 2 : ﻭﻤﻨﻪ DM 2 = 16 + MC 2 :ﻴﻜﻭﻥ AM = DMﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ AM 2 = DM 2 : ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ 9 + ( 5 – MC ) 2 = 16 + MC 2 : ﺃﻱ 9 + 25 – 10MC + MC 2 = 16 + MC 2 :. MC = 1,8 Cm ﺃﻱ : MC = 18 : ﻭﻤﻨﻪ 10ﻭﻋﻠﻴﻪ MB = 5 – 1,8 :ﺃﻱ . MB = 3,2 Cm : ﺘﻤﺭﻴﻥ : 14x ≥ 20 ﻨﻔﺭﺽ xﺴﻌﺭ ﺍﻟﻘﻠﻡ .ﻓﻴﻜﻭﻥ 2xﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ . ﻟﺩﻴﻨﺎ َ 8 x + 20 (2x) < 1000 :ﻭ
x < 1000 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺍﻷﻭﻟﻰ ﺘﻌﻨﻲ ﺃﻥ 48 x < 1000 :ﺃﻱ : 48 ﺇﺫﻥ x < 20,83 :ﻭ ﺒﻤﺎ ﺃﻥ x ≥ 20 :ﻓﺈﻥ : . x = 20 ﻭ ﻋﻠﻴﻪ :ﺴﻌﺭ ﺍﻟﻘﻠﻡ ﻫﻭ َ 20 DAﻭ ﺴﻌﺭ ﺍﻟﻜﺭﺍﺱ ﻫﻭ . 40 DA ﺘﻤﺭﻴﻥ : 15 −x + 3 ≤ ( 1ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 0 : 2x + 5 −x + 3 ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ : 2x + 5x ∞− 5 ∞3 + -2-x+3 + + ــ2x + 5 ــ + +−x + 3 ــ ــ2x + 5 −∞ , -5 U 3 , + ∞ ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ : 2 ( 2ﺤل ﺍﻟﺘﺭﺍﺠﺤﺔ (− 5x + 2) (4x + 5) > 0 : ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ (− 5x + 2)( 4 x + 5 ) : x ∞− −5 2 ∞+ 4 5 4x+5-5x + 2 + +ــ اﻟﺠﺪاء ــ + + ــ +ــ
-5 , 2 ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ : 4 5 2x - 2x + 4 ( 3ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ≥ 0 : x +4 x-5 2x )(x - 5) - (x + 4) (2 x + 4 ≥ 0 ﻭﻤﻨﻪ : )(x + 4) (x - 5 2 x2 - 10 x - 2 x2 - 4x - 8x -16 ≥ 0 ﺃﻱ : )(x + 4) (x - 5 − 22 x - 16 ≥0 ﺃﻱ : )(x + 4) (x - 5 − 22 x - 16 ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ ( x + 4)( x - 5) : x −∞ -4 8 ∞5 + - 11 - 22 x - 16 ++ ــ x+4 +ــ ــ + x-5 ــ ــ + + ــ + ــ + )(x+4)(x-5 ــ − 22 x - 16)(x + 4)(x - 5 - ∞ , - 4 U -8 , 5 ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ : 11 ( 4ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 4 x2 − 25 - ( 2 x - 5 ) (x + 3) ≥ 0 :
ﺃﻱ (2x - 5 )(2x + 5) - (2x - 5)(x + 3) ≥ 0 : (2x - 5) (2x + 5) -(x + 3) ≥ 0 ﻭﻤﻨﻪ : (2x - 5) (x + 2) ≥ 0 ﺇﺫﻥ : ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ (2x - 5) ( x + 2) : x −∞ -2 5 ∞+ 2 +ــ ــ 2 x - 5 + +ــ x + 2)(2x - 5) (x + 2 + ــ + ∞- ,-2 U 5 , + ∞ ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ : 2 ( 5ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 20 x2 + 6x - 2 < 0 : ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = 62 − 4 × 20 × (-2) = 196 := x1 -b - ∆ = - 6 - 196 = - 6 - 14 = -1 ﻭﻋﻠﻴﻪ : 2a )2(20 40 2x2 = -b - ∆ = - 6 + 196 = - 6 + 14 = 1 َو 2a )2(20 40 5 ﺩﺭﺍﺴﺔ ﺇﺸﺎﺭﺓ 20 x2 + 6x - 2 : x ∞− -1 1 ∞+ 2 520 x2 + 6x - 2 + ــ + . − 1 , 1 ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ : ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل 2 5 ( 6ﺤـل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ 49 x2 - 14 x + 1 ≤ 0 :
ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = ( - 14 )2 - 4 ( 49 )(1) = 0 : x0 = -b = 14 = 1 ﻭﻤﻨﻪ ﺍﻟﺠﺫﺭ ﺍﻟﻤﻀﺎﻋﻑ ﻫﻭ : 2a 2 × 49 7 49 x - 1 2 ≤ 0 ﺇﺫﻥ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﺼﺒﺢ : 7 . =x 1 ﺃﻱ : x− 1 =0 ﻭﻫﺫﺍ ﺨﺎﻁﺊ ﺇﻻ ﺇﺫﺍ ﻜﺎﻥ : 7 7 ﺘﻤﺭﻴﻥ : 16 ( 1ﺍﻟﺤل ﺍﻟﺠﺒﺭﻱ : ﻨﻔﺭﺽ xﻋﺭﺽ ﺍﻟﻤﺴﺘﻁﻴل ﻭ yﻁﻭﻟﻪ ﻭ ﺒﺎﻟﺘﺎﻟﻲ . x < y َﻭ 2 ( x + y ) = 10 ﻓﻴﻜﻭﻥ x y = 6 : x+y =5 َﻭ ﺇﺫﻥ x y = 6 : y= 5–x َﻭ ﻭﻋﻠﻴﻪ x y = 6 : ﻭﻤﻨﻪ َ x ( 5 - x ) = 6 :ﻭ y=5–x ﺇﺫﻥ − x2 + 5 x - 6 = 0 :ﻭ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = 52 - 4 (-1)(-6) = 1 := x1 -b - ∆ = - 5 -1 =3 ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻫﻤﺎ : 2a )2 (-1 x2 = -b + ∆ = - 5 +1 =2 َو 2a )2 (-1 ) y = 2ﻤﺭﻓﻭﺽ ﻷﻥ ( x < y ﻟﻤﺎ x = 3ﻓﺎﻥ : y= 3 ﻟﻤﺎ x = 2ﻓﺎﻥ : ﻭﻤﻨﻪ ﻴﻭﺠﺩ ﻤﺴﺘﻁﻴل ﺤﻴﺙ ﻁﻭﻟﻪ َ 3 Cmﻭ ﻋﺭﻀﻪ . 2 Cm x +y=5 و ( 2ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ : y=5 - x َﻭ ﻟﺩﻴﻨﺎ x y = 6 : ﺤﻴﺙ x < y : y = 6 ﻭﻤﻨﻪ : x
g (x) = 5 - x َﻭ = )f (x 6 ﻟﺘﻜﻥ g , fﺍﻟﺩﺍﻟﺘﻴﻥ ﺍﻟﻤﻌﺭﻓﺘﻴﻥ ﻜﻤﺎ ﻴﻠﻲ : xﻨﻘﻭﻡ ﺒﺈﻨﺸﺎﺀ ﺍﻟﺒﻴﺎﻨﻴﻥ ) (δو ) (cﺍﻟﻤﻤﺜﻠﻴﻥ ﻟﻠﺩﺍﻟﺘﻴﻥ g , fﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺤﺎﺴﺒﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺃﻭ ﺍﻟﺤﺎﺴﻭﺏ ﺒﺘﺒﺎﻉ ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺘﺎﻟﻴﺔ : / 1ﻨﺴﺘﻌﻤل ﺍﻟﻠﻤﺴﺔ ) (1ﻟﺘﺤﻭﻴل ﺍﻟﻨﺹ ﻤﻥ ﺁﺩﺒﻲ Tﺇﻟﻰ ﺭﻴﺎﻀﻲ . M / 2ﻨﻜﺘﺏ ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺘﻴﻥ ﻓﻲ ﻟﻭﺤﺔ ﺘﺤﺭﻴﺭ ﺍﻟﻨﺹ ). (2 / 3ﻨﺴﺘﻌﻤل ﺍﻟﻠﻤﺴﺔ ) (3ﻟﺘﻤﺜﻴل ﺍﻟﺩﺍﻟﺘﻴﻥ ﻓﻲ ﻤﻌﻠﻡ ﺜﻨﺎﺌﻲ ﺍﻟﺒﻌﺩﻴﻥ . ﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺴﺎﺒﻘﺔ ﻤﻭﻀﺤﺔ ﻓﻲ ﺍﻟﺭﺴﻡ ﺍﻟﺘﺎﻟﻲ : )(1 )(3 )(2 / 4ﻨﻀﺒﻁ ﺍﻟﻭﺤﺩﺍﺕ ﻭ ﻗﻴﻡ xﻭ ﻜﺫﻟﻙ ﻗﻴﻡ yﻭ ﻫﺫﺍ ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﻠﻤﺴﺔ ). (4 / 5ﻨﺴﺘﻌﻤل ﺍﻟﻠﻤﺴﺔ ) (5ﻟﻜﻲ ﻨﻅﻬﺭ ﻟﻭﺤﺔ ) (6ﺍﻟﺘﻲ ﺘﻌﻁﻲ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺃﻱ ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﻌﻠﻡ ﺤﻴﺙ Horzﻴﻤﺜل xﻭ Vertﻴﻤﺜل . y ﺍﻟﺨﻁﻭﺘﺎﻥ ﺍﻷﺨﻴﺭﺘﺎﻥ ﺘﻅﻬﺭﺍﻥ ﻓﻲ ﺍﻟﺭﺴﻡ ﺍﻟﺘﺎﻟﻲ :
)(δ )(5 )(c )(6)(δ )(4ﻨﻘﻁﺘﻲ ﺘﻘﺎﻁﻊ ) (δو ) (cﻫﻤﺎ ﺍﻟﻨﻘﻁﺘﺎﻥ M1( 3 , 2 ) :ﺍﻟﻤﺸﺎﺭ ﺇﻟﻴﻬﺎ ﻓﻲ ﺍﻟﺸﻜل ﺒﺎﻟﺴﻬﻡ :َﻭ ﻫﻲ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺘﻲ ﺘﻅﻬﺭ ﺇﺤﺩﺍﺜﻴﺎﺘﻬﺎ َﻭ ) M2 ( 2 , 3ﺍﻟﻤﺸﺎﺭ ﺇﻟﻴﻬﺎ ﻓﻲ ﺍﻟﺸﻜل ﺒﺎﻟﺴﻬﻡ : ﺒﺎﻟﺘﻘﺭﻴﺏ ﻓﻲ ﺍﻟﻠﻭﺤﺔ )(6 ﺇﺫﻥ y ≅ 2,9727 , x ≅ 2 ,0284 : ﻭﻤﻨﻪ x = 2 :و y = 3 ﺇﺫﻥ ﻴﻭﺠﺩ ﻤﺴﺘﻁﻴل ﺤﻴﺙ ﻁﻭﻟﻪ َ 3 Cmﻭ ﻋﺭﻀﻪ . 2 Cm ﺘﻤﺭﻴﻥ : 17 (1ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ : f (x) ≤ 0 ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ [-3 , -1] U [2 , 4] : ﻭﻫﻲ ﻓﻭﺍﺼل ﺍﻟﻨﻘﻁ ﺍﻟﺘﻲ ﺘﻘﻊ ﺘﺤﺕ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل . (2ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﻌﺎﺩﻟﺔ . f (x) = -1ﻨﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆1ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y = -1ﻓﻴﻘﻁﻊ γﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺘﻲ ﻓﻭﺍﺼﻠﻬﺎ ﺘﻨﺘﻤﻲ ﺇﻟﻰ) ( ) ( ﺍﻟﻤﺠﻤﻭﻋﺔ -3 , -2 ∪ 3 :ﻭﻫﻲ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ [ ] { }. (3ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﻌﺎﺩﻟﺔ : f (x) = - x + 1
ﻨﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆2ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = -x + 1 :ﻓﻴﻘﻁﻊ γﻓﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺘﻴﻥ) ( ) ( َ 0ﻭ 3ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ { }0 , 3 : ﺘﻤﺭﻴﻥ : 18 * ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﻌﺎﺩﻟﺔ : 4 - x2 = - 5 ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺤﻴﺙ f (x) = 4 - x2 : ﻨﻨﺸﺊ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺤﺎﺴﺒﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ ﺃﻭ ﺍﻟﺤﺎﺴﻭﺏ ﺍﻟﻤﻨﺤﻨﻰ δﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻓﻨﺠﺩ ( ): )(δ 3-3 M1 M2)∆( ﺜﻡ ﻨﻨﺸﺊ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ y = -5 :ﻓﻴﻘﻁﻊ δﻓﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ ( ) ( ): ) َ M2 ( 3 , -5ﻭ ) . M1( -3 , -5 ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﻫﻲ { }. -3 , 3 :* ﺍﻟﺤﻠﻭل ﺍﻟﺒﻴﺎﻨﻴﺔ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ 4 - x2 ≥ 0ﻫﻲ ﻓﻭﺍﺼل ﺍﻟﻨﻘﻁ ﺍﻟﺘﻲ ﺘﻜﻭﻥ ﻓﻴﻬﺎ δﻓﻭﻕ) ( ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺃﻱ f (x) ≥ 0 :ﻓﻲ ﺍﻟﻤﺠﺎل δ : −2 , 2ﻴﻘﻁﻊ ﻓﻭﻕ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ ( ) [ ]: ]. [-2 , 2
* ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺠﺒﺭﻴﺔ : ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 4 - x2 = -5 : ﺃﻱ x2 = 9 :ﻭ ﻋﻠﻴﻪ x = 3 :ﺃﻭ x = -3 ﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ : 4 - x2 ≥ 0 : ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ 4 - x2ﺃﻱ ( 2 - x )( 2 + x ) :ﻭﺨﺎﺭﺝ ﺍﻟﺠﺫﺭﻴﻥ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻟﻪ ﺠﺫﺭﻴﻥ ﻫﻤﺎ َ 2ﻭ - 2ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﺇﺸﺎﺭﺘﻪ ﺒﻴﻥ ﺍﻟﺠﺫﺭﻴﻥ ﺴﺎﻟﺒﺔ ﻤﻭﺠﺒﺔ ﻭﻋﻠﻴﻪ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ [ ]-2 , 2 : ﺘﻤﺭﻴﻥ : 19 ﺒﺎﺴﺘﻌﻤﺎل ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ﻨﻨﺸﺊ ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﺒﻴﺎﻨﻴﺔ ( ) ( ) ( )U1 ; U2 ; U3 ﻟﻠﺩﻭﺍل f , g , hﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺤﻴﺙ f ( x ) = x 2 - x : ﻓﻨﺠﺩ : g ( x ) = 4 ; h(x)=x+3 x ) ( U1 ) (U3) (U2* ﺤل ﺒﻴﺎﻨﻴﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ f ( x ) = - 2 :؛ ∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺎﺩﻟﺘﻪ ( )y = −2 : ﻨﻼﺤﻅ ﺒﻴﺎﻨﻴﺎ ﺃﻥ U1 ∩ ∆ = φ :ﻭﻋﻠﻴﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل ( ) ( ). * ﺤل ﺒﻴﺎﻨﻴﺎ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f ( x ) > - 2 :
ﺒﻴﺎﻥ ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (U1ﻴﻘﻊ ﻓﻭﻕ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل) ( ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ . R 4 ≤ x +3 : ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ﺍﻟﺤﺴﺎﺒﻲ ﺍﻟﺤل * x 4 - x2 - 3x ≤ 0 ﺃﻱ : 4 - ( x + )3 ≤ 0 : ﺃﻥ ﻴﻌﻨﻲ ﻭﻫﺫﺍ x x − x2 - 3x + 4 ≤ 0 ﻭﻤﻨﻪ : x ـ ﻨﺤﻠل ﺍﻟﻌﺒﺎﺭﺓ − x2 - 3x + 4 : ﻟﺩﻴﻨﺎ ∆ = b2 - 4ac = 9 - 4( - 1 ) ( 4 ) = 25 : x1 = 3-5 = 1 ; x2 = 3+5 = - 4 ﻭﻤﻨﻪ : -2 -2 ﻤﻼﺤﻅﺔ ﻫﺎﻤﺔ \":ﺍﻟﻤﻌﺎﺩﻟﺔ a x2 + b x + c = 0ﻓﻲ ﺤﺎﻟﺔ a + c = - b c ﺘﻘﺒل ﺤﻠﻴﻥ ﻫﻤﺎ 1 :ﻭ . a ﺇﺫﻥ - x 2 - 3x + 4 = - ( x -1) ( x + 4 ) : − (x − 1)(x + )4 ≤ 0 ﻭﻋﻠﻴﻪ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﺼﺒﺢ : x ﺠﺩﻭل ﺍﻹﺸﺎﺭﺓ : x ∞-∞ -4 0 1 + )-(x–1 +++ - x+4 x - +++ )-(x–1)(x+4 - - ++) − ( x -1) ( x + 4 - ++ - +-+-x ﻭﻋﻠﻴﻪ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ [ [ [ [E1 = - 4 , 0 U 1, + ∞ :
ﺃﻱ g ( x ) ≤ h ( x ) : 4 ≤ x +3 : ﻟﻠﻤﺘﺭﺍﺠﺤﺔ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﺤل * x ﻭﻫﺫﺍ ﻴﺅﻭل ﺇﻟﻰ ﺇﻴﺠﺎﺩ ﻭﻀﻌﻴﺔ ﺍﻟﻤﻨﺤﻨﻲ U2ﻭ ( ) ( ). U3ﻤﻥ ﺨﻼل ﺍﻟﺒﻴﺎﻨﻲ ﻨﻼﺤﻅ ﺃﻥ U2 :ﻴﻘﻊ ﺘﺤﺕ U3ﻓﻲ ﻜل ﻤﻥ ﺍﻟﻤﺠﺎﻟﻴـﻥ ( ) ( ): [ ] - 4 , 0ﻭ [ ∞ ]1, +ﻭﻋﻠﻴﻪ ) . g ( x ) < h ( x ﻜﺫﻟﻙ U2ﻴﻘﻁﻊ U3ﻓﻲ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺍﻟﻠﺘﻴﻥ ﻓﺎﺼﻠﺘﻬﻤﺎ 1، - 4ﻭﻋﻠﻲ ﻤﺠﻤﻭﻋﺔ) ( ) (ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ) g ( x ) ≤ f ( xﻫﻲ E1 = [ - 4 , 0 [U [ 1, + ∞ [ : * ﺍﻟﺤل ﺍﻟﺤﺴﺎﺒﻲ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ x + 3 ≥ x 2 - x :ﻭﻫﺫﺍ ﻴﻌﻨﻲ ﺃﻥ x + 3 - x2 + x ≥ 0 :ﺃﻱ - x2 + 2 x + 3 ≥ 0 : ﻟﺩﻴﻨﺎ ∆ = 4 + 12 = 16 : x1 = - 2 - 4 = 3 ; x2 = - 2 + 4 = -1 ﻭ ﻤﻨﻪ : - 2 - 2 ﻤﻼﺤﻅﺔ ﻫﺎﻤﺔ \": a x2 + b x + c = 0ﻓﻲ ﺤﺎﻟﺔ a + c = b ﺍﻟﻤﻌﺎﺩﻟﺔ −c ﺘﻘﺒل ﺤﻠﻴﻥ ﻫﻤﺎ - 1 :ﻭ . a ﻭﻋﻠﻴﻪ - x 2 + 2x + 3 = - ( x - 3 ) ( x + 1 ) : ﻭ ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﺘﺼﺒﺢ - ( x - 3 ) ( x + 1 ) ≥ 0 : ﺠﺩﻭل ﺍﻹﺸﺎﺭﺓ : x ∞− -1 ∞3 + )-(x–3 + + - x+1 - +)-(x–3)(x+1 + + - - ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ [ ]E2 = -1, 3 :* ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﺘﺭﺍﺠﺤﺔ x + 3 ≥ x 2 - x :ﺃﻱ h ( x ) ≥ f ( x ) : ﻭﻫﺫﺍ ﻴﺅﻭل ﺇﻟﻰ ﺩﺭﺍﺴﺔ ﺍﻟﻭﻀﻌﻴﺔ ﻟﻜل ﻤﻥ U1ﻭ ( ) ( ). U3
ﻤﻥ ﺨﻼل ﺍﻟﺒﻴﺎﻨﻲ ﻨﻼﺤﻅ ﺃﻥ U3ﻴﻘﻁﻊ ﻓﻭﻕ U1ﻓﻲ ﺍﻟﻤﺠﺎل ] [ ( ) ( )-1, 3 ﻭﻴﻘﻁﻌﻪ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺘﻴﻥ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺘﻴﻥ – 1 ، 3 ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ ﻫﻲ [ ]E 2 = -1, 3 : ﺘﻤﺭﻴﻥ : 20. × (4 . × (3 . × (2 . 9 (1(7 . 9 (6 . 9 (5 . 9 (8 ×. ﺘﻤﺭﻴﻥ : 21 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ : f -π π−π 2 π 2 ﻨﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﻤﻌﺎﺩﻻﺘﻬﺎ y = -1 , y = 1 , y = 0 :ﻓﻨﺠﺩ . (1ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = 0ﺜﻼﺜﺔ ﺤﻠﻭل ﻫﻲ − π , 0 , π : π (2ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = 1ﺤل ﻤﻀﺎﻋﻑ ﻫﻭ 2 : −π (3ﻟﻠﻤﻌﺎﺩﻟﺔ f (x) = -1ﺤل ﻤﻀﺎﻋﻑ ﻫﻭ 2 : -ﺍﺴﺘﻨﺘﺎﺝ ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺎﺕ : (1ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) ≥ 0ﻫﻲ ﻗﻴﻡ xﺍﻟﺘﻲ ﺘﻨﺘﻤﻲ ﺇﻟﻰ ﺍﻟﻤﺠﺎل [ ]. 0 , π (2ﺤﻠﻭل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ f (x) f 1ﻟﻴﺱ ﻟﻬﺎ ﺤﻠﻭل .
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126