ﻭ ﻋﻠﻴﻪ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﻴﻌﻁﻰ ﺒﺎﻟﻌﺒﺎﺭﺓ pX k = C2k0 0, 5 k . 0,5 20−k :ﻤﻊ) ( ) ( ) ( }k ∈{0 , 1 , 2 ,...,20 – 1ﺤﺴﺎﺏ ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﺭﺒﺢ ﻫﺫﺍ ﺍﻟﺘﻠﻤﻴﺫ 6ﻨﻘﻁ . ﺤﺘﻰ ﻴﺭﺒﺢ ﻫﺫﺍ ﺍﻟﺘﻠﻤﻴﺫ 6ﻨﻘﻁ ﺨﻼل 20ﺭﻤﻴﺔ ﻴﺠﺏ ﺃﻥ ﻴﻅﻬﺭ 12 : Aﻤﺭﺓ ﻭ ﻤﻨﻪ ﺍﻻﺤﺘﻤﺎل ﻫﻭ pX 12ﺤﻴﺙ ( ):pX ( 12 ) = C 12 . ( 0, 5 )12 × ( 0, 5 ) 8 = !20 × ( 0, 5 )20 20 !8!.12 pX (12) 0,009 -2ﺤﺴﺎﺏ ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﺭﺒﺢ ﻫﺫﺍ ﺍﻟﺘﻠﻤﻴﺫ 10ﻨﻘﻁ : ﺤﺘﻰ ﻴﺭﺒﺢ ﻫﺫﺍ ﺍﻟﺘﻠﻤﻴﺫ 10ﻨﻘﻁ ﻴﺠﺏ ﺃﻥ ﻴﻅﻬﺭ : Aﻓﻲ ﻜل ﺍﻟﻤﺭﺍﺕ ) ﺃﻱ 20ﻤﺭﺓ ( ﺨﻼل ﺍﻟﺘﺠﺭﺒﺔ . ﻭ ﺍﻻﺤﺘﻤﺎل ﻫﻭ pX 20ﺤﻴﺙ ( ): pX ( )20 = C 20 (. 0, )5 20 × ( 0, 5)0 = 1.(0,5)20 20 pX ( 20) 0,000000953 ﺍﻟﺘﻤﺭﻴﻥ. 17 ﺤﺴﺎﺏ : pk ﻟﺩﻴﻨﺎ ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﺨﺘﺎﺭ ﻫﺫﺍ ﺍﻟﺸﺨﺹ ﻤﻨﺘﻭﺝ ﺍﻟﺸﺭﻜﺔ ﻫﻭ 0, 6 ﻭ ﻋﻠﻴﻪ ﺍﺤﺘﻤﺎل ﺃﻥ ﻻ ﻴﺨﺘﺎﺭ ﻫﺫﺍ ﺍﻟﻤﻨﺘﻭﺝ ﻫﻭ 0, 4ﻭ ﻤﻨﻪ ﻫﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﻫﻲ ﻟﺒﺭﻨﻭﻟﻲ ﻭ ﻫﻲ ﻤﻜﺭﺭﺓ 10ﻤﺭﺍﺕ . ﻭ ﻋﻠﻴﻪ ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل p xﻫﻭ ﻗﺎﻨﻭﻥ ﺜﻨﺎﺌﻲ ﺍﻟﺤﺩ ﻟﻠﻭﺴﻴﻁﻴﻥ 10ﻭ 0, 4 ﻭ ﻋﻠﻴﻪ ﺍﺤﺘﻤﺎل ﺃﻥ ﻨﺠﺩ k :ﺸﺨﺹ ﻤﻥ ﺒﻴﻥ 10ﺃﺸﺨﺎﺹ ﺍﻟﺫﻴﻥ ﺘﻡ ﺍﺴﺘﺠﻭﺍﺒﻬﻡ ﻴﺨﺘﺎﺭﻭﻥ ﺇﻨﺘﺎﺝ ﺍﻟﺤﻭﺍﺴﻴﺏ ﻟﺩﻯ ﻫﺫﻩ ﺍﻟﺸﺭﻜﺔ ﻫﻭ : pk = C1k0 .(0,4)k .(0,6)10−kﺤﻴﺙ k ∈{0 , 1 , 2 ,...,10} : -ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﺨﺘﺎﺭ 3ﺃﺸﺨﺎﺹ ﻤﻥ ﺒﻴﻥ ﺍﻟﺫﻴﻥ ﺘﻡ ﺍﺴﺘﺠﻭﺍﺒﻬﻡ ﺍﻟﺤﻭﺍﺴﻴﺏ ﺍﻟﻤﻨﺘﺠﺔ ﻟﺩﻯ ﻫﺫﻩ ﺍﻟﺸﺭﻜﺔ ﻫﻭ :
p3 = C130 .(0,4)3 .(0,6)7 p3 = 120 × 0,064 × 0,0279936ﻭ ﻤﻨﻪ p3 0, 21 : ﺍﻟﺘﻤﺭﻴﻥ. 18 – 1ﻗﺎﻨﻭﻥ ﺍﻻﺤﺘﻤﺎل ﺍﻟﺫﻱ ﻨﻔﺘﺭﻀﻪ ﻟﻨﻤﺫﺠﺔ ﻫﺫﻩ ﺍﻟﻔﺭﻀﻴﺔ ﻫﻭ ﻗﺎﻨﻭﻥ ﺘﻭﺯﻴﻊ ﻤﻨﺘﻅﻡ ﻋﻠﻰ ﺍﻟﻤﺠﻤﻭﻋﺔ { }1 , 2 , 3 , 4 , 5 = p1 = p2 = p3 p4 = = p5 1 ﺤﻴﺙ : 5 ﺃﻱ ﺃﻥ ﺍﺤﺘﻤﺎﻻﺕ ﺍﻹﻗﺒﺎل ﻋﻠﻰ ﺍﻟﻤﻜﺘﺒﺔ ﺨﻼل ﺃﻴﺎﻡ ﺍﻷﺴﺒﻭﻉ ﻤﺘﺴﺎﻭﻴﺔ . – 2ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺘﻲ ﻨﻘﺘﺭﺤﻬﺎ ﻟﻤﺤﺎﻜﺎﺓ ﺍﻟﺴﻠﺴﻠﺔ ﻫﻲ ﻤﺤﺎﻜﺎﺓ ﺴﻠﺴﻠﺔ ﺃﻋﺩﺍﺩﻤﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ 1 , 2 , 3 , 4 , 5ﺒﺠﺩﻭل ﺃﻭ ﺁﻟﺔ ﺒﻴﺎﻨﻴﺔ ،ﻭ ﺫﻟﻙ} { ﻟﻠﺤﺼﻭل ﻋﻠﻰ ﺃﻋﺩﺍﺩ ﻋﺸﻭﺍﺌﻴﺔ ﻤﺤﺼﻭﺭﺓ ﺒﻴﻥ 1ﻭ . 5 – 3ﺤﺴﺎﺏ : d 2 ∑ ( )i=5 = d2 fi − pi 2 i =1 p1 = p2 = p3 = p4 = p5 = 1 = 0, 2 ﻟﺩﻴﻨﺎ : 5 220 210f1 = 1000 = 0, 22 ، f2 = 1000 = 0,12f3 = 200 = 0, 20 ، f4 = 190 = 0,19 1000 1000 180 f5 = 1000 = 0,18ﺇﺫﻥ d 2 = (0,22 − 0,20)2 + (0,21 − 0,20)2 + (0,20 − 0,20)2 : + (0,19 − 0,20)2 + (0,18 − 0,20)2d 2 = (0,02)2 + (0,01)2 + 02 + (0,01)2 + (0,02)2 ﻭ ﻤﻨﻪ d 2 = 0,001 :
– 3ﻨﻌﻡ ﺍﻟﻘﺎﻋﺩﺓ ﺼﺤﻴﺤﺔ ﻷﻥ d 2 ≤ D9 : ﺍﻟﺘﻤﺭﻴﻥ. 19 ﻟﻴﻜﻥ Xﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ ﺍﻟﻤﺭﻓﻕ ﺒﻬﺫﻩ ﺍﻟﺘﺠﺭﺒﺔ ﺃﻱ ﺒﻤﺩﺓ ﺍﻨﺸﻁﺎﺭ ﺍﻟﻨﻭﺍﺓ: b ﻟﺩﻴﻨﺎ ( ) ∫[ ]p a ; b = λe−λtdt : a ﻭ ﺒﻤﺎ ﺃ ،ﺍﺤﺘﻤﺎل ﺃﻥ ﺘﻌﻴﺵ ﺍﻟﻨﻭﺍﺓ ﺍﻟﻤﻨﺸﻁﺭﺓ ﺒﻴﻥ 0ﻭ 100ﻫﻭ 0, 048 )p([0 ; 100]) = 0,048 ...(1 ﻓﺈﻥ : 100 ﻭ ﻤﻥ ﺠﻬﺔ ﺃﺨﺭﻯ ( ) ∫[ ]p 0 ; 100 = λe−λtdt : 0 ([ ])p −e −λt 100 −e −100λ +e0 0 ; 100 = 0 = : ﻋﻠﻴﻪ ﻭ)( )p [0 ; 100] = 1 − e−100λ ...( 2 ﻤﻥ ) (1ﻭ ) (2ﻴﻨﺘﺞ 1 − e−100λ = 0, 048 :ﺇﺫﻥ e−100λ = 0,952 :ﻭ ﻤﻨﻪ lne−100λ = ln0, 952 :λ = Ln0, 952 ﻭ ﻋﻠﻴﻪ : ﺃﻱ ﺃﻥ −100λ = Ln0,952 : −100 ﻭ ﻤﻨﻪ λ 0,00049 : ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﺩﺍﻟﺔ ﻜﺜﺎﻓﺔ ﺍﻻﺤﺘﻤﺎل ﻟﻠﻤﺘﻐﻴﺭ ﺍﻟﻌﺸﻭﺍﺌﻲ Xﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ : ( )f t = 0,00049e −0,00049t -2ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﺘﻡ ﺍﻨﺸﻁﺎﺭ ﺍﻟﻨﻭﺍﺓ ﻓﻲ ﺃﻗل ﻤﻥ 180ﺴﻨﺔ : 180( ) ∫[ ]p 0 ; 180 = 0,00049e −0,00049tdt 0 ([ ])p 0 ; 180 = 1 − e −0,00049×180 = 1 − e −0,0882 0,084 – 3ﺍﺤﺘﻤﺎل ﺃﻥ ﻴﻜﻭﻥ ﺍﻻﻨﺸﻁﺎﺭ ﻋﻠﻰ ﺍﻷﻗل ﻓﻲ 180ﺴﻨﺔ .
ﺍﻟﺤﺎﺩﺜﺔ ﺃﻥ ﻴﻜﻭﻥ ﺍﻻﻨﺸﻁﺎﺭ ﻋﻠﻰ ﺍﻷﻗل ﻓﻲ 180ﺴﻨﺔ ﻫﻲ ﺍﻟﺤﺎﺩﺜﺔ ﺍﻟﻌﻜﺴﻴﺔ ﻟﻠﺤﺎﺩﺜﺔ ﺍﻟﺘﻲ ﺘﺸﺘﺭﻁ ﻓﻲ ﺃﻗل ﻤﻥ 180ﺴﻨﺔ . ﻫﻭ p([180 ; + ∞[) = 1 − p([0 ; 180]) : = 1 − 0,084 = 0,916 – 4ﺤﺴﺎﺏ ﺍﻟﻤﺩﺓ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﻼﻨﺸﻁﺎﺭ ﺍﻟﻨﻭﻭﻱ :E ( X ) = 1 1 ﻭ ﻫﻲ : 0, 00049 λ ﺇﺫﻥ E ( X ) 2040 : ﻭ ﻤﻨﻪ ﺍﻟﻤﺩﺓ ﺍﻟﻤﺘﻭﺴﻁﺔ ﻟﻼﻨﺸﻁﺎﺭ ﺍﻟﻨﻭﻭﻱ ﻫﻭ . 2040
ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﻭ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -1ﺍﺴﺘﻌﻤﺎل ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﻭﺴﻴﻁﻴﺔ ﻟﺤل ﻤﺴﺎﺌل ﺍﻻﺴﺘﻘﺎﻤﻴﺔ ﺃﻭ ﺍﻟﺘﻼﻗﻲ ﺃﻭ ﺍﻨﺘﻤﺎﺀ ﺃﺭﺒﻊ ﻨﻘﻁ ﺇﻟﻰ ﻨﻔﺱ ﺍﻟﻤﺴﺘﻭﻯ - 2ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﺇﻟﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻭ ﺍﻟﻌﻜﺱ -3ﺍﻻﻨﺘﻘﺎل ﻤﻥ ﺠﻤﻠﺔ ﻤﻌﺎﺩﻟﺘﻴﻥ ﺩﻴﻜﺎﺭﺘﻴﺘﻴﻥ ﻟﻤﺴﺘﻘﻴﻡ ﺇﻟﻰ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ -4ﺘﺤﺩﻴﺩ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ﻟﻤﺴﺘﻭﻴﻴﻥ ﺃﻭ ﻟﻤﺴﺘﻘﻴﻤﻴﻥ -5ﺘﺤﺩﻴﺩ ﺍﻟﻭﻀﻊ ﺍﻟﻨﺴﺒﻲ ﻟﻤﺴﺘﻘﻴﻡ ﻭ ﻤﺴﺘﻭ -6ﺘﻌﻴﻴﻥ ﺘﻘﺎﻁﻊ ﻤﺴﺘﻭﻴﻴﻥ ،ﻤﺴﺘﻘﻴﻤﻴﻥ ،ﻤﺴﺘﻘﻴﻡ ﻭ ﻤﺴﺘﻭ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺃﻨﺸﻁﺔ -1ﻤﻤﻴﺯﺍﺕ ﺍﻟﻤﺭﺠﺢ : -2ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻤﺴﺘﻘﻴﻡ ﻭ ﻟﻤﺴﺘﻭ : -3ﺍﻟﺘﻤﺜﻴل ﺍﻟﺩﻴﻜﺎﺭﺘﻲ ﻟﻤﺴﺘﻘﻴﻡ -4ﺍﻟﺘﻘﺎﻁﻊ ﻭ ﺍﻟﺘﻭﺍﺯﻱ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻟﻤﺴﺘﻭﻴﻴﻥ : ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤـﻠــــــﻭل
ﺃﻨﺸﻁﺔ ABCDﺭﺒﺎﻋﻲ ﻭﺠﻭﻩ I .ﻤﻨﺘﺼﻑ ADﻭ Jﻤﻨﺘﺼﻑ [ ] [ ]. BC Gﻫﻲ ﻤﺭﺠﻊ ﺍﻟﺠﻤﻠﺔ ) (A ; 2) ; (B ; 1) ; (C ; 1) ; (D ; 2ﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ} { J , I , Gﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ. ﺍﻟﺤل : ﻨﺒﺭﻫﻥ ﺃﻥ ﺍﻟﻨﻘﻁ J , I , Gﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ. AI GD B JC ﻟﺩﻴﻨﺎ G :ﻤﺭGﺠﺢ ﺍﻟﺠJGﻤﻠJﺔ{(A ; 2) ; (B ; 1J)J;JG(C ;JJ1JG) ; (DJJJ;G2)} J ﻭﻋﻠGﻴﻪ 2JJGG A +JJGG B J+JGGC + 2JGJG D =JJG0 :ﺇﺫGﻥJJG JJG J:J( ) ( )2 GI + IA + GJ + JB + GJ + JC + 2 GI + ID = 0 JJG JJG JJG JJG JJG JJG G( ) ( )4GI + 2GJ + 2 IA + ID + JB + JC = 0 JJG JJG G ﻟﻜﻥ Iﻤﻨﺘﺼﻑ ADﻭﻋﻠﻴﻪ [ ]JJGIA +JJIGD =G 0 : ﻭﻜﺫﻟﻙ JﻤﻨﺘGﺼﻑ BCJJGﻭGﻋﻠJﻴJﻪ ]JJG (JJGJBG+ JC = 0 : ﻭﻤﻨﻪ 4GI + 2GJ = 0 :ﺃﻱ ﺃﻥ 2GJ + GJ = 0 : ﺇﺫﻥ Gﻫﻲ ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ){ }(I ; 2) ; (J ; 1 ﻭﻤﻨﻪ Gﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ( )I J ﺃﻱ ﺃﻥ ﺍﻟﻨﻘﻁ J , I , Gﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ.
-1ﻤﻤﻴﺯﺍﺕ ﺍﻟﻤﺭﺠﺢ : ﺘﻌﺭﻴﻑ ) : 1ﺘﺫﻜﻴﺭ(ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁ An , . . . , A2 , A1ﻤﺭﻓﻘﺔ ﺒﺎﻟﻤﻌﺎﻤﻼﺕ αn , . . . , α2 , α1ﺤﻴﺙ: JαJJ1G+ α2 +...+JJαJGn ≠ 0Gﻫﻲ ﺍﻟﻨﻘﻁJGﺔJﺍﻟJﻭﺤﻴﺩﺓ Gﺍﻟﺘﻲ ﺘﺤﻘﻕ: . α1GA1+α2GA2 +...+ αnGAn = 0 Gﺘﺴﻤﻰ ﺃﻴﻀﺎ ﻤﺭﻜﺯ ﺍﻟﻤﺴﺎﻓﺎﺕ ﺍﻟﻤﺘﻨﺎﺴﺒﺔ ﻟﻠﺠﻤﻠﺔ : ) { }( A1 , α1 ) ; ( A2 , α2 ) ; . . . ; ( An , αn JJG JJG G ﻤﺜﺎل :1 ﺇﺫﺍ ﻜﺎﻥ Iﻤﻨﺘﺼﻑ ﺍﻟﻘﻁﻌﺔ ABﻓﺈﻥ [ ]IA + IB = 0 ﻭﻤﻨﻪ Iﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ){ }(A , 1) ; (B , 1JJJG JJJG JJJG G ﻤﺜﺎل :2ﺇﺫﺍ ﻜﺎﻥ Gﻤﺭﻜﺯ ﺜﻘل ﺍﻟﻤﺜﻠﺙ A BCﺃﻱ GA + GB+GC = 0 ﻓﺈﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ }){(A , 1) ; (B , 1) ; (C , 1ﻻ ﺘﻘﺒل ﻤﺭﺠﺤﺎ . ﻤﻼﺤﻅﺔ : ﺇﺫﺍ ﻜﺎﻥ α1 + α2 +...+ αn = 0 :ﻓﺈﻥ ﺍﻟﺠﻤﻠﺔ : ) { }( A1, α1 ) , ( A2, α2 ) ,..., ( An , αn ﻤﺒﺭﻫﻨﺔ :1 (1ﺇﺫﺍ ﻜﺎﻨﺕ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ {( ) ( ) ( )}A1, α1 , A2, α2 ,..., An, αnJJJJG JJJJG ﻓﺈﻨﻪJJGﻤJﻥJﺃﺠل ﻜل ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻟﺩﻴﻨﺎJJJJ:Gα1MA1+ α2MA2 + . . . +αn MAn = (α1+α2 +...+α) MG (2ﺇﺫﺍ ﻜﺎﻥ Hﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) { }( A , α) ; ( B , β) ; (C , γﻭﻜﺎﻥ Kﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ){ }(α + β ≠ 0) . ( A , α) ; (B , β ﻓﺈﻥ Hﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) { }(K , α + β) ; (C , γ ﻤﻼﺤﻅﺔ :
( )G G G ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔG ﻭﻜﺎﻥO ; i , j , k ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ { }: ( ﺒﺤﻴﺙA1 , α1 ) ; ( A2 , α2 ) ; ( An , αn )An ( xn; yn ) ,..., A2 ( x2; y2 ) , A1 ( x1; y1 ) , G ( xG; yG )JJJG JJJG JJJG (1) ﻨﺔJﺭﻫJﺒJﻤGﻓﺈﻥ ﺍﻟα1OA1 + α2OA2 +...+ αn OAn = (α1 +α2 +...+αn ) OG JJJG = JJJG JJ:JﻪG ﻭﻤﻨM = O ﻀﻊJﻭJﺒJGﻭﻫﺫﺍ OG α1OA1 + α2OA2 +...+ αn OAn α1 + α2 + . . . + αn xG = α1 x1 + α2 x2 + . . . + αn xn = α1 + α2 + . . . + αn : ﻭﻋﻠﻴﻪ α1y1 + α2y2 + . . . + αnyn y G α1 + α2 + . . . + αn : ﻭﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏAn ( Zn ) ; . . . ; A2 ( Z2 ) ; A1 ( Z1 ) ; G ( ZG ) : ﻤﻥ ﺃﺠل ( )ZG = α1Z1 + α2Z2 + . . . + αnZn : ﻟﺩﻴﻨﺎ GG α1 + α2 + . . . + αn, B , A ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁO ; i , j ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﺭﻜﺏ ﺍﻟﻤﺯﻭﺩ ﺒﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ: ﻤﺜﺎل ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏZ3 = -3 + i , Z2 = -4i , Z1 = 2 + 3i : ﺍﻟﺘﻲ ﻟﻭﺍﺤﻘﻬﺎC{ }(A , 2) ; (B , -1) ; (C , 1) ﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔG ﺍﺤﺴﺏ ﻻﺤﻘﺔ ﺍﻟﻨﻘﻁﺔ JJJG JJJG JJJG : ﺍﻟﺤلZG = 2Z1- Z2 +Z3 2:ﻪGﻭﻤﻨAOJJ-GJGG=B2+OJJAJGG2C--OJ1J=BJG+0+1ﻕOJﻘJﺤCJﺘGG ﺍﻟﻨﻘﻁﺔ 2-1+1 :ﻭﻟﺩﻴﻨﺎ
ZG = 1 + 11 i ﻭﻤﻨﻪ: ZG = 2(2 + 3i) + 4i - 3 + i ﺇﺫﻥ: 2 2 2 ﻤﺒﺭﻫﻨﺔ : 2ﻟﺘﻜﻥ Aﻭ Bﻨﻘﻁﺘﺎﻥ ﻤﺘﻤﺎﻴﺯﺘﺎﻥ ﻭ αو βﻋﺩﺩﺍﻥ ﺤﻘﻴﻘﻴﺎﻥ ﺤﻴﺙ . α + β ≠ 0 xﻤﺠﻤﻭﻋﺔ ﻤﺭﺍﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , α) ; (B , βﻋﻨﺩﻤﺎ ﺘﻤﺴﺢ αو βﻜل ﺍﻷﻋﺩﺍﺩ} { ﺍﻟﺤﻘﻴﻘﻴﺔ \ ﻫﻲ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (ABﻜﺎﻤﻼ. xﻤﺠﻤﻭﻋﺔ ﻤﺭﺍﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , α) ; (B , βﻋﻨﺩﻤﺎ ﺘﻤﺴﺢ αو βﻜل ﺍﻷﻋﺩﺍﺩ} { ﺍﻟﺤﻘﻴﻘﻴﺔ \ ﻭﺘﻜﻭﻥ ﻤﻥ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ﻫﻲ ﺍﻟﻘﻁﻌﺔ [ ]. AB ﻤﻼﺤﻅﺔ : ﻟﻜﻲ ﻨﺒﺭﻫﻥ ﺃﻥ ﺜﻼﺙ ﻨﻘﻁ ﻋﻠﻰ ﺍﺴﺘﻘﺎﻤﻴﺔ ﻴﻜﻔﻲ ﺃﻥ ﻨﺒﺭﻫﻥ ﺃﻥ ﺇﺤﺩﺍﻫﻤﺎ ﻫﻲ ﻤﺭﺠﺢ ﺍﻷﺨﺭﻴﺘﻴﻥ.ﻤﺒﺭﻫﻨﺔ :3ﻟﺘﻜﻥ A,B,Cﺜﻼﺙ ﻨﻘﻁ ﻤﺘﻤﺎﻴﺯﺓ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻭ ﻟﻴﺴﺕ ﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ ﻭ αﻭ βﻭ γﺜﻼﺙ ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺤﻴﺙ . α + β + γ ≠ 0 xﻤﺠﻤﻭﻋﺔ ﻤﺭﺍﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , α) ; (B , β) ; (C , γﻋﻨﺩﻤﺎ ﺘﻤﺴﺢ αﻭ { }β ﻭ γﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ \ ﻫﻲ ﻜل ﺍﻟﻤﺴﺘﻭﻯ )(ABC xﻤﺠﻤﻭﻋﺔ ﻤﺭﺍﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A , α) ; (B , β) ; (C , γﻋﻨﺩﻤﺎ} {ﺘﻤﺴﺢ αﻭ βﻭ γﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺤﻘﻴﻘﻴﺔ \ ﻭ ﺘﻜﻭﻥ ﻤﻥ ﻨﻔﺱ ﺍﻹﺸﺎﺭﺓ ﻫﻲ ﺍﻟﺠﺯﺀ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﻤﺤﺩﺩ ﺒﺎﻟﻤﺜﻠﺙ . ABC ﻤﻼﺤﻅﺔ : ﻟﻜﻲ ﻨﺒﺭﻫﻥ ﺃﻥ ﺃﺭﺒﻌﺔ ﻨﻘﻁ ﻤﻥ ﻨﻔﺱ ﺍﻟﻤﺴﺘﻭﻯ ﻴﻜﻔﻲ ﺃﻥ ﻨﺒﺭﻫﻥ ﺃﻥ ﺇﺤﺩﺍﻫﻥ ﻤﺭﺠﺢ ﺍﻟﻨﻘﻁ ﺍﻷﺨﺭﻯ. -2ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻤﺴﺘﻘﻴﻡ ﻭ ﻟﻤﺴﺘﻭ : ( )G G G ﻓﻴﻤﺎﻴﻠﻲ ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ o ; i ; j ; k ﺃ -ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻤﺴﺘﻘﻴﻡ : ﻤﺒﺭﻫﻨﺔ :
) (Dﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ A α ; β ; γﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ) . uG(a ; b ; cﻟﺘﻜﻥ) ( ) M(x ; y ; zﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻔﻀﺎﺀ. ﺘﻜﻭﻥ Mﻨﻘﻁﺔ ﻤﻥ ) (Dﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺤﻘﻘﺕ ﺇﺤﺩﺍﺜﻴﻲ M ﺤﻴﺙ tﻋﺩﺩ ﺤﻘﻴﻘﻲ. x = at + α ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ : y = bt + β z = ct + γ ﺍﻟﺒﺭﻫﺎﻥ : ﻫﺫﻩ ﺍﻟﺠﻤﻠﺔ ﺘﺴﻤﻰ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻘﻴﻡ ). (DﺍﻟﻨGﻘﻁﺔ ) M(x ; yJJ;JJGzﻫﻲ ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (Dﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ tﺒﺤﻴﺙ : AM = tu x = at + α ﻭﻤﻨﻪ ﻨﺤﺼل ﻋﻠﻰ y = bt + β :ﻤﻥ ﺘﺴﺎﻭﻱ ﺇﺤﺩﺍﺜﻴﺎﺕ ﺸﻌﺎﻋﻴﻥ z = ct + γ ﺘﻌﺭﻴﻑ : x = at + α ﺍﻟﺠﻤﻠﺔ y = bt + βﺘﺴﻤﻰ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (Dﺍﻟﺫﻱ ﻴﺸﻤل z = ct +γﻭ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ tﻫﻭ ﻭﺴﻴﻁ. uG (a ;b ); c ﺍﻟﻨﻘﻁﺔ ) A(α ; β ; γﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ A(-1 ; 3 ; )-4 ﻤﺜﺎل :1ﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ ﺍﻟﺫﻱ )(D ﻭ;ﺴﻴ4ﻁ(ﻴﺎuGﻟﻠ.ﻤﺴﺘﻘﻴﻡ ﺘﻤﺜﻴﻼ ﺃﻜﺘﺏ ; -1 )3 ﺍﻟﺤل : ﺘﻜﻭﻥ ﻨﻘﻁﺔ ) M(JxJJ;JGy ; zGﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻨﻘﻁﺔ ﻤﻥ ) (Dﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ t ∈ \ , AM = tu :
x + 1 = 4t ﻭﻤﻨﻪ y - 3 = -tﻭ ﻤﻨﻪ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (Dﻫﻭ : z + 4 = 3t x = 4t - 1 y = -t + 3ﺤﻴﺙ t :ﻭﺴﻴﻁ ﺤﻘﻴﻘﻲ. z = 3t - 4 ﻤﺜﺎل : 2 x = -t + 5 y = 4t - 1 ﻤﺎﺫﺍ ﺘﻤﺜل ﺍﻟﺠﻤﻠﺔ : =z 1 t + 5 2 ﺍﻟﺤل :ﻫﺫﻩ ﺍﻟﺠﻤﻠﺔ ﺘﻤﺜل ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻘﻴﻡ ∆ ﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ ) A(5 ; -1 ; 5ﻭ ﺸﻌﺎﻉ) ( uG -1 ; 4 ; 1 ﺘﻭﺠﻴﻬﻪ 2 ﺏ -ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻤﺴﺘﻭ : uG ; vG ﻤﺒﺭﻫﻨﺔ : uG Mﻨﻘﻁﺔ ﻤﻥ ;b;c A α1 ; β ; γﻭ) ( ) )( ( ) (A;ﺒﺤﻴﺙ ﺍﻟaﻤﺴﺘGﻭuﻯﻭ) ′(Pﺍﻟcﻤ;ﺯﻭ′ﺩ ﺒbﻤﻌ;ﻠﻡa′ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻨﺕ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ x ; y ; zﺘﺤﻘﻕ ﺍﻟﺠﻤﻠﺔ ( ): x = at + a′t′ + α ﺤﻴﺙ tﻭ t′ﺤﻘﻴﻘﻴﺎﻥ. y = bt + b′t′ + β z = ct + c′t′ + γ ﺍﻟﺒﺭﻫﺎﻥ :ﺘﻜﻭﻥ M x ; y ; zﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ) (Pﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩﺍﻥ) (
JJJJG G JG ﺤﻘﻴﻘﻴﺎﻥ tﻭ t′ﺒﺤﻴﺙ AM = tu + t′u′ : x = at + a′t′ + α ﻭ ﻤﻥ ﺘﺴﺎﻭﻱ ﺍﺤﺩﺍﺜﻴﺎﺕ ﺸﻌﺎﻋﻴﻥ ﻨﺠﺩ : y = bt + b′t′ + β z = ct + c′t′ + γ ﺘﻌﺭﻴﻑ : x = at + a′t′ + α ﻨﻘﻭل ﺃﻥ ﺍﻟﺠﻤﻠﺔ y = bt + b′t′ + βﺘﺸﻜل ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻯ zuG (a Aﻭ ﺸﻌﺎﻋﻲ = ct + c′t′ + γ ﺤﻘﻴﻘﻴﻴﻥ .ﻭ) ( ; b ; )c ﺘﻭﺠﻴﻬﻪ ;α;β γ ﺍﻟ;ﺫ′ﻱbﻴﺸ;ﻤ′ل ﺍaﻟﻨ(ﻘvGﻁﺔﻭ )(p t′ﻭﺴﻴﻁﻴﻥ tﻭ )c′ ﻤﺜﺎل :ﻭ ﺒﺎﻟﺸﻌﺎﻋﻴﻥ A(1 ; -3 ; )4 ﺍﻟ;ﻤﻌﻴ3ﻥ( ﺒvGﺎﻟﻨﻘﻁﺔ )(P ﻭ;ﺴﻴ2ﻁ(ﻴﺎuGﻟﻠﻤﻭﺴﺘ)ﻭ1ﻯ ﺘﻤﺜﻴﻼ ﺃﻜﺘﺏ ;2 ; -1 )5 A ; uG ; vG vG uG ﺍﻟﺤل :ﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ )( ). (P ﻭﻋﻠﻴﻪ ﻏﻴﺭ ﻤﺭﺘﺒﻁﻴﻥ ﺨﻁﻴﺎ و ﺍﻟﺸﻌﺎﻋﺎﻥﺘﻜﻭﻥ ﺍﻟﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻨﻘﻁﺔ ﻤﻥ ) (Pﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺤﻘﻘﺕ ﺇﺤﺩﺍﺜﻴﺎﺘﻬﺎ x ; y ; zﺍﻟﺠﻤﻠﺔ ( ): x = 2t + 3t′ + 1 x - 1 = 2t + 3t′ y = -t + 2t′ - 3ﻭﻴﺸﻜل ﺘﻤﺜﻴﻼ ﻭﻤﻨﻪ : y + 3 = -t + 2t′ z = 5t + t′ + 4 z - 4 = 5t + t′ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻱ ). (P
-3ﺍﻟﺘﻤﺜﻴل ﺍﻟﺩﻴﻜﺎﺭﺘﻲ ﻟﻤﺴﺘﻘﻴﻡ : . uG a ; b ; cﺇﺫﺍ ﻜﺎﻨﺕ) ( ) ( ﻤﺒﺭﻫﻨﺔ : A α ; β ; γﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ) (Pﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔﺍﻷﻋﺩﺍﺩ a,b,cﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ ﺠﻤﻴﻌﺎ ﻓﺈﻥ ﻨﻘﻁﺔ Mﻤﻥ ﺍﻟﻔﻀﺎﺀ ﺘﻨﺘﻤﻲ ﺇﻟﻰ ) (Dﺇﺫﺍ ﺤﻘﻘﺕ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ ﻤﺎ ﻴﻠﻲ : x -α = y-β = z-γ a b c x = at + α y = bt + β ﺍﻟﺒﺭﻫﺎﻥ :ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (Dﻫﻭ z = ct + γx -α = y-β = z-γ =t ﻭﻤﻨﻪ : x - α = at ﻭﻋﻠﻴﻪ : a b c y - β = bt z - γ = ct ﺘﻌﺭﻴﻑ :)(D ﺘﺴﻤﻰ ﺘﻤﺜﻴﻼ ﺩﻴﻜﺎﺭﺘﻴﺎ x -α = y- β = z-γﻜﺎﻨﺕ a α c uG a ; b ; c b ﺍﻟﺫﻱ ﻴﺸﻤلﻟﻠﻤﺴﺘﻘﻴﻡ A ﺍﻟﻌﺒﺎﺭﺓ ﻭﻫﺫﺍ ﺇﺫﺍ ﺍﻟﻨﻘﻁﺔﺍﻷﻋﺩﺍﺩ aﻭ( ) ( )b ﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ ;β;γ ﻭ cﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ ﺠﻤﻴﻌﺎ. ﺇﺫﺍ ﻜﺎﻥ ﺃﺤﺩ ﺍﻷﻋﺩﺍﺩ a,b,cﻤﻌﺩﻭﻤﺎ ﻓﺈﻥ ﺒﺴﻁﻪ ﻴﻜﻭﻥ ﻤﻌﺩﻭﻤﺎ ﺃﻴﻀﺎ. A -1 , 3 , 4ﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ) ( ) ( )(D ﻟﻠﻤﺴﺘﻘﻴﻡ ﺍﻟﻨﻘﻁﺔ ﻴﺸﻤل ﺍﻟﺫﻱ ﺍﻜﺘ2ﺏ; ﺘﻤﺜ3ﻴﻼ Gﺩuﻴﻜﺎﺭﺘﻴﺎ : ﻤﺜﺎل ; 4x +1 = y-3 = z-4 ﺍﻟﺘﻤﺜﻴل ﺍﻟﺩﻴﻜﺎﺭﺘﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (Dﻫﻭ : ﺍﻟﺤل : 3 2 4
-4ﺍﻟﺘﻘﺎﻁﻊ ﻭ ﺍﻟﺘﻭﺍﺯﻱ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻟﻤﺴﺘﻭﻴﻴﻥ : ﻤﺒﺭﻫﻨﺔ : ﻨﻌﺘﺒﺭ ﺍﻟﻤﺴﺘﻭﻴﺎﻥ ) (Pو ) (P′ﺤﻴﺙ : (P) : ax + by + cz + d = 0ﻭ (P′) : a′x +b′ y +c′ z+d′ = 0 ﻴﺘﻭﺍﺯﻯ ) (Pو ) (P′ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻕ kﻏﻴﺭ ﻤﻌﺩﻭﻡ ﺒﺤﻴﺙ : c′ = kcﻭ b = kb′ﻭ a′ = ka ﻭ )nG (a;b;c ﺍﻟﺸﻌﺎﻋﺎﻥ ﻜﺎﻥ ﺇﺫﺍ ﻭﺍﻓﻘﻁ ﺇﺫﺍ و(P′)JG : ﺍﻟﺒﺭﻫﺎﻥ ﻴﺘﻭﺍﺯﻯ )(P ) n′(a′;b′;c′ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎJG G . ﺃﻱ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩ ﺤﻘﻴﻘﻲ kﺒﺤﻴﺙ . n′ = kn ﻭﻋﻠﻴﻪ a′ = ka :ﻭ b′ = kbﻭ c′ = ka ﻤﺜﺎل :1ﺍﻟﻤﺴﺘﻭﻴﺎﻥﺨﻁﻴﺎ. (P′) : 4x - 2y z nG=(20و+8)8 ) (Pﻭ : 2x - y + 4z - 5 =0 ; n′(4 ; -2ﻤﺭﺘﺒﻁﺎﻥ ; ; -1 ﺍﻟﻨﺎﻅﻤﻴﺎﻥ )4 ﺸﻌﺎﻋﻴﻬﻤﺎ ﻷﻥ ﻤﺘﻭﺍﺯﻴﺎﻥ ﻤﺜﺎل : 2ﺍﻟﻤﺴﺘﻭﻴﺎﻥ (P) : x - y + 3z + 4 = 0 : nG′(3 ; 1 )(P′ : ;n3Gx(1+ y - 4 z+ 2 = 0 ﻭ ﻏﻴﺭ ); -4 ﻷﻥ ﺍﻟﺸﻌﺎﻋﻴﻥ )-1 ; 3 ﻤﺘﻭﺍﺯﻴﺎﻥ ﻭ ﻏﻴﺭ ﻤﺭﺘﺒﻁﺎﻥ ﺨﻁﻴﺎ. ﻤﻼﺤﻅﺔ :ﺍﻟﻤﺴﺘﻘﻴﻡ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻟﻴﺱ ﻟﻪ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﺒل ﻟﻪ ﺘﻤﺜﻴل ﺩﻴﻜﺎﺭﺘﻲ ﻜﻤﺎ ﺴﺒﻕ.
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 ﻀﻊ ﺍﻟﻌﻼﻤﺔ √ ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺼﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻤﺔ × ﺃﻤﺎﻡ ﻜل ﺠﻤﻠﺔ ﺨﺎﻁﺌﺔ. . x = 0 G y = 0 (1ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ) (O ; kﻫﻭ : z = α (2ﺍﻟﺘﻤﺜﻴﻼﻥ ﺍﻵﺘﻴﺎﻥ ﻫﻤﺎ ﻟﻨﻔﺱ ﺍﻟﻤﺴﺘﻘﻴﻡ x = 2λ + 2 x = 2λ - 1 y = λ ; y = λ + 2. z = -λ z = -λ (3ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻤﺴﺘﻘﻴﻡ ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺘﻜﻭﻥ ﻤﻥ ﺍﻟﺸﻜل . : ax + by + cz + d = 0 (4ﻜل ﻤﻌﺎﺩﻟﺔ ﻤﻥ ﺍﻟﺸﻜل ax + by + cz + d = 0 :ﺤﻴﺙ a,b,c,d ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻟﻤﺴﺘﻭ. . x = 2λ - 1 (5ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﺍﻵﺘﻲ y = u + 2 :ﻫﻭ ﻟﻤﺴﺘﻭ . z = λ x - y + 4 = 0 (6ﺍﻟﺠﻤﻠﺔ ﺍﻵﺘﻴﺔ ﺘﻤﺜل ﻤﺴﺘﻘﻴﻤﺎ . 2x + y - 4z + 5 = 0 : (7ﺍﻟﻤﻌﺎﺩﻟﺔ x - y + 4 = 0ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻟﻤﺴﺘﻘﻴﻡ. . ﻤﺘ5ﺠﺎﻨ+ﺱGyﺤﻴ-ﺙxﺸﻌ4JGﺎJﻋﻫﻪJﻲﺍﻟﻨﻤﺎﻌﻅﺎﺩﻤﻟGﻲﺔJJﻤ)Jﺴﺘ0ﻭ;ﻓﻲ1ﺍ-ﻟﻔ;ﻀﺎ4ﺀ( ﺍﻟnGﻤﻨﺴﻭﺏ. =0 ﺍﻟﻤﻌﺩﻟﺔ (8 ﻟﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ (9ﺍﻟﻨﻘﻁ A,B,Cﺤﻴﺙ 2CA - 4CB = 0 :ﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ. . (10ﺇﺫﺍ ﻜﺎﻨﺕ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A ; 1) , (B ; -2) , (c ; 3ﻭﻜﺎﻨﺕ} {
Kﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ ) (A ; 1) ; (B ; -2ﻓﺈﻥ Gﻤﺭﺠﺢ ﺍﻟﺠﻤﻠﺔ} { }). . {(K ; -1) ; (C ; 3 JJJG JJJG ﺍﻟﺘﻤﺭﻴﻥ. 2 = CA CDﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﺎﻥ −1 ﻋﻴﻥ ﻗﻴﻤﺔ ﺍﻟﻌﺩﺩ ﺍﻟﺤﻘﻴﻘﻲ xﺒﺤﻴﺙ ﺘﻜﻭﻥ ﺍﻟﻨﻘﻁﺔ Cﺤﻴﺙ : 2 Dﻭ Aﺍﻟﻤﺭﻓﻘﺘﺎﻥ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺒﺎﻟﻤﻌﺎﻤﻠﻴﻥ x - 1ﻭ xﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ. JJJJG JJJG JJJG ﺍﻟﺘﻤﺭﻴﻥ. 3= . AM AB + AC 2 3 ABCﻤﺜﻠﺙ ﻗﺎﺌﻡ ﻓﻲ M . Aﻨﻘﻁﺔ ﺤﻴﺙ : 5 5ﺒﻴﻥ ﺃﻥ Mﻤﺭﺠﺢ ﻟﻠﻨﻘﻁﺘﻴﻥ C , Bﺍﻟﻤﺭﻓﻘﺘﻴﻥ ﺒﺎﻟﻤﻌﺎﻤﻠﻴﻥ αو βﺤﻴﺙ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ .ﺍﺴﺘﻨﺘﺞ ﺃﻥ Mﻨﻘﻁﺔ ﻤﻥ ). (BC ﺍﻟﺘﻤﺭﻴﻥ. 4 ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﺎﻥ )B(-2 ; 1 ; 4) , A(1 ; -3 ; 2 -1ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻘﻴﻡ )(AB -2ﺍﺴﺘﻨﺘﺞ ﺃﻥ ) (ABﻫﻭ ﺘﻘﺎﻁﻊ ﻤﺴﺘﻭﻴﻴﻥ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ ﺒﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ. ﺍﻟﺘﻤﺭﻴﻥ. 5 ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ﺘﻌﻁﻰ ﺍﻟﻨﻘﻁ :)A(-4 ; 2 ; 1) ,B(-1 ; 5 ; 1) ,C(-1 ; -2 ; 1) , D(0 ; 1 ; 3 -1ﻫل ﺍﻟﻨﻘﻁ A,B,Cﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ ؟ -2ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻯ ﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁ A,B,C -3ﻫل Dﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺴﺘﻭﻯ ) (ABC؟ -4ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻱ ). (DAB ﺍﻟﺘﻤﺭﻴﻥ. 6
x = λ + µ - 1 ﺇﻟﻴﻙ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻤﺴﺘﻭ )y = -2λ + µ : (P z = λ - 3µ + 2 -1ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻯ ) (P′ﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ ) A(-1 ; 2 ; 5ﻭﻴﻭﺍﺯﻱ ). (P ﺍﻟﺘﻤﺭﻴﻥ. 7ﺇﻟﻴﻙ ﺍﻟﻨﻘﻁ )L(1 ; -1 ; 3) , T(1 ; 2 ; -3) , S(-2 ; 1 ; 3 -1ﺍﻜﺘﺏ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ) (Pﺍﻟﺫﻱ ﻴﺸﻤل Lﻭﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻘﻴﻡ ) (STﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻤﻌﺎﺩﻟﺘﻪ. -2ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻘﻴﻡ ). (ST ﺍﻟﺘﻤﺭﻴﻥ. 8 ﺇﻟﻴﻙ ﺍﻟﺘﻤﺜﻴﻠﻴﻥ ﺍﻟﻭﺴﻴﻁﻴﻴﻥ ﻟﻠﻤﺴﺘﻭﻯ ) (Pﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ )(D x = λ′ x = -1 + λ - µ(D) : y = -2λ′ + 1 (P) : y = 2 - λ + µ z = -λ′ z = λ - 2µ ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Pﻭ ). (D ﺍﻟﺘﻤﺭﻴﻥ. 9( )C(0,-1,)1 ; B(-uG1(2, 1 ; ), -1 A(1 , ﺘﻌﻁﻰ ﺍﻟﻨﻘﻁ )1 , -1 ; )-1 ; 1 ; )D(-1 , 0 , 1 ﻴﺸﻤل Aﻭﻴﻭﺍﺯﻱ . uG ﻭ ﺍﻟﺸﻌﺎﻉ ∆ ﺍﻟﺫﻱ ﻟﻠﻤﺴﺘﻘﻴﻡ (1ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ (2ﺍﻜﺘﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻭﻯ ). (BCD (3ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ∆ ﻭ )( ). (BCD ﺍﻟﺘﻤﺭﻴﻥ. 10
) (DGو (DG′) Gﻤﺴﺘﻘﻴﻤﺎﻥ ﻤﻌﺭﻓﺎﻥ ﺒﺘﻤﺜﻴﻠﻬﻤﺎ ﺍﻟﻭﺴﻴﻁﻴﺎﻥ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭ ﻤﺘﺠﺎﻨﺱ )(o ; i ; j ; kx = λ + 1 x = 3λ′ + 3(D) : y = 2λ - 2 (D′) : y = -λ′ - 5z = -λ + 3 z = λ′ + 5 -1ﺒﻴﻥ ﺃﻥ ) (Dو ) (D′ﻤﺘﻘﺎﻁﻌﺎﻥ . -2ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻭﻱ ) (Pﺍﻟﺫﻱ ﻴﺸﻤل ) (Dو ). (D′ ﺍﻟﺘﻤﺭﻴﻥ. 11ﺇﻟﻴﻙ ﺍﻟﻤﺴﺘﻘﻴﻡ) (Dﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺤﻴﺙ ( ):x = t x = -λ + 1( ∆ ) : y = t - 1 (D) : y = 2λz = -t z = λ + 1 Aﻨﻘﻁﺔ ﻤﻥ ∆ ﻓﺎﺼﻠﺘﻬﺎ ( ). α -1ﺒﻴﻥ ﺃﻥ ) (Dو ∆ ﻻ ﻴﺘﻘﺎﻁﻌﺎﻥ( ). -2ﺒﻴﻥ ﺃﻥ ) (Dو ∆ ﻤﻥ ﻤﺴﺘﻭﻴﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ( ). -3ﻋﻴﻥ ﺒﺩﻻﻟﺔ αﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﺴﺘﻭﻯ Pαﺍﻟﺫﻱ ﻴﺸﻤل ﺍﻟﻤﺴﺘﻘﻴﻡ )( )(D ﻭ ﺍﻟﻨﻘﻁﺔ . A -4ﻫل ﻴﻤﻜﻥ ﺘﻌﻴﻴﻥ αﺒﺤﻴﺙ ﻴﻜﻭﻥ pαﻤﺎﺭﺍ ﻤﻥ ( )O -5ﻫل ﻴﻤﻜﻥ ﺘﻌﻴﻴﻥ αﺒﺤﻴﺙ ﻴﻜﻭﻥ pαﻤﻭﺍﺯﻴﺎ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل( ). ﺍﻟﺘﻤﺭﻴﻥ. 12 ﻟﻴﻜﻥ ABCDEFGHﻤﻜﻌﺏ ﻭﻟﻴﻜﻥ ) (Pﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ 2 x + 6y - z + 5 = 0 : -1ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻜل ﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ) (ABﻭ) (ADﻭ )(AE
-2ﻋﻴﻥ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻱ ). (BCG -3ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (BCGﻭ). (P ﺍﻟﺘﻤﺭﻴﻥ. 13 ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ ) M(x ; y ; zﻟﺘﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻭﻴﻴﻥ ) (Pو )(P′ ﺤﻴﺙ (P′) : x + 2y - 3z = 0 , (p) : x - y + z - 4 = 0 : ﺍﻟﺘﻤﺭﻴﻥ. 14 ) (Pﻤﺴﺘﻭ ﻤﻌﺎﺩﻟﺘﻪ . −x + y + z - 4 = 0 :) (P′ﻤﺴﺘﻭ ﻴﺸﻤل ﺍﻟﻨﻘﻁ ). C(1 ; 1 ; 0) , B(0 ; 1 ; 1) , A(1 ; 0 ; 1 -1ﺍﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻯ ). (P′ -2ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Pو ). (P′ ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ. 1. √ (5 . × (4 . × (3 . × (2 √ (1. √ (10 √ (9 √ (8 . × (7 √ (6 ﺍﻟﺘﻤﺭﻴﻥ. 2 JJJG JJJG G ﺘﻌﻴﻴﻥ ﻗﻴﻤﺔ : xﻭﻋﻠﻴﻪ 2CA + CD = 0 : JJJG JJJG CA = - 1 ﻟﺩﻴﻨﺎ CD 2ﻭﺒGﻤﺎ ﺃﻥ JCJGﻤJﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﺎﻥ G Aﻭ JDJﺍJﻟﻤﺭﻓﻘﺘﻴﻥ ﺒﺎﻟﻤﻌﺎﻤﻠﻴﻥ xﻭ x – 1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﺈﻥ : x . CA + (x - 1) CD = 0ﻭﻋﻠﻴﻪ . x = 2 : x = 2 ﻭﻤﻨﻪ x - 1 = 1
ﺍﻟﺘﻤﺭﻴﻥ. 3 JJJJG JJJG JJJG -1ﺘﺒﻴﺎﻥ ﺃﻥ Mﻤﺭﺠﺢ . C , B5AM = 2AB 3AC + AMﺃﻱ: = 52JAJJGB + 3 AC ﻟﺩﻴﻨﺎ : JJJJG 5 JJJG G JJJJG JJJG J5JJAJGM − 2JJAJJBG − 3JJAJJGC = G0( ) ( )-5MA − 2 MB - MA - 3 MC − MA = 0JJJJG JJJG JJJJG JJJJG JJJJG G-5MA − 2 MB + 2 MA - 3 MCJJJG+ 3MJJJAG = G0 -2MB - 3MC = 0 ﻭﻤﻨﻪ 2MB + 3MC = 0 : ﺇﺫﻥ Mﻤﺭﺠﺢ ﺍﻟﻨﻘﻁﺘﺎﻥ Bﻭ Cﺍﻟﻤﺭﻓﻘﺘﺎﻥ ﺒﺎﻟﻤﻌﺎﻤﻠﻴﻥ 2ﻭ 3 ﻭﻋﻠﻴﻪ α = 2ﻭ .β = 3 ﻨﻌﻠﻡ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻨﺕ Mﻤﺭﺠﺢ Bﻭ Cﻓﺈﻥ Mﻨﻘﻁﺔ ﻤﻥ ). (BC ﺍﻟﺘﻤﺭﻴﻥ. 4ﻟﺘﻜﻥ )M(x ; y ; z (1ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ). AB (-3 ; 4 ; 2) : (ABﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻔﻀﺎﺀ .ﺘﻜﻭﻥ Mﻨﻘﻁﺔ ﻤﻥ ) (ABﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ AM = λ AB :ﺤﻴﺙ λﻋﺩﺩ x -3λ 1 x - 1 -3λ ﺤﻘﻴﻘﻲ ﻭﻋﻠﻴﻪ °®y 3 4λ :ﺃﻱ ﺃﻥ ®°y 4λ - 3 : ¯°z 2λ 2 ¯°z - 2 2λ (2ﺘﺒﻴﺎﻥ ﺃﻥ ) (ABﻫﻭ ﺘﻘﺎﻁﻊ ﻤﺴﺘﻭﻴﻴﻥ : )x -3λ 1 . . . (1 ﻟﺩﻴﻨﺎ °®y 4λ - 3 . . . (2) : )¯°z 2λ 2 . . . (3 : ﻨﺠﺩ )(2 ﻓﻲ ﻭﺒﺎﻟﺘﻌﻭﻴﺽ λ = -1 (x )- 1 : )(1 ﻤﻥ 3 yﻭﻋﻠﻴﻪ 3y = - 4( x - 1) - 9 : 4 (x - 1) - 3 3
z = -2 ( x - )1 + 2 ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ): (3 ﺇﺫﻥ 3y + 4x – 5 = 0 : 3 ﻭﻤﻨﻪ 3y = -2x + 8ﻭﻤﻨﻪ 3y + 2x – 8 = 0 : 4x + 3y - 5 = 0 ﻭﺒﺎﻟﺘﺎﻟﻲ 4 x + 3 y − 8 = 0 : ﻭﻫﻲ ﺍﻟﺠﻤﻠﺔ ﺍﻟﻤﻜﻭﻨﺔ ﻤﻥ ﺘﻘﺎﻁﻊ ﻤﺴﺘﻭﻴﻴﻥ ﻤﻌﺎﺩﻟﺘﻴﻬﻤﺎ : 4x + 3y - 5= 0ﻭ . 2x + 3y – 8 = 0 ﺍﻟﺘﻤﺭﻴﻥ. 5 ABﻭ ACﻟﻴﺱ -1ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﺴﺘﻘﺎﻤﻴﺔ ﺍﻟﻨJGﻘJﻁJJJG : A ,B , CJ ﻟﺩﻴﻨﺎ AC (3 , -4 ; 0)JJ,JGABJJ(J3G ; 3 ; 0) : ﻨﻼﺤﻅ ﺃﻥ ﺇﺤﺩﺍﺜﻴﺎﺕ ABﻭ ACﻏﻴﺭ ﻤﺘﻨﺎﺴﺒﺔ ﻭﻤﻨﻪ ﺍﻟﺸﻌﺎﻋﺎﻥﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺤﺎﻤل ﻓﻬﻤﺎ ﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﺎﻥ ﻭ ﺒﺎﻟﺘﺎﻟﻲ ﺍﻟﻨﻘﻁ A , B , Cﻟﻴﺴﺕ ﻓﻲ ﺍﺴﺘﻘﺎﻤﻴﺔ.( )JJJG JJJG -2ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ): (Pﺒﻤﺎ ﺃﻥ A , B , Cﻟﻴﺴﺕ ﻓﻲ ﺇﺴﺘﻘﺎﻤﻴﺔ ﻓﻬﻲ ﺘﻜﻭﻥ ﻤﻌﻠﻤﺎ A , AB , AC :ﻟﻠﻤﺴﺘﻭﻱJJJJG JJJG JJJG ) (ABCﺃﻱ ). (Pﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ) M(x ; y ; zﻤﻥ ) (Pﻟﺩﻴﻨﺎ AM = λ AB + µAC :x = 3λ + 3µ- 4 x + 4 = 3λ + 3µ y - 2 = 3λ - 4µ y = 3λ - 4µ + 2 ﺃﻱ: z - 1 = 0 ﻭﻤﻨﻪ : z = 1 -3ﺍﻟﺒﺤﺙ ﻋﻥ ﻜﻭﻥ Dﺘﻨﺘﻤﻲ ﺇﻟﻰ ): (ABC ﻭﻋﻠﻴﻪ : x = 3λ + 3µ - 4 ﻟﺩﻴﻨﺎ y = 3λ - 4µ + 2 : z = 1 ﺇﺫﺍ ﻜﺎﻨﺕ Dﺘﻨﺘﻤﻲ ﺇﻟﻰ ) (ABCﻓﺈﻥ :
ﻭﻫﺫﺍ ﻤﺴﺘﺤﻴل . 0 = 3λ + 3µ - 4 1 = 3λ - 4µ + 2 3 = 1 ﻭﻤﻨﻪ Dﻟﻴﺴﺕ ﻨﻘﻁﺔ ﻤﻥ ). (ABC -4ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ )JJJG JJJG . (DABﺒﻤﺎGﺃJﻥ DJJﻻ ﺘGﻨJﺘﻤJJﻲ ﺇﻟﻰ ﺍﻟﻤﺴﺘﻭﻱ ) (ABCﻓﺈﻥ DAﻭ DBﻟﻴﺱ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺤﺎﻤل ﻭﻤﻨﻪ D , DA , DBﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ )( ). (DAB ﻟﺘﻜﻥ GMﻨJﻘJﻁJﺔ ﻤﻥ )JJ(DJGABﺤﻴﺙ )MJ(JxJ;JGy ; zﻟﺩﻴﻨﺎ JJJG AM = αDAJJJG+ βDB :)DB(-1 ; 4 ; -2) , DA(-4 ; 1 ; -2 x = - 4α - β − 4 x + 4 = - 4α - β y - 2 = α + 4βﺇﺫﻥ y = α + 4β + 2 : ﻭﻋﻠﻴﻪ :z = - 2α - 2β + 1 z - 1 = - 2α - 2β ﻭ ﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ )(DAB ﺍﻟﺘﻤﺭﻴﻥ. 6 ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ): (p′ﺒﻤﺎ ﺃﻥ ) (p′ﻴﻭﺍﺯﻱ ) (Pﻓﺈﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ) (p′ﻴﻜﻭﻥ ﻤﻥ ﺍﻟﺸﻜل : x = λ + µ + x0 y = -2λ + µ + y0 z = λ - 3µ + z0 ﻟﻜﻥ Aﺘﻨﺘﻤﻲ ﺇﻟﻰ ) (p′ﻭﻤﻨﻪ :ﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ )(p′ x = λ + µ −1 y = -2λ + µ + 2 z = λ - 3µ + 5
ﺍﻟﺘﻤﺭﻴﻥ. 7 -1ﻜﺘﺎﺒﺔ ﻤﻌﺎﺩﻟﺔ ): (P ﺍﻟﻤﺴﺘﻭﻱ ) (Pﻴﺤﺘﻭﻱ ﻋﻠﻰ ﺜﻼﺙ ﻨﻘﻁ ﻫﻲ . T , S , L )LT(0 ; 3 ; - 6) , LS(-3 ; 2 ; 0 ﺍﻟﺸﻌﺎﻋﺎﻥ LJJSJGﻭ LJTJGﻟﻴﺱ ﻟﻬﻤﺎ ﻨﻔﺱ ﺍﻟﺤﺎﻤل( ). ﻭﻋﻠﻴﻪ L , LS , LTﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ ). (P ﻤGﻥJJﺃJﺠل ﻜل ﻨﻘﻁﺔJGM(x ; y ;JzJ)GﻤJﻥ (D)Jﻟﺩﻴﻨﺎ : LM = αLS + βLT x = - 3α + 1 x - 1 = - 3α y = 2α + 3β - 1 ﻭﻋﻠﻴﻪ y + 1 = 2α + 3β :ﺃﻱ : z = - 6β + 3 z - 3 = - 6β ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ. ) x = - 3α + 1 . . . (1 )y = 2α + 3β - 1 . . . (2 )z = - 6β + 3 . . . (3 αﻭ βﺒﻘﻴﻤﺘﻴﻬﻤﺎ ﺒﺘﻌﻭﻴﺽ .β = 1 (3 - )z ﻭ ﻤﻥ ): (3 α = 1 (1 - )x : )(1 ﻤﻥ 6 3 y 2 §1 - 1 x · 3 §1 - 1 z · -1 ﻓﻲ ) (2ﻨﺠﺩ : ©¨ 3 3 ¸¹ ©¨ 2 6 ¸¹ y = 2 - 2 x + 3 - 1 z - 1 ﺃﻱ : 3 3 2 2 2 1 2 3 3 x + y + 2 z - 3 - 2 + 1 = 0 ﻭﻤﻨﻪ :4x + 6y + 3z - 7 = 0 ﺇﺫﻥ : 2 x + y + 1 z - 7 = 0 ﺃﻱ: 6 3 2 6 ﻭﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻫﻲ 4x + 6y + 3z – 7 = 0 :
-2ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘGﻴJﻡ: (ST)JﻟﺩﻴGﻨJﺎ . ST (3JJ;JG1 ; -6)Jﻟﺘﻜﻥ ) M(x ; y ; zﻨﻘﻁﺔ ﻤﻥ )G(STﺃJﻱJ:J SM = λSTﺤﻴﺙSM (x + 2 , y - 1 , z - 3) :x 3λ 2 x + 2 = 3λ ﻭﻤﻨﻪ :°®y λ 1 y - 1 = λﺃﻱ:°¯z -6λ 3 z - 3 = - 6λ ﻭﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ )(DT ﺍﻟﺘﻤﺭﻴﻥ. 8 ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Dﻭ ∆ ( ):λ′ = -1 + λ - µ ﻨﺤل ﺍﻟﺠﻤﻠﺔ :-2λ′ + 1 = 2 - λ + µ-λ′ = λ - 2µ(1) . . . λ′ - λ + µ + 1 = 0ﻭﻋﻠﻴﻪ (2) . . . −2λ′ + λ - µ - 1 = 0 :(3) . . . -λ′ - λ + 2µ = 0 ﺒﺠﻤﻊ ) (1ﻭ ) (2ﻨﺠﺩ - λ′ = 0 :ﻭﻤﻨﻪ λ′ = 0 -λ + µ + 1 = 0 -λ + 2µ = 0 ﻭﻋﻠﻴﻪ : ﺒﺎﻟﻁﺭﺡ ﻨﺠﺩ −µ + 1 = 0 :ﻭﻤﻨﻪ µ = 1 : ﻭﻋﻠﻴﻪ λ = 2 :ﺃﻱ ﺃﻥ z = 0 , y = 1 , x = 0 : ﻭﻤﻨﻪ ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ I(0 ; 1 ; 0) : ﺍﻟﺘﻤﺭﻴﻥ. 9 (1ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ∆ ( ):JJJJG G ﻟﺘﻜﻥ ) M(x ; y ; zﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻔﻀﺎﺀﺘﻜﻭﻥ Mﻤﻥ ﺍﻟﻤﺴﺘﻘﻴﻡ ∆ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ( )AM = λu :
x = 2λ + 1 x - 1 = 2λ y - 1 = -λﺃﻱ : y = -λ + 1 ﻭﻋﻠﻴﻪ : z + 1 = λ z = λ - 1 ﻭﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻘﻴﻡ ∆) ( (2ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻭﻯ ): (BCD ﻭﻫﻲ ﻤﻥ ﺍﻟﺸﻜل αx + βy + γz + δ = 0 : )-α + β -γ- δ = 0 . . . (1 )-β + γ + δ = 0 . . . (2 ﺒﻤﺎﺃﻥ B , C , Dﻨﻘﻁ ﻤﻨﻪ ﻓﺈﻥ : )-α + γ + δ = 0. . . (3 ﺒﺠﻤﻊ ) (1ﻭ ) (2ﻨﺠﺩ -α + 2δ = 0 :ﻭﻤﻨﻪ α = 2δ : ﺒﻁﺭﺡ ) (3ﻤﻥ ) (2ﻨﺠﺩ -β + α = 0 :ﻭﻤﻨﻪ β = α : ﺇﺫﻥ β = 2δ :ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (1ﻨﺠﺩ-2δ + 2δ - γ + δ = 0 : ﻭﻋﻠﻴﻪ. γ = δ : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻫﻲ2δx +2δy + δz + δ = 0 : ﺃﻱ δ(2x + 2y + z + 1) :ﻭﻤﻨﻪ 2x + 2y +z + 1 = 0 : ﻫﻲ ﻤﻌﺎﺩﻟﺔ ). (BCD -3ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ∆ ﻭ )( ): (BCD x = 2λ + 1 ﻨﺤل ﺍﻟﺠﻤﻠﺔ : y = -λ + 1 2x + 2y + z + 1 = 0 ﻭﻋﻠﻴﻪ 2(2λ + 1) + 2(-λ + 1) + λ - 1 + 1 = 0 : λ = -4 ﻭﻋﻠﻴﻪ : 3λ + 4 = 0 ﺃﻱ: 3 -4 -7 4 7 -8 -5=z 3 =-1 3 =,y 3 +1 = 3 = ,x 3 +1 = 3 ﺇﺫﻥ :
J -5 ; 7 ; -7 ﻭﻤﻨﻪ ﻨﻘﻁﺔ ﺍﻟﺘﻘﺎﻁﻊ ﻫﻲ : 3 3 3 ﺍﻟﺘﻤﺭﻴﻥ. 10 (1ﺘﺒﻴﺎﻥ ﺃﻥ ) (Dو ) (D′ﻤﺘﻘﺎﻁﻌﺎﻥ .ﻨﺤل ﺍﻟﺠﻤﻠﺔ :λ = 3λ′ + 2 λ + 1 = 3λ′ + 3 2λ - 2 = -λ′ - 5ﻭﻋﻠﻴﻪ 6λ′ + 4 - 2 = -λ′ - 5 :-3λ′ - 2 + 3 = λ′ + 5 -λ + 3 = λ′ + 5x = 0 λ′ = -1 ﻭﻤﻨﻪ: λ = 3λ′ + 2 ﺃﻱ:ﻭﻋﻠﻴﻪ y = -4 : λ = -1 7λ′ = -7z = 4 -4λ′ = 4 ﺇﺫﻥ ) (Dو ) (D′ﻴﺘﻘﺎﻁﻌﺎﻥ ﻓﻲ ﺍﻟﻨﻘﻁﺔ )w(0 ; -4 ; 4nG ﻓﺈﻥ )(P ﻟﻠﻤﺴﺘﻭﻱ : )(D′ );(α(DوnG ) (Pﻴﺸﻤل -2ﺍﻟﻤﺴﺘﻭﻱ ﻨﺎﻅﻤﻲ ﻭﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻥ ﺸﻌﺎﻉ )β ; γ ;vGو vG(3(D;nG′-)1. ﺘ1ﻭ(nGﺠﻴuGﻬوﻲ(=1D)0) , ﻋﻤﻭﺩﻱ ﻋﻠﻰ ﺸﻌﺎﻋﻲﺍﻟﺸﻌﺎﻋﻴﻥ. ﻫﻤﺎ ﻫﺎﺫﻴﻥ .;uG2 ; )-1 ﺤﻴﺙ: = 0: ﻭﻋﻠﻴﻪﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 4α + β = 0 : α + 2β - γ = 0 ﺇﺫﻥ 3α - β + γ = 0 :ﺃﻱ β = -4α :ﻭﻋﻠﻴﻪ α - 8α - γ = 0 :ﻭﻤﻨﻪ γ = -7α : ﺒﻭﻀﻊ α = 1ﻨﺠﺩ γ = -7 , β = -4 :ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻫﻲ ﻤﻥ ﺍﻟﺸﻜل x - 4y - 7z + δ = 0 :ﻭﺒﻤﺎ ﺃﻥ wﺘﻨﺘﻤﻲ ﺇﻟﻰ ﻫﺫﺍ ﺍﻟﻤﺴﺘﻭﻱ ﻓﺈﻥ 0 + 16 - 28 + δ = 0 :ﺇﺫﻥ δ = 12 :ﻭﻤﻨﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻫﻲ x- 4y- 7z +12 = 0 : ﺍﻟﺘﻤﺭﻴﻥ. 11 -1ﻨﺒﻴﻥ ﺃﻥ ) (Dو )∆( ﻻ ﻴﺘﻘﺎﻁﻌﺎﻥ.
)α = -λ + 1 . . . (1 ﻨﺤل ﺍﻟﺠﻤﻠﺔ α - 1 = 2λ . . . (2) : )-α = λ + 1 . . . (3=λ -2 ﻭﻤﻨﻪ -1 = 3λ + 1 ﺒﺠﻤﻊ ) (2ﻭ ) (3ﻨﺠﺩ : 3 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ﻜل ﺍﻟﻤﻌﺎﺩﻻﺕ ﻨﺠﺩ : °α 5 α = 5 ° 3 °®αﻭ ﻫﺫﺍ ﺘﻨﺎﻗﺽ. 3 α ° -4 ¯°°α - 1 ﺇﺫﻥ : =-1 3 3 - 1 - α = 1 3 3 ﻭﻤﻨﻪ ) (Dو )∆( ﻻ ﻴﺘﻘﺎﻁﻌﺎﻥ.ﻫﻭ ). vK(1;1; - 1 2ﺸuGﻌ-ﺎ ﻨﻉﻭﺒﻴﺘﻥﻭvGﺃﺠﻴﻥﻟﻪﻴ ))ﺱDﻟ(Dﻬ(ﻤﻫﺎﻭﻨوﻔ))ﺱ 1ﺍ∆;ﻟ(ﺤﺎ2ﻤﻤ;لﻥ1ﻤﻷ-ﻥﺴﺘ(ﺇﻭKﻴﺤuﻴﺩﺍﻥﺜﻭﻴﺎﻤﺸﺘﻌﺨﻬﺎﺘﻡﻠﻉﻔﻟﻴﻴﺘﻥﻭﺴﺠ:ﺕﻴﻪﻤﺘﻨﺎﺴ∆ﺒﺔﻭﻜﺫﻟﻙ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﻥ )(Dﺍﻟﺸﻌﺎﻋﺎﻥ) (و )∆( ﻏﻴﺭ ﻤﺘﻭﺍﺯﻴﺎﻥ ﻭﻤﻨﻪ ) (Dو )∆( ﻤﻥ ﻤﺴﺘﻭﻴﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ . -3ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ) : (pα Aﻨﻘﻁﺔ ﻤﻥ ∆ ﻓﺎﺼﻠﺘﻬﺎ αﻭﻤﻨﻪ ( ). A(α ; α - 1 ; - α) : . ;)BuG((1-;10;;21 ﺤﻴﺙ ﻤﻥ )(D ﻟﺘﻜﻥ Bﻨﻘﻁﺔ ) (Dﻫﻭ ﺸﻌﺎﻉ ﺘﻭﺠﻴﻪ )1 ﺒﻤﺎJGﺃJﻥ (pGα ) Jﻴﺸﻤل ) (Dﻭ ) (Aﻓﺈﻥ ) (pαﻴﻘﺒل ﻜﻤﻌﻠﻡJJJ:G BA α - 1 ; α - 1 ; -α - 1 , B ; u ; BAﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ) M(x ; y z JJJJG G JJJG ﻤﻥ ) (pαﻓﺈﻥ BM λ u µ BA :
)(1) . . . x - 1 -λ µ (α - 1 ﻭﻋﻠﻴﻪ (2) . . . ®°y - 0 2λ µ (α - 1) : )(3) . . . °¯z - 1 λ - µ (α 1 ﺒﻁﺭﺡ ) (2ﻤﻥ ) (1ﻨﺠﺩ x - 1 - y = - 3λ : λ = - 1 ( x - y - )1 ﻭﻤﻨﻪ 3 ﺒﺠﻤﻊ ) (1ﻭ ) (3ﻨﺠﺩ x - 1 z - 1 -2µ : µﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (1ﻨﺠﺩ : - 1 (x ) z - 2 ﻭﻤﻨﻪ 2x - 1 = 1 ( x - y - )1 - 1 ( x + z - )2 (α - )1 3 2)6( x - 1) = 2( x - y - 1) - 3( x + z - 2) (α - 1)6x - 6 = 2x - 2y - 2 - 3(α - 1) x - 3(α - 1)z + 6(α - 14x + (3) (α - 1)x + 2y + 3(α - 1)z + 2 - 6α + 6 - 6 = 0 ﻭﻋﻠﻴﻪ (3α + 1) x + 2y + 3(α - 1)z + 2 - 6α = 0 : ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺴﺘﻭﻱ ) . (pα -4ﺘﻌﻴﻴﻥ αﺒﺤﻴﺙ ﻴﻤﺭ ) (pαﻤﻥ ﺍﻟﻤﺒﺩﺃ : α = 1 ﺃﻱ 2 - 6α = 0ﻭﻋﻠﻴﻪ : 3 G -5ﻴﻜﻭﻥ ) (pαﻤﻭﺍﺯﻴﺎ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ) (O ; iﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺘﻪ ﻤﻥ ﺍﻟﺸﻜل by + cz : +d=0 α = - 1 ﻭﻋﻠﻴﻪ : ﻭﻤﻨﻪ 3α + 1 = 0 : 3 ﺍﻟﺘﻤﺭﻴﻥ. 12 (1ﺍﻟﺘﻤﺜﻴﻼﺕ ﺍﻟﻭﺴﻴﻁﻴﺔ : x = 0 x = 0 x = λ(AE) : y = 0 , (AD) : y = λ , (AB) : y = 0 z = λ z = 0 z = 0
(2ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ): (BCG ﺍﻟﻤﺴﺘﻭﻱ ) (BCGﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ )B(1 ; 0 ; 0 ﻭ ﺍﻟﺸﻌﺎﻋﻴﻥ )BF(0 ; 0 ;1) , BC(0 ;1 ; 0ﻭﻤﻨﻪ B , BCJJG, BFﻤﻌGﻠJﻡJﻟJﻬﺫﺍ ﺍﻟﻤﺴﺘﻭGﻱJﻭJﻋJﻠﻴﻪ ﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ M x ; y ; zﻤﻥ) ( )BM = λBC + MBF : (BCG x - 1 0 ° ® y λ ﺇﺫﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ) (BCGﻫﻭ : ¯°z µ (3ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Pﻭ ): (BCG 2x 6y - z 5 0 °°x 1 ®°y λ ﻨﺤل ﺍﻟﺠﻤﻠﺔ : °¯z µ ﻭﻋﻠﻴﻪ 2 + 6y – z + 5 = 0 :ﻭﻋﻠﻴﻪ : K 6y – z + 7=0 ﻭﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻭ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ) . (O , i ﺍﻟﺘﻤﺭﻴﻥ. 13 ) x - y + z - 4 = 0 . . . (1 ﻨﺤل ﺍﻟﺠﻤﻠﺔ: x + 2y - 3z = 0 . . . )(2 ﺒﻁﺭﺡ ) (2ﻤﻥ ) (1ﻨﺠﺩ -3y + 4z – 4 = 0 y = 4 z - 4 ﺃﻱ y 1 )(4z - 4 ﻭﻤﻨﻪ : 3 3 3x 4z 4 z-4 ﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (1ﻨﺠﺩ 0 : 3 3 ﻭﻋﻠﻴﻪ 3x - 4z 4 3z - 12 0 : x = 1 z + 8 ﻭﺒﺎﻟﺘﺎﻟﻲ : ﺇﺫﻥ 3x - z - 8 = 0 : 3
x = 1 t +8 x = 1 z +8 = 3 = 3 y y 4 t - 4 z = tﻨﺠﺩ : ﺒﻭﻀﻊ 4 z - 4 ﻭﻋﻠﻴﻪ : 3 3 3 3 z = t z = z ﻭ ﺸﻌﺎﻉ I 8 , -4 , 0 ﺍﻟﻨﻘﻁﺔ ﻴﺸﻤل ﺍﻟﺫﻱ ﺍﻟﻤﺴﺘﻘﻴﻡ ﻭﻓﻕ )(p′ ﻭ )(P ﻴﺘﻘﺎﻁﻊ ﻭﻤﻨﻪ 3 uG 1 ; 4 ; 1 ﺘﻭﺠﻴﻬﻪ 3 3 ﺍﻟﺘﻤﺭﻴﻥ. 14 JJJG JJJG -1ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁGﻲ JﻟJﻠﻤJﺴﺘﻭﻱ )JJJG : (p′ AC AB AC(0 ; 1 ; -1) , AB(-1 ; ;1 )0ﻟﻴﺱ ﻟﻬﻤﺎ ﻭ ﻭﻋﻠﻴﻪ ﺍﻟﺸﻌﺎﻋﺎﻥ JJJG JJJG ﻨﻔﺱ ﺍﻟﺤﺎﻤل ﻭﻤﻨﻪ A , AB , ACﻤﻌﻠﻡ ﻟﻠﻤﺴﺘﻭﻱ )( )(p′JJJJG JJJG JJJGﻤﻥ ﺃﺠل ﻜل ﻨﻘﻁﺔ ) M(x ; y ; zﻤﻥ ) (P′ﻓﺈﻥ AM = αAB + βAC : x = -α+1 x -1= -α y = α + β ﻭﻋﻠﻴﻪ y - 0 = α + β :ﺃﻱ : z = - β + 1 z - 1 = - β ﻭﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﻭﺴﻴﻁﻲ ﻟﻠﻤﺴﺘﻭﻱ ). (P′ -2ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Pﻭ ): (P′ )- x + y + z - 4 = 0 . . . (1 ) x = - α + 1 . . . (2 )y = α + β . . . (3 ﻨﺤل ﺍﻟﺠﻤﻠﺔ : )z = - β + 1 . . . (4
ﻨﻌﻭﺽ ﻜل ﻤﻥ xﻭ yﻭ zﻤﻥ ) (2ﻭ ) (3ﻭ ) (4ﺒﻘﻴﻤﻬﺎ ﻓﻲ ) (1ﻓﻨﺠﺩ : - (-α + 1) + (α + β) - β + 1 - 4 = 0ﺇﺫﻥ 2α - 1 + β - β + 1 - 4 = 0 :ﺃﻱ2α − 4 = 0 : x = -2 + 1 ﻭﻋﻠﻴﻪ α = 2 :ﻭﻤﻨﻪ :y = 2 + βz = -β + 1x = o . β - 1 x = -1y = β + 2 ﺇﺫﻥ y = 2 + β :ﺃﻱz = -β + 1 z = -β + 1ﻭ)ﻫ1ﻲ-ﺍﻟﺘ;ﻤﺜﻴ1ل;ﺍﻟﻭ0ﺴ(ﻴﻁuGﻲ ﻟﻤﺴﺘﻘﻴﻡ ∆ ﻴﺸﻤل ﺍﻟﻨﻘﻁ ) C(-1 ; 2 ; 1ﻭﺸﻌﺎﻉ ﺘﻭﺠﻴﻬﻪ) ( ﺇﺫﻥ (P) :و ) (P′ﻴﺘﻘﺎﻁﻌﺎﻥ ﻭﻓﻕ ∆ ( ).
ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -1ﺍﻟﺘﻌﺭﻑ ﻋﻠﻰ ﺃﻭﻟﻴﺔ ﻋﺩﺩ -2ﺍﺴﺘﻌﻤﺎل ﺘﺤﻠﻴل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﻟﺘﻌﻴﻴﻥ ﻤﻀﺎﻋﻔﺎﺕ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻭ ﻗﻭﺍﺴﻤﻪ -3ﺍﺴﺘﻌﻤﺎل ﺘﺤﻠﻴل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﻟﺘﻌﻴﻴﻥ ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻭ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ -4ﺍﺴﺘﻌﻤﺎل ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻭﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ -5ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺹ ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ -6ﺍﺴﺘﻌﻤﺎل ﻤﺒﺭﻫﻨﺔ ﺒﻴﺯﻭ -7ﺍﺴﺘﻌﻤﺎل ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ ﻭﻨﺘﺎﺌﺠﻬﺎﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺃﻨﺸﻁﺔ -Iﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ : -IIﻤﺒﺭﻫﻨﺔ ﺒﻴﺯﻭ : -IIIﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ : ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤﻠﻭل
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ : ﻴﻤﻠﻙ ﻓﻼﺡ ﻗﻁﻌﺔ ﺃﺭﻀﻴﺔ ﺃﺭﺍﺩ ﺒﻴﻌﻬﺎ ﻋﻠﻰ ﺸﻜل ﻗﻁﻊ ﺃﺭﻀﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ .ﻻﺤﻅ ﺃﻨﻪ ﺇﺫﺍ ﺠﺯﺌﻬﺎ ﺇﻟﻰ ﻗﻁﻊ ﺫﺍﺕ 200m2ﺘﺘﺒﻘﻰ ﻟﺩﻴﻪ ﻗﻁﻌﺔ ﻤﺴﺎﺤﺘﻬﺎ 150m2ﻭﺇﺫﺍ ﺠﺯﺌﻬﺎ ﺇﻟﻰ ﻗﻁﻊ ﺫﺍﺕ 250m2ﺘﺘﺒﻘﻰ ﻗﻁﻌﺔ ﻤﺴﺎﺤﺘﻬﺎ 200m2ﻭﺇﺫﺍ ﺠﺯﺌﻬﺎ ﺇﻟﻰ ﻗﻁﻊ ﺫﺍﺕ 300m2ﺘﺘﺒﻘﻰ ﻗﻁﻌﺔ ﻤﺴﺎﺤﺘﻬﺎ . 250m2 ﺃﺤﺴﺏ Sﻤﺴﺎﺤﺔ ﺍﻟﻘﻁﻌﺔ ﺍﻷﺭﻀﻴﺔ ﺇﺫﺍ ﻋﻠﻤﺕ ﺃﻥ . 6000m2 S 5000m2 ﺍﻟﺤل : ﻟﺩﻴﻨﺎ S { 150>200@ : @S { 200>250 @S { 250>300 @S 50 { 0>200 ﻭﻋﻠﻴﻪ °®S 50 { 0>250@ : @¯°S 50 { 0>300 ﺇﺫﻥ S 50ﻤﻀﺎﻋﻑ ﻤﺸﺘﺭﻙ ﻟﻸﻋﺩﺍﺩ . 300 ، 250 ، 200 ﻭﻤﻨﻪ S 50ﻤﻀﺎﻋﻑ ﻟﻠﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ µﻟﻸﻋﺩﺍﺩ . 300 ، 250 ، 200 PPCM 200;250;300 10 u PPCM 20;25;30 10 u 5PPCM 4;5;6 10 u 5 u 2 u 5 u 6 3000
ﻭﻋﻠﻴﻪ µ 3000 :ﻭﻤﻨﻪ S 50 :ﻤﻀﺎﻋﻔﺔ ﻟﻠﻌﺩﺩ . 3000 ﺃﻱ ﺃﻥ S 50 3000k , k `* : ﻭﺒﺎﻟﺘﺎﻟﻲ S 3000k 50 :ﺤﻴﺙ k `* :ﻟﻜﻥ 5000 S 6000 :ﻭﻋﻠﻴﻪ 5000 3000k 50 6000 : ﺇﺫﻥ 5050 3000k 6050 :ﻭﻤﻨﻪ : ﺃﻱ ﺃﻥ 1,68 k 2,01 : 5050 k 6050 ﻭﻤﻨﻪ : 3000 3000 k 2ﻭﻋﻠﻴﻪ S 3000 u 2 50 : ﻭﻤﻨﻪ S 5950m2 : -Iﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ : ﺘﻌﺭﻴﻑ : ﻨﻘﻭل ﻋﻥ ﻋﺩﺩ ﻁﺒﻴﻌﻲ Nﺃﻨﻪ ﺃﻭﻟﻲ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ﻟﻪ ﻗﺎﺴﻤﺎﻥ ﻤﺨﺘﻠﻔﺎﻥ ﻓﻘﻁ . ﺃﻤﺜﻠﺔ : 2ﻋﺩﺩ ﺃﻭﻟﻲ ﻷﻥ ﻟﻪ ﻗﺎﺴﻤﺎﻥ ﻓﻘﻁ ﻫﻤﺎ 1ﻭ . 2 6ﻟﻴﺱ ﻋﺩﺩﺍ ﺃﻭﻟﻴﺎ ﻷﻥ ﻟﻪ ﺃﻜﺜﺭ ﻤﻥ ﻗﺎﺴﻤﻴﻥ ﻭﻗﻭﺍﺴﻤﻪ ﻫﻲ . 1،2،3،6 : 1ﻟﻴﺱ ﻋﺩﺩﺍ ﺃﻭﻟﻴﺎ ﻷﻥ ﻟﻪ ﻗﺎﺴﻡ ﻭﺍﺤﺩ ﻓﻘﻁ ﻫﻭ . 1 0ﻟﻴﺱ ﻋﺩﺩﺍ ﺃﻭﻟﻴﺎ ﻷﻨﻪ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . 17ﻋﺩﺩ ﺃﻭﻟﻲ ﻷﻥ ﻟﻪ ﻗﺎﺴﻤﺎﻥ ﻓﻘﻁ ﻫﻤﺎ 1ﻭ . 17 ﻤﺒﺭﻫﻨﺔ : 1
ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ Nﻏﻴﺭ ﺃﻭﻟﻲ N z 1 , N z 0ﻴﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﻗﺎﺴﻤﺎ ﺃﻭﻟﻴﺎ dﺒﺤﻴﺙ : . d2 d N ﺍﻟﺒﺭﻫﺎﻥ :ﺒﻤﺎ ﺃﻥ Nﻏﻴﺭ ﺃﻭﻟﻲ ﻭﻴﺨﺘﻠﻑ ﻋﻥ 1ﻭﻋﻥ 0ﻓﺈﻨﻪ ﻴﻘﺒل ﻋﻠﻰ ﺍﻷﻗل ﻗﺎﺴﻤﺎ ﻴﺨﺘﻠﻑ ﻋﻥ Nﻭﻋﻥ 1 .ﻟﻴﻜﻥ dﺃﺼﻐﺭ ﻫﺫﻩ ﺍﻟﻘﻭﺍﺴﻡ .ﻜل ﻗﺎﺴﻡ ﻟﻠﻌﺩﺩ dﻫﻭ ﻗﺎﺴﻡ ﻟﻠﻌﺩﺩ Nﻭﻫﻭ ﺃﺼﻐﺭ ﻤﻥ dﻭﺒﺎﻟﺘﺎﻟﻲ ﻻ ﻴﻤﻜﻥ ﺃﻥ ﻴﻜﻭﻥ ﻟﻠﻌﺩﺩ dﺃﻱ ﻗﺎﺴﻡ ﺃﺼﻐﺭ ﻤﻥ dﻤﺎﻋﺩﺍ 1ﺇﺫﻥ ﺍﻟﻌﺩﺩ dﺃﻭﻟﻲ . ﺒﻭﻀﻊ N dq : ﺍﻟﻌﺩﺩ qﻗﺎﺴﻡ ﻟﻠﻌﺩﺩ Nﻭﻫﻭ ﻴﺨﺘﻠﻑ ﻋﻥ 1ﻭﻋﻥ . N ﺇﺫﻥ d d q :ﻭﻤﻨﻪ d 2 d dq :ﻭﻋﻠﻴﻪ d 2 d N : ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ : ﻤﻥ ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺴﺎﺒﻘﺔ ﻨﺴﺘﻨﺘﺞ ﻤﺎ ﻴﻠﻲ :ﺇﺫﺍ ﻜﺎﻥ Nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﺃﻜﺒﺭ ﻤﻥ 1ﻭﻜﺎﻥ ﻻ ﻴﻘﺒل ﺃﻱ ﻗﺎﺴﻡ ﺃﻭﻟﻲ dﺤﻴﺙ d 2 d Nﻓﺈﻥ N ﺃﻭﻟﻲ . ﻤﺜﺎل : ﻫل ﺍﻟﻌﺩﺩ 191ﺃﻭﻟﻲ .ﻨﻘﻭﻡ ﺒﻘﺴﻤﺔ ﺍﻟﻌﺩﺩ 191ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ dﺜﻡ ﻨﺤﺴﺏ d 2ﻓﻲ ﻜل ﻤﺭﺓ ﻜﻤﺎ ﻴﻠﻲ :d 2 3 5 7 11 13 17d 2 4 9 25 49 121 169 289ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻻ ﻴﻘﺒل ﻻ ﻴﻘﺒل ﻻ ﻴﻘﺒل ﻻ ﻴﻘﺒل ﻻ ﻴﻘﺒل ﻻ ﻴﻘﺒل ﻻ ﻴﻘﺒل ﻟﻠﻌﺩﺩ 191 ﻭﺒﻤﺎ ﺃﻥ 172 ! 191 :ﻭ 17ﻻ ﻴﻘﺴﻡ 191ﻓﺈﻥ 191ﺃﻭﻟﻲ . ﻋﻠﻰ d ﻤﺒﺭﻫﻨﺔ : 2 ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻏﻴﺭ ﻤﻨﺘﻬﻴﺔ . ﺍﻟﺒﺭﻫﺎﻥ :ﻨﺒﺭﻫﻥ ﺃﻨﻪ ﺇﺫﺍ ﺃﻋﻁﻲ ﻋﺩﺩ ﻁﺒﻴﻌﻲ Nﻜﻴﻔﻲ ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺃﻭﻟﻲ ﺃﻜﺒﺭ ﻤﻥ . Nﻟﺫﻟﻙ ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩ N ! 1
ﻟﺩﻴﻨﺎ N ! N N 1 N 2 . . . u 2 u 1 : ﻭﻋﻠﻴﻪ ﻜل ﻋﺩﺩ dﺤﻴﺙ 1 d d Nﻴﻘﺴﻡ ! N ﻭﺒﺎﻟﺘﺎﻟﻲ ﻻ ﻴﻘﺴﻡ N ! 1ﻷﻥ ! Nﻭ N ! 1ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﺇﺫﺍ ﻜﺎﻥ N ! 1ﺃﻭﻟﻴﺎ ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺃﻭﻟﻲ ﺃﻜﺒﺭ ﻤﻥ . N ) ﻷﻥ N ! 1ﺃﻜﺒﺭ ﻤﻥ . ( N ﺇﺫﺍ ﻜﺎﻥ N ! 1ﻏﻴﺭ ﺃﻭﻟﻲ ﻓﺈﻨﻪ ﻴﻘﺒل ﻗﺎﺴﻤﺎ ﺃﻭﻟﻴﺎ ﻭﻫﺫﺍ ﺍﻟﻘﺎﺴﻡ ﺃﻜﺒﺭ ﻤﻥ Nﺒﺎﻟﻀﺭﻭﺭﺓ . ﻭﻤﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺃﻭﻟﻲ ﺃﻜﺒﺭ ﻤﻥ . N ﻭﻋﻠﻴﻪ ﻤﺠﻤﻭﻋﺔ ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻻ ﺘﻘﺒل ﻋﻨﺼﺭﺍ ﺃﻜﺒﺭ ﻭﻋﻠﻴﻪ ﻓﻬﻲ ﻏﻴﺭ ﻤﻨﺘﻬﻴﺔ . ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻭ ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ : ﻤﻔﻬﻭﻡ ﺍﻟﻌﺩﺩ ﺍﻷﻭﻟﻲ ﻭﻤﻔﻬﻭﻡ ﺍﻟﻌﺩﺩ ﺍﻷﻭﻟﻲ ﻤﻊ ﻋﺩﺩ ﺁﺨﺭ ﻤﻔﻬﻭﻤﺎﻥ ﻤﺨﺘﻠﻔﺎﻥ .ﻓﻤﺜﻼ 20ﺃﻭﻟﻲ ﻤﻊ 9ﻟﻜﻥ 20ﻏﻴﺭ ﺃﻭﻟﻲ ﻭﻜﺫﻟﻙ 9ﻏﻴﺭ ﺃﻭﻟﻲ. ﻤﺒﺭﻫﻨﺔ : 3 ﺇﺫﺍ ﻜﺎﻥ dﻋﺩﺩﺍ ﺃﻭﻟﻴﺎ ﻭﻜﺎﻥ Nﻋﺩﺩﺍ ﻁﺒﻴﻌﻴﺎ ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ d ﻓﺈﻥ dﻭ Nﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﺍﻟﺒﺭﻫﺎﻥ : ﺒﻤﺎ ﺃﻥ dﺃﻭﻟﻲ ﻓﺈﻥ ﻗﻭﺍﺴﻡ dﻫﻲ 1ﻭ dﻓﻘﻁ .ﻭﺒﻤﺎ ﺃﻥ Nﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ dﻓﺈﻥ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻟﻭﺤﻴﺩ ﺒﻴﻥ Nﻭ dﻫﻭ . 1ﻭﻤﻨﻪ Nﻭ dﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻨﺘﺎﺌﺞ : (1ﻜل ﻋﺩﺩﻴﻥ ﻤﺨﺘﻠﻔﻴﻥ ﻭ ﺃﻭﻟﻴﻴﻥ ﻫﻤﺎ ﻋﺩﺩﺍﻥ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . (2ﻜل ﻋﺩﺩ ﺃﻭﻟﻲ ﻴﻜﻭﻥ ﺃﻭﻟﻴﺎ ﻤﻊ ﺃﻱ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﻤﻌﺩﻭﻡ ﻭﺃﺼﻐﺭ ﻤﻨﻪ (3ﺇﺫﺍ ﻟﻡ ﻴﻘﺴﻡ ﺍﻟﻌﺩﺩ ﺍﻷﻭﻟﻲ dﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ an , . . . ,a2 , a1ﻓﺈﻨﻪ ﺃﻭﻟﻴﺎ ﻤﻊ ﻜل ﻤﻨﻬﺎ ﻭﺒﺎﻟﺘﺎﻟﻲ ﻴﻜﻭﻥ ﺃﻭﻟﻴﺎ ﻤﻊ ﺠﺩﺍﺀﻫﺎ ﺃﻱ ﻻ ﻴﻘﺴﻡ ﺍﻟﺠﺩﺍﺀ a1 × a2 × . . . × anﻭﺒﻌﺒﺎﺭﺓ ﺃﺨﺭﻯ) ( ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ ﺍﻷﻭﻟﻲ dﺍﻟﺠﺩﺍﺀ a1 × a2 × . . . × anﻓﺈﻨﻪ ﻴﻘﺴﻡ) ( ﻋﻠﻰ ﺍﻷﻗل ﺃﺤﺩ ﺍﻟﻌﻭﺍﻤل . an , . . . ,a2 , a1 (4ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ ﺍﻷﻭﻟﻲ dﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﻓﺈﻨﻪ ﻴﺴﺎﻭﻱ ﺃﺤﺩ ﻋﻭﺍﻤل
ﻫﺫﺍ ﺍﻟﺠﺩﺍﺀ . ﺘﺤﻠﻴل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﺃﻭﻟﻲ ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ : ﻤﺒﺭﻫﻨﺔ : 4 ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻏﻴﺭ ﺃﻭﻟﻲ ﻭﺃﻜﺒﺭ ﻤﻥ 1ﻴﻘﺒل ﺘﺤﻠﻴﻼ ﻭﺤﻴﺩﺍ ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ . ﺍﻟﺒﺭﻫﺎﻥ : Nﻋﺩﺩ ﻁﺒﻴﻌﻲ . N > 1 Nﻏﻴﺭ ﺃﻭﻟﻲ ﻭﻋﻠﻴﻪ ﻴﻘﺒل ﻗﺎﺴﻤﺎ ﺃﻭﻟﻴﺎ d1ﺤﻴﺙ N = d1 .q1 : ﻓﺈﺫﺍ ﻜﺎﻥ q1ﺃﻭﻟﻴﺎ .ﺍﻨﺘﻬﻰ ﺍﻟﺘﺤﻠﻴل . ﻭﺇﺫﺍ ﻜﺎﻥ q1ﻏﻴﺭ ﺃﻭﻟﻲ ﻓﺈﻨﻪ ﻴﻘﺒل ﻗﺎﺴﻤﺎ ﺃﻭﻟﻴﺎ d2ﺤﻴﺙ q1 = d2 .q2 : ﻭﻤﻨﻪ N = d1d2q2 : ﻓﺈﺫﺍ ﻜﺎﻥ q2ﺃﻭﻟﻴﺎ .ﺍﻨﺘﻬﻰ ﺍﻟﺘﺤﻠﻴل ﻭﻫﻜﺫﺍ ﺇﺫﺍ ﻜﺎﻥ q2ﻏﻴﺭ ﺃﻭﻟﻲ ﻨﺴﺘﻤﺭ ﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ . ﻭﺒﻌﺩ ﻋﺩﺩ ﻤﻨﺘﻪ ﻤﻥ ﺍﻟﻤﺭﺍﺕ ﻨﺼل ﺇﻟﻰ ﺤﺎﺼل ﺃﻭﻟﻲ ﻭﻨﻜﻭﻥ ﻗﺩ ﻭﻀﻌﻨﺎ Nﻋﻠﻰ ﺸﻜل ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﺇﺫﻥ N = d1 × d2 × . . . × d p :ﺤﻴﺙ d1 < d2 < . . . < d p :ﻟﻨﺒﺭﻫﻥ ﺃﻥ ﻫﺫﺍ ﺍﻟﺘﺤﻠﻴل ﻭﺤﻴﺩ ،ﻨﻔﺭﺽ ﺃﻨﻪ ﻴﻭﺠﺩ ﺘﺤﻠﻴل ﺁﺨﺭ N = k1 × k2 × . . . × ks : ﺤﻴﺙ k1 < k2 < . . . < ks : ﻭﻋﻠﻴﻪ (1) . . . d1 × d2 × . . . × d p = k1 × k2 × . . . × ks :ﺍﻟﻌﺩﺩ d1ﻴﻘﺴﻡ ﺍﻟﺠﺩﺍﺀ k 1 × k 2 × . . . × k sﻭﻋﻠﻴﻪ ﻓﻬﻭ ﻴﺴﺎﻭﻱ ﺃﺤﺩ ﻫﺫﻩ ﺍﻟﻌﻭﺍﻤل ﻟﻜﻥ k1ﻫﻭ ﺃﺼﻐﺭﻫﺎ ﻭﻤﻨﻪ k1 ≤ d1 :ﻭﻜﺫﻟﻙ k1ﻴﻘﺴﻡ ﺍﻟﺠﺩﺍﺀ d1 × d2 × . . . × d pﻭﻋﻠﻴﻪ k1ﻴﺴﺎﻭﻱ ﺃﺤﺩ ﻫﺫﻩ ﺍﻟﻌﻭﺍﻤل ﻟﻜﻥ d1ﻫﻭ ﺃﺼﻐﺭﻫﺎ ﻭﻤﻨﻪ d1 ≤ k1 :ﻭﻋﻠﻴﻪ d1 = k1 : ﻭﻤﻨﻪ d 2 ×d 3 × . . . ×d p = k 2 × k 3 × . . . × k s : ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻨﺠﺩ d2 = k2 :ﺜﻡ d3 = k3ﺜﻡ ds = ks ) ﺤﻴﺙ . ( S < Pﻭﺒﺎﻟﺘﺎﻟﻲ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ : k1 × k2 × . . . × ks × ds+1 × . . . × d p = k1 × k2 × . . . × ks ﻭﻋﻠﻴﻪ ﺒﻌﺩ ﺍﻻﺨﺘﺯﺍل ﻨﺠﺩ ds+1 × . . . × d p = 1 :ﻭﻤﻨﻪ ﺍﻟﺘﺤﻠﻴل ﻭﺤﻴﺩ . ﻤﻼﺤﻅﺔ :
ﻓﻲ ﺘﺤﻠﻴل Nﻴﻤﻜﻥ ﺃﻥ ﺘﻜﻭﻥ ﺒﻌﺽ ﺍﻟﻌﻭﺍﻤل ﺍﻷﻭﻟﻴﺔ ﻤﺘﺴﺎﻭﻴﺔ ﻓﺒﻌﺩ ﺘﺠﻤﻴﻊ ﺍﻟﻌﻭﺍﻤل ﺍﻷﻭﻟﻴﺔ ﺍﻟﻤﺘﺴﺎﻭﻴﺔ ﻴﻜﺘﺏ ﺍﻟﻌﺩﺩ Nﻜﻤﺎ ﻴﻠﻲ : N = a p1 × a p2 × ... × a pq 1 2 q ﺤﻴﺙ aq , . . . , a2 , a1 :ﺃﻋﺩﺍﺩ ﺃﻭﻟﻴﺔ . Pq , . . . , P2 , P1ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ . ﻤﺜﺎل : 1 ﺤﻠل ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﺍﻟﻌﺩﺩ 7560 : 7560 2 ﺍﻟﺤل : 3780 2 1890 2 7560 = 23 × 33 × 5 × 7 945 3 315 3 105 3 5 35 7 7 1 ﻤﺜﺎل : 2 ﺤﻠل ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﺍﻟﻌﺩﺩ 80000 : ﺍﻟﺤل :80000 = 8 × 104 = 23 × ( 2 × 5)4 = 23 × 24 × 54 = 27 × 54 ﻋﺩﺩ ﻗﻭﺍﺴﻡ ﻋﺩﺩ ﻁﺒﻴﻌﻲ : ﻤﺒﺭﻫﻨﺔ : 5 ﻋﺩﺩ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﻤﺤﻠل ﺇﻟﻰ ﺠﺩﺍﺀ ﺍﻟﻌﻭﺍﻤل ﻜﻤﺎ ﻴﻠﻲ :N = a P1 × a P2 × ... × a Pq 1 2 q
ﻫﻭ ( ) ( )(1 + P1 )(1 + P2 ) × . . . × 1 + Pq−1 1 + Pq : ﺍﻟﺒﺭﻫﺎﻥ : N = a P1 × a P2 × ... × a Pq ﻟﺩﻴﻨﺎ : 1 2 qd = aα1 × aα2 × ... × aqαq Nﻓﺈﻥ : ﻓﺈﺫﺍ ﻜﺎﻥ dﻗﺎﺴﻤﺎ ﻟﻠﻌﺩﺩ 1 2ﺤﻴﺙ 0 ≤ α1 ≤ P1 :ﻭ 0 ≤ α2 ≤ P2ﻭ ...ﻭ 0 ≤ αq ≤ Pq ﻭﻟﺩﻴﻨﺎ 1 + P1 :ﺇﻤﻜﺎﻨﻴﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻷﺱ ( ). α1 1 + P2ﺇﻤﻜﺎﻨﻴﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻷﺱ ( ). α2 # 1 + Pqﺇﻤﻜﺎﻨﻴﺔ ﻻﺨﺘﻴﺎﺭ ﺍﻷﺱ ( ). αqﻭﻋﻠﻴﻪ ﻋﺩﺩ ﻗﻭﺍﺴﻡ dﻫﻭ ( )( ) ( ). 1 + P1 1 + P2 × . . . × 1 + Pq : ﻤﺜﺎل :ﻤﺎ ﻫﻭ ﻋﺩﺩ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ . 180ﻋﻴﻥ ﻜل ﺍﻟﻘﻭﺍﺴﻡ . ﺍﻟﺤل : ﻟﺩﻴﻨﺎ 180 = 18 × 10 = 32 × 2 × 10 = 22 × 32 × 5 : ﻭﻋﻠﻴﻪ ﻋﺩﺩ ﻗﻭﺍﺴﻡ 180ﻫﻭ (1 + 2)(1 + 2) (1 + 1) = 18 : * ﺘﻌﻴﻴﻥ ﻗﻭﺍﺴﻡ : 180ﻜل ﻗﺎﺴﻡ ﻟﻠﻌﺩﺩ 180ﻤﻥ ﺍﻟﺸﻜل 2α × 3β × 5γ ﺤﻴﺙ 0 ≤ α ≤ 2 :ﻭ 0 ≤ β ≤ 2ﻭ 0 ≤ γ ≤ 1ﻗﻴﻡ γﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ 180 ﻗﻴﻡ β ﻗﻴﻡ α
1 0=γ β =05 1=γ3 0=γ β =1 α =015 1=γ9 0=γ β =245 1=γ2 0=γ 0=β10 1=γ6 0=γ30 1 = γ 1 = β α = 118 0=γ 2=β90 1=γ4 0=γ 0=β20 1=γ12 0 = γ60 1 = γ 1 = β α = 236 0=γ 2=β180 1=γ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺓ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ : ﺘﻌﺭﻴﻑ :
ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻸﻋﺩﺍﺩ N p , . . . , N 2 , N1ﻫﻭ ﺠﺩﺍﺀ ﺍﻟﻌﻭﺍﻤل ﺍﻷﻭﻟﻴﺔ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻓﻲ ﺘﺤﻠﻴﻼﺕ ﺍﻷﻋﺩﺍﺩ N p , . . . , N 2 , N1 :ﺒﺤﻴﺙ ﻴﺅﺨﺫ ﻜل ﻋﺎﻤل ﻤﻥ ﻫﺫﻩ ﺍﻟﻌﻭﺍﻤل ﻤﺭﺓ ﻭﺍﺤﺩﺓ ﻭﺒﺄﺼﻐﺭ ﺃﺱ . ﻤﺜﺎل : ﺍﺤﺴﺏ PGCD(1000 ; 480 ; 250) : ﺍﻟﺤل : 1000 = 103 = ( 2 × 5)3 = 23 × 53 480 = 48 × 10 = 3 × 16 × 2 × 5 = 3 × 24 × 2 × 5 = 25 × 3 × 5 250 = 25 × 10 = 52 × 2 × 5 = 2 × 53 ﺇﺫﻥ PGCD(1000 ; 480 ; 250) = 2 × 5 = 10 : ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻟﻌﺩﺓ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ : ﺘﻌﺭﻴﻑ : ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻟﻸﻋﺩﺍﺩ N p , . . . , N 2 , N1ﻫﻭ ﺠﺩﺍﺀ ﺍﻟﻌﻭﺍﻤل ﺍﻷﻭﻟﻴﺔ ﻓﻲﺘﺤﻠﻴﻼﺕ ﺍﻷﻋﺩﺍﺩ N p , . . . , N 2 , N1 :ﺒﺤﻴﺙ ﻴﺅﺨﺫ ﻜل ﻋﺎﻤل ﻤﻥ ﻫﺫﻩ ﺍﻟﻌﻭﺍﻤل ﻤﺭﺓ ﻭﺍﺤﺩﺓ ﻭﺒﺄﻜﺒﺭ ﺃﺱ . ﻤﺜﺎل : ﺍﺤﺴﺏ )PPCM (1000 ; 480 ; 250 ﺍﻟﺤل : 1000 = 23 × 53 ; 480 = 25 × 3 × 5 ; 250 = 2 × 53 ﻭﻤﻨﻪ PPCM (1000 ; 480 ; 250) = 25 × 3 × 53 = 12000 :
-IIﻤﺒﺭﻫﻨﺔ ﺒﻴﺯﻭ : ﻤﺒﺭﻫﻨﺔ ) : 1ﺘﻘﺒل ﺩﻭﻥ ﺒﺭﻫﺎﻥ ( .ﺇﺫﺍ ﻜﺎﻥ dﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻠﻌﺩﺩﻴﻥ ﺍﻟﻁﺒﻴﻌﻴﻴﻥ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﻴﻥ aﻭ bﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ α0ﻭ β0ﻴﺤﻘﻘﺎﻥ α0a + β0b = d : ﻤﺜﺎل : ﻟﺩﻴﻨﺎ PGCD( 24 ; 9) = 3 : ﻟﻨﺒﺤﺙ ﻋﻥ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ α0ﻭ β0ﺒﺤﻴﺙ 24α0 + 9β0 = 3 : ﻨﻼﺤﻅ ﺃﻥ α0 = −1ﻭ β0 = 3ﻴﺤﻘﻘﺎﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ ( ) ( )24 −1 + 9 3 = 3 ﻤﺒﺭﻫﻨﺔ ) 2ﻤﺒﺭﻫﻨﺔ ﺒﻴﺯﻭ ( :ﻴﻜﻭﻥ ﺍﻟﻌﺩﺩﺍﻥ ﺍﻟﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﻴﻥ aﻭ bﺃﻭﻟﻴﻴﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻭﺠﺩ ﻋﻠﻰ ﺍﻷﻗل ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ β , αﺤﻴﺙ αa + β b = 1 ﺍﻟﺒﺭﻫﺎﻥ : * ﺇﺫﺍ ﻜﺎﻥ aﻭ bﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻓﺈﻥ( )PGCD a ; b = 1 : ﻭﺤﺴﺏ ﺍﻟﻤﺒﺭﻫﻨﺔ 1ﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ αﻭ β ﺒﺤﻴﺙ αa + β b = 1 : *ﺇﺫﺍ ﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ αﻭ βﺒﺤﻴﺙ αa + β b = 1ﻭﻜﺎﻥ PGCD(a ; b) = d ﻓﺈﻥ d :ﻴﻘﺴﻡ aﻭ bﻭﻋﻠﻴﻪ dﻴﻘﺴﻡ αaﻭ β b ﻭﻋﻠﻴﻪ d :ﻴﻘﺴﻡ α a + β bﻭﻋﻠﻴﻪ d :ﻴﻘﺴﻡ 1ﻭﻤﻨﻪ d = 1 : ﻭﻋﻠﻴﻪ aﻭ bﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﺘﻁﺒﻴﻘﺎﺕ ﻋﻠﻰ ﻤﺒﺭﻫﻨﺔ ﺒﻴﺯﻭ : (1ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ aﺃﻭﻟﻲ ﻤﻊ ﻜل ﻤﻥ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﻁﺒﻴﻌﻴﻴﻥ b ﻭ cﻓﺈﻨﻪ ﻴﻜﻭﻥ ﺃﻭﻟﻲ ﻤﻊ ﺍﻟﺠﺩﺍﺀ . b.c ﺍﻟﺒﺭﻫﺎﻥ : ﺒﻤﺎ ﺃﻥ aﺃﻭﻟﻲ ﻤﻊ bﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ αﻭ β ﺒﺤﻴﺙ (1) . . . αa + β b = 1 : ﻭﺒﻤﺎ ﺃﻥ aﺃﻭﻟﻲ ﻤﻊ cﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ α ′ﻭ β ′
ﺒﺤﻴﺙ (2) . . . α′a + β ′c = 1 : ﻤﻥ ) (1ﻭ )(αa + β b)(α′a + β ′c) = 1 : (2 ﻭﻋﻠﻴﻪ αα ′a 2 + αβ ′ac + α ′β ab + ββ ′bc = 1 :ﺇﺫﻥ (αα′a + αβ ′c + a′βb )a + ( ββ ′)bc = 1 : ﺒﻭﻀﻊ αα′a + αβ ′c + a′βb = γﻭ ββ ′ = δ ﻨﺠﺩ γ a + δ bc = 1 : ﻭﺤﺴﺏ ﻨﻅﺭﻴﺔ ﺒﻴﺯﻭ ﻓﺈﻥ aﻭ bcﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . (2ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ aﺃﻭﻟﻲ ﻤﻊ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ bn , . . . , b2 , b1 ﻓﺈﻥ aﺃﻭﻟﻲ ﻤﻊ ﺍﻟﺠﺩﺍﺀ b1 × b2 × . . . × bn :ﻭ ﻴﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل . n ≥ 2 ﻭﺒﺼﻔﺔ ﺨﺎﺼﺔ :ﺇﺫﺍ ﻜﺎﻥ b1 = b2 = . . . = bn = b : ﻓﺈﻥ aﺃﻭﻟﻲ ﻤﻊ ﺍﻟﺠﺩﺍﺀ . bn -IIIﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ : aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻭ cﻋﺩﺩ ﺼﺤﻴﺢ ﻏﻴﺭ ﻤﻌﺩﻭﻡ . ﺇﺫﺍ ﻗﺴﻡ ﺍﻟﻌﺩﺩ aﺍﻟﺠﺩﺍﺀ bcﻭﻜﺎﻥ aﺃﻭﻟﻴﺎ ﻤﻊ bﻓﺈﻥ aﻴﻘﺴﻡ . c ﺍﻟﺒﺭﻫﺎﻥ : ﺒﻤﺎ ﺃﻥ aﻴﻘﺴﻡ bcﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ qﺒﺤﻴﺙ bc = a .q : ﻭﺒﻤﺎ ﺃﻥ aﺃﻭﻟﻲ ﻤﻊ bﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ αﻭ β ﺒﺤﻴﺙ ) α a + β b = 1 :ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﺒﻴﺯﻭ ( . ﻭﺒﻀﺭﺏ ﻁﺭﻓﻴﻬﺎ ﻓﻲ cﻨﺠﺩ αac + β bc = c : ﺇﺫﻥ αac + β .aq = c :ﻭﻋﻠﻴﻪ a (αc + β q) = c : ﺒﻭﻀﻊ αc + β q = p :ﻨﺠﺩ a .p = c :ﻭﻋﻠﻴﻪ aﻴﻘﺴﻡ . c ﺘﻁﺒﻴﻘﺎﺕ ﻋﻠﻰ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ : (1ﺇﺫﺍ ﻗﺒل ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ bﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﻁﺒﻴﻌﻴﻴﻥ
a1ﻭ a2ﻭﻜﺎﻥ a1ﻭ a2ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻓﺈﻥ bﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ . a1 × a2ﺍﻟﺒﺭﻫﺎﻥ :ﺒﻤﺎ ﺃﻥ a1ﻴﻘﺴﻡ bﻓﺈﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ qﺒﺤﻴﺙ b = a1 .q :ﻭﺒﻤﺎ ﺃﻥ a2ﻴﻘﺴﻡ bﻓﺈﻥ a2ﻴﻘﺴﻡ a1 .q ﻟﻜﻥ a2ﺃﻭﻟﻲ ﻤﻊ a1ﻭﻋﻠﻴﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ ﻓﺈﻥ a2ﻴﻘﺴﻡ q ﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ pﺒﺤﻴﺙ q = a2 .p : ﻭﻋﻠﻴﻪ b = a1 .a2 .p :ﻭﻤﻨﻪ a1 .a2ﻴﻘﺴﻡ . b (2ﺇﺫﺍ ﻗﺒل ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ bﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ an , . . . , a2 , a1ﺍﻷﻭﻟﻴﺔ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﻤﺜﻨﻰ ﻤﺜﻨﻰ ﻓﺈﻥ bﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ a1 × a2 × . . . × anﻭﺘﺒﺭﻫﻥ ﺒﺎﻟﺘﺭﺍﺠﻊ ﻤﻥ ﺃﺠل . n ≥ 2 ﻤﺜﺎل : 1 ﺍﻟﻌﺩﺩ 396ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻌﺩﺩﻴﻥ 2ﻭ 11ﺍﻷﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻭﻋﻠﻴﻪ ﻓﻬﻭ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ . 22 ﻤﺜﺎل : 2 ﻋﻴﻥ ﻜل ﺍﻷﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ xﻭ yﺒﺤﻴﺙ . 5 x = 7 y : ﺍﻟﺤل : ﻟﺩﻴﻨﺎ 5 x = 7 yﻭﻋﻠﻴﻪ 5ﻴﻘﺴﻡ 7 yﻭ 5ﺃﻭﻟﻲ ﻤﻊ 7ﻭﻤﻨﻪ 5ﻴﻘﺴﻡ yﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ kﺒﺤﻴﺙ y = 5k : ﻭﻋﻠﻴﻪ 5 x = 7 × 5k :ﻭﻤﻨﻪ x = 7k : ﺇﺫﻥ x = 7k :ﻭ y = 5kﻤﻊ ] ∈ k ﻤﺜﺎل : 3 ﺤل ﻓﻲ ] 2ﺍﻟﻤﻌﺎﺩﻟﺔ (1) . . . 5 x − 3 y = 2 :ﻋﻠﻤﺎ ﺃﻥ 1 ; 1ﺤل) ( ﺨﺎﺹ ﻟﻬﺎ . ﺍﻟﺤل : ﻟﺩﻴﻨﺎ 5x − 3 y = 2 :ﻭ 5(1) − 3(1) = 2 ﻭﻋﻠﻴﻪ 5x − 3 y = 5(1) − 3(1) :
ﻭﺒﺎﻟﺘﺎﻟﻲ (1) . . . 5( x − 1) = 3( y − 1) : ﻟﺩﻴﻨﺎ 5ﻴﻘﺴﻡ 3 y − 1ﻭ 5ﺃﻭﻟﻲ ﻤﻊ 3ﻭ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ) ( ﻓﺈﻥ 5 :ﻴﻘﺴﻡ y − 1ﺇﺫﻥ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ kﺒﺤﻴﺙ y − 1 = 5k :ﺇﺫﻥ : y = 5k + 1 ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (2ﻨﺠﺩ ( )5 x − 1 = 3 × 5k : ﻭﻋﻠﻴﻪ x − 1 = 3k :ﺃﻱ x = 3k + 1 : ﻭﻋﻠﻴﻪ ﺤﻠﻭل ) (1ﻫﻲ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ x ; yﺤﻴﺙ ( )x = 3k + 1 : ﻭ y = 5k + 1ﻤﻊ ] ∈ . k ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺓ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ : ﻋﻨﺩ ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻘﺎﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻟﻌﺩﺓ ﺃﻋﺩﺍﺩ ﻴﻤﻜﻥ ﺘﻌﻭﻴﺽ ﻋﺩﺩﻴﻥ ﻤﻨﻬﺎ ﺒﻘﺎﺴﻤﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ . ﻤﺜﺎل : ﺍﺤﺴﺏ )PGCD( 200 ; 150 ; 40 ﺍﻟﺤل : )PGCD( 200 ; 150) = PGCD(10 × 20 ; 10 × 15 )= 10 × PGCD( 20 ; 15 )= 10 × 5 × PGCD(4 ; 3 = 50 × 1 = 50 )PGCD(40 ; 50) = 10PGCD(4 ; 5 = 10 × 1 = 10 ﻭﻤﻨﻪ PGCD( 200 ; 150 ; 40) = 10 : ﺍﻷﻋﺩﺍﺩ ﺍﻷﻭﻟﻴﺔ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﺇﺠﻤﺎﻟﻴﺎ : ﺘﻌﺭﻴﻑ :ﻨﻘﻭل ﻋﻥ ﺍﻷﻋﺩﺍﺩ an , . . . , a2 , a1ﺃﻨﻬﺎ ﺃﻭﻟﻴﺔ ﻓﻴﻤﺎ ﺒﻴﻨﻬﺎ ﺇﺠﻤﺎﻟﻴﺎ ﺇﺫﺍ ﻜﺎﻥ ﻗﺎﺴﻤﻬﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ . 1 -ﻋﻼﻗﺔ ﺒﻴﻥ ) PGCD (a ; bﻭ )PPCM (a ; b
aﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ . δﻗﺎﺴﻤﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ . ﻓﻴﻜﻭﻥ a = δ a′ :ﻭ b = δ × b′ﻭ PGCD(a′ , b′) = 1 ﻟﻴﻜﻥ xﻤﻀﺎﻋﻑ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻭﻫﻭ ﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ . xﻤﻀﺎﻋﻑ aﻭ bﻭﻋﻠﻴﻪ ﻴﻭﺠﺩ ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ αﻭ β ﺒﺤﻴﺙ x = αa :ﻭ x = β b ﻭﻤﻨﻪ x = αδ a′ :ﻭ x = β × δ b′ ﺇﺫﻥ αδ a′ = β × δ b′ :ﻭﺒﺎﻟﺘﺎﻟﻲ αa′ = β b′ :ﻟﺩﻴﻨﺎ a′ﻴﻘﺴﻡ β b′ﻭ a′ﺃﻭﻟﻲ ﻤﻊ b′ﻭﻤﻨﻪ a′ﻴﻘﺴﻡ βﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﻁﺒﻴﻌﻲ qﺒﺤﻴﺙ β = q × a′ :ﻭﺒﺎﻟﺘﺎﻟﻲ x = β b = qa′b = qa′b′ × δ :ﻭﻤﻨﻪ x = (δ ab′) q :ﺒﻭﻀﻊ µ = δ a′b′ :ﻓﺈﻥ µ = δ a′b′ = ab′ = b × a′ :ﻭﻤﻨﻪ ﻜل ﻤﻀﺎﻋﻑ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻭ ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ µﻭﻜل ﻤﻀﺎﻋﻑ ﻟﻠﻌﺩﺩ µﻫﻭ ﻤﻀﺎﻋﻑ ﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ aﻭ . bﻭﻤﻨﻪ ﺍﻟﻤﻀﺎﻋﻔﺎﺕ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻫﻲ ﻤﻀﺎﻋﻔﺎﺕ µﺤﻴﺙ µ :ﻫﻭ ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻟﻠﻌﺩﺩﻴﻥ aﻭ bﻭﻟﺩﻴﻨﺎ µ = δ a′b′ :ﻭ µ × δ = δ a′ × δ b′µ = a×b ﺃﻱ ﺃﻥ : ﻭﻋﻠﻴﻪ µ × δ = a × b : δ ﻓﺈﺫﺍ ﻜﺎﻥ δ = 1 :ﻓﺈﻥ µ = a × b : ﻤﺒﺭﻫﻨﺔ : 1ﻤﺠﻤﻭﻋﺔ ﺍﻟﻤﻀﺎﻋﻔﺎﺕ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻌﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻫﻲ ﻤﺠﻤﻭﻋﺔ ﻤﻀﺎﻋﻔﺎﺕ ﻤﻀﺎﻋﻔﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ . ﻤﺒﺭﻫﻨﺔ : 2ﺠﺩﺍﺀ ﻋﺩﺩﻴﻥ ﻁﺒﻴﻌﻴﻴﻥ ﻫﻭ ﺠﺩﺍﺀ ﻗﺎﺴﻤﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻭﻤﻀﺎﻋﻔﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ . ﻤﺒﺭﻫﻨﺔ : 3 λ , b , aﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ ﻏﻴﺭ ﻤﻌﺩﻭﻤﺔ :)PPCM (λa ; λb) = λ × PPCM (a ; b
ﺍﻟﺒﺭﻫﺎﻥ :ﻟﺩﻴﻨﺎ PPCM (λa ; λb) × PGCD(λa ; λb) = (λa) .(λb) :ﻭﻤﻨﻪPPCM (λa ; λb) × λ PGCD(a ; b) = λ (λab) :PPCM (λa ; λb) × PGCD(a ; b) = λ × ab ﻭﻋﻠﻴﻪ : ﺃﻱ ﺃﻥ :PPCM (λa ; )λb = λa × b )b ; PGCD(aPPCM ( λa ; )λb = λ × )PPCM(a ; b × (PGCD a ); b : ﻭﻋﻠﻴﻪ (PGCD a ); b ﻭﺒﺎﻟﺘﺎﻟﻲ PPCM (λa ; λb) = λ PPCM (a ; b) : ﻤﺜﺎل :PPCM (100 ; 150) = 50PPCM ( 2 ; 3) = 50 × 2 × 3 = 300 ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻟﻌﺩﺓ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ :ﻋﻨﺩ ﺍﻟﺒﺤﺙ ﻋﻥ ﺍﻟﻤﻀﺎﻋﻑ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ ﻟﻌﺩﺓ ﺃﻋﺩﺍﺩ ﻁﺒﻴﻌﻴﺔ ﻴﻤﻜﻥ ﺘﻌﻭﻴﺽ ﻋﺩﺩﻴﻥ ﻤﻨﻬﺎ ﺒﻤﻀﺎﻋﻔﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ . ﻤﺜﺎل :ﺍﺤﺴﺏ PPCM (150 ; 200 ; 350) : * ﻨﺤﺴﺏ ﺃﻭﻻ PPCM (150 ; 200) : )PPCM (150 ; 200) = PPCM (50 × 3 ; 50 × 4 = 50 × PPCM ( 3 ; 4) = 50 × 3 × 4 = 600ﻓﻴﻜﻭﻥ PPCM (150 ; 200 ; 350) = PPCM (600 ; 350) :ﻭﻤﻨﻪ PPCM (600 ; 350) = PPCM (50 × 12 ; 50 × 7) :
= 50 × PPCM (12 ; 7) = 50 × 12 × 7 = 4200 ﻭﺒﺎﻟﺘﺎﻟﻲ PPCM (150 ; 200 ; 350) = 4200 : ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 ﺤﻠل ﻜل ﻤﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻵﺘﻴﺔ ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔA = 44 × 50 ; B = 80 × 77 ; C = 45 × 100 ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﻗﺎﺴﻤﻬﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﻜﺒﺭ ﻭﻤﻀﺎﻋﻔﻬﻤﺎ ﺍﻟﻤﺸﺘﺭﻙ ﺍﻷﺼﻐﺭ . ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺃﻭﺠﺩ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ αﻭ βﺤﻴﺙ α = 18459 : ﻭ β = 3809 ﺍﻟﺘﻤﺭﻴﻥ. 3ﺃﻭﺠﺩ ﻋﺩﺩﻴﻥ aﻭ bﺒﺤﻴﺙ PPCM (a ; b ) = 2226ﻭ a + b = 148 ﺍﻟﺘﻤﺭﻴﻥ. 4 ﺃﻭﺠﺩ ﺃﺼﻐﺭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻋﺩﺩ ﻗﻭﺍﺴﻤﻪ . 8 ﺍﻟﺘﻤﺭﻴﻥ. 5 (1ﺍﺩﺭﺱ ﺃﻭﻟﻴﺔ ﺍﻟﻌﺩﺩ . 211 (2ﺤل ﻓﻲ ` ﺍﻟﻤﻌﺎﺩﻟﺔ . x2 − y2 = 211 : ﺍﻟﺘﻤﺭﻴﻥ. 6 ﻋﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ xﻭ yﺒﺤﻴﺙ µ − 18δ = 791 : ﻭﺤﻴﺙ δ = PGCD( x; y) :ﻭ ) µ = PPCM ( x ; y ﺍﻟﺘﻤﺭﻴﻥ. 7
(1ﺍﺤﺴﺏ ). PGCD(765;459;1683 (2ﺤل ﻓﻲ ] ﺍﻟﻤﻌﺎﺩﻟﺔ . 765 x + 459 y = 1683 : (3ﻋﻴﻥ ﺍﻟﺤﻠﻭل x ; yﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺒﺤﻴﺙ ( ). x + y < 10 : ﺍﻟﺘﻤﺭﻴﻥ. 8 (1ﺤل ﻓﻲ ]2ﺍﻟﻤﻌﺎﺩﻟﺔ . 52 x − 44 y = 92 : (2ﻨﻔﺭﺽ ﺃﻥ . PGCD x ; y = δﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ ( ). δ (3ﻋﻴﻥ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ x ; yﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺒﺤﻴﺙ ( ). δ = 23 (4ﻋﻴﻥ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ x ; yﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ ﺒﺤﻴﺙ ( ). −10 < x < 40 ﺍﻟﺘﻤﺭﻴﻥ. 9 (1ﺍﺩﺭﺱ ﺤﺴﺏ ﻗﻴﻡ nﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ 3nﻋﻠﻰ . 5 r , U0 (2ﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ. Unﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل U0ﻭﺃﺴﺎﺴﻬﺎ ( ). r ﺃ -ﻋﻴﻥ U0ﻭ rﻋﻠﻤﺎ ﺃﻥ U0ﻭ rﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻭ U02 =U10 −U1ﺏ -ﻨﻔﺭﺽ r = 1 , U 0 = 3ﻨﻀﻊ Sn = U0 + U1 + ... + Un - . Pn = U0 × U1 × ...× Unﺍﺤﺴﺏ Snﻭ Pnﺒﺩﻻﻟﺔ . n -ﻋﻴﻥ ﺍﻟﻌﺩﺩ qﺒﺤﻴﺙ 2Pq = 2010 ! :ﺜﻡ ﺘﺤﻘﻕ ﺃﻥ [ ] ( )3q ≡ 2 5 : -ﻋﻴﻥ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﺍﻟﻁﺒﻴﻌﻲ nﺒﺤﻴﺙ [ ]2S n + 2 = 3q 5 : ﺍﻟﺘﻤﺭﻴﻥ. 10 (1ﻋﻴﻥ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ ﺍﻟﺼﺤﻴﺤﺔ x′; y′ﺒﺤﻴﺙ ( )9 x′ − 14 y′ = 13 : ﻋﻠﻤﺎ ﺃﻥ 3;1ﺤل ﻟﻬﺎ ( ). (2ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ . 45x − 28y = 130 : -ﺒﻴﻥ ﺃﻨﻪ ﺇﺫﺍ ﻜﺎﻥ x ; yﺤل ﻟﻬﺎ ﻓﺈﻥ x ≡ 0 2ﻭ [ ] [ ] ( )y ≡ 0 5 -ﺜﻡ ﺤل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ . N (3ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻴﻜﺘﺏ 2αα 3ﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ 9ﻭ ﻴﻜﺘﺏ 5ββ 6ﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ . 7ﻋﻴﻥ αﻭ βﺜﻡ ﺍﻜﺘﺏ Nﻓﻲ
ﺍﻟﻨﻅﺎﻡ ﺍﻟﻌﺸﺭﻱ . ﺍﻟﺘﻤﺭﻴﻥ. 11 (1ﺤﻠل ﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ ﺍﻟﻌﺩﺩ . 120 α (2ﻭ βﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ .ﻨﻀﻊ a = α + 4βﻭ b = 2α + 7βﺒﻴﻥ ﺃﻥ ). PGCD(α ; β ) = PGCD(a ; b (3ﻋﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ xﻭ yﻤﻥ ` ﺒﺤﻴﺙ :( ) {. PPCM x; y ( x+4 y)(2 x+7 y)=5880ﺤﻴﺙ µﻫﻭ xy=7 µ ﺍﻟﺘﻤﺭﻴﻥ. 12ﻨﻌﺘﺒﺭ ﺍﻟﻤﻌﺎﺩﻟﺔ (1) . . . 43x −13y = λ :ﺤﻴﺙ λ , y, xﺃﻋﺩﺍﺩ ﺼﺤﻴﺤﺔ. (1ﺘﺤﻘﻕ ﺃﻥ −3λ ; − 10λﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ )( ). (1 ﺜﻡ ﻋﻴﻥ ﻜل ﺍﻟﺤﻠﻭل ( ). x ; y N (2ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻴﻜﺘﺏ αβαβα :ﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ 6 ﻭﻴﻜﺘﺏ β 0γγγ :ﻓﻲ ﻨﻅﺎﻡ ﺘﻌﺩﺍﺩ ﺃﺴﺎﺴﻪ . 5 -ﺒﻴﻥ ﺃﻥ αﻭ βﻭ γﺘﺤﻘﻕ . 43α − 13β = γ : -ﻋﻴﻥ αﻭ βﻭ γﺜﻡ ﺍﻜﺘﺏ Nﻓﻲ ﺍﻟﻨﻅﺎﻡ ﺍﻟﻌﺸﺭﻱ . ﺍﻟﺘﻤﺭﻴﻥ. 13 (1ﻋﻴﻥ ﻜل ﺍﻟﺜﻨﺎﺌﻴﺎﺕ x ; yﻟﻸﻋﺩﺍﺩ ﺍﻟﺼﺤﻴﺤﺔ ﺒﺤﻴﺙ ( ): (1) . . . 5x − 3 y = 7 (2ﻨﻔﺭﺽ x ; yﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ )( ). (1 -ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟـ ( ). PGCD x ; y : (3ﻋﻴﻥ ﺍﻟﺤﻠﻭل x ; yﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺒﺤﻴﺙ ﻴﻜﻭﻥ ( ) ( )PGCD x ; y ﻤﺴﺎﻭﻴﺎ ﺇﻟﻰ ﺃﻜﺒﺭ ﻗﻴﻤﺔ . ﺍﻟﺘﻤﺭﻴﻥ. 14 a (1ﻭ bﻋﺩﺩﺍﻥ ﻁﺒﻴﻌﻴﺎﻥ ﻏﻴﺭ ﻤﻌﺩﻭﻤﻴﻥ ﻭ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . -ﺒﻴﻥ ﺃﻥ ﺃﺤﺩ ﺍﻟﻌﺩﺩﻴﻥ a + bﻭ a × bﺯﻭﺠﻲ ﻭ ﺍﻵﺨﺭ ﻓﺭﺩﻱ .
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199