(2ﻋﻴﻥ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ . 84 (3ﻋﻴﻥ ﺍﻷﻋﺩﺍﺩ ﺍﻟﻁﺒﻴﻌﻴﺔ ﻏﻴﺭ ﺍﻟﻤﻌﺩﻭﻤﺔ xﻭ yﺒﺤﻴﺙ x + y = 84 :ﻭ µ = δ 2ﻭﺤﻴﺙ µ = PPCM ( x; y) :ﻭ )δ = PGCD( x; y ﺍﻟﺘﻤﺭﻴﻥ. 15 (1ﺍﺜﺒﺕ ﺃﻥ ﺍﻟﻌﺩﺩﻴﻥ 993ﻭ 170ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . (2ﻟﺘﻜﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ (1) . . . 993 x − 170 y = 143 :ﺤﻴﺙ xﻭ y ﻋﺩﺩﺍﻥ ﺼﺤﻴﺤﺎﻥ . ﺃ -ﻋﻴﻥ ﺍﻟﺤل ﺍﻟﺨﺎﺹ x0 ; y0ﻟﻠﻤﻌﺎﺩﻟﺔ ) (1ﺒﺤﻴﺙ ( ). x0 + y0 = 6 : ﺏ -ﻋﻴﻥ ﻜل ﺍﻟﺤﻠﻭل x ; yﻟﻠﻤﻌﺎﺩﻟﺔ )( ). (1 (3ﺠﺩ ﺃﺼﻐﺭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ aﺒﺤﻴﺙ ﻴﻜﻭﻥ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ a − 1ﻋﻠﻰ ﻜل ﻤﻥ ﺍﻟﻌﺩﺩﻴﻥ 1986ﻭ 340ﻫﻭ 14ﻭ 300ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ . ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ 1 ﺘﺤﻠﻴل ﻜل ﻤﻥ Aﻭ Bﻭ Cﺇﻟﻰ ﺠﺩﺍﺀ ﻋﻭﺍﻤل ﺃﻭﻟﻴﺔ :A = 44 × 50 = 4 × 11× 5 × 10 = 22 × 11× 5 × 2 × 5 A = 23 × 52 × 11 B = 80 × 77 = 8 × 10 × 7 × 11 = 23 × 2 × 5 × 7 × 11 B = 24 × 5 × 7 × 11 C = 45 × 100 = 9 × 5 × 102 = 32 × 5 × ( 2 × 5)2 = 32 × 5 × 22 × 52 C = 22 × 32 × 53 PGCD( A; B;C ) = 22 × 5 = 20 PPCM ( A; B;C ) = 24 × 53 × 32 × 7 × 11 = 1386000
ﺍﻟﺘﻤﺭﻴﻥ 2 -ﻨﻌﻴﻥ ﺃﻭﻻ PGCD (18459;3809) : 3809 = 13 × 293 18459 = 32 × 7 × 293 ﻭﻤﻨﻪ PGCD(18459;3809) = 293 : ) ﻭﻴﻤﻜﻥ ﺍﺴﺘﻌﻤﺎل ﺨﻭﺍﺭﺯﻤﻴﺔ ﺇﻗﻠﻴﺩﺱ ( . ﻭﻋﻠﻴﻪ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻙ ﻟﻠﻌﺩﺩﻴﻥ αﻭ βﻫﻲ ﻗﻭﺍﺴﻡ ﺍﻟﻌﺩﺩ . 293 ﻭﺒﻤﺎ ﺃﻥ 293ﻋﺩﺩ ﺃﻭﻟﻲ ﻓﺈﻥ ﻗﻭﺍﺴﻤﻪ ﻫﻲ 293 ، 1 ﺇﺫﻥ ﺍﻟﻘﻭﺍﺴﻡ ﺍﻟﻤﺸﺘﺭﻜﺔ ﻟﻠﻌﺩﺩﻴﻥ αﻭ βﻫﻲ . 293 ، 1 ﺍﻟﺘﻤﺭﻴﻥ 3 ﺇﻴﺠﺎﺩ aﻭ : b ﻨﻔﺭﺽ PGCD(a;b) = δ : ﻟﺩﻴﻨﺎ a = δ .a′ :ﻭ b = δ b′ﻤﻊ a′ﻭ b′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ .ﻭﻟﺩﻴﻨﺎ δ × 2226 = a × b :ﻭﻤﻨﻪ δ × 2226 = δ a′ × δ b′ : ﻭﻋﻠﻴﻪ δ a′b′ = 2226 :ﻭﺒﻤﺎ ﺃﻥ a + b = 148 : ﻓﺈﻥ δ a′ + δ b′ = 148 :ﻭﻋﻠﻴﻪ δ (a′ + b′) = 148 : ﻭﻤﻨﻪ δﻴﻘﺴﻡ . 148 ﻟﻨﺒﺤﺙ ﻋﻥ ﻗﻭﺍﺴﻡ : 148 ﻟﺩﻴﻨﺎ 148 = 22 × 37 :ﻭﻤﻨﻪ ﻗﻭﺍﺴﻡ 148ﻫﻲ . 148 ، 74 ، 37 ، 4 ، 2 ، 1 :ﻭﻤﻨﻪ a′ﻭ b′ﻫﻤﺎ ﺤﻠﻴﻥ a′b′ = 2226 : δ = 1 (1 a′ + b′ = 148ﻟﻠﻤﻌﺎﺩﻟﺔ . x2 − 148 x + 2226 = 0 : ∆′ = 3250ﻭﻋﻠﻴﻪ ∆′ 57,008 : ﺇﺫﻥ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ﻁﺒﻴﻌﻴﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ .
ﻭﻤﻨﻪ a′ﻭ b′ﻫﻤﺎ ﺤﻠﻴﻥ a′b′ = 1113 : δ = 2 (2 a′ + b′ = 74ﻟﻠﻤﻌﺎﺩﻟﺔ . x2 − 74 x + 1113 = 0 : ∆′ = 256ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ .x2 = 37 + 16 = 53 ، x1 = 37 − 16 = 21 ﺇﺫﻥ ﺇﻤﺎ a′ = 21ﻭ b′ = 53ﻭﻋﻠﻴﻪ a = 2 × 21 = 42 :ﻭ b = 2 × 53 = 106ﺃﻭ a′ = 53ﻭ b′ = 21ﻭﻋﻠﻴﻪ a = 106 :ﻭ b = 42 a′b′ = 556,5 :δ =4 (3ﻤﺭﻓﻭﺽ . a′ + b′ = 37 a′b′ 60,1 : δ = 37 (4ﻤﺭﻓﻭﺽ . a′ + b′ = 4 a′b′ 30,08 :δ = 74 (5ﻤﺭﻓﻭﺽ . a′ + b′ = 2 a′b′ 15,04 : δ = 168 (6ﻤﺭﻓﻭﺽ . a′ + b′ = 1 ﺍﻟﺘﻤﺭﻴﻥ 4 ﺃﺼﻐﺭ ﻋﺩﺩ ﻁﺒﻴﻌﻲ ﻟﻪ 8ﻗﻭﺍﺴﻡ ﻴﻜﻭﻥ ﻭﺍﺤﺩ ﻤﻥ ﻫﺫﻴﻥ ﺍﻟﻌﺩﺩﻴﻥ : a1 × a23ﺃﻭ . a17ﻭﺤﺘﻰ ﻴﻜﻭﻥ ﺃﺼﻐﺭ ﻋﺩﺩ ﻓﺈﻥ a2 ، a1 :ﺘﻜﻭﻥ ﺃﺼﻐﺭ ﻤﺎ ﻴﻤﻜﻥ ﺃﻱ 3 × 23 :ﺃﻭ 27 ﻭﻋﻠﻴﻪ ﺍﻟﻌﺩﺩﺍﻥ ﻫﻤﺎ 128 :ﺃﻭ . 24 ﻭﻤﻨﻪ ﺃﺼﻐﺭ ﻋﺩﺩ ﻟﻪ 8ﻗﻭﺍﺴﻡ ﻫﻭ 3 × 23ﺃﻱ . 24
ﺍﻟﺘﻤﺭﻴﻥ 5 (1ﺩﺭﺍﺴﺔ ﺃﻭﻟﻴﺔ ﺍﻟﻌﺩﺩ : 211ﺍﻟﻘﺎﺴﻡ ﺍﻷﻭﻟﻰ ﻤﻘﺎﺭﻨﺔ a2ﻭ a2 209ﻗﺎﺒﻠﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ a 2 3 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 4 a2 < 211 5 7 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 9 a2 < 211 11 13 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 25 a2 < 211 17 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 49 a2 < 211 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 121 a2 < 211 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 169 a2 < 211 ﻻ ﻴﻘﺒل ﺍﻟﻘﺴﻤﺔ 289 a2 > 211ﺒﻤﺎ ﺃﻥ ﺍﻟﻌﺩﺩ 211ﻻ ﻴﻘﺒل ﺃﻱ ﻗﺎﺴﻡ ﺃﻭﻟﻰ aﺒﺤﻴﺙ a2 < 211ﻓﺈﻥ ﺍﻟﻌﺩﺩ 211ﺃﻭﻟﻰ . (2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ x2 − y2 = 211 : ﺇﺫﻥ ﻫﻲ ﺘﻜﺎﻓﺊ ( x − y)( x + y) = 211 :ﻭﺒﻤﺎ ﺃﻥ x − y < x + y :ﻓﺈﻥ x − y = 1 :ﻭ x + y = 211 ﻭﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ 2 x = 212 :ﺃﻱ ﺃﻥ x = 106 : ﻭﻋﻠﻴﻪ . y = 105 :ﻭﻤﻨﻪ ﺍﻟﺤل ﻫﻭ ( ). 106;105 ﺍﻟﺘﻤﺭﻴﻥ 6 ﺘﻌﻴﻴﻥ xﻭ : yﻟﺩﻴﻨﺎ x .y = δµ :ﻟﻜﻥ x = δ x ′ :ﻭ y = δ y′ﺒﺤﻴﺙ x′ﻭ y′ ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻭﻤﻨﻪ δ x′.δ y′ = δµ :ﺃﻱ µ = δ x′.y′ : ﻭﺒﻤﺎ ﺃﻥ µ − 18δ = 791 :ﻓﺈﻥ δ x′y′ − 18δ = 791 : ﺃﻱ ﺃﻥ δ x′y′ − 18 = 791 :ﺇﺫﻥ δﻴﻘﺴﻡ ﺍﻟﻌﺩﺩ ( ). 791
ﻟﺩﻴﻨﺎ 791 = 7 × 113 : ﻭﻤﻨﻪ ﻗﻭﺍﺴﻡ 791ﻫﻲ . 791 ، 113 ، 7 ، 1 : ﻟﻤﺎ δ = 1ﻨﺠﺩ x′y′ − 18 = 791 :ﻭﻋﻠﻴﻪ x′y′ = 809 : * y′ = 809 ، x′ = 1ﻭﻤﻨﻪ x = 1 :ﻭ y = 809 * y′ = 1 ، x′ = 809ﻭﻤﻨﻪ x = 809 :ﻭ y = 1 ﻟﻤﺎ δ = 7ﻨﺠﺩ x′y′ − 18 = 113 :ﻭﻋﻠﻴﻪ x′y′ = 131 : * y′ = 131 ، x′ = 1ﻭﻤﻨﻪ x = 7 :ﻭ y = 917 * y′ = 1 ، x ′ = 131ﻭﻤﻨﻪ x = 917 :ﻭ y = 7 ﻟﻤﺎ x′y′ − 18 = 7 : δ = 113ﻭﻋﻠﻴﻪ x′y′ = 25 : * y′ = 25 ، x′ = 1ﻭﻤﻨﻪ x = 113 :ﻭ y = 2825 * y′ = 1 ، x′ = 25ﻭﻤﻨﻪ x = 2825 :ﻭ y = 113 ﻟﻤﺎ x′y′ − 18 = 1 : δ = 791ﻭﻋﻠﻴﻪ x′y′ = 19 :* y′ = 19 ، x′ = 1ﻭﻤﻨﻪ x = 791 :ﻭ y = 15029 ﺍﻟﺘﻤﺭﻴﻥ 7 (1ﺤﺴﺎﺏ ): PGCD(765;459;1683 ﻨﺴﺘﻌﻤل ﺨﻭﺍﺭﺯﻤﻴﺔ ﺇﻗﻠﻴﺩﺱ : * ﺤﺴﺎﺏ ): PGCD(765;459 765 = 459 × 1 + 306 459 = 306 × 1 + 153 306 = 153 × 2 + 0 ﻭﻤﻨﻪ . PGCD(765;459) = 153 : * ﺤﺴﺎﺏ ): PGCD(153;1683 1683 = 153 × 11 + 0 ﻭﻤﻨﻪ PGCD(153;1683) = 153 : ﺇﺫﻥ . PGCD(765;459;1683) = 153 :
(2ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 765 x + 459 y = 1683 : ﺒﻘﺴﻤﺔ ﺍﻟﻁﺭﻓﻴﻥ ﻋﻠﻰ 153ﻨﺠﺩ 5 x + 3 y = 11 :ﻨﻼﺤﻅ ﺃﻥ 4;−3 :ﺤل ﺨﺎﺹ ﻭﻋﻠﻴﻪ 5x + 3 y = 5× 4 + 3( −3) ( ): ﺇﺫﻥ 5x − 5 × 4 = −3 y + 3( −3) : )5(x − 4) = 3(−y − 3ﻟﺩﻴﻨﺎ 3ﻴﻘﺴﻡ 5 x − 4ﻭ 3ﺃﻭﻟﻲ ﻤﻊ 5ﻭﻋﻠﻴﻪ 3ﻴﻘﺴﻡ x − 4ﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ ( )k ﺒﺤﻴﺙ x − 4 = 3k :ﻭﻤﻨﻪ x = 3k + 4 : ﻭﻋﻠﻴﻪ 5 × 3k = 3( − y − 3) :ﻭﻋﻠﻴﻪ − y − 3 = 5k :ﻭﻤﻨﻪ :. y = −5k − 3ﺍﻟﺤﻠﻭل ﻫﻲ ) ( 3k + 4;−5k − 3ﻤﻊ ] ∈ . k (3ﺘﻌﻴﻴﻥ ﺍﻟﺤﻠﻭل x ; yﺒﺤﻴﺙ ( )x + y < 10 : ﺇﺫﻥ 3k + 4 + −5k − 3 < 10 : ﻨﺯﻴل ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻁﻠﻘﺔ ﻟﻠﻌﺒﺎﺭﺓ ( )P x = 3k + 4 + −5k − 3 :∞k − −4 −3 ∞+ 3 53k + 4 −3k − 4 3k + 4 3k + 4−5k − 3 −5k − 3 −5k − 3 5k + 3)P ( x −8k − 7 −2k + 1 8k + 7 ﻨﺤل ﺍﻟﻤﺘﺭﺍﺠﺤﺔ : P x < 10ﻤﻊ ] ∈ ( )x : k ∈ ; ∞− −4 ﻟﻤﺎ * 3 k > −17 ﻭﻤﻨﻪ : −8k < 17 ﻭﻋﻠﻴﻪ : −8k − 7 < 10 8 k ∈ −17 ; −4 ﻭ ]∈k ﻭﺒﺎﻟﺘﺎﻟﻲ : 8 3
ﻭﻋﻠﻴﻪ k = −2 :ﻭﻤﻨﻪ ( x ; y) = ( −2;7) : ]∈: k ﻭ k ∈ −4 ; −3 * ﻟﻤﺎ 3 5 k < −9 ﻭﻤﻨﻪ : −2k < 9 ﻭﻋﻠﻴﻪ : −2k + 1 < 10 2 ﻭﻋﻠﻴﻪ k = −1 :ﻭﻤﻨﻪ ( x ; y) = (1;2) : ]∈: k ﻭ k ∈ −3 ; +∞ ﻟﻤﺎ * 5 k < 3 ﻭﻤﻨﻪ : 8k < 3 ﻭﻋﻠﻴﻪ : 8k + 7 < 10 8 ]∈k ﻭ k ∈ −3 ; 3 ﻭﺒﺎﻟﺘﺎﻟﻲ : 5 8 ﻭﻋﻠﻴﻪ k = 0 :ﻭﻤﻨﻪ . ( x ; y ) = (4;−3) : ﺍﻟﺘﻤﺭﻴﻥ 8 (1ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ 52 x − 44 y = 92 : * ﻨﺤﺴﺏ ): PGCD(52;44;92 52 = 2 2×13 44 = 22 × 11 92 = 22 × 23 ﻭﻋﻠﻴﻪ PGCD(52;44;92) = 22 = 4 : ﻭﺒﻘﺴﻤﺔ ﻁﺭﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻋﻠﻰ 4ﻨﺠﺩ 13 x − 11 y = 23 :ﻨﻼﺤﻅ ﺃﻥ 6;5ﺤل ﺨﺎﺹ ﻭﻤﻨﻪ 13 x − 11 y = 13 × 6 − 11× 5 ( ): ﻭﻤﻨﻪ 13 x − 13 × 6 = 11 y − 11× 5 : ﺇﺫﻥ 13( x − 6) = 11( y − 5) :
ﻟﺩﻴﻨﺎ 11ﻴﻘﺴﻡ 13 x − 6ﻭ 11ﺃﻭﻟﻲ ﻤﻊ 13ﻭﻋﻠﻴﻪ 11ﻴﻘﺴﻡ ( )x − 6 ﺃﻱ ﻴﻭﺠﺩ ﻋﺩﺩ ﺼﺤﻴﺢ kﺒﺤﻴﺙ x − 6 = 11k : ﻭﻤﻨﻪ x = 11k + 6 :ﺇﺫﻥ 13 × 11k = 11( y − 5) : ﻭﻤﻨﻪ y − 5 = 13k :ﻭﻋﻠﻴﻪ y = 13k + 5 ﺍﻟﺤﻠﻭل ﻫﻲ (11k + 6;13k + 5) :ﻤﻊ ] ∈ k (2ﺘﻌﻴﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ : δ ﻟﺩﻴﻨﺎ δﻴﻘﺴﻡ xﻭ δﻴﻘﺴﻡ yﻭﻤﻨﻪ δﻴﻘﺴﻡ 13 xﻭ 11 y ﻭﻋﻠﻴﻪ δﻴﻘﺴﻡ 13 x − 11 yﺇﺫﻥ δﻴﻘﺴﻡ . 23 ﻭﻤﻨﻪ ﻗﻴﻡ δﺍﻟﻤﻤﻜﻨﺔ ﻫﻲ 1ﻭ . 23 (3ﺘﻌﻴﻴﻥ ﺍﻟﺤﻠﻭل x ; yﺒﺤﻴﺙ ( ): δ = 23 ﺇﺫﻥ x = 23 x′ :ﻭ y = 23 y′ﻭ x′ﻭ y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻭﺒﺎﻟﺘﺎﻟﻲ 13 × 23x′ − 11× 23 y′ = 23 : ﻭﻋﻠﻴﻪ 13 x′ − 11 y′ = 1 :ﻨﻼﺤﻅ ﺃﻥ ) (6;7ﺤل ﺨﺎﺹ ﻭﻤﻨﻪ 13x′ − 11y′ = 13× 6 − 11× 7 : ﻭﻋﻠﻴﻪ 13x′ − 13× 6 = 11y′ − 11× 7 : ﻭﻤﻨﻪ 13( x′ − 6) = 11( y′ − 7) : ﻟﺩﻴﻨﺎ 13ﻴﻘﺴﻡ 11 y′ −7ﻭ 13ﺃﻭﻟﻲ ﻤﻊ 11ﻭﻋﻠﻴﻪ 13ﻴﻘﺴﻡ ( ) ( )y′ −7 ﻭﻤﻨﻪ y′ − 7 = 13α :ﺇﺫﻥ y′ = 13α + 7 : ﻭﻋﻠﻴﻪ 13( x′ − 6) = 11× 13α :ﻭﻤﻨﻪ x′ − 6 = 11α : ﺇﺫﻥ x′ = 11α + 6 :ﻭﺒﺎﻟﺘﺎﻟﻲ x = 23(11α + 6) : x = 253α + 138 ) y = 23(13α + 7ﻭﻤﻨﻪ y = 299α + 161 : ﺍﻟﺤﻠﻭل ﻫﻲ ( 253α + 138 ; 299α + 161) :ﻤﻊ ] ∈ . α (4ﺘﻌﻴﻴﻥ ﺍﻟﺤﻠﻭل x ; yﺒﺤﻴﺙ ( )−10 < x < 40 :
ﺇﺫﻥ −10 < 11k + 6 < 40 : −16 < 11k < 34ﺃﻱ −1,45 < k < 3,09 : −16 < k < 34 ﻭﻤﻨﻪ : 11 11 ﺇﺫﻥ ﻗﻴﻡ kﻫﻲ -1 ، 0 ، 1 ، 2 ، 3 :ﻭﻤﻨﻪ ﺍﻟﺤﻠﻭل ﻫﻲ :). (17;18) , (6;5) , (−5;−8) , (39;44) , ( 28;31 ﺍﻟﺘﻤﺭﻴﻥ 9 (1ﺩﺭﺍﺴﺔ ﺒﻭﺍﻗﻲ ﻗﺴﻤﺔ 3nﻋﻠﻰ : 5]30 ≡ 1[5] ; 31 ≡ 3[5] ; 3² ≡ 4[5] ; 33 ≡ 2[5] ; 34 ≡ 1[5ﻭﻋﻠﻴﻪ 34P ≡ 1 5 :ﻭ [ ] [ ] [ ] [ ]34P+3 ≡ 2 5 ; 34P+2 ≡ 4 5 ; 34P+1 ≡ 3 5 )(1 . . . U 2 = U10 − U1 (2ﺃ( ﺘﻌﻴﻴﻥ U0ﻭ : r 0 ﻟﺩﻴﻨﺎ U1 = U0 + r :ﻭ U10 = U0 + 10r( ) ( )U20 = U0 + 10r − U0 + r ﻭﺒﺎﻟﺘﻌﻭﻴﺽ ﻓﻲ ) (1ﻨﺠﺩ : U 2 = 9r ﻭﻤﻨﻪ : 0ﻟﺩﻴﻨﺎ U0 :ﻴﻘﺴﻡ 9rﻭ U0ﺃﻭﻟﻲ ﻤﻊ rﻭﻤﻨﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ : U0ﻴﻘﺴﻡ . 9 ﺇﺫﻥ ﻗﻴﻡ U0ﺍﻟﻤﻤﻜﻨﺔ ﻫﻲ . 9 ، 3 ، 1 : . ﻤﺭﻓﻭﺽ r = 1 ﺃﻱ : * ﻟﻤﺎ 1 = 9r : U0 = 1 9 * ﻟﻤﺎ 9 = 9r : U0 = 3ﻭﻤﻨﻪ . r = 1 : * ﻟﻤﺎ 9² = 9r : U0 = 9ﻭﻤﻨﻪ r = 9 : ﻤﺭﻓﻭﺽ ﻷﻥ U0ﺃﻭﻟﻲ ﻤﻊ . r ﻭﻤﻨﻪ U0 = 3 :ﻭ . r = 1 ﺏ( ﺤﺴﺎﺏ : Sn
n + 1( )Un = U0 + nr 2 ، U0 = 3 ﺤﻴﺙ : Sn = U0 + Un ﻟﺩﻴﻨﺎ : Sn = n + 1 (6 + )n ﻭﻋﻠﻴﻪ : ﻭﻤﻨﻪ Un = 3 + n : 2 -ﺤﺴﺎﺏ : Pn Pn = U0 × U1 + . . . × Un ) Pn = U0 × (U0 + r ) . . . × (U0 + nr )Pn = 3 × 4 × 5 × . . . × ( n + 3Pn = ×1 2×3×4×5× . . . ×(n+ )3 = !)(n + 3 1× 2 !2 -ﺘﻌﻴﻴﻥ 2pq = ( 2010)! : qﻭﻤﻨﻪ (q + 3)! = 2010! : ﺇﺫﻥ q + 3 = 2010 :ﻭﻋﻠﻴﻪ . q = 2007 : -ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﺃﺠل [ ]: 32007 ≡ 2 5 ﻟﺩﻴﻨﺎ 2007 = 4 × 581 + 3 :ﻭﻤﻨﻪ [ ]. 32007 ≡ 2 5 : -ﺘﻌﻴﻴﻥ nﺒﺤﻴﺙ [ ]2Sn + 2 ≡ 3q 5 : ﺇﺫﻥ (n + 1)(6 + n ) + 2 ≡ 2[5] : ]6n + n² + 6 + n + 2 ≡ 2[5 ]n² + 7n + 6 ≡ 0[5 ]n² + 2n + 1 ≡ 0[5 ﺇﺫﻥ ( n + 1)² ≡ 0[5] : ﺇﺫﻥ n + 1 ≡ 0[5] :ﻭﻤﻨﻪ n ≡ −1[5] : ﺇﺫﻥ n ≡ 4 5 :ﻭﻋﻠﻴﻪ α ∈ ` :ﻭ [ ]. n = 5α + 4 ﺍﻟﺘﻤﺭﻴﻥ 10 (1ﺘﻌﻴﻴﻥ ): ( x′; y′
ﻟﺩﻴﻨﺎ 9 x′ − 14 y′ = 9 × 3 − 14 × 1 : ﻭﻤﻨﻪ 9x′ − 9 × 3 = 14 y′ − 14 × 1 : ﺇﺫﻥ 9( x′ − 3) = 14( y′ − 1) : ﻟﺩﻴﻨﺎ 9ﻴﻘﺴﻡ 14 y′ − 1ﻭ 9ﺃﻭﻟﻲ ﻤﻊ 14ﻭﻋﻠﻴﻪ 9ﻴﻘﺴﻡ y′ − 1ﺃﻱ ( ): ] ∈ y′ − 1 = 9k , kﺇﺫﻥ y′ = 9k + 1 : ﻭﻋﻠﻴﻪ 9( x′ − 3) = 14 × 9k :ﻭﻤﻨﻪ x′ − 3 = 14k :ﻭﻋﻠﻴﻪ x′ = 14k + 3 :ﺇﺫﻥ ( x′; y′) = (14k + 3;9k + 1) : ﺤﻴﺙ k ∈ ] : (2ﺘﺒﻴﺎﻥ ﺃﻥ x ≡ 0[2] :ﻭ ]y ≡ 0[5 ﻟﺩﻴﻨﺎ 45 x − 28 y = 130 :ﻭﻋﻠﻴﻪ 45 x = 28 y + 130 :ﻭﻋﻠﻴﻪ 45 x = 2(14 y + 65) : ﻟﺩﻴﻨﺎ 2ﻴﻘﺴﻡ 45 xﻭ 2ﺃﻭﻟﻲ ﻤﻊ 45ﻭﻋﻠﻴﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ : 2ﻴﻘﺴﻡ . xﺇﺫﻥ [ ]x ≡ 0 2 : ﻭﻜﺫﻟﻙ 28 y = 130 − 45x :ﻭﻤﻨﻪ 28 y = 5( 26 − 9x ) : ﻟﺩﻴﻨﺎ 5ﻴﻘﺴﻡ 28 yﻭ 5ﺃﻭﻟﻲ ﻤﻊ 28ﻭﻋﻠﻴﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ : 5ﻴﻘﺴﻡ . yﺇﺫﻥ [ ]. y ≡ 0 5 : -ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ : ﺒﻤﺎ ﺃﻥ x ≡ 0 2ﻓﺈﻥ [ ]x = 2 x′ : ﺒﻤﺎ ﺃﻥ y ≡ 0 5ﻓﺈﻥ [ ]y = 5 y′ : ﻭﻋﻠﻴﻪ 45 × 2 x′ − 28 × 25 y′ = 130 : ﻭﻋﻠﻴﻪ 10(9 x′ − 7 y′) = 130 :ﺇﺫﻥ 9x′ − 7 y′ = 13 : ﻭﻗﺩ ﺴﺒﻕ ﺤﻠﻬﺎ x′ = 14k + 3 :ﻭ y′ = 9k + 1
ﺇﺫﻥ x = 2(14k + 3) :ﻭ )y = 5(9k + 1ﻭﻋﻠﻴﻪ x = 28k + 6 :ﻭ y = 45k + 5ﻤﻊ ] ∈ k (3ﺘﻌﻴﻴﻥ αﻭ : βﻟﺩﻴﻨﺎ N = 3 × 90 + α × 91 + α × 9² + 2 × 93 :N = 3 + 9α + 81α + 1458 ﻭﻤﻨﻪ :ﺇﺫﻥ N = 1461 + 90α . . . (1) :ﻤﻊ α ≤ 8ﻭﻟﺩﻴﻨﺎ N = 6 × 70 + β × 71 + β × 7² + 5 × 73 :N = 6 + 7β + 49β + 1715 ﻭﻤﻨﻪ :ﺇﺫﻥ N = 1721 + 56β . . . (2) :ﻤﻊ β ≤ 6ﻭﻋﻠﻴﻪ ﻤﻥ ) (1ﻭ )1461 + 90α = 1721 + 56β : (2ﻭﻋﻠﻴﻪ 90α − 56β = 260 :ﺇﺫﻥ 45α − 28β = 130 : ﻭﺤﻠﻭل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻤﻤﺎ ﺴﺒﻕ :k ∈ ` , β = 45k + 5 , α = 28k + 6ﻭﺒﻤﺎ ﺃﻥ α ≤ 8 :ﻭ β ≤ 6ﻓﺈﻥ 28k + 6 ≤ 8 :ﻭ 45k + 5 ≤ 6ﺇﺫﻥ 28k ≤ 2 :ﻭ 45k ≤ 1k ≤ 1 ﻭ k ≤ 2 ﺇﺫﻥ : 4 28ﻭﻤﻨﻪ k = 0 :ﺇﺫﻥ α = 6 :ﻭ β = 5ﻭﺒﺎﻟﺘﺎﻟﻲ N = 1461 + 90 × 6 :ﺇﺫﻥ N = 2001 : ﺍﻟﺘﻤﺭﻴﻥ 11 (1ﺍﻟﺘﺤﻠﻴل :ﻟﺩﻴﻨﺎ 120 = 12 × 10 = 22 × 3 × 2 × 5 :120 = 23 × 3 × 5 ﺇﺫﻥ : (2ﻨﺒﻴﻥ ﺃﻥ PGCD(α;β) = PGCD(a;b) :
ﻨﻔﺭﺽ PGCD(α;β) = δ1 :ﻭ PGCD(a;b) = δ2 ﻟﺩﻴﻨﺎ δ1 :ﻴﻘﺴﻡ ﻜل ﻤﻥ αﻭ βﻭﻋﻠﻴﻪ δ1 :ﻴﻘﺴﻡ ﻜل ﻤﻥ α + 4βﻭ 2α + 7β ﻭﻋﻠﻴﻪ δ1ﻴﻘﺴﻡ aﻭ bﻭﺒﺎﻟﺘﺎﻟﻲ δ1ﻴﻘﺴﻡ . (1) . . . δ2ﻭﻟﺩﻴﻨﺎ δ2 :ﻴﻘﺴﻡ ﻜل ﻤﻥ aﻭ bﻭﻋﻠﻴﻪ δ2 :ﻴﻘﺴﻡ ﻜل ﻤﻥ α + 4βﻭ . 2α + 7β ﺇﺫﻥ δ2ﻴﻘﺴﻡ ) −2(α + 4βﻭ . 2α + 7β ﺃﻱ δ2ﻴﻘﺴﻡ −2α − 8βﻭ . 2α + 7β ﺇﺫﻥ δ2ﻴﻘﺴﻡ ). ( 2α + 7β) + ( −2α − 8β ﻭﻋﻠﻴﻪ δ2ﻴﻘﺴﻡ −βﻭﻋﻠﻴﻪ δ2ﻴﻘﺴﻡ . β ﻭﻜﺫﻟﻙ ﻟﺩﻴﻨﺎ δ2ﻴﻘﺴﻡ ) −7(α + 4βﻭ )4( 2α + 7β ﺇﺫﻥ δ2ﻴﻘﺴﻡ −7α − 28βﻭ 8α + 28β ﻭﻋﻠﻴﻪ δ2ﻴﻘﺴﻡ ) (8α + 28β) + ( −7α − 28βﻭﻋﻠﻴﻪ δ2ﻴﻘﺴﻡ . α ﺇﺫﻥ δ2ﻴﻘﺴﻡ αﻭ βﻭﻋﻠﻴﻪ δ2ﻴﻘﺴﻡ . (2) . . . δ1 ﻤﻥ ) (1ﻭ ) δ1 : (2ﻴﻘﺴﻡ δ2ﻭ δ2ﻴﻘﺴﻡ δ1ﻭﻋﻠﻴﻪ . δ1 = δ2 : ﻭﻋﻠﻴﻪ . PGCD(α;β) = PGCD(a;b) :(x + 4y )(2x + 7y ) = 580 (3ﺘﻌﻴﻴﻥ xﻭ : y x × y = 7µﺒﻤﺎ ﺃﻥ x × y = δ × µ :ﺤﻴﺙ PGCD ( x ; y ) = δ : ﻭﻤﻨﻪ δ = 7 :ﻭﻋﻠﻴﻪ x = 7 x′ :ﻭ y = 7 y′ ﻤﻊ x′ﻭ y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ .ﻭﻋﻠﻴﻪ (7 x′ + 4 × 7 y′)( 2 × 7 x′ + 7 × 7 y′) = 5880 : ﺇﺫﻥ 7( x′ + 4 y′) × 7( 2x′ + 7 y′) = 5880 : ﻭﻋﻠﻴﻪ ( x′ + 4 y′)( 2x′ + 7 y′) = 120 :ﻭﺒﻤﺎ ﺃﻥ x′ﻭ y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻓﺈﻥ 2 x′ + 7 y′ﻭ x′ + 4 y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ .
ﻤﻥ ﺍﻟﺴﺅﺍل PGCD( x′; y′) = PGCD( x′ + 4y′;2x′ + 7 y′) : 2 ﻭﻟﺩﻴﻨﺎ x′ + 4 y′ < 2 x′ + 7 y′ : * x′ + 4 y′ = 1ﻭ 2x′ + 7 y′ = 120 ﻭﻋﻠﻴﻪ −2 x′ − 8 y′ = −2 :ﻭ 2 x′ + 7 y′ = 120 ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ − y = 118 :ﻤﺭﻓﻭﺽ . * x′ + 4 y′ = 3ﻭ 2x′ + 7 y′ = 40 ﻭﻋﻠﻴﻪ −2 x′ − 8 y′ = −6 :ﻭ 2 x′ + 7 y′ = 40 ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ − y = 34 :ﻤﺭﻓﻭﺽ . * x′ + 4 y′ = 5ﻭ 2x′ + 7 y′ = 24 ﻭﻋﻠﻴﻪ −2x′ − 8 y′ = −10 :ﻭ 2x′ + 7 y′ = 24 ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ − y = 14 :ﻤﺭﻓﻭﺽ . * x′ + 4 y′ = 8ﻭ 2x′ + 7 y′ = 15 ﻭﻤﻨﻪ −2x′ − 8 y′ = −16 :ﻭ 2x′ + 7 y′ = 15 ﺒﺎﻟﺠﻤﻊ ﻨﺠﺩ − y = −1 :ﺃﻱ y = 1 : ﻭﻋﻠﻴﻪ x′ = 4 :ﻭﻤﻨﻪ x = 28 :ﻭ y = 7 ﺍﻟﺘﻤﺭﻴﻥ 12 (1ﺍﻟﺘﺤﻘﻕ ﻤﻥ ﺃﻥ −3λ ;−10λ :ﺤل ﻟﻠﻤﻌﺎﺩﻟﺔ )( ): (1 43( −3λ ) − 13( −10λ ) = −129λ + 130λ = λﻭﻤﻨﻪ ﻫﻭ ﺤل . -ﺘﻌﻴﻴﻥ ﻜل ﺍﻟﺤﻠﻭل ( )x ; y : ﻟﺩﻴﻨﺎ 43x − 13λ = 43( −3λ ) − 13( −10λ ) : ﻭﻤﻨﻪ 43x − 43( −3λ ) = 13 y − 13( −10λ ) : ) 43( x + 3λ ) = 13( y + 10λ ﻟﺩﻴﻨﺎ 13 :ﻴﻘﺴﻡ 43 x + 3λﻭ 13ﺃﻭﻟﻲ ﻤﻊ ( )43 ﻭﻤﻨﻪ 13 :ﻴﻘﺴﻡ x + 3λﺇﺫﻥ x + 3λ = 13k : ﻭﻋﻠﻴﻪ x = 13k − 3λ :ﻭﻤﻨﻪ 43 × 13k = 13( y + 10λ ) :
ﺇﺫﻥ y + 10λ = 43k :ﻭﻋﻠﻴﻪ y = 43k − 10λ :ﺍﻟﺤﻠﻭل ﻫﻲ k ∈ ] , (13k − 3λ ; 43k − 10λ ) : (2ﻨﺒﻴﻥ ﺃﻥ 43α − 13β = γ :ﻟﺩﻴﻨﺎ N = α × 60 + β × 61 + α × 62 + β × 63 + α × 64 : ﺤﻴﺙ 1 ≤ α ≤ 5 :ﻭ 0 ≤ β ≤ 5 ﻭﻤﻨﻪ N = 1333α + 222β . . . (1) :ﻭﻟﺩﻴﻨﺎ N = γ × 50 + γ × 51 + γ × 52 + 0 × 53 + β × 54 : ﺇﺫﻥ N = 625β + 31γ . . . (2) : ﺤﻴﺙ 0 ≤ γ ≤ 4 :ﻭ 1 ≤ β ≤ 4ﻭﻋﻠﻴﻪ ﻤﻥ ) (1ﻭ )1333α + 222β = 625β + 31γ : (2 1333α − 403β = 31γﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ 31ﻨﺠﺩ 43α − 13β = γ : -ﺘﻌﻴﻴﻥ αﻭ βﻭ : γ ﻤﻤﺎ ﺴﺒﻕ ﺤﻠﻭل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻤﻌﻁﺎﺓ ﻓﻲ ) (1ﻜﻤﺎ ﻴﻠﻲ : α = 13k − 3γﻭ β = 43k − 10γ β = 43kﻤﺭﻓﻭﺽ . * ﻤﻥ ﺃﺠل α = 13k : γ = 0ﻭ* ﻤﻥ ﺃﺠل α = 13k − 3 : γ = 1ﻭ β = 43k − 10 ﻤﺭﻓﻭﺽ ﻤﻥ ﺃﺠل ﺠﻤﻴﻊ ﻗﻴﻡ . k * ﻤﻥ ﺃﺠل α = 13k − 6 : γ = 2ﻭ β = 43k − 20 ﻤﺭﻓﻭﺽ ﻤﻥ ﺃﺠل ﺠﻤﻴﻊ ﻗﻴﻡ . k * ﻤﻥ ﺃﺠل α = 13k − 9 : γ = 3ﻭ β = 43k − 30 ﻤﺭﻓﻭﺽ ﻤﻥ ﺃﺠل ﺠﻤﻴﻊ ﻗﻴﻡ . k* ﻤﻥ ﺃﺠل α = 13k − 12 : γ = 4ﻭ β = 43k − 40 ﻭﻫﻲ ﺼﺤﻴﺤﺔ ﻤﻥ ﺃﺠل k = 1ﻓﻨﺠﺩ α = 1 :ﻭ β = 3ﻭﺒﺎﻟﺘﺎﻟﻲ N = 1333 × 1 + 222( 3) = N = 1999 : ﺍﻟﺘﻤﺭﻴﻥ 13 (1ﺘﻌﻴﻴﻥ ﺍﻟﺜﻨﺎﺌﻴﺎﺕ ( )5 x − 3 y = 7 : x ; y
ﻨﻼﺤﻅ ﺃﻥ 2;1ﺤل ﺨﺎﺹ ( ). ﻭﻋﻠﻴﻪ 5 x − 3 y = 5 × 2 − 3 × 1 :ﻭﻋﻠﻴﻪ : 5x − 5 × 2 = 3 y − 3 × 1ﺇﺫﻥ 5( x − 2) = 3( y − 1) : 3ﻴﻘﺴﻡ 5 x − 2ﻭ 3ﺃﻭﻟﻲ ﻤﻊ 5ﻭﻤﻨﻪ ﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ) ( 3ﻴﻘﺴﻡ x − 2ﺃﻱ ﺃﻥ x − 2 = 3α : ﻭﻋﻠﻴﻪ x = 3α + 2 :ﻤﻊ ] ∈ αﻭﻤﻨﻪ : )5(3α) = 3( y − 1 ﺇﺫﻥ y − 1 = 5α :ﻭﻋﻠﻴﻪ y = 5α + 1 : ﺍﻟﺤﻠﻭل ﻫﻲ ( 3α + 2 ; 5α + 1) :ﻤﻊ ] ∈ α (2ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟـ ( ): PGCD x ; y ﻨﻔﺭﺽ δﻫﻭ PGCD x ; yﻭﻋﻠﻴﻪ δ :ﻴﻘﺴﻡ xﻭ ( )y ﻭﻤﻨﻪ δ :ﻴﻘﺴﻡ 5x − 3yﺇﺫﻥ δ :ﻴﻘﺴﻡ 7 ﻭﻋﻠﻴﻪ ﺍﻟﻘﻴﻡ ﺍﻟﻤﻤﻜﻨﺔ ﻟﻠﻌﺩﺩ δﻫﻲ . 7 ، 1 (3ﺘﻌﻴﻴﻥ xﻭ yﺒﺤﻴﺙ δ = 7 : ﻟﺩﻴﻨﺎ x = 7 x′ :ﻭ y = 7 y′ﺒﺤﻴﺙ x′ﻭ y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻟﻜﻥ 5 x − 3 y = 7 :ﻭﻤﻨﻪ 5 × 7 x′ − 3 × 7 y′ = 7 : ﺃﻱ ﺃﻥ 7(5 x′ − 3 y′) = 7 :ﻭﻤﻨﻪ 5 x′ − 3 y′ = 1 : ﻨﻼﺤﻅ ﺃﻥ 2;3ﺤل ﺨﺎﺹ ( ). ﻭﻋﻠﻴﻪ 5 x′ − 3 y′ = 5 × 2 − 3 × 3 : 5x′ − 5 × 2 = 3 y′ − 3 × 3 ﻭﻋﻠﻴﻪ 5( x′ − 2) = 3( y′ − 3) : ﻟﺩﻴﻨﺎ 3ﻴﻘﺴﻡ 5 x′ − 2ﻭ 3ﺃﻭﻟﻲ ﻤﻊ 5ﻭﺤﺴﺏ ﻤﺒﺭﻫﻨﺔ ﻏﻭﺹ) ( ﻓﺈﻥ 3ﻴﻘﺴﻡ x′ − 2ﺇﺫﻥ x′ − 2 = 3kﺃﻱ k ∈ ] , x′ = 3k + 2ﻭﻤﻨﻪ 5×3k = 3( y′ − 3) :ﻭﻋﻠﻴﻪ y′ − 3 = 5k :ﻭﻤﻨﻪ y′ = 5k + 3 :
ﺇﺫﻥ x = 7( 3k + 2) :ﻭ )y = 7(5k + 3ﺃﻱ ﺃﻥ x = 21k + 14 :ﻭ y = 35k + 21ﺤﻴﺙ k ∈ ] : ﺍﻟﺘﻤﺭﻴﻥ 14 (1ﻟﺩﻴﻨﺎ aﻭ bﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ . ﻭﻤﻨﻪ ﻻ ﻴﻤﻜﻥ ﺃﻥ ﻴﻜﻭﻥ aﻭ bﺯﻭﺠﻴﻴﻥ ﻤﻌﺎ . ﻭﻤﻨﻪ ﺃﺤﺩﻫﻤﺎ ﻓﺭﺩﻱ ﻭ ﺍﻵﺨﺭ ﺯﻭﺠﻲ ﺃﻭ ﻓﺭﺩﻴﻴﻥ ﻤﻌﺎ . ﻓﺈﺫﺍ ﻜﺎﻥ ﺃﺤﺩﻫﻤﺎ ﻓﺭﺩﻴﺎ ﻭ ﺍﻵﺨﺭ ﺯﻭﺠﻴﺎ ﻓﺈﻥ ﻤﺠﻤﻭﻋﻬﻤﺎ ﻓﺭﺩﻱ ﻭ ﺠﺩﺍﺅﻫﻤﺎ ﺯﻭﺠﻲ . ﻭﺇﺫﺍ ﻜﺎﻨﺎ ﻓﺭﺩﻴﻴﻥ ﻤﻌﺎ ﻓﺈﻥ ﻤﺠﻤﻭﻋﻬﻤﺎ ﺯﻭﺠﻲ ﻭ ﺠﺩﺍﺅﻫﻤﺎ ﻓﺭﺩﻱ . (2ﺘﻌﻴﻴﻥ ﻗﻭﺍﺴﻡ : 84 84 = 22 × 3 × 7ﻭﻤﻨﻪ ﻗﻭﺍﺴﻡ 84ﻫﻲ : 42 ، 28 ، 21 ، 14 ، 12 ، 7 ، 6 ، 4 ، 3 ، 2 ، 1ﺜﻡ . 84 (3ﺘﻌﻴﻴﻥ xﻭ : yﻟﺩﻴﻨﺎ x = δx′ :ﻭ y = δy′ﻤﻊ x′ﻭ y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ .δ( x′ + y′) = 84 µ = δx′y′ ﻭﻋﻠﻴﻪ : ﻭﻤﻨﻪ : δ × x′y′ = δ2ﺇﺫﻥ ( x ′ × y ′)( x ′ + y ′) = 84 : δ( x′ + y′) = 84 ﺃﻱ : x′y′ = δﻭﺒﻤﺎ ﺃﻥ x′ :ﻭ y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻓﺈﻥ x′ × y′ﻭ x′ + y′ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ ﻤﻥ ). (1 ﺇﺫﻥ . ( x′ × y′) × ( x′ + y′) = 84 : * x′ + y′ = 1ﻭ : x′ × y′ = 84 ﻟﺩﻴﻨﺎ y ′, x ′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ . t 2 − t + 84 = 0
∆ < 0ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل . * x′ + y′ = 3ﻭ x′ × y′ = 28ﻨﺠﺩ y′, x′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ : t 2 − 4t + 21 = 0 ∆′ < 0ﻭﻤﻨﻪ ﻟﻴﺱ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻭل .* x′ + y′ = 7ﻭ x′ × y′ = 12ﻭﻋﻠﻴﻪ x′ﻭ y′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ : ∆ = 1 ، t 2 − 7t + 12 = 0 ﻭﻤﻨﻪ t1 = 3 :ﻭ t2 = 4 x′ = 3ﻭ y′ = 4ﺃﻭ x′ = 4ﻭ y′ = 3ﻭ δ = 12 ﻭﻋﻠﻴﻪ x = 36 :ﻭ y = 48ﺃﻭ x = 48ﻭ . y = 36 * x′ + y′ = 12ﻭ x′ : x′ × y′ = 7ﻭ y′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ : ∆′ = 29 ، t 2 − 12t + 7 = 0 ∆′ = 29ﻭﻋﻠﻴﻪ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ﻁﺒﻴﻌﻴﺔ . * x′ + y′ = 21ﻭ x′ : x′y′ = 4ﻭ y′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ : ∆ = 425 ، t 2 − 21t + 4 = 0 ∆ = 425ﻭﻋﻠﻴﻪ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ﻁﺒﻴﻌﻴﺔ . * x′ + y′ = 28ﻭ x′ : x′y′ = 3ﻭ y′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ : ∆′ = 193 ، t 2 − 28t + 3 = 0 ∆ = 193ﻭﻋﻠﻴﻪ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ﻁﺒﻴﻌﻴﺔ . * x′ + y′ = 84ﻭ x′ : x′y′ = 1ﻭ y′ﺤﻠﻴﻥ ﻟﻠﻤﻌﺎﺩﻟﺔ : ∆′ = 1763 ، t 2 − 84t + 1 = 0 ∆ = 1763ﻭﻋﻠﻴﻪ ﻻ ﺘﻭﺠﺩ ﺤﻠﻭل ﻁﺒﻴﻌﻴﺔ . ﻭﻋﻠﻴﻪ x = 36 :ﻭ y = 48 ﺃﻭ x = 48ﻭ . y = 36 ﺍﻟﺘﻤﺭﻴﻥ 15 (1ﺇﺜﺒﺎﺕ ﺃﻥ 993ﻭ 170ﺃﻭﻟﻴﺎﻥ ﻓﻴﻤﺎ ﺒﻴﻨﻬﻤﺎ :
993 = 170 × 5 + 143170 = 143 × 1 + 27143 = 27 × 5 + 827 = 8 × 3 + 38=3×2+23=2×1+12=1×1+0 ﻭﻋﻠﻴﻪ PGCD(993;170) = 1 : (2ﺃ( ﺘﻌﻴﻴﻥ ﺍﻟﺤل ﺍﻟﺨﺎﺹ :( ) y 0 = 6 − x0 = 143 : ﻭﻤﻨﻪ 9x903+x0y−0 =6 = 143 : ﻟﺩﻴﻨﺎ 170y993x0 −170 6 − x0 0 x0 = 1 ﻭﻋﻠﻴﻪ 11y603=x06=−1x1063 :ﺃﻱ : y0 = 5 ﺇﺫﻥ 1;5ﺤل ﺨﺎﺹ ( ). ﺏ( ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ : ﻟﺩﻴﻨﺎ 993 x − 170 y = 993 × 1 − 170 × 5 : ﻭﻤﻨﻪ 993( x − 1) = 170( y − 5) :ﻟﺩﻴﻨﺎ 993ﻴﻘﺴﻡ 170 y − 5ﻭ 993ﺃﻭﻟﻲ ﻤﻊ 170ﻭﻋﻠﻴﻪ 993ﻴﻘﺴﻡ y − 5ﻭﻋﻠﻴﻪ) ( y − 5 = 993kﺃﻱ ﺃﻥ y = 993k + 5ﻭﻋﻠﻴﻪ 993( x − 1) = 170 × 993k :ﻭﻤﻨﻪ x − 1 = 170k : ﺇﺫﻥ x = 170k + 1 : ﺍﻟﺤﻠﻭل ﻫﻲ (170k + 1;993k + 5) :ﻤﻊ ] ∈ . k (3ﺘﻌﻴﻴﻥ : a]a ≡ 15[1986 ] a − 1 ≡ 14[1986ﻟﺩﻴﻨﺎ a − 1 ≡ 300[340] :ﻭﻤﻨﻪ a ≡ 301[340] :
a = 15 + 1986α a − 15 = 1986αﺇﺫﻥ a − 301 = 340β :ﻭﻋﻠﻴﻪ a = 301 + 340β :ﺇﺫﻥ 15 + 1986α = 301 + 340β : ﺇﺫﻥ 1986α − 340β = 286 :ﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ 2ﻨﺠﺩ 993α − 170β = 143 :ﻭﻤﻨﻪ ﺤﺴﺏ ) α = 170k + 1 : (2ﻭ β = 993k + 5ﻭﻤﻨﻪ a = 15 + 1986(170k + 1) :ﺃﻱ a = 337620k + 2001 :ﻭﻤﻨﻪ ﺃﺼﻐﺭ ﻗﻴﻤﺔ ﻟﻠﻌﺩﺩ aﻫﻲ 2001ﻤﻥ ﺃﺠل k = 0ﺇﺫﻥ . a = 2001
ﺍﻟﻤﻘﺎﻁﻊ ﺍﻟﻤﺴﺘﻭﻴﺔ ﻟﻠﺴﻁﻭﺡ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : -1ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﺍﺴﻁﻭﺍﻨﻲ ﺩﻭﺭﺍﻨﻲ -2ﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﻤﺨﺭﻭﻁﻲ ﺩﻭﺭﺍﻨﻲ -3ﺘﻌﻴﻴﻥ ﻤﻘﺎﻁﻊ ﺃﺴﻁﻭﺍﻨﻴﺔ -4ﺘﻌﻴﻴﻥ ﻤﻘﺎﻁﻊ ﻤﺨﺭﻭﻁﻴﺔ -5ﺘﻤﺜﻴل ﻤﻘﺎﻁﻊ ﻤﺠﺴﻡ ﻤﻜﺎﻓﺊ -6ﺘﻤﺜﻴل ﻤﻘﺎﻁﻊ ﻤﺠﺴﻡ ﺯﺍﺌﺩﻱ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ ﺃﻨﺸﻁﺔ – Iﺍﻷﺴﻁﻭﺍﻨﺔ ﺍﻟﻘﺎﺌﻤﺔ : – IIﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ : – IIIﺍﻟﻤﺠﺴﻡ ﺍﻟﻤﻜﺎﻓﺊ : ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺤـﻠــــــﻭل
ﺃﻨﺸﻁﺔ ﺍﻟﻨﺸﺎﻁ : ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O;i , j , kﻟﺘﻜﻥ sﻤﺠﻤﻭﻋﺔ ﺍﻟﻨﻘﻁ M x; y; zﻤﻥ ﺍﻟﻔﻀﺎﺀ ﺒﺤﻴﺙ ( ) ( )x 2 + z 2 = y 2 : ﻭ ﻟﻴﻜﻥ pﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﺫﻱ ﻤﻌﺎﺩﻟﺘﻪ ( )z = 1 : -1ﻋﻴﻥ ﻤﺠﻤﻭﻋﺔ ﻨﻘﻁ ﺘﻘﺎﻁﻊ sﻭ pﻭ ﻟﺘﻜﻥ ( ) ( ) ( )C= )f (x -2ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺫﺍﺕ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ x2 + 1 : C fﺘﻤﺜﻴﻠﻬﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻓﻲ ﺍﻟﻤﻌﻠﻡ A;i; jﺤﻴﺙ ( ) ( )( )A 0;0;1 : ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ fﺜﻡ ﺃﻨﺸﺊ . C fﺍﺴﺘﻨﺘﺞ ﺇﻨﺸﺎﺀ ( ) ( ). C ﺍﻟﺤل : (1ﺘﻌﻴﻴﻥ ) : (Cﻟﺩﻴﻨﺎ (C ) = ( s) ∩ ( p) : y 2 = x2 + 1 x 2 + z2 = y2 z=1 z = 1( C ) : ﻭ ﻋﻠﻴﻪ : ( C ) : ﻭ ﻋﻠﻴﻪ : ( 2ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ : f Df = ]−∞;+∞[ ، f ( x) = x2 + 1 lim f = )(x ∞+ ﻭ lim f = )(x ∞+ ∞x→+ ∞x→− f ′(x) = x x2 + 1ﻤﻥ ﺃﺠل f ′ x > 0 : x > 0ﻭ ﻋﻠﻴﻪ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ∞ 0, +ﻭ ﻤﻥ ﺃﺠل) ( [ [ f ′ x < 0 : x < 0ﻭ ﻋﻠﻴﻪ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ) ( @. @f;0
x −∞ 0 +∞ f ′(x) - + +∞ +∞ . f (x) 1 ( )lim f x x 1 + 1 1 = lim x2 x2 xx →+∞ = lim 1+ =1 x →+∞ x x →+∞ x2 + 1 − x x2 + 1 + x lim f ( x) − x = lim x2 + 1 + x x→+∞ x→+∞ = lim 1 = 0 x→+∞ x2 + 1 + x +∞ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻋﻨﺩy = x ﺇﺫﻥ( )lim f x −x 1 + 1 x = lim x2x →−∞ = −1 x →−∞ x x2 + 1 + x x2 + 1 − x lim f ( x) + x = lim x2 + 1 − xx→−∞ x→−∞ = lim 1 = 0 x→−∞ x2 + 1 − x −∞ ﻤﻌﺎﺩﻟﺔ ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﺎﺌل ﻋﻨﺩy = − x ﺇﺫﻥ : ﺍﻟﺸﻜل
y )4 (Cf 3 2 1-4 -3 -2 -1 0 1 2 3 4x -1 -2 )(Cg -3 -4y2 = x2 + 1 y2 = x2 + 1ﻭ ﻤﻨﻪ ( ): C ﻟﺩﻴﻨﺎ : z=1 : -ﺍﺴﺘﻨﺘﺎﺝ y = − x2 + 1 y = x2 + 1 ﺃﻭ z=1 z=1ﻭ ﻋﻠﻴﻪ Cﻫﻭ ﺍﺘﺤﺎﺩ ﺍﻟﻤﻨﺤﻴﻴﻥ C fﻭ C gﺍﻟﻤﻤﺜل ﻟﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ gﺤﻴﺙ ( ) ( ) ( ): g( x) = − x2 + 1ﻭ ﻟﺩﻴﻨﺎ C f :ﻭ Cgﻤﺘﻨﺎﻅﺭﺍﻥ ﺒﺎﻟﻨﺴﺒﺔ ﺇﻟﻰ ﺍﻟﻤﺤﻭﺭ ( ) ( ) ( )A ; i ﺇﺫﻥ ( ) ( )(C ) = C f ∪ Cg :
)(D – Iﺍﻷﺴﻁﻭﺍﻨﺔ ﺍﻟﻘﺎﺌﻤﺔ : )(C ﺘﻌﺭﻴﻑ : 1 ) (Cﺩﺍﺌﺭﺓ ﻤﻥ ﻤﺴﺘﻭ )( π ﻭ Dﻤﺴﺘﻘﻴﻡ ﻻ ﻴﻭﺍﺯﻱ ( ) ( )π ﻨﺴﻤﻲ ﻤﺠﻤﻭﻋﺔ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﺘﻲ ﺘﻭﺍﺯﻱ Dﻭ ﺘﺴﺘﻨﺩ ﻋﻠﻰ ( ) ( )C ﺴﻁﺤﺎ ﺍﺴﻁﻭﺍﻨﻴﺎ ﺩﻟﻴﻠﻪ Cﻭ ﻤﻨﺤﻨﻰ) ( ﻤﻭﻟﺩﺍﺘﻪ ﻤﻨﺤﻨﻰ ( ). CO’ M ﺘﻌﺭﻴﻑ : 2 ﻨﺴﻤﻲ ﻤﺤﻭﺭ ﺩﺍﺌﺭﺓ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﺫﻱ ﻴﺸﻤل ﻤﺭﻜﺯ ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ ﻭ ﻴﻌﺎﻤل ﻤﺴﺘﻭﻴﻬﺎ . ﺘﻌﺭﻴﻑ : 3 ﻨﺴﻤﻲ ﺴﻁﺤﺎ ﺍﺴﻁﻭﺍﻨﻴﺎ ﺩﻭﺭﺍﻨﻴﺎ ﻜل ﺴﻁﺢ ﺍﺴﻁﻭﺍﻨﻲ ﺩﻟﻴﻠﻪ ﻭ ﻤﻭﻟﺩﺍﺘﻪ ﻤﺴﺘﻘﻴﻤﺎﺕ ﺘﻭﺍﺯﻱ ﻤﺤﻭﺭ ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ ﻨﺼﻑ ﻗﻁﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻫﻭ ﻨﺼﻑ ﻗﻁﺭ ﺍﻷﺴﻁﻭﺍﻨﺔ . -ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﺴﻁﺢ ﺃﺴﻁﻭﺍﻨﻲ ﺩﻭﺭﺍﻨﻲ : ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O;i , j , kO – 1ﺇﺫﺍ ﻜﺎﻥ ﻤﺤﻭﺭ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻭ ( )O ; k ’M δﺃﺴﻁﻭﺍﻨﺔ ﻤﺤﻭﺭﻫﺎ O ; kﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ( ) ( )α ﻟﺘﻜﻥ M x; y; z :ﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻭ ﻟﺘﻜﻥ ( ) ( )M ′ x; y;o
ﻤﺴﻘﻁﻬﺎ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ ﺍﻟﻤﺴﺘﻭﻱ O ; i , jﻭ ﻟﺘﻜﻥ O′ 0 ; 0 , zﺍﻟﻤﺴﻘﻁ) ( ) ( ﺍﻟﻌﻤﻭﺩﻱ ﻟﻠﻨﻘﻁﺔ Mﻋﻠﻰ ﺍﻟﻤﺤﻭﺭ ( )O ; k ﺘﻜﻭﻥ Mﻨﻘﻁﺔ ﻤﻥ δﺇﺫﺍ ﻭ ﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ ( )O′M 2 = OM 2 = α2 : ﺤﻴﺙ O′M ( x; y;o) :ﺃﻱ O′M 2 = x2 + y2 : ﺇﺫﻥ x2 + y2 = α2 :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﺍﻟﺘﻲ ﻤﺤﻭﺭﻫﺎ O ; kﻭﻨﺼﻑ ﻗﻁﺭﻫﺎ) ( α ﻤﺜﺎل :ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ δﺍﻟﺘﻲ ﻤﺤﻭﺭﻫﺎ O ; kﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ 5ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ) ( ) ( ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O;i , j , k ﺍﻟﺤل : ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻲ x2 + y2 = 25 : – 2ﺇﺫﺍ ﻜﺎﻥ ﻤﺤﻭﺭ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻭ O ; iﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ αﻓﺈﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻲ ( ): y2 + z2 = α2 ﻤﺜﺎل : ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O;i , j , kﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﺍﻟﺩﺍﺌﺭﻴﺔ ﺍﻟﺘﻲ) ( ﻤﺤﻭﺭﻫﺎ O ; iﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ( ). 1 ﺍﻟﺤل :ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻲ . y2 + z2 = 1 : – 3ﺇﺫﺍ ﻜﺎﻥ ﻤﺤﻭﺭ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻭ ( )O ; j ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ αﻓﺈﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻲ x2 + z2 = α2 : ﻤﺜﺎل :
ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﺫﺍﺕ ﺍﻟﻤﺤﻭﺭ O ; jﻭ ﻨﺼﻑ ﺍﻟﻘﻁﺭ 2ﻓﻲ) ( ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O;i , j , k ﺍﻟﺤل :ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻲ x2 + z2 = 4 : ﻤﻘﺎﻁﻊ ﺍﺴﻁﻭﺍﻨﻴﺔ : (1ﻟﺘﻜﻥ δﺍﺴﻁﻭﺍﻨﺔ ﺩﻭﺭﺍﻨﻴﺔ ﻤﺤﻭﺭﻫﺎ Dﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ( ) ( )α ﻭ ) pﻤﺴﺘﻭ( ﻴﻭﺍﺯﻱ ). ( D ﻨﻔﺭﺽ ﺃﻥ ﺍﻟﻤﺴﺎﻓﺔ ﺒﻴﻥ Dﻭ pﻫﻲ ( ) ( )d -ﺇﺫﺍ ﻜﺎﻥ d > αﻓﺈﻥ p :ﻻ ﻴﻘﻁﻊ ﺍﻷﺴﻁﻭﺍﻨﺔ ( ) ( ). δ -ﺇﺫﺍ ﻜﺎﻥ d = αﻓﺈﻥ p :ﻤﻤﺎﺱ ﺍﻷﺴﻁﻭﺍﻨﺔ δﻓﻲ ﺃﺤﺩ) ( ) ( ﻤﻭﻟﺩﺍﺘﻬﺎ ∆ ( ). -ﺇﺫﺍ ﻜﺎﻥ d < αﻓﺈﻥ p :ﻴﻘﻁﻊ δﻭﻓﻕ ﻤﻭﻟﺩﻴﻥ ﻤﻥ) ( ) ( ﻤﻭﻟﺩﺍﺘﻬﺎ ) ∆ ( ﻭ ). ( ∆′ P PP )(δ )(D ) ( pﻴﻘﻁﻊ ) p) (δﻴﻤﺱ( ) ( p) (δﻻ ﻴﻘﻁﻊ )(δ δ (2ﺃﺴﻁﻭﺍﻨﺔ ﺩﻭﺭﺍﻨﻴﺔ ﻤﺤﻭﺭﻫﺎ ( ) ( )(D) D ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ αﻭ pﻤﺴﺘﻭ) ( ﻴﻌﺎﻤﺩ ). ( Dﺍﻟﻤﺴﺘﻭﻯ pﻴﻘﻁﻊ δﻭﻓﻕ ﺩﺍﺌﺭﺓ ( ) ( )P ﻤﺤﻭﺭﻫﺎ Dﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ ( ). α
ﺘﻌﻴﻴﻥ ﺍﻟﺘﻘﺎﻁﻊ ﺘﺤﻠﻴﻠﻴﺎ :ﻟﺘﻜﻥ δﺃﺴﻁﻭﺍﻨﺔ ﺩﻭﺭﺍﻨﻴﺔ ﻤﻌﺎﺩﻟﺘﻬﺎ x2 + y2 = α2 :ﻓﻲ ﺍﻟﻔﻀﺎﺀ) ( ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O;i , j , k ﻭ ﻟﻴﻜﻥ pﻤﺴﺘﻭ ﻴﻭﺍﺯﻱ ﺃﺤﺩ ﺍﻟﻤﺤﺎﻭﺭ ﺍﻹﺤﺩﺍﺜﻴﺔ ( ). (1ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ z = λ : pﻓﺈﻥ ( ):ﻭ ﻋﻠﻴﻪ δ ∩ p :ﻫﻮ ﺩﺍﺋﺮﺓ ( ) ( ). )(δ ∩ ( )p : x2 + = y2 α2 z =λ (2ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ y = λ : pﻓﺈﻥ ( ): ( )δ ∩ ( )p : x2 + y2 = α2 y = λ x 2 = α2 − λ2 y=λ( δ ) ∩ ( p ) : ﻭ ﻋﻠﻴﻪ : -ﺇﺫﺍ ﻜﺎﻥ λ2 > α2 :ﻓﺈﻥ ( δ ) ∩ ( p) = ∅ : -ﺇﺫﺍ ﻜﺎﻥ λ 2 = α2 :ﻓﺈﻥ δ ∩ p :ﻫﻲ ﻤﺴﺘﻘﻴﻡ ﻭﻫﻭ ﺃﺤﺩ) ( ) ( ﻤﻭﻟﺩﺍﺕ ( ). δ -ﺇﺫﺍ ﻜﺎﻥ λ 2 < α2ﻓﺈﻥ δ ∩ p :ﻫﻲ ﺍﺘﺤﺎﺩ ﻤﺴﺘﻘﻴﻤﻴﻥ) ( ) (ﻭﻫﺫﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﻤﻥ ﻤﻭﻟﺩﺍﺕ ﺍﻷﺴﻁﻭﺍﻨﺔ ( ). δ (3ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ pﻫﻲ x = λ :ﻓﺈﻥ ( ): x 2 = + y2 α2 x=λ: ﻋﻠﻴﻪ ﻭ )(δ ∩ ( p ) : )(δ ∩ ( )p : y2 = α2 − λ2 x=λ -ﺇﺫﺍ ﻜﺎﻥ λ2 > α2ﻓﺈﻥ ( δ) ∩ ( p) = ∅ :
ﺇﺫﺍ ﻜﺎﻥ λ2 = α2ﻓﺈﻥ δ ∩ p :ﻫﻲ ﻤﺴﺘﻘﻴﻡ ﻭ ﻫﻭ ﺃﺤﺩ ﻤﻭﻟﺩﺍﺕ ( ) ( ) ( ). δ - ﺇﺫﺍ ﻜﺎﻥ λ 2 < α2ﻓﺈﻥ δ ∩ p :ﻫﻲ ﺍﺘﺤﺎﺩ ﻤﺴﺘﻘﻴﻤﻴﻥ ( ) ( ). - ﻭﻫﺫﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻥ ﻫﻤﺎ ﻤﻥ ﻤﻭﻟﺩﺍﺕ ﺍﻷﺴﻁﻭﺍﻨﺔ ( ). δ – IIﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ : ﺘﻌﺭﻴﻑ : 1 Cﺩﺍﺌﺭﺓ ω .ﻨﻘﻁﺔ ﻻ ﺘﻨﺘﻤﻲ ﺇﻟﻲ ﻤﺴﺘﻭﻯ) ( ﻫﺫﻩ ﺍﻟﺩﺍﺌﺭﺓ .ﺘﺴﻤﻰ ﻤﺠﻤﻭﻋﺔ ﻨﻘﻁ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ω ﺍﻟﺘﻲ ﺘﺸﻤل ωﻭ ﺘﺴﺘﻨﺩ ﻋﻠﻰ Cﺴﻁﺤﺎ) ( ﻤﺨﺭﻭﻁﻴﺎ ﺭﺃﺴﻪ ωﻭ ﺩﻟﻴﻠﻪ ( )C ﻭ ﻜل ﻤﺴﺘﻘﻴﻡ ﻴﺸﻤل ωﻭ ﻴﺴﺘﻨﺩ ﻋﻠﻰ Cﻫﻭ ﻤﻭﻟﺩ ﻟﻬﺫﺍ ﺍﻟﺴﻁﺢ ﺍﻟﻤﺨﺭﻭﻁﻲ ( )( C ) . ﺘﻌﺭﻴﻑ : 2 ﻨﺴﻤﻰ ﺴﻁﺤﺎ ﻤﺨﺭﻭﻁﻴﺎ ﺩﻭﺭﺍﻨﻴﺎ ﻜل ﺴﻁﺢ ﻤﺨﺭﻭﻁﻲ ﺩﻟﻴﻠﻪ ﺩﺍﺌﺭﺓ ( )C ﻭ ﺭﺃﺴﻪ ωﻴﻨﺘﻤﻲ ﺇﻟﻰ ﻤﺤﻭﺭ ( ). C -ﻤﺤﻭﺭ ﺍﻟﺩﺍﺌﺭﺓ ﻴﺴﻤﻰ ﻤﺤﻭﺭ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ ﻭ ﻫﻭ ﻤﺤﻭﺭ ﺘﻨﺎﻅﺭ ﻟﻬﺫﺍ ﺍﻟﺴﻁﺢ . -ﻜل ﺍﻟﻤﻭﻟﺩﺍﺕ ﺘﻌﻴﻥ ﻤﻊ ﺍﻟﻤﺤﻭﺭ ﺯﻭﺍﻴﺎ ﺤﺎﺩﺓ ﻤﺘﻘﺎﻴﺴﺔ ﻭ ﺘﺴﻤﻰ ﻜل ﺯﺍﻭﻴﺔ ﻤﻥ ﻫﺫﻩ ﺍﻟﺯﻭﺍﻴﺎ ﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺍﻟﺭﺃﺱ ﻟﻠﺴﻁﺢ ﺍﻟﻤﺨﺭﻭﻁﻲ ﺍﻟﺩﻭﺭﺍﻨﻲ . -ﻴﻜﻭﻥ ﺍﻟﺴﻁﺢ ﺍﻟﻤﺨﺭﻭﻁﻲ ﺍﻟﺩﻭﺭﺍﻨﻲ ﻤﻌﻴﻨﺎ ﺇﺫﺍ ﻋﻠﻡ ﺭﺃﺴﻪ ﻭ ﻤﺤﻭﺭﻩ ﻭ ﻗﻴﺱ ﻟﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ . ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ : ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O;i , j , k
(1ﺇﺫﺍ ﻜﺎﻥ ﺭﺃﺱ ﺍﻟﻤﺨﺭﻭﻁ Oﻭ ﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ θﻭﻤﺤﻭﺭﻩ . O;kﻟﺘﻜﻥ) ( M x; y; zﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻔﻀﺎﺀ ﻭ ﻟﺘﻜﻥ p 0;0;zﻤﺴﻘﻁﻬﺎ ﺍﻟﻌﻤﻭﺩﻱ ﻋﻠﻰ ( ) ( ) ( )O;k ﻟﺩﻴﻨﺎ ) k (0;0;1) ، OM ( x; y;zﺘﻜﻭﻥ Mﻨﻘﻁﺔ ﻤﻥ ﺍﻟﻤﺨﺭﻭﻁ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ OM .k = OM . k cos α : ﻟﻜﻥ OM .k = z : ﻭ ﻤﻨﻪ OM . k .cos α = z : ﻭ ﻋﻠﻴﻪ x2 + y2 + z2 × 1× cos θ = z :ﻭ ﺒﺎﻟﺘﺭﺒﻴﻊ ﻨﺠﺩ ( )x2 + y2 + z2 cos2 θ = z2 : x2 + y2 + z2 = z2 θ ﺃﻱ : cos2 ﺃﻱ :( )x 2 + y 2 + z 2 = z 2 1 + tan2 θ ﻭ ﻋﻠﻴﻪ x 2 + y 2 − z 2 tan2 θ = 0 :ﻭ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺫﻱ ﻤﺤﻭﺭﻩ O ; kﻭ ﺭﺃﺴﻪ Oﻭ ﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ θﻭ ﻫﻲ) ( ﻤﻥ ﺍﻟﺸﻜل x 2 + y 2 − a 2z 2 = 0 : ﻤﺜﺎل :ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O;i , j , kﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺫﻱ) (( ). O ; k ﻭ ﻤﺤﻭﺭﻩ π Oﻭ ﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ ﺭﺃﺴﻪ 2x2 + y 2 − z 2 tan2 π = 0 : ﺍﻟﻤﺨﺭﻭﻁ ﻤﻌﺎﺩﻟﺔ : ﺍﻟﺤل 2 ﺃﻱ x2 + y2 − z2 = 0 : ﺃﻱ z2 = x2 + y2 :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ .
(2ﺇﺫﺍ ﻜﺎﻥ ﻤﺤﻭﺭ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ O ; iﻭ ﺭﺃﺴﻪ 0ﻭ ﻨﺼﻑ) ( ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ : θﻓﺈﻥ ﻤﻌﺎﺩﻟﺘﻪ y2 + z2 − x2 tan2 θ = 0 :ﻤﺜﺎل :ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O ;i , j , kﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ) ( ﺍﻟﺩﻭﺭﺍﻨﻲ ﺍﻟﺫﻱ ﻤﺤﻭﺭﻩ O;iﻭ ﺭﺃﺴﻪ ( )O π ﻭ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ 3 y2 + z2 − x2 tan2 π = 0 ﺍﻟﺤل :ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﻫﻲ : 6y2 + z2 − 1 x2 = 0 : ﻭ ﻤﻨﻪ y2 + z2 − x2 3 2 = 0 : ﺃﻱ 3 3 π ) ﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺍﻟﺭﺃﺱ ﻫﻲ ( 6 (3ﺇﺫﺍ ﻜﻠﻥ ﻤﺤﻭﺭ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ O ; jﻭ ﺭﺃﺴﻪ ( )O ﻭ ﻨﺼﻑ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ θﻓﺈﻥ ﻤﻌﺎﺩﻟﺘﻪ x2 + z2 − y2 tan2 θ = 0 : ﻤﺜﺎل :ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ . O;i , j , kﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ) ( ( )π O; j ﺍﻟﺫﻱ ﻤﺤﻭﺭﻩ ﻭ ﺭﺃﺴﻪ Oﻭ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ 2 ﺍﻟﺤل : ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﻫﻲx 2 + z 2 − y 2 tan2 θ = 0 :. x2 + z2 − y2 = 0 ﻭ ﻤﻨﻪ : x2 + z 2 − y 2 tan2 π = 0 : ﺃﻱ 4 ﻤﻘﺎﻁﻊ ﻤﺨﺭﻭﻁﻴﺔ : ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O;i , j , k
ﻟﻴﻜﻥ δﻗﻁﻊ ﻤﺨﺭﻭﻁﻲ ﺩﻭﺭﺍﻨﻲ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ( )x2 + y2 − a2z2 = 0 : ﺤﻴﺙ p . a ∈ * :ﻤﺴﺘﻭ ﻴﻭﺍﺯﻱ ﺃﺤﺩ ﺍﻟﻤﺤﺎﻭﺭ ﺍﻹﺤﺩﺍﺜﻴﺔ ( ). -1ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ λ ∈ ، z = λ : pﻓﺈﻥ pﻴﻭﺍﺯﻱ) ( ) ( O; i , jﻭ ﻴﻜﻭﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺩﻴﻜﺎﺭﺘﻲ ﻟـ δ ∩ p :ﻜﻤﺎ ﻴﻠﻲ ( ) ( ) ( ):x2 + y2 − a2λ2 = 0 x2 + y2 − a2z2 = 0 ﻭ ﻋﻠﻴﻪ : z=λ -ﺇﺫﺍ ﻜﺎﻥ x2 + y2 = 0 : λ = 0ﻭ ﻤﻨﻪ ( x ; y;z) = (O;O;O) :ﻭ ﻋﻠﻴﻪ (δ) ∩ ( p) = {O} :x 2 + y 2 = a 2λ2 λ≠0 ﻭ ﻫﻭ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺩﻴﻜﺎﺭﺘﻲ ﻓﺈﻥ : -ﺇﺫﺍ ﻜﺎﻥ z =λ ﻟﺩﺍﺌﺭﺓ ﻭ ﻤﻨﻪ δ ∩ p :ﻫﻲ ﺩﺍﺌﺭﺓ ( ) ( ). -2ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ ( )y = λ : pﻓ ﺈن ( p ) :ﻴﻭﺍﺯﻱ ( )O;i , kﻭﻤﻨﻪ δ ∩ pﻴﻘﺒل ﺘﻤﺜﻴﻼ ﺩﻴﻜﺎﺭﺘﻴﺎ ﻤﻥ ﺍﻟﺸﻜل ( ) ( ): x 2 − a 2z 2 = 2 −λ y =λ -ﺇﺫﺍ ﻜﺎﻥ λ = 0 :ﻓﺈﻥ ( x − az )( x + az ) = 0 : ﻭ ﻤﻨﻪ x − az = 0 :ﺃﻭ x + az = 0ﻭ ﻤﻨﻪ δ ∩ pﻫﻭ ﺍﺘﺤﺎﺩ ﻤﺴﺘﻘﻴﻤﻴﻥ ﻤﻌﺭﻓﻴﻥ ﻜﻤﺎ ﻴﻠﻲ ( ) ( ): x + az = 0 x − az = 0 ﺃﻭ : y=λ y=λ ﻭ ﻫﻤﺎ ﻤﺴﺘﻘﻴﻤﻴﻥ ﻤﻥ ﻤﻭﻟﺩﺍﺕ ( ). δ
ﺇﺫﺍ ﻜﺎﻥ λ 0 :ﻓﺈﻥ x 2 − a 2z 2 = −λ 2ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻗﻁﻊ ﺯﺍﺌﺩ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻱ ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ O;i , kﻭ ﻋﻠﻴﻪ δ ∩ p :ﻫﻭ ﻗﻁﻊ ﺯﺍﺌﺩ-3 .ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ) ( ) ( ) () x = λ : ( pﺃﻱ ) ( pﻴﻭﺍﺯﻱ O ; j , kﻓﺈﻥ ) (δ) ∩ ( pﺘﻘﺒل ﺘﻤﺜﻴﻼ) ( y2 − a2z2 = −λ2 ﺩﻴﻜﺎﺭﺘﻴﺎ ﻤﻥ ﺍﻟﺸﻜل : x=λ y2 − a2z2 = 0 -ﺇﺫﺍ ﻜﺎﻥ : λ = 0 ﻭ ﻋﻠﻴﻪ : x=0 ( y − az)( y + az) = 0 x=0 y + az = 0 y − az = 0 ﺃﻭ ﺇﺫﻥ : x=0 x=0 ﻭ ﻫﻤﺎ ﺘﻤﺜﻴﻠﻴﻥ ﻟﻤﺴﺘﻘﻴﻤﻴﻥ . ﺇﺫﻥ δ ∩ pﻫﻭ ﺍﺘﺤﺎﺩ ﻤﺴﺘﻘﻴﻤﻴﻥ ﻤﻥ ﻤﻭﻟﺩﺍﺕ ( ) ( ) ( )δy2 − a2z2 = −λ2 : ﻟﺩﻴﻨﺎ y2 − = a2z2 −λ ﺇﺫﺍ ﻜﺎﻥ λ z 0 - ، x=λ ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻗﻁﻊ ﺯﺍﺌﺩ ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﺫﻱ ﻴﻭﺍﺯﻱ ( )O ; j , k
– IIIﺍﻟﻤﺠﺴﻡ ﺍﻟﻤﻜﺎﻓﺊ :ﺘﻌﺭﻴﻑ :ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ O ; i , j , kﺘﻜﻭﻥ ﻤﻌﺎﺩﻟﺔ) ( ﺍﻟﻤﺠﺴﻡ ﺍﻟﻤﻜﺎﻓﺊ ﻤﻥ ﺍﻟﺸﻜل z = x2 + y2 : -ﻤﻘﺎﻁﻊ ﻤﺠﺴﻡ ﻤﻜﺎﻓﺊ : ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O ; i , j , k pﻤﺴﺘﻭ ﻴﻭﺍﺯﻱ ﺃﺤﺩ ﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻹﺤﺩﺍﺜﻴﺔ ( ). Zﻤﺠﺴﻡ ﻤﻜﺎﻓﺊ ﻤﻌﺎﺩﻟﺘﻪ ( )z = x2 + y2 : x 2 + z = λﻓﺈﻥy 2 = λ : z =λ(p )∩(Z ) : ﻫﻲ(: (1ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ )p -ﺇﺫﺍ ﻜﺎﻥ {( p ) ∩ ( z ) = O } : λ = 0 -ﺇﺫﺍ ﻜﺎﻥ ( p) ∩ ( z ) = ∅ : λ < 0 -ﺇﺫﺍ ﻜﺎﻥ p ∩ z : λ > 0ﻫﻮ ﺩﺍﺋﺮﺓ ( ) ( ). (2ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ pﻫﻲ y = λ :ﻓﺈﻥ ( ):
z = x2 + λ 2 =y λ) ( p) ∩ ( zﻫﻮ ﻗﻄﻊ ﻣﻜﺎﻓﺊ . ﻭ ﻋﻠﻴﻪ : ( p ) ∩ ( Z ) : z = y2 + λ2 x=λﻭ ﻋﻠﻴﻪ) ( ) () (p ∩ z : ﻓﺈﻥ : ﻫﻲ x = λ : p -ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻌﺎﺩﻟﺔ ( p) ∩ ( z ) :ﻫﻮ ﻗﻄﻊ ﻣﻜﺎﻓﺊ – IVﺍﻟﻤﺠﺴﻡ ﺍﻟﺯﺍﺌﺩﻱ : ﺘﻌﺭﻴﻑ : 1 ﻤﻌﺎﺩﻟﺘﻪ z = x. y :ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O ; i , j, k -ﻤﻘﺎﻁﻊ ﻤﺠﺴﻡ ﺯﺍﺌﺩﻱ : ﺍﻟﻔﻀﺎﺀ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( )O ; i , j , k pﻤﺴﺘﻭ ﻴﻭﺍﺯﻱ ﺃﺤﺩﺍﻟﻤﺴﺘﻭﻴﺎﺕ ﺍﻹﺤﺩﺍﺜﻴﺔ( ). Hﻤﺠﺴﻡ ﺯﺍﺌﺩﻱ ﻤﻌﺎﺩﻟﺘﻪ ( )z = x. y : (1ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ pﻫﻲ ( )z = λ : (H ) ∩ ( p ) z = x.y : ﻓﺈﻥ z=λ
(∩)(H p ) x. y=λ ﻋﻠﻴﻪ : ﻭ z =λ -ﺇﺫﺍ ﻜﺎﻥ λ = 0ﻓﺈﻥ H ∩ p :ﻫﻭ ﺍﺘﺤﺎﺩ ﻤﺴﺘﻘﻴﻤﻴﻥ ( ) ( ). -ﺇﺫﺍ ﻜﺎﻥ λ ≠ 0ﻓﺈﻥ H ∩ p :ﻫﻮ ﻗﻄﻊ ﺯﺍﺋﺪ ( ) ( ). 2ﺇﺫﺍ ﻜﺎﻨﺕ ﻤﻌﺎﺩﻟﺔ pﻫﻲ y = λ :ﻓﺈﻥ ( ):( H ) ∩ ( )p : z = λx ( H ) ∩ ( )p : x.y = z : ﻣﻨﻪ ﻭ y=λ y = λ ﻭ ﻋﻠﻴﻪ H ∩ p :ﻫﻲ ﻣﺴﺘﻘﻴﻢ ( ) ( ). 3ﺇﺫﺍ ﻛﺎﻧﺖ ﻣﻌﺎﺩﻟﺔ pﻫﻲ x = λ :ﻓﺈﻥ ( ):(H ) ∩ ( )p : z = λy (H ) ∩ ( p ) : x .y = z : ﻣﻨﻪ ﻭ x = λ x =λ ﻭ ﻋﻠﻴﻪ H ∩ p :ﻫﻲ ﻣﺴﺘﻘﻴﻢ ( ) ( ).
ﺘﻜﻨﻭﻟﻭﺠﻴﺎ ﺍﻹﻋﻼﻡ ﻭ ﺍﻻﺘﺼﺎل ﺒﺎﺴﺘﻌﻤﺎل ﺍﻟﺒﺭﻤﺠﻴﺔscientific workplace 3.0 :ﺃﻨﺸﺊ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﻤﺠﺴﻡ ﺍﻟﻤﻜﺎﻓﺊ z=x^2+y^2 : ﺍﻟﺤل :ﻓﺘﺘﺤﻭل ﺇﻟﻰ (1ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻹﻴﻘﻭﻨﺔ (2ﻨﻜﺘﺏ ﺍﻟﻤﻌﺎﺩﻟﺔ z=x^2+y^2 (3ﻨﻨﻘﺭ ﻋﻠﻰ ﺍﻹﻴﻘﻭﻨﺔ ﻓﻨﺤﺼل ﻋﻠﻰ ﺍﻟﺸﻜل ﺍﻟﻤﻘﺎﺒل : (4ﺒﺎﻟﻨﻘﺭ ﺍﻟﻤﺯﺩﻭﺝ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ﻴﻅﻬﺭ ﻋﻠﻰ ﺍﻟﺼﻭﺭﺓ ﺇﻴﻘﻭﻨﺘﺎﻥ (5ﺍﻹﻴﻘﻭﻨﺔ ﺍﻟﺴﻔﻠﻰ ﺘﺴﻤﺢ ﺒﺎﻟﺘﺤﻜﻡ ﻓﻲ ﻤﺠﺎل ﺍﻟﻘﻴﻡ ﻭ ﺍﻟﻭﺤﺩﺓ ... (6ﺍﻹﻴﻘﻭﻨﺔ ﺍﻟﻌﻠﻴﺎ ﺘﺴﻤﺢ ﺒﺘﺤﺭﻴﻙﺍﻟﺸﻜل ﻭﺭﺃﻴﺘﻪ ﻤﻥ ﺃﻱ ﺯﺍﻭﻴﺔ ﻨﺸﺎﺀ ﻭ ﻫﺫﺍ ﺒﺎﻟﻨﻘﺭ ﻋﻠﻰ ﺍﻟﺸﻜل ﺩﻭﻥ ﺘﺭﻙ ﺍﻟﻔﺄﺭﺓ ﻭ ﺘﺤﺭﻴﻜﻬﺎ . (7ﺍﻟﺸﻜل ﺍﻟﺴﺎﺒﻕ ﻋﻨﺩ ﺭﺅﻴﺘﻪ ﻤﻥ ﺍﻟﺠﻬﺔ ﺍﻟﺴﻔﻠﻰ ﺇﻟﻰ ﺍﻟﻌﻠﻰ ﻓﻲ ﺍﺘﺠﺎﻩ ﺍﻟﻤﺤﻭﺭ OZﻴﻅﻬﺭ ﻜﻤﺎ ﻴﻠﻲ ( ):
ﺘﻤـﺎﺭﻴﻥ ﻭ ﻤﺸﻜﻼﺕ ﺍﻟﺘﻤﺭﻴﻥ. 1 ﺿﻊ ﺍﻟﻌﻼﻣﺔ √ ﺃﻣﺎﻡ ﻛﻞ ﲨﻠﺔ ﺻﺤﻴﺤﺔ ﻭ ﺍﻟﻌﻼﻣﺔ × ﺃﻣﺎﻡ ﻛﻞ ﲨﻠﺔ ﺧﺎﻃﺌﺔ . -1ﺍﻷﺳﻄﻮﺍﻧﺔ ﺍﻟﺪﻭﺭﺍﻧﻴﺔ ﻫﻲ ﳎﻤﻮﻋﺔ ﻧﻘﻂ ﻣﺴﺘﻘﻴﻤﺎﺕ ﻣﻮﺍﺯﻳﺔ ﲤﺎﻣﺎ ﳌﺴﺘﻘﻴﻢ ﺛﺎﺑﺖ ﰲ ﺍﻟﻔﻀﺎﺀ . . x2 + y2 = 9 -2ﺍﳉﻤﻠﺔ. ﻫﻲ ﲤﺜﻴﻼ ﻻﺳﻄﻮﺍﻧﺔ ﺩﻭﺭﺍﻧﻴﺔ z=1 -3ﻛﻞ ﻣﺴﺘﻮ ﻗﺎﻃﻊ ﻷﺳﻄﻮﺍﻧﺔ ﻳﻘﻄﻌﻬﺎ ﻭﻓﻖ ﺩﺍﺋﺮﺓ. . . -4ﺍﳌﺴﺎﻗﻂ ﺍﻟﻌﻤﻮﺩﻳﺔ ﻟﻜﻞ ﻧﻘﻂ ﺍﻷﺳﻄﻮﺍﻧﺔ ﺍﻟﺪﻭﺭﺍﻧﻴﺔ ﻭﻓﻖ ﻣﻨﺤﲎ ﻳﻮﺍﺯﻱ ﳏﻮﺭ ﺍﻷﺳﻄﻮﺍﻧﺔ ﺗﺸﻜﻞ ﺩﺍﺋﺮﺓ . . -5ﺍﳌﻌﺎﺩﻟﺔ x2 − y2 = 9ﻫﻲ ﻣﻌﺎﺩﻟﺔ ﺍﺳﻄﻮﺍﻧﺔ ﺩﻭﺭﺍﻧﻴﺔ ﰲ ﺍﻟﻔﻀﺎﺀ . . -6ﺍﳌﻌﺎﺩﻟﺔ x − 4 x + 4 + z 2 = 9 :ﻫﻲ ﻣﻌﺎﺩﻟﺔ) ( ) ( ﺃﺳﻄﻮﺍﻧﺔ ﺩﻭﺭﺍﻧﻴﺔ ﰲ ﺍﻟﻔﻀﺎﺀ . . -7ﺍﳌﺨﺮﻭﻁ ﺍﻟﺪﻭﺭﺍﱐ ﻫﻮ ﳎﻤﻮﻋﺔ ﻧﻘﻂ ﻣﻦ ﺍﻟﻔﻀﺎﺀﺘﺒﻌﺩ ﺒﻌﺩﺍ ﺜﺎﺒﺘﺎ ﻋﻥ ﻤﺴﺘﻘﻴﻡ ﺜﺎﺒﺕ . . -8ﺍﻟﻤﻌﺎﺩﻟﺔ x2 + y2 − 3z2 = 0 :ﻫﻲ ﻤﻌﺎﺩﻟﺔﻟﻤﺨﺭﻭﻁ ﺩﻭﺭﺍﻨﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ . . -9ﺍﻟﻤﻌﺎﺩﻟﺔ x2 + y2 + 4z2 = 0 :ﻫﻲ ﻤﻌﺎﺩﻟﺔﻟﻤﺨﺭﻭﻁ ﺩﻭﺭﺍﻨﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ . . ﻫﻲ ﻤﻌﺎﺩﻟﺔ) (z21 = 2 x2 + y2 -10ﺍﻟﻤﻌﺎﺩﻟﺔ :ﻟﻤﺨﺭﻭﻁ ﺩﻭﺭﺍﻨﻲ ﻓﻲ ﺍﻟﻔﻀﺎﺀ . . -11ﺍﻟﻤﻌﺎﺩﻟﺔ x2 + y2 = 1 :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺠﺴﻡﻤﻜﺎﻓﺊ ﻓﻲ ﺍﻟﻔﻀﺎﺀ . . -12ﺍﻟﻤﻌﺎﺩﻟﺔ x .y = 5 :ﻫﻲ ﻤﻌﺎﺩﻟﺔ ﻤﺠﺴﻡ
ﺯﺍﺌﺩﻱ ﻓﻲ ﺍﻟﻔﻀﺎﺀ . . ﺍﻟﺘﻤﺭﻴﻥ. 2 ﺍﻟﻔﻀﺎﺀ ﻣﻨﺴﻮﺏ ﺇﱃ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﺘﺠﺎﻧﺲ ( ). O ; i , j , kﺃﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺍﻷﺳﻄﻮﺍﻧﺔ ﺍﻟﱵ ﳏﻮﺭﻫﺎ O ; uﻭ ﻧﺼﻒ ﻗﻄﺮﻫﺎ αﰲ ﻛﻞ ﺣﺎﻟﺔ ﳑﺎ ﻳﻠﻲ ( ):α = 5 ، u = j (2 ، α = 3 ، u = i (1 =α 3 ، u=k (3 5 ﺍﻟﺘﻤﺭﻴﻥ 3 ﺍﻟﻔﻀﺎﺀ ﻣﻨﺴﻮﺏ ﺇﱃ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﺘﺠﺎﻧﺲ ( ). O ; i , j , k δﺃﺳﻄﻮﺍﻧﺔ ﳏﻮﺭﻫﺎ O ; iﻭ ﺗﺸﻤﻞ ﺍﻟﻨﻘﻄﺔ ( )( ) ( )ω −1 ; 0 ; 2 x = −1 + 2λ y=λ ∆ ﻤﺴﺘﻘﻴﻡ ﻤﻌﺭﻑ ﺒﺘﻤﺜﻴﻠﻪ ﺍﻟﻭﺴﻴﻁﻲ) ( z = 2 − λ -1ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ( ). δ -2ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ δﻭ ∆) ( ) ( ﺍﻟﺘﻤﺭﻴﻥ 4ﻓﻲ ﺍﻟﻔﻀﺎﺀ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O ; i , j , k ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺔ ) A( −1 ; 2 ; 4ﻭ ﺍﻟﺸﻌﺎﻉ )u( −1 ; 0 ; 3 – 1ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﺍﻟﺩﻭﺭﺍﻨﻴﺔ δﺍﻟﺘﻲ ﻤﺤﻭﺭﻫﺎ ( ) ( )O ; j ﻭ ﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ . A -2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻯ πﺍﻟﺫﻱ ﻴﺸﻤل Aﻭ uﺸﻌﺎﻉ ﻨﺎﻅﻤﻲ ﻟﻪ ( ). -3ﻋﻴﻥ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ δﻭ ( ) ( ). π
ﺍﻟﺘﻤﺭﻴﻥ 5 ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳌﻨﺴﻮﺏ ﺇﱃ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﺘﺠﺎﻧﺲ ( ). O ; i , j , k ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁﺘﻴﻥ ) A( −2 ; 2 ; 1ﻭ )B ( 2 ; − 2 ; 3 -1ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻜﺭﺓ sﺍﻟﺘﻲ ﻗﻁﺭﻫﺎ [ ] ( )AB -2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ δﺍﻟﱵ ﳏﻮﺭﻫﺎ o;kﻭ ﻧﺼﻒ ﻗﻄﺮﻫﺎ ( ) ( )5 -3ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ sﻭ ( ) ( ). δ ﺍﻟﺘﻤﺭﻴﻥ 6 ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳌﻨﺴﻮﺏ ﺇﱃ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﺘﺠﺎﻧﺲ ( ). O ; i , j , k ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ Rﺍﻟﺫﻱ ﺭﺃﺴﻪ 0ﻭ ﻤﺤﻭﺭﻩ ( ) ( )O ; u ﻭ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ Aﻓﻲ ﻜل ﺤﺎﻟﺔ ﻤﻤﺎ ﻴﻠﻲ : u = i (1ﻭ )A( −2 ; 3 ; 1 u = j (2ﻭ )A(1 ; − 1 ; 1 u = k (3ﻭ )A(0 ; − 1 ; 2 ﺍﻟﺘﻤﺭﻴﻥ 7 ﺍﻟﻔﻀﺎﺀ ﻣﻨﺴﻮﺏ ﺇﱃ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﺘﺠﺎﻧﺲ ( ). O ; i , j , k -1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ Rﺍﻟﺫﻱ ﺭﺃﺴﻪ 0ﻭ ﻤﺤﻭﺭﻩ O ; jﻭ ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ) ( ) ( ( )A 1 ; 1 ; 2 -2ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ δﺍﻟﺘﻲ ﻤﺤﻭﺭﻫﺎ O ; jﻭ ﻨﺼﻑ) ( ) ( ﻗﻁﺭﻫﺎ . 2 -3ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ δﻭ ( ) ( ). R
ﺍﻟﺘﻤﺭﻴﻥ 8 ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳌﻨﺴﻮﺏ ﺇﱃ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﺘﺠﺎﻧﺲ ( ). O ; i , j , k ﻨﻌﺘﺒﺭ ﺍﻟﻨﻘﻁ )، C ( −1 ; 0 ; 1) ، B (0 ; 1 ; 1) ، A( −1 ; 1 ; 1 ). D(2 ; 1 ; 2 -1ﺃﻜﺘﺏ ﺘﻤﺜﻴﻼ ﻭﺴﻴﻁﻴﺎ ﻟﻠﻤﺴﺘﻭﻱ ( ). ABC -2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺨﺭﻭﻁ ﺍﻟﺩﻭﺭﺍﻨﻲ Rﺍﻟﺫﻱ ﺭﺃﺴﻪ Oﻭ ﻤﺤﻭﺭﻩ O ; kﻭ) ( ) ( ﻴﺸﻤل ﺍﻟﻨﻘﻁﺔ D -3ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ABCﻭ ( ) ( ). R ﺍﻟﺘﻤﺭﻴﻥ 9 ﺍﻟﻤﺴﺘﻭﻯ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O ; i , j , k – 1ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﺍﻟﻜﺭﺓ sﺍﻟﺘﻲ ﻤﺭﻜﺯﻫﺎ ( ) ( )A 0 ; 2 ; 0 ﻭ ﻨﺼﻑ ﻗﻁﺭﻫﺎ . 1 – 2ﺃﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﺍﻷﺴﻁﻭﺍﻨﺔ δﺍﻟﺘﻲ ﻤﺤﻭﺭﻫﺎ ( ) ( )O ; j ﻭ ﻤﺤﻴﻁﺔ ﺒﺎﻟﻜﺭﺓ ( )s -3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﺍﻟﻤﺨﺭﻭﻁ Rﺍﻟﺫﻱ ﻤﺤﻭﺭﻩ O ; jﻭ ﻤﺤﻴﻁ ﺒﺎﻟﻜﺭﺓ ( ) ( ) ( ). s – 4ﻋﻴﻥ ﻨﻘﻁ ﺍﻟﺘﻘﺎﻁﻊ δﻭ ( ) ( )R ﺍﻟﺘﻤﺭﻴﻥ 10 ﺍﻟﻤﺴﺘﻭﻯ ﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ( ). O ; i , j , kπ( ) ( ).2 ﻭ ﺯﺍﻭﻴﺔ ﺭﺃﺴﻪ O;k ﻤﺨﺭﻭﻁ ﺩﻭﺭﺍﻨﻲ ﺭﺃﺴﻪ 0ﻭﻤﺤﻭﺭﻩ R – 1ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ( ). R
– 2ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ δﺍﻟﺘﻲ ﻤﺤﻭﺭﻫﺎ O ; kﻭ ﺘﺸﻤل ﺍﻟﻨﻘﻁﺔ) ( ) ( ). A(3 ; 4 ; 5 – 3ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺴﻁﺢ ﺍﻟﻜﺭﺓ sﺫﺍﺕ ﺍﻟﻤﺭﻜﺯ 0ﻭ ﺘﺸﻤل ( ). A -4ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ sﻭ ( ) ( ). R ﺍﻟﺤـﻠــــــﻭل ﺍﻟﺘﻤﺭﻴﻥ 1√ (4 × (3 × (2 √ (1√ (8 × (7 √ (6 × (5× (12 × (11 √ (10 × (9 ﺍﻟﺘﻤﺭﻴﻥ 2 ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ :y2 + z2 = 9 : α = 3 ، u = i (1x2 + z2 = 5 : α = 5 ، u = j (2x2 + y2 = 9 3 ، u = k (35 25 : α=5 ﺍﻟﺘﻤﺭﻴﻥ 3 – 1ﻤﻌﺎﺩﻟﺔ ( )y2 + z2 = α2 : δﻭ ﺒﻤﺎ ﺃﻥ ) ω ∈ (δﻓﺈﻥ (0)2 + ( 2)2 = α2 :ﻭ ﻤﻨﻪ α2 = 4 :ﻭ ﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ﻫﻲ y2 + z2 = 4 : – 2ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ∆ ﻭ ( ) ( ): δ ﻨﺤل ﺍﻟﺠﻤﻠﺔ :
y2 + z2 = 4 xλ2 + (2 − λ )2 = 4 : ﻓﻨﺠﺩ = −1 + 2λ y=λ z = 2 − λ ﻭ ﻤﻨﻪ λ2 + 4 − 4λ + λ2 = 4 :ﺇﺫﻥ 2λ2 − 4λ = 0 :ﻭ ﻋﻠﻴﻪ 2λ (λ − 2) = 0 :ﺇﻤﺎ λ = 0 : ﺃﻭ λ = 2 : ﻭ ﻋﻠﻴﻪ( x ; y ; z ) = ( −1 ; 0 ; 2) : ﺃﻭ )( x ; y ; z) = (3 ; 2 ; 0 ﻭ ﻤﻨﻪ (δ) ∩ ( ∆ ) = {ω ; B} : ﺤﻴﺙ ω( −1 ; 0 ; 2) :ﻭ )B ( 3 ; 2 ; 0 ﺍﻟﺘﻤﺭﻴﻥ 4 – 1ﻤﻌﺎﺩﻟﺔ ﺍﻷﺴﻁﻭﺍﻨﺔ ( )x2 + z2 = α2 : δﻭ ﺒﻤﺎ ﺃﻥ A∈ (δ) :ﻓﺈﻥ ( −1)2 + ( 4)2 = α2 :ﺇﺫﻥ α2 = 17 :ﻭ ﻋﻠﻴﻪ ﻤﻌﺎﺩﻟﺔ δﻫﻲ ( )x2 + z2 = 17 : – 2ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﺴﺘﻭﻯ ( )− x + 0. y + 3z + c = 0 : πﻭﺒﻤﺎ ﺃﻥ A ∈ πﻓﺈﻥ 1 02 34 c ( )0 : ﻭ ﻋﻠﻴﻪ 13 + c = 0 :ﻭ ﻤﻨﻪ C = −13 : ﺇﺫﻥ ﻤﻌﺎﺩﻟﺔ ) ( πﻫﻲ − x + 3z − 13 = 0 :(1) ... x2 + z2 = 17 0 : ﺍﻟﺠﻤﻠﺔ ﻨﺤل ):(π )(δﻭ ﺘﻘﺎﻁﻊ – 3= ( 2) ...− x + 3z − 13 ﻤﻥ )( 3) ...x = 3z − 13 : (2 ﻨﻌﻭﺽ xﺒﻘﻴﻤﺘﻬﺎ ﻤﻥ ) (3ﻓﻲ ) (1ﻓﻨﺠﺩ : ( 3z − 13)2 + z2 = 17
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199