ﻓﻬﺭﺱ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻟﺙ ﺍﻟﻭﺤﺩﺓ ) :(15ﺍﻟﻔﻭﺍﺌﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻟﻭﺤﺩﺓ ) :(16ﺍﻟﺩﻓﻌﺎﺕ ﺍﻟﺜﺎﺒﺘﺔ ﺍﻟﻭﺤﺩﺓ ) :(17ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﻭﺽ ﺍﻟﻭﺤﺩﺓ ) :(18ﺍﻟﺘﻨﺒﺅﺍﺕ ﻁﻭﻴﻠﺔ ﺍﻷﺠل ﺍﻟﻭﺤﺩﺓ ) :(19ﺍﻟﺘﻨﺒﺅﺍﺕ ﻗﺼﻴﺭﺓ ﺍﻷﺠل
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺍﻟﻤﺠﺎل ﺍﻟﻤﻔﺎﻫﻴﻤﻲ ﺍﻟﺭﺍﺒﻊ :ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﻤﺎﻟﻴﺔ ﻁﻭﻴﻠﺔ ﺍﻷﺠل ﺍﻟﻭﺤﺩﺓ ) :(16ﺍﻟﺩﻓﻌﺎﺕ ﺍﻟﺜﺎﺒﺘﺔ ANNUITES CONSTANTES ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: ـ ﻴﻘﻴﻡ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻓﻲ ﺘﺎﺭﻴﺦ ﻤﺎ. ﺍﻟﻤﺩﺓ ﺍﻟﻼﺯﻤﺔ 10 :ﺴﺎﻋﺎﺕ ﺍﻟﻤﺭﺍﺠﻊ :ﺍﻟﻜﺘﺏ ﺍﻟﻤﺩﺭﺴﻴﺔ ﺍﻟﻤﻘﺭﺭﺓ . ﻤﺅﺸﺭﺍﺕ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ: ﻴﺤﺩﺩ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ. ﻴﺤﺩﺩ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ. ﻴﻘﻴﻡ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﻓﻲ ﺘﺎﺭﻴﺦ ﻤﺎ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ .1ﺘﻌﺭﻴﻑ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ .2ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ .3ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ .4ﺘﻘﻴﻴﻡ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ .5ﺃﻨﺸﻁﺔ ﺍﻹﻋﻼﻡ ﺍﻵﻟﻲ ﻭ ﺤﻠﻭﻟﻬﺎ .6ﺃﺴﺌﻠﺔ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ .7ﺃﺠﻭﺒﺔ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ .1ﺘﻌﺭﻴﻑ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ:ﺍﻟﺩﻓﻌﺎﺕ ﻫﻲ ﻤﺒﺎﻟﻎ ﺘﺩﻓﻊ ﻋﻠﻰ ﻓﺘﺭﺍﺕ ﺯﻤﻨﻴﺔ ﺜﺎﺒﺘﺔ )ﻤﺘﺴﺎﻭﻴﺔ( ﻭﺍﻟﻔﺎﺭﻕ ﺍﻟﺯﻤﻨﻲ ﺍﻟﺫﻱ ﻴﻔﺼل ﺒـﻴﻥ ﺘﺴـﺩﻴﺩ ﺩﻓﻌﺘﻴﻥ ﻴﺴﻤﻰ ﺒﺎﻟﻤﺩﺓ ،ﻓﻘﺩ ﺘﻜﻭﻥ ﺍﻟﻤﺩﺓ ﺴﻨﻭﻴﺔ ،ﺴﺩﺍﺴﻴﺔ ﺜﻼﺜﻴﺔ ﺃﻭ ﺸﻬﺭﻴﺔ. ﻭ ﺍﻟﺩﻓﻌﺎﺕ ﻋﻠﻰ ﻋﺩﺓ ﺃﻨﻭﺍﻉ ﻭ ﻫﺫﺍ ﺤﺴﺏ ﺍﻟﻬﺩﻑ ﺍﻟﺫﻱ ﺘﺩﻓﻊ ﻤﻥ ﺃﺠﻠﻪ : ﺃ ـ ﻓﺈﺫﺍ ﻜﺎﻥ ﺍﻟﻬﺩﻑ ﻤﻨﻬﺎ ﻫﻭ ﺘﻜﻭﻴﻥ ﺭﺃﺱ ﻤﺎل ﻓﻲ ﻨﻬﺎﻴﺔ ﻤﺩﺓ ﻤﺤﺩﺩﺓ ﻓﻬﻲ ﺇﺫﹰﺍ: -ﺩﻓﻌﺎﺕ ﻋﺎﺩﻴﺔ ﻟﻼﺴﺘﺜﻤﺎﺭ ﺃﻭ ﺍﻟﺭﺴﻤﻠﺔ ) (Annuités de Capitalisationﻋﻨﺩﻤﺎ ﺘـﺩﻓﻊﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﻨﻬﺎﻴﺔ ﻜل ﻤﺩﺓ ﺃﻱ ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭﻟﻰ ﺘﺩﻓﻊ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﺍﻷﻭﻟﻰ ﻭ ﻫﻜﺫﺍ . ...ﻭ ﻤﻥ ﺃﻤﺜﻠﺔ ﻫﺫﻩ ﺍﻟﺩﻓﻌﺎﺕ ﺃﻗﺴﺎﻁ ﺍﻟﺘﺄﻤﻴﻥ ﻋﻠﻰ ﺍﻟﺤﻴﺎﺓ. -ﺩﻓﻌﺎﺕ ﺍﻟﺘﻭﻅﻴﻑ ) (Annuités de placementﻋﻨﺩﻤﺎ ﺘﺩﻓﻊ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﺒﺩﺍﻴﺔ ﻜل ﻤﺩﺓ ﺃﻱ ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭﻟﻰ ﺘﺩﻓﻊ ﻋﻨﺩ ﺘﻭﻗﻴﻊ ﺍﻟﻌﻘﺩ.ﺏ ـ ﺃﻤﺎ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻬﺩﻑ ﻤﻨﻬﺎ ﺘﺴﺩﻴﺩ ﺩﻴﻥ )ﻗﺭﺽ ﻤﺜ ﹰﻼ( ،ﻓﻬﻲ ﺘﺩﻋﻰ ﺒﺩﻓﻌﺎﺕ ﺍﻟﺴـﺩﺍﺩ ) Annuités de (Remboursementﺃﻭ ﺒﺩﻓﻌﺎﺕ ﺍﻻﺴﺘﻬﻼﻙ ) ،(Annuités d'amortissementﻭﻋﺎﺩﺓ ﻤـﺎ ﺘﺩﻓﻊ ﻓﻲ ﻨﻬﺎﻴﺔ ﻜل ﻤﺩﺓ. .2ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ .1.2ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻤﺔ ﻟﻠﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ )ﺍﻟﺠﻤﻠﺔ( ﻨﻌﺘﺒﺭ ﺃﻥ ﺍﻟﺩﻓﻌﺔ ﺍﻷﺨﻴﺭﺓ ﺘﺩﻓﻊ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺨﻴﺭﺓ ﺃﻱ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ. ﻨﺭﻤﺯ ﻟـ: : aﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ : nﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ :ﻤﻌﺩل ﻓﺎﺌﺩﺓ ) 1DAﻤﻌﺩل ﺍﻟﻔﺎﺌﺩﺓ ﺍﻟﻤﺭﻜﺒﺔ(i :ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﺍﻟﺯﻤﻥ ) ،(nﻋﻨﺩ ﺘﺴﺩﻴﺩ ﺁﺨﺭ ﺩﻓﻌﺔA.
ﺍﻹﺭﺴﺎل 3 ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ012345 p n-1 naaaaa a اﻟﻤﺪة aa A ﺍﻟﺠﻤﻠﺔ ﺘﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﺍﻟﺠﻤل ﻟﻜل ﺩﻓﻌﺔ ﻤﻥ ﺍﻟﺩﻓﻌﺎﺕ ﺃﻱ A: ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻤﺩﺓ ﺍﻟﺘﻭﻅﻴﻑ ﺍﻟﺩﻓﻌﺎﺕ )(n − 1 1 a (1 + i )n −1 a (1 + i )n −2 )(n − 2 2 a (1 + i )n −3 )(n − 3 3 a (1 + i )n −4 )(n − 4 4 a (1 + i )n −5 )(n − 5 5 ............................................................ ) a (1 + i )n − p (n − p p .............................................................. ) a(1+ i 1 n −1 a0 n ﻴﻤﻜﻥ ﺃﻥ ﻨﻜﺘﺏ ﻤﺠﻤﻭﻉ ﺍﻟﺠﻤل ﻋﻠﻰ ﺍﻟﻨﺤﻭ ﺍﻟﺘﺎﻟﻲ : A = a + a(1+ i )+ .....+ a(1+ i )n −3 + a(1+ i )n −2 + a(1+ i )n −1ﻨﻼﺤﻅ ﺃﻥ ﻤﺠﻤﻭﻉ ﺍﻟﺠﻤل ﺘﺸﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل ) (aﻭ ﺃﺴﺎﺴﻬﺎ ) (1 + iﻭ ﺤﺩﻫﺎ ﺍﻷﺨﻴﺭ . a(1 + i )n −1 ﻭ ﺤﻴﺙ ﺃﻥ ﻤﺠﻤﻭﻉ ﺤﺩﻭﺩ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻫﻭ ﺤﺴﺏ ﺍﻟﻘﺎﻨﻭﻥ ﺍﻟﺘﺎﻟﻲ: S=a × qn -1 , ﺃﻭ S = d.q-a , q-1 q-1
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺤﻴﺙ ) (qﻫﻭ ﺍﻷﺴﺎﺱ ﻭ ) (dﻫﻭ ﺍﻟﺤﺩ ﺍﻷﺨﻴﺭ ﻭ ) (aﺍﻟﺤﺩ ﺍﻷﻭل ﻭ ) (nﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ. ﻭ ﻤﻨﻪ: A = a (1 + i )n −1 (1 + i ) − a (1 + i ) − 1 A = a × (1 + i )n − 1 iﻴﻌﺒﺭ ﻋﻥ ﺠﻤﻠﺔ nﺩﻓﻌﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺫﺍﺕ 1 DAﻟﻜل ﺩﻓﻌﺔ ﻤﺴﺩﺩﺓ ﻓﻲ ﻨﻬﺎﻴﺔ (1 + i )n −1 ﺍﻟﻤﻘﺩﺍﺭ iﺍﻟﻤﺩﺓ .ﻭ ﻨﺴﺘﺨﺭﺝ ﻗﻴﻤﺘﻪ ﺇﻤﺎ ﺒﺎﻟﺤﺴﺎﺏ ﺍﻟﻌـﺎﺩﻱ ﻭ ﺍﻻﺴﺘﻌﺎﻨﺔ ﺒﺎﻵﻟﺔ ﺍﻟﺤﺎﺴﺒﻴﺔ ﺍﻟﻌﻠﻤﻴﺔ ﺃﻭ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺠﺩﺍﻭل ﺍﻟﻤﺎﻟﻴﺔ. .2.2ﺍﺴﺘﻌﻤﺎل ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻤﺔ ﻟﻠﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﺃ ـ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ )ﺍﻟﺠﻤﻠﺔ( ﺃ 1.ـ ﺠﻤﻠﺔ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ : ﺘﻁﺒﻴﻕ :ﺃﺤﺴﺏ ﺠﻤﻠﺔ 10ﺩﻓﻌﺎﺕ ﻋﻨﺩ ﺘﺴﺩﻴﺩ ﺁﺨﺭ ﺩﻓﻌﺔ ،ﻗﻴﻤﺔ ﻜل ﺩﻓﻌﺔ 10.000DAﺒﻤﻌﺩل %6ﺴﻨﻭﻴﹰﺎ. ﺍﻟﺤل : A = a × (1 + i )n − 1 i A = × 10.000 (1, 06)10 − 1 0, 06 A = 10.000 × 13,180795 A = 131.807, 95DA ﺃ 2.ـ ﺍﺴﺘﻨﺘﺎﺝ ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻤﺔ ﻟﺠﻤﻠﺔ ﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ :ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﺘﺩﻓﻊ ﺍﻟﺩﻓﻌﺔ ﺍﻷﺨﻴﺭﺓ ﻓﻲ ﺒﺩﺍﻴﺔ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺯﻤﻨﻴﺔ ﺍﻷﺨﻴﺭﺓ ﺃﻱ ﺃﻥ ﺍﻟﺩﻓﻌﺎﺕ ﺘﺩﻓﻊ ﻓﻲ ﺒﺩﺍﻴﺔ ﻜـل ﻤﺩﺓ ﺃﻭ ﻜل ﻓﺘﺭﺓ.
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ012345 p n-1 n aa a a a a a اﻟﻤﺪة a A′ ﺍﻟﺠﻤل ﺍﻟﻤﺘﺤﺼل ﻋﻠﻴﻬﺎ ﻓﻲ ﻨﻬﺎﻴﺔ ﻜل ﻓﺘﺭﺓ ﺃﻱ ﻋﻨﺩ ﺍﻟﻤﺩﺓ nﻫﻲ ﻜﻤﺎ ﻴﻠﻲ : ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻤﺩﺓ ﺍﻟﺘﻭﻅﻴﻑ ﺍﻟﺩﻓﻌﺎﺕ ) (n 1 a (1 + i )n a (1 + i )n −1 )(n − 1 2 a (1 + i )n −2 )(n − 2 3 a (1 + i )n −3 )(n − 3 4 ............................................................ a(1 + i )2 2 n −1 ) a (1 + i 1n ﻟﺘﻜﻥ A ′ﺍﻟﺠﻤﻠﺔ ﺍﻟﻤﺤﺼل ﻋﻠﻴﻬﺎ ﺒﻌﺩ ﺠﻤﻊ ﺠﻤل ﺍﻟﺩﻓﻌﺎﺕ ﺒﻌﺩ ﺍﻟﻤﺩﺓ nﻓﻨﺤﺼل ﻋﻠﻰ :A′ = a(1 + i ) + a(1 + i )2 + .... + a(1 + i )n −3 + a(1 + i )n −2 + a(1 + i )n −1ﻨﻼﺤﻅ ﺃﻥ ﻤﺠﻤﻭﻉ ﺍﻟﺠﻤل ﺘﺸﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل ) a(1 + iﻭﺃﺴﺎﺴـﻬﺎ ) (1 + iﻭ ﺤـﺩﻫﺎ ﺍﻷﺨﻴﺭ ، a(1 + i )n −1ﻭ ﺤﺴﺏ ﻗﺎﻨﻭﻥ ﻤﺠﻤﻭﻉ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻓﺈﻥ: A′ = a(1 + i ) (1 + i )n − 1 i ﺃﻭ ﻨﺴﺘﺨﺩﻡ ﺍﻟﺼﻴﻐﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺒﻌﺩ ﻨﺸﺭ ﺍﻟﻤﻘﺩﺍﺭ ) : (1 + i ⎡ (1 + i )n +1 − 1 ⎥⎤1 ⎢ i ⎦ A ′ = a ⎣ −
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺇﻻ ﺠﻤﻠﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﻨﻼﺤﻅ ﻤﻥ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺴﺎﺒﻘﺔ ﺃﻥ ﺠﻤﻠﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ ﻤﺎ ﻫﻲ ﺍﻟﻤﺩﺓ ﻤﻀﺭﻭﺒﺔ ﻓﻲ ﺍﻟﻤﻘﺩﺍﺭ ) (1 + i ﺃﻱ A ′ = A (1 + i ) : ﺘﻁﺒﻴﻕ :ﻭﻅﻑ ﺸﺨﺹ ﻓﻲ ﺒﺩﺍﻴﺔ ﻜل ﺴﻨﺔ ﻤﺒﻠﻎ 10.000 DAﻟﻤﺩﺓ 10ﺴﻨﻭﺍﺕ ،ﺤﻴﺙ ﺍﻟﻔﻭﺍﺌﺩ ﺘﺤﺴﺏ ﻓـﻲ ﻨﻬﺎﻴـﺔ ﺍﻟﺴﻨﺔ .ﻤﺎ ﻫﻭ ﻤﻘﺩﺍﺭ ﺍﻟﻤﺒﻠﻎ ﺍﻟﺫﻱ ﺘﺤﺼل ﻋﻠﻴﻪ ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻤﻌﺩل %7ﺴﻨﻭﻴﹰﺎ. ﺍﻟﺤل: ﺍﻟﺠﻤﻠﺔ ﺍﻟﺘﻲ ﺤﺼل ﻋﻠﻴﻬﺎ ﺍﻟﺸﺨﺹ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟـ 10ﺴﻨﻭﺍﺕ ﻫﻲ: A′ = a (1 + i ) (1+i )n −1 i A′=10.000(1,07)(1,007,)0170 −1 A ′ =10.000×1,07×13,816447 A′=147.835,98DA ﺏ ـ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ )(a ﻟﺩﻴﻨﺎ: A = a × (1 + i )n − 1 i a = A × (1 + i −1 i )n ﺘﻁﺒﻴﻕ :ﺠﻤﻠﺔ 14ﺩﻓﻌﺔ ﺜﺎﺒﺘﺔ ﺩﻓﻌﺕ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻫﻲ 2.421.492 DAﻭ ﺍﻟﻤﻌﺩل ﺍﻟﺴﻨﻭﻱ ﻫﻭ .%8ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ؟.
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﺤل : 2.421.492 = a × (1, 0 8 )14 − 1 0, 08 a = × 2.421.492 0, 08 (1, 08)14 − 1 a = 2.421.492 × 0, 041297 a = 100.000DA ﺠـ ـ ﺤﺴﺎﺏ ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ ) (n ﻣﻦ أﺟﻞ ﺣﺴﺎب ﻋﺪد اﻟﺪﻓﻌﺎت ﻧﺴﺘﺨﺪم ﺧﻮاص اﻟﻤﻌﺎدﻻت اﻟﻠﻮﻏﺎﺭﻴﺘﻤﻴﺔ ﻜﻤﺎ ﻴﻠﻲ: A = a × (1 + i )n − 1 i (1 + i )n − 1 = A ia (1 + i )n − 1 = i .A a (1 + i )n = i .A + 1 a ﻴﻜﻭﻥ ﻤﻌﻠﻭﻤﹰﺎ ﻭ ﻟﻴﻜﻥ ) (bﻓﺈﻥ : i .A +1 ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﻤﻘﺩﺍﺭ a (1 + i )n = b ) log(1 + i )n = log(b ) n . log(1 + i ) = log(b n = ) log(b ) log(1 + i ﺘﻁﺒﻴﻕ :ﻜﻡ ﺩﻓﻌﺔ ﺫﺍﺕ 20.000 DAﻟﻠﺩﻓﻌﺔ ﻴﺠﺏ ﺃﻥ ﺘﺩﻓﻊ ﻓﻲ ﻨﻬﺎﻴﺔ ﻜل ﺴﻨﺔ ﻟﻠﺤﺼﻭل ﻋﻠـﻰ ﺠﻤﻠـﺔ ﻗـﺩﺭﻫﺎ DA 300.516,10ﺇﺫﺍ ﻜﺎﻥ ﺍﻟﻤﻌﺩل ﺍﻟﺴﻨﻭﻱ ﺍﻟﻤﻁﺒﻕ .%4
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﺤل: 300.516,10 = × 20.000 (1, 04)n − 1 0, 04 (1, 04)n − 1 = 300.516,10 0, 04 20.000 (1, 04)n −1 = 0, 04 × 300.516,10 20.000 (1 + i )n = 0, 04 × 300.516,10 +1 20.000 (1, 04)n = 0,6010322 ) log(1,04 )n = log(0,6010322 )n . log(1,04)= log(0,6010322 ) log( 0,6010322 )n = log(1,04 n = 12 ﺃﻱ 12ﺩﻓﻌﺔ ﺩ ـ ﺤﺴﺎﺏ ﺍﻟﻤﻌﺩل ) (i ﻟﺩﻴﻨﺎ: A = a × (1 + i )n − 1 i (1 + i )n − 1 = A ia ﺒﻤﺎ ﺃﻥ ﺍﻟﻌﻨﺎﺼﺭ n ,a , Aﻤﻌﻠﻭﻤﺔ ﻓﺈﻥ ﺍﻟﻌﻨﺼﺭ ﺍﻟﺫﻱ ﺴﻨﺒﺤﺙ ﻋﻨﻪ ﻫﻭ ﺍﻟﻤﻌﺩل ) (iﻭ ﻤﻥ ﺤل ﻫﺫﻩ ﺍﻟﻤﻌﺎﺩﻟﺔ ﻴﻌﺘﻤﺩ ﻋﻠﻰ ﻁﺭﻴﻘﺘﻴﻥ:
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﻁﺭﻴﻘﺔ ) : (1ﻁﺭﻴﻘﺔ ﺍﻟﺘﺠﺭﺒﺔ ﺃﻭ ﺍﻟﺘﻜﺭﺍﺭ): (Itération ﺤﺘﻰ ﻨﺤﺼل ﻋﻠﻰ ﻗﻴﻤﺔ ﻤﺴـﺎﻭﻴﺔ ﻟﻘﻴﻤـﺔ ) (i ﺒﺈﻋﻁﺎﺀ ﻗﻴﻡ ﻟـ (1 + i )n − 1 ﺃﻱ ﺤﺴﺎﺏ ﺍﻟﻤﻘﺩﺍﺭ i ﻤﺴﺘﺨﺩﻤﺔ ﻜﺜﻴـﺭﺍ ﻓـﻲ ﺍﻟﻁﺭﻴﻘﺔ ) (iﻫﻲ ﺍﻟﻤﻌﺩل .ﻫﺫﻩ ﺍﻟﻤﻌﻁﺎﺓ ﻟـ ﺍﻟﻘﻴﻤﺔ ﺘﻜﻭﻥ ﺒﺫﻟﻙ ﻭ )(A ﺍﻟﻤﻘﺩﺍﺭ a ﺒﺭﺍﻤﺞ ﺍﻟﺤﺎﺴﻭﺏ ﻤﺜل ﺍﻟﻤﺠﺩﻭل Excelﺍﻟﺫﻱ ﻴﻘﻭﻡ ﺒﺤﺴﺎﺏ ﺍﻟﻤﻌﺩل ﺒﺘﻜﺭﺍﺭ ﺍﻟﺘﺠﺭﺒﺔ. ﺍﻟﻁﺭﻴﻘﺔ ﺍﻟﺜﺎﻨﻴﺔ :ﻁﺭﻴﻘﺔ ﺍﻻﺴﺘﻜﻤﺎل ﺍﻟﺨﻁﻲ)(Interpolation linière ﺒﻤﻌﺭﻓﺔ ﻤﻌﺩﻟﻴﻥ ﻴﻜﻭﻥ ﺍﻟﻤﻌﺩل ) (iﻤﺤﺼﻭﺭﹰﺍ ﺒﻴﻨﻬﻤﺎ ،ﻴﻤﻜﻥ ﺤﺴﺎﺏ ﺍﻟﻤﻌﺩل ﺒﺎﺴﺘﺨﺩﺍﻡ ﺒﺎﺴﺘﻜﻤﺎل ﻟﻸﺠﺯﺍﺀ ﺍﻟﻤﺘﻨﺎﺴﺒﺔ ﻜﻤﺎ ﻴﻭﻀﺤﻬﺎ ﺍﻟﺸﻜل ﺍﻟﺘﺎﻟﻲ : i0 < i < i1 ﺍﻟﻔﺭﻕ= ) (i1 − i0 اﻟﻔﺮق= ) ii 0 (i − i 0 i1 اﻟﻔﺮق= ) (Ai − Ai0 (1 + i 0 )n −1 Ai = (1 + i )n −1 i0 i Ai 0 = Ai1 = (1 + i1 )n −1 i1 ( A − A )( A i1اﻟﻔﺮق= ﺒﺘﻁﺒﻴﻕ ﺍﻟﻘﺎﻋﺩﺓ ﺍﻟﺜﻼﺜﻴﺔ : )i1 ) (ii0 1 − i 0 − A i → 0 ) (A i − A i0 ) → (i − i 0 (i = )− i0 (Ai ) − A i0 ) × (i 1 − i 0 ) ( A i1 − A i0i = i0 + (Ai ) − Ai0 )× (i1 − i 0 ) (Ai1 − Ai0 ﺘﻁﺒﻴﻕ: ﺠﻤﻠﺔ 8ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﺘﻘﺩﺭ ﺒـ 16.740 DAﻭ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ . 1.200DAﻤﺎ ﻫﻭ ﺍﻟﻤﻌﺩل ﺍﻟﻤﻁﺒﻕ ﻤﻊ ﺍﻟﻌﻠﻡ ﺃﻨﻪ ﻤﺤﺼﻭﺭ ﺒﻴﻥ ﻤﻌﺩل %15ﻭ .%16
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﺤل ﻤﻥ ﺍﻟﻤﻌﻁﻴﺎﺕ %15 < i < 16 : 16.740 = 1.200 × (1+ i )8 −1 i (1 + i )8 − 1 = 16.740 i 1.200 (1+ i )8 −1 = 13, 95 i Ai = (1+ i )8 −1 = 13, 95 ﺇﺫﻥ ﻟﺩﻴﻨﺎ : i ﻨﺤﺴﺏ ﺍﻟﺠﻤﻠﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻗﻴﻤﺔ ﻜل ﺩﻓﻌﺔ 1 DAﺒﺎﻟﻤﻌﺩﻟﻴﻥ %15ﻭ.%16 A i15 = (1,15)8 − 1 = 13,726819 0,15 A i16 = (1,16)8 − 1 = 14, 240093 0,16 ﻨﻁﺒﻕ ﻋﻼﻗﺔ ﺍﻻﺴﺘﻜﻤﺎل ﺍﻟﺨﻁﻲ ﻟﺤﺴﺎﺏ ﺍﻟﻤﻌﺩل: i = i0 + ( Ai ) − Ai 0 )×( i1 − i 0 ) (Ai1 − Ai0 i = 0 ,15 + (13 ) ,95 − 13,726819 )( 0,16 − 0,15 ) (14 ,240093 − 13 ,726819 i = 0 ,15 + 0 ,00438 i = 0 ,15438 i = 15, 438%
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ .3ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ .1.3ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻤﺔ ﻟﻠﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﺘﻌﻨﻲ ﺍﻟﻌﻭﺩﺓ ﺒﺎﻟﺩﻓﻌﺎﺕ ﺇﻟﻰ ﺘﺎﺭﻴﺦ ﺘﻭﻗﻴﻊ ﺍﻟﻌﻘﺩ )ﺍﻟﺘﺎﺭﻴﺦ ﺼﻔﺭ( ﺃﻱ ﻓﺘﺭﺓ ﻗﺒل ﺩﻓﻊ ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭﻟﻰ. ﻭ ﻨﺭﻤﺯ ﺇﻟﻰ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﺎﺭﻴﺦ ﺼﻔﺭ ﺒﺎﻟﺭﻤﺯ ) (V 0012345 p n-1 naaaaa a اﻟﻤﺪة a aﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﺘﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻜل ﺩﻓﻌﺔ ﻤﻥ ﺍﻟﺩﻓﻌﺎﺕ V0 ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺔ a (1 + i )−1 1 a (1 + i )−2 2 a (1 + i )−3 3 ................................................. )a(1 + i )−(n −1 n −1 a (1 + i )−n n ﻭ ﻤﻨﻪ ﻨﻜﺘﺏ :V0 = a (1 + i )−n + a (1 + i )−(n −1) + ... + a (1 + i )−3 + ... + a (1 + i )−2 + a (1 + i )−1ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻠﺩﻓﻌﺎﺕ ﺘﺸﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل a(1 + i )−nﻭ ﺤﺩﻫﺎ ﺍﻷﺨﻴﺭ a(1 + i )−1ﻭ ﺃﺴﺎﺴﻬﺎ ) (1 + iﻭ ﺤﺴﺏ ﻗﺎﻨﻭﻥ ﻤﺠﻤﻭﻉ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻓﺈﻥ : V0 = a(1 + i )−1 (1 + i ) − a(1 + i )−n (1 + i ) − 1 ﻭ ﺒﻤﺎ ﺃﻥ (1 + i )−1 (1 + i ) = 1 :
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ×1− (1 + i )−n ﻓﺈﻥ : i V0 = a ﺍﺴﺘﻨﺘﺎﺝ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻓﻲ ﺤﺎﻟﺔ ﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ0 1 23 4 5 p n-1 na a a a aa a اﻟﻤﺪة a ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ V ′ 0ﺘﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ.)′V V0 =′ 0a + a (1 + i )−1 + a (1 + i )−2 + a (1 + i )−3 + ... + a (1 + i )− (n −1 ﻭ ﺤﺴﺏ ﻗﺎﻨﻭﻥ ﻨﻼﺤﻅ ﺃﻥ V ′ 0ﺘﺸﻜل ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل aﻭ ﺃﺴﺎﺴﻬﺎ (1 + i )−1 ﻤﺠﻤﻭﻉ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﺍﻟﺘﺎﻟﻲ : S=a × qn -1 , q-1 ﺤﻴﺙ ) (aﻫﻭ ﺍﻟﺤﺩ ﺍﻷﻭل ) (qﻫﻭ ﺍﻷﺴﺎﺱ ﻭ ) (nﻋﺩﺩ ﺍﻟﺤﺩﻭﺩ ﻓﺈﻥ: ′V 0 = a × ((1 + i )−1 )n − 1 (1 + i )−1 − 1 ﺒﻌﺩ ﺘﺒﺴﻴﻁ ﺍﻟﻌﻼﻗﺔ ﻨﺤﺼل ﻋﻠﻰ: ′V 0 = a(1 + i ) 1 − (1 + i )−n i ﺃﻱ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ ﺘﺴﺎﻭﻱ : ) ′V 0 = V 0 ( 1 + i .2.3ﺍﺴﺘﻌﻤﺎل ﺍﻟﺼﻴﻐﺔ ﺍﻟﻌﺎﻤﺔ ﻟﻠﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﺃ ـ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺘﻁﺒﻴﻕ):(1ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺠﻤﻭﻉ 8ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﺤﻴﺙ ﻜـل ﺩﻓﻌـﺔ ﺘﺴـﺎﻭﻱ 120.000 DA ﺒﻤﻌﺩل %7ﺴﻨﻭﻴﹰﺎ. ﺍﻟﺤل : V0 = a × 1 − (1 + i )−n i V0 = × 120.000 1− (1, 07 )−8 0, 08 V 0 = 120.000 × 5, 971298 V 0 = 716.555, 8 DA ﺘﻁﺒﻴﻕ ): (2ﻤﺎ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟـ 6ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﻓﻲ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ ﻗﻴﻤﺔ ﻜل ﺩﻓﻌﺔ 50.000DAﺒﻤﻌﺩل %4ﺴﻨﻭﻴﹰﺎ. ﺍﻟﺤل : ′V 0 = a ( 1 + i ) 1 − ( 1 + i ) − n i ′V 0 = 50.000(1, 04 ) 1 − (1, 04 )−6 0,04 V ′ 0 = 50.000 × 1, 04 × 5, 242136 ′V 0 = 2 7 2 .5 9 1 , 1 0 D A ﺏ ـ ﺤﺴﺎﺏ ﺍﻟﺩﻓﻌﺔ )(a ﻟﺩﻴﻨﺎ: V0 = a × 1− (1 + i )−n i a =V0 × 1 − i i )−n (1 +
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺘﻁﺒﻴﻕ:ﻤﺘﺘﺎﻟﻴﺔ 8ﺩﻓﻌﺎﺕ ﻤﻘﻴﻤﺔ ﺴﻨﺔ ﻗﺒل ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭﻟﻰ ﺒﻤﻌﺩل %3,5ﻫﻲ . 1.374.791DAﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ ؟ ﺍﻟﺤل: a × =V 0 i i )−n 1 − (1 + a = × 1.374.791 0;035 1−(1,035)−8 a = 1.374.791 × 0, 1454766 200.000DA ﺠـ ـ ﺤﺴﺎﺏ ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ )(n ﻤﻥ ﺃﺠل ﺤﺴﺎﺏ ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ ﻨﺴﺘﺨﺩﻡ ﺨﻭﺍﺹ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻤﻴﺔ ﻜﻤﺎ ﻴﻠﻲ: V0 = a × 1 − (1 + i )−n i 1 − (1 + i )−n = V 0 ia 1 − (1 + i )−n = i ×V 0 a −(1 + i )−n = i ×V 0 − 1 a (1 + i )−n = 1 − i ×V 0 a ﺍﻟﻤﻘﺩﺍﺭ 1 − i ×V 0ﻴﻤﻜﻥ ﺤﺴﺎﺒﻪ ﻭ ﻟﻴﻜﻥ ) (b a
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ (1 + i )−n = b ) log(1 + i )−n = log(b ) −n log(1 + i ) = log(b −n = ) log(b ) log(1 + i n = − ) log(b ) log(1 + i ﺘﻁﺒﻴﻕ:ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻫﻲ 200.000 DAﻭ ﻗﻴﻤﺔ ﻜل ﺩﻓﻌﺔ . 20.028,80 DA ﺃﺤﺴﺏ ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ ﻋﻠﻤﹰﺎ ﺃﻥ ﺍﻟﻤﻌﺩل ﺍﻟﺴﻨﻭﻱ ﺍﻟﻤﻁﺒﻕ ﻫﻭ .%4 ﺍﻟﺤل: × V0 = a 1−(1+ i )− n i 2 0 0 .0 00 2 0 .0 2 8 , ×8 1 − ( ) 1,04 − n 0,04 = 1− (1,04 )− n = 0,04× 200.000 2 0 .0 2 8 ,8 −(1,04)− n = 0,04× 200.000 −1 2 0 .0 2 8 ,8 (1, 04)−n = 1− 0,04× 200.000 2 0 .0 2 8 ,8
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ (1, 04)− n = 0,600575 )log(1,04)− n = log(0,600575 )−n log(1,04)= log(0,600575 − n = log(0,600575 ) ) log(1,04 ) log( 0,600575 )n = − log(1,04 n =13 ﺩ ـ ﺤﺴﺎﺏ ﺍﻟﻤﻌﺩل ) :( iﻴﺘﻡ ﺍﻟﻠﺠﻭﺀ ﺇﻟﻰ ﻁﺭﻴﻘﺔ ﺍﻟﺘﺠﺭﻴﺏ ﻤﻥ ﺃﺠل ﺤﺼﺭ ﺍﻟﻤﻌﺩل ﺒﻴﻥ ﻤﻌﺩﻟﻴﻥ ﻤﺘﻘﺎﺭﺒﻴﻥ ﺃﻭ ﹰﻻ ﺘـﻡ ﺘﺤﺩﻴـﺩﻩ ﺜﺎﻨﻴـﹰﺎ ﺒﺎﺴﺘﺨﺩﺍﻡ ﻁﺭﻴﻘﺔ ﺍﻻﺴﺘﻜﻤﺎل ﺍﻟﺨﻁﻲ ﻟﻸﺠﺯﺍﺀ ﺍﻟﻤﺘﻨﺎﺴﺒﺔ. ﺘﻁﺒﻴﻕ :ﻗﻴﻤﺔ ﻤﺤل ﺘﺠﺎﺭﻱ ﻨﻘﺩﹰﺍ 1.880.000 DAﻭ ﻫﻲ ﺘﻤﺜل ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ 10ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻗﻴﻤـﺔ ﻜل ﺩﻓﻌﺔ . 240.000 DA ﻤﺎ ﻫﻭ ﺍﻟﻤﻌﺩل ﺍﻟﻤﻁﺒﻕ ؟. ﺍﻟﺤل : × V0 = a 1−(1+i )−n i 1.880.000= 240.000×1−(1+ i )−10 i 1− (1+ i )−10 = 1.880.000 i 240.000 1−(1+ i )−10 = 7,833333 i ﺒﻌﺩ ﺘﺠﺭﺒﺔ ﻋﺩﺓ ﻤﻌﺩﻻﺕ ﻨﺠﺩ ﺃﻥ ﺍﻟﻤﻌﺩل ) (iﻤﺤﺼﻭﺭﹰﺍ ﺒﻴﻥ ﺍﻟﻤﻌﺩﻟﻴﻥ %4,5ﻭ .%4,75
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﻔﻭﺍﺭﻕ 0,079385 7,816347 ﻤﻥ ﺍﺠل ﻤﻌﺩل %4,750,096371 7,833333 ﻤﻥ ﺃﺠل ﻤﻌﺩل ) (i 7,912718 ﻤﻥ ﺃﺠل ﻤﻌﺩل%4,5 ﺒﺘﻁﺒﻴﻕ ﺍﻟﻘﺎﻋﺩﺓ ﺍﻟﺜﻼﺜﻴﺔ ﻨﺠﺩ: (0,0475 - 0,045) → 0,096371 (i - 0,045) → 0,079385 i - 0,045 = )0,079385 × (0,0475 - 0,045 0, 096371 i = 0,045 + 0,079385 × 0,0025 0, 096371 i = 0,045 + 0,00205 i = 0,04705 i = 4,705% ﻤﻼﺤﻅﺔ:ﺒﺎﻟﻨﺴﺒﺔ ﻟﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ ﻓﺈﻥ ﺤﺴﺎﺏ ﻤﺨﺘﻠﻑ ﺍﻟﻌﻨﺎﺼﺭ ) (i , n ,a,V 0′ﻴﺘﻡ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤـﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ ) (V 0′ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ ﺍﻟﺴﺎﺒﻘﺔ. .4ﺘﻘﻴﻴﻡ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕj 0123 p n-1 n m اﻟﻤﺪة aa a a aaV−j V0 V p An Am
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﻋﻨﺩ ﺩﺭﺍﺴﺘﻨﺎ ﻟﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻗﻴ ﻤﻨﺎ ﻫﺫﻩ ﺍﻷﺨﻴﺭﺓ ﻓﻲ ﺍﻟﺯﻤﻥ ) (0ﻭ ﺍﻟﺯﻤﻥ ) (nﺒﺤﻴﺙ ﺤﺼﻠﻨﺎ ﻋﻠﻰ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ V0ﻭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ Anﻜﻤﺎ ﻴﻠﻲ:An = a (1 + i )n −1 و V0 = a 1− (1 + i )−n i i ﻭ ﻨﻔﺱ ﺍﻟﺸﻲﺀ ﻓﻴﻤﺎ ﻴﺘﻌﻠﻕ ﺒﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ.ﻭ ﺒﺘﻁﺒﻴﻕ ﻤﺒﺩﺃ ﺍﻟﺘﻜﺎﻓﺅ ﻴﻤﻜﻥ ﺃﻥ ﻨﻘﻴﻡ ﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﻓﻲ ﺃﻱ ﺘﺎﺭﻴﺦ ﻜﺎﻥ .ﻭﺴﻨﻘﺘﺼﺭ ﻓﻲ ﺍﻟﺘﻘﻴﻴﻡ ﻋﻠﻰ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻤﻊ ﺍﻹﺸﺎﺭﺓ ﺇﻟﻰ ﺃﻥ ﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ ﺘﻌﺎﻟﺞ ﺒﻨﻔﺱ ﺍﻟﻜﻴﻔﻴﺔ. .1.4ﺍﻟﺘﻘﻴﻴﻡ ﻓﻲ ﺍﻟﺯﻤﻥ ) ( jﺤﻴﺙ )( j < 0 ﻨﻀﻊ V − jﻗﻴﻤﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﺍﻟﺯﻤﻥ . j ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﻗﻴﻤﺔ V − jﻜﻤﺎ ﻴﻠﻲ: ﺃ ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ: V − j = V 0 (1 + i )− j V−j = a 1 − (1 + i )−n (1 + i )− j i ﺏ ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ: ) V − j = An (1 + i )− (n + j V −j = a (1 + i )n ) − 1 (1 + i )− (n + j i ﺘﻁﺒﻴﻕ :ﻗﺎﻤﺕ ﺍﻟﻤﺅﺴﺴﺔ )ﺱ( ﺒﺸﺭﺍﺀ ﻤﺨﺯﻥ ﺘﺴﺩﺩ ﺜﻤﻨﻪ ﺒﻭﺍﺴﻁﺔ 6ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ 15.000 DAﻭ ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭل ﺘﺴﺘﺤﻕ ﺴﻨﺔ ﺒﻌﺩ ﺍﺴﺘﻼﻡ ﺍﻟﻤﺨﺯﻥ. ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺎﺕ 3ﺴﻨﻭﺍﺕ ﻗﺒل ﺍﻟﺩﻓﻊ ﺍﻷﻭل ﻋﻠﻤﹰﺎ ﺃﻥ ﺍﻟﻤﻌﺩل ﻫﻭ %7؟
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ -2 -1 ﺍﻟﺤل: 0 1 2 3 4 56 اﻟﻤﺪة اﻟﺪﻓﻊ اﻷول V −2ﻭ 3ﺴﻨﻭﺍﺕ ﻗﺒـل ﺍﻟـﺩﻓﻊ ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﻤﺩﺓ ﺍﻟﻔﺎﺼﻠﺔ ﺒﻴﻥ ﺘﺎﺭﻴﺦ ﺍﺴﺘﻼﻡ ﺍﻟﻤﺨﺯﻥ )ﺍﻟﺯﻤﻥ ﺼﻔﺭ( ﺍﻷﻭل ﻫﻲ ﺴﻨﺘﻴﻥ. V j = V 0 (1 + i )− j V −2 = 15.000 1 − (1, 07 )−6 (1, 07 )−2 0, 07 V −2 = 15.000 × 4, 766539 × 0,873438 V −2 = 62.449,14DA ﻨﻔﺱ ﺍﻟﻨﺘﻴﺠﺔ ﻨﺤﺼل ﻋﻠﻴﻬﺎ ﺒﺘﻁﺒﻴﻕ ﺍﻟﻌﻼﻗﺔ : V−j = a (1 + i )n ) − 1 (1 + i )−(n + j i V −2 = )15.000 (1, 07 )6 − 1 (1, 07 )−(6+ 2 0, 07 V −2 = 15.00 0 (1, 07)6 − 1 (1, 07 )−8 0, 07 V −2 = 15.000 × 7,15329 × 0,582009 V −2 = 62.449,14DA .2.4ﺍﻟﺘﻘﻴﻴﻡ ﻓﻲ ﺍﻟﺯﻤﻥ ) (pﺤﻴﺙ ) (0 < p < n ﻨﻀﻊ V pﻗﻴﻤﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﺍﻟﺯﻤﻥ . p ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﻗﻴﻤﺔ V pﻜﻤﺎ ﻴﻠﻲ: ﺃ ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ:
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ V p = V 0 (1 + i )p Vp = a 1 − (1 + i )− n (1 + i )p i ﺏ ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ: ) V p = A n (1 + i )− (n − p Vp = a (1 + i )n ) − 1 (1 + i )− (n − p iﺠـ ـ ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻗﻴﻤﺔ V pﻋﻥ ﻁﺭﻴﻕ ﺠﻤﻊ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻟﻠﺩﻓﻌﺎﺕ ﺍﻟﻤﺴﺩﺩﺓ ﻟﻐﺎﻴﺔ ﺍﻟـﺯﻤﻥ ) (pﻭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻠﺩﻓﻌﺎﺕ ﺍﻟﻤﺘﺒﻘﻴﺔ ﺒﻌﺩ ﺍﻟﺯﻤﻥ ) (pﻜﻤﺎ ﻴﻠﻲ :Vp = a (1 + i )p ) − 1 + a 1 − (1 + i )− (n − p i i ﺘﻁﺒﻴﻕ: ﺘﺭﻏﺏ ﺇﺤﺩﻯ ﺍﻟﻤﺅﺴﺴﺎﺕ ﻓﻲ ﺸﺭﺍﺀ ﺘﺠﻬﻴﺯﺍﺕ ﻭﻗﺩ ﺍﻗﺘﺭﺡ ﻋﻠﻴﻬﺎ ﺍﻟﺒﺎﺌﻊ ﻁﺭﻴﻘﺘﻴﻥ ﻟﻠﺘﺴﺩﻴﺩ.ـ ﺍﻟﻁﺭﻴﻘﺔ ) :(1ﺘﺴﺩﻴﺩ 12ﺩﻓﻌﺎﺕ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ 300.000 DAﺍﻷﻭﻟﻰ ﺘﺩﻓﻊ ﺴﻨﺔ ﺒﻌﺩ ﺘﺎﺭﻴﺦ ﺍﻟﺸﺭﺍﺀ، ـ ﺍﻟﻁﺭﻴﻘﺔ ) : (2ﺘﺴﺩﻴﺩ ﻤﺒﻠﻐﹰﺎ ﻭﺤﻴﺩﹰﺍ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺴﻨﺔ 4ﻤﻥ ﺘﺎﺭﻴﺦ ﺍﻟﺸﺭﺍﺀ. ﺇﺫﺍ ﺃﺨﺫﻨﺎ ﺒﻌﻴﻥ ﺍﻻﻋﺘﺒﺎﺭ ﺍﻟﻔﻭﺍﺌﺩ ﺍﻟﻤﺭﻜﺒﺔ ﺒﻤﻌﺩل %4ﺴﻨﻭﻴﹰﺎ ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻊ ﺍﻟﻭﺤﻴﺩ؟ ﺍﻟﺤل : ـ ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻊ ﺍﻟﻭﺤﻴﺩ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ: V 4 = V 0 (1 + i )p V4 = 300.000 1 − (1, 04)−12 (1, 04)4 0, 04 V 4 = 300.000 × 9, 385074 × 1,169859 V 4 = 3.293.762, 4DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ـ ﻨﻔﺱ ﺍﻟﻨﺘﻴﺠﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺼﻴﻐﺔ ﺍﻟﺠﻤﻠﺔ: ) V p = An (1 + i )−(n − p V4 = 300.000 )(1, 04)12 − 1 (1, 04)−(12−4 0, 04 V4 = 300.000 (1, 04)12 − 1 (1, 04)−8 0, 04 V 4 = 300.000 × 15,025805 × 0,7306902 V 4 = 3.293.762,4ـ ﻴﻤﻜﻥ ﺃﻥ ﻨﺤﺼل ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﻨﺘﻴﺠﺔ ﺇﺫﺍ ﺠﻤﻌﻨﺎ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻟﻠﺩﻓﻌﺎﺕ ﺍﻟﻤﺴﺩﺩﺓ ﻟﻐﺎﻴﺔ ﺍﻟﺴﻨﺔ 4ﻭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻠﺩﻓﻌﺎﺕ ﺍﻟﻤﺘﺒﻘﻴﺔ ﺒﻌﺩ ﺍﻟﺴﻨﺔ 4ﻜﻤﺎ ﻴﻠﻲ:V4 = 300.000 (1, 04)4 − 1 + 300.000 1 − )(1, 04)− (12− 4 0, 04 0, 04V4 = 300.000 (1, 04)4 − 1 + 300.000 1 − (1, 04)−8 0, 04 0, 04)V 4 = (300.000 × 4,246464)+(300.000 × 6,732744V 4 = 3.293.762,4 .3.4ﺍﻟﺘﻘﻴﻴﻡ ﻓﻲ ﺍﻟﺯﻤﻥ ) (mﺤﻴﺙ )(m > n ﻨﻀﻊ Amﻗﻴﻤﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﺍﻟﺯﻤﻥ . m ﻴﻤﻜﻥ ﺘﺤﺩﻴﺩ ﻗﻴﻤﺔ Amﻜﻤﺎ ﻴﻠﻲ : ﺃ ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ : A m = V 0 (1 + i )m Am = a 1 − (1 + i )−n (1 + i )m i ﺏ ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ :
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ) Am = An (1 + i )(m −n Am = a (1 + i )n ) − 1 (1 + i )(m −n i ﺘﻁﺒﻴﻕ:ﻟﺘﺴﺩﻴﺩ ﺜﻤﻥ ﺘﺠﻬﻴﺯﺍﺕ ﻜﺎﻥ ﻋﻠﻰ ﺍﻟﻤﺸﺘﺭﻱ ﺃﻥ ﻴﺩﻓﻊ ﻓﻲ ﻨﻬﺎﻴﺔ ﻜل ﺴﻨﺔ ﺩﻓﻌﺔ ﺘﻘﺩﺭ ﺒـ 300.000 DAﻟﻤﺩﺓ 4ﺴﻨﻭﺍﺕ .ﻏﻴﺭ ﺃﻨﻪ ﺍﻗﺘﺭﺡ ﻋﻠﻰ ﺍﻟﺒﺎﺌﻊ ﺘﺴﺩﻴﺩ ﺜﻤﻥ ﺍﻟﺘﺠﻬﻴﺯﺍﺕ ﺒﺩﻓﻊ ﻭﺤﻴﺩ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺴﻨﺔ ﺍﻟﺴﺎﺩﺴﺔ. ﺒﻤﻌﺩل ﺴﻨﻭﻱ %10ﻣﺎ هﻮ ﻣﻘﺪار اﻟﺪﻓﻊ اﻟﻮﺣﻴﺪ ؟ ﺍﻟﺤل:0 1 2 34 56 اﻟﻤﺪة A4 A6 ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ: A6 =V 0 (1 + i )m A6 = 300.000 1 − (1, 1)−4 (1, 1)6 0,1 A6 = 300.000 × 3,169865 × 1,771561 A6 = 1.684.683DA ـ ﺍﻨﻁﻼﻗﹰﺎ ﻤﻥ ﺼﻴﻐﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ:
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ) Am = An (1 + i )(m −n A6 = × 300.000 )(1,1)4 − 1 (1,1)(6−2 0,1 A6 = × 300.000 (1,1)4 − 1 (1,1)2 0,1 A6 = 300.000× 4,641× 1,21 A6 = 1.684.683 .5ﺃﻨﺸﻁﺔ ﺍﻹﻋﻼﻡ ﺍﻵﻟﻲﻴﺤﺘﻭﻱ ﺍﻟﻤﺠﺩﻭل Excelﻋﻠﻰ ﺼﻴﻎ ﻟﺩﻭﺍل ﻤﺎﻟﻴﺔ ﻭ ﻤﻨﻬﺎ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤـﺔ ﺍﻟﺤﺎﻟﻴـﺔ ) (VAﻭ ﺍﻟﻘﻴﻤـﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ) (VCﻟﻤﺘﺘﺎﻟﻴﺔ ﺩﻓﻌﺎﺕ ﺍﻟﺴﺩﺍﺩ. ﺍﻟﻌﻤل ﺍﻟﻤﻁﻠﻭﺏ:ﺃﺤﺴﺏ ﻟﻠﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﻜل ﻤﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻭ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺼﻴﻎ ﺍﻟﻤﺎﻟﻴﺔ ﻟﻠﻤﺠﺩﻭل .Excelﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﺍﻟﻤﻌﺩل )(i ﺍﻟﺩﻓﻌﺔ ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ )(VC )(VA )(a )(n 8% 100.000 10 6% 200.000 15 10% 50.000 20 7% 30.000 8 4% 5.000 6
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﺤﻠﻭل ﺍﻟﻤﻘﺘﺭﺤﺔ ﻷﻨﺸﻁﺔ ﺍﻹﻋﻼﻡ ﺍﻵﻟﻲ ﺨﻁﻭﺍﺕ ﺍﻟﺤل : .1ﺇﻋﺎﺩﺓ ﺭﺴﻡ ﺍﻟﺠﺩﻭل ﺍﻟﺴﺎﺒﻕ ﻋﻠﻰ ﻭﺭﻗﺔ ﺍﻟﻤﺼﻨﻑ. .2ﻜﺘﺎﺒﺔ ﺼﻴﻐﺔ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ) (VAﻓﻲ ﺍﻟﺨﻠﻴﺔ ) (D2ﻭ ﻨﺴﺨﻬﺎ ﻋﻠﻰ ﺒﻘﻴﺔ ﺍﻟﺨﻼﻴﺎ ﻜﻤﺎ ﻴﻠﻲ:ﺃ ـ ﻤﻥ ﺸﺭﻴﻁ ﺍﻟﻘﻭﺍﺌﻡ ﺍﺨﺘﺭ ﻗﺎﺌﻤﺔ ﺇﺩﺭﺍﺝ ) (Insertionﺜﻡ ﺩﺍﻟﺔ ) ،(fonctionﺜﻡ ﺍﺨﺘﺭ ﻤﻥ ﺍﻟﻨﺎﻓـﺫﺓ ﺍﻟﺘـﻲ ﺘﻅﻬﺭ ﻨﻭﻉ ﺍﻟﺩﻭﺍل ﻤﺎﻟﻴﺔ ،ﻭ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﺎﻟﻴﺔ ﺍﺨﺘﺭ ﺍﻟﺩﺍﻟﺔ ) (VAﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻓﻲ ﺍﻟﺼﻭﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ:
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺏ ـ ﻓﻲ ﺍﻟﻨﺎﻓﺫ ﺍﻟﺘﻲ ﺘﻅﻬﺭ ﻴﻁﻠﺏ ﻤﻨﻙ ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻓﻲ ﺍﻟﻤﺭﺒﻌﺎﺕ ﺍﻟﺘﻲ ﺘﻌﺒﺭ ﻋﻥ ﻤﺨﺘﻠـﻑ ﺍﻟﻌﻨﺎﺼـﺭ ﺍﻟﺘﻲ ﻴﺘﻡ ﺒﻬﺎ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻭ ﻫﻲ ﻜﺎﻟﺘﺎﻟﻲ: ﺍﻟﻤﻌﺩل Taux ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ )(n Npm ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ) (aﻭ ﺘﺴﺒﻘﻬﺎ ﺩﻭﻤﹰﺎ ﺍﻹﺸﺎﺭﺓ ﺍﻟﺴﺎﻟﺒﺔ )(- Vpm ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻭ ﻨﻀﻌﻬﺎ ﺘﺴﺎﻭﻱ ﺍﻟﺼﻔﺭ VC ﻨﻀﻊ ﺍﻟﻘﻴﻤﺔ ) (0ﻟﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻭ ﺍﻟﻘﻴﻤﺔ ) (1ﻟﺩﻓﻌﺎﺕ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ Type ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ ﻴﻜﻭﻥ ﻜﻤﺎ ﻫﻭ ﻤﺒﻴﻥ ﻓﻲ ﺍﻟﺼﻭﺭﺓ ﺍﻟﺘﺎﻟﻴﺔ:
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺠـ ـ ﺒﻌﺩ ﻜﺘﺎﺒﺔ ﺼﻴﻐﺔ ) (VAﻓﻲ ﺍﻟﺨﻠﻴﺔ ) (D2ﻴﺘﻡ ﻨﺴﺨﻬﺎ ﺇﻟﻰ ﺒﻘﻴﻤﺔ ﺍﻟﺨﻼﻴﺎ ) D3ﺇﻟﻰ .(D6 .2ﻜﺘﺎﺒﺔ ﺼﻴﻐﺔ ﺤﺴﺎﺏ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻜﺘﺴﺒﺔ ﻓﻲ ﺍﻟﺨﻠﻴﺔ ) (E2ﻭ ﻨﺴﺨﻬﺎ ﻋﻠﻰ ﺒﻘﻴﺔ ﺍﻟﺨﻼﻴﺎ ﻤﻊ ﺇﺘﺒﺎﻉ ﻨﻔﺱﺍﻟﺨﻁﻭﺍﺕ ﺍﻟﺴﺎﺒﻘﺔ ﻤﻊ ﺍﻟﺘﻨﺒﻴﻪ ﺇﻟﻰ ﺍﺨﺘﻴﺎﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺎﻟﻴﺔ ) (VCﻭ ﺠﻌل ﻗﻴﻤﺔ ) (Vaﻤﻌﺩﻭﻤﺔ ﻓﻲ ﻨﺎﻓﺫﺓ ﺇﺩﺨﺎل ﺍﻟﺒﻴﺎﻨﺎﺕ. .3ﺍﻟﺤل ﺍﻟﻨﻬﺎﺌﻲ ﺍﻟﻤﻘﺘﺭﺡ ﻴﻅﻬﺭ ﻜﻤﺎ ﻴﻠﻲ:
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ .6ﺃﺴﺌﻠﺔ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ ﺍﻟﺘﻤﺭﻴﻥ):(1ﺭﺃﺱ ﻤﺎل ﺒـ 1.000.000 DAﻴﺴﺩﺩ ﺒـﻭﺍﺴﻁﺔ 10ﺩﻓﻌﺔ ﺜﺎﺒﺘﺔ ،ﺘﺩﻓﻊ ﺍﻷﻭﻟﻰ ﺴﻨﺔ ﺒﻌﺩ ﺘﺎﺭﻴﺦ ﺍﻟﺘﻌﺎﻗﺩ .ﺇﺫﺍ ﻜﺎﻥ ﻤﻌﺩل ﺍﻟﻔﺎﺌﺩﺓ ﺍﻟﻤﺭﻜﺒﺔ %6ﺴﻨﻭﻴﹰﺎ. ﺍﻟﻌﻤل ﺍﻟﻤﻁﻠﻭﺏ : ﺃ ـ ﺃﺤﺴﺏ ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ.ﺏ ـ ﺒﻌﺩ ﺘﺴﺩﻴﺩ ﺍﻟﺩﻓﻌﺔ 6ﻭﺍﻓﻕ ﺍﻟﻤﺩﻴﻥ ﻋﻠﻰ ﻤﻀﺎﻋﻔﺔ ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ﻤﺎ ﺩﺍﻤﺕ ﺍﻟﻔﻭﺍﺌﺩ ﻗﺩ ﺍﻨﺨﻔﻀﺕ ﺇﻟـﻰ % 4,5ﺴﻨﻭﻴﹰﺎ .ﺃﺤﺴﺏ ﺍﻟﻤﺩﺓ ﺍﻟﻼﺯﻤﺔ ﻟﻠﺘﺨﻠﺹ ﻤﻥ ﺒﻘﻴﺔ ﺍﻟﺩﻴﻥ ).ﺒﺎﻟﺘﻘﺭﻴﺏ ﺒﺎﻟﺯﻴﺎﺩﺓ(. ﺍﻟﺘﻤﺭﻴﻥ):(2ﻴﺭﻏﺏ ﺸﺨﺹ ﻓﻲ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﺘﺠﻬﻴﺯﺍﺕ ﺒـ ) ، (X DAﻭﻟﻪ ﺃﻥ ﻴﺨﺘﺎﺭ ﻤـﻥ ﺒـﻴﻥ ﺍﻟﺤﻠـﻭل ﺍﻟﺘﺎﻟﻴـﺔ ﺍﻟﻤﻘﺘﺭﺤﺔ ﻟﻠﺘﺴﺩﻴﺩ : - 1ﺘﺴﺩﻴﺩ 3ﺩﻓﻌﺎﺕ ﻗﻴﻤﺔ ﻜل ﺩﻓﻌﺔ 3.603 DAﺘﺩﻓﻊ ﺨﻼل 3 ،2 ،1ﺴﻨﻭﺍﺕ. ـ ﺒﻔﺎﺌﺩﺓ ﻤﺭﻜﺒﺔ %4ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﺘﺠﻬﻴﺯﺍﺕ ) .ﺘﻘﺭﺏ ﺇﻟﻰ ﺍﻷﻟﻑ ﺍﻷﻗﺭﺏ(. - 2ﺘﺴﺩﻴﺩ ﻋﻨﺩ ﺘﺎﺭﻴﺦ ﺍﻟﺸﺭﺍﺀ ﻤﺒﻠﻎ 5.800 DAﻭ ﻫﺫﺍ ﺍﻟﻤﺒﻠﻎ ﻴﻤﺜل %58ﻤﻥ ﻗﻴﻤﺔ ﺍﻟﺘﺠﻬﻴﺯﺍﺕ ﻭ ﺍﻟﺒـﺎﻗﻲ ﻴﺴﺩﺩ ﺒﻌﺩ 3ﺴﻨﻭﺍﺕ ﺒﻤﺒﻠﻎ .5002,2672 DA ـ ﻤﺎ ﻫﻭ ﻤﻌﺩل ﺍﻟﻔﺎﺌﺩﺓ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻟﻤﻁﺒﻕ. - 3ﺍﻟﺘﺴﺩﻴﺩ ﺒﻭﺍﺴﻁﺔ 6ﺴﺩﺍﺴﻴﺎﺕ ﻤﺒﻠﻎ 1.815,50 DAﻟﻠﺴﺩﺍﺴﻲ ،ﺍﻟﺴﺩﺍﺴﻴﺔ ﺍﻷﻭﻟﻰ ﺘﺩﻓﻊ ﺒﻌﺩ 6ﺃﺸﻬﺭ ﻤﻥ ﺘﺎﺭﻴﺦ ﺍﻟﺸﺭﺍﺀ. ـ ﺒﻤﻌﺩل ﻓﺎﺌﺩﺓ %8ﺴﻨﻭﻴﹰﺎ ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﺴﺩﺍﺴﻴﺎﺕ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ.
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﺘﻤﺭﻴﻥ):(3ﻗﺎﻡ ﺸﺨﺹ ﺒﻔﺘﺢ ﺤﺴﺎﺏ ﺩﻓﺘﺭ ﺘﻭﻓﻴﺭ ﻟﻭﻟﺩﻴﻪ ﻟﺩﻯ ﺍﻟﺼﻨﺩﻭﻕ ﺍﻟﻭﻁﻨﻲ ﻟﻠﺘﻭﻓﻴﺭ ﻭ ﺍﻻﺤﺘﻴﺎﻁ ﻋﻨﺩﻤﺎ ﻜﺎﻥ ﻋﻤﺭﺍﻟﻤﺒﻠﻎ ﺍﻟ ﻤﻭﺩﻉ 1 16ﺴﻨﺔ ،ﺤﻴﺙ ﻭﻀﻊ ﻓﻲ ﺤﺴﺎﺏ ﺍﻷﻭل ﺍﻟﻭﻟﺩ ﺍﻷﻭل 6ﺴﻨﻭﺍﺕ ﻭ ﻋﻤﺭ ﺍﻟﻭﻟﺩ ﺍﻟﺜﺎﻨﻲ 3 ﻓﻲ ﺤﺴﺎﺏ ﺍﻟﺜﺎﻨﻲ ﻭﻗﻴﻤﺔ ﺍﻟﻤﺒﻠﻐﻴﻥ ﻤﻌﹰﺎ . 320.000 DAﺍﺴﺘﻤﺭ ﻫﺫﺍ ﺍﻟﺸﺨﺹ ﻓﻲ ﺇﻴﺩﺍﻉ ﻨﻔﺱ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻤﻭﺩﻉ ﻓﻲ ﺤﺴﺎﺏ ﻜل ﻭﻟﺩ ﻤﻥ ﻭﻟﺩﻴﻪ ﻓﻲ ﺒﺩﺍﻴﺔ ﻜل ﺴﻨﺔ ﺤﺘـﻰ ﺒﻠﻎ ﻜل ﻭﺍﺤﺩ ﻤﻨﻬﻤﺎ ﺴﻥ 25ﺴﻨﺔ. ﺍﻟﻌﻤل ﺍﻟﻤﻁﻠﻭﺏ:ﺇﺫﺍ ﻜﺎﻥ ﻤﻌﺩل ﺍﻟﻔﺎﺌﺩﺓ ﺍﻟﻤﺭﻜﺒﺔ %7ﺴﻨﻭﻴﺎ ﻓﻤﺎ ﻫﻭ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﺫﻱ ﺘﺤﺼل ﻋﻠﻴﻪ ﻜل ﻭﻟﺩ ﻋﻨﺩ ﺒﻠﻭﻏﻪ ﺴﻥ 25ﺴﻨﺔ. ﺍﻟﺘﻤﺭﻴﻥ):(4ﺍﻗﺘﺭﻀﺕ ﻤﺅﺴﺴﺔ 1.000.000 DAﺒﺘﺎﺭﻴﺦ .2000/01/01ﻭ ﺍﻗﺘﺭﺡ ﻋﻠﻴﻬﺎ ﺍﻟﺒﻨﻙ ﺜﻼﺜﺔ ﻁﺭﻕ ﻟﻠﺘﺴﺩﻴﺩ : ـ ﺍﻟﻁﺭﻴﻘﺔ ):(1 ﺘﺴﺩﻴﺩ ﺩﻓﻌﺔ ﻭﺤﻴﺩﹰﺓ ﺒﻌﺩ 10ﺴﻨﻭﺍﺕ. ـ ﺍﻟﻁﺭﻴﻘﺔ ):(2 ﺍﻟﺘﺴﺩﻴﺩ ﺒﻭﺍﺴﻁﺔ 5ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﺘﺴﺘﺤﻕ ﺍﻷﻭﻟﻰ ﺒﺘﺎﺭﻴﺦ .2001/01/01 ـ ﺍﻟﻁﺭﻴﻘﺔ ):(3ﺍﻟﺘﺴﺩﻴﺩ ﺒﻭﺍﺴﻁﺔ 5ﺩﻓﻌﺎﺕ ﻤﺘﺴﺎﻭﻴﺔ ﺘﺴﺘﺤﻕ ﻜـل ﺩﻓﻌـﺔ ﻤﻨﻬـﺎ ﺒﻌـﺩ ﺴـﻨﺘﻴﻥ ﺃﻱ :ﺍﻷﻭﻟـﻰ ﻓـﻲ 2002/01/01ﻭ ﺍﻟﺜﺎﻨﻴﺔ ﻓﻲ ... 2004/01/01ﺍﻟﺦ. ﺍﻟﻌﻤل ﺍﻟﻤﻁﻠﻭﺏ : ﻤﻌﺩل ﻓﺎﺌﺩﺓ ﻤﺭﻜﺒﺔ %7ﺴﻨﻭﻴﹰﺎ ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﻜل ﺩﻓﻌﺔ ﻭﻓﻕ ﺍﻟﻁﺭﻕ ﺍﻟﺜﻼﺙ. ﺍﻟﺘﻤﺭﻴﻥ):(5ﺒﺘﺎﺭﻴﺦ 2006/01/01ﺍﺸﺘﺭﺕ ﺇﺤﺩﻯ ﺍﻟﻤﺅﺴﺴﺎﺕ ﻋﻘﺎﺭﹰﺍ ﹸﺘﺴﺩﺩ ﺜﻤﻨﻪ ﺒﻭﺍﺴﻁﺔ 8ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﺘﺴﺩﺩ ﺍﻷﻭﻟﻰ ﺒﺘﺎﺭﻴﺦ ،2008/01/01ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ 341.396,33DAﺒﻤﻌﺩل ﻓﺎﺌﺩﺓ ﻤﺭﻜﺒﺔ %6ﺴﻨﻭﻴﹰﺎ. ﺍﻟﻌﻤل ﺍﻟﻤﻁﻠﻭﺏ : .1ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﻌﻘﺎﺭ ﻓﻲ ﺘﺎﺭﻴﺦ ﺍﻟﺸﺭﺍﺀ. .2ﺇﺫﺍ ﺃﺭﺍﺩﺕ ﺘﺴﺩﻴﺩ ﺍﻟﻤﺒﻠﻎ ﺩﻓﻌﺔ ﻭﺍﺤﺩﺓ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ﻓﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﻫﺫﻩ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ ؟
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺇﺫﺍ ﺃﺭﺍﺩﺍﺕ ﺃﻥ ﺘﺴﺩﺩ ﺍﻟﻤﺒﻠﻎ ﺩﻓﻌﺔ ﻭﺍﺤﺩﺓ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺴﻨﺔ 15ﻓﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﻫﺫﺍ ﺍﻟﺩﻓﻊ .3 ﺍﻟﻭﺤﻴﺩ ؟ .4 ﻤﺎ ﻫﻲ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺎﺕ 3ﺴﻨﻭﺍﺕ ﻗﺒل ﺍﻟﺩﻓﻊ ﺍﻷﻭل ؟
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ .7ﺃﺠﻭﺒﺔ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ ﺤل ﺍﻟﺘﻤﺭﻴﻥ):(1 ﺃ ـ ﺤﺴﺎﺏ ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ : V0 = a 1 − (1 + i )−n i a =V 0 1− i i )−n (1 + a = × 1.000.000 1− 0, 06 (1 + 0, 06)−10 a = 135.868DA ﺏ ـ ﺤﺴﺎﺏ ﺍﻟﻤﺩﺓ ﺍﻟﻼﺯﻤﺔ ﻟﻠﺘﺨﻠﺹ ﻤﻥ ﺒﻘﻴﺔ ﺍﻟﺩﻴﻥ ﺒﻌﺩ ﺘﺴﺩﻴﺩ ﺍﻟﺩﻓﻌﺔ : 6 ـ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻠﺩﻓﻌﺎﺕ 4ﺍﻟﺒﺎﻗﻴﺔ : V4 = a 1 − (1 + i )−n i V4 = 135.868 × 1 − (1 + 0, 06 )−4 0, 06 V4 = 135.868 × 1 − (1, 06)−4 0, 06 V 4 = 135.868 × 3,465105 V4 = 470.796DA ـ ﺤﺴﺎﺏ ﺍﻟﻤﺩﺓ :V4 = 2a 1− (1 + i )−n i470.796 = × 2 × 135.868 1− (1 + 0, 045)−n 0, 045
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ 470.796 = 271.736 × 1 − (1, 045)−n 0, 045 1 − (1, 045)−n = 470.796 0, 045 271.736 (1, 045)−n = 1− 0, 045 × 470.796 271.736 (1, 045)−n = 0,922036 ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﻠﻭﻏﺎﺭﻴﺘﻡ ﺍﻟﻌﺸﺭﻱ ﻨﺠﺩ: (1, 045)−n = 0,922036 )log(0,922036 )n = − log(1,045 n=2 ﺤل ﺍﻟﺘﻤﺭﻴﻥ):(2 .1ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺘﺠﻬﻴﺯﺍﺕ ) (X DAﻤﺎ ﻫﻲ ﺇﻻ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﺍﻟﺯﻤﻥ ):(0 V0 = a 1− (1 + i )−n i V0 = × 3.603 1− (1 + 0, 04)−3 0, 04 V0 = × 3.603 1− (1, 04)−3 0, 04 V0 = 3.603 × 2,775091 V 0 = 10.000DA 2ـ ﺤﺴﺎﺏ ﻤﻌﺩل ﺍﻟﻔﺎﺌﺩﺓ ﺍﻟﻤﺭﻜﺒﺔ ﺍﻟﻤﻁﺒﻕ: ﺍﻟﻤﺒﻠﻎ ﺍﻟﺒﺎﻗﻲ ﻤﻥ ﺍﻟﺘﺠﻬﻴﺯﺍﺕ 10.000 − 5.800 = 4.200 :
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ A = a (1 + i )n 5.002, 2672 = 4.200(1 + i )3 (1 + i )3 = 5.002, 2672 4.200 (1 + i )3 = 1,191016 1+i= 3 1,191016 1 i = (1,191016)3 − 1 i = 0,06 i = 6% ـ ﺠﻤﻠﺔ 6ﺴﺩﺍﺴﻴﺎﺕ : ▪ ﺍﻟﻤﻌﺩل ﺍﻟﺴﺩﺍﺴﻲ ﺍﻟﻤﻜﺎﻓﺊ ﻟﻠﻤﻌﺩل ﺍﻟﺴﻨﻭﻱ %8 (1 + i a ) = (1 + i s )2 i s = (1 + i a ) − 1 i s = 1, 08 − 1 = 0,03923 i s = 3,923% ▪ ﺠﻤﻠﺔ 6ﺴﺩﺍﺴﻴﺎﺕ : A = a (1 + i s )n − 1 is A = × 1.815, 5 (1 + 0, 03923)6 −1 0, 03923 A = 1.815, 5 × 6,620149 A =12.018,88 DA ﺤل ﺍﻟﺘﻤﺭﻴﻥ): (3 .1ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﻤﺒﻠﻎ ﺍﻟ ﻤﻭﺩﻉ ﻓﻲ ﺤﺴﺎﺏ ﻜل ﻭﻟﺩ: ـ ﺍﻟﻤﺒﻠﻎ ﺍﻟﻤﻭﺩﻉ ﻓﻲ ﺤﺴﺎﺏ ﺍﻟﻭﻟﺩ ﺍﻷﻭل ) (a1ﻭ ﺍﻟﻭﻟﺩ ﺍﻟﺜﺎﻨﻲ ) : (a2
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ a1 = a2 ⇔ 3a1 = a 2 3 a 1 + 3 a 1 = 3 2 0 .0 0 0 4 a 1 = 3 2 0 .0 0 0 = a1 3 2 0 .0 0 0 4 a 1 = 8 0 .0 0 0 D A a 2 = 2 4 0 .0 0 0 DA ـ ﺤﺴﺎﺏ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﺫﻱ ﺤﺼل ﻋﻠﻴﻪ ﻜل ﻭﻟﺩ: ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﺩﻓﻌﺎﺕ ﺘﺩﻓﻊ ﻓﻲ ﺒﺩﺍﻴﺔ ﺍﻟﻤﺩﺓ.ﻟﺘﻜﻥ A1ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﺫﻱ ﺤﺼل ﻋﻠﻴﻪ ﺍﻟﻭﻟﺩ ﺍﻷﻭل ﻭ n1ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ ﻭﻫﻲ ﺘﺴـﺎﻭﻱ )19 = 6-25 ﺩﻓﻌﺔ( A1 = a1 (1 + i ) (1 + i )n1 −1 i A1 = 80.000 × (1 + × )0, 07 (1 + 0, 07)19 −1 0, 07 A1 = 80.000 × 1, 07 × 37,378964 A 1 = 3.199.639,31DAﻟﺘﻜﻥ A2ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﺫﻱ ﺤﺼل ﻋﻠﻴﻪ ﺍﻟﻭﻟﺩ ﺍﻷﻭل ﻭ n2ﻋﺩﺩ ﺍﻟﺩﻓﻌﺎﺕ ﻭﻫﻲ ﺘﺴﺎﻭﻱ )9 = 16-25 ﺩﻓﻌﺎﺕ(. A2 = a 2 (1 + i ) (1 + i )n 2 −1 i A1 = 240.000 × (1 + × ) 0, 07 (1 + 0, 07)9 − 1 0,07 A 2 = 240.000 × 1, 07 × 11,977988 A 2 = 3.075.947,31DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺣﻞ اﻟﺘﻤﺮﻳﻦ):(4 ـ ﺍﻟﻁﺭﻴﻘﺔ ) :(1ﺤﺴﺎﺏ ﺍﻟﺠﻤﻠﺔ A = a (1 + i )n A = 1.000.000(1 + 0, 07)10 A = 1.000.000 × 1,967151 A = 1 .9 6 7 .1 5 1DA ـ ﺍﻟﻁﺭﻴﻘﺔ ) :(2ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ V0 = a 1 − (1 + i )−n i a =V 0 1− i i )−n (1 + a = × 1.000.000 1− 0, 07 (1, 07)−5 a = 1.000.000 × 0,24389 a=243.890DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ـ ﺍﻟﻁﺭﻴﻘﺔ ) :(3ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺜﺎﺒﺘﺔ 0 1 2 3 4 5 6 7 8 9 10V0 = a (1 + i )−2 a (1 + a ) − 4 + a (1 + i a) − 6 + a a(1 + i )−8 + a (1 + i )−10 +a i a⎦⎤ V 0 = a ⎣⎡ (1 + i ) − 2 + (1 + i ) − 4 + (1 + i ) − 6 + (1 + i ) − 8 + (1 + i ) − 10 ﻨﻼﺤﻅ ﺃﻥ ﺍﻟﻤﻘﺩﺍﺭ ﺒﻴﻥ ﺍﻟﻤﺠﺎﻟﻴﻥ ﻋﺒﺎﺭﺓ ﻋﻥ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﺤﺩﻫﺎ ﺍﻷﻭل (1 + i )−2ﻭ ﺃﺴﺎﺴﻬﺎ (1 + i )−2 ﻭ ﻋﺩﺩ ﺤﺩﻭﺩﻫﺎ 5ﻭ ﻤﻨﻪ ﺤﺴﺏ ﺼﻴﻐﺔ ﻤﺠﻤﻭﻉ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﻬﻨﺩﺴﻴﺔ ﻓﺈﻥ : V0 = a ⎡ ( 1 + × i )−2 ⎤ ((1 + i )−2 )−5 − 1 ⎢ ⎥ ⎣ (1 + i )−2 − 1 ⎦ V0 = a ⎡ ( 1 + × i )−2 ⎤ (1 + i )−10 − 1 ⎢ ⎥ ⎣ (1 + i )−2 − 1 ⎦ ﻭ ﻤﻨﻪ ﺒﺎﻟﺘﻌﻭﻴﺽ ﻨﺠﺩ: V0 = a × ⎡ (1 + i )−2 × ⎤ (1 + i )−10 − 1 ⎢ ⎥ ⎣ (1 + i )−2 − 1 ⎦ 1.000.000 = a × ⎡ (1, 07)−2 × (1, 07)−10 −1 ⎤ ⎢ (1, 07)−2 −1 ⎥ ⎣ ⎦ 1.000.000 = a × 3,393034 =a 1.000.000 3,393034 a = 294.721,48DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺤل ﺍﻟﺘﻤﺭﻴﻥ):(5 .1ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﻌﻘﺎﺭ ﻓﻲ ﺘﺎﺭﻴﺦ ﺍﻟﺸﺭﺍﺀ 0 1 2 3 4 5 6 7 8 9 10 a aa a aa a a )−8 V0 = a 1− (1+ i −1 (1 + i )−1 i 3 4 1 .3 9 6 ,3 3 1 − ( 1 ,06 )− 8 − 1 ( 1 , 0 6 ) − 1 0,06 V 0 = × V 0 = 341.396,33×6,209793×0,943396 V0 = 2.000.000 D A .2ﺤﺴﺎﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ )ﺍﻟﺠﻤﻠﺔ( (1+ i )8 −1A =a iA = 341 .39 ×6,33 (1,06 )8 − 1 0,06A = 341.396,33×9,897468A = 3.378.959,22DA ﻴﻤﻜﻥ ﺍﻟﺤﺼﻭل ﻋﻠﻰ ﻨﻔﺱ ﺍﻟﻨﺘﻴﺠﺔ ﺘﻘﺭﻴﺒﹰﺎ ﻜﻤﺎ ﻴﻠﻲ :
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ A = V0 (1 + i )9 A =2.000.000×1,68948 A = 3.378.960DA .3ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺎﺕ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺴﻨﺔ .150 1 2 3 4 5 6 7 8 9 10 15a a a =a a (1a + ia)15a−9 A15 A15 A A15 = 3.378.959, 22(1, 06)6 A15 = 3.378.959, 22×1,418519 A15 = 4.793.117,85DA .4ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺎﺕ 3ﺴﻨﻭﺍﺕ ﻗﺒل ﺍﻟﺩﻓﻊ ﺍﻷﻭل :-1 0 1 2 3 4 5 6 7 8 9 10 V a =aVoa(1 +a i a)−1 a aa −3 V −3 = 2.000.000 × (1, 06)−1 V −3 = 2.000.000 × 0,943396 V −3 = 1.886.792DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺍﻟﻤﺠﺎل ﺍﻟﻤﻔﺎﻫﻴﻤﻲ ﺍﻟﺭﺍﺒﻊ :ﺍﻟﻌﻤﻠﻴﺎﺕ ﺍﻟﻤﺎﻟﻴﺔ ﻁﻭﻴﻠﺔ ﺍﻷﺠل ﺍﻟﻭﺤﺩﺓ ) :(17ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﻭﺽ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ: ـ ﻴﻨﺠﺯ ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ. ﺍﻟﻤﺩﺓ ﺍﻟﻼﺯﻤﺔ 08 :ﺴﺎﻋﺎﺕ ﺍﻟﻤﺭﺍﺠﻊ :ﺍﻟﻜﺘﺏ ﺍﻟﻤﺩﺭﺴﻴﺔ ﺍﻟﻤﻘﺭﺭﺓ . ﻤﺅﺸﺭﺍﺕ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ: ﹸﺘﺤﺩﺩ ﺍﺴﺘﻬﻼﻙ ﻭ ﻓﺎﺌﺩﺓ ﻜل ﺩﻓﻌﺔ ﺜﺎﺒﺘﺔ. ﹸﺘﺤﺩﺩ ﺍﻟﻌﻼﻗﺎﺕ ﺒﻴﻥ ﻋﻨﺎﺼﺭ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ. ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ .1ﺘﻌﺭﻴﻑ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ .2ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ .3ﺍﻟﻌﻼﻗﺎﺕ ﺒﻴﻥ ﻋﻨﺎﺼﺭ ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ .4ﺃﻨﺸﻁﺔ ﺍﻹﻋﻼﻡ ﺍﻵﻟﻲ ﻭ ﺤﻠﻭﻟﻬﺎ .5ﺃﺴﺌﻠﺔ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ .6ﺃﺠﻭﺒﺔ ﺍﻟﺘﻘﻭﻴﻡ ﺍﻟﺫﺍﺘﻲ
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ .1ﺘﻌﺭﻴﻑ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ ﻫﻭ ﺍﻟﻘﺭﺽ ﺍﻟﺫﻱ ﻴﺘﻡ ﺒﻴﻥ ﺸﺨﺼﻴﻥ )ﻁﺒﻴﻌﻴﻴﻥ ﺃﻭ ﺍﻋﺘﺒﺎﺭﻴﻴﻥ( ﻭﻴﺴﻤﻰ ﻫـﺫﺍ ﺍﻟﻨـﻭﻉ ﻤـﻥﺍﻟﻘﺭﻭﺽ ﺒﺎﻟﻘﺭﻭﺽ ﻏﻴﺭ ﺍﻟﻤﺠﺯﺌﺔ) (Emprunts Indivisﺤﻴﺙ ﻴﺤﺘﻭﻱ ﻋﻘﺩ ﺍﻟﻘﺭﺽ ﻋﻠﻰ ﻤﻘﺭﺽ ﻭﺍﺤﺩ. ﻓﻲ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ ﻴﻠﺘﺯﻡ ﺍﻟﻤﻘﺘﺭﺽ ﻋﺎﺩﺓ ﺒﻤﺎ ﻴﻠﻲ : ﺃ ـ ﺩﻓﻊ ﻓﻭﺍﺌﺩ ﺒﺼﻔﺔ ﺩﻭﺭﻴﺔ ﻋﻠﻰ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﻘﺘﺭﺽ ﻭ ﻏﻴﺭ ﺍﻟﻤﺴﺩﺩ.ﺏ ـ ﺘﺴﺩﻴﺩ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﻘﺘﺭﺽ :ﻴﺩﻋﻰ ﻫﺫﺍ ﺍﻟﺘﺴﺩﻴﺩ ﺒـ \" ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ \" ﻭ ﻗﺩ ﻴﺘﻡ ﺘﺴﺩﻴﺩ ﺍﻟﻘـﺭﺽ ﺩﻓﻌﺔ ﻭﺍﺤﺩﺓ ﺃﻭ ﻋﻠﻰ ﻋﺩﺓ ﺩﻓﻌﺎﺕ ﻓﻲ ﺃﻏﻠﺏ ﺍﻷﺤﻴﺎﻥ. ﻓﺎﻟﻤﺩﻴﻥ ﻴﻘﻭﻡ ﺩﻭﺭﻴﹰﺎ ﺒﺘﺴﺩﻴﺩ ﺩﻓﻌﺔ ﺘﺤﺘﻭﻱ ﻋﻠﻰ: ﺍﻟﺩﻓﻌﺔ = ﻓﺎﺌﺩﺓ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺘﺒﻘﻲ +ﺍﻻﺴﺘﻬﻼﻙ ﻭ ﺴﺘﻘﺘﺼﺭ ﺩﺭﺍﺴﺘﻨﺎ ﻋﻠﻰ ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﻭﺽ ﺒﻭﺍﺴﻁﺔ ﺍﻟﺩﻓﻌﺎﺕ ﺍﻟﺜﺎﺒﺘﺔ. .2ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ .1.2ﻋﻨﺎﺼﺭ ﺍﻟﺠﺩﻭل ﺇﺫﺍ ﺤﻠﹼﻠﻨﺎ ﻋﻨﺎﺼﺭ ﻜل ﺩﻓﻌﺔ ﻤﻥ ﺍﻟﺩﻓﻌﺎﺕ ﻴﻤﻜﻨﻨﺎ ﻭﻀﻊ ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ ﺍﻟﻌﺎﺩﻱ. ﻓﺈﺫﺍ ﺭﻤﺯﻨﺎ ﺒـ : V0 :ﻟﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﻘﺘﺭﺽ )ﺃﺼل ﺍﻟﻘﺭﺽ( ﻓﻲ ﺍﻟﺯﻤﻥ ﺼﻔﺭ. : an , ..., a3 , a2 , a1ﺍﻟﺩﻓﻌﺎﺕ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺘﺩﻓﻊ ﺍﻷﻭﻟﻰ ﺴﻨﺔ ﺒﻌﺩ ﺇﻤﻀﺎﺀ ﺍﻟﻌﻘﺩ ﻭﺍﻟﺜﺎﻨﻴﺔ ﺴﻨﺔ ﻤـﻥ ﺒﻌـﺩ ﻭ ﻫﻜﺫﺍ ﺃﻱ ﺃﻨﻨﺎ ﺃﻤﺎﻡ ﺩﻓﻌﺎﺕ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ. : An , ..., A3 , A2 , A1ﺍﻻﺴﺘﻬﻼﻜﺎﺕ ﺍﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺘﻲ ﺘﺤﺘﻭﻴﻬﺎ ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭل ،ﺍﻟﺜﺎﻨﻴﺔ .....ﺇﻟـﻰ ﻏﺎﻴـﺔ ﺍﻟﺩﻑﻋﺔ ﺍﻷﺨﻴﺭﺓ).(n :V n , ...,V 3 ,V 2 ,V1ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺘﺒﻘﻲ ﺒﻌﺩ ﺘﺴﺩﻴﺩ ﺍﻟﺩﻓﻌﺔ ﺍﻷﻭﻟﻰ ،ﺍﻟﺜﺎﻨﻴﺔ ،ﺍﻟﺜﺎﻟﺜﺔ.... ، ﺍﻟﺩﻓﻌﺔ).(n : iﺍﻟﻤﻌﺩل ﺍﻻﺴﻤﻲ ﻟﻠﻘﺭﺽ.
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ :ﻤﺩﺓ ﺍﻟﻘﺭﺽ )ﻤﺩﺓ ﺍﻟﺘﺴﺩﻴﺩ(n. .2.2ﺒﻨﺎﺀ ﺍﻟﺠﺩﻭل ﺒﺎﺴﺘﺨﺩﺍﻡ ﺍﻟﺭﻤﻭﺯ ﺍﻟﺴﺎﺒﻘﺔ ﹸﻨﻌﺩ ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ ﻜﻤﺎ ﻴﻠﻲ: اﻟﻘﺮض اﻟﻤﺘﺒﻘﻲاﻟﻘﺮض اﻟﻤﺘﺒﻘﻲ ﻓﻲ اﻟﺪﻓﻌﺔ اﻻﺳﺘﻬﻼك اﻟﻔﺎﺋﺪة ﻓﻲ ﺏﺪایﺔ اﻟﻮﺣﺪاتﻥﻬﺎیﺔ اﻟﻮﺣﺪة اﻟﺰﻣﻨﻴﺔ اﻟﻮﺣﺪة اﻟﺰﻣﻨﻴﺔ V1 =V 0 − A1 اﻟﺰﻣﻨﻴﺔ V 2 =V1 − A2 V 3 =V 2 − A3 a1 =V 0i + A1 A1 V 0i V 0 1 a2 =V1i + A2 A2 V1i V1 2 a3 =V 2i + A3 A3 V 2i V 2 3V p −1 =V p −2 − Ap −1 ap −1 =V p −2i + Ap −1 Ap −1 V p −2i V p −2 p-1 PV p =V p −1 − Ap ap =V p −1i + Ap Ap V p −1i V p −1 P+1V p +1 =V p − Ap +1 ap +1 =V p i + Ap +1 Ap +1 Vpi Vp n-1 An −1 Vn−2i Vn−2 nV n −1 =V n −2 − An −1 an −1 =V n −2i + An −1V n =V n −1 − An = 0 an =V n −1i + An An V n −1i V n −1 ﻤﻼﺤﻅﺎﺕ : .1ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺘﺒﻘﻲ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ Vnﺃﻱ ﺒﻌﺩ ﺘﺴﺩﻴﺩ ﺍﻟﺩﻓﻌﺔ ﺍﻷﺨﻴﺭﺓ ﻴﺴﺎﻭﻱ ﺍﻟﺼﻔﺭ ﺃﻱ : V n −1 = An .2ﺍﻟﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﺃﻱ an = ... = a3 = a2 = a1 .3ﺃﺼل ﺍﻟﻘﺭﺽ ﻴﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﺍﻻﺴﺘﻬﻼﻜﺎﺕ ﺃﻱ :
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ V 0 = A1 + A 2 + A 3 + ... + An n = ∑V 0 Ap p =1 .4ﻤﺠﻤﻭﻉ ﺍﻟﺩﻓﻌﺎﺕ ﺘﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﺍﻟﻔﻭﺍﺌﺩ ﺯﺍﺌﺩ ﻤﺠﻤﻭﻉ ﺍﻻﺴﺘﻬﻼﻜﺎﺕ : nn n ∑ap = ∑ Ap + ∑ I p p =1 p =1 p =1 .3ﺍﻟﻌﻼﻗﺎﺕ ﺒﻴﻥ ﻋﻨﺎﺼﺭ ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ .1.3ﺃﺼل ﺍﻟﻘﺭﺽ ﻭ ﺍﻻﺴﺘﻬﻼﻜﺎﺕ ﺃ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﺴﺘﻬﻼﻜﻴﻥ ﻤﺘﺘﺎﻟﻴﻴﻥ ) a n − a n − 1 = (V n − 1 i + A n ) − (V n − 2 i + A n − 1 an − an −1 = V n −1i + An −V n −2i − An −1 ﻤﻥ ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ ﻟﺩﻴﻨﺎV n −1 =V n − 2 − An −1 : ﻭ ﻤﻨﻪ:a n − a n −1 = (V n − 2 − An −1 )i + An −V n − 2 i − An −1an − an −1 = V n − 2i − An −1i + An −V n − 2i − An −1an − an −1 = − An −1i + An − An −1 ﻭ ﻤﺎ ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﻓﻌﺎﺕ ﻤﺘﺴﺎﻭﻴﺔ ﻓﺈﻥ an − an −1 = 0 : − A n −1i + A n − A n −1 = 0 A n = A n −1i + A n −1 ﻭ ﻤﻨﻪ : ) A n = A n −1 (1 + i ) A n = A n −1 (1 + i
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺃﻱ ﺍﺴﺘﻬﻼﻙ ﺃﻱ ﺴﻨﺔ ﻴﺴﺎﻭﻱ ﺠﻤﻠﺔ ﺍﺴﺘﻬﻼﻙ ﺍﻟﺴﻨﺔ ﺍﻟﺘﻲ ﻗﺒﻠﻬﺎ ﻟﺴﻨﺔ ﻭﺍﺤﺩﺓﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ) :(1ﻴﺴﺩﺩ ﻗﺭﺽ ﺒﻭﺍﺴﻁﺔ 5ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﺒﻤﻌﺩل %6ﺴﻨﻭﻴﹰﺎ ،ﻤﺠﻤﻭﻉ ﺍﻻﻫﺘﻼﻜﻴﻥ ﺍﻟﺜﺎﻟﺙ ﻭ ﺍﻟﺭﺍﺒﻊ 50.000 DA ﺍﻟﻤﻁﻠﻭﺏ :ﺃﺤﺴﺏ A5 , A4 , A3 ﺍﻟﺤل : ﻟﺩﻴﻨﺎ : A3 + A4 = 50.000 ) A4 = A3 (1 + i ـ ﺤﺴﺎﺏ : A3 A3 + A3 (1 + i ) = 50.000 A3 (1 + 1 + 0, 06) = 50.000 2, 06A3 = 50.000 A3 = 50.000 = 2 4 .2 7 1 ,8 5 DA 2,06 A3 = 24.271,85DA ـ ﺤﺴﺎﺏ : A4 A4 = 24.271,85 × 1,06 A4 = 25.728,15DA ـ ﺤﺴﺎﺏ : A5 ) A5 = A4 (1 + i A5 = 25.728,15 × 1, 06 A5 = 27.271,84DA ﺏ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻻﺴﺘﻬﻼﻜﺎﺕ ﻭ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﻭل
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ) A2 = A1 (1 + i A3 = A2 (1 + i ) = A1 (1 + i )2 A4 = A3 (1 + i ) = A1 (1 + i )3 .............................................. An = An −1 (1 + i ) = A1 (1 + i )n −1 An = A1 (1 + i )n −1 ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ) :(2ﺃﺤﺴﺏ ﻟﻠﻤﺜﺎل ﺍﻟﺴﺎﺒﻕ . A1 A5 = A1 (1 + i )4 A1 = A5 )4 (1 + i A1 = A5 (1 + i )−4 A1 = 27.271, 84(1, 06)−4 A1 = 27.271, 84 × 0,792093 A1 = 21.601,85DA ﺟـ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﺴﺘﻬﻼﻜﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻭ ﺒﺼﻔﺔ ﻋﺎﻤﺔ ﻭ ﻤﻬﻤﺎ ﻜﺎﻥ ﺍﻻﺴﺘﻬﻼﻙ ﻓﺈﻥ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﺴﺘﻬﻼﻜﻴﻥ ﻤﺘﻌﺎﻗﺒﻴﻥ ﻫﻲ: )An = A1 (1 + i )n −1 ........(1 Ap = A1 (1 + i )p −1 )A1 = Ap (1 + i )−(p −1) .....(2 ﺒﺘﻌﻭﻴﺽ ) (2ﻓﻲ ) (1ﻨﺠﺩ
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ An = Ap (1 + i )−( p −1) (1 + i )n −1 An = Ap (1 + i )− p +1 (1 + i )n −1 An = Ap (1 + i )− p +1+n −1 An = Ap (1 + i )n −p ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ):(3ﻴﺴﺩﺩ ﻗﺭﺽ ﺒﻭﺍﺴﻁﺔ 12ﺩﻓﻌﺔ ﺜﺎﺒﺘﺔ ﺒﻤﻌﺩل %5ﺴﻨﻭﻴﹰﺎ ،ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻟﺜﺎﻟﺙ 20.000 DA ﺍﻟﻤﻁﻠﻭﺏ :ﺃﺤﺴﺏ A12 , A8 , A5ﺒﺩﻻﻟﺔ A3 ﺍﻟﺤل: ـ ﺤﺴﺎﺏ : A12 An = Ap (1 + i )n −p A12 = A3 (1 + i )12−3 A12 = A3 (1 + i )9 A12 = 20.000(1, 05)9 = 31.026,56DA ـ ﺤﺴﺎﺏ : A8 A8 = A3 (1 + i )8−3 A8 = A3 (1 + i )5 A12 = 20.000(1, 05)5 = 25.525,63DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ـ ﺤﺴﺎﺏ : A5 A5 = A3 (1 + i )5−3 A5 = A3 (1 + i )2 A5 = 20.000 × (1, 06)2 = 22.472DA ﺏ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺃﺼل ﺍﻟﻘﺭﺽ ﻭ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﻭل ﺃﺼل ﺍﻟﻘﺭﺽ ﻴﺴﺎﻭﻱ ﻤﺠﻤﻭﻉ ﺍﻻﺴﺘﻬﻼﻜﺎﺕ ﺃﻱ:V0 = A1 + A2 + A3 + ... + AnV0 = A1 + A1(1+ i ) + A2(1+ i )2 + A3(1+ i )3 + ... + A1(1+ i )n−1 ﻨﻼﺤﻅ ﺃﻥ ﺃﺼل ﺍﻟﻘﺭﺽ ﻴﺴﺎﻭﻱ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﻭل ﻭ ﻫﻲ ﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﺠﻤﻭﻋﻬﺎ ﻫﻭ: V0 = A1 (1 + i )n −1 i ﺃﻱ ﺃﺼل ﺍﻟﻘﺭﺽ ﻫﻭ ﺠﻤﻠﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﻭل ﺨﻼل ﺍﻟﻤﺩﺓ ).(n ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ) :(4ﺃﺤﺴﺏ ﺃﺼل ﺍﻟﻘﺭﺽ ﻟﻠﻤﺜﺎل ﺍﻟﺘﻭﻀﻴﺤﻲ)(2V0 = 21.601,85 (1, 06)5 − 1 0, 06V 0 = 21.601,85 × 5,637093=121.771,63DA .2.3ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﺩﻓﻌﺎﺕ ﻭ ﺍﻻﺴﺘﻬﻼﻜﺎﺕ ﺃ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﺩﻓﻌﺔ ﻭ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﺨﻴﺭ
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺘﺒﻘﻲ ﻓﻲ ﻨﻬﺎﻴﺔ ﺍﻟﻤﺩﺓ Vnﺃﻱ ﺒﻌﺩ ﺘﺴﺩﻴﺩ ﺍﻟﺩﻓﻌﺔ ﺍﻷﺨﻴﺭﺓ ﻴﺴﺎﻭﻱ ﺍﻟﺼﻔﺭ ﺃﻱ : V n −1 = An ﻟﺩﻴﻨﺎ ﻤﻥ ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ: a =V n-1i + An ﻭ ﻤﻨﻪ: a = Ani + An ) a = An (1 + i ) a = An (1 + i ﺃﻱ ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ﻴﺴﺎﻭﻱ ﺠﻤﻠﺔ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﺨﻴﺭ ﻟﻤﺩﺓ ﺴﻨﺔ. ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ):(5 ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﻟﻠﻤﺜﺎل ﺍﻟﺘﻭﻀﻴﺤﻲ)(1 ) a = A5(1 + i a = 27.271,84 × 1,06 = 28.908,15DA ﺏ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﺩﻓﻌﺔ ﻭ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﻭل ﻟﺩﻴﻨﺎ: )a = An (1 + i ).............(1 )An = A1(1 + i )n−1......(2 ﺒﺘﻌﻭﻴﺽ ) (2ﻓﻲ ) (1ﻨﺠﺩa = A1(1 + i )n−1(1 + i ) : a = A1 (1 + i )n
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺃﻱ ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ﻴﺴﺎﻭﻱ ﺠﻤﻠﺔ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻷﻭل ﻟـ ) (nﺴﻨﺔ. ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ): (6 ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﻟﻠﻤﺜﺎل ﺍﻟﺘﻭﻀﻴﺤﻲ)(2 a = A1 (1 + i )5 a = 21.601, 85 × (1, 06)5 a = 21.601, 85 × 1,338225=28.908,15DA ﺠـ ـ ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﺩﻓﻌﺔ ﻭ ﺍﺴﺘﻬﻼﻙ ﻤﺎ ﻟﺩﻴﻨﺎ: )a = An (1 + i )..................(1 ) A n = A p (1 + i )n − p ..........(2 ﺒﺘﻌﻭﻴﺽ ) (2ﻓﻲ ) (1ﻨﺠﺩ: ) a = Ap (1 + i )n − p (1 + i a = A p (1 + i )n − p +1 ﺃﻱ ﻤﺒﻠﻎ ﺍﻟﺩﻓﻌﺔ ﻴﺴﺎﻭﻱ ﺠﻤﻠﺔ ﺍﺴﺘﻬﻼﻙ ﺍﻟﺴﻨﺔ ) ( pﺨﻼل ﺍﻟﻤﺩﺓ )(n − p + 1 ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ):(7ﻴﺴﺩﺩ ﻗﺭﺽ ﺒﻭﺍﺴﻁﺔ 10ﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﺒﻤﻌﺩل %7ﺴﻨﻭﻴﹰﺎ ،ﺇﺫﺍ ﻜﺎﻥ ﺍﻻﺴﺘﻬﻼﻙ ﺍﻟﺴﺎﺒﻊ 30.000 DA
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲ ﺍﻟﻤﻁﻠﻭﺏ: ﺃﺤﺴﺏ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﺍﻟﺤل: a = Ap (1 + i )n−p +1 a = A7 (1 + i )10−7+1 a = A7 (1 + i )4 a = 30.000 × (1,07)4 = 39.323,88DA .3.3ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺃﺼل ﺍﻟﻘﺭﺽ ﻭ ﺍﻟﺩﻓﻌﺎﺕ ﺍﻟﺜﺎﺒﺘﺔ V0 = A1 (1 + i )n − )1 ...........(1 ﻨﻌﻠﻡ ﺃﻥ: i ﻭ ﻨﻌﻠﻡ ﻜﺫﻟﻙ ﺃﻥ: a = A1(1 + i )n )A1 = a(1 + i )−n ..................(2 ﻨﻌﻭﺽ ) (2ﻓﻲ ) (1ﻓﻨﺠﺩ:V0 = a(1 + i )−n (1 + i )n − )1 .......................(3 iV0 = a (1 + i )−n (1 + i )n − (1 + i )−n i V0 = a 1 − (1 + i )−n i
ﺍﻹﺭﺴﺎل 3 3ﺜﺎﻨﻭﻱ ﺘﺴﻴﻴﺭ ﻭﺍﻗﺘﺼﺎﺩ ﺍﻟﺘﺴﻴﻴﺭ ﺍﻟﻤﺤﺎﺴﺒﻲ ﻭ ﺍﻟﻤﺎﻟﻲﺃﻱ ﺃﺼل ﺍﻟﻘﺭﺽ ﻋﺒﺎﺭﺓ ﻋﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺤﺎﻟﻴﺔ ﻟﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ ﺍﻟﺜﺎﺒﺘﺔ ،ﻭ ﻤﻨﻪ ﻗﻴﻤﺔ ﺍﻟﺩﻓﻌﺔ ﺘﺴﺎﻭﻱ: a =V 0 1− i i )−n (1 + ﻤﻥ ﺍﻟﻌﻼﻗﺔ ) (3ﻴﻤﻜﻥ ﺃﻥ ﻨﺴﺘﺨﺭﺝ ﻜﺫﻟﻙ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺒﻴﻥ ﺃﺼل ﺍﻟﻘﺭﺽ ﻭ ﺍﻟﺩﻓﻌﺎﺕ. V 0 (1 + i )n = a (1 + i )n − 1 i ﺃﻱ ﺠﻤﻠﺔ ﺃﺼل ﺍﻟﻘﺭﺽ ﺘﺴﺎﻭﻱ ﺠﻤﻠﺔ ﻤﺘﺘﺎﻟﻴﺔ ﺍﻟﺩﻓﻌﺎﺕ. ﻤﺜﺎل ﺘﻭﻀﻴﺤﻲ):(8 ﺃﺤﺴﺏ ﺃﺼل ﺍﻟﻘﺭﺽ ﻟﻠﻤﺜﺎل ﺍﻟﺘﻭﻀﻴﺤﻲ). (7 ﺍﻟﺤل: V0 = a 1 − (1 + i )−n i V0 = 39.323, 88 1 − (1, 07 )−10 0,07 V 0 = 39.323, 88 × 7,023581 V0 = 276.194,45DA .4.3ﺍﻟﻌﻼﻗﺔ ﺒﻴﻥ ﺍﻟﻔﻭﺍﺌﺩ ﻭ ﺍﻻﺴﺘﻬﻼﻜﺎﺕﺍﻟﻔﻭﺍﺌﺩ ﺘﺸﻜل ﻤﺘﺘﺎﻟﻴﺔ ﺤﺴﺎﺒﻴﺔ ﻤﺘﻨﺎﻗﺼﺔ ﺃﻱ ﻓﺎﺌﺩﺓ ﺍﻟﺴﻨﺔ ﺍﻷﻭﻟﻰ ﺃﻜﺒﺭ ﻤﻥ ﻓﺎﺌﺩﺓ ﺍﻟﺴﻨﺔ ﺍﻟﺜﺎﻨﻴﺔ ﻷﻥ ﺭﺃﺱ ﺍﻟﻤﺎل ﺍﻟﻤﺘﺒﻘﻲ ﻴﺘﻨﺎﻗﺹ ﻤﻥ ﻓﺘﺭﺓ ﻷﺨﺭﻯ. ﺇﺫﺍ ﻭﻀﻌﻨﺎ ﺍﻟﻔﺭﻕ ﺒﻴﻥ ﻓﺎﺌﺩﺓ ﺴﻨﺘﻴﻥ ﻤﺘﺘﺎﻟﻴﺘﻴﻥ ﻴﻜﻭﻥ ﻟﺩﻴﻨﺎ ﺤﺴﺏ ﺠﺩﻭل ﺍﺴﺘﻬﻼﻙ ﺍﻟﻘﺭﺽ: ) I n−1 − I n = (an−1 − An−1 ) − (an − An I n−1 − I n = an−1 − An−1 − an + An−1 ﻭ ﺒﻤﺎ ﺃﻥ ﺍﻟﺩﻓﻌﺎﺕ ﺜﺎﺒﺘﺔ ﻓﺈﻥ: I n−1 − I n = − An−1 + An I n−1 − I n = An − An−1 I n −1 − I n = An −1 (1 + i ) − An −1 I n −1 − I n = An −1 + An −1i − An −1 I n −1 − I n = An −1i
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154