["\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. DOI - 10.32743\/UniTech.2023.111.6.15670 TECHNOLOGY OF EXTRACTION OF DIMETHYL ETHER FROM METHANOL Jasur Shukurov Doctoral Student, Samarkand State University, Republic of Uzbekistan, Samarkand E-mail: [email protected] Normurot Fayzullaev Doctor of Technical Sciences, Professor, Department of Polymer Chemistry and Chemical Technology, Samarkand State University, Republic of Uzbekistan, Samarkand E-mail: [email protected] Begzod Turayev Teacher, Academic lyceum of Samarkand State University named after Sharof Rashidov, Republic of Uzbekistan, Samarkand E-mail: [email protected] Kamolddin Kungratov Teacher, Academic lyceum of Samarkand State University named after Sharof Rashidov, Republic of Uzbekistan, Samarkand E-mail: [email protected] \u0422\u0415\u0425\u041d\u041e\u041b\u041e\u0413\u0418\u042f \u0418\u0417\u0412\u041b\u0415\u0427\u0415\u041d\u0418\u042f \u0414\u0418\u041c\u0415\u0422\u0418\u041b\u041e\u0412\u041e\u0413\u041e \u042d\u0424\u0418\u0420\u0410 \u0418\u0417 \u041c\u0415\u0422\u0410\u041d\u041e\u041b\u0410 \u0428\u0443\u043a\u0443\u0440\u043e\u0432 \u0416\u0430\u0441\u0443\u0440 \u0425\u043e\u0448\u0438\u043c\u043e\u0432\u0438\u0447 \u0434\u043e\u043a\u0442\u043e\u0440\u0430\u043d\u0442, \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434\u0441\u043a\u0438\u0439 \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0439 \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u0423\u0437\u0431\u0435\u043a\u0438\u0441\u0442\u0430\u043d, \u0433. \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434 \u0424\u0430\u0439\u0437\u0443\u043b\u043b\u0430\u0435\u0432 \u041d\u043e\u0440\u043c\u0443\u0440\u043e\u0442 \u0418\u0431\u043e\u0434\u0443\u043b\u043b\u0430\u0435\u0432\u0438\u0447 \u0434-\u0440 \u0442\u0435\u0445\u043d. \u043d\u0430\u0443\u043a, \u043f\u0440\u043e\u0444\u0435\u0441\u0441\u043e\u0440, \u043a\u0430\u0444\u0435\u0434\u0440\u0430 \u0445\u0438\u043c\u0438\u0438 \u043f\u043e\u043b\u0438\u043c\u0435\u0440\u043e\u0432 \u0438 \u0445\u0438\u043c\u0438\u0447\u0435\u0441\u043a\u043e\u0439 \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0438, \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434\u0441\u043a\u0438\u0439 \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0439 \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u0423\u0437\u0431\u0435\u043a\u0438\u0441\u0442\u0430\u043d, \u0433. \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434 \u0422\u0443\u0440\u0430\u0435\u0432 \u0411\u0435\u0433\u0437\u043e\u0434 \u0413\u0443\u043b\u043e\u043c\u043e\u0432\u0438\u0447 \u043f\u0440\u0435\u043f\u043e\u0434\u0430\u0432\u0430\u0442\u0435\u043b\u044c, \u0410\u043a\u0430\u0434\u0435\u043c\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u043b\u0438\u0446\u0435\u0439 \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434\u0441\u043a\u043e\u0433\u043e \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0433\u043e \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442\u0430 \u0438\u043c\u0435\u043d\u0438 \u0428\u0430\u0440\u043e\u0444\u0430 \u0420\u0430\u0448\u0438\u0434\u043e\u0432\u0430, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u0423\u0437\u0431\u0435\u043a\u0438\u0441\u0442\u0430\u043d, \u0433. \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434 \u041a\u0443\u043d\u0433\u0440\u0430\u0442\u043e\u0432 \u041a\u0430\u043c\u043e\u043b\u0434\u0434\u0438\u043d \u0410\u0441\u043b\u0438\u0434\u0434\u0438\u043d\u043e\u0432\u0438\u0447 \u043f\u0440\u0435\u043f\u043e\u0434\u0430\u0432\u0430\u0442\u0435\u043b\u044c, \u0410\u043a\u0430\u0434\u0435\u043c\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u043b\u0438\u0446\u0435\u0439 \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434\u0441\u043a\u043e\u0433\u043e \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0433\u043e \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442\u0430 \u0438\u043c\u0435\u043d\u0438 \u0428\u0430\u0440\u043e\u0444\u0430 \u0420\u0430\u0448\u0438\u0434\u043e\u0432\u0430, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u0423\u0437\u0431\u0435\u043a\u0438\u0441\u0442\u0430\u043d, \u0433. \u0421\u0430\u043c\u0430\u0440\u043a\u0430\u043d\u0434 __________________________ \u0411\u0438\u0431\u043b\u0438\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043e\u043f\u0438\u0441\u0430\u043d\u0438\u0435: TECHNOLOGY OF EXTRACTION OF DIMETHYL ETHER FROM METHANOL \/\/ Universum: \u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u0438\u0435 \u043d\u0430\u0443\u043a\u0438 : \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d. \u043d\u0430\u0443\u0447\u043d. \u0436\u0443\u0440\u043d. Shukurov J. [\u0438 \u0434\u0440.]. 2023. 6(111). URL: https:\/\/7universum.com\/ru\/tech\/archive\/item\/15670","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. ABSTRACT In research work, the process of obtaining dimethyl ether (DME) consists of extracting methanol directly from natural gas and converting methanol to DME in a single apparatus. Consequently, the separation and purification step of methanol (CH3OH) as an intermediate before it is recycled to DME is eliminated. New selective zeolite catalysts are used in the synthesis, and long-term stability tests of the selective zeolite catalyst were conducted during its operation for 1000 hours. At the same time, it was found that the catalyst almost does not lose its activity under working conditions of P=0.3 MPa and T=180 \u2103. In a selective zeolite catalyst, methanol can be efficiently converted to DME at a volumetric rate of 0.6 h\u20131 in liquid CH3OH to DME conversion using a TriStar II (3020) automatic gas adsorption analyzer model BJH (Barrett-Joyner- Halenda) \\\"Crystal 5000\\\" gas chromatograph was determined. The phase composition of the catalyst samples was studied by X-ray phase analysis (XRD) using a Shimadzu XRD-6000 diffractometer. It is planned to use 1 reactor together, each of which is loaded with 25 g of catalyst. In this case, even with a short-term recovery of one of their catalysts, it is possible to organize the continuous operation of obtaining motor fuels. \u0410\u041d\u041d\u041e\u0422\u0410\u0426\u0418\u042f \u0412 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044c\u0441\u043a\u043e\u0439 \u0440\u0430\u0431\u043e\u0442\u0435 \u043f\u0440\u043e\u0446\u0435\u0441\u0441 \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u0438\u044f \u0434\u0438\u043c\u0435\u0442\u0438\u043b\u043e\u0432\u043e\u0433\u043e \u044d\u0444\u0438\u0440\u0430 (\u0414\u041c\u042d) \u0441\u043e\u0441\u0442\u043e\u0438\u0442 \u0438\u0437 \u0432\u044b\u0434\u0435\u043b\u0435\u043d\u0438\u044f \u043c\u0435\u0442\u0430\u043d\u043e\u043b\u0430 \u043d\u0435\u043f\u043e\u0441\u0440\u0435\u0434\u0441\u0442\u0432\u0435\u043d\u043d\u043e \u0438\u0437 \u043f\u0440\u0438\u0440\u043e\u0434\u043d\u043e\u0433\u043e \u0433\u0430\u0437\u0430 \u0438 \u043f\u0440\u0435\u0432\u0440\u0430\u0449\u0435\u043d\u0438\u044f \u043c\u0435\u0442\u0430\u043d\u043e\u043b\u0430 \u0432 \u0414\u041c\u042d \u0432 \u043e\u0434\u043d\u043e\u043c \u0430\u043f\u043f\u0430\u0440\u0430\u0442\u0435. \u0421\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044c\u043d\u043e, \u044d\u0442\u0430\u043f \u043e\u0442\u0434\u0435\u043b\u0435\u043d\u0438\u044f \u0438 \u043e\u0447\u0438\u0441\u0442\u043a\u0438 \u043c\u0435\u0442\u0430\u043d\u043e\u043b\u0430 (CH3OH) \u0432 \u043a\u0430\u0447\u0435\u0441\u0442\u0432\u0435 \u043f\u0440\u043e\u043c\u0435\u0436\u0443\u0442\u043e\u0447\u043d\u043e\u0433\u043e \u043f\u0440\u043e\u0434\u0443\u043a\u0442\u0430 \u043f\u0435\u0440\u0435\u0434 \u0435\u0433\u043e \u0440\u0435\u0446\u0438\u0440\u043a\u0443\u043b\u044f\u0446\u0438\u0435\u0439 \u0432 \u0414\u041c\u042d \u0438\u0441\u043a\u043b\u044e\u0447\u0430\u0435\u0442\u0441\u044f. \u0412 \u0441\u0438\u043d\u0442\u0435\u0437\u0435 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u044b \u043d\u043e\u0432\u044b\u0435 \u0441\u0435\u043b\u0435\u043a\u0442\u0438\u0432\u043d\u044b\u0435 \u0446\u0435\u043e\u043b\u0438\u0442\u043d\u044b\u0435 \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440\u044b, \u0430 \u0442\u0430\u043a\u0436\u0435 \u043f\u0440\u043e\u0432\u0435\u0434\u0435\u043d\u044b \u0434\u043b\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u0435 \u0438\u0441\u043f\u044b\u0442\u0430\u043d\u0438\u044f \u043d\u0430 \u0441\u0442\u0430\u0431\u0438\u043b\u044c\u043d\u043e\u0441\u0442\u044c \u0441\u0435\u043b\u0435\u043a\u0442\u0438\u0432\u043d\u043e\u0433\u043e \u0446\u0435\u043e\u043b\u0438\u0442\u043d\u043e\u0433\u043e \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440\u0430 \u043f\u0440\u0438 \u0435\u0433\u043e \u0440\u0430\u0431\u043e\u0442\u0435 \u0432 \u0442\u0435\u0447\u0435\u043d\u0438\u0435 1000 \u0447\u0430\u0441\u043e\u0432. \u041f\u0440\u0438 \u044d\u0442\u043e\u043c \u0443\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u043e, \u0447\u0442\u043e \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440 \u043f\u0440\u0430\u043a\u0442\u0438\u0447\u0435\u0441\u043a\u0438 \u043d\u0435 \u0442\u0435\u0440\u044f\u0435\u0442 \u0441\u0432\u043e\u0435\u0439 \u0430\u043a\u0442\u0438\u0432\u043d\u043e\u0441\u0442\u0438 \u0432 \u0440\u0430\u0431\u043e\u0447\u0438\u0445 \u0443\u0441\u043b\u043e\u0432\u0438\u044f\u0445 \u0420=0,3 \u041c\u041f\u0430 \u0438 \u0422=180 \u2103. \u0421\u0435\u043b\u0435\u043a\u0442\u0438\u0432\u043d\u044b\u0439 \u0446\u0435\u043e\u043b\u0438\u0442\u043d\u044b\u0439 \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440 \u043c\u043e\u0436\u0435\u0442 \u044d\u0444\u0444\u0435\u043a\u0442\u0438\u0432\u043d\u043e \u043f\u0440\u0435\u043e\u0431\u0440\u0430\u0437\u043e\u0432\u044b\u0432\u0430\u0442\u044c \u043c\u0435\u0442\u0430\u043d\u043e\u043b \u0432 \u0414\u041c\u042d \u0441 \u043e\u0431\u044a\u0435\u043c\u043d\u043e\u0439 \u0441\u043a\u043e\u0440\u043e\u0441\u0442\u044c\u044e 0,6 \u0447\u20131 \u0432 \u0436\u0438\u0434\u043a\u043e\u043c CH3OH \u0434\u043b\u044f \u043f\u0440\u0435\u0432\u0440\u0430\u0449\u0435\u043d\u0438\u044f \u0432 \u0414\u041c\u042d \u0441 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435\u043c \u0430\u0432\u0442\u043e\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u0433\u0430\u0437\u043e\u0430\u043d\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440\u0430 TriStar II (3020), \u043c\u043e\u0434\u0435\u043b\u044c BJH (Barrett-Joyner-Halenda) \u00abCrystal 5000\u00bb, \u0433\u0430\u0437 \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u044f\u043b\u0438 \u0445\u0440\u043e\u043c\u0430\u0442\u043e\u0433\u0440\u0430\u0444\u043e\u043c. \u0424\u0430\u0437\u043e\u0432\u044b\u0439 \u0441\u043e\u0441\u0442\u0430\u0432 \u043e\u0431\u0440\u0430\u0437\u0446\u043e\u0432 \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440\u043e\u0432 \u0438\u0437\u0443\u0447\u0430\u043b\u0438 \u043c\u0435\u0442\u043e\u0434\u043e\u043c \u0440\u0435\u043d\u0442\u0433\u0435\u043d\u043e\u0444\u0430\u0437\u043e\u0432\u043e\u0433\u043e \u0430\u043d\u0430\u043b\u0438\u0437\u0430 (\u0420\u0424\u0410) \u043d\u0430 \u0434\u0438\u0444\u0440\u0430\u043a\u0442\u043e\u043c\u0435\u0442\u0440\u0435 Shimadzu XRD-6000. \u041f\u043b\u0430\u043d\u0438\u0440\u0443\u0435\u0442\u0441\u044f \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u0442\u044c \u0432\u043c\u0435\u0441\u0442\u0435 1 \u0440\u0435\u0430\u043a\u0442\u043e\u0440, \u0432 \u043a\u0430\u0436\u0434\u044b\u0439 \u0438\u0437 \u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u0437\u0430\u0433\u0440\u0443\u0436\u0435\u043d\u043e \u043f\u043e 25 \u0433 \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440\u0430. \u0412 \u044d\u0442\u043e\u043c \u0441\u043b\u0443\u0447\u0430\u0435 \u0434\u0430\u0436\u0435 \u043f\u0440\u0438 \u043a\u0440\u0430\u0442\u043a\u043e\u0432\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u043c \u0432\u043e\u0441\u0441\u0442\u0430\u043d\u043e\u0432\u043b\u0435\u043d\u0438\u0438 \u043e\u0434\u043d\u043e\u0433\u043e \u0438\u0445 \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440\u043e\u0432 \u043c\u043e\u0436\u043d\u043e \u043e\u0440\u0433\u0430\u043d\u0438\u0437\u043e\u0432\u0430\u0442\u044c \u043d\u0435\u043f\u0440\u0435\u0440\u044b\u0432\u043d\u044b\u0439 \u043f\u0440\u043e\u0446\u0435\u0441\u0441 \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u0438\u044f \u043c\u043e\u0442\u043e\u0440\u043d\u044b\u0445 \u0442\u043e\u043f\u043b\u0438\u0432. Keywords: methanol (CH3OH), dimethyl ether (DME), temperature, catalyst, selective zeolite catalyst. \u041a\u043b\u044e\u0447\u0435\u0432\u044b\u0435 \u0441\u043b\u043e\u0432\u0430: \u043c\u0435\u0442\u0430\u043d\u043e\u043b (CH3OH), \u0434\u0438\u043c\u0435\u0442\u0438\u043b\u043e\u0432\u044b\u0439 \u044d\u0444\u0438\u0440 (DME), \u0442\u0435\u043c\u043f\u0435\u0440\u0430\u0442\u0443\u0440\u0430, \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440, c\u0441\u0435\u043b\u0435\u043a\u0442\u0438\u0432\u043d\u044b\u0439 \u0446\u0435\u043e\u043b\u0438\u0442\u043d\u044b\u0439 \u043a\u0430\u0442\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440. ________________________________________________________________________________________________ Introduction On the other hand, all the main technological stages of the production of motor fuel, DME, and methanol are DME production technology has been developed by exothermic. And although the heat effect of individual several foreign companies in the United States (Air reactions is relatively small and amounts to 4-11 kcal\/mol, Products and Chemicals), Great Britain (VR), Japan about 98% of the total conversion of raw materials is (NKK Corp), Denmark (Haldor Topsoe) and others [1]. achieved in industrial equipment [8,9]. Existing technologies for the production of motor fuels from natural gas have the following disadvantages: high It is proposed to use polytropic shell and tube reactors material costs, high energy consumption and consumption in the advanced technology of the fuel synthesis process. standards for raw materials, and low quality of the target They are easy to manufacture and use the coolant boiling product. At the same time, due to the sharp increase in the Intertubes of the reactor to dissipate heat. As the in world prices for hydrocarbon raw materials, there is a latter, organic high-boiling compounds, water, salt solu- tendency in different regions of the world to dramati- tions can be chosen. Due to the choice of the cooling cally change the industrial demand for the main products device, one or another thermal operation mode of the of petrochemical synthesis (ethene, propene, butene, reactor is ensured. In addition, special attention should DME, benzene, alkyl aromatic hydrocarbons) [2,3]. be paid to the stability of the operating mode of the device In addition, there is a change in the prices of different in question - with a rapid increase in the temperature of brands of fuel (carburettor and diesel). Therefore, when the reagents in the reaction zone, the rate of heat transfer creating new production facilities, it is necessary to develop to the coolant immediately increases, and vice versa, when such technologies that are flexible for different manu- the product flow is cooled, the reaction raw materials factured products [4,5]. The second situation, on the one are heated by heat carriers. Consequently, it is possible hand, leads to the need to develop new types of produc- to organize its stable, almost isothermal mode in such tion with high profitability, and on the other hand, the devices [10, 11]. range of products produced by this enterprise will be less dependent on their efficiency in terms of price changes Experimental part in world markets [6]. The process of obtaining DME in scientific research Based on the above, new products should be focused work consists of obtaining methanol directly from natural not only on the production of environmentally friendly gas and converting methanol to DME in a single appa- high-octane motor fuels but also on the production of the ratus. Consequently, the step of separating and purifying main products of petrochemical synthesis - olefins, methanol as an intermediate before recycling it to DME benzene, and alkyl aromatics [7]. 47","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. is eliminated. Since the DME synthesis reaction is ex- DME synthesis process is carried out in separate re- othermic, the heat released in the first reactor is used actors. This allows the catalyst to be used for a longer to generate medium pressure steam. After the second period of time. In addition, pure DME (99%) can be ob- adiabatic reactor, the fixed gas is heated and cooled in tained as the final product. According to this technolog- the heat exchanger of the raw material (synthesis gas) ical scheme, 0.86 tons of gasoline or 1.2 tons of DME and fed to the condenser, where the product (water- can be obtained from 0.5 tons of methanol. Synthesis of methanol-DME mixture) is separated from the synthesis motor fuels from DME is carried out in two reactors. gas. The gaseous phase is divided into two streams - The catalyst is regenerated at different times and contin- recirculation gas and waste gas, in order to avoid ac- uous production is achieved. Motor fuels are purified cumulation of inertia in the stream. only from lower alkanes. The kinetic laws of the synthe- sis and process of DME from methanol were studied in Due to the low condensation capacity of dimethyl the device shown in Figure 1 below. The main compo- ether, the discharge gases are sent to the absorption column, nent of the device is an internal diameter of 45 mm and where the residues of dimethyl ether are separated from a length of 600 mm, filled with a 100 mm filler for heating it with methanol. Long-term stability tests of the selective the injected gas mixture at once, and equipped with a gas zeolite catalyst were conducted during its operation for inlet nozzle (4) from the lower side to obtain DME from 1000 hours. At the same time, it was found that the natural gas made of nickel. intended reactor is (1). In the catalyst almost does not lose its activity under operating central part of the reactor intended for obtaining DME conditions of P=0.3 MPa and T=180 \u2103. In a selective from methanol (3) the catalyst intended for obtaining zeolite catalyst, methanol can be efficiently converted DME from methanol is placed (~15 mg). Heating of the to DME at a volumetric rate of 0.6 h\u20131 in liquid. reactor designed to obtain DME from methanol was car- ried out with an electric furnace, the temperature of At the end of the research stage dedicated to the which was controlled using (7). study of the chemical transformation process, we move on to its analysis in the catalyst grain and in the catalytic Temperature control in the reactor designed for ob- reactor. Values of efficiency factors for catalyst granules taining DME from methanol was carried out using a were calculated according to this model. It turns out that thermocouple (8) and a millivoltmeter (9) located inside the values of efficiency factors for all substances are the reactor (a). Synthesis gas (16) and argon (17) were about 0.7. For normal operation of the reactor, the used to create a gas environment in the reactor designed temperature increase from the reactor wall to the centre to obtain DME from methanol. Gases were sent to the of the reactor tube should not exceed 6-8 \u2103. According reactor designed to obtain DME from methanol with to the results of the modelling, a system of measures taps (10, 11). Gas consumption was determined using to control the catalytic process was developed, which rotameters (12, 13) and controlled by manometers (5, 6). ensures the stable operation of the stand reactor and the A reducer (15) was used to control the gas pressure in production of high-octane gasoline of the required quality. the cylinder. Fig. 1. 1 \u2013 Reactor designed for obtaining DME from methanol; 2 \u2013 torsion balance; 3 \u2013 Catalyst for obtaining DME from methanol; 4 \u2013 nozzle; 5, 6 \u2013 manometer; 7 \u2013 autotransformer; 8 - thermocouple; 9 milli-voltmeter; 10, 11 \u2013 crane; 12, 13\u2013 rotameter; 14, 15 - reducers; 16, 17 \u2013 gas source. Figure 1. An experimental setup for studying the kinetics of DME formation 48","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. In this reactor, an additional amount of hydrogen the phase composition of the catalysts, and scanning is introduced along with the feed stream, which allows electron microscopy (SEM) was used to study the surface the reactor to operate stably continuously for at least characteristics. 3,000 hours. In this case, even with a short-term recovery of one of their catalysts, it is possible to organize con- Conclusion tinuous operation of obtaining motor fuels. In general, the whole system of previously described measures allows New selective zeolite catalysts are used in the to obtain motor fuel that is 10-15% lower than conventional synthesis. A low-temperature process technology has schemes. DME recovery during operation was deter- been developed for the production of methanol-based mined using a Crystal 5000 gas chromatograph, StarTri II DME, which, while reducing energy consumption, in- (3020) automatic gas adsorption analyzer model BJH creases process productivity and the quality of produced (Joyner-Barrett-Halenda). DME compared to conventional industrial processes. A catalytic process has been created that provides more The phase composition of the catalyst samples was than 60% of the total amount of olefinic hydrocarbons studied by X-ray phase analysis (XRD) using a Shimadzu in the reaction products of the conversion of methanol XRD-6000 diffractometer. The surface morphology of and DME to lower olefins in high-silicon zeolites. the samples was studied by scanning electron micro- The latter can serve as an effective raw material for a scope based on IILMU VEGA electron microscope and new generation of motor fuel, which has been proven by ENERGY INCA 350 energy dispersive microanalysis. experience. Diffractometer (XRD Pan Analytical) was used to study References: 1. Fornell R., Berntsson T., \u00c5sblad A. Techno-economic analysis of a kraft pulp-mill-based biorefinery producing both ethanol and dimethyl ether \/\/Energy. \u2013 2013. \u2013 \u0422. 50. \u2013 \u0421. 83-92. 2. Wang Z. et al. Gasification of biomass with oxygen-enriched air in a pilot scale two-stage gasifier \/\/ Fuel. \u2013 2015. \u2013 \u0422. 150. \u2013 \u0421. 386-393. 3. Baliban R.C., Elia J.A., Floudas C.A. Biomass and natural gas to liquid transportation fuels: process synthesis, global optimization, and topology analysis \/\/ Industrial & Engineering Chemistry Research. \u2013 2013. \u2013 \u0422. 52. \u2013 \u2116. 9. \u2013 \u0421. 3381-3406. 4. Li Y. et al. 100 t\/a-Scale demonstration of direct dimethyl ether synthesis from corncob-derived syngas \/\/Renewable Energy. \u2013 2010. \u2013 \u0422. 35. \u2013 \u2116. 3. \u2013 \u0421. 583-587. 5. Markova N.A. et al. Dimethyl ether in the processing of associated petroleum gas to a mixture of synthetic hydrocar- bons \/\/Petroleum Chemistry. \u2013 2016. \u2013 \u0422. 56. \u2013 \u0421. 857-862. 6. Ilias S., Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons \/\/Acs Catalysis. \u2013 2013. \u2013 \u0422. 3. \u2013 \u2116. 1. \u2013 \u0421. 18-31. 7. Volnina E.A., Kipnis M.A., Khadzhiev S.N. Catalytic chemistry of dimethyl ether \/\/ Petroleum Chemistry. \u2013 2017. \u2013 \u0422. 57. \u2013 \u0421. 353-373. 8. Mamadoliev I.I., Fayzullaev N.I. Optimization of the activation conditions of high silicon zeolite \/\/ International Journal of Advanced Science and Technology. \u2013 2020. \u2013 \u0422. 29. \u2013 \u2116. 3. \u2013 \u0421. 6807-6813. 9. Buronov F., Fayzullayev N. Synthesis and application of high silicon zeolites from natural sources \/\/ AIP Conference Proceedings. \u2013 AIP Publishing LLC, 2022. \u2013 \u0422. 2432. \u2013 \u2116. 1. \u2013 \u0421. 050004. 10. Aslanov S.C., Buxorov A.Q., Fayzullayev N.I. Catalytic synthesis of \u04212-\u04214-alkenes from dimethyl ether \/\/ International Journal of Engineering Trends and Technology. \u2013 2021. \u2013 \u0422. 69. \u2013 \u2116. 4. \u2013 \u0421. 67\u201375. 11. Bukhorov A.Q., Aslanov S.C., Fayzullaev N.I. Kinetic laws of dimethyl ether synthesis in synthesis gas \/\/ AIP Conference Proceedings. \u2013 AIP Publishing LLC, 2022. \u2013 \u0422. 2432. \u2013 \u2116. 1. \u2013 \u0421. 050012. 49","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. ELECTRICAL ENGINEERING DOI - 10.32743\/UniTech.2023.111.6.15667 TEST INVESTIGATION AND MODELLING OF HYBRID MAGNETIC LEVITATION SYSTEM Daria Arslanova MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Alexandra Grosheva MSc, Research engineer, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Nataliia Znamenshchikova MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Roman Korotkov MSc, Metrologist, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Nadezhda Krylova MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Nikolay Makhankov MSc, Process supervisor, JSC \u201cNIIEFA\u201d Russia, St. Petersburg [email protected] Dmitry Melnikov MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Sergey Smirnov Director of Scientific and Educational Center for Innovative Development of Passenger Rail Transportation St. Petersburg State Transport University Russia, St. Petersburg E-mail: [email protected] Alexey Firsov MSc, Project leader, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] __________________________ \u0411\u0438\u0431\u043b\u0438\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043e\u043f\u0438\u0441\u0430\u043d\u0438\u0435: TEST INVESTIGATION AND MODELLING OF HYBRID MAGNETIC LEVITATION SYSTEM \/\/ Universum: \u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u0438\u0435 \u043d\u0430\u0443\u043a\u0438 : \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d. \u043d\u0430\u0443\u0447\u043d. \u0436\u0443\u0440\u043d. Arslanova D. [\u0438 \u0434\u0440.]. 2023. 6(111). URL: https:\/\/7univer- sum.com\/ru\/tech\/archive\/item\/15667","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. \u0420\u0415\u0417\u0423\u041b\u042c\u0422\u0410\u0422\u042b \u0418\u0421\u041f\u042b\u0422\u0410\u041d\u0418\u0419 \u041f\u0420\u041e\u0422\u041e\u0422\u0418\u041f\u0410 \u0413\u0418\u0411\u0420\u0418\u0414\u041d\u041e\u0413\u041e \u042d\u041b\u0415\u041a\u0422\u0420\u041e\u041c\u0410\u0413\u041d\u0418\u0422\u0410 \u041b\u0415\u0412\u0418\u0422\u0410\u0426\u0418\u041e\u041d\u041d\u041e\u0413\u041e \u041f\u041e\u0414\u0412\u0415\u0421\u0410 \u0410\u0440\u0441\u043b\u0430\u043d\u043e\u0432\u0430 \u0414\u0430\u0440\u044c\u044f \u041d\u0438\u043a\u043e\u043b\u0430\u0435\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u0413\u0440\u043e\u0448\u0435\u0432\u0430 \u0410\u043b\u0435\u043a\u0441\u0430\u043d\u0434\u0440\u0430 \u0414\u043c\u0438\u0442\u0440\u0438\u0435\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u0438\u043d\u0436\u0435\u043d\u0435\u0440-\u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044c \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u0417\u043d\u0430\u043c\u0435\u043d\u0449\u0438\u043a\u043e\u0432\u0430 \u041d\u0430\u0442\u0430\u043b\u0438\u044f \u0421\u0435\u0440\u0433\u0435\u0435\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u041a\u043e\u0440\u043e\u0442\u043a\u043e\u0432 \u0420\u043e\u043c\u0430\u043d \u0412\u043b\u0430\u0434\u0438\u043c\u0438\u0440\u043e\u0432\u0438\u0447 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u0438\u043d\u0436\u0435\u043d\u0435\u0440-\u043c\u0435\u0442\u0440\u043e\u043b\u043e\u0433, \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u041a\u0440\u044b\u043b\u043e\u0432\u0430 \u041d\u0430\u0434\u0435\u0436\u0434\u0430 \u0410\u043b\u0435\u043a\u0441\u0430\u043d\u0434\u0440\u043e\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u041c\u0430\u0445\u0430\u043d\u044c\u043a\u043e\u0432 \u041d\u0438\u043a\u043e\u043b\u0430\u0439 \u0410\u043b\u0435\u043a\u0441\u0435\u0435\u0432\u0438 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043d\u0430\u0447\u0430\u043b\u044c\u043d\u0438\u043a \u0433\u0440\u0443\u043f\u043f\u044b \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u041c\u0435\u043b\u044c\u043d\u0438\u043a\u043e\u0432 \u0414\u043c\u0438\u0442\u0440\u0438\u0439 \u0414\u0435\u043d\u0438\u0441\u043e\u0432\u0438\u0447 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u0421\u043c\u0438\u0440\u043d\u043e\u0432 \u0421\u0435\u0440\u0433\u0435\u0439 \u0410\u043b\u0435\u043a\u0441\u0430\u043d\u0434\u0440\u043e\u0432\u0438\u0447 \u0440\u0443\u043a\u043e\u0432\u043e\u0434\u0438\u0442\u0435\u043b\u044c \u041d\u041e\u0426 \u00ab\u0418\u043d\u043d\u043e\u0432\u0430\u0446\u0438\u043e\u043d\u043d\u043e\u0435 \u0440\u0430\u0437\u0432\u0438\u0442\u0438\u0435 \u043f\u0430\u0441\u0441\u0430\u0436\u0438\u0440\u0441\u043a\u0438\u0445 \u0436\u0435\u043b\u0435\u0437\u043d\u043e\u0434\u043e\u0440\u043e\u0436\u043d\u044b\u0445 \u043f\u0435\u0440\u0435\u0432\u043e\u0437\u043e\u043a\u00bb, \u041f\u0413\u0423\u041f\u0421, \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u0424\u0438\u0440\u0441\u043e\u0432 \u0410\u043b\u0435\u043a\u0441\u0435\u0439 \u0410\u043d\u0430\u0442\u043e\u043b\u044c\u0435\u0432\u0438\u0447 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u0440\u0443\u043a\u043e\u0432\u043e\u0434\u0438\u0442\u0435\u043b\u044c \u043f\u0440\u043e\u0435\u043a\u0442\u0430 \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 ABSTRACT Levitation performance of a hybrid electromagnet suspension (HEMS) has been investigated experimentally and numerically. Force measurements were made on a test setup with a prototype HEMS designed at JSC \u201cNIIEFA\u201d. The measured data were compared with 3D simulations. The investigation enabled validation of design solutions. The prototype demonstrated good levitation characteristics and low power consumption and stray field. \u0410\u041d\u041d\u041e\u0422\u0410\u0426\u0418\u042f \u0418\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u043d\u044b \u0445\u0430\u0440\u0430\u043a\u0442\u0435\u0440\u0438\u0441\u0442\u0438\u043a\u0438 \u043f\u0440\u043e\u0442\u043e\u0442\u0438\u043f\u0430 \u0433\u0438\u0431\u0440\u0438\u0434\u043d\u043e\u0433\u043e \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043c\u0430\u0433\u043d\u0438\u0442\u0430 (\u0413\u042d\u041c) \u043f\u043e\u0434\u0432\u0435\u0441\u0430 \u043c\u0430\u0433\u043d\u0438\u0442\u043e\u043b\u0435\u0432\u0438\u0442\u0430\u0446\u0438\u043e\u043d\u043d\u043e\u0433\u043e \u0442\u0440\u0430\u043d\u0441\u043f\u043e\u0440\u0442\u043d\u043e\u0433\u043e \u0441\u0440\u0435\u0434\u0441\u0442\u0432\u0430, \u0440\u0430\u0437\u0440\u0430\u0431\u043e\u0442\u0430\u043d\u043d\u043e\u0433\u043e \u0432 \u0410\u041e \u00ab\u041d\u0418\u0418\u042d\u0424\u0410\u00bb. \u0418\u0437\u043c\u0435\u0440\u0435\u043d\u0438\u044f \u043d\u0430 \u0441\u043f\u0435\u0446\u0438\u0430\u043b\u0438\u0437\u0438\u0440\u043e\u0432\u0430\u043d\u043d\u043e\u043c \u0441\u0442\u0435\u043d\u0434\u0435 \u0431\u044b\u043b\u0438 \u0432\u044b- \u043f\u043e\u043b\u043d\u0435\u043d\u044b \u0441 \u0446\u0435\u043b\u044c\u044e \u043e\u0431\u043e\u0441\u043d\u043e\u0432\u0430\u043d\u0438\u044f \u043f\u0440\u0438\u043d\u044f\u0442\u044b\u0445 \u043a\u043e\u043d\u0441\u0442\u0440\u0443\u043a\u0446\u0438\u043e\u043d\u043d\u044b\u0445 \u0440\u0435\u0448\u0435\u043d\u0438\u0439. \u0421\u0440\u0430\u0432\u043d\u0435\u043d\u0438\u0435 \u043f\u043e\u043b\u0443\u0447\u0435\u043d\u043d\u044b\u0445 \u0434\u0430\u043d\u043d\u044b\u0445 \u0441 \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430- \u0442\u0430\u043c\u0438 \u0447\u0438\u0441\u043b\u0435\u043d\u043d\u043e\u0433\u043e \u043c\u043e\u0434\u0435\u043b\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u044f \u043f\u043e\u0434\u0442\u0432\u0435\u0440\u0436\u0434\u0430\u0435\u0442 \u043f\u0440\u0430\u0432\u0438\u043b\u044c\u043d\u043e\u0441\u0442\u044c \u0432\u044b\u0431\u0440\u0430\u043d\u043d\u043e\u0439 \u043a\u043e\u043d\u0446\u0435\u043f\u0446\u0438\u0438 \u043f\u043e\u0441\u0442\u0440\u043e\u0435\u043d\u0438\u044f \u043c\u0430\u0433\u043d\u0438\u0442\u043d\u043e\u0439 \u0441\u0438\u0441\u0442\u0435\u043c\u044b \u043f\u043e\u0434\u0432\u0435\u0441\u0430. \u041f\u0440\u043e\u0442\u043e\u0442\u0438\u043f \u043f\u0440\u0435\u0434\u043b\u043e\u0436\u0435\u043d\u043d\u043e\u0433\u043e \u0430\u0432\u0442\u043e\u0440\u0430\u043c\u0438 \u0413\u042d\u041c \u0445\u0430\u0440\u0430\u043a\u0442\u0435\u0440\u0438\u0437\u0443\u0435\u0442\u0441\u044f \u043f\u043e\u043d\u0438\u0436\u0435\u043d\u043d\u044b\u043c \u044d\u043d\u0435\u0440\u0433\u043e\u043f\u043e\u0442\u0440\u0435\u0431\u043b\u0435\u043d\u0438\u0435\u043c \u0438 \u043d\u0438\u0437\u043a\u0438\u043c \u0443\u0440\u043e\u0432\u043d\u0435\u043c \u043f\u043e\u043b\u0435\u0439 \u0440\u0430\u0441\u0441\u0435\u044f\u043d\u0438\u044f. 51","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. Keywords: test setup, hybrid electromagnet suspension, maglev, permanent magnet, lift force, numerical model, measurement, prototype. \u041a\u043b\u044e\u0447\u0435\u0432\u044b\u0435 \u0441\u043b\u043e\u0432\u0430: \u0441\u0442\u0435\u043d\u0434\u043e\u0432\u044b\u0435 \u0438\u0441\u043f\u044b\u0442\u0430\u043d\u0438\u044f, \u0433\u0438\u0431\u0440\u0438\u0434\u043d\u044b\u0439 \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043c\u0430\u0433\u043d\u0438\u0442, \u041c\u0430\u0433\u043b\u0435\u0432, \u043f\u043e\u0441\u0442\u043e\u044f\u043d\u043d\u044b\u0435 \u043c\u0430\u0433\u043d\u0438\u0442\u044b, \u043f\u043e\u0434\u044a\u0451\u043c\u043d\u0430\u044f \u0441\u0438\u043b\u0430, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043c\u043e\u0434\u0435\u043b\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435, \u0440\u0435\u0437\u0443\u043b\u044c\u0442\u0430\u0442\u044b \u044d\u043a\u0441\u043f\u0435\u0440\u0438\u043c\u0435\u043d\u0442\u0430, \u043d\u0430\u0442\u0443\u0440\u043d\u044b\u0439 \u043c\u0430\u043a\u0435\u0442. ________________________________________________________________________________________________ Introduction a prototype. The measured forces were compared with simulated data. Also, a comparison is presented for char- The advanced transport system, maglev, is based on acteristics of HEMS and pure EMS. a concept of magnetic suspension [1] that makes a vehicle levitate. A hybrid suspension utilizes a combination of The results of the study will be used for further im- strong permanent magnets (PM) and electromagnets (EM). provement of instrumentation and test programs to adapt PM provides levitation while EM is used to control the them for serial product inspection. air gap and stabilise the system. The HEMS technology cures some drawback of pure EM suspension [3], pri- Hems prototype marily reducing the stray field and the ohmic power consumption. The reduced energy consumption also Basically, HEMS represents \u0430 steel rail and a carriage means better electromagnetic compatibility and environ- suspended underneath due to magnetic attraction provided mental safety. JSC \u201cNIIEFA\u201d has designed, studied, by the hybrid magnet. PM enables the basic attraction and patented several HEMS configurations [4]. force while EM is used for active control of the air gap between the rail and the carriage. With variations of the This study is focused on experimental investigation air gap, the force from PM will change. Typically HEMS of HEMS functionality on a certified test bench [5] using systems have a small air gap. Fig. 1 shows schematically the hybrid suspension. Figure 1. Hybrid suspension with V-shaped PM The HEMS prototype employs a V-shaped PM as- configuration ensures high mechanical strength and low sembly. The magnetic circuit has a bridge below PM stray field [3]. Table 1 presents a brief specification with a gap to prevent closure of the magnetic flux. Such of the prototype. Table 1. HEMS prototype specification Coil cross-section area, mm2 1450 Max power dissipation, W 240 Max steady state current, \u0410 10 Max short-time current, A 15 NdFeB type N48SH Air gap, mm 4-6 Lift force range, kN 8 \u2013 16 Dimensions (L\u00d7W\u00d7H), mm 650\u00d7130\u00d789 Weight, N 450 The specification was chosen taking in mind the of electromotive force, or emf. 3D simulations were made planned revitalization of the Moscow monorail transport. with the code \u041a\u041e\u041c\u0420\u041e\u0422 [6]. However, the specification is quite representative to generalize results to other applications. The mathematical description of interaction between the suspended vehicle and the guideway is based Numerical analysys on volume integration of the emf density. The force distribution is obtained using Maxwell tension tensor. To identify the HEMS design and levitation efficiency The tensor components are derived in terms of the field parametric studies were performed using a special com- and field strength vectors. Fig. 2 presents evaluation putation technique. The lift force was evaluated in terms of the lift force at various coil currents and air gaps. 52","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. a) Lift force vs air gap at reference coil currents: b) Lift force vs coil current at reference air gaps: 1 - I = 13 A, 2 - I = 9 A, 3 - I = 6 A, 4 - I = 3 A, 5 - I = 0 A 1 \u2013 h = 4 mm, 2 \u2013 h = 5 mm, 3 \u2013 h = 6 mm, 4 \u2013 h = 7 mm, 5 \u2013 h = 8 mm, 6 \u2013 h = 9 mm Figure 2. Calculated lift force Levitation efficiency of the HEMS prototype was 10 mm air gap. A critical issue is the Joule losses in the assessed in a comparison with a pure EMS utilizing EM winding that may cause overheat and deteriorate the conventional U-type configuration. The decisive the magnet performance. parameters were power consumption, losses and opera- tion temperature at the same lift force of 4700 N and Fig. 3 shows typical field maps of the V-shaped HEMS and pure U-type EMS obtained using numerical models. (a) HEMS (b) pure EMS Figure 3. Simulated field map (a) HEMS (b) Pure EMS Figure 4. Calculated temperature distribution. Convection coefficient is 10 W\/m2K 53","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. The numerical investigation has shown that the Test setup U-type EMS needs over 600W to generate the rated lift force of 4700 N. At the coil current of 9600A, the Joule The numerical studies were supported by meas- losses are as high as 576 W. Assuming the ambient urements to validate the design and adjust numerical temperature of 300K and convection coefficient of procedures with respect to scaling parameters [7]. 10 W\/m2K, the maximal winding temperature is 416 K. This allows reliable predictions and minimizes the need The overheat reaches ~1160K. The EMS weight is about for full-scale mockups. 90 kg. The measurements on the HEMS prototype were Under the same conditions, HEMS demonstrates the aimed to laboratory verification and planning. The lift power consumption of 80W and the maximal winding force was measured and compared with results of 3D temperature of 324 K. The Joule losses are 76 W, the simulations. coil current is 7 A. The overheat is evaluated as~120K. The HEMS weight is about 50 kg. The test setup is shown in Fig.5. The HEMS prototype is fixed on a movable crossbeam. The crossbeam enables A comparative simulation of temperature distribution the vertical motion thus changing the air gap between is illustrated in Fig. 4. HEMS and a steel rail mounted above on a prop. The rail is levelled horizontally with two pins. The prop is equipped with a force gauge with the measurement resolution of 10 N and range of \u00b1100 kN. HEMS is connected to the force gage through a tightening screw. Figure 5. Test setup in situ and schematically: 1- fixture, 2 \u2013 HEMS, 3 \u2013 movable crossbeam, 4 \u2013 steel rail, 5 - force gage prop, 6 - tightening screw, 7 - levelling pins During force measurements the prop moved the rail at the corners of the HEMS fixture. Possible tilts led to air up and down. The air gap between the rail and HEMS gap variations along the rail that resulted in nonuniform was limited with calibrated non-magnetic spacers placed distribution of induced emf as shown in Fig.6. Figure 6. Variations of lift force with reduced air gap: (\u0430) \u2013 Non-uniform force distribution due to rail tilt and bend; (b) \u2013support reaction occurred; (c) \u2013equalization of force distribution 54","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. With reduced air gap, emf would increase and cause between measurements and computations is as low as 7 %. strain growing in the rail. The strength measurements re- The maximal discrepancy occurs at high currents when vealed that the specified rail thickness of 18 mm was in- emf increases and the measured air gap is widened due sufficient to prevent critical deformation. Before building a to the rail tilt. pilot track, the rail thickness should be optimized by solving a coupled problem in terms of electromagnetic Fig.8 illustrates the simulated and measured field and mechanical loading. of HEMS solely. The rail is removed. The vertical field normal to the magnet poles was evaluated at a distance Fig. 7 shows a comparison of simulated and measured of 0.4 mm from the pole surface. A good match of the magnetic forces for the HEMS prototype. A discrepancy results is observed. 700B (mT) 600 Figure 7. Lift force vs current at different air gaps h: 500 1 \u2013 4.6 mm, 2 5.2 mm, 3 \u2013 6 mm, 4 \u2013 7 mm, 5 \u2013 8 m. 400 Solid curves \u2013 simulated, dashed curves \u2013 measured. 300 200 Points indicate reference currents 100 Conclusions \u2212 65 \u2212 55 \u2212 45 \u2212 35 \u2212 25 \u2212 15 \u2212 5 5 15 25 35 45 55 65 \u2212 100 A prototype of HEMS for a suspended monorail de- \u2212 200 sign has been tested using a measurement set-up and nu- \u2212 300 merical models. The study has shown low power \u2212 400 consumption, losses, and weight as compared to conven- x (mm) Figure 8. Vertical field at y = 0.4 mm and z = 0. Solid curve \u2013 simulated, points - measured tional EMS systems. However, strength of the guide- way structures should be investigated in terms of cou- pled electromagnetic and mechanical loading. The results of the study will be use to validate technological maturity and put recommendations for tuning measurement and inspection procedures. Also, this forms a base to further development of main functionalities of suspended transport for practical implementation. References: 1. Zhuravljov JuN., Aktivnye magnitnye podshipniki. Teoriya, raschyot, primenenie.\/ SPb: Politehnika, 2003. 206 s. [in Russian] 2. Tzeng Y.K., Wang T.C., Optimal design of the electromagnetic levitation with permanent and electro magnets. IEEE Transaction on Magnetics. 1994; 30(6): 4731-733. doi: 10.1109\/20.334204 3. Safaei F., Suratgar A.A., Afshar A., et al. Characteristics Optimization of the Maglev Train Hybrid Suspension System Using Genetic Algorithm. IEEE Transactions on Energy Conversion. 2015; 30(3):1163-1170. doi: 10.1109\/tec.2014.2388155 4. Pat. RUS \u2116 RU2743753\/ 25.02.2021. Byul. \u2116 6., et al. Gibridnyj magnit bez poley rassejaniya dlya sistemy maglev.\/ AmoskovV.M., Arslanova D.N., BelovA.V. [in Russian]. 5. Suhanova M.V., Gavrilov S.V., Akulickij S.G., et al. Mehanicheskie ispytanija jelektricheskoj izoljacii katushki PF 1 pri temperature 77 K.\/ In: Tezisy dokladov III Nacional'noj konferencii po prikladnoj sverhprovodimosti NKPS-2015.\/ 2015 Nov 25-26, Moscow, Kurchatov Inst. Moscow: NRCKI; 2015. p.127 [in Russian]. 6. Amoskov VM, Belov AV, Belyakov VA, et al. Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks. Plasma Devices and Operations. 2008; 16(2):89-103. doi: 10.1080\/10519990802018023 7. Amoskov V.M., Arslanova D.N., Belov A.V. et al. Verification of numerical model of hybrid EMS using test bench measurements at large air gap. Modern Transportation Systems and Technologies. 2022; 8(1): 28-37. doi: 10.17816\/transsyst 20228128-37 55","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. ENERGY INDUSTRY THE USE OF LOW-SPEED VERTICAL WIND TURBINES IN THE POWER SUPPLY OF AGRICULTURAL CONSUMERS Abdurauf Ahmedov Teacher, Jizzakh polytechnical institute, Republic of Uzbekistan, Jizzakh E-mail: [email protected] \u0418\u0421\u041f\u041e\u041b\u042c\u0417\u041e\u0412\u0410\u041d\u0418\u0415 \u041c\u0410\u041b\u041e\u0421\u041a\u041e\u0420\u041e\u0421\u0422\u041d\u042b\u0425 \u0412\u0415\u0420\u0422\u0418\u041a\u0410\u041b\u042c\u041d\u042b\u0425 \u0412\u0415\u0422\u0420\u041e\u0423\u0421\u0422\u0410\u041d\u041e\u0412\u041e\u041a \u0412 \u042d\u041b\u0415\u041a\u0422\u0420\u041e\u0421\u041d\u0410\u0411\u0416\u0415\u041d\u0418\u0418 \u0421\u0415\u041b\u042c\u0421\u041a\u041e\u0425\u041e\u0417\u042f\u0419\u0421\u0422\u0412\u0415\u041d\u041d\u042b\u0425 \u041f\u041e\u0422\u0420\u0415\u0411\u0418\u0422\u0415\u041b\u0415\u0419 \u0410\u0445\u043c\u0435\u0434\u043e\u0432 \u0410\u0431\u0434\u0443\u0440\u0430\u0443\u0444 \u043f\u0440\u0435\u043f\u043e\u0434\u0430\u0432\u0430\u0442\u0435\u043b\u044c, \u0414\u0436\u0438\u0437\u0430\u043a\u0441\u043a\u0438\u0439 \u043f\u043e\u043b\u0438\u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u0438\u043d\u0441\u0442\u0438\u0442\u0443\u0442, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u0423\u0437\u0431\u0435\u043a\u0438\u0441\u0442\u0430\u043d, \u0433. \u0414\u0436\u0438\u0437\u0430\u043a ABSTRACT Agriculture is one of the main branches of the state economy. Agriculture is the main source of raw materials for many manufacturing industries, such as light industry, food industry and medicine. The development of the above manufacturing industries directly depends on the raw materials supplied by agriculture. In the development of agriculture, the use of modern equipment and technologies improves the quality and volume of products. But the use of modern equipment and technologies makes it difficult to provide them with a constant and high-quality source of energy. Within the framework of continuous energy supply, the use of renewable energy sources, especially wind energy, will be one of the practical solutions to partially solve this problem. \u0410\u041d\u041d\u041e\u0422\u0410\u0426\u0418\u042f \u0421\u0435\u043b\u044c\u0441\u043a\u043e\u0435 \u0445\u043e\u0437\u044f\u0439\u0441\u0442\u0432\u043e \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u043e\u0434\u043d\u043e\u0439 \u0438\u0437 \u043e\u0441\u043d\u043e\u0432\u043d\u044b\u0445 \u043e\u0442\u0440\u0430\u0441\u043b\u0435\u0439 \u044d\u043a\u043e\u043d\u043e\u043c\u0438\u043a\u0438 \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0430. \u0421\u0435\u043b\u044c\u0441\u043a\u043e\u0435 \u0445\u043e\u0437\u044f\u0439\u0441\u0442\u0432\u043e \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u043e\u0441\u043d\u043e\u0432\u043d\u043e\u0439 \u0441\u044b\u0440\u044c\u0435\u0432\u043e\u0439 \u0431\u0430\u0437\u043e\u0439 \u0434\u043b\u044f \u043c\u043d\u043e\u0433\u0438\u0445 \u043e\u0442\u0440\u0430\u0441\u043b\u0435\u0439 \u043e\u0431\u0440\u0430\u0431\u0430\u0442\u044b\u0432\u0430\u044e\u0449\u0435\u0439 \u043f\u0440\u043e\u043c\u044b\u0448\u043b\u0435\u043d\u043d\u043e\u0441\u0442\u0438, \u0442\u0430\u043a\u0438\u0445 \u043a\u0430\u043a \u043b\u0451\u0433\u043a\u0430\u044f, \u043f\u0438\u0449\u0435\u0432\u0430\u044f \u043f\u0440\u043e\u043c\u044b\u0448\u043b\u0435\u043d\u043d\u043e\u0441\u0442\u044c \u0438 \u043c\u0435\u0434\u0438\u0446\u0438\u043d\u0430. \u0420\u0430\u0437\u0432\u0438\u0442\u0438\u0435 \u0432\u044b\u0448\u0435\u0443\u043a\u0430\u0437\u0430\u043d\u043d\u044b\u0445 \u043f\u0440\u043e\u0438\u0437\u0432\u043e\u0434\u044f\u0449\u0438\u0445 \u043e\u0442\u0440\u0430\u0441\u043b\u0435\u0439 \u043d\u0430\u043f\u0440\u044f\u043c\u0443\u044e \u0437\u0430\u0432\u0438\u0441\u0438\u0442 \u043e\u0442 \u0441\u044b\u0440\u044c\u044f, \u043f\u043e\u0441\u0442\u0430\u0432\u043b\u044f\u0435\u043c\u043e\u0433\u043e \u0441\u0435\u043b\u044c\u0441\u043a\u0438\u043c \u0445\u043e\u0437\u044f\u0439\u0441\u0442\u0432\u043e\u043c. \u0412 \u0440\u0430\u0437\u0432\u0438\u0442\u0438\u0438 \u0441\u0435\u043b\u044c\u0441\u043a\u043e\u0433\u043e \u0445\u043e\u0437\u044f\u0439\u0441\u0442\u0432\u0430 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435 \u0441\u043e\u0432\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439 \u0442\u0435\u0445\u043d\u0438\u043a\u0438 \u0438 \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0439 \u043f\u043e\u0432\u044b\u0448\u0430\u0435\u0442 \u043a\u0430\u0447\u0435\u0441\u0442\u0432\u043e \u0438 \u043e\u0431\u044a\u0435\u043c \u043f\u0440\u043e\u0434\u0443\u043a\u0446\u0438\u0438. \u041d\u043e \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435 \u0441\u043e\u0432\u0440\u0435\u043c\u0435\u043d\u043d\u043e\u0439 \u0442\u0435\u0445\u043d\u0438\u043a\u0438 \u0438 \u0442\u0435\u0445\u043d\u043e\u043b\u043e\u0433\u0438\u0439 \u0434\u0435\u043b\u0430\u0435\u0442 \u0441\u043b\u043e\u0436\u043d\u043e\u0439 \u0437\u0430\u0434\u0430\u0447\u0443 \u043e\u0431\u0435\u0441\u043f\u0435\u0447\u0435\u043d\u0438\u044f \u0438\u0445 \u043f\u043e\u0441\u0442\u043e\u044f\u043d\u043d\u044b\u043c \u0438 \u043a\u0430\u0447\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u043c \u0438\u0441\u0442\u043e\u0447\u043d\u0438\u043a\u043e\u043c \u044d\u043d\u0435\u0440\u0433\u0438\u0438. \u0412 \u0440\u0430\u043c\u043a\u0430\u0445 \u043d\u0435\u043f\u0440\u0435\u0440\u044b\u0432\u043d\u043e\u0433\u043e \u044d\u043d\u0435\u0440\u0433\u043e\u0441\u043d\u0430\u0431\u0436\u0435\u043d\u0438\u044f \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u043d\u0438\u0435 \u0432\u043e\u0437\u043e\u0431\u043d\u043e\u0432\u043b\u044f\u0435\u043c\u044b\u0445 \u0438\u0441\u0442\u043e\u0447\u043d\u0438\u043a\u043e\u0432 \u044d\u043d\u0435\u0440\u0433\u0438\u0438, \u043e\u0441\u043e\u0431\u0435\u043d\u043d\u043e \u044d\u043d\u0435\u0440\u0433\u0438\u0438 \u0432\u0435\u0442\u0440\u0430, \u0441\u0442\u0430\u043d\u0435\u0442 \u043e\u0434\u043d\u0438\u043c \u0438\u0437 \u043f\u0440\u0430\u043a\u0442\u0438\u0447\u0435\u0441\u043a\u0438\u0445 \u0440\u0435\u0448\u0435\u043d\u0438\u0439 \u0447\u0430\u0441\u0442\u0438\u0447\u043d\u043e\u0433\u043e \u0440\u0435\u0448\u0435\u043d\u0438\u044f \u044d\u0442\u043e\u0439 \u043f\u0440\u043e\u0431\u043b\u0435\u043c\u044b. Keywords: wind turbines, VAWT, agricultural consumers, wind energy. \u041a\u043b\u044e\u0447\u0435\u0432\u044b\u0435 \u0441\u043b\u043e\u0432\u0430: \u0432\u0435\u0442\u0440\u044f\u043d\u044b\u0435 \u0442\u0443\u0440\u0431\u0438\u043d\u044b, \u0432\u0435\u0442\u0440\u044f\u043d\u0430\u044f \u0442\u0443\u0440\u0431\u0438\u043d\u0430 \u0441 \u0432\u0435\u0440\u0442\u0438\u043a\u0430\u043b\u044c\u043d\u043e\u0439 \u043e\u0441\u044c\u044e, \u0441\u0435\u043b\u044c\u0441\u043a\u043e\u0445\u043e\u0437\u044f\u0439\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u0435 \u043f\u043e\u0442\u0440\u0435- \u0431\u0438\u0442\u0435\u043b\u0438, \u044d\u043d\u0435\u0440\u0433\u0438\u0438 \u0432\u0435\u0442\u0440\u0430. ________________________________________________________________________________________________ Agricultural electricity consumers and control device, and a climate control unit(Fig. 2)[2]. For the continuous operation of the devices mentioned The rapid electrification of agriculture in the last above, a constant source of energy is required. Batteries century has led to an increase in the number and size of are used to supply electricity to this type of consumers lo- electricity consumers in agriculture. Consumers of agri- cated far from the central power supply. In turn, the bat- cultural electricity include drip irrigation systems, agri- teries are charged by wind turbines. In this case, it is cultural pumping stations and greenhouses. These necessary to choose the optimal wind generator. Because consumers of electricity do not require much power, wind turbines, capable of generating electricity even at with the exception of pumping stations. The operation low wind speeds, allow continuous operation of batteries. of drip irrigation systems and greenhouses is seasonal, Based on the above considerations, we will consider the and during the seasonal period it is required to provide analysis of wind turbines capable of operating at low wind them with electricity (Fig 1.)[1]. The drip irrigation sys- speeds. Taking into account that the electrical equipment tem and electrical systems of greenhouses do not have a used in agriculture does not require high power, low-speed complex design. But their electrical part consists of basic vertical wind turbines are the optimal solution for power devices such as a pump, an automatic water distribution supply. __________________________ \u0411\u0438\u0431\u043b\u0438\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043e\u043f\u0438\u0441\u0430\u043d\u0438\u0435: Ahmedov A. THE USE OF LOW-SPEED VERTICAL WIND TURBINES IN THE POWER SUPPLY OF AGRICULTURAL CONSUMERS \/\/ Universum: \u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u0438\u0435 \u043d\u0430\u0443\u043a\u0438 : \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d. \u043d\u0430\u0443\u0447\u043d. \u0436\u0443\u0440\u043d. 2023. 6(111). URL: https:\/\/7universum.com\/ru\/tech\/archive\/item\/15624","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. LOW-SPEED VERTICAL AXIS WIND TURBINES to know the values of the annual and monthly wind speeds blowing in this area, and its direction. We choose The main parameter for the selection and calcula- Jizzakh region as a specific geographical area. We get tion of wind turbines is the wind speed. In order to install the last three years of wind energy parameters data for a wind turbine for a specific selected area, it is necessary the selected area (Tab. 1)[3]. Figure 1. Agricultural electricity consumers Figure 2. Automatic watering device timer 57","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. Table 1. Average monthly and annual wind speed of Jizzakh region Year Parametres Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Ann Wind Speed 2.48 2.70 3.02 2.92 3.22 3.38 3.93 3.70 3.11 2.63 2.61 2.07 2.98 at 10 Meters (m\/s) 2018 Wind Speed at 50 Meters (m\/s) 3.47 3.88 4.45 4.15 4.73 4.78 5.66 5.41 4.62 3.86 3.81 2.95 4.32 Wind Speed 2.58 2.52 2.46 2.77 2.81 2.91 3.80 3.75 3.19 2.62 2.26 2.66 2.87 at 10 Meters (m\/s) 2019 Wind Speed at 50 Meters (m\/s) 3.88 3.64 3.58 4.00 4.08 4.21 5.44 5.51 4.66 3.90 3.28 3.92 4.18 Wind Speed 2.23 3.04 2.66 2.69 2.64 3.35 3.33 3.12 3.05 2.65 2.44 2.06 2.77 at 10 Meters (m\/s) 2020 Wind Speed at 50 Meters (m\/s) 3.20 4.46 3.90 3.82 3.92 4.75 4.72 4.49 4.52 3.86 3.41 2.93 3.99 Wind Speed 1.73 2.38 3.10 2.70 2.55 3.30 3.39 3.09 2.84 2.70 2.23 2.22 2.69 at 10 Meters (m\/s) 2021 Wind Speed at 50 Meters (m\/s) 2.52 3.52 4.54 3.95 3.75 4.73 4.76 4.53 4.09 3.94 3.17 3.31 3.90 This data is taken from the NASA Power geographic Of the wind turbines mentioned above, we will con- database of USA. As can be seen from the table above, sider only vertical wind turbines of the Savonius type. the wind speed for the selected area is low. This creates difficulties when choosing a wind turbine. As can be seen Savonius Wind Turbine from the table, the average monthly wind speed is 1.73 m\/s. Let's look at windmills that can run at low speeds. A vertical type Savonius wind turbine can operate mainly at low wind speeds. Savonius type wind turbines There are many innovative types of vertical turbines can capture small wind currents due to their large available today. However, vertical turbines are divided size. Below are the types of Savonius wind turbines into 2 groups: (Figure 3)[4]. a) Savonius b) Darrieus Figure 3. Different types of Savonius Vertical axis Wind Turbines Below are several Savonius types vertical wind tur- bines, from which we select a wind generator capable of operating at the wind speed indicated in Table 1. (Tab.2). 58","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. Savonius type vertical axis wind turbines parameters Table 2. Producer Model Power Capacity Height m Minimum Material kW (m\/s) kWh\/year production Helixwind turbine S 594 6,0 speed m\/s Aluminum Helixwind turbine S 322 4,5 (7) (m\/s) 3,3 Aluminum Venger Wind 2,0(7) 3,6 5,0 Aluminum Venger Wind V1 2,0 (18,5) 3.000 (7,0) 5,7 Aluminum Venger Wind V2 4,5 (20,5) 5,7 5,0 Aluminum Kliux V2 turbo 4,5 (15,2) 1.500 (7,0) Expanded 4,0 polyurethane Turbina Energy 5.400 (12) Aluminum and 4,0 Turbina Energy 10.900 (12) Steel 4,0 Aluminum and Sauer Energy 17.600 (12) Steel Zebra 1,8 (n.d.) 3.717 (7) 3,1 3,0 Composites 1 kW 1,0 (14) 1.820 (7) 1,9 1,5 polymer 4 kW 4,0 (14) 8.130 (7) 3,2 1,5 Wind charger 2,0 (11,1) n.d. 1,8 5,0 From table 2 above, we select a Turbina Energy 4 speed of 1.5 m\/s. This option is appropriate when the kW(Fig 4) windmill. Considering that the lowest wind height is within 10-15 m. If the height is up to 50 m, speed in table 1 is 1.73 m\/s, the optimal option for us is it is advisable to choose the Kliux Zebra(Fig.5) model [5]. Turbina Energy 4 kW, which has a minimum operating References: 1. https:\/\/www.africa-uganda-business-travel-guide.com\/uganda-to-implement-drip-irrigation-systems-from-isreal.html. 2. https:\/\/sea.banggood.com\/. 3. https:\/\/power.larc.nasa.gov\/data-access-viewer\/ 4. Can Kang, Haixia Liu, Xin Yang Review of fluid dynamics aspects of Savonius-rotor-based vertical-axis wind rotors, Renewable and Sustainable Energy Reviews Volume 33, May 2014, Pages 499-508. 5. Marco Casini, SMALL VERTICAL AXIS WIND TURBINES FOR ENERGY EFFICIENCY OF BUILDINGS, Journal of Clean Energy Technologies, Vol.4, No. 1, January 2016. 59","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. DOI - 10.32743\/UniTech.2023.111.6.15691 EFFECT OF BUILDING STRUCTURES ON TOKAMAK PLASMA INITIATION Daria Arslanova MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Alexandra Grosheva MSc, Research engineer, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Nataliia Znamenshchikova MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Nadezhda Krylova MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] Dmitry Melnikov MSc, Mathematician, JSC \u201cNIIEFA\u201d Russia, St. Petersburg E-mail: [email protected] \u0412\u041b\u0418\u042f\u041d\u0418\u0415 \u0410\u0420\u041c\u0418\u0420\u041e\u0412\u0410\u041d\u041d\u042b\u0425 \u041a\u041e\u041d\u0421\u0422\u0420\u0423\u041a\u0426\u0418\u0419 \u041d\u0410 \u0421\u041e\u0417\u0414\u0410\u041d\u0418\u0415 \u041f\u041b\u0410\u0417\u041c\u042b \u0412 \u0422\u041e\u041a\u0410\u041c\u0410\u041a\u0415 \u0410\u0440\u0441\u043b\u0430\u043d\u043e\u0432\u0430 \u0414\u0430\u0440\u044c\u044f \u041d\u0438\u043a\u043e\u043b\u0430\u0435\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u0413\u0440\u043e\u0448\u0435\u0432\u0430 \u0410\u043b\u0435\u043a\u0441\u0430\u043d\u0434\u0440\u0430 \u0414\u043c\u0438\u0442\u0440\u0438\u0435\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u0438\u043d\u0436\u0435\u043d\u0435\u0440-\u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044c \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u0417\u043d\u0430\u043c\u0435\u043d\u0449\u0438\u043a\u043e\u0432\u0430 \u041d\u0430\u0442\u0430\u043b\u0438\u044f \u0421\u0435\u0440\u0433\u0435\u0435\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u041a\u0440\u044b\u043b\u043e\u0432\u0430 \u041d\u0430\u0434\u0435\u0436\u0434\u0430 \u0410\u043b\u0435\u043a\u0441\u0430\u043d\u0434\u0440\u043e\u0432\u043d\u0430 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 \u041c\u0435\u043b\u044c\u043d\u0438\u043a\u043e\u0432 \u0414\u043c\u0438\u0442\u0440\u0438\u0439 \u0414\u0435\u043d\u0438\u0441\u043e\u0432\u0438\u0447 \u043c\u0430\u0433\u0438\u0441\u0442\u0440, \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a \u0410\u041e \u201c\u041d\u0418\u0418\u042d\u0424\u0410\u201d \u0420\u0424, \u0433. \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433 __________________________ \u0411\u0438\u0431\u043b\u0438\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043e\u043f\u0438\u0441\u0430\u043d\u0438\u0435: EFFECT OF BUILDING STRUCTURES ON TOKAMAK PLASMA INITIATION \/\/ Universum: \u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u0438\u0435 \u043d\u0430\u0443\u043a\u0438 : \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d. \u043d\u0430\u0443\u0447\u043d. \u0436\u0443\u0440\u043d. Arslanova D. [\u0438 \u0434\u0440.]. 2023. 6(111). URL: https:\/\/7univer- sum.com\/ru\/tech\/archive\/item\/15691","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. ABSTRACT The stray field produced by a tokamak is high enough to magnetize steel reinforcement in concrete walls of the tokamak building. As a result, the reinforced walls may produce a significant magnetic field that would affect plasma initiation. The paper is devoted to assessment and correction of the stray field with the toroidal mode n = 0 to secure plasma initiation. \u0410\u041d\u041d\u041e\u0422\u0410\u0426\u0418\u042f \u041c\u0430\u0433\u043d\u0438\u0442\u043d\u043e\u0435 \u043f\u043e\u043b\u0435, \u0441\u043e\u0437\u0434\u0430\u0432\u0430\u0435\u043c\u043e\u0435 \u0442\u043e\u043a\u0430\u043c\u0430\u043a\u043e\u043c, \u0441\u043f\u043e\u0441\u043e\u0431\u043d\u043e \u0432\u044b\u0437\u0432\u0430\u0442\u044c \u043d\u0430\u043c\u0430\u0433\u043d\u0438\u0447\u0438\u0432\u0430\u043d\u0438\u0435 \u0441\u0442\u0430\u043b\u044c\u043d\u043e\u0439 \u0430\u0440\u043c\u0430\u0442\u0443\u0440\u044b \u0437\u0434\u0430\u043d\u0438\u044f \u0440\u0435- \u0430\u043a\u0442\u043e\u0440\u0430. \u0412 \u0441\u0432\u043e\u044e \u043e\u0447\u0435\u0440\u0435\u0434\u044c, \u043d\u0430\u043c\u0430\u0433\u043d\u0438\u0447\u0435\u043d\u043d\u044b\u0435 \u0430\u0440\u043c\u0438\u0440\u043e\u0432\u0430\u043d\u043d\u044b\u0435 \u043a\u043e\u043d\u0441\u0442\u0440\u0443\u043a\u0446\u0438\u0438 \u0441\u043e\u0437\u0434\u0430\u044e\u0442 \u043f\u043e\u043b\u044f \u0440\u0430\u0441\u0441\u0435\u044f\u043d\u0438\u044f, \u043d\u0435\u0433\u0430\u0442\u0438\u0432\u043d\u043e \u0432\u043b\u0438\u044f\u044e\u0449\u0438\u0435 \u043d\u0430 \u043f\u0440\u043e\u0446\u0435\u0441\u0441 \u043e\u0431\u0440\u0430\u0437\u043e\u0432\u0430\u043d\u0438\u044f \u043f\u043b\u0430\u0437\u044b. \u0412 \u0440\u0430\u0431\u043e\u0442\u0435 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u043d\u044b \u0432\u043e\u0437\u043c\u0443\u0449\u0435\u043d\u0438\u044f \u043c\u0430\u0433\u043d\u0438\u0442\u043d\u043e\u0433\u043e \u043f\u043e\u043b\u044f \u0441 \u0442\u043e\u0440\u043e\u0438\u0434\u0430\u043b\u044c\u043d\u043e\u0439 \u043c\u043e\u0434\u043e\u0439 n = 0, \u0432\u044b\u0437\u044b\u0432\u0430\u0435\u043c\u044b\u0435 \u043d\u0430\u043c\u0430\u0433\u043d\u0438\u0447\u0435\u043d\u043d\u043e\u0439 \u0430\u0440\u043c\u0430\u0442\u0443\u0440\u043e\u0439 \u0437\u0434\u0430\u043d\u0438\u044f \u0442\u043e\u043a\u0430\u043c\u0430\u043a\u0430 \u0438 \u043e\u043f\u0440\u0435\u0434\u0435\u043b\u0435\u043d\u0430 \u0432\u0435\u043b\u0438\u0447\u0438\u043d\u0430 \u043a\u043e\u0440\u0440\u0435\u043a\u0442\u0438\u0440\u0443\u044e\u0449\u0438\u0445 \u0442\u043e\u043a\u043e\u0432 \u0434\u043b\u044f \u043a\u043e\u043c\u043f\u0435\u043d\u0441\u0430\u0446\u0438\u0438 \u0438\u0445 \u0432\u043b\u0438\u044f\u043d\u0438\u044f. Keywords: tokamak, plasma, stray field, steel reinforcement, magnetization, simulation. \u041a\u043b\u044e\u0447\u0435\u0432\u044b\u0435 \u0441\u043b\u043e\u0432\u0430: \u0442\u043e\u043a\u0430\u043c\u0430\u043a, \u043f\u043b\u0430\u0437\u043c\u0430, \u043f\u043e\u043b\u0435 \u0440\u0430\u0441\u0441\u0435\u044f\u043d\u0438\u044f, \u0441\u0442\u0430\u043b\u044c\u043d\u0430\u044f \u0430\u0440\u043c\u0430\u0442\u0443\u0440\u0430, \u043c\u0430\u0433\u043d\u0435\u0442\u0438\u0437\u0430\u0446\u0438\u044f, \u0447\u0438\u0441\u043b\u0435\u043d\u043d\u043e\u0435 \u043c\u043e\u0434\u0435\u043b\u0438\u0440\u043e\u0432\u0430\u043d\u0438\u0435. ________________________________________________________________________________________________ Introduction scenarios. A numerical study has been performed to evaluate the anticipated stray field near the tokamak and The ITER tokamak complex which is now under elaborate correction strategy. construction consists of several buildings located in a common pit. The tokamak itself is located in the bioshield Field computation pit of the main nuclear building [1]. Typically, concrete walls of the buildings are reinforced with steel rebar. The effect of steel rebar should be taken into account The stray field produced by the tokamak during operation when a scenario of currents in the tokamak poloidal field may magnetize the rebar. The magnetized rebar in its turn coils is designed. From the design criteria, the poloidal produces an additional stray field in the plasma region. field in the BD region shall not exceed 20 G at the plasma The axisymmetric component of this field with the toroidal initiation. mode n = 0 may affect plasma initiation. Therefore, correction of plasma initiation scenarios may be needed The field from the magnetized steel rebar is assessed to provide a wide \u201cmagnetic null\u201d under the prefill gas with a simplified global magnetic model of the tokamak breakdown (BD). This makes the knowledge of the n=0 complex (MMTC-2.2) [2]. The model reflects the volu- stray field an important issue in the plasma initiation metric steel fractions in the tokamak building structures. The model is illustrated in Fig. 1. Figure 1. 3D computational model of tokamak building. 1 \u2013 seismic basemat, 2 \u2013 walls (taken from [2]). Coordinate system is related to tokamak center 61","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. Building structures are modelled with a set of 3D 15 MA DT. The field from the steel rebar is averaged along elements. Each element is assumed homogeneously the circles passing through reference points (R, Z) on the magnetized in the field produced by the tokamak coils plane Y = 0. and plasma. Simulations were performed for two basic scenarios of the plasma discharge, the first plasma and Fig.2 shows the simulated field for two scenarios at BD. (a) First plasma (b) 15 MA DT scenario Figure 2. Anticipated stray field in plane Y = 0 at plasma breakdown Table 1 lists the reference points and parameters of the anticipated stray field are presented in the \u0394I columns. the tokamak coils used in the computations. Calculated The maximal change in currents of about 30% occurred correction currents required to neutralize the effect of for PF3 and PF4 coils. Table 1. CS and PF coils position, size, current capacity and required correction currents for basic plasma scenarios Coil R, m Z, m \uf044R, m \uf044Z, m 1st plasma 15 MA DT CS3U 1.687 5.464 0.740 2.093 I, MAt \u0394I, MAt I, MAt \u0394I, MAt CS2U 1.687 3.278 0.740 2. 093 CS1U 1.687 1.092 0.740 2. 093 -10.044 -0.0018 -22.863 -0.0019 CS1L 1.687 -1.072 0.740 2. 093 CS2L 1.687 -3.258 0.740 2. 093 -9.5953 -0.0043 -20.967 -0.0042 CS3L 1.687 -5.444 0.740 2. 093 PF1 3.9431 7.5737 0.9590 0.9841 -9.3792 -0.0044 -20.465 -0.0047 PF2 8.2847 6.5398 0.5801 0.7146 PF3 11.9923 3.2752 0.6963 0.9538 -9.3792 -0.0044 -20.465 -0.0047 PF4 11.9628 -2.2336 0.6382 0.9538 PF5 8.3910 -6.7265 0.8125 0.9538 -9.8446 0.0013 -20.465 0.0003 PF6 4.3340 -7.4660 1.5590 1.1075 -9.1078 0.0037 -20.442 0.0032 -3.5202 -0.0007 -6.702 -0.0005 0.0058 0.0130 -0.750 0.0170 -0.1115 0.0499 -0.0720 0.0657 -0.1087 0.0828 -0.462 0.1035 0.1973 0.0579 0.188 0.0638 -3.5971 0.0197 -7.875 0.0199 62","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. Fig. 3 shows the stray field maps obtained with the that after correction the stray field in the plasma break- introduced correction currents. The maps demonstrate down region does not exceed the design limit of 20 G. (a) First plasma (b) 15 MA DT scenario Figure 3. Stray field after correction Conclusions A proposed remedy is adjustment of the coil currents. The effect of the building structures can be compensated At plasma BD the reinforced wall structures of the by relatively low currents of less than 0.1 MAt. This is tokamak building are capable to produce the stray field sufficient to provide the stray field below the 20 G of about 100-120 G in the plasma region. This field design limit in the plasma region. is high enough to be dangerous for the plasma initiation. References: 1. Jean-Jacques Cordier, Joo-Shik Bak, A. Baudry, Magali Benchikhoune, Leontin Carafa, Stefano Chiocchio, Romaric Darbour, Joelle Elbez, Giovanni di Giuseppe, Yasuhiro Iwata, Thomas Jeannoutot, Miikka Kotamaki, Ingo Kuehn, Andreas Lee, Bruno Levesy, Sergio Orlandi, Rachel Packer, Laurent Patisson, Jens Reich, Giuliano Rigoni, Simon Sweeney, Overview of the ITER Tokamak complex building and integration of plant systems toward construction, Fusion Engineering and Design 96\u201397 (2015) 240\u2013243. 2. V.M. Amoskov, A.V. Belov, V.A. Belyakov, E.I. Gapionok, Y.V. Gribov, V.P. Kukhtin, E.A. Lamzin, Y. Mita, A.D. Ovsyannikov, D.A. Ovsyannikov, L. Patisson, S.E. Sytchevsky, S.V. Zavadskiy, Magnetic model MMTC-2.2 of ITER tokamak complex, Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 2019, v.15, No.1, pp.5-21. doi:10.21638\/11702\/spbu10.2019.101. 63","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. POWER, METALLURGICAL AND CHEMICAL ENGINEERING CRITICAL VELOCITY OF PROJECTILE ION IN HELIUM PLASMA Bekbolat Tashev PhD, Abai Kazakh National Pedagogical University, Republic of Kazakhstan, Almaty E-mail: [email protected] Meruert Abdrakhman Doctoral thesis student, Abai Kazakh National Pedagogical University, Republic of Kazakhstan, Almaty E-mail: [email protected] \u041a\u0420\u0418\u0422\u0418\u0427\u0415\u0421\u041a\u0410\u042f \u0421\u041a\u041e\u0420\u041e\u0421\u0422\u042c \u041d\u0410\u041b\u0415\u0422\u0410\u042e\u0429\u0415\u0413\u041e \u0418\u041e\u041d\u0410 \u0412 \u0413\u0415\u041b\u0418\u0415\u0412\u041e\u0419 \u041f\u041b\u0410\u0417\u041c\u0415 \u0422\u0430\u0448\u0435\u0432 \u0411\u0435\u043a\u0431\u043e\u043b\u0430\u0442 \u0410\u0445\u0430\u043d\u043e\u0432\u0438\u0447 PhD, \u041a\u0430\u0437\u0430\u0445\u0441\u043a\u0438\u0439 \u041d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u044b\u0439 \u043f\u0435\u0434\u0430\u0433\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442 \u0438\u043c\u0435\u043d\u0438 \u0410\u0431\u0430\u044f, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u041a\u0430\u0437\u0430\u0445\u0441\u0442\u0430\u043d, \u0433. \u0410\u043b\u043c\u0430\u0442\u044b \u0410\u0431\u0434\u0440\u0430\u0445\u043c\u0430\u043d \u041c\u0435\u0440\u0443\u0435\u0440\u0442 \u041c\u04b1\u0440\u0430\u0442\u049b\u044b\u0437\u044b \u0434\u043e\u043a\u0442\u043e\u0440\u0430\u043d\u0442 PhD, \u041a\u0430\u0437\u0430\u0445\u0441\u043a\u0438\u0439 \u043d\u0430\u0446\u0438\u043e\u043d\u0430\u043b\u044c\u043d\u044b\u0439 \u043f\u0435\u0434\u0430\u0433\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u0443\u043d\u0438\u0432\u0435\u0440\u0441\u0438\u0442\u0435\u0442 \u0438\u043c\u0435\u043d\u0438 \u0410\u0431\u0430\u044f, \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0430 \u041a\u0430\u0437\u0430\u0445\u0441\u0442\u0430\u043d, \u0433. \u0410\u043b\u043c\u0430\u0442\u044b ABSTRACT In recent years, there has been growing interest in studying the properties of plasma, which is found both in astrophysical objects (neutron stars, white dwarf comets, nebulae, etc.) and in facilities for thermonuclear fusion. To maintain a nuclear fusion reaction, it must be periodically heated. This article investigates the speed of the incident particle, at which the interaction will be most effective. \u0410\u041d\u041d\u041e\u0422\u0410\u0426\u0418\u042f \u0412 \u043f\u043e\u0441\u043b\u0435\u0434\u043d\u0438\u0435 \u0433\u043e\u0434\u044b \u0432\u043e\u0437\u0440\u0430\u0441\u0442\u0430\u0435\u0442 \u0438\u043d\u0442\u0435\u0440\u0435\u0441 \u043a \u0438\u0437\u0443\u0447\u0435\u043d\u0438\u044e \u0441\u0432\u043e\u0439\u0441\u0442\u0432 \u043f\u043b\u0430\u0437\u043c\u044b, \u043a\u043e\u0442\u043e\u0440\u0430\u044f \u043f\u0440\u0438\u0441\u0443\u0442\u0441\u0442\u0432\u0443\u0435\u0442 \u043a\u0430\u043a \u0432 \u0430\u0441\u0442\u0440\u043e\u0444\u0438\u0437\u0438\u0447\u0435\u0441\u043a\u0438\u0445 \u043e\u0431\u044a\u0435\u043a\u0442\u0430\u0445 (\u043d\u0435\u0439\u0442\u0440\u043e\u043d\u043d\u044b\u0435 \u0437\u0432\u0435\u0437\u0434\u044b, \u043a\u043e\u043c\u0435\u0442\u044b \u0431\u0435\u043b\u044b\u0445 \u043a\u0430\u0440\u043b\u0438\u043a\u043e\u0432, \u0442\u0443\u043c\u0430\u043d\u043d\u043e\u0441\u0442\u0438 \u0438 \u0434\u0440.), \u0442\u0430\u043a \u0438 \u0432 \u0443\u0441\u0442\u0430\u043d\u043e\u0432\u043a\u0430\u0445 \u0434\u043b\u044f \u0442\u0435\u0440\u043c\u043e\u044f\u0434\u0435\u0440\u043d\u043e\u0433\u043e \u0441\u0438\u043d\u0442\u0435\u0437\u0430. \u0414\u043b\u044f \u043f\u043e\u0434\u0434\u0435\u0440\u0436\u0430\u043d\u0438\u044f \u0440\u0435\u0430\u043a\u0446\u0438\u0438 \u044f\u0434\u0435\u0440\u043d\u043e\u0433\u043e \u0441\u0438\u043d\u0442\u0435\u0437\u0430 \u0435\u0433\u043e \u043d\u0435\u043e\u0431\u0445\u043e\u0434\u0438\u043c\u043e \u043f\u0435\u0440\u0438\u043e\u0434\u0438\u0447\u0435\u0441\u043a\u0438 \u043d\u0430\u0433\u0440\u0435\u0432\u0430\u0442\u044c. \u0412 \u0434\u0430\u043d\u043d\u043e\u0439 \u0441\u0442\u0430\u0442\u044c\u0435 \u0438\u0441\u0441\u043b\u0435\u0434\u0443\u0435\u0442\u0441\u044f \u0441\u043a\u043e\u0440\u043e\u0441\u0442\u044c \u043d\u0430\u043b\u0435\u0442\u0430\u044e\u0449\u0435\u0439 \u0447\u0430\u0441\u0442\u0438\u0446\u044b, \u043f\u0440\u0438 \u043a\u043e\u0442\u043e\u0440\u043e\u0439 \u0432\u0437\u0430\u0438\u043c\u043e\u0434\u0435\u0439\u0441\u0442\u0432\u0438\u0435 \u0431\u0443\u0434\u0435\u0442 \u043d\u0430\u0438\u0431\u043e\u043b\u0435\u0435 \u044d\u0444\u0444\u0435\u043a\u0442\u0438\u0432\u043d\u044b\u043c. Keywords: projectile ion, stopping power, loss of energy, critical velocity, thermonuclear fusion \u041a\u043b\u044e\u0447\u0435\u0432\u044b\u0435 \u0441\u043b\u043e\u0432\u0430: \u043d\u0430\u043b\u0435\u0442\u0430\u044e\u0449\u0438\u0439 \u0438\u043e\u043d, \u0442\u043e\u0440\u043c\u043e\u0437\u043d\u0430\u044f \u0441\u043f\u043e\u0441\u043e\u0431\u043d\u043e\u0441\u0442\u044c, \u043f\u043e\u0442\u0435\u0440\u044f \u044d\u043d\u0435\u0440\u0433\u0438\u0438, \u043a\u0440\u0438\u0442\u0438\u0447\u0435\u0441\u043a\u0430\u044f \u0441\u043a\u043e\u0440\u043e\u0441\u0442\u044c, \u0442\u0435\u0440\u043c\u043e- \u044f\u0434\u0435\u0440\u043d\u044b\u0439 \u0441\u0438\u043d\u0442\u0435\u0437. ________________________________________________________________________________________________ Let us consider a plasma, which consists of three 1 mee2 kinds of particles, a hydrogen ion, a helium ion, and electrons. To determine the plasma stopping power, we parameters: rs = \uf0e6 3 \uf0f6 3 2 - density parameter, use the formula (source 1), which, after integration over \uf0e7\uf0e8 4\uf070 \uf0f7\uf0f8 the directions of the wave vector, takes the form n 1 a = \uf0e6\uf0e7 3 \uf0f6\uf0f7 3 which is the ratio of the average distance \uf0e8 4\uf070n \uf0f8 \uf0f2 \uf0f2\u2212 dE = e2 dk kv0 d\uf077\uf077 Im 1 \uf072 between plasma particles and the Bohr radius dx \uf070v02 k \u2212kv0 \uf065 (\uf077, k ) (1) \uf0682 = + n2 , ne = z1n1 + z2n2 me e 2 a\u0411 = , where, n n1 , To carry out numerical calculations of plasma energy losses, we will use the following dimensionless ne , n1, n2 are the concentrations of electrons and ions __________________________ \u0411\u0438\u0431\u043b\u0438\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u043e\u0435 \u043e\u043f\u0438\u0441\u0430\u043d\u0438\u0435: Tashev B., Abdrakhman M.M. CRITICAL VELOCITY OF PROJECTILE ION IN HELIUM PLASMA \/\/ Universum: \u0442\u0435\u0445\u043d\u0438\u0447\u0435\u0441\u043a\u0438\u0435 \u043d\u0430\u0443\u043a\u0438 : \u044d\u043b\u0435\u043a\u0442\u0440\u043e\u043d. \u043d\u0430\u0443\u0447\u043d. \u0436\u0443\u0440\u043d. 2023. 6(111). URL: https:\/\/7universum.com\/ru\/tech\/archive\/item\/15682","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. of the first and second grades, z1 = 1, z2 = 2 in this energy K BT . In the case of the interaction of electrons case . \uf047 = e2 zi z j - coupling parameter, determined z1 = z2 = \u22121, an electron with ions zi = 1, z j = 1,2 ; ions to each other z1 = 1, z2 = 2 . akBT by the ratio of the interaction energy of pairs to the kinetic blue line \u2013 energy loss in three-component plasma; black line - energy loss in hydrogen plasma; red line - energy loss on electronic component. Figure 1. Proton energy Loss in a three-component helium-hydrogen plasma at \uf061 = 0,1 It can be seen from this figure that, at low velocities, the losses on the ionic components of the target become the loss of proton energy is mainly due to deceleration equal to the losses on the electrons. by ions. As for the drag on electrons, it is negligible at low velocities and slowly increases with increasing ve- If at other speeds the stopping power of the plasma locity of the test proton, slowly reaching a maximum and was less than at the critical speed, then the critical speed slowly decreasing with a further increase in the velocity. determines the optimal speed of the test particle, at which This figure also shows the dependences of the proton en- its energy is transferred to the entire system. ergy losses on electrons, in an electron-proton two-com- ponent plasma, and the losses during its deceleration The total energy loss can be written as the sum of in a three-component plasma. From figure 2.1. It follows that proton deceleration in a three-component plasma losses on all plasma components: S = S1 + S2 + Se , occurs more efficiently than in an electron-proton two- component plasma. Undoubtedly, the deceleration effi- where Se - energy loss on electrons, S1 , S2 - losses on ciency and the quantitative values of proton energy losses depend on the ratio of the fractions of plasma ions. ions of the first and second grade, respectively, then the critical velocity is determined from the fulfillment 2. Critical velocity of a proton in a semi classical, helium-like plasma. of the condition S \u2212 Se = Se or S = 2Se . The energy loss on the plasma components will be At the figure 2 it\u2019s shown a three-dimensional 3D more efficient at the so-called critical velocity, at which dependence of the critical velocity of a semi classical plasma on the density parameter and the coupling pa- rameter \u0413=0,1;0,5;0,9 Figure 2. The critical velocity of the incident proton in units of the thermal velocity of electrons depending on \u0413 and rs at \uf061 = 0,1 65","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. Figure 3. Critical velocity of the incident proton in units of the thermal velocity of electrons depending on rs for fixed \u0413=0.1;0.5;0.9, at \uf061 = 0,1 Figure 3 shows the dependences of the critical ve- locity on the density parameter for fixed values of the coupling parameter \u0413=0.1;0.5;0.9. Figure 4. Critical velocity of the incident proton in units of the thermal velocity of electrons depending on \u0413, for fixed rs = 0.1; 0.5; 0.9, at \uf061 = 0,1 Figure 4 shows the dependence of the critical veloc- temperature plays a significant role in the deceleration ity on the coupling parameter \u0413 for fixed values of the of the proton in the considered helium-hydrogen plasma, density parameter rs = 5, 10, 15 . From these graphs it i.e. The chaotic motions of plasma particles are signifi- can be seen that, at values of \u0413 =0.5; 0.9, the critical ve- cant in comparison with the interaction effects, since the coupling parameter decreases with decreasing density locity increases monotonically with increasing rs , and also decreases with increasing temperature. its value slowly increases with decreasing coupling As for the singularities at \uf047 \uf0bb 0,1 and 18 \uf0b3 rs \uf0b3 12 , parameter \u0413 at rs \uf0a3 12 . With a further decrease in the this is apparently due to the approximation of the thermal velocity of electrons to their orbital velocity, i.e. the for- coupling parameter (\u0413=0.1), a feature appears in the mation of a quasi-bound state, in which the interaction of a proton with plasma electrons becomes more efficient. dependence of the critical velocity on rs , namely, at Summary rs \uf0b3 12 , the critical velocity rapidly increases and reaches its maximum value at rs \uf0bb 15 . With further growth Using the example of semiclassical plasma, the rs \uf0b3 15 , the value of the critical velocity rapidly drops effective use of plasma bombardment to maintain to a value of the order of v p,crit \uf0bb 0,3 . An increase in thermonuclear fusion is shown. In the future, these data can be used to calculate deceleration in real installations the critical speed with increasing rs , i.e. with a decrease with nonideal plasma. in the plasma density and with a decrease in the coupling parameter, it can be explained by the fact that the plasma References: 66","\u2116 6 (111) \u0438\u044e\u043d\u044c, 2023 \u0433. 1. Peter Th., Meyer-ter-Vehn J. Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power \/\/ Phys.Rev.A. - 1991. - Vol.43. - P.1998-2014. 2. Peter Th., Meyer-ter-Vehn J. Energy loss of heavy ions in dense plasma. II. Nonequilibrium charge states and stopping powers \/\/ Phys.Rev.A. - 1991. - Vol.43. - P.2015-2030. 3. Deutsch C. Nodal expansion in a real matter plasma \/\/ Phys. Lett.A. - 1977. - Vol.60. - P.317. 4. Minoo H., Gombert M., Deutsch C. Temperature-dependent Coulomb interactions in hydrogenic systems \/\/ Phys.Rev.A. - 1981. - Vol.23. - P.924. 5. Baimbetov F.B., Nurekenov Kh.T., Ramazanov T.S. Pseudopotential theory of classical non-ideal plasmas \/\/ Phys.Lett.A. - 1995. - Vol.202. - P.211-214. 6. Arkhipov Yu.V., Baimbetov F.B., Davletov A.E., Starikov K.V. Stopping power in dense high-temperature plasmas \/\/ Plasma Phys.Control.Fusion. - 2000. - Vol.42. - P.455-462. 7. Arkhipov Yu.V., Baimbetov F.B., Davletov A.E., Starikov K.V. Stopping power in semiclassical, collisional plasmas \/\/ Physica Scripta. - 2001. - Vol.63. - P.194-196. 67","\u041d\u0430\u0443\u0447\u043d\u044b\u0439 \u0436\u0443\u0440\u043d\u0430\u043b UNIVERSUM: \u0422\u0415\u0425\u041d\u0418\u0427\u0415\u0421\u041a\u0418\u0415 \u041d\u0410\u0423\u041a\u0418 \u2116 6(111) \u0418\u044e\u043d\u044c 2023 \u0427\u0430\u0441\u0442\u044c 5 \u0421\u0432\u0438\u0434\u0435\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u043e \u0440\u0435\u0433\u0438\u0441\u0442\u0440\u0430\u0446\u0438\u0438 \u0421\u041c\u0418: \u042d\u041b \u2116 \u0424\u0421 77 \u2013 54434 \u043e\u0442 17.06.2013 \u0418\u0437\u0434\u0430\u0442\u0435\u043b\u044c\u0441\u0442\u0432\u043e \u00ab\u041c\u0426\u041d\u041e\u00bb 123098, \u0433. \u041c\u043e\u0441\u043a\u0432\u0430, \u0443\u043b\u0438\u0446\u0430 \u041c\u0430\u0440\u0448\u0430\u043b\u0430 \u0412\u0430\u0441\u0438\u043b\u0435\u0432\u0441\u043a\u043e\u0433\u043e, \u0434\u043e\u043c 5, \u043a\u043e\u0440\u043f\u0443\u0441 1, \u043a. 74 E-mail: [email protected] www.7universum.com \u041e\u0442\u043f\u0435\u0447\u0430\u0442\u0430\u043d\u043e \u0432 \u043f\u043e\u043b\u043d\u043e\u043c \u0441\u043e\u043e\u0442\u0432\u0435\u0442\u0441\u0442\u0432\u0438\u0438 \u0441 \u043a\u0430\u0447\u0435\u0441\u0442\u0432\u043e\u043c \u043f\u0440\u0435\u0434\u043e\u0441\u0442\u0430\u0432\u043b\u0435\u043d\u043d\u043e\u0433\u043e \u043e\u0440\u0438\u0433\u0438\u043d\u0430\u043b-\u043c\u0430\u043a\u0435\u0442\u0430 \u0432 \u0442\u0438\u043f\u043e\u0433\u0440\u0430\u0444\u0438\u0438 \u00abAllprint\u00bb 630004, \u0433. \u041d\u043e\u0432\u043e\u0441\u0438\u0431\u0438\u0440\u0441\u043a, \u0412\u043e\u043a\u0437\u0430\u043b\u044c\u043d\u0430\u044f \u043c\u0430\u0433\u0438\u0441\u0442\u0440\u0430\u043b\u044c, 3 16+"]
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373