ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ 1- 6t + 2t2 + t3 1 t 2t 2 1 5t t 2 - (1- t - )2t2 0 - 5t + 4i2 + t3 ( )- - 5t + 5t2 +10t3 0 - t 2 - 9t3 ( )- - t2 + t3 + 2t4 0 - 10t3 - 2t4 ກຳຌຫຳຌສຌິໄ ສຸຈລຄ຺ ຽມໃ ຬຼື ກຳຌຫຳຌມຂີ ຌໄ ຂຬຄຏຌ຺ ແຈອໄ ຍ Q ຽໃ ຳ຺ ກຍກຳຌກຳຌຈ຺ ຂຬຄຑຈ຺ ຽລກ ຈໃ ຄຌຌໄ ຏຌ຺ ຫຳຌຂຳໄ ຄຽຄິ ມໃ ຌ ( ) ( )( ) ( )1- 6t + 2t2 + t3 = 1- t - 2t2 1- 5t - t2 - 10t3 + 2tt4 ຉວ຺ ຢໃ ຳຄ 2: ຫຳຌຑະຫຸຑຈ຺ A = 9x - 7x2 - x3 + x4 ຈວໄ ງ B = 1+ x + x2 ຉຳມກຳລຄຂຌຶໄ ອຬຈຂຌໄ 3 ( )( )ຽຫຌວໃ ຳ 9x - 7x2 - x3 + x4 = 1+ x - x2 8 - 17x +18x2 - 36x3 +(55 - 36x) x4 ຉວ຺ ຢໃ ຳຄ 3: ຫຳຌ A = 1 ຈວໄ ງ B = 1 x ຉຳມກຳລຄຂຌຶໄ ອຬຈຂຌໄ n ຂຌໄ ຉຬຌຳຬຈິ ຫຳຌອຬຈຂຌໄ 2 ກໃ ຬຌ. 1 = (1- x)1+ x ອຬຈຂຌໄ 0 1 = (1- x)(1+ x)+ x2 ອຬຈຂຌໄ 1 ( )1 = (1- x) 1+ x + x2 + x3 ອຬຈຂຌໄ 2 ( )1= (1- x) 1+ x + x2 +............+ xn + xn+1 ອຬຈຂຌໄ n ຽຑໃ ຌິ ແຈຑໄ ສິ ູຈຍຍຉຄໄ ຂຬຄກຳຌຍວກ, ຂຌໄ ຳຬຈິ 1 ລະ ຍຳຈກຳໄ ວ a 1+ a + a2 + ......... + an = 1- an+1 ຽຑຳະສຳລຍ a K ຽອຳ຺ ະແຈໄ 1- a ( )1 = (1- a) 1+ a + a2 +..........+ an + an+1 ກຳຌຑະຫຸຑຈ຺ ເຫໄ ະວຑີ ຈ຺ ຌງິ ຳມ: ກຳຌຫຳຌຑະຫຸຑຈ຺ Px ຈວໄ ງ x a ສຳມຳຈຂຼຌເຌອູຍອໃ ຳຄລວມຈໃ ຄຌີໄ 193
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ P(x) = (x - a)Q(x)+ R Q( x ) ມໃ ຌຏຌ຺ ໃແີ ຈອໄ ຍຳກກຳຌຫຳຌ R ມໃ ຌຉວ຺ ຽສຈ ຽຫຌແຈວໄ ໃ ຳ (1) p(a) = (a - a)Q(a)+ R = R (2) px ຫຳຌຂຳຈ x a ກຉໃ ຽມໃ ຬືຼ pa 0 ຉວ຺ ຢໃ ຳຄ 1: px xn an ຫຳຌຂະໜຳຈ x a ໝຳງຽຊຄິ ວໃ ຳ ( )P (x) = (x - a) xn- 1 + axn- 2 + a2xn- 3 +............ + an- 2x + an- 1 ຉວ຺ ຢໃ ຳຄ 2: P(x) = x2 - 2x +1 ຫຳຌຂຳຈຈວໄ ງ x 1 ຽອຳ຺ ກວຈຽຍໃ ຄິ P(1) =1- 2 +1 = 0 ໝຳງຽຊຄິ ຉວ຺ ຽສຈຽໃ ຳ຺ ສູຌ, ແຈຏໄ ຌ຺ ຫຳຌ x2 2x 1 x 1x 1 0 ຉວ຺ ຢໃ ຳຄ 3: P(x) = 2x2 - 3x + 5 ຫຳຌຈວໄ ງ x +1 ຽອຳ຺ ກວຈຽຍໃ ຄິ ວໃ ຳ p1 2 3 5 10 ແຈຏໄ ຌ຺ ຫຳຌ 2x2 - 3x + 5 = (x +1)(2x - 5)+10 ຉວ຺ ຢໃ ຳຄ 4: Px 2x3 2x2 x 1 ຫຳຌຈວໄ ງ x 3 ຽອຳ຺ ກວຈຽຍໃ ຄິ ວໃ ຳ p3 54 18 3 1 38 ( )ແຈຏໄ ຌ຺ ຫຳຌ 2x3 - 2x2 + x - 1 = (x - 3) 2x2 + 4x +13 + 38 , p3 0 ໝຳງວຳມວໃ ຳ Px ຍໃ ຫຳຌຂຳຈຈວໄ ງ x 3 3 ກຳຌຫຳຌຑະຫຸຑຈ຺ ເຫໄ ະວຑີ ຈ຺ x a ຈວໄ ງວິ ອີ ຬກຽຌ.ີ ກຳຌຫຳຌຑະຫຸຑຈ຺ A(x) = a0 + a1x + a2x +...+ anxn ຈວໄ ງ x a ສຳມຳຈ ຎະຉຍິ ຈຉຳມວິ ີ ອຬກຽຌແີ ຈຈໄ ໃ ຄຌ:ີໄ 1. ຂຼຌສຳຎະສຈິ ຸກໂຉວ຺ ຂຬຄ Ax ຽຆໃ ຌ : an, an-1, an- 2..., a0 ລຄ຺ ເຌຊວໜີ ໃ ຄຶ 2. ຂຼຌສຳຎະສຈິ a ລະ an ລຄ຺ ເສໃ ຉຌ຺ໄ ຊວສີ ຬຄ. 3. ຈິ ແລໃ ໃ ຳຂຬຄ bn- 1,bn- 2,...,b0 = R bn- 1 = aan + an- 1 bn- 2 = abn- 1 + an- 2 b0 = R = ab1 + a0 194
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ 4. ຏຌ຺ ໃ ແີ ຈອໄ ຍຳກກຳຌຫຳຌສຳມຳຈຂຼຌແຈຈໄ ໃ ຄຌີໄ ( )A(x) = (x - a) anxn- 1 + bn- 1xn- 2 +...+ b1 + R an an-1 an-2... a1 a0 a an b n-1 bn-2... b1 R ຉວ຺ ຢໃ ຳຄ 1: ໃ ຄ຺ ຫຳຌ 4x3 - x5 + 32 - 8x2 ຈວໄ ງ x + 2 ວິ ີ ກ:ໄ ຽອຳ຺ ຈລຼຄຑະຫຸຑຈ຺ ກໃ ຬຌ : - x5 + 4x3 - 8x2 + 32 1 0 48 0 32 2 1 2 0 8 16 0 ( )ຈໃ ຄຌຌໄ 4x3 - x5 + 32 - 8x2 = (x + 2) - x4 + 2x3 - 8x +16 ຉວ຺ ຢໃ ຳຄ 2: ໃ ຄ຺ ຫຳຌ x5 +8x4 + 20x2 - 15x2 + 8 ຈວໄ ງ x 5 1 23 42 5 1 3 18 86 432 ( )ຈໃ ຄຌຌໄ 4x4 - 2x3 + 3x2 - 4x + 2 = (x - 5) x3 + 3x2 +18x + 86 + 432 ( )ກວຈຌຼື (x - 5) x3 + 3x2 +18x + 86 + 432 = x4 - 2x3 + 3x2 - 4x + 2 ຉວ຺ ຢໃ ຳຄ 3: ຫຳຌ x5 +8x4 + 20x2 - 15x2 + 8 ຈວໄ ງ x + 3 1 8 0 20 15 8 3 1 5 15 65 210 638 ( )ຈໃ ຄຌຌໄ x5 + 8x4 + 20x2 - 15x + 8 = (x + 3) x4 - 5x3 - 15x2 + 65x - 210 + 638 ຉວ຺ ຢໃ ຳຄ 4: ຫຳຌ x3 8 ຈວໄ ງ x 2 10 08 2 12 4 0 ( )ຈໃ ຄຌຌໄ x3 8 = (x - 2) x2 + 2x + 4 195
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ 4 ຽສຈສໃ ວຌຎ຺ກກະຉິ ລະ ກຳຌງກຽສຈສໃ ວຌຎ຺ກກະຉຽິ ຎຌຽສຈສໃ ວຌ ຽສຈສໃ ວຌຎ຺ກກະຉ:ິ ຌງິ ຳມ: K ມໃ ຌໃ ຄ຺ ຬຌໜໃ ຄຶ A ລະ B ມໃ ຌຑະຫຸຑຈ຺ ເຌໃ ຄ຺ K ຆໃ ຄຶ ວໃ ຳ B 0 ; A , AB 1 ຽຬຌີໄ ວໃ ຳ B ຽສຈສໃ ວຌຎ຺ກກະຉເິ ຌໃ ຄ຺ K. ຉວ຺ ຢໃ ຳຄ 1: ກ. x2 + 2x - 1 ຂ. x3 - 2x2 + 5x - 9 . 2x4 - x3 - 6x2 + 4x - 8 x +1 x2 - 2 x2 - x + 2 (ຑະຫຸຑຈ຺ ຫຳຌຈວໄ ງຑະຫຸຑຈ຺ ຽຬຌີໄ ວໃ ຳ ຽສຈສໃ ວຌຎ຺ກກະຉ)ິ ຸຌລກສະຌະ: A, B,C, D ລວໄ ຌຉໃ ມໃ ຌຑະຫຸຑຈ຺ ໃ ຢີ ໃ ູເຌ Kx ; A C AD BC BD ( )( )x2 + x +1 x3 - 1 x +1 = x2 - 1 ຉວ຺ ຢໃ ຳຄ 2: ຽຑຳະວໃ ຳ x2 + x +1 x2 - 1 = x4 + x3 - x - 1 ລະ x3 1 x 1 x4 x3 x 1 ຉວ຺ ຢໃ ຳຄ 3: x2 - x +1 x3 +1 x +1 = (x +1)2 ( )x3 +1 (x +1) = x4 + x3 + x +1 ( )x2 - x +1 (x +1)2 = x4 + x3 + x +1 ກຳຌງກຽສຈສໃ ວຌຎ຺ກກະຉຽິ ຎຌຽສຈສໃ ວຌ: ຏຌ຺ ຫຳຌຂຬຄສຬຄຑະຫຸຑຈ຺ ເຌອູຍອໃ ຳຄ A ຽຆໃ ຄິ ວໃ ຳ d A d B ຽຆໃ ຄິ ມຆີ ໃ ວືຼ ໃ ຳຽສຈສໃ ວຌ ຎ຺ກກະຉ,ິ B ຽສຈສໃ ວຌຄໃຳງຈຳງມໃ ຌຽສຈສໃ ວຌຎ຺ກກະຉິ ໃ ມີ ອີ ູຍອໃ ຳຄ: A 1. x- a 2. A ; mÎ (x - a)m 1 3. x2 + Px + q 4. A ; p2 4q 0 x2 px q 196
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ Ax B ; p2 4q 0 ; m Iˆ 5. x2 px q m ກຳຌງກຽສຈສໃ ວຌຎ຺ກກະຉິ A ເຫກໄ ຳງຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງມໃ ຌຈຳຽຌຌີ ຉຳມຉໃ ລະອູຍຍຍຂຬຄ B B ຈໃ ຄຌ:ີໄ ກລະຌີ ີ 1: ຊຳໄ d B n ລະ B ມີ n ອຳກຼື : a1, a2,...,an ໃ ຽີ ຎຌຳຌວຌຄິ ຉໃ ຳຄກຌ ເຌກລະຌຌີ ີໄ A B ສຳມຳຈງກຬຬກຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງແຈອໄ ູຍອໃ ຳຄຈໃ ຄຌ:ີໄ A = A1 + A2 + ... + An B x - a1 x - a2 x - an ຉວ຺ ຢໃ ຳຄ 1: ງກ x2 +1 ງກຽຎຌສໃ ວຌຄໃຳງຈຳງ x (x - 1)(x +1) ວິ ີ ກ:ໄ x2 +1 = A1 + A2 + A3 = (x - 1)(x +1) A1 + x (x +1) A2 + x (x - 1) A3 x x- 1 x +1 x (x - 1)(x +1) x(x - 1)(x +1) ຳກຸຌລກສະຌະຂຬຄຽສຈສໃ ວຌະແຈໄ x +1 = (x - 1)(x +1) A1 + x(x +1) A2 + x (x - 1) A3 ຳກສມ຺ ຏຌ຺ ສຸຈຳໄ ງຽຫຌແຈຈໄ ໃ ຄຌ:ີໄ ຽມໃ ຬືຼ x 0 . ະແຈ ໄ 1 A1 ລະ ຊຬຌແຈ ໄ A1 1 ຽມໃ ຬືຼ x 1 . ະແຈ ໄ 2 2A2 ລະ ຊຬຌແຈ ໄ A2 1 ຽມໃ ຬຼື x 1 . ະແຈ ໄ 2 2A3 ລະ ຊຬຌແຈ ໄ A3 1 ຈໃ ຄຌຌໄ x2 +1 -1 1 1 x (x - 1)(x +1) = ++ x x - 1 x +1 ກລະຌິ ີ 2: ຊຳໄ ອຳກຄໝຈ຺ ຂຬຄ B ຽຎຌຳຌວຌຄິ ຉໃ ມຍີ ຳຄອຳກຆຬໄ ຌກຌຽຆໃ ຌ: B x ax b2 x c3 ເຌກລະຌຌີ ຽີໄ ສຈສໃ ວຌ A x ax b2 x c3 ສຳມຳຈຂຼຌຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງເຌອູຍອໃ ຳຄຈໃ ຄຌ:ີໄ (x - A c)3 = A1 + A2 + (x A3 + A4 + ( x A5 + (x A6 )3 x- a x- b x- c - c)2 -c a)(x - b)2 (x - - b)2 197
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ ຉວ຺ ຢໃ ຳຄ 2: ງກຽສຈສໃ ວຌ 2x2 - 3x + 4 ຬຬກຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງ (x +1)(x - 2)2 ວິ ີ ກ:ໄ 2x2 - 3x + 4 = A1 + A2 2 + (x A3 x +1 x- (x +1)(x - 2)2 - 2)2 = (x - 2)2 A1 + (x +1)(x - 2) A2 + (x +1) A3 (x +1)(x - 2)2 ຳກຌີໄ ໃ ຄຶ ແຈໄ 2x2 - 3x + 4 = (x - 2)2 A1 + (x +1)(x - 2) A2 + (x +1) A3 ຽມໃ ຬືຼ x 1 ະແຈ ໄ 9 9A1 ລະ ຊຬຌແຈ ໄ A1 1 ຽມໃ ຬືຼ x 2 ະແຈ ໄ 6 3A3 ລະ ຊຬຌແຈ ໄ A3 2 ຽມໃ ຬຼື x 0 ະແຈ ໄ 4 = - 2A2 + 6 ລະ ຊຬຌແຈ ໄ A2 1 ຈໃ ຄຌຌໄ 2x2 - 3x + 4 1 1 2 = + + (x +1)(x - 2)2 x +1 x- 2 (x - 2)2 ກລະຌີ ີ 3: ຊຳໄ B ມອີ ຳກຽຎຌຳຌວຌສຌ຺ ຉກຉໃ ຳຄກຌຽຆໃ ຌ ( )B = (x - a) x2 + bx + c ຽຆໃ ຄີ b2 4c 0 ເຌກລະຌຌີ ີໄ A ສຳມຳຈງກຬຬກຽຎຌ B ຽສຈສໃ ວຌຄໃຳງຈຳງແຈເໄ ຌອູຍອໃ ຳຄຈໃ ຄຌີໄ : A = A1 + A2 x + A3 B x- a x2 + bx + c ຉວ຺ ຢໃ ຳຄ 3: ງກ 3x2 + x - 2 ຬຬກຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງ (x - 1)(x2 +1) ( )3x2 + x - 2 ( ) ( )(x - 1) x2 +1 ວິ ີ ກ:ໄ = A1 + A2 x + A3 = x2 +1 A1 + (x - 1)(A2x + A3 ) x- 1 x2 +1 (x - 1) x2 +1 ( )ຳກຌແີໄ ຈໄ 3x2 + x - 2 = x2 +1 A1 + (x - 1)(A2x + A3 ) ຽມໃ ຬຼື x 1 ະແຈ ໄ 2 2A1 ລະ ຊຬຌແຈ ໄ A1 1 ຽມໃ ຬືຼ x 0 ະແຈ ໄ 2 1 A3 ລະ ຊຬຌແຈ ໄ A3 3 ຽມໃ ຬຼື x 1 ະແຈໄ 0 = 2 - 2(- A2 + 3) ລະ ຊຬຌແຈໄ A2 2 3x2 + x - 2 1 2x - 3 ( )ຈໃ ຄຌຌໄ = + (x - 1) x2 +1 x- 1 x2 +1 198
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ ກລະຌີ ີ 4: ຊຳໄ B ມອີ ຳກຽຎຌຳຌວຌສຍຆຬໄ ຌກຌ ຽຆໃ ຌ ( )B = ax2 + bx + c 3 ຽຆໃ ຄິ b2 4ac 0 ເຌກລະຌຌີ ີໄ A ສຳມຳຈງກຬຬກຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງແຈເໄ ຌອູຍອໃ ຳຄຈໃ ຄຌ:ີໄ B ຉວ຺ ຢໃ ຳຄ 4: ງກ x3 + 4x2 - 4x - 1 ງກຬຬກຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງ ( )x2 +1 2 ( ) ( ) ( ) ( )ວິ ີ ກ:ໄ ( )x3 + 4x2 - 4x - 1 = A1x + B1 + A2 xB2 = x2 +1 A1x + B1 + A2x + B2 x2 +1 2 x2 +1 x2 +1 2 x2 +1 2 ( )ຳກຌແີໄ ຈ ໄ x3 + 4x2 - 4x - 1 = x2 +1 (A1x + B1)+ A2x + B2 = A1x3 + B1x2 + (A1 + A2 ) x + (B1 + B2 ) ຳກກຳຌສມ຺ ຼຍສຳຎະສຈິ ຂຬຄຑະຫຸຑຈ຺ ໃ ຢີ ໃ ູຽຍຬືຼໄ ຄຆຳໄ ງກຍສຳຎະສຈິ ຑະຫຸຑຈ຺ ໃ ຢີ ໃ ູຽຍຬຼືໄ ຄຂວຳຂຬຄສະຽໝີ ຏຌ຺ ຂຳໄ ຄຽຄິ ຌີໄ ໃ ຄຶ ແຈ ໄ A1 =1 ; B1 = 4 ; 1+ A2 = - 4 ລະ ຊຬຌແຈ ໄ A2 5 4 + B2 = - 1 ລະ ຊຬຌແຈ ໄ B2 5 ຈໃ ຄຌຌໄ x3 + 4x2 - 4x - 1 x + 4 - 5x - 5 = x2 +1 + x2 +1 2 ( ) ( )x2 +1 2 199
ຑຈຶ ຆະະຌຈິ ຆຌໄ ສູຄ ຍຈ຺ ຽຐິກຫຈ 13 1. ໃ ຄ຺ ງກຽສຈສໃ ວຌລໃ ຸມຌຬີໄ ຬກຽຎຌຽສຈສໃ ວຌຄໃຳງຈຳງ 1) x 6) x x 2x 1 x 2x 1x 1 2) 1 3x2 x 2 x2 x 1 x 1 x2 1 7) 3x2 x 2 3x2 2 x 1 x2 1 xx 1 x2 1 3) 8) 4) x2 1 9) 1 xx 1x 1 x2 x 12 5) x 1 x 2x 1x 3 10) x2 x 1x 4 200
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208